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Abstract. Shortest distance queries not only find important applica-
tions in real-word systems, it is also the foundation for numerous other
graph analysis problems. State-of-the-art techniques for such queries
use 2-hop labeling, in particular, the Pruned Landmark Labeling (PLL)
index is among the best performing for small world networks. However,
PLL suffers from large label size and index computation time when the
graph is large. In this paper, we propose two techniques to address the
problem. The first technique is to limit the landmarks to vertices in
a minimum vertex cover, and the second is to use a hybrid index by
decomposing the graph into a core and a forest, and combining the PLL
index for the core and a simpler distance labeling for trees. Extensive
experiments with real-world graphs verified the effectiveness of these
techniques.

1 Introduction

Given a graph G and a pair of vertices s and t, the distance query asks
for the distance from s to t, that is, the length of the shortest path from s
to t. Distance queries find numerous applications such as in route planning
and spatial databases [7,12], community search and influence maximization in
location-based social networks [25]. They are also the foundation for several
other problems such as graph homomorphism search [8] and distributed sub-
graph enumeration[21]. Answering such queries instantly is crucial for many of
these applications.

Distance queries can be answered using one of two naive methods. The first
method is to do a breath-first search1 from s until we reach t, and the second
method is to pre-compute the distances between all vertex pairs and store them
as an index. With large graphs nowadays both methods are impractical: the
former is too slow, and the latter takes too much space and pre-computation
time. Therefore, many indexing techniques have been proposed that tried to
strike a balance between index size/index construction time and online query

1 Or to use Dijkstra’s algorithm for weighted graphs.
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processing time. As noted in several recent studies [16,17], for complex networks
the state-of-the-art technique is pruned landmark labelling (PLL) [3]. PLL is a
type of 2-hop labeling [6], which constructs a label for each vertex u, denoted
label(u), consisting of some vertex-distance pairs (v, d) and stores them as index
(v is called a hub of u if (v, d) ∈ label(u)). At query time, the distance between
s and t can be directly answered by examining the common hubs of s and t,
and adding the distance from s to the hub and the distance from the hub to
t together. Although PLL works very well compared with other techniques, for
large graphs the index can be too large, which will not only take up memory
but also make the queries slower. Several subsequent works tried to address the
problem by better vertex ordering [2,17], graph compression, and elimination of
local minimum nodes [16], however, these methods still generate label sets that
are unnecessarily large.

In this paper, we propose two novel techniques to tackle the problem. Specif-
ically, (1) we propose to use only vertices in a minimum vertex cover as land-
marks; (2) we propose to decompose the graph into a core and a set of trees,
and combine two types of labels, one for the core and one for the trees, as the
distance index; We conduct extensive experiments with real-world graphs, which
demonstrate that the proposed techniques can significantly reduce the index size
and index time, and make the queries faster.

Organization. We present our techniques for undirected, unweighted graphs,
but most of them can be easily adapted to directed and/or weighted graphs.
Section 2 provides the preliminaries, Sect. 3 discusses computing labels using
minimum vertex cover. Section 4 presents hybrid labeling by decomposing the
graph into core and trees, and our experiments are reported in Sect. 5. Section 6
discusses related work. We conclude the paper in Sect. 7.

2 Preliminaries

A graph G ≡ (V,E) consists of a set V of vertices and a set E ⊆ V ×V of edges.
In this paper we implicitly assume all graphs are simple graphs, that is, there
is at most one edge from one vertex to another. We will focus on undirected
and unweighted graphs where the edges have no direction and every edge has a
length of 1.

If (u, v) is an edge in an undirected graph, we say u is neighbor of v and v is
a neighbor of u, and we use N(v) to denote the set of all neighbors of v. Let u, v
be vertices in graph G. A path from u to v is a sequence of neighboring edges
(u, v1), (v1, v2), . . ., (vk, v), which is also commonly represented as the sequence
of vertices u, v1, . . . , vk, v. The number of edges in the path is called its length.
Given a pair of vertices u and v in the graph, a shortest path from u to v is a
path from u to v with the smallest length, and we call this length the distance
from u to v, denoted dG(u, v) or simply d(u, v) when G is clear from the context.
Note that for undirected graphs d(u, v) = d(v, u).

Pruned Landmark Labeling (PLL). The pruned landmark labeling is a type
of 2-hop labeling scheme [6] designed for the efficient processing of distance
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queries. The general idea of a 2-hop labeling scheme is as follows: Suppose G is an
undirected graph. For each vertex u ∈ V , we compute a label L(u) which is a set
of (vertex, distance) pairs (v, d(u, v)), where v is a vertex in V , and d(u, v) is the
distance from u to v. A 2-hop labeling scheme is complete for G if it can be used
to answer all distance queries in G as follows: let H(u) = {v|(v, d(u, v)) ∈ L(u)}.
For every pair of vertices s and t in the graph:

d(s, t) = min
v∈H(s)∩H(t)

d(s, v) + d(v, t) (1)

A naive complete 2-hop label L(u) contains (v, d(u, v)) for every vertex v ∈ V .
However, it is unnecessary and can be too large and too expensive to compute.
Using PLL we can compute a much smaller label set for each u using a pruning
strategy which also makes the computation much faster.

Let v1, v2, . . . , vn be the vertices in V , the PLL algorithm in [3] computes
L(u) as follows: First, we choose a fixed order of the nodes. Without loss of
generality, we assume the order is v1, v2, . . . , vn. Then, we do BFS from v1, then
from v2, ..., and finally from vn, each time we traverse from vj to u, we will
decide whether (vj , d(u, vj)) should be added into L(u).

1. Initially for every u ∈ V , L0(u) = ∅;
2. When we reach u from vj , we create Lj(u) from Lj−1(u) as follows: if there

does not exist i < j such that d(vj , u) ≥ d(vj , vi) + d(vi, u),

Lj(u) = Lj−1(u) ∪ {(vj , d(vj , u))}

Otherwise Lj(u) = Lj−1(u), and we stop going further from u.
3. Finally, L(u) = Ln(u).

The index L consists of the labels of all vertices, that is, L = {L(u)|u ∈ V }.
Observe that the condition in Step 2 above means that if some shortest path

from vj to u goes through one of the vertices vi (i < j), then (vj , d(vj , u)) will
not be added into L(u), and otherwise it will.

Due to the smart pruning strategy, PLL usually generates a much smaller
label for each vertex u without losing completeness. That is, for only some ver-
tices v ∈ V , the pair (v, d(u, v)) is in L(u). For easy explanation and to be con-
sistent with the terminology in [16], we will call v a hub of u if (v, d(u, v)) ∈ L(u).
We will also say vi is ranked higher than vj if vi precedes vj in the vertex ordering
when computing PLL labels and denote it by rank(vi) > rank(vj).

3 Restricting Landmarks to a Minimum Vertex Cover

Intuitively a landmark is a vertex that many shortest paths pass through. If there
is a subset S of vertices that every shortest path in G passes through, then we
can use S as landmarks when computing the 2-hop labels. Our key insight here
is that the original PLL essentially treats every vertex in the graph as a potential
landmark, i.e., every vertex can be a hub of some other vertices. However, this
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is usually not necessary. We observe that using vertices in a vertex cover C is
sufficient (A vertex cover is a set C of vertices in G such that every edge in G
has at least one end in C). This is because every edge is incident on some vertex
in C. Therefore, every non-trivial path, i.e., path of length ≥1, passes through
a vertex in C. In other words, for any path between s and t (s �= t), there is a
vertex v ∈ C such that d(s, t) = d(s, v) + d(v, t). Therefore, our first intuition is
to find a minimum vertex cover C, and limit the BFS in the PLL computation
to vertices in C. For convenience, we denote the PLL labels computed using a
set S of vertices by PLL(S).

Example 1. Consider the graph G1 shown in Fig. 1. C = {v0, v2, v4, v6} is a
minimum vertex cover. The computation of PLL labels using the vertex cover
and not using the vertex cover are shown in Fig. 2. Using the vertex cover, we
create a label set that contains a total of 21 labels, and using (an arbitrary
ordering v0, v1, v2, v3, v4, v5, v6, v7 of) all vertices, we obtain a label set of 30
labels.

Fig. 1. Graph G1

(a) PLL(C) (b) PLL(V )

Fig. 2. PLL label computation using vertex cover S ≡ {v0, v2, v4, v6} and not using
the vertex cover for graph G1. The labels for each vertex are contained in a row. For
instance, in PLL(C), L(v3) = {(v0, 3), (v2, 1), (v4, 1)}.
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One might wonder whether there are smaller landmark sets than the mini-
mum vertex cover that can make the labels complete. The following proposition
answers the question.

Proposition 1. Let S be a subset of vertices in G. If S is not a vertex cover
of G, then there exist a pair of vertices u, v (u �= v) such that d(u, v) can not be
computed using the PLL labels computed from S.

Proof. Since S is not a vertex cover, there must be an edge (u, v) such that
neither u nor v is in S. Clearly the edge (u, v) is a shortest path from u to v,
while any path from u to v that passes through a vertex in S is of length at
least 2. Therefore, d(u, v) can not be computed using the PLL labels computed
from S.

It was observed that in the original PLL algorithm, v is a hub of u if and
only if v has the highest rank on all shortest paths from u to v.

Lemma 1 ([16]). For any pair of vertices u, v ∈ V , v is a hub of u if and only
if v is ranked highest on all shortest paths from u to v.

Let C be a vertex cover of G. Without loss of generality, let us assume
v1, . . . , vk (k < n) are the vertices in C, and vk+1, . . . , vn are vertices not in C.
Using Lemma 1, we can show

Theorem 1. If we use the original PLL algorithm to compute the vertex labels
in the order v1, v2, . . . , vn, then for every v ∈ V − C, v is the hub of only itself.
That is, for any u �= v, v is not a hub of u.

Proof. Let v ∈ V −C be any vertex outside the vertex cover C. For every vertex
u ∈ C, rank(u) > rank(v), therefore, according to Lemma 1, v is not a hub of
u. For every vertex v′ /∈ C such that v′ �= v, any path from v′ to v must pass
through some vertex u ∈ C and u is ranked higher than v. Therefore, v is not
ranked the highest on any path from v′ to v. Thus v is not a hub of v′ according
to Lemma 1.

Observe that, if we order the vertices in C before those in V −C, then all the
vertices in V −C are local minimum vertices [16] which are vertices whose ranks
are lower than that of their neighbours. Hence by Lemma 4.12 of [16], they are
hubs of only themselves. This serves as an alternative proof of Theorem 1.

Vertices that are hubs of only themselves are not really helpful for distance
queries, hence they can be removed from the label set L. Theorem 1 indicates
that if the vertices in V are appropriately ordered, we can find a 2-hop label
which is equivalent to the labels we find using a vertex cover. However, our
result is still useful since finding a good vertex ordering is not easy, and the
approach in [16] is the same as that in [3], that is, to order the vertices by
degree and vertex ID, and then find the local minimum set L. In comparison,
our method is to order the vertices in the minimum vertex cover before those not
in the cover, and by doing this we are likely to get a larger local minimum set.
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Fig. 3. Example graph in [16]

This is verified in our experiments where the average number of labels of each
vertex using our approach is significantly smaller then using the degree-based
ordering. To further illustrate this point, we provide the following example.

Example 2. Consider the graph in Fig. 3, which is the graph in the running
example of [16]. If the vertices are ordered using degree and vertex ID, then
{v7, v10, v11, v12} is the local minimum set (Note that v8 is not local-minimum).
So in computing the PLL labels only the other 8 vertices need to be used as
landmarks. For the same graph, we can see that the vertices v1, v2, v3, v4, v5, v6, v9
form a vertex cover. If we rank these vertices before others, then v8 will be
local minimum as well. In our approach we only need to use these 7 vertices as
landmarks when computing the PLL labels.

Finding a Minimum Vertex Cover. It is well known that finding a minimum
vertex cover is an NP-hard problem. However, we can use the following greedy
heuristic algorithm to find an approximate minimum vertex cover.

Algorithm 1: FindMVC
Input: Graph G
Output: A vertex cover C of G, initially C = ∅

1 while there is edge in G do
2 u ← a vertex in G with largest degree
3 C ← C ∪ {u}
4 Remove u and all edges incident on u from G

5 Return C

Suppose we have found a minimum vertex cover C. When computing the
PLL labels using C, we arrange the vertices in C according to non-increasing
degree.

Removing 0-Distance Labels. To further reduce the number of labels, we
note that distance 0 labels can be eliminated if we slightly modify the algorithm
for computing the distance. Specifically, when computing the distance d(s, t), we
first check whether t is a hub of s or s is a hub of t, if yes, then the distance
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d(s, t) is recorded in L(s) or L(t) already, so we can directly retrieve it; otherwise
we use formula (1).

For example, we can remove all labels of the form (v, 0) from the labels
in Example 1. To compute d(v4, v7), we find that v4 is a hub of v7, that is,
(v4, 3) ∈ L(v7), therefore, we know d(v4, v7) = 3. However, for d(v3, v6), neither
v3 is a hub of v6, nor v6 is a hub of v3. Therefore, we use Eq. (1), and find
d(v3, v6)=d(v3, v4) + d(v4, v6)=1 + 2 = 3.

Although the above idea is simple, for large graphs with millions of vertices,
the amount of savings by eliminating all 0-distance labels can be significant.

4 Combining Two Types of Labels - a Hybrid Index

Consider a graph that consists of a single path v0, v1, v2, v3, v4. Observe that
using PLL, even with a minimum vertex cover {v1, v3}, we will create a label
where v1 is a hub of every other vertex, and v3 is a hub of v2, v3, v4. However,
we can regard v0 as a landmark, and create a label L′ for every other vertex as
follows: L′(vi) = i (note i = d(vi, v0)) for i ∈ [0, 4]. To find the distance between
vi and vj , we can use d(vi, vj) = |d(vj , v0)−d(vi, v0)|. Here v0 is a landmark that
can be used differently than the 2-hop labels discussed in Sect. 2. We can also use
any other vertex as the landmark. For example, if we use v3 as the landmark, we
can compute the distances as follows: for vi and vj , if the two vertices lie on the
same side of v3, we use difference, for instance d(v0, v2) = d(v0, v3) − d(v2, v3);
if the two vertices lie on different sides of v3, we use addition, for instance,
d(v2, v4) = d(v2, v3) + d(v3, v4). In other words, we can use either addition or
difference to compute the difference between two vertices.

More generally, consider a tree T rooted at vertex r. For each vertex v in T ,
we only need to record its distance d(v, r) from the root r. Given any two vertices
vi, vj in T , we can compute their distance as follows: (1) find the lowest common
ancestor of u, v, denoted lca(u, v), (2) d(u, v) = d(u, lca(u, v)) + d(v, lca(u, v))
where d(u, lca(u, v)) = d(u, r) − d(r, lca(u, v)) and d(v, lca(u, v)) = d(v, r) −
d(r, lca(u, v)). In other words,

d(u, v) = d(u, r) + d(v, r) − 2d(r, lca(u, v)) (2)

Thus for a tree, it is sufficient to use its root as the landmark, and record the
distances between each vertex from the root. Note that if u is an ancestor of v,
then lca(u, v) = u.

Now consider a general graph G. We note that G can be decomposed into a
2-core and a set of trees, where the root of each tree is a vertex in the 2-core [4].
Let Vc be the vertex set of the 2-core, G(Vc) be the 2-core, and T1, . . . , Tk be
the distinct trees, and ri be the root of tree Ti. Note that for any pair of vertices
within G(Vc), the shortest path will not pass through any non-root vertex in the
trees. Based on this observation, we design a hybrid label index for G as follows:

1. Construct the PLL label L(u) for each vertex u ∈ Vc for the graph G(Vc) as
described in Sect. 3, ignoring the vertices not in Vc.
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2. Construct a label for each u ∈ Ti, denoted as L′(u), such that L′(u) = d(ri, u)
for i ∈ [1, k].

When it comes to query processing, we can use the process described in Algo-
rithm2. The algorithm is self-explanatory. We will use the following following
example to further explain it.

Algorithm 2: Computing distance using hybrid landmark labeling
Input: Graph G, label L for G(Vc) and L′ for the tree vertices, and two vertices

s, t ∈ V
Output: d(s, t)

1 if both s and t are in Vc then
2 Compute d(s, t) using L(s), L(t) and equation (1)

3 else if s ∈ Vc and t ∈ V (Ti) − {ri} then
4 d(s, t) = d(s, ri) + L′(t) where d(s, ri) is computed using equation (1)

5 else if s, t ∈ V (Ti) then
6 Compute d(s, t) using equation (2)

7 else if s ∈ Ti, t ∈ Tj, and i �= j then
8 d(s, t) = L′(s) + d(ri, rj) + L′(t) where d(ri, rj) is computed using

equation (1)

9 Return d(s, t)

(a) Graph G2 (b) Label L (c) Label L′

Fig. 4. Graph G2 and its hybrid labels

Example 3. Consider the graph G2 in Fig. 4 (a). The graph can be decomposed
into a core, denoted G2[Vc], consisting of the vertices v2 to v8 and two trees,
denoted T1 and T2, rooted at v2 and v3 respectively. For the core G2[Vc], we find
a minimum cover {v5, v2, v6, v8}, and compute the PLL labels as shown in Fig. 4
(b). The tree vertex label L′ is as shown in Fig. 4 (c).
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Consider the distance between vertices v6 and v11. We have d(v11, v6) =
d(v11, v3)+d(v3, v6) = 2+(1+1) = 4. Similarly d(v1, v10) = d(v2, v1)+d(v2, v3)+
d(v3, v10) = 1 + 1 + 2 = 4

It is observed that many real-world graphs are of a core-periphery structure
[22], where the core consists of a central, densely connected set of vertices, and
the periphery is the set of sparsely connected vertices that are also linked to the
core. The periphery part of such graphs is likely to contain many tree vertices.
For those graphs that do contain a large forest, our hybrid label index can signif-
icantly reduce the index size. For example, for the DBpedia, Email-enron, and
DBLP data sets, using core-forest decomposition and our hybrid index can reduce
the average number of labels per vertex by 45.5%, 22% and 14% respectively, as
shown in Table 2 of our experiments.

Finding a Core-Forest Decomposition. To find the core, we start with a
vertex of degree one, remove it and all incident edges, and repeat this process
until all vertices have a degree of 2 or more. This will obtain the core. We can
then identify the root vertices of the forest, which are vertices in the core that
are neighbors of at least one vertex not in the core. The forest (trees) can then
be obtained using BFS traversal over vertices not in the core.

Complexity. Finding the core-forest Sdecomposition can be done in time
O(|V | + |E|). Building the label L′ for a tree T can be done by a single BFS
from the root of the tree, hence it takes O(|T |) where |T | represents the tree
size.

5 Experiments

In this section, we report our experiments with the proposed methods (i.e., the
vertex cover as landmarks and the hybrid-index with core-forest decomposition).
We compare the label set size and query time of the original PLL where the
vertices are ordered according to decreasing degree, with the following methods:

PLL+. PLL using landmarks in an approximate minimal vertex cover.
HLL. The hybrid landmark labeling with the index for core computed using
an approximate minimal vertex cover of the core.

Datasets. We use 16 real-world graphs as listed in Table 1. The size of each
data set is also shown in the table. Wiki-croc, wiki-charm and wiki-squi
are Wikipedia page-page networks on specific topics in December 2018. Github
is the GitHub author-follower network collected in June 2019. Ro and Hu are
friendship networks of users from 2 European countries collected from the music
streaming service Deezer in November 2017. DBLP is an co-authorship network
where two authors are connected if and only if they publish at least one paper
together. Email-enron is an email communication network of Enron. DBpedia is
a snapshot of the DBpedia knowledge graph downloaded from http://pan.baidu.
com/s/1c00Jq5E. The remaining datasets are the blue verified Facebook page

http://pan.baidu.com/s/1c00Jq5E
http://pan.baidu.com/s/1c00Jq5E
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networks of different categories collected in November 2017. All data sets, except
DBpedia, are downloaded from the Stanford Large Network Data Collection
(https://snap.stanford.edu/data/). We would like to stress that, although most
of these data sets are not large, they can still provide a good indication of the
ratio of index size/time reduction by using our techniques.

Implementation Environment. All algorithms are implemented in C++ and
compiled with gcc 7.4.0 compiler. The experiments are done in a machine with
Intel Core i7-7700 with 3.60 GHz CPU, 32 GB memory and Linux (Ubuntu
18.04.3 LTS) operating system.

Table 1 also lists the number of vertices in the approximate minimum vertex
cover (|CG|), the number of vertices in the core |Vcore|, the percentage of tree
vertices, and the average tree size (number of vertices in the tree), as well as the
number of vertices in the approximate minimum vertex cover of the core |Ccore|.
It can be seen that the percentage of minimal vertex cover vertices ranges from
0.26% to 0.75%. The percentages of tree vertices is about 35%, 31.1%, and 19%
for DBpedia, Email-enron, Company respectively, while they are less than 10%
for several other data sets. The average sizes of the tree, shown as |t|, are all
small except for email-enron wiki-croc, facebook, and DBpedia.

Table 1. Datasets

Dataset |V | |E| |C| Tree node ratio Avg. tree size |Vcore| |Ccore|
Wiki-croc 11631 180020 3037 0.044 5.72 11116 3033

Wiki-cham 2277 36101 810 0.041 3.2 2184 806

Wiki-squi 5201 217073 2147 0.027 2.42 5063 2143

Github 37700 289003 15511 0.139 1.76 32464 14775

RO 41773 125826 22726 0.153 1.33 35402 20831

HU 47538 222887 29535 0.06 1.13 44669 28902

Politician 5908 41729 3015 0.109 1.68 5262 2917

Athletes 13866 86858 6889 0.092 1.53 12590 6764

Company 14113 52310 7078 0.188 1.68 11457 6515

TVshow 3892 17262 1994 0.179 1.73 3194 1849

New-sites 27917 206259 15862 0.082 1.42 25626 15460

Government 7057 89455 4271 0.053 1.33 6681 4210

Facebook 4039 88234 3038 0.019 7.5 3964 3038

DBLP 317080 1049866 165229 0.143 1.77 271646 160824

Email-enron 36692 183831 14480 0.311 16.18 25286 13504

DBpedia 3365623 7989191 700756 0.35 4 2188839 457547

https://snap.stanford.edu/data/
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Table 2. Index size and index time

Dataset PLL PLL+ HLL

Index

size(KB)

Avg.

|L(v)|
Index

time(s)

Index

size(KB)

Avg.

|L(v)|
Index

time(s)

Index

size(KB)

Avg.

|L(v)|
Index

time(s)

Wiki-croc 1739.8 51.1 11 1274.9 37.4 8 1244 36.5 8

Wiki-cham 225.3 33.8 <1 177.4 26.6 <1 172.84 25.9 <1

Wiki-squi 1351.8 88.7 18 1032.8 67.8 11 1014.45 66.6 11

Github 6166.8 55.8 18 5117.5 46.3 76 4536.9 41 71

RO 72830 595.1 3722 49320.6 403 2592 41722.3 340.9 2255

HU 174318 1252 25262 110914 796.4 15515 103714.5 744.7 14808

Politician 1695.3 97.94 11 903.9 52.2 5 828.5 47.9 5

Athlete 5959.6 146.7 100 3987.8 98.2 66 3666.9 90.3 64

Company 5253.8 127.1 49 3557.5 86 35 2946.9 71.3 31

TVshow 951.4 83.4 3 548.2 48.1 1 456 40 1

New-sites 18699.9 228.6 555 11987 146.6 354 11085.5 135.5 343

Government 2544.4 123.1 36 1819 88 26 1720.1 83.2 25

Facebook 330.41 27.9 1 292 24.7 1 291.5 24.6 1

DBLP 672804.1 724.3 34795 469598.4 505.5 25973 402638.7 433.4 24826

Email-enron 4490.1 62.16 65 3255.1 44.9 51 2547.6 35.1 40

DBpeida 69568 10.1 526 45255 6.4 524.6 260.8 3.5 217.8

5.1 Index Size and Index Time

Table 2 shows the index size in both space consumption (in KB) and average num-
ber of labels per vertex (avg. |L(v)|). The index time, which includes the time for
finding the approximate minimum vertex cover and the core-forest decomposition,
is also shown in the table2. As can be seen, using the minimal vertex cover as
landmarks alone can significantly reduce the index size, with the Politician and
TVshow datasets achieving 46.7% and 42.4% reduction in the index size respec-
tively. Using core-forest decomposition further reduces the index sizes for all of the
data sets, with the DBpedia and Email-enron datasets achieving 45.5% and 21.8%
reduction respectively from using the vertex cover alone. Note that the DBpedia
and the Email-enron datasets have relatively large percentage of tree vertices.
The index size of HLL is significantly smaller than that of PLL for all data sets, for
instance, the index size of HLL is 37.4% of that of PLL for the DBpedia dataset.
The index time of HLL is also much shorter than that of PLL for most datasets
(for some of the small datasets, the index time of all methods are similar).

5.2 Query Time

To test the query time, we randomly generated 1 million vertex pairs for each
data set. The average query time for each data set is shown in Table 3. As can
bee seen from the table, the average query time for PLL+ is significantly shorter
than that of the original PLL for all data sets. However, the query time for PLL+

and HLL are similar. This could be because of the extra query processing steps
used in HLL offset the gain obtained by the smaller index size.
2 For most datasets, the time spent on finding the minimum vertex cover and core-forest

decomposition is small compared with that of PLL. One exception in our experiments
is the DBpedia, for which computing the vertex cover too significant amount of time.
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Table 3. Query time

Dataset PLL PLL+ HLL

Wiki-croc 154 109.11 113.87

Wiki-cham 11.43 9.18 9.52

Wiki-squi 92.29 67.13 68.93

Github 545.74 453.78 464.92

RO 7740.05 5434.42 5271.85

HU 21678.9 14090.3 12547.2

Politician 140.58 76.21 78.38

Athletes 553.63 374.85 374.69

Company 493.42 331.45 331.21

TVshow 75.63 43.8 46.26

New-sites 1823.71 1161.12 1142.11

Government 200.57 150.33 151.6

Facebook 18.11 14.21 15.08

DBLP 87079.9 59721.2 58832.6

Email-enron 696.3 505 498.6

DBPedia 6978 5890.2 5875.4

6 Related Work

The problem of finding point-to-point shortest distances in graphs is one of the
most basic, and most studied, problems in graph databases. Algorithms for the
problem can be divided into exact (e.g., [3,5,9,10,15,16,26]) and approximate
(e.g., [11,18,19,23,24]), or grouped by the targeted graph types such as road-
networks [1,2,28,29], small-world networks [3,16] and general graphs [5,26]. The
exact algorithms can be further divided into tree-decomposition based [26,27],
2-hop index based [3] or multi-hop index based [5,26]. There are also works that
focus on dynamic graphs and incremental maintenance of indexes [13,14,20]. As
noted in recent studies [16,17], overall the pruned landmark labeling (PLL) [3]
and its variants (such as [2] and [17], to be discussed in some detail below) are
the best-performing.

It was noted in [3] that vertex ordering plays an important role in the
label size. However, other than the heuristic degree-based ordering, no specific
vertex ordering method was given. The degree-based labeling heuristic some-
times generates labels that are too large, especially for graphs that have “high-
way” structures that resemble those in real-world road networks. Based on this
observation [2] proposed pruned highway labeling which first partitions the ver-
tices into {P1, P2, . . . , PN} where each Pi is a shortest path pi,1, pi,2, . . . , pi,li
between pi,1 and pi,li (intuitively these shortest paths represent the “highways”),
and then the labels of node v, label(v), are changed to triples of the form
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(i, d(pi,1, pi,j), d(v, pi,j)), and the way to compute the distance between s and
t is also slightly changed accordingly. For each vertex v, it computes label(v)
using BFS from the vertices pi,j one by one, with similar prune strategy as that
in [3]. To get a good ordering of vertices in {P1, P2, . . . , PN}, it first computes a
shortest path tree rooted at a randomly selected vertex, then starting from the
root, the next vertex is selected as the child with the largest number of descen-
dants. If v and its child w are both selected, and the number of descendants of v
and w are similar, then it will skip v and only do BFS from w. The authors of [17]
proposes an idea similar to [2] for ordering the vertices in PLL, specifically it uses
the multiplication of vertex degree and difference in descendant size to rank the
vertices. Experiments conducted in [17] demonstrate the vertex ordering strate-
gies in [2] and [17] can lead to good improvement in label size and query time
over degree-based labeling. [9] proposes a highway cover labelling where a set
H of landmarks (called highway nodes) is chosen, the pairwise distance between
the vertices in H are pre-computed, and given any two vertices s and t outside
H, the distance of the shortest path between s and t that pass through some
vertex in S can be computed directly using the labels of s, and this distance is
used as an upper bound of d(s, t). Although the index size is much smaller than
PLL, the actual shortest distance needs to be computed using a two-way BFS
over the graph obtained from G−H, guided by the upper bound. More recently,
[16] proposes a way to parallelize the PLL label computation by doing BFS from
multiple vertices simultaneously, based on the observation that PLL label com-
putation can be ordered by distance instead of vertices. To make the label size
smaller, it proposes to skip local-minimum nodes (which themselves are based
on ranking the vertices in non-increasing degrees). [15] proposes a 2-hop labeling
technique that is I/O efficient.

To the best of our knowledge, none of the previous works has considered
using a minimum vertex cover as potential landmarks, and none of them has
used core-forest decomposition and a combination of two types of labels. The
vertex ordering techniques proposed in [2] and [17] may be combined with our
techniques in computing the PLL labels in the core (by ordering the vertices
in the vertex cover using the techniques in [17]) in order to further reduce the
index size.

7 Conclusion

In this paper, we first proposed to use the vertex cover as the landmarks, which can
significantly reduce the index size of PLL. This method can be viewed as a method
to order the vertices in the computation of PLL labels, that is, to order the vertices
in a minimum vertex cover before those that are not in the cover. Query time is
also significantly shorter due to the smaller label size. We then proposed a hybrid
index based on core-forest decomposition, where vertices in the core use the PLL
labels while the vertices in the forest use a simpler labeling scheme. For datasets
where there are large percentages of forest vertices, the hybrid index can further
significantly reduce index size, without compromising query performance. These
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techniques not only works for undirected and unweighted graphs, they can also be
applied to directed graphs and weighted graphs.
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