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Abstract. Knowledge graphs (KG) are the basis for many artifi-
cial intelligence applications but still suffer from incompleteness. In
this paper, we introduce a novel method for KG completion task by
knowledge-infused pre-trained language models. We represent each triple
in the KG as textual sequences and transform the KG completion task
into a sentence classification task that fits the input of the language
model. Our KG completion framework based on the knowledge-infused
pre-trained language model which can capture both linguistic informa-
tion and factual knowledge to compute the plausible of the triples. Exper-
iments show that our method achieves better results than previous state-
of-the-art on multiple benchmark datasets.

Keywords: Knowledge graph completion · Link prediction · Relation
prediction · Pre-trained language model

1 Introduction

Knowledge graphs (KG) are structured knowledge bases, where facts are rep-
resented in the form of entities and relations. The entities are the nodes of the
knowledge graph, and the relations are the edge between entities. Each edge and
connected nodes form a triple (head entity, relation, tail entity), indicating the
relationship between entities, e.g.., (Mark Twain, is a, writer). KG can be the
basis for many applications: semantic search, recommendation, question answer-
ing, and data integration, etc. [11]. However, even large knowledge graphs such
as FreeBase [2], YAGO [28], and WordNet [17], are still far from being complete,
that is, missing relations or entities in the graphs [36]. This problem prompt the
KG completion task which mainly includes link prediction and relation predic-
tion to be proposed.

Many research efforts are devoted to KG completion, among them, knowl-
edge graph embedding is an effective approach in which entities and edges are
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represented by embedding vectors. The embedding methods that use only knowl-
edge graph structure information are often suffer from the sparsity of KG [14].
Therefore, Some recent studies incorporate extra text information to enrich
knowledge representation [27,38,40]. These methods encode extra information
as a unified word embeddings representation and cannot express the contex-
tual information of the words in different contexts. For instance, in the two
triples (Mark Twain, is a, writer) and (Mark Twain, born in,America), the
same words in the description of Mark Twain should have different importance
weights related to the two relations is a and born in. Besides, sufficient semantic
and syntactic information cannot be learned by the small text of these methods
such as the entity description.

Recently, BERT [6] and its various variants XLNet [42], RoBERTa [16], and
ALBERT [12] have achieved great success in the field of natural language pro-
cessing (NLP). These methods pre-trained with a large amount of unlabeled
corpus and achieve state-of-the-art performance on several downstream NLP
tasks by simply fine-tuning all pre-trained parameters. BERT can capture rich
linguistic knowledge in pre-trained. BERT-based models have already effectively
applied to various applications of NLP, such as question answering, reading com-
prehension, relationship extraction, dialogue generation, and it is also used in the
KG completion [43]. However, some inference tasks require not only linguistic
knowledge but also factual knowledge. To alleviate this problem, ERNIE [45],
KnowBERT [21], K-BERT [15] and K-Adapter [34] inject knowledge into the
language model.

For KG completion task, factual knowledge is particularly important
for inferring relations between entities. Consider our previous example
(Mark Twain, born in,America). Given the head entity Mark Twain and the
relation born in. [22] suggest that the pre-trained language models may infer the
tail entity America by the surface form of entity name, because Mark Twain
to be a common American name. But when a person with an Italian name was
born in the America, we need to use factual knowledge to reason the tail entity.
In this study, we propose a novel method for KG completion using knowledge-
infused pre-trained language models. For each triple, we span the entities and
relation into text sequences and convert the completion of the knowledge graph
into sequence classification problems. Then, we fine-tune the knowledge-infused
BERT on these sequences to predict the plausibility of triples. The contributions
of our paper are as follows:

– We propose a novel method for KG completion using knowledge-infused pre-
trained language models. And to the best of our knowledge, this is the first
study to use a knowledge-infused pre-trained language model for KG comple-
tion.

– Evaluating results on several benchmark datasets show that our method can
achieve state-of-the-art performance in KG completion tasks.
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2 Related Work

KG Embedding KG embedding methods can be classified into translational
distance models and semantic matching models based on different scoring func-
tions [33]. The representative translational distance models are TransE [3] and
its extensions include TransH [35], TransD [9], etc. These models use distance-
based scoring functions to evaluate the plausibility of a triple. The semantic
matching models employ similarity-based scoring functions, and the typical mod-
els are RESCAL [20] and DistMult [44]. In addition, the convolutional neural
networks (CNN) based methods ConvKB [18], ConvE [5], R-GCN [24] show
promising results for KG completion.

The above methods only use structure information for KG completion, while
some methods introduce external information to improve the performance [33].
NTN [27] represents the entities by word embeddings that are learned from the
external corpus. DKRL [40] encodes the entity descriptions and learn embeddings
with both triples and descriptions. SSP [37] learns the topic and KG embeddings
together by characterizing the correlation between fact triples and text descrip-
tions. Through external information, the effectiveness of these models can be
improved, but these methods use the same word embedding weights to represent
the entities and relations in different triples which would have different meanings.

To alleviate the above problems, TEKE [24] assigns different word embed-
dings to the relation in different triples. AATE [1] enhances representations by
exploiting the entity descriptions and triple specific relation mention, then uses
the mutual attention mechanism to learn more accurate textual representations.
These methods can handle the semantic variety of entities and relations in dis-
tinct triples, but the ability of textual representation is limited by the small cor-
pus such as entity descriptions. Compared with these methods, KG-BERT [43]
can capture rich linguistic information via pre-trained language models. But they
lack the factual knowledge information to grasp the relationship between entities
which is important for KG completion tasks. Our method uses knowledge-infused
language models to solve this problem.

Pre-trained Language Model Pre-trained language representation models
can be divided into feature-based and fine-tuning methods. Feature-based meth-
ods only pre-trained word embedding parameters while fine-tuning methods
learn the parameters of the pre-trained model architecture. Through fine-tuning,
the pre-trained model can be applied in downstream tasks with few parame-
ters need to be learned scratch. The representative fine-tuning method BERT
achieves state-of-the-art results for various NLP tasks. Currently, BERT-based
models are explored in fields such as question answering [8,41], reading com-
prehension [46], relation extraction [26], text classification [23], etc. And it also
used in KG completion [43]. Though BERT can capture rich semantic infor-
mation, but ignore the incorporation of knowledge information. Therefore, some
works [21,34,45] injecting extra knowledge information into pre-trained language
representation. In this study, we take a knowledge-infused pre-trained language
model as the framework and fine-tune on the KG completion task.
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3 Methodology

3.1 Knowledge-Infused BERT

BERT is a pre-trained language model built on the multi-layer bidirectional
Transformer encoder. And it applied to downstream tasks through two steps
of pre-training and fine-tuning. For pre-training, BERT is trained in a self-
supervised way, and it trained with large corpus data (3,300 M words from
BooksCorpus and English Wikipedia). For fine-tuning, BERT is initialized by
the pre-trained parameters, and use labeled data from downstream tasks (such
as sentence classification, question answering, etc.) to fine-tune all parameters.
BERT can obtain rich contextual semantic and syntactic information through
pre-training. Knowledge embedding methods (such as TransE [3]) which vec-
torize the structured KG can learn the knowledge information of entities and
relations. To take full advantage of the contextual language representation of
the pre-trained BERT and the factual knowledge of entities and relations in the
KG, we apply Knowledge-infused BERT for KG completion.

We use ERNIE [45] as the knowledge-infused language model which con-
sists of two encoders, T-Encoder and K-Encoder, to construct our framework.
T-Encoder is responsible to capture basic lexical and syntactic information from
the input tokens, and K-Encoder is to integrate extra factual knowledge infor-
mation into textual information. The structure of T-Encoder is the same as
BERT, which consists of multi-layer self-attention Transformer. Given the token
sequence {Tok1, ..., T okn}, T-Encoder generates semantic and syntactic embed-
ding as follows,

{T1, ..., Tn} = T−Encoder({Tok1, ..., T okn}). (1)

Where {T1, ..., Tn} is the output embedding. K-Encoder is composed of
stacked aggregators, which is similar to Transformer in structure that consists
of multi-head self-attentions and infusion layer. The input of the K-Encoder
is the output embedding of T-Encoder {T1, ..., Tn} and the entity embeddings
{Ent1, ..., Entn} which is pre-trained by KG embedding methods. Then the K-
Encoder injects the knowledge into language representation,

{E1, ..., En} = K−Encoder({T1, ..., Tn}, {Ent1, ..., Entn}). (2)

Where {E1, ..., En} is the final output embedding. With K-Encoder, the het-
erogeneous information of semantic and syntactic information and factual knowl-
edge can be integrated into a unified vector space. As T-Encoder and K-Encoder
is identical to its implementation in ERNIE, readers can refer [45] for a more
detailed description of the model.

3.2 KG Completion Framework

KG consists of structured entities and relationships. We define h as the head
entity, r as the relationship, t as the tail entity, and (h, r, t) as the triple. We
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fine-tune pre-trained knowledge-infused BERT for KG completion. When pre-
training original knowledge-infused BERT, the input of the T-Encoder is con-
tinuous text or word sequence. Therefore, we turn the entity and relation which
are their names or descriptions, into a sequence form as the input of the T-
Encoder. And take the pre-trained KG embedding of the entity as the input of
the K-Encoder.

K-Encoder

T-Encoder

… … …

0 0… … 1 … 0

UNK UNK… UNK UNK… UNK UNK… UNK

+ + + ++ + + + + +

C

CLS SEP… … SEP … SEP

+ + + ++ + + + + +

UNK
Entity

Embedding

Segment

Token

Fig. 1. The architecture of our framework. The input embeddings of K-Encoder are
the sum of the token, segment and the default position embeddings of BERT. The
input of K-Encoder are the sum of the output embeddings of T-Encoder and entity
embedding sequence.

Link Prediction. The architecture of our framework for predicting the plausi-
bility of a triple is shown in Fig. 1. For triple classification and link prediction
task, the first input token of the T-Encoder is a special classification token
[CLS]. The head entity is represented as a sequence of tokens {Tokh1 , ..., T okhn},
the relation is represent as {Tokr1, ..., T okrn} and the tail entity is represent as
{Tokt1, ..., T oktn}. The sequence of entity tokens and relation tokens are sepa-
rated by a special token [SEP]. We then concatenate three token sequence to
construct the input token sequence. For a given input token, its input repre-
sentation of T-Encoder is constructed by summing the corresponding token,
segment, and position embeddings. We set head entity and tail entity to the
same segment embedding, and relation to another different segment embedding.
We use the default position embedding of BERT that all token sequences in
same location has the same position embedding. For K-Encoder, the input is
the output embeddings of T-Encoder sums the head and tail entity embeddings
{Enth, Entt}. We set the special token [UNK] as the first token of the entity
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embedding sequence. If the entity is represented by name, the second token is
the pre-trained knowledge embedding of the entity, and the remaining positions
are filled with [UNK] to the same length as the T-Encoder input. If the entity is
represented by a entity description, we first mark the entities in the description,
then set the first token of the marked entity with knowledge embedding, and fill
the rest with [UNK].

Firstly, the input representations are fed into the T-Encoder which is a multi-
layer bidirectional Transformer encoder. And then the output embedding of T-
Encoder and the entity embedding sequence are fed into the K-Encoder together.
We use the first final hidden state of K-Encoder, which is corresponding to the
[CLS] token, as the aggregate sequence representation for computing classifica-
tion score. Given the hidden state, we introduce a classification layer to compute
the triple scores,

s = sigmoid(CW ). (3)

Where C is the final hidden state aligned with the [CLS] token, W ∈ R
H×2

is the parameters of the classification layer, H is the hidden state size.
We take the original triple in the knowledge graph as the positive triple

set D+, and define the negative triple set as D−. For fine-tuning the model
parameters, we minimize the following binary cross,

L = −
∑

D+∪D−
(ylog(s) + (1 − y)log(s)). (4)

Where y is the label indicating that the triple is negative or positive. Dur-
ing fine-tuning, the pre-trained parameter weights and new weights W can be
updated via gradient descent.

Relation Prediction. The framework of relation prediction is roughly the same
as link prediction, except that there are no relation tokens in the token sequence.
The architecture of relation prediction task is shown in Fig 2. We construct the
token sequence composed by head entity tokens and tail entity tokens, without
relation tokens. The head entity and tail entity tokens have different segment
embeddings. We set the special token [CLS] as the first input token, and separate
the head entity and tail entity with [SEP]. We also use the final hidden state
C corresponding to [CLS] as the representation of the two entities. The scoring
function for predicting relation is:

s′ = sigmoid(CW ′). (5)

Where W ′ ∈ R
H×R is the parameters of the classification layer for predicting

relation, R is the number of relations in a knowledge graph. We minimize the
cross-entropy loss to fine-tuning the model:

L′ = −
∑

D+

R∑

i=1

y′
ilog(s

′
i), (6)

where yi is the relation indicator for the triple.
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K-Encoder

T-Encoder

…
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Fig. 2. The framework of relation prediction. The input embeddings of K-Encoder are
the sum of the token, segment and the default position embeddings of BERT. The
input of K-Encoder are the sum of the output embeddings of T-Encoder and entity
embedding sequence.

Table 1. The statistics of datasets. Number of entities, relations, and observed triples
in each split for benchmarks.

Dataset Entities Relations Train Dev Test

WN11 38,696 11 112,581 2,609 10,544

FB13 75,043 13 316,232 5,908 23,733

WN18RR 40,943 11 86,835 3,034 3,134

FB15K 14,951 1,345 483,142 50,000 59,071

FB15k-237 14,541 237 272,115 17,535 20,466

UMLS 135 46 5,216 652 661

4 Experiments

In this section we evaluate our KG completion framework on three experimental
tasks, triple classification, link prediction and relation prediction.

Datasets. We evaluate our experiments on six widely used benchmark KG
datasets: WN11, FB13 [27], FB15K [3], WN18RR, FB15k-237 and UMLS [5].
Table 1 provides statistics of all datasets used in our experiment. WN11 and
WN18RR are the subsets of WordNet which is a large lexical knowledge graph
of English. FB15K and FB15k-237 are the subsets of Freebase which is a large
knowledge graph about general facts. As noted by [30], WN18 and FB15k
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are information leaked because they contain many reversible relation, while
WN18RR and FB15k237 are created to not suffer from this reversible relation
problem in WN18 and FB15k, for which the KG completion task is more real-
istic. UMLS is a medical semantic network containing semantic types (entities)
and semantic relationships. We use the test sets of WN11 and FB13 which con-
tain positive and negative triplets to evaluate triple classification. And we use
test set of WN18RR, FB15K, FB15k-237 and UMLS which only contain correct
triples to perform link prediction and relation prediction.

Baselines. We compare our framework with multiple state-of-the-art knowledge
embedding methods including transition-based models TransE [3] and its exten-
sions TransH [35], TransD [9], TransR [14], TransG [39], TranSparse [10] and
PTransE [13], DistMult [44] which only used structural information in knowledge
graphs. The neural tensor network NTN [27] and ProjE [25]. CNN-based models:
ConvKB [18], ConvE [5] and R-GCN [24]. Textual information infused meth-
ods: TEKE [24], DKRL [40], SSP [37], AATE [1]. KG embeddings with entity
hierarchical types TKRL [40]. Contextualized KG embeddings DOLORES [32].
Complex-valued KG embeddings ComplEx [31] and RotatE [29]. Adversarial
learning framework KBGAN [4]. BERT-based framework KG-BERT [43].

Settings. We use pre-trained ERNIE [45] model with 6 layers of T-Encoder and
6 layers of K-Encoder. We denote the hidden dimension of token embeddings is
Hw = 768, and hidden dimension of entity embeddings is He = 100. We set 12
self-attention heads for token embeddings and 4 self-attention heads for entity
embeddings. In our framework, we set the hyper-parameters of batch size to 32,
learning rate to 5e-5, and the dropout rate to 0.1. We fine-tune our framework
with Adam implemented in BERT. We tuned 3 epochs for triple classification, 5
for link prediction and 20 for relation prediction. For triple classification training,
we sample 1 negative triple for a positive triple. For link prediction training, we
sample 5 negative triples for a positive triple. For relation prediction training,
we only use positive triple.

To capture the relationships among entities in the pre-trained language
model, we add relation classification task as the pre-training processes. We use
a subset of T-REx [7] which is a large scale alignment dataset to pre-train the
model to classify relation labels of given entity pairs based on context. For the
UMLS dataset, since there lacks sufficient medical knowledge in the pre-trained
know-
ledge-infused language model, we pre-train the knowledge-infuse framework with
PubMed abstracts, PubMed Central full-text papers and the entity embeddings
of UMLS.

Triple Classification. Triple classification is to infer whether a triple is the cor-
rect triple or not. Table 2 shows the results of various models performing triple
classification on WN11 and FB13 datasets. We ran our models 3 times and aver-
age the accuracy of each time as the final result. We can see that the BERT-based
methods have a large improvement over the results of other baseline models. Our
framework performance better than KG-BERT, proving the effectiveness of our
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Table 2. Results on triple classification for different embedding methods.

Method WN11 FB13 avg

NTN 86.2 90.0 88.1

TransE 75.9 81.5 78.7

TransH 78.8 83.3 81.1

TransR 85.9 82.5 84.2

TransD 86.4 89.1 87.8

TEKE 86.1 84.2 85.2

TransG 87.4 87.3 87.4

TranSparse-S 86.4 88.2 87.3

DistMult 87.1 86.2 86.7

DistMult-HRS 88.9 89.0 89.0

AATE 88.0 87.2 87.6

ConvKB 87.6 88.8 88.2

DOLORES 87.5 89.3 88.4

KG-BERT 93.5 90.4 91.9

Ours 93.5 90.5 92.0

method. Analysis of the results, the effectiveness of the BERT-based methods
have two main fold: First, the baseline models no matter uses structural informa-
tion or extra text information not the utilization of rich language patterns, and
the BERT-based methods can obtain rich linguistic patterns information from a
large amount of corpus through pre-training. Second, entities connected by dif-
ferent relationships have different meanings, and words have different semantics
in the corpus according to different contexts. BERT-based methods can make
full use of the learned contextual information in the triple classification process.
In addition, the BERT-based methods have achieved a greater improvement on
WN11, that may because WordNet is a linguistic knowledge graph, which is
closer to the language model. Our model obtained more improvements in the
FB13 dataset. The reason for the improvement is that the original BERT model
learns more about the semantic association between tokens than the knowledge
between entities. The knowledge-infused BERT can use the extra factual knowl-
edge between entities by injecting knowledge into the language model. Note that,
if we do not use the entity embeddings as the input of K-Encoder (that is, replace
all Ent with [UNK]), the performance of our framework will decline compared
with KG-BERT. This is because knowledge-infused language model forgets part
of the linguistic information during the pre-training process.

Link Prediction. Link prediction task predicts the head entity given the rela-
tion and tail entity, or predicts the tail entity given the relation and head entity.
We following the protocol of [19] that only report results under the filtered set-
ting [3] which removes all corrupted triples appeared in training data and testing
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data before getting the ranking lists. We use two common metric Mean Rank
(MR) and Hit@10 to evaluate the performance of models. A lower MR is better
while a higher Hits@10 is better.

Table 3 represents link prediction performance of various models. We take
the results of baseline models from the original papers. We observe that BERT-
based methods get lower MR than other baseline models. It because pre-trained
BERT can capture the semantic relatedness of entity and relation sentences to
avoid very high ranks. BERT has not learned the knowledge graph structural
information between entities, so BERT-based methods not achieve higher Hit@10
than some state-of-the-art models. The knowledge-infused BERT injects entity

Table 3. Link prediction results on WN18RR, FB15k-237 and UMLS datasets.

Method WN18RR FB15k-237 UMLS

MR Hit@10 MR Hit@10 MR Hit@10

TransE 2365 50.5 223 47.4 1.84 98.9

TransH 2524 50.3 255 48.6 1.80 99.5

TransR 3166 50.7 237 51.1 1.81 99.4

TransD 2768 50.7 246 48.4 1.71 99.3

DistMult 3704 47.7 411 41.9 5.52 84.6

ComplEx 3921 48.3 508 43.4 2.59 96.7

ConvE 5277 48 246 49.1 – –

ConvKB 2554 52.5 257 51.7 – –

R-GCN – – – 41.7 – –

KBGAN – 48.1 – 45.8 – –

RotatE 3340 57.1 177 53.3 – –

KG-BERT 97 52.4 153 42.0 1.47 99.0

Ours 96 52.7 149 43.1 1.45 99.3

Table 4. Relation prediction results on FB15k dataset.

Method Mean rank Hit@1

TransE 2.5 84.3

TransR 2.1 91.6

DKRL 2.0 90.8

TKRL 1.7 92.8

PTransE 1.2 93.6

SSP 1.2 –

ProjE 1.2 95.7

KG-BERT 1.2 96.0

Ours 1.2 96.2
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knowledge into the language model to better learn the relationship between
entities during the pre-training, therefore, our framework get higher Hit@10 than
KG-BERT. Without the relation classification task added in the pre-training,
our framework has lower performance than KG-BERT due to the lack of learned
relationship between entities and the loss of some semantic information.

Relation Prediction. Relation prediction task is to predict relation given the
head and the tail entities. The procedure is similar to link prediction and we
evaluate the models using MR and Hits@1 with filtered setting. Table 4 shows
the results of relation prediction task on FB15K. We note that our framework
also shows promising results and achieves the highest Hits@1 so far. The relation
prediction task is analogous to sentence pair classification in BERT fine-tuning
and can also benefit from BERT pre-training. Knowledge-infused BERT not only
learns the semantic representation of entities, but also the knowledge represen-
tation between entities, so we get better results than KG-BERT.

5 Conclusion

In this paper, we presented a novel method for KG completion, and outper-
forming existing methods on multiple benchmark datasets. Our method use
knowledge-infused pre-trained language model and turn the triples in the KG
into token sequences. Then transform the KG completion task into sentence clas-
sification. The experiments demonstrate that our method outperforms state-of-
the-art results on several benchmark datasets. In the future, it is promising to
exploit incorporate more KG structured information, and inject factual knowl-
edge to compute the plausible of the triples without re-training.
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