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Abstract. Community detection is one of the most important and chal-
lenging problems in graph mining and social network analysis. Nonneg-
ative Matrix Factorization (NMF) based methods have been proved to
be effective in the task of community detection. However, real-world
networks could be noisy and existing NMF based community detection
methods are sensitive to the outliers and noise due to the utilization of the
squared loss function to measure the quality of graph regularization and
network reconstruction. In this paper, we propose a framework based on
the nonnegative residual matrix factorization (NRMF) to overcome this
limitation. In this method, a residual matrix, represented by the matrix
reconstruction error, is explicitly introduced to capture the impact of
outliers and noise. The residual matrix should be sparse intuitively so
some sparse regularization can be used to model the sparsity. Specifi-
cally, three different types of sparse regularization, i.e., L0, L1 and L2,1,
have been studied. Multiplicative update rules and different thresholding
operators are used to learn these lower-rank matrices. Extensive exper-
iments on benchmark networks with and without known communities
demonstrate that our framework is more robust so that it outperforms
state-of-the-art NMF based approaches in community detection task.

Keywords: Nonnegative residual matrix factorization · Community
detection · Lp regularization

1 Introduction

Network data is ubiquitous in our daily life, for example, social networks, road
networks, and Internet networks. Analyzing these networks is of both theoretical
and practical values. Recent years have witnessed numerous network analysis
tasks. Among these tasks community detection is one of the most important
and challenging problems. A community can be defined as a group of users that
c© Springer Nature Switzerland AG 2020
Z. Huang et al. (Eds.): WISE 2020, LNCS 12342, pp. 196–209, 2020.
https://doi.org/10.1007/978-3-030-62005-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62005-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-62005-9_15


Nonnegative Residual Matrix Factorization for Community Detection 197

(1) interact with each other more frequently than with those outside the group
and (2) are more similar to each other than to those outside the group [15].
The research on community detection is beneficial for a variety of real-world
applications such as online marketing and recommendation systems.

A variety of approaches have been proposed to solve the problem of com-
munity detection in different types of networks, e.g., homogeneous networks,
attributed networks, and heterogeneous networks. More details about commu-
nity detection can be found in the survey paper [6]. Among these methods,
Nonnegative Matrix Factorization (NMF) based methods have attracted increas-
ing attention since it has been proved to be effective in detecting communities
and has powerful interpretability in clustering. NMF based community detec-
tion approaches identify the hidden communities by decomposing the adjacency
matrix into lower-rank matrices [22,24]. From the perspective of statistics, NMF
can be viewed as probabilistic [10] and Bayesian models [20] by factorizing the
input data into distributions instead of real-value matrices. Nonnegative matrix
tri-factorization (NMTF), which extends the standard NMF, factorizes the input
matrix into three low-rank matrices so that it can provide more information
about the interaction between lower-rank representations. Therefore, it has been
utilized to community detection task to identify communities and learn commu-
nity interaction simultaneously [15,28]. However, real-world networks could be
noisy. Existing NMF based community detection methods are sensitive to the
outliers and noise due to the utilization of the squared loss function to measure
the quality of graph regularization and network reconstruction [7]. The commu-
nity detection performance may be degraded by the inevitable noise.

To deal with this issue, we propose a framework based on the nonnegative
residual matrix factorization (NRMF) in this study. A residual matrix, repre-
sented by the matrix reconstruction error, is explicitly introduced to capture the
impact of outliers and noise. The residual matrix should be sparse intuitively
so some sparse regularization can be used to model the sparsity. Three differ-
ent types of norms, i.e., L0, L1 and L2,1, have been studied for the sparsity
modeling. To optimize the NRMF framework with different types of regulariza-
tion, multiplicative update rules [11] are used to learn the lower-rank matrices
and different thresholding operators are used to learn the residual matrix cor-
responding to different regularization types. To evaluate the performance of the
proposed NRMF, we conduct community detection experiments on two types of
real-world networks from different domains: networks with and without known
communities.

Our contributions can be summarized as follows:

– We propose a nonnegative residual matrix factorization based framework
NRMF to detect communities. A residual matrix, which is represented by
the matrix reconstruction error, is explicitly introduced to model the impact
of outliers and noise. The residual matrix is regularized to capture the
sparsity.
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– We explore three different regularization types to model the sparsity, i.e., L0,
L1 and L2,1 norms, on the residual matrix. We also propose the multiplicative
update rules and different thresholding operators to optimize the objectives.

– We evaluate the effectiveness of NRMF using several real-world networks.
The experimental results demonstrate that our method outperforms state-of-
the-art NMF based methods in community detection.

The rest of the paper is organized as follows. Section 2 provides an overview
of the related work. Notations and problem formulation are given in Sect. 3.
Section 4 explains the proposed NRMF framework. In Sect. 5 we then discuss our
experimental study. Finally, in Sect. 6 we draw conclusions and outline directions
for future work.

2 Related Work

Communities are groups of vertices which probably share common properties
and/or play similar roles within the graph [6]. Traditional community detection
methods aim to partition nodes into different groups such that the number of
edges between groups is minimal. For example, cut-based graph partition [9],
k-core decomposition [5]. There are some methods aiming at explore the graph
structures. Modularity maximization aims to find communities which can opti-
mize a predefined measures [13]. Spectral graph clustering makes use of the
eigenvectors of Laplacian matrices to group nodes [6].

Recently, NMF-based clustering approaches have also been applied in com-
munity detection. NMF as well as NMTF techniques have been used for com-
munity detection in networks in [22] where it aims to factorize the adjacency
matrix of the given network. Bayesian version of NMF for community detection
has been proposed in [19] to identify overlapping communities. Since NMTF
explicitly models data interactions through an extra latent factor, it provides
better interpretability and then has been employed in community detection.
NMTF with specific bounds has been proposed in [28] to detect overlapping
communities. NMTF with graph regularization has been used in [15] to dis-
covery communities in attributed social networks. REACT [17] employs two
NMTF components for community detection and role discovery and a regular-
ization component for modeling the relations between communities and roles.
Deep Autoencoder-like NMF [26] consists of encoder and decoder, where the
encoder component attempts to transform the original network into the commu-
nity membership space and the decoder seeks to reconstruct the original network
from the community membership space with the aid of the hierarchical mappings
learnt in the encoder component. Local community detection problem has been
studied in [8]. Community detection in multi-layer networks using NMF has
been studied in [12]. To autonomously determine the number for communities,
an adaptive NMF model has been proposed in [25].

With the rapid development of deep learning techniques, community pre-
serving network embedding approaches which are based on deep learning have
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attracted enormous attention from machine learning and graph mining commu-
nities recently. Existing network embedding methods have reported promising
results in community detection. For example, M-NMF [23] exploits the consen-
sus relationship between the representations of nodes and community structure,
and then jointly optimize NMF based representation learning model and mod-
ularity based community detection model. Community Embedding (ComE) [3]
is an embedding based method for joint node embedding and community detec-
tion. DNGE [16] uses Gaussian embedding to detect communities in dynamic
networks.

Due to the space limitation, we refer the reader to [6] for more details in
community detection research.

3 Preliminary

We first summarize the notations used in this study in Table 1 and then introduce
the backgrounds of the techniques we will use in this paper.

Table 1. Summary of the notations.

Notation Description

n Number of nodes.

e Number of edges.

c Number of communities.

An×n Adjacency matrix of the given network.

Cn×c Community membership matrix.

Sn×n Residual matrix.

Mc×c Community interaction matrix.

Ln×n Graph Laplacian matrix.

α Trade-off parameter for the residual matrix.

β Trade-off parameter for graph regularization.

Data could be noisy and there may exist some entries of the data corrupted
arbitrarily. To capture such noisy information in the framework of NMF, in [7,18]
a sparse error matrix S has been introduced to capture the sparse corruption.
Thus, a robust factorization to approximate the input data matrix A can be
defined as:

A ≈ UV T + S, (1)

where S is supposed to be sparse. To guarantee the sparsity, [18] proposed to use
L0 norm to regularize S and [7] utilized L1 norm as the sparseness constraint.
Therefore, the objective function can be defined as

min
U,V,S

‖A − UV T − S‖2F . (2)
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Then, we will introduce the formal definitions of different norms:

– L0 Norm: L0 norm is not really a norm and it is defined as the number of
nonzero elements in the given matrix.

– L1 Norm: L1 norm is the sum of the absolute values of the columns. Given
a matrix An×n, formally

L1(A) = max
1≤j≤n

n∑

i=1

|Aij |. (3)

L1 Norm is robust to noise and outliers because it considers the sparsity in
rows.

– L2,1 Norm: L2,1 Norm combines L1 and L2 norms. Given a matrix An×n,
L2,1(A) is defined as

L2,1(A) =
N∑

i=1

( N∑

j=1

|Aij |2
)1/2

. (4)

L2,1 norm controls the capacity of A and also ensures A to be sparse in rows
so it is robust to noise and outliers.

4 The Proposed Method

In this paper, motivated by the robust NMF [7,18], we propose a general frame-
work, which is less sensitive to noise and outliers, to detect communities. The
framework can be formulated as:

min
C,M,S

‖A − CMCT − S‖2F + α · ‖S‖p + β · Tr(CT LC), (5)

s.t. C ≥ 0,M ≥ 0, CT C = I,

where Tr(V ) denotes the trace of the matrix V . L is the graph Laplacian and
defined as L = D − A where Dii =

∑
l Ail. This framework is flexible to incor-

porate different types of sparse regularization and constraints. It is worth noting
that:

– In this work we only consider undirected networks where the adjacency
matrix A is symmetric. This framework can be extended to directed networks
straightforwardly by changing the first term to ‖A − CMBT − S‖2F .

– Empirically we find that adding the interaction matrix M and orthogonal
constraint would achieve worse performance so in the following discussion we
will simplify the objective function as:

min
C,M,S

‖A − CCT − S‖2F + α · ‖S‖p + β · Tr(CT LC), (6)

s.t. C ≥ 0,M ≥ 0,

– In this work, we exploit three different norms, L0, L1 and L2,1, to capture
the reconstruction error, i.e., q is set to be 0, 1 and 2,1, respectively.
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4.1 Optimization

The objective function in Eq. (6) is not convex for all parameters simultaneously.
We use the multiplicative update rules to solve this optimization problem due
to its good compromise between speed and ease of implementation [11]. We
will optimize the objective with respect to one variable while fixing the other
variables.

The update rules for matrices C and M (since we will not consider M we
can simply set M = I) are similar to the standard NMF, which is defined as:

C ← C ◦ (A − S)CM + βAC

CMCT CM + βDC
(7)

M ← M ◦ C(A − S)C
CT CMCCT

(8)

where ◦ denotes the element-wise product.
The update rules for the residual matrix S is different from different norms.
L0 Regularized Residual. For L0 norm, a hard-thresholding update rule

has been used in [18]. Formally, it is define as:

Sij =
{

0 if |Rij | ≤ α
Rij otherwise (9)

where Rij = (A − CCT )ij .
L1 Regularized Residual. For L1 norm, a soft-thresholding update rule

has been used in [7]. Formally, it is define as:

Sij =
{

0 if |Rij | ≤ α
2

Rij − α
2 sign(Rij) otherwise (10)

where Rij = (A−CCT )ij , sign(Rij) is the sign function: if Rij > 0, sign(Rij) =
1; if Rij < 0, sign(Rij) = −1; otherwise sign(Rij) = 0.

L2,1 Regularized Residual. L2,1 norm is superior to L0 and L1 norm
because: (1) it can model the sparsity effectively, and (2) it has a simple and
efficient solution to solve the optimization problem [14]. Based on [14], we have
the update rule forL2,1 regularized S as:

S ← S ◦ A − CCT

S + αDS
, (11)

where D is the diagonal matrix with the j-th diagonal element which is defined
as:

Djj =
1

‖Sj‖2 (12)
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Algorithm 1. Optimization Algorithm
Input: Adjacency matrix A, number of communities c, trade-off parameter α and β,

regularization type q
Output: Community membership matrix C, community interaction matrix M and

residual matrix S
1: Initialize C and S
2: while not converge do
3: Calculate graph Laplacian L
4: Update C according to Eq. (7)
5: Update M according to Eq. (8)
6: if q = 0 then
7: Update S according to Eq. (9)
8: else if q = 1 then
9: Update S according to Eq. (10)

10: else if q = 2, 1 then
11: Update S according to Eq. (11)
12: end if
13: end while

4.2 Computational Complexity

Computational complexity. For simplicity, given two matrices Mn×r and
Nr×f , the computational complexity of the multiplication of M and N is O(nrf).
The complexity of updating rules in Algorithm 1 (Line 3–5) is O(n2c + nc2 + n3).
To update S (Line 6–12), the complexity for L0 and L1 is O(n2 + nc2) and for
L2,1 is O(nc2 + n3). By taking the number of iteration i into consideration, the
complexity is O(i(n2c + nc2 + n3)).

5 Experiments

To validate the effectiveness of NRMF in community detection, we conduct
experiments on two types of real-world networks from different domains, i.e.,
networks with and without known communities. To further exploit the influence
of different regularization terms in sparsity modeling, we compare NRMF with
L0, L1 and L2,1 regularization.

5.1 Datasets and Evaluation Metrics

We conduct experiments on two types of data: networks with and without known
communities. For networks with known communities, we select Football, Email,
and Wiki networks. There are 5, 42 and 19 communities in Football, Email
and Wiki networks1, respectively. For networks without known communities,
we select Jazz, Email-Univ and Hamsterster networks. The optimal number of

1 These datasets are from http://www-personal.umich.edu/∼mejn/netdata/, http://
snap.stanford.edu/data/index.html and https://linqs.soe.ucsc.edu/data.

http://www-personal.umich.edu/~mejn/netdata/
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
https://linqs.soe.ucsc.edu/data
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communities for each network is inferred using Louvain algorithm [1]. A brief
summary of these datasets is shown in Table 2. We employ purity and normalized
mutual information (NMI) as the evaluation metrics for networks with known
communities. Purity measures the extent to which each cluster contained data
points from primarily one class. The purity of a clustering is obtained by the
weighted sum of individual cluster purity values which defined as:

Purity =
1
N

k∑

i=1

maxj |ci ∩ tj |, (13)

where N is number of objects, k is number of clusters, ci is a cluster in C, and
tj is the classification which has the max count for cluster ci. NMI evaluates the
clustering quality based on information theory, and is defined by normalization
on the mutual information between the cluster assignments and the pre-existing
input labeling of the classes:

NMI(C,D) =
2 ∗ I(C,D)

H(C) + H(D)
, (14)

where obtained cluster C and ground-truth cluster D. The mutual information
I(C,D) is defined as I(C,D) = H(C) − H(C|D) and H(·) is the entropy.

For networks without known communities we use modularity as the evalua-
tion metric. Formally, modularity is defined as:

Q =
1

2m

∑

ij

(
Aij − kikj

2m

)
δ(ci, cj) (15)

where m is the number of edges, A is the adjacency matrix of the input graph,
ki is the degree of node i and δ(ci, cj) is 1 if node i and node j are in the same
community and 0 otherwise.

Table 2. Summary of data sets used in the experiments where n, e and c denote the
number of nodes, edges, and communities, respectively.

Data n e c

Known communities Football 115 613 5

Email 1005 25571 42

Wiki 2405 17981 19

Unknown communities Jazz 198 2742 4

Email-Univ 1133 5451 11

Hamsterster 1858 12534 32
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5.2 Baseline Methods

To demonstrate our model detects communities more effectively than other NMF
based community detection approaches, we select several representative NMF
based methods as our baselines:

Table 3. Community detection performance w.r.t. Purity. Best performance is in bold
font.

Football Email Wiki

NMF 0.9074 0.5834 0.2025

ONMF 0.8754 0.5734 0.3177

PNMF 0.9153 0.6002 0.2531

BNMF 0.9067 0.5587 0.3497

GNMF 0.9143 0.5675 0.2561

BigClam 0.9209 0.6358 0.2995

NSED 0.8994 0.6072 0.2773

NRMF -L0 0.8914 0.5801 0.2880

NRMF -L1 0.9335 0.6843 0.3774

NRMF -L2,1 0.9335 0.7021 0.4154

– NMF [22]: NMF is the basic matrix factorization framework. To make a fair
comparison, the objective function for NMF is ‖A − CCT ‖2F .

– Orthogonal NMF (ONMF) [4]: ONMF is a variant of NMF by enforcing orthog-
onal constraints on the community membership matrix C, i.e., CT C = I. In
particular, since we add contraint to C, the objective is ‖A − CMCT ‖2F .

– Projected NMF (PNMF) [27]: PNMF directly projects the original network
to a subspace by minimizing ‖A − CCT A‖2F .

– Bayesian NMF (BNMF) [20]: BNMF is a bayesian NMF model. It models the
matrix factorization in a Bayesian fashion.

– Graph regularized NMF (GNMF) [2]: GNMF incorporates an affinity graph
which is constructed to encode the geometrical information to NMF, and then
seeks a matrix factorization which respects the graph structure.

– BigClam [24]: BigClam is a cluster affiliation model. It relaxes the graph
fitting problem into a continuous optimization problem to find overlapping
communities.

– Nonnegative Symmetric Encoder-dedcoder (NSED) [21]: NSED is a nonneg-
ative symmetric encoder-decoder approach proposed for community detec-
tion. It extracts the community membership by integrating a decoder and an
encoder into a unified loss function.

For our framework, we compare three variants: L0 regularized NRMF (NRMF -
L0), L1 regularized NRMF (NRMF -L1) and L2,1 regularized NRMF (NRMF -
L2,1).
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5.3 Experimental Results

The experimental results on networks with known communities are shown in
Table 3 based on Purity and Table 4 based on NMI. Based on these results, it
can be observed that:

– NRMF -L2,1 achieves the best performance in community detection based
on both the purity and NMI metrics. It indicates L2,1 regularization can
better capture the sparsity of the residual matrix compared to other types of
regularization such as L0 and L1.

– NRMF methods with L1 and L2,1 sparse regularization outperform other
NMF based approaches. It demonstrates that our proposed framework can
effectively identify the communities because it explicitly takes noise into con-
sideration when factorizing the input adjacency matrix.

– NRMF methods with L0 performs worse than some other NMF based meth-
ods. It shows that L0 norm is not a good choice for sparsity modeling. This
may because L0 norm only considers the number of nonzero elements but
ignore the values of these elements.

– It is interesting to observe that ONMF and GNMF achieve worse performance
than other NMF based methods including the standard NMF. This may result
from that real-world network data is very sparse and constraints on the latent
representations may be difficult to achieve.

The experimental results on networks without known communities are shown
in Table 5 based on Modularity. From these results, we can draw the same con-
clusions to that on the networks with known communities. Since modularity is
a measure only based on the network structure (ground-truth community labels
may be related not only to structures but also semantics), good performance
on modularity further demonstrate the effectiveness of our framework from the
structural perspective.

Table 4. Community detection performance w.r.t. NMI. Best performance is in bold
font.

Football Email Wiki

NMF 0.8973 0.6234 0.1876

ONMF 0.8843 0.6451 0.2108

PNMF 0.9035 0.6211 0.2404

BNMF 0.9142 0.6021 0.2411

GNMF 0.9038 0.5893 0.1976

BigClam 0.8963 0.5796 0.2722

NSED 0.9096 0.6845 0.2659

NRMF -L0 0.8903 0.6746 0.2235

NRMF -L1 0.9214 0.6746 0.2626

NRMF -L2,1 0.9233 0.7032 0.2737
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5.4 Parameter Sensitivity

The NRMF involves two parameters shown in Eq. (5): α controls the trade-off
of redisual modeling and β controls the graph regularization. In this section,
we examine how the different choices of parameters affect the performance of
NRMF in community detection. Specifically, we measure the NMI and Purity
on Email data and Modularity on Email-Univ data. The results are shown in
Figs. 1, 2 and 3. Note that only NRMF with L2,1 is evaluated because it achieves
the best performance in the experiments above.

It can be observed from these results that:

– Large α is preferred in order to achieve better NMI and Purity in detecting
communities. In specific, when α is 0.6–0.7, the performance is the best.

– In contrast, smaller β brings better community detection performance. In the
experiments, β = 0.1 is the best choice w.r.t. both NMI and Purity.

Table 5. Community detection performance w.r.t. Modularity. Best performance is in
bold font.

Jazz Email-Univ Hamsterster

NMF 0.4136 0.2876 0.2347

ONMF 0.4221 0.2751 0.2378

PNMF 0.4201 0.4015 0.1313

BNMF 0.4161 0.3963 0.1226

GNMF 0.1852 0.2747 0.2060

BigClam 0.4005 0.4024 0.2796

NSED 0.4231 0.3987 0.2553

NRMF -L0 0.3843 0.3369 0.1892

NRMF -L1 0.4355 0.4448 0.2856

NRMF -L2,1 0.4463 0.5011 0.2903

(a) NMI over α. (b) Purity over α.

Fig. 1. Parameter sensitivity of α on Email data.
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– For the networks without ground-truth labels, the choices of α and β are
different. In Email-Univ, smaller α and larger β give better performance. In
this specific experiment, α = 0.1 and β = 0.8 would be the best parameters.

(a) NMI over β. (b) Purity over β.

Fig. 2. Parameter sensitivity of β on Email data.

(a) Modularity over α. (b) Modularity over β.

Fig. 3. Parameter sensitivity results on Email-Univ data.

6 Conclusion

We proposed NRMF, a novel framework using nonnegative residual matrix fac-
torization for community detection, that addresses the limitation of existing
NMF based community detection approaches: being sensitive to noise and out-
liers. In NRMF, a residual matrix has been introduced explicitly to capture the
noise. To model the sparsity of the NRMF, we exploit three types of regular-
ization, i.e., L0, L1 and L2,1. To optimize the objective w.r.t different regular-
ization terms, different updating rules have been employed. Our experimental
study demonstrated that NRMF effectively preserves community structures and
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captures noisy information, outperforming state-of-the-art NMF based methods
in community detection.

On the basis of NRMF, several new research lines can be pursued. For exam-
ple, it is interesting to exploit more advanced optimization method, e.g., ADMM,
or extend it to attributed networks. We leave these extensions for future work.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008
(2008)

2. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix fac-
torization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8),
1548–1560 (2010)

3. Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C., Cambria, E.: Learning com-
munity embedding with community detection and node embedding on graphs. In:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement, pp. 377–386 (2017)

4. Ding, C., Li, T., Peng, W. and Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 126–135. ACM
(2006)

5. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: K-core organization of complex
networks. Phys. Rev. Lett. 96(4), 040601 (2006)

6. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
7. Huang, S., Wang, H., Li, T., Li, T., Zenglin, X.: Robust graph regularized nonneg-

ative matrix factorization for clustering. Data Min. Knowl. Disc. 32(2), 483–503
(2018). https://doi.org/10.1007/s10618-017-0543-9

8. Kamuhanda, D., He, K.: A nonnegative matrix factorization approach for multi-
ple local community detection. In: 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 642–649. IEEE
(2018)

9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

10. Laurberg, H., Christensen, M.G., Plumbley, M.D., Hansen, L.K., Jensen, S.H.:
Theorems on positive data: on the uniqueness of NMF. Comput. Intell. Neurosci.
2008, (2008)

11. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 556–562 (2001)

12. Ma, X., Dong, D., Wang, Q.: Community detection in multi-layer networks using
joint nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. 31(2), 273–
286 (2018)

13. Newman, M.E.J.: Modularity and community structure in networks. Proc. Int.
Acad. Sci. 103(23), 8577–8582 (2006)

14. Nie, F., Huang, H., Cai, X. and Ding, C.H.: Efficient and robust feature selection
via joint �2, 1-norms minimization. In: Advances in neural information processing
systems, pp. 1813–1821 (2010)

15. Pei, Y., Chakraborty, N., Sycara, K.: Nonnegative matrix tri-factorization with
graph regularization for community detection in social networks. In: Twenty-
Fourth International Joint Conference on Artificial Intelligence (2015)

https://doi.org/10.1007/s10618-017-0543-9


Nonnegative Residual Matrix Factorization for Community Detection 209

16. Pei, Y., Du, X., Fletcher, G., Pechenizkiy, M.: Dynamic network representation
learning via gaussian embedding. In: NeurIPS 2019 Workshop on Graph Represen-
tation Learning (2019)

17. Pei, Y., Fletcher, G., Pechenizkiy, M.: Joint role and community detection in net-
works via l 2, 1 norm regularized nonnegative matrix tri-factorization. In: Pro-
ceedings of the 2019 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pp. 168–175 (2019)

18. Peng, C., Kang, Z., Yunhong, H., Cheng, J., Cheng, Q.: Robust graph regularized
nonnegative matrix factorization for clustering. ACM Trans. Knowl. Discov. Data
(TKDD) 11(3), 33 (2017)

19. Psorakis, I., Roberts, S., Ebden, M., Sheldon, B.: Overlapping community detec-
tion using Bayesian non-negative matrix factorization. Phys. Rev. E 83(6), 066114
(2011)

20. Schmidt, M.N., Winther, O., Hansen, L.K.: Bayesian non-negative matrix factor-
ization. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009.
LNCS, vol. 5441, pp. 540–547. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00599-2 68

21. Sun, B.J., Shen, H., Gao, J., Ouyang, W. and Cheng, X.: A non-negative symmetric
encoder-decoder approach for community detection. In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pp. 597–606
(2017)

22. Wang, F., Li, T., Wang, X., Zhu, S., Ding, C.: Community discovery using non-
negative matrix factorization. Data Min. Knowl. Discov. 22(3), 493–521 (2011)

23. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving
network embedding. In: Thirty-first AAAI Conference on Artificial Intelligence
(2017)

24. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, pp. 587–596. ACM (2013)

25. Yang, L.: Autonomous semantic community detection via adaptively weighted low-
rank approximation. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)
15(3s), 1–22 (2019)

26. Ye, F., Chen, C., Zheng, Z.: Deep autoencoder-like nonnegative matrix factor-
ization for community detection. In: Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pp. 1393–1402 (2018)

27. Yuan, Z., Oja, E.: Projective nonnegative matrix factorization for image compres-
sion and feature extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.)
SCIA 2005. LNCS, vol. 3540, pp. 333–342. Springer, Heidelberg (2005). https://
doi.org/10.1007/11499145 35

28. Zhang, Y., Yeung, D.Y.: Overlapping community detection via bounded nonnega-
tive matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 606–614. ACM
(2012)

https://doi.org/10.1007/978-3-642-00599-2_68
https://doi.org/10.1007/978-3-642-00599-2_68
https://doi.org/10.1007/11499145_35
https://doi.org/10.1007/11499145_35

	Nonnegative Residual Matrix Factorization for Community Detection
	1 Introduction
	2 Related Work
	3 Preliminary
	4 The Proposed Method
	4.1 Optimization
	4.2 Computational Complexity

	5 Experiments
	5.1 Datasets and Evaluation Metrics
	5.2 Baseline Methods
	5.3 Experimental Results
	5.4 Parameter Sensitivity

	6 Conclusion
	References




