
DySky: Dynamic Skyline Queries
on Uncertain Graphs

Suman Banerjee1(B), Bithika Pal2, and Mamata Jenamani2

1 Indian Institute of Technology, Gandhinagar, India
suman.b@iitgn.ac.in

2 Indian Institute of Technology, Kharagpur, India
bithikapal@iitkgp.ac.in, mj@iem.iitkgp.ac.in

Abstract. Given a graph, and a set of query vertices (subset of the
vertices), the dynamic skyline query problem returns a subset of data
vertices (other than query vertices) which are not dominated by other
data vertices based on certain distance measure. In this paper, we study
the dynamic skyline query problem on uncertain graphs (DySky). The
input to this problem is an uncertain graph, a subset of its nodes as query
vertices, and the goal here is to return all the data vertices which are not
dominated by others. We employ two distance measures in the context of
uncertain graphs, namely, Majority Distance, and Expected Distance. Our
approach is broadly divided into three steps: Pruning, Distance Compu-
tation, and Skyline Vertex Set Generation. We implement the proposed
methodology with three publicly available datasets and observe that it
can find out skyline vertex set without taking much time even for million
sized graphs if expected distance is concerned. Particularly, the pruning
strategy reduces the computational time significantly.

Keywords: Uncertain graph · Reliability · Skyline query

1 Introduction

‘Skyline’ has emerged as an effective multi-criteria decision making operator and
hence an extensively researched topic in data management community for almost
two decades [4]. Borzsony et al. [2] fist introduced this operator. Given a set of
data points D, the skyline operator in it returns the subset of them that are
not dominated by other data points present in the dataset. For any two points
d1 and d2, we say that d1 dominates d2, if with respect to each dimension d1
is not worse than d2, however, strictly better in at least one dimension. With-
out loss of generality, in this study, we assume that lower value means better
in all dimensions. This problem has been studied in the context of graph data
as well [20]. In real-world scenarios, the relationship among agents are uncer-
tain in nature and this uncertainty is caused due to several reasons, like noisy

The work of the first author is supported by the institute post-doctoral fellowship grant
by IIT-Gandhinagar. (Project Number: MIS/IITGN/PD-SCH/201415/006).

c© Springer Nature Switzerland AG 2020
Z. Huang et al. (Eds.): WISE 2020, LNCS 12342, pp. 242–254, 2020.
https://doi.org/10.1007/978-3-030-62005-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62005-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-62005-9_18


DySky: Dynamic Skyline Queries on Uncertain Graphs 243

measurements, unknown values, explicit manipulations, etc. Hence, this kind
of situations are modeled as an uncertain graph, where edges are marked with
existence probabilities. In case of social networks, these probabilities signify the
influence probability between two users, in case of computer networks these sig-
nify the successful packet transfer probability between two systems etc.

After introduced by Borzsony et al. [2], skyline queries have been studied on
different kinds of data, for different purposes, with different system architectures,
such as on road networks [14], on uncertain data [21], on spatial data, finding
perspective customers [18], resisting outliers, in distributed environment [21],
map-reduce framework [15], and so on. Keeping the topic of this paper in our
mind, here we briefly elaborate the skyline query processing on probabilistic and
uncertain data. He et al. [5] studied the skyline query on uncertain time series
data and developed a two step methodology to answer this probabilistically. Park
et al. [15] studied the skyline query processing on uncertain data and proposed
parallel algorithms for computing the same using map reduce framework. Zhou
et al. [21] studied the skyline query processing over uncertain data in distributed
environments. Le et al. [12] studied the skyline queries on uncertain data to
return the user specific relevant results without enumerating all possible worlds.
Though there are several studies in this direction, skyline query has not been
studied yet in the context of uncertain graphs, to the best of our knowledge.

Due to different practical applications, in recent times analysis of uncertain
graphs have emerged as an important research topic [11]. Several problems have
been studied such as embedding [6], subgraph search [7], structural pattern find-
ings [1] and so an. ke et al. [9] recently studied the s−t reliability problem which
asks with how much probability a target node t is reachable from a source node s
in a given uncertain graph. Chen et al. [3] studied the frequent pattern finding in
uncertain graphs and enumeration-evaluation algorithm for this problem. Look
into [8] for survey. Motivated by the scenario that most of the real world net-
works are uncertain in nature, in this paper, we introduce the problem of skyline
queries on uncertain graphs. Particularly, it has the following contributions:

– We propose the noble problem “Dynamic Sky line Queries on Uncertain
Graph Problem” (DySky). Given an uncertain graph with a subset of vertices
as query vertices, the goal of this problem is to obtain the subset of the data
vertices that are not dominated by the other data vertices with respect to
some distance measure from the query vertices.

– We propose a solution approach for this problem, which is divided into three
steps: pruning, distance computation, and skyline vertex set generation.

– The proposed methodology has been implemented with three datasets, for
different query size, selection strategies, and distance measures.

Rest of the paper is organized as follows: Sect. 2 describes required preliminar-
ies and defines the problem formally. Section 3, contains the proposed method-
ology, followed by the experimental evaluations in Sect. 4. Finally, Sect. 5 draws
the conclusions.



244 S. Banerjee et al.

2 Preliminaries and Problem Definition

In this section, we present required preliminary concepts and then define the
problem formally. We denote an uncertain graph by G(V, E ,W,P), where V(G) =
{v1, v2, . . . , vn} is the set of n vertices, E(G) ⊆ V(G) × V(G) is the set of m edges,
W is the distance function that assigns each edge to a positive real number, i.e.,
W : E(G) −→ R

+, and P is the existence function that assigns each edge to
a probability value, i.e., P : E(G) −→ (0, 1]. In our study, we consider only
simple, finite, undirected, and weighted graphs. The number of nodes and edges
of the graph G is denoted by n and m, respectively. For an edge e ∈ E(G) its
weight and existence probability is denoted by W(e) and P(e), respectively. In
the literature, an uncertain graph G(V, E ,W,P) can be conceptualized as the
probability distribution over a set of deterministic graphs, which is called as the
possible world of the uncertain graph, and denoted as L(G). Each G(V,E,W ) ∈
L(G) is obtained from G by keeping all its vertices, keeping its edges with existing
probability, and if an edge of G is also there in G, then W(e) = W (e). Now, the
probability that the deterministic garph G will be generated can be computed
by the Eq. 1.

PG�G =
∏

e∈E(G)

P(e)
∏

e∈E(G)\E(G)

(1 − P(e)) (1)

In any deterministic graph G, two vertices vi and vj are said to be reachable
if there exist a path between vi and vj . However, in case of uncertain graphs,
the reachability between any two given vertices can be defined in probabilistic
way, which we call reliability. The term reliability between any two vertices vi
and vj in the uncertain graph G is defined as the probability that the vertices vi
and vj are reachable from each other. We define the reliability (RG

(vivj)
) between

two vertices vi and vj as,

RG
(vivj)

=
∑

G∈L(G)

IG(vivj)
PG�G . (2)

where, IG(vivj)
is the boolean variable, whose value is 1 if vi and vj are connected

in G and 0 otherwise. In case of a deterministic weighted graph, distance between
any two vertices is defined as the sum of individual edge weights constituting
shortest path. However, in case of uncertain graphs distance between any two
vertices can be defined in many ways. Here, we quote two of them that we use
in our study.

Definition 1 (Majority Distance). [16] Given an uncertain graph G and its
two vertices vi, vj ∈ V (G), its majority distance is denoted by distmd(vi, vj) and
defined as the most probable shortest path distance. Mathematically, it can be
represented by Eq. 3, where pvivj

(Eq. 4) is the shortest path distribution between
the vertices vi and vj that gives probability value for every distance d.

distmd(vi, vj) = argmax
d

pvivj
(d) (3)



DySky: Dynamic Skyline Queries on Uncertain Graphs 245

pvivj
(d) =

∑

G|dG(vi,vj)= d

PG�G (4)

Definition 2 (Expected Distance). Given an uncertain graph G and its two
vertices vi, vj ∈ V (G), let P l

(vivj)
denotes the set of paths upto length l. For each

path pk ∈ P l
(vivj)

, the path probability is defined by P(pk) in Eq. 5, and Eq. 6
defines the expected distance between vi and vj.

P(pk) =

∏
e∈pk

P(e)
∑

pj∈P l
(vivj)

∏
e∈pj

P(e)
(5)

distE(vi, vj) =
∑

pk∈P l
(vivj)

dist(pk).P(pk) (6)

For any p ∈ Z
+, [p] denotes the set {1, 2, . . . , p}. Given a set of 2 or more

dimensional data points D, the problem of skyline query computation asks to
find out the data points that are not dominated by any other data points in D,
which is formally defined in Definition 3.

Definition 3 (Skyline Query). Given a set of p dimensional data points D =
{d1, d2, . . . , d|D|}, we say that di dominates dj, if for all k ∈ [p], di(k) ≤ dj(k)
and there exist atleast one k ∈ [p] such that di(k) < dj(k). Skyline of the dataset
D is the subset of the data points that are not dominated by any of the data
points in D.

Since past one decade or so, skyline queries have been studied extensively [10]
in graphs as well, which we define next.

Definition 4 (Skyline Query in Graphs). Given a graph G(V,E), and a
subset of vertices Q (called query vertices), for any two data vertices (vertices
that are not query vertices, i.e., V (G) \ Q) vi and vj, we say vi dominates vj, if
∀w ∈ Q, dist(w, vi) ≤ dist(w, vj) and ∃x ∈ S, such that dist(x, vi) < dist(x, vj).
The skyline query asks to return data vertices that are not dominated by other
data vertices.

Though, the skyline query problem has been studied in the context of proba-
bilistic data [19], to the best of our knowledge this problem has not been studied
in the context of uncertain graphs. In this paper, we introduce the problem of
finding the dynamic skyline queries on uncertain graphs (DySky) as follows.

Definition 5 (Dynamic Skyline Queries on Uncertain Graphs). Given
an uncertain graph G, a subset of vertices Q (called query vertices), and a dis-
tance measure (i.e., expected distance, majority distance etc.) the problem of
dynamic skyline queries on uncertain graphs asks to find out the subset of the
data vertices such that none of them are dominated by the other data vertices.



246 S. Banerjee et al.

Just to highlight, here the term ‘Dynamic’ does not mean the graph is time
varying; rather it means that the query vertices are not fixed and can be varied.
Figure 1 shows a toy example of an uncertain graph with its majority distance,
expected distance, and shortest path distance (for deterministic version) tables,
where the skyline vertices are marked in orange color. It is important to observe
as the distance measure changes, the skyline vertex set is also getting changed.
This motivates us to study the DySky Problem under two different distance
measures.

Fig. 1. (a) An uncertain graph with 6 vertices and 8 edges. The vertices 2 and 4 are
the Query Vertices (denoted as Q2 and Q4) and remaining are data vertices (i.e., D1,
D3, D5, and D6). (b) Different distance tables (Majority Distance, Expected Distance,
Shortest Path Distance in deterministic version) between the query and data vertices.
Skyline vertices in each cases are marked in Orange. (Color figure online)

3 Proposed Methodology

3.1 Overview

The proposed methodology is broadly divided into three steps:

– Step 1 (Pruning): In this step, a subset of the data vertices are returned
as the candidate skyline vertices. This step comprises of two subsets. First,
pruning is done by performing Breadth First Search (henceforth mentioned
as B.F.S.) from the query vertices and subsequently, pruning is done based
on path length computation.

– Step 2 (Distance Computation): In this step, distance computation is
done between the candidate skyline vertices and the query vertices. As men-
tioned previously, in our study we have used majority distance and expected
distance.

– Step 3 (Skyline Vertex Set Generation): Based on the previously com-
puted distance, any existing skyline finding algorithm can be used to find out
the actual skyline vertices. In our study, we have used the Block Nested Loop
(BNL) Algorithm proposed by Borzsonyi et al. [2].



DySky: Dynamic Skyline Queries on Uncertain Graphs 247

3.2 The Algorithm

Algorithm 1, 2, and 3 together constitute the proposed methodology for the
DySky Problem. We describe the entire procedure in two subsections.

The Pruning Step. Algorithm 1 describes the B.F.S. and distance based prun-
ing strategies. It takes the uncertain graph, the set of query vertices, and distance
threshold as inputs and outputs the candidate skyline vertices. In B.F.S. prun-
ing, from each of the query vertices, B.F.S. trees are constructed to check the
connectivity. First, we create the dictionary D. If a query vertex and data vertex
is connected and the data vertex has the entry in the dictionary D, the query
vertex is included as a value corresponding to this key. Otherwise, a key corre-
sponding to the data vertex is created and the query vertex is added as a value
to this ‘key’. Now, the data vertices that are reachable from all the query vertices
are kept as the candidate skyline vertices. Here, the B.F.S. pruning ends.

Algorithm 1: Step 1 (B.F.S and Distance
based pruning)
Data: Uncertain Graph G(V, E ,W,P), the

Set of Query Vertices Q ⊆ V(G),
Distance Threshold T

Result: Candidate Skyline Vertices
CS ⊆ V(G) \ Q

1 . Create Dictionary D
2 for All u ∈ Q do
3 for All v ∈ V (G) \ Q do
4 if Isconnected(uv) then
5 if v ∈ D.Keys() then
6 D[v].values() =

D[v].values() ∪ {u}
7 else
8 D.Create Key(v)
9 D[v].Add V alue(u)

10 CS = ∅
11 for All u ∈ D.Keys() do
12 if D[u].V alues() == Q then
13 CS = CS ∪ {u}
14 for All v ∈ CS do
15 for All u ∈ Q do
16 if distance(uv) > T then
17 CS = CS \ {v}

In reality, even if two vertices
are connected by a path of large
distance (i.e., more than certain
threshold), reachability becomes
costlier. Hence, to eliminate such
vertices, we perform the path
length-based pruning. For this pur-
pose, shortest path length between
candidate skyline vertex and query
vertex is computed. For a candi-
date skyline vertex, if there exist
atleast one query vertex for which
the computed length value is more
than the user defined threshold,
the candidate skyline vertex set is
updated by removing the candidate
skyline vertex.

Any pruning strategy to work
correctly should guarantee that it
does not remove any skyline ver-
tices. In Lemma 1, we state the pro-
posed pruning strategy is correct.
Due to space limitation, we are not
able to give the proof, though it is
easy to follow.

Lemma 1 The proposed pruning strategy (Algorithm 1) is correct.

Now, we do an analysis for time and space requirement of Algorithm 1. Let
q be the number of query vertices, i.e., |Q| = q. For creating the B.F.S. trees
rooted at the query vertices requires O(q(m + n)) time. The maximum number



248 S. Banerjee et al.

of values associated with a ‘key’ in the dictionary D is of O(q). Execution time
from Line No. 2 to 9 and 11 to 17 requires O(q(n− q)2) and O((n− q)q2). Now,
in distance-based pruning, the number of distance computations is O(q(n −
q)). Computing shortest path between two vertices in a weighted graph with
positive edge weights requires O(m + n log n) time. Hence, time requirement
for distance-based pruning requires O(q(n − q)(m + n log n)) time. Total time
requirement for Algorithm 1 is of O(q(m+n)+nq(n−q)+q(n−q)(m+n log n)) =
O(q(n− q)(m+n log n)). Extra space requirement of Algorithm 1 is to store the
dictionary D, which is of O(q(n − q)), to store the candidate skyline vertices,
which is of O(n − q), and to perform the B.F.S., which is of O(n). Hence, total
space requirement of Algorithm 1 is of O(q(n−q)). Lemma 2 describes the formal
statement.

Lemma 2 Time and space requirement of Algorithm 1 is of O(q(n − q)(m +
n log n)) and O(q(n − q)), respectively.

Distance Computation and Skyline Vertex Set Generation. Now, we
describe Step 2 and 3 of our proposed methodology. It is important to observe
that depending upon which distance measure is used (i.e., majority distance or
expected distance) Step 2 will be different. Algorithm 2 and 3 describes the last
two steps for the majority distance and expected distance, respectively.

Algorithm 2: Step 2 and 3 (Dis-
tance Computation and Skyline
Vertex Set Generation) for Major-
ity Distance

Data: Candidate Skyline Vertices CS
Result: The Skyline Vertex Set S

1 Generate |R| number of sample graphs
2 Store the graph probabilities in

PG[1 . . . |R|]
3 Create Matrix M ∈ R

|CS|×|Q|

4 for All u ∈ CS do
5 for All v ∈ Q do
6 Create dictionary Temp
7 for All r ∈ R do
8 d = shortest distance

between u and v in r
9 Temp[d] = Temp[d] + PG[r]

10 M[u][v] = argmax
d

Temp[d]

11 S = Apply BNL on M
12 return S

Algorithm 3: Step 2 and 3
(Distance Computation and Sky-
line Vertex Set Generation) for
Expected Distance

Data: Candidate Skyline Vertices CS
Result: The Skyline Vertex Set S

1 . Create Matrix M ∈ R
|CS|×|Q|

2 for All u ∈ CS do
3 for All v ∈ Q do
4 path = Compute all paths from u

to q upto length l
5 prob[1 . . . |path|] = 0 ;

dist[1 . . . |path|] = 0
6 for All t ∈ path do
7 for All e ∈ E(t) do
8 prob[t] = prob[t] + P(e)
9 dist[t] =

dist[t] + P(e) ∗ W(e)

10 M[u][v] =
∑

dist/
∑

prob

11 S = Apply BNL on M
12 return S

For the majority distance case, first we generate |R| number of subgraphs,
as mentioned, while defining possible world semantics, and the corresponding
generation probabilities are stored in the array PG. Next, the majority distance
is computed between a candidate skyline vertex and a query vertex. Finally, the
BNL Algorithm is applied on the distance matrix M to obtain the skyline vertex
set.

Now, we analyze Algorithm 2 for time and space requirement. As mentioned
in the definition of possible world semantics, generation of |R| number of sub-
graphs require O(m|R|) time. Using Dijkstra’s algorithm computing the shortest
path between a pair of vertices requires O(m + n log n) time. Hence, execution



DySky: Dynamic Skyline Queries on Uncertain Graphs 249

time from Line 4 to 10 requires O(q(n − q)|R|(m + n log n)). Now, BNL algo-
rithm requires O((n − q)2) time. Extra space consumed by Algorithm 2 is to
store the array PG, Temp, and the matrix M which requires O(|R|), O(|R|),
and O(q(n− q)) space, respectively. The formal statement is given in Lemma 3.

Lemma 3 Time and space requirement of Algorithm 2 is of O(q(n− q)|R|(m+
n log n) + (n − q)2) and O(q(n − q) + |R|), respectively.

Lemma 2 and 3 together imply the statement mentioned in Theorem 1.

Theorem 1 If majority distance is concerned, the proposed methodology returns
the skyline vertex set in O(q(n−q)|R|(m+n log n)+(n−q)2) time and O(q(n−
q) + |R|) space.

It is trivial to observe that Algorithm 3 just implements the expected distance,
and hence, without explanation we move to analyze the algorithm. Assume that
maximum degree of the input uncertain graph is dmax. Hence, the maximum
number paths upto length l between any pair of vertices is of O(dlmax). Hence,
running time from Line 2 to 10 is of O(q(n−q)ldlmax). Hence, total running time
of Algorithm 3 is of O(q(n − q)ldlmax + (n − q)2). Extra space consumed by the
Algorithm 3 is to store the matrix M, array Path, Prob and dist which requires
O(q(n − q) + ldlmax). Hence, Lemma 4 holds.

Lemma 4 The running time and space requirement of Algorithm 3 is of O(q(n−
q)ldlmax + (n − q)2) and O(q(n − q) + ldlmax), respectively.

Lemma 2 and 4 together imply the statement mentioned in Theorem 2.

Theorem 2 If expected distance is concerned, the proposed methodology returns
the skyline vertex set in O(q(n − q)(m + n log n + ldlmax) + (n − q)2) time and
O(q(n − q) + |R|) space.

4 Experimental Evaluations

In this section, we describe the experimental validations of our proposed app-
roach. We have used three different datasets, appeared in two different contexts,
which are described below.

– Minnesota Road Network (MRN) [17]: This is a road network dataset of
the Minnasota city, with n = 2642, m = 3300, and avg. degree = 2. Here,
the junctions are represented by the nodes. If two junctions are connected by
a road, then the corresponding two vertices are connected by an edge.

– P2P Network [13]: This dataset contains a sequence of snapshots of the
Gnutella peer-to-peer file sharing network from August 2002, with n = 8114,
m = 26013, and avg. degree = 6.41. There are total of 9 snapshots of
Gnutella network collected in August 2002. Nodes represent hosts in the
Gnutella network topology and edges represent connections between the
Gnutella hosts.



250 S. Banerjee et al.

– USA Road Network (URN) [17]: This dataset describes a road network
from the United States, with n = 129164, m = 165435, and avg. degree
= 2.56. Here, vertices represent junctions, and an edge between signifies that
the corresponding junctions are are connected by road.

All the datasets are undirected and unweighted. Probability of existence and
weight of each edge is chosen from the intervals (0, 1] and [10, 100] uniformly at
random. In our experiments, we consider l as 4. In our study the following query
vertex selection strategies have been adopted, for the experimental setup.

– RAND: By this method, to select k query vertices first one is chosen ran-
domly and remaining (k − 1) query vertices are chosen from the two hop
neighbors of the initially selected vertex uniformly at random.

– HDEG: By this method, to select k query vertices first the subset of the
nodes whose degree is more than a threshold value are marked and a node is
chosen uniformly at random as a query vertex. Remaining (k − 1) are chosen
from the two hop neighbors of the initially selected vertices uniformly at
random.

– HCLUS: This method is exactly the same as HDEG, except the case that,
for choosing the first query vertex the subset of vertices are chosen based on
the clustering coefficient of nodes.

Based on the selection strategy, we choose the query size from the set
{2, 3, 5, 8, 10, 15, 20}. The experiments are repeated for 10 times. All the algo-
rithms have been implemented with Python 3.5 + NetworkX 2.1 environment on
a HPC Cluster with 5 nodes each of them having 64 cores and 160 GB of memory
and the implementations are available at https://github.com/BITHIKA1992/
Skyline Uncertain Graph/. Now, the goals of the experiments are defined
below.

– Efficiency of the Pruning Strategies: As the number of query vertices
increases, what is the fraction of data vertices removed before distance com-
putation?

– Query Size Vs. Skyline Vertices: Under different query vertex selection strate-
gies how the cardinality of the skyline vertex set changes with respect to the
query size?

– Distance Metric Vs. Skyline Vertices: For a fixed query selection strategy and
query size, how the cardinality of the skyline vertices changes with respect to
the distance metric?

– Query Selection Strategy Vs. Skyline Vertices: For a fixed query size and dis-
tance metric, how the cardinality of the skyline vertices changes with respect
to query selection strategy?

– Query Size Vs. Computational Time: For a fixed query size and distance
metric, how computational time grows with respect to the query size?

Now, we discuss the experimental results of the proposed approach.

https://github.com/BITHIKA1992/Skyline_Uncertain_Graph/
https://github.com/BITHIKA1992/Skyline_Uncertain_Graph/


DySky: Dynamic Skyline Queries on Uncertain Graphs 251

Efficiency of the Pruning Strategies. It is easy to observe that the B.F.S
pruning will return the vertices from the component in which the query ver-
tices belong. As we have selected the query vertices from the largest compo-
nent, the BFS pruning returns the vertices from the largest component only. For
distance-based pruning, we have taken the threshold value as 400, considering
4-hop path with the maximum edge weight 100. In Fig. 2, we show the box plot
for the candidate size with respect to each query size and the query selection
strategy. It can be observed that the candidate size for RAND selection strategy
is less than the other two, in all the datasets, which is easy to convince. For P2P
network, the interquartile range is very high compared to other datasets. This
is due to the fact that the network is of high average degree. Also, for RAND
selection strategy, this range is the highest for small query size. This is due to
the existence of various small size components in the network. Both the road
networks are very sparse and for the large query sizes like 15, 20, the candidate
size becomes very small and the variance also reduces. With this sparsity for
small road network MRN, it is impossible to find the connected vertices from
all the query vertices within the distance of 400. So, we remove the results for
query size of 15 and 20 for the MRN dataset.

Query Size Vs. Skyline Vertices. In Fig. 3, we show the plot for query size
Vs. skyline size, with two distance metrics and three query selection strategies.
In this part, we describe the comparison of sizes. From all the 10 executions,
here we report the mean values for the skyline size. With the increase in query

(a) Minnasota Road Network (b) P2P Network (c) USA Road Network

Fig. 2. Box plot for the candidate skyline size with respect to the query size for the
Minnasota Road Network, P2P Network, and USA Road network datasets.

(a) Minnasota Road Network (b) P2P Network (c) USA Road Network

Fig. 3. Query size Vs. Skyline size plot for the Minnasota Road Network, P2P Network,
and USA Road network datasets.



252 S. Banerjee et al.

size, the skyline size increases. However, for the URN dataset in Fig. 3(c), the
skyline size decreases for large value of query size. The reason is due to the small
size of the candidate skyline, which can be verified from Fig. 2(c). Also, for both
the road network datasets the maximum skyline size reaches approximately 15,
whereas for the P2P network it reaches around 1500. This is due to its candidate
size. For, both the cases, at a large value of query size, the ratio of candidate
to skyline size is very small. As the number of query vertices increases, the
possibility of domination decreases.

Distance Metric Vs. Skyline Vertices. In this part, referring to Fig. 3, we
describe the behavior of skyline size with respect to different distance metrics.
For the road networks in Fig. 3(a) and (c), the skyline size is similar in both
the datasets. However, for the P2P network in Fig. 3(b), the skyline size in the
expected distance (≈max 1500) is much more than the majority distance (≈max
300). The reason lies in the networks’ high average degree value and density. As
the number of paths increases between a query vertex to a data vertex, the
expected distance value is unable to dominate other data vertices. This results
in the large size of the skyline vertex set. This can be verified from Fig. 3(b),
by looking into HDEG and HCLUS selection strategies, where it differs from
the expected distance results. However, for RAND, the size is similar in both
the distances. From the experiments, we also observe that for a particular query
vertex set the skyline vertices may not be the same from both the distances.

Query Selection Strategy Vs. Skyline Vertices. In this part, referring to
Fig. 3, we describe the behavior of skyline size with respect to two different
query selection strategies. First, we describe the threshold value selected for
HDEG and HCLUS for different datasets. As the P2P network dataset consists
of high degree nodes, we select the high degree threshold value as 15, and it
returns 440 nodes. In case of both the road networks, the maximum degree is
around 5. Hence, for MRN and URN datasets, this threshold value is considered
as 2 and 3, respectively. The clustering coefficient threshold is taken as 0 as the
clustering coefficient for all the networks are very less. From Fig. 3, the main
observation is that for all the selection strategies the skyline size does not vary
much for smaller query size. Whereas, for the large value of query size, HCLUS
gives the maximum skyline vertices.

Computational Time. Due to space limitation, we are unable to report the
plots for the computational time. However, we briefly describe our key obser-
vations regarding this. For all the datasets, as the query size increases, time
requirement for finding out the skyline vertex set also increases. Due to the
change in the query size, the required time for path length-based pruning, dis-
tance, and skyline computation (using BNL) increase. Also, for all the datasets,
the main time requirement is due to the sample graph generation. As in case
of expected distance sample generation is not required, hence, in this distance
setting time requirement is much less compared to the majority distance. In par-
ticular, for query size 2, the ratio between the computational time requirement
for majority distance to expected distance for MRN, P2P, and URN are 47, 28,



DySky: Dynamic Skyline Queries on Uncertain Graphs 253

and 2556, respectively. Now, for the P2P Network dataset, when the query size
increases beyond 10, there is a sharp increase in the skyline computation time.
This is because for higher query sizes the candidate and skyline size are more
compared to the previous query sizes and observed in 2(b) and 3(b).

5 Conclusion

In this paper, we introduce the problem of dynamic skyline queries on uncer-
tain graphs for two different distance measures, namely, majority distance and
expected distance. For this problem, we have proposed a methodology having
three main steps: pruning, distance computation, and skyline vertex set genera-
tion. The proposed methodology has been analyzed to understand its time and
space requirements. The experimental results demonstrate that it can find out
the skyline vertex set with reasonable computation time.

References

1. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of
uncertain graphs. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1316–1325. ACM (2014)

2. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)

3. Chen, Y., Zhao, X., Lin, X., Wang, Y., Guo, D.: Efficient mining of frequent pat-
terns on uncertain graphs. IEEE Trans. Knowl. Data Eng. 31(2), 287–300 (2018)

4. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. ACM
SIGMOD Rec. 42(3), 6–18 (2013)

5. He, G., Chen, L., Zeng, C., Zheng, Q., Zhou, G.: Probabilistic skyline queries on
uncertain time series. Neurocomputing 191, 224–237 (2016)

6. Hu, J., Cheng, R., Huang, Z., Fang, Y., Luo, S.: On embedding uncertain graphs.
In: Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 157–166. ACM (2017)

7. Jin, R., Liu, L., Aggarwal, C.C.: Discovering highly reliable subgraphs in uncertain
graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 992–1000. ACM (2011)

8. Kassiano, V., Gounaris, A., Papadopoulos, A.N., Tsichlas, K.: Mining uncertain
graphs: an overview. In: Sellis, T., Oikonomou, K. (eds.) ALGOCLOUD 2016.
LNCS, vol. 10230, pp. 87–116. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57045-7 6

9. Ke, X., Khan, A., Quan, L.L.H.: An in-depth comparison of st reliability algorithms
over uncertain graphs. Proc. VLDB Endowment 12(8), 864–876 (2019)

10. Khan, A., Singh, V., Wu, J.: Finding skyline nodes in large networks. In: 28th Inter-
national Conference on Data Engineering Workshops, pp. 198–204. IEEE (2012)

11. Khan, A., Ye, Y., Chen, L.: On uncertain graphs. Synth. Lect. Data Manage. 10(1),
1–94 (2018)

12. Le, T.M.N., Cao, J., He, Z.: Answering skyline queries on probabilistic data using
the dominance of probabilistic skyline tuples. Inf. Sci. 340, 58–85 (2016)

13. Leskovec, J.: Gnutella peer-to-peer network, august 4 2002 (2002). https://snap.
stanford.edu/data/p2p-Gnutella04.html

https://doi.org/10.1007/978-3-319-57045-7_6
https://doi.org/10.1007/978-3-319-57045-7_6
https://snap.stanford.edu/data/p2p-Gnutella04.html
https://snap.stanford.edu/data/p2p-Gnutella04.html


254 S. Banerjee et al.

14. Miao, X., Gao, Y., Guo, S., Chen, G.: On efficiently answering why-not range-based
skyline queries in road networks. IEEE Trans. Knowl. Data Eng. 30(9), 1697–1711
(2018)

15. Park, Y., Min, J.K., Shim, K.: Processing of probabilistic skyline queries using
mapreduce. Proc. VLDB Endowment 8(12), 1406–1417 (2015)

16. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: Nearest-neighbor queries in prob-
abilistic graphs. Technical report, Boston University Comp. Science Department
(2009)

17. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

18. Yin, B., Gu, K., Wei, X., Zhou, S., Liu, Y.: A cost-efficient framework for finding
prospective customers based on reverse skyline queries. Knowl. Based Syst. 152,
117–135 (2018)

19. Zhang, K., Gao, H., Han, X., Cai, Z., Li, J.: Modeling and computing probabilistic
skyline on incomplete data. IEEE Trans. Knowl. Data Eng. 32, 1405–1418 (2019)

20. Zheng, W., Zou, L., Lian, X., Hong, L., Zhao, D.: Efficient subgraph skyline search
over large graphs. In: Proceedings of the 23rd ACM International Conference on
Information and Knowledge Management, pp. 1529–1538. ACM (2014)

21. Zhou, X., Li, K., Zhou, Y., Li, K.: Adaptive processing for distributed skyline
queries over uncertain data. IEEE Trans. Knowl. Data Eng. 28(2), 371–384 (2015)

http://networkrepository.com

	DySky: Dynamic Skyline Queries on Uncertain Graphs
	1 Introduction
	2 Preliminaries and Problem Definition
	3 Proposed Methodology
	3.1 Overview
	3.2 The Algorithm

	4 Experimental Evaluations
	5 Conclusion
	References




