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Abstract. Community detection is a fundamental problem in graph-
based data analytics. Among many models, the distance dynamics model
proposed recently is shown to be able to faithfully capture natural com-
munities that are of different sizes. However, the state-of-the-art algo-
rithm Attractor for distance dynamics does not scale to graphs with large
maximum vertex degrees, which is the case for large real graphs. In this
paper, we aim to scale distance dynamics to large graphs. To achieve
that, we propose a fast distance dynamics algorithm FDD. We show that
FDD has a worst-case time complexity of O(T · γ · m), where T is the
number of iterations until convergence, γ is a small constant, and m is
the number of edges in the input graph. Thus, the time complexity of
FDD does not depend on the maximum vertex degree. Moreover, we also
propose optimization techniques to alleviate the dependency on T . We
conduct extensive empirical studies on large real graphs and demonstrate
the efficiency and effectiveness of FDD.

Keywords: Community detection · Distance dynamics · Power-law
graphs

1 Introduction

Graph representation has been playing an important role in modelling and ana-
lyzing the data from real applications such as social networks, communication
networks, and information networks. In the graph representation of these appli-
cations, community structures naturally exist [8], where entities/vertices in the
same community are densely connected and entities/vertices from different com-
munities are sparsely connected. For example, in social networks, users in the
same community share similar characteristics or interests.

In view of the importance of community structures, many approaches have
been proposed in the literature for identifying communities, e.g., based on
betweenness centrality [9], normalized cut [17], or modularity [12]. The between-
ness centrality-based approach [9] divides a graph by iteratively removing from
the graph the edge that has the largest betweenness centrality (and thus likely to
be cross-community edges). The result is a dendrogram that compactly encodes
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the division process, which is then post-processed based on the modularity mea-
sure [13] to identify the best division point. In addition, heuristic algorithms,
e.g., the Greedy algorithm [12] and the Louvain algorithm [3], have also been
developed to directly optimize the modularity measure which results in an NP-
hard optimization problem [4]. In particular, the Louvain algorithm has gained
attention recently due to its low time complexity and fast running time. However,
it is known that optimizing the modularity measure suffers from the resolution
limit [8], i.e., small communities cannot be identified as they are forced to join
other communities to maximize the modularity.

The distance dynamics model was recently proposed in [16] to resolve the res-
olution limit, which does not optimize any specific qualitative measure. Instead,
it envisions a graph as an adaptive dynamic system and simulates the interaction
among vertices over time, which leads to the discovery of qualified communities.
Specifically, each vertex interacts with its neighbors (i.e., adjacent vertices) such
that the distances among vertices in the same community tend to decrease while
those in different communities increase; thus, the interaction information among
vertices transfers through the graph. Finally, the distances will converge to either
0 or 1, and the graph naturally splits into communities by simply removing all
edges with distance 1. It is shown in [16] that the distance dynamics model
is able to extract large communities as well as small communities. However,
the state-of-the-art algorithm Attractor [16] does not scale to graph with large
maximum vertex degrees, while large real graphs are usually power-law graphs
with large maximum vertex degrees [2]. Note that, Attractor is claimed in [16]
to run in approximately O(m + k · m + T · m) time, where m is the number
of edges in the input graph, T is the number of iterations until convergence,
and k is the average number of exclusive neighbors for all pairs of adjacent ver-
tices. However, we show in Sect. 3 that this is inaccurate, and in fact the time
complexity of Attractor highly depends on degmax—the maximum vertex degree
of the input graph—which prevents Attractor from scaling to graphs with large
maximum vertex degrees.

In this paper, we design a fast distance dynamics algorithm FDD to scale dis-
tance dynamics to large graphs. We first propose efficient techniques to compute
the initial distances for all relevant vertex pairs in O(degmax · m) time, which
is worst-case optimal. We then propose two optimization techniques to improve
the efficiency of distance updating by observing that (1) converged vertex pairs
can be excluded from the computation and (2) not the distances of all relevant
vertex pairs need to be computed. Finally, we reduce the total time complexity
to O(T · γ · m), where γ is a small constant. As a result, FDD can efficiently
process large real graphs that have large maximum vertex degrees. Note that,
our optimization techniques also alleviate the dependency on T such that FDD
is more likely to run in O(γ · m) time in practice.

Contributions. We summarize our main contributions as follows.

– We analyze the time complexity of the state-of-the-art distance dynamics
algorithm Attractor, and show that it highly depends on degmax. (Section 3)
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– We design a fast distance dynamics algorithm FDD by proposing effi-
cient initialization, optimization, and time complexity reduction techniques.
(Section 4)

– We conduct extensive empirical studies on large real graphs and demonstrate
the efficiency and effectiveness of FDD. (Section 5)

Related Works. Besides the methods mentioned above, there are many other
community detection methods such as graph partitioning [10,19], hierarchical
clustering [15,20], spectral algorithms [6,7], and clique percolation for overlap-
ping communities [14]. A comprehensive survey about community detection can
be found in [8].

2 Preliminaries

In this paper, we focus on undirected and unweighted graphs G = (V,E), where
V represents the set of vertices and E represents the set of edges. We use n and
m to denote the sizes of V and E, respectively. The edge between vertices u and
v is denoted by (u, v) ∈ E. The set of neighbors of u is N(u) = {v ∈ V | (u, v) ∈
E}, and the degree of u is deg(u) = |N(u)|. The closed neighborhood N [u] of
u is the union of {u} and its neighbors, i.e., N [u] = {u} ∪ N(u); note that,
deg(u) = |N [u]| − 1. In the remaining of the paper, we simply refer to closed
neighborhood as neighborhood.

2.1 Distance Dynamics

The distance dynamics model is recently proposed in [16]. It consists of two
stages: initial distance computation, and distance updating.

State-I: Initial Distance Computation. For each edge (u, v) ∈ E, the initial
distance d(0)(u, v) between u and v is computed as

d(0)(u, v) = 1 − s(0)(u, v) (1)

where s(0)(u, v) is the initial similarity between u and v which is measured in
[16] by the Jaccard similarity between their neighborhoods, i.e.,

s(0)(u, v) = |N [u]∩ N [v]|
|N [u]∪ N [v]| (2)

Intuitively, the more common neighbors u and v have, the more similar they are
and the smaller distance they have. It is easy to see that all the distance and
similarity values range between 0 and 1.

Stage-II: Distance Updating. By Eq. (1), if the initial distance d(0)(u, v) is
close to 0, then u and v are likely to belong to the same community; if d(0)(u, v)
is close to 1, then u and v are likely to belong to different communities. How-
ever, if the initial distance is neither close to 0 nor close to 1, then it is hard to
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tell at the moment whether u and v should belong to the same community or
not. To resolve this issue, distance dynamics [16] proposes to iteratively update
the distance values for edges (i.e., adjacent vertex pairs) based on the neighbor-
hoods of the two end-points, until convergence (i.e., become 0 or 1). Updating
the distance/similarity for edge (u, v) is achieved by considering three forces:
influence from direct link DI(u, v) , influence from common neighbors CI(u, v),
and influence from exclusive neighbors EI(u, v). Specifically,

s(t+1)(u, v) = s(t)(u, v) + DI(t+1)(u, v) + CI(t+1)(u, v) + EI(t+1)(u, v) (3)

and
d(t+1)(u, v) = 1 − s(t+1)(u, v) (4)

where superscript (t) is used to refer to the corresponding values in iteration t.

1) Influence from Direct Link. Firstly, the similarity s(u, v) will increase as a
result of the influence of the direct edge between u and v. That is, DI(t+1)(u, v)
is computed as

DI(t+1)(u, v) =
f(s(t)(u,v))

deg(u) +
f(s(t)(u,v))

deg(v) (5)

where f(·) is a coupling function and sin(·) is used in [16].

u v

w1 w2w3 w4 w5

Fig. 1. Distance dynamics

2) Influence from Common Neighbors. Secondly, the similarity s(u, v) will also
increase as a result of the influence of the common neighbors of u and v. Let
CN(u, v) = N(u) ∩ N(v) be the set of common neighbors of u and v; for example,
CN(u, v) = {w1, w2} in Fig. 1. Then, CI(t+1)(u, v) is computed as

CI(t+1)(u, v) =
∑

w∈CN(u,v)

(
f(s(t)(w,u))

deg(u) × s(t)(w, v) +
f(s(t)(w,v))

deg(v) × s(t)(w, u)
)

(6)

3) Influence from Exclusive Neighbors. Thirdly, the similarity s(u, v) is also
affected by the influence of the exclusive neighbors ENv(u) of u with respect
to v, and the exclusive neighbors ENu(v) of v with respect to u, where ENv(u) =
N(u)\CN(u, v). For example, ENv(u) = {w3} and ENu(v) = {w4, w5} in Fig. 1.
However, whether the influence of an exclusive neighbor w on s(u, v) is positive
or negative will depend on the similarity between w and the other vertex [16].
Specifically, EI(t+1)(u, v) is computed as

EI(t+1)(u, v) =
∑

w∈ENv(u)

(
f

(
s(t)(w,u)

)

deg(u) × ρ(w, v)

)

+
∑

w∈ENu(v)

(
f

(
s(t)(w,v)

)

deg(v) × ρ(w, u)

)

(7)
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where ρ(w, u) = s(0)(w, u) if s(0)(w, u) ≥ λ, and ρ(w, u) = s(0)(w, u) − λ oth-
erwise; note that, in the latter case, ρ(w, u) < 0. Here, λ is a parameter and is
recommended in [16] to be in the range [0.4, 0.6].

3 Time Complexity of Attractor

The Attractor algorithm, along with the distance dynamics model, is proposed
in [16] for computing the distance dynamics. The pseudocode of Attractor is
shown in Algorithm1, which is self-explanatory and directly follows from the
distance dynamics model in Sect. 2. It is worth pointing out that, although only
the distances for edges (i.e., adjacent vertex pairs) are required in the community
detection and in the initial distance computation, Attractor also computes and
stores ρ(w, u) for vertex pairs w and u that are not directly connected but have
common neighbors (see Line 2). This is because these ρ(w, u) values will be used
later by Eq. (7) for updating the distances.

Algorithm 1: Attractor(G) [16]

1 Compute d(0)(u, v) for every edge (u, v) ∈ E;
2 Compute ρ(w, u) for every pair of vertices that are not directly connected but

have common neighbors;
3 while not converge do
4 for each edge (u, v) ∈ E do

5 if 0 < d(t)(u, v) < 1 then

6 Compute d(t+1)(u, v) from d(t)(u, v) by using Equations (3) – (7);

Attractor is claimed in [16] to approximately run in O(m + k ·m + T ·m) time,
where k is the average number of exclusive neighbors for all pairs of adjacent
vertices, and T is the total number of iterations (i.e., t). Specifically, it is claimed
that Line 1 runs in O(m) time, Line 2 runs in O(k · m) time, and Lines 3–6 run
in O(T · m) time. However, we find that this analysis is not accurate, which is
also evidenced by its poor performance on graphs with large maximum vertex
degrees (see our experiments in Sect. 5).

Issue-1. Firstly, Line 1 computes d(0)(u, v) for all m edges in the graph, which
cannot be conduct in O(m) time by assuming the triangle detection conjecture
in [1]. This is because the number of triangles in a graph can be directly
obtained from the values d(0)(u, v) of all edges in the graph in linear time
(see Sect. 4.1).

Issue-2. Secondly, Line 2 computes ρ(u, v) for k·m non-adjacent pairs of vertices.
It is unlikely that this can be conducted in O(k · m) total time.

Issue-3. Thirdly, an iteration of distance updating (Lines 4–6) may update m
edges in the worst case. It is unlikely that this can be achieved in O(m) time
for an iteration.
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We illustrate Issue-3 by analyzing the time complexity of an iteration of
distance updating (i.e., Lines 4–6). From Eqs. (5), (6), and (7), we can see that
updating d(u, v) for a specific edge (u, v) takes 2|CN(u, v)|+ |Nv(u)|+ |Nu(v)| =
deg(u) + deg(v) time, by assuming that the values of ρ(w, u) are precomputed
and each ρ(w, u) value can be retrieved in constant time. Thus, the time com-
plexity of an iteration of distance updating is O

(∑
(u,v)∈E

(
deg(u) + deg(v)

))
=

O
(∑

v∈V (deg(v))2
)

= O (degmax · m), where degmax is the maximum vertex
degree in G. Note that, O(degmax · m) cannot be replaced by O(degave · m),
where degave is the average vertex degree in G. In fact, O(degmax · m) can be n
times larger than O(degave ·m) in extreme cases; for example, in a star graph we
have degmax = m = n − 1 and

∑
v∈V (deg(v))2 = (n − 1) · n, while degave < 2.

Moreover, as we will show in Sect. 4.1, computing ρ(u, v) naively at Line 2
has an even higher time complexity than O (degmax · m). As a result, Attractor
will not be able to process large real graphs as it is well known that most of the
large real graphs, although have small average degrees, are usually power-law
graphs with a few vertices of extremely high degrees [2]. This is also confirmed
by our empirical studies in Sect. 5.

4 Fast Distance Dynamics

In this section, we design a fast distance dynamics algorithm FDD. We first pro-
pose techniques to compute d(0)(u, v) and ρ(u, v) for all relevant vertex pairs in
O (degmax · m) total time in Sect. 4.1, and then develop optimization techniques
to improve the efficiency of distance updating in Sect. 4.2. Finally, we reduce the
total time complexity of FDD to O(T · γ · m) for a small constant γ in Sect. 4.3.

4.1 Efficient Initialization

A straightforward approach for initialization (i.e., computing d(0)(u, v) and
ρ(u, v) at Lines 1–2 of Algorithm 1) is to compute the values independently
for all relevant vertex pairs by conducting an intersection of N [u] and N [v] in
deg(u)+deg(v) time. Then, the total time complexity of computing d(0)(u, v) for
all edges (i.e., all adjacent vertex pairs) is O

(∑
(u,v)∈E

(
deg(u) + deg(v)

))
=

O (degmax · m). Let E2 be the set of vertex pairs that are not directly connected
but share common neighbors (i.e., E2 is the set of vertex pairs whose ρ(u, v)
values need to be computed), and deg2(u) be the number of vertex pairs in E2

containing u (equivalently, the number of 2-hop neighbors of u in the graph
G). Then, the total time complexity of computing ρ(u, v) for all (u, v) ∈ E2

will be O
(∑

(u,v)∈E2

(
deg(u) + deg(v)

))
= O (∑

v∈V

(
deg(v) · deg2(v)

))
. This

can be much larger than O (∑
v∈V deg(v) · deg(v)

)
= O (degmax · m); con-

sider a tree where every vertex except leafs has exactly x neighbors, we have
deg2(v) ≈ deg(v) · x.
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Algorithm 2: Initialization of FDD
1 Initialize an empty hash table C for storing common neighbor counts;
2 for each vertex u ∈ V do
3 for each pair of vertices {v, w} ⊆ N(u) with v < w do
4 if (v, w) /∈ C then C(v, w) ← 1;
5 else C(v, w) ← C(v, w) + 1;

6 for each edge (u, v) ∈ E do

7 s(0)(u, v) ← C(u,v)+2
deg(u)+deg(v)−C(u,v) ;

8 d(0)(u, v) ← 1 − s(0)(u, v);

9 for each vertex pair {u, v} ∈ C\E do

10 s(0)(u, v) ← C(u,v)
deg(u)+deg(v)−C(u,v)+2

;

In this subsection, we propose efficient techniques to compute d(0)(u, v) and
ρ(u, v) for all relevant vertex pairs (equivalently, compute s(0)(u, v) for all vertex
pairs in E ∪ E2) in O (degmax · m) total time. The general idea is to incremen-
tally count the number of common neighbors for all vertex pairs of E ∪ E2

simultaneously. Let c(u, v) be the number of common neighbors of u and v (i.e.,
c(u, v) = |N(u) ∩ N(v)|). It is easy to see that we have

s(0)(u, v) =

{
c(u,v)+ 2

deg(u)+ deg(v)−c(u,v) if (u, v) ∈ E
c(u,v)

deg(u)+ deg(v)−c(u,v)+ 2 if (u, v) /∈ E
(8)

Thus, after computing c(u, v), each d(0)(u, v) and ρ(u, v) can be calculated in
constant time. In order to efficiently compute c(u, v), we enumerate all wedges in
the graph, where a wedge is a triple (v, u, w) such that (u, v) ∈ E and (u,w) ∈ E.
The set of all wedges can be obtained by enumerating all vertex pairs in the
neighborhood of each vertex, and for each wedge (v, u, w), we increase c(v, w)
by 1. The pseudocode is shown in Algorithm2, where a hash table C is used for
efficiently accessing the counts c(u, v).

It is easy to see that the time complexity of Algorithm 2 is
O (∑

u∈V deg2(u)
)

= O (degmax · m), by assuming that each access to the hash
table C takes constant time. Note that, this time complexity (for computing
s(0)(u, v) for all vertex pairs in E ∪E2) is worst-case optimal. For example, con-
sider a star graph with n vertices, the time complexity is O(n2), and E ∪ E2 is
the set of all vertex pairs (i.e., |E ∪ E2| =

(
n
2

)
= n(n−1)

2 ).
From the above discussions, it can be verified that

∑
(u,v)∈E c(u, v) equals

the total number of triangles in the graph. That is, the total number of triangles
can be obtained from the s(0)(u, v) values of all (u, v) ∈ E in O(m) time. As a
result, by assuming the triangle detection conjecture in [1], computing s(0)(u, v)
(or d(0)(u, v)) for all pairs of directed connected vertices cannot be conducted in
O(m) time, which invalidates the claim in [16] regarding the time complexity of
Line 1 of Algorithm 1.



220 M. Alsahafy and L. Chang

Algorithm 3: Distance Updating of FDD
1 for each edge (u, v) ∈ E do

2 if 0 < d(0)(u, v) < 1 then

3 Push (u, v) into a queue Q(0);

4 Initialize t ← 0, and a disjoint-set data structure S for V ;

5 while Q(t) �= ∅ do

6 while Q(t) �= ∅ do

7 (u, v) ← pop an edge from Q(t);
8 if u and v are in different sets in S then

9 Compute d(t+1)(u, v) from d(t)(u, v) by using Equations (3) – (7);

10 if 0 < d(t+1)(u, v) < 1 then Push (u, v) into Q(t+1);

11 if d(t+1)(u, v) > 1 then d(t+1)(u, v) ← 1;

12 if d(t+1)(u, v) < 0 then Union u and v in S, and d(t+1)(u, v) ← 0;

13 else d(t+1)(u, v) ← 0;

14 t ← t + 1;
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Fig. 2. Number of active edges in iterations

4.2 Optimizing Distance Updating

For distance updating, Attractor blindly tests each edge to update its distance if
it is not converged (see Line 4 in Algorithm 1), which is inefficient. We propose
two optimization techniques to improve the efficiency of distance updating.

Active-Edge Queue Optimization. We observe that although the total num-
ber of iterations (i.e., T ) that is needed for all edges to converge could be large
(e.g., can be up-to a hundred), most of the edges actually converge after the
first few iterations. For example, Fig. 2 demonstrates the number of active (i.e.,
not converged) edges in the iterations for graphs “Amazon” and “Friendship”;
please refer to Sect. 5 for the descriptions of these graphs. Thus, it is a waste
of time to check the converged (i.e., non-active) edges. Motivated by this, we
propose to maintain a queue for all the active edges, and only check and update
the active edges in each iteration. The pseudocode of using queue to maintain
active edges is shown in Lines 1–3, 5–7, and 10 of Algorithm3.

Transitivity Optimization. Our next optimization is based on the following
observation. In the distance dynamics model [16], after the distances of all edges
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converge, the communities are formed by the connected components of the graph
after removing all edges of distance 1. Thus, during the iterations of distance
dynamics, if the distance between u and v does not yet converge but there is a
path between u and v consisting only of edges of distance 0, then u and v must
be in the same community in the final result. As a result, we can directly set
the distance between u and v to be 0 without following the updating equations.
We call this transitivity optimization. To efficiently test whether there is a path
between u and v consisting only of edges of distance 0 regarding the current
distance values of the graph, we use a disjoint-set data structure [5] to maintain
the connected components formed by edges of distance 0. Whenever the distance
of an edge (u, v) converges to 0, we union the two corresponding connected
components of u and v in the disjoint-set data structure. Note that, according
to the distance dynamics model [16], once the distance of an edge becomes 0, it
will never increase again. The pseudocode of transitivity optimization is shown
in Lines 4, 8, and 12 of Algorithm3.

4.3 Reducing Time Complexity

Following Sects. 3 and 4.1, the (worst-case) time complexity of FDD is
O (T · degmax · m), where T is the number of iterations of distance updating
until convergence. Note that, the two optimization techniques in Sect. 4.2 do not
increase nor decrease the time complexity. Specifically, the two operations of
the disjoint-set data structure, Find (Line 8 of Algorithm 3) and Union (Line 12
of Algorithm 3), have amortized time complexity of O(α(n)), where α(·) is a
extremely slow-growing function that is at most 4 for all practical values of n
[5]; thus, we consider them as constant operations in the analysis.

As observed in [2] and also demonstrated in Table 1 in Sect. 5, most real
graphs are power-law graphs. That is, although the average degree is very small,
the maximum degree degmax could be very large or even in the same order of
magnitude as n. Thus, the time complexity O(T · degmax · m) is still too high
for large real graphs that have large degmax. In order to scale FDD to large real
graphs, we propose to firstly remove from the graphs all vertices whose degrees
are larger than a threshold γ. Consequently, FDD is only run on the resulting
graph whose degmax is at most γ, and the time complexity becomes O (T · γ · m).
Moreover, as a result of the two optimizations proposed in Sect. 4.2, the term T
in the time complexity is also largely alleviated. This is because later iterations
take an insignificant amount of time due to the small number of active edges
(see Fig. 2). Thus, FDD is more likely to run in O(γ · m) time in practice.

5 Experiments

In this section, we conduct empirical studies to demonstrate the effectiveness and
efficiency of our techniques. We evaluate our fast distance dynamics algorithm
FDD against two existing algorithms: the existing distance dynamics algorithm
Attractor [16], and the popular modularity-based community detection algorithm
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Table 1. Statistics of real graphs, where degmax is the maximum degree and
#Community is the number of provided ground-truth communities.

Graphs n m degmax #Community Source

Karate 34 78 17 2 Network Repository

Dolphins 62 159 12 2 Network Repository

Polbooks 105 441 25 3 Network Repository

Football 115 613 12 12 Network Repository

Email-Eu 986 16,064 345 42 SNAP

Polblogs 1,224 16,715 351 2 KONECT

AS 23,752 58,416 2,778 176 KONECT

Cora 23,166 89,157 377 70 KONECT

Amazon 334,863 925,872 549 5,000 SNAP

Youtube 1,134,890 2,987,624 28,754 5,130 SNAP

Collaboration 9,875 25,973 65 - SNAP

Friendship 58,228 214,078 1,134 - SNAP

RoadNet 1,088,092 1,541,898 9 - SNAP

Live-Journal 3,997,962 34,681,189 14,815 - SNAP

Table 2. Running time of FDD against Attractor and Louvain (in seconds)

Graphs FDD Attractor Louvain Graphs FDD Attractor Louvain

Karate 0.001 0.003 0.001 Cora 1.706 14.949 0.235

Dolphins 0.001 0.004 0.002 Amazon 14.988 93.256 5.508

Polbooks 0.006 0.014 0.002 Youtube 22.667 − >2hrs

Football 0.006 0.012 0.002 Collaboration 0.414 1.628 0.107

Email-Eu 0.113 5.572 0.012 Friendship 2.738 119.988 0.624

Polblogs 0.110 7.681 0.013 RoadNet 11.975 27.399 18.623

AS 0.346 222.784 0.202 Live-Journal 271.555 − 546.271

Louvain [3]. For FDD and Attractor, we set λ = 0.5 as suggested in [16]. In
addition, we choose γ = 50 by default for FDD. All algorithms are implemented
in C++, and all experiments are conducted on a machine with an Intel Core
2.6 GHz CPU and 8 GB memory.

We evaluate the algorithms on 14 real graphs that are widely used in the
existing studies. The graphs are downloaded from Network Repository, Stan-
ford Network Analysis Platform (SNAP), and the Koblenz Network Collection
(KONECT). Statistics of these graphs are shown in Table 1. The first ten graphs
come with ground-truth communities, while the last four graphs do not have
ground-truth communities and are mainly used for efficiency testings. In addi-
tion to these real graphs, we also generated synthetic graphs based on the LFR
benchmark [11] for evaluating the sensitivity of Attractor and FDD to the maxi-
mum degree degmax.
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Eval-I: Evaluate the Efficiency of FDD Against Attractor and Louvain.
The results are shown in Table 2. We can see that the running time of Attractor
generally correlates to the maximum degree degmax and it does not scale to
graphs with large degmax, while FDD is not affected by degmax and is much
faster than Attractor. For example, Attractor runs out-of-memory on Youtube
and Live-Journal where degmax > 104. On the other two graphs AS and Friend-
ship that have 103 < degmax < 104, FDD is 643x and 43.8x faster than Attractor,
respectively. When compared with Louvain, the running time of FDD is gener-
ally similar to that of Louvain on these graphs, and is smaller on Youtube and
Live-Journal; FDD computes the communities for Youtube in 22 s while Louvain
does not finish within 2 h. This demonstrates the efficiency-superiority of FDD
over existing algorithms Attractor and Louvain.

Table 3. NMI and purity (abbreviated as Pur) of FDD against Attractor and Louvain

Graphs FDD Attractor Louvain FDD-P

NMI Pur NMI Pur NMI Pur NMI Pur

Karate 0.782 1 0.782 1 0.602 0.971 0.782 1

Dolphins 0.201 0.677 0.201 0.677 0.516 0.968 0.201 0.677

Polbooks 0.520 0.886 0.520 0.886 0.537 0.848 0.520 0.886

Football 0.931 0.939 0.931 0.939 0.856 0.800 0.931 0.939

Email-Eu 0.726 0.824 0.564 0.585 0.309 0.329 0.707 0.788

Polblogs 0.195 0.963 0.201 0.963 0.647 0.952 0.200 0.963

AS 0.412 0.821 0.362 0.651 0.480 0.509 0.411 0.818

Cora 0.555 0.701 0.547 0.667 0.459 0.314 0.554 0.700

Amazon 0.873 0.050 0.873 0.050 0.794 0.023 0.873 0.050

Youtube 0.828 0.030 − − − − 0.794 0.031

Table 4. Running time (in seconds) of our algorithms

Graphs Attractor FDD1 FDD2 FDD3 FDD

AS 222.784 33.368 31.093 30.477 0.346

Cora 14.949 4.190 3.568 3.355 1.706

Amazon 93.256 25.717 21.918 19.422 14.988

Youtube − − − − 22.667

Collaboration 1.628 0.561 0.480 0.442 0.414

Friendship 119.988 24.870 22.889 20.664 2.738

RoadNet 27.399 14.988 12.844 12.242 11.975

Live-Journal − − − − 271.555
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Eval-II: Evaluate the Effectiveness of FDD Against Attractor and Louvain.
We run the algorithms on the ten graphs that come with ground-truth communi-
ties. We measure two well-known metrics, Normalize Mutual Information (NMI)
and Purity [18], for the communities extracted by the algorithms with respect to
the ground-truth communities. For both metrics, the larger the value, the better
the quality. The results are shown in Table 3, where best results are highlighted by
bold font. We can see that the communities extracted by FDD in general has the
highest quality regarding both NMI and purity. This confirms the effectiveness of
the distance dynamics model [16].

Recall that FDD removes from the graph the vertices that have degrees larger
than γ and does not assign these vertices into communities. Nevertheless, the
extracted communities actually has a no worse quality than Attractor, as shown
in Table 3. One possible reason could be that the high-degree vertices may mis-
lead the community extraction algorithms due to connecting to too many other
vertices. In Table 3, we also include the algorithm FDD-P which is FDD with
post-processing that assigns the removed vertices to communities; specifically,
each removed vertex is assigned to the community that contains most of its
neighbors. We can see that the community quality is similar to that of FDD.
This suggests that it may be a good idea to first ignore high-degree vertices.

Eval-III: Evaluate Our Techniques. We implemented another three vari-
ants of FDD, FDD1,FDD2, FDD3, by adding the techniques one-by-one. FDD1

is improved from Attractor by adding the efficient initialization proposed in
Sect. 4.1. FDD2 is improved from FDD1 by adding the active-edge queue opti-
mization. FDD3 is improved from FDD2 by adding the transitivity optimization.
Note that, FDD then is the improvement from FDD3 by adding the technique in
Sect. 4.3. The results are shown in Table 4. We can see that each of our techniques
contributed to the efficiency of FDD.
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Eval-IV: Evaluate the Effect of γ. We in this testing run FDD on Amazon by
varying γ from 5 to 80. The results are shown in Fig. 3. Firstly, when γ increases,
the running time of FDD also increases; this conforms with our theoretical anal-
ysis of FDD, i.e., its time complexity is O(T · γ · m). Secondly, NMI increases
slightly along with the increasing of γ. Thirdly, the purity also increases slightly
with respect to γ as more vertices are assigned to communities. Based on these
results, we need to make a trade-off between the running time and the quality
of extracted communities; we observe that γ = 50 works well in practice.

Eval-V: Evaluate the Effect of degmax. In order to evaluate the performance
of FDD and Attractor more thoroughly on graphs with different maximum degrees
(degmax), we also generated synthetic graphs based on the LFR benchmark [11].
We fix the average degree to be 20, and vary either the number of vertices
n or the value of degmax. The results of varying n from 0.2 × 106 to 106 is
shown in Fig. 4(a), where degmax is fixed at 25. We can see that the running
time of both FDD and Attractor increases as expected. However, the running
time of Attractor increases much faster than that of FDD. The results of varying
degmax from 25 to 104 is shown in Fig. 4, where n is fixed at 104. We can see
that, when the maximum degree increases, the running time of Attractor also
increases significantly. On the other hand, the running time of our algorithm
FDD remains almost the same. This confirms our theoretical analysis in Sects. 3
and 4 that the time complexity of Attractor depends on degmax while the time
complexity of FDD is not related to degmax. As large real graphs usually have
large maximum degrees, FDD is more suitable than Attractor for processing large
real graphs.

6 Conclusion

In this paper, we first showed that the time complexity of the state-of-the-art
distance dynamics algorithm Attractor highly depends on the maximum vertex
degree, and then developed a fast distance dynamics algorithm FDD to scale
distance dynamics to large real graphs that have large maximum vertex degrees.
In FDD, we proposed efficient techniques to compute the initial distance for all
relevant vertex pairs in O(degmax ·m) time, as well as optimization techniques to
improve the practical efficiency of distance updating. Moreover, we also reduced
the time complexity to O(T · γ · m) for a small constant γ. Experimental results
on large real graphs demonstrated the efficiency and effectiveness of FDD.
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