
Budgeted Influence Maximization
with Tags in Social Networks

Suman Banerjee1(B), Bithika Pal2, and Mamata Jenamani2

1 Indian Institute of Technology Gandhinagar, Gandhinagar, India
suman.b@iitgn.ac.in

2 Indian Institute of Technology Kharagpur, Kharagpur, India
bithikapal@iitkgp.ac.in, mj@iem.iitkgp.ac.in

Abstract. Given a social network, where each user is associated with
a selection cost, the problem of Budgeted Influence Maximization (BIM
Problem) asks to choose a subset of them (known as seed users) within
the allocated budget whose initial activation leads to the maximum num-
ber of influenced nodes. In reality, the influence probability between two
users depends upon the context (i.e., tags). However, existing studies
on this problem do not consider the tag specific influence probability. To
address this issue, in this paper we introduce the Tag-Based Budgeted

Influence Maximization Problem (TBIM Problem), where along with
the other inputs, a tag set (each of them is also associated with a selec-
tion cost) is given, each edge of the network has the tag specific influ-
ence probability, and here the goal is to select influential users as well as
influential tags within the allocated budget to maximize the influence.
Considering the fact that different tag has different popularity across
the communities of the same network, we propose three methodologies
that work based on effective marginal influence gain computation. The
proposed methodologies have been analyzed for their time and space
requirements. We evaluate the methodologies with three datasets, and
observe, that these can select seed nodes and influential tags, which leads
to more number of influenced nodes compared to the baseline methods.
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1 Introduction

A social network is an interconnected structure among a group of agents. One
of the important phenomenon of social networks is the diffusion of information
[5]. Based on the diffusion process, a well studied problem is the Social Influence
Maximization (SIM Problem), which has an immediate application in the context
of viral marketing. The goal here is to get wider publicity for a product by initially
distributing a limited number of free samples to highly influential users. For a

The work of the first author is supported by the Institute Post Doctoral Fellowship
Grant of IIT Gandhinagar (MIS/lITGN/PD-SCH/201415/006).

c© Springer Nature Switzerland AG 2020
Z. Huang et al. (Eds.): WISE 2020, LNCS 12342, pp. 141–152, 2020.
https://doi.org/10.1007/978-3-030-62005-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62005-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-62005-9_11


142 S. Banerjee et al.

given social network and a positive integer k, the SIM Problem asks to select
k users for initial activation to maximize the influence in the network. Due to
potential application of this problem in viral marketing [4], different solution
methodologies have been developed. Look into [2] for recent survey.

Recently, a variant of this problem has been introduced by Nguyen and Zheng
[7], where the users of the network are associated with a selection cost and the
seed set selection is to be done within an allocated budget. There are a few
approaches to solve the problem [1,7]. In all these studies, it is implicitly assumed
that irrespective of the context, influence the probability between two users will
be the same, i.e., there is a single influence probability associated with every
edge. However, in reality, the scenario is different. It is natural that a sportsman
can influence his friend in any sports related news with more probability com-
pared to political news. This means the influence probability between any two
users are context specific, and hence, in Twitter a follower will re-tweet if the
tweet contains some specific hash tags. To address this issue, we introduce the
Tag-based Budgeted Influence Maximization (TBIM) Problem, which considers
the tag specific influence probability assigned with every edge.

Ke et al. [6] studied the problem of finding k seed nodes and r influential
tags in a social network. However, their study has two drawbacks. First, in
reality most of the social networks are formed by rational human beings. Hence,
once a node is selected as seed then incentivization is required (e.g., free or
discounted sample of the item to be advertised). Also, the cost of displaying a
viral marketing message in any media platforms such as Vonag1 is associated
with a cost. As the message is constituted by the tags, hence it is important
to consider the individual cost for tags. Their study does not consider these
issues. Secondly, in their study, they have done the tag selection process at the
network level. However, in reality, popular tags may vary from one community
to another in the same network. Figure 1 shows community wise distribution
of Top 5 tags for the Last.fm dataset. From the figure, it is observed that Tag
No. 16 has the highest popularity in Community 3. However, its popularity is
very less in Community 4. This signifies that tag selection in network level may
not be always helpful to spread influence in each community of the network.
To mitigate this issues, we propose three solution methodologies for the TBIM
Problem, where the tag selection is done community wise. To the best of our
knowledge, this is the second study in this direction. The main contributions of
this paper are as follows:

– Considering the tag specific influence probability, in this paper we introduce
the Tag-based Budgeted Influence Maximization Problem (TBIM Problem).

– Two iterative methods have been proposed with their detailed analysis.
– To increase the scalability, an efficient pruning technique has been developed.
– The proposed methodologies have been implemented with three publicly avail-

able datasets and a set of experiments have been performed to show their
effectiveness.

1 https://www.vonage.com.

https://www.vonage.com
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Fig. 1. Community specific distribution top 5 tags in ‘Last.fm’ dataset

Rest of the paper is arranged as follows: Sect. 2 contains some back-
ground material and defines the TBIM Problem formally. The proposed solution
methodologies for this problem have been described in Sect. 3. In Sect. 4, we
report the experimental results of the proposed methodologies.

2 Background and Problem Definition

The social network is represented as a directed and edge weighted graph
G(V, E ,P), where the vertex set, V(G) = {u1, u2, . . . , un} is the set of n users,
the edge set E(G) = {e1, e2, . . . , em} is the set of m social ties among the users.
Along with G, we are also given with a tag set T = {t1, t2, . . . , ta} relevant to
the users of the network. P is the edge weight function that assigns each edge
to its tag specific influence probability, i.e., P : E(G) −→ (0, 1]|T |. This means
that each edge of the network is associated with a influence probability vector,
whose each dimension is for a particular tag. For all (uiuj) ∈ E(G), we denote its
corresponding influence probability vector as Pui→uj

. Also, for a particular tag
t ∈ T and an edge (uiuj) ∈ E(G), we denote the influence probability of the edge
(uiuj) for the tag t as Pt

ui→uj
. Now, a subset of the available tags T

′ ⊆ T which
are relevant to the campaign may be used. It is important how to compute the
effective probability for each edge and this depends upon how the selected tags
are aggregated. In this study, we perform the independent tag aggregation shown
in Eq. 1.

PT
′

ui→uj
= 1 −

∏

t∈T ′
(1 − Pt

ui→uj
) (1)

Diffusion in Social Networks. To conduct a campaign using a social network,
a subset of the users need to be selected initially as seed nodes (denoted by
S). The users in the set S are informed initially, and the others are ignorant
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about the information. These seed users start the diffusion, and the information
is diffused by the rule of an information diffusion model. There are many such
rules proposed in the literature. One of them is the MIA Model [8]. Recently,
this model has been used by many existing studies in influence maximization
[9]. Now, we state a few preliminary definitions.

Definition 1 (Propagation Probability of a Path). Given two vertices
ui, uj ∈ V (G), let P(ui, uj) denotes the set of paths from the vertex ui to uj.
For any arbitrary path p ∈ P(ui, uj) the propagation probability is defined as the
product of the influence probabilities of the constituent edges of the path.

P(p) =

⎧
⎨

⎩

∏
(uiuj)∈E(p)

PT
′

ui→uj
if P(ui, uj) �= φ

0 otherwise
(2)

Here, E(p) denotes the edges that constitute the path p.

Definition 2 (Maximum Probabilistic Path). Given two vertices ui, uj ∈
V(G), the maximum probabilistic path is the path with the maximum propagation
probability and denoted as pmax

(uiuj)
. Hence,

pmax
(uiuj)

= argmax
p∈P(ui,uj)

P(p) (3)

Definition 3 (Maximum Influence in Arborescence). For a given thresh-
old θ, the maximum influence in-arborescence of a node v is defined as

MIIA(v, θ) =
⋃

u∈V(G),P(pmax
(uv) )≥θ

pmax
(uv) (4)

Given a seed set S and a node v /∈ S, in MIA Model, the influence from S
to v is approximated by the rule that for any u ∈ S can influence v through the
paths in pmax

(uv) . The influence probability of a node u ∈ MIIA(v, θ) is denoted as
ap(u,S,MIIA(v, θ)), which is the probability that the node u will be influenced
by the nodes in S and influence is propagated through the paths in MIIA(v, θ).
This can be computed by the Algorithm 2 of [8]. Hence, the influence spread
obtained by the seed set S is given by the Eq. 5.

σ(S) =
∑

v∈V(G)

ap(v,S,MIIA(v, θ)) (5)

Problem Definition. To study the BIM Problem along with the input social
network, we are given with the selection costs of the users which is characterized
by the cost function C : V(G) → R

+, and a fixed budget B. For any user u ∈
V(G), its selection cost is denoted as C(u). The BIM Problem asks to choose
a subset of users S such that σ(S) is maximized and

∑
u∈S

C(u) ≤ B. Let, K =

{K1,K2, . . . ,K�} denotes the set of communities of the network. Naturally, all
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the tags that are considered in a specific context (i.e., T ) may not be relevant
to each of the communities. We denote the relevant tags of the community Ki

as TKi
. It is important to observe that displaying a tag in any on-line platform

may associate some cost, which can be characterized by the tag cost function
CT : T → R

+. Now, for a set of given tags and seed nodes what will be the
number of influenced nodes in the network? This can be defined as the tag-based
influence function. For a given seed set S and tag set T

′
, the tag-based influence

function σ(S, T
′
) returns the number of influenced nodes, which is defined next.

Definition 4 (Tag-Based Influence Function). Given a social network
G(V, E ,P), a seed set S ⊆ V(G), tag set T

′ ⊆ T , the tag-based influence function
σT that maps each combination of subset of the nodes and tags to the number of
influenced nodes, i.e., σT : 2V(G) × 2T −→ R0.

Finally, we define the Tag-based Budgeted Influence Maximization Problem.

Definition 5 (TBIM Problem). Given a social network G(V, E ,P), Tag set
T , seed cost function CS : V(G) → R

+, tag cost function CT : T → R
+ and

the budget B, the TBIM Problem asks to select a subset of the tags from the
communities, i.e., T

′
Ki

⊆ TKi
, ∀i ∈ [�] (here, T

′
Ki

∩ T
′
Kj

= ∅, ∀i �= j and T
′

=
⋃

i∈[�]

TKi
), and nodes S ⊆ V(G) to maximize σT (S, T

′
) such that

∑
u∈S

CS(u) +
∑

i∈[�]

∑
t∈TKi

CT (t) ≤ B.

3 Proposed Methodologies

Here, we describe two different approaches and one subsequent improvement to
select tags and seed users for initiating the diffusion process. Before stating the
proposed approaches, we first define the Effective Marginal Influence Gain.

Definition 6 (Effective Marginal Influence Gain). Given a seed set S ⊂
V(G), tag set T

′ ⊂ T , the effective marginal influence gain (EMIG) of the node
v ∈ V(G)\S (denoted as δv) with respect to the seed set S and tag set T

′
is

defined as the ratio between the marginal influence gain to its selection cost, i.e.,

δv =
σT (S ∪ {v}, T

′
) − σT (S, T

′
)

CS(v)
. (6)

In the similar way, for any tag t ∈ T\T
′
, its EMIG is defied as

δt =
σT (S, T

′ ∪ {t}) − σT (S, T
′
)

CT (t)
. (7)

For the user-tag pair (v, t), v ∈ V(G)\S, and t ∈ T\T
′
, its EMIG is defined as

δ(v,t) =
σT (S ∪ {v}, T

′ ∪ {t}) − σT (S, T
′
)

CS(v) + CT (t)
. (8)
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3.1 Methodologies Based on Effective Marginal Influence Gain
Computation of User-Tag Pairs (EMIG-UT)

In this method, first the community structure of the network is detected, and
the total budget is divided among the communities based on its size. In each
community, the shared budget is divided into two halves to be utilized to select
tags and seed nodes, respectively. Next, we sort the communities based on its size
in ascending order. Now, we take the smallest community first and select the most
frequent tag which is less than or equal to the budget. Next, each community
from smallest to the largest is processed for tag and seed node selection in
the following way. Until the budget for both tag and seed node selection is
exhausted, in each iteration the user-tag pair that causes maximum EMIG value
is chosen and kept into the seed set and tag set, respectively. The extra budget
is transferred to the largest community. Algorithm 1 describe the procedure.

Algorithm 1: Effective Marginal Influence Gain Computation of User-Tag
Pairs (EMIG-UT)
Data: Social Network G, Tag Set T , Node Cost Function CS , User-Tag Count

Matrix M, Tag Cost Function CT , Budget B
Result: Seed set S ⊆ V(G), and Tag set T

′ ⊆ T

1 S = ∅; T
′
= ∅; Community = Community Detection(G);

2 K ←− {K1, K2, . . . , Kl}; Kmax = Largest Community(K);
3 TK = Crete Matrix(|K|, |T |, 0);
4 TK = Count the tag frequencies in each communities;
5 Sort row of TKcorresponding to the smallest community ;

6 Create V ector(Bk
S , �, 0); Create V ector(Bk

T , �, 0);
7 for i = 1 to |K| do
8 Bk =

|VKi
|

n
.B; Bk

S [i] = Bk

2
; Bk

T [i] = Bk

2
;

9 end

10 K = Sort(K); T
′
= T

′ ∪ {t
′
: t

′
is most frequent in K1 and C(t) ≤ Bk

T [i]};

11 Bk
T [1] = Bk

T [1] − CT (t
′
);

12 for i = 1 to |K| do
13 while Bk

S [i] > 0 and Bk
T [i] > 0 do

14 (u, t) = argmax
v∈VKi

(G)\S,C(v)≤Bk
S [i];

t
′′ ∈T\T ′

,C(t
′′
)≤Bk

T
[i]

δ(v,t′′
); S = S ∪ {u}; T

′
= T

′ ∪ {t};

15 Bk
S [i] = Bk

S [i] − CS(u); Bk
T [i] = Bk

T [i] − CT (t);

16 end

17 Bk
S [max] = Bk

S [max] + Bk
S [i]; Bk

T [max] = Bk
T [max] + Bk

S [i];

18 end

Now, we analyze Algorithm 1. For detecting communities using Louvian
Method requires O(n log n) time. Computing the tag count in each communi-
ties requires O(n|T |) time. Community is the array that contains the community
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number of the user in which they belong to, i.e., Community[i]=x means the
user ui belongs to Community Kx. From this array, computing the size of each
communities and finding out the maximum one requires O(n) time. Dividing
the budget among the communities for seed node and tag selection and Sorting
the communities require O(�) and O(� log �) time, respectively. From the small-
est community, choosing the highest frequency tag requires O(|T | log |T |) time.
Time requirement for selecting tags and seed nodes in different communities will
be different. For any arbitrary community Kx, let, C(Smin

Kx
) and C(Tmin

Kx
) denote

the minimum seed and tag selection cost of this community, respectively. Hence,
C(Smin

Kx
) = min

u∈VKx

CS(u) and C(Tmin
Kx

) = min
t∈TKx

CT (t). Here, VKx
and TKx

denote

the nodes and relevant tags in community Kx, respectively. Also, BS
Kx

and BT
Kx

denotes the budget for selecting seed nodes and tags for the community Kx,
respectively. Now, it can be observed that, the number of times while loop

(Line number 13 to 16) runs for the community Kx is min{ BS
Kx

C(Smin
Kx

)
,

BT
Kx

C(T min
Kx

)
}

and it is denoted as rKx
. Let, rmax = max

Kx∈{K1,K2,...,K�}
rKx

. The number of

times the marginal influence gain needs to be computed is of O(�rmaxn|T |).
Assuming the time requirement for computing the MIIA for a single node with
threshold θ is of O(tθ) [8]. Hence, computation of σ(S) requires O(ntθ) time.
Also, after updating the tag set in each iteration updating the aggregated influ-
ence probability requires O(m) time. Hence, execution from Line 17 to 24 of
Algorithm 1 requires O(�rmaxn|T |(ntθ +m)). Hence, the total time requirement
for Algorithm 1 of O(n log n + n|T | + n + � + � log � + �rmaxn|T |(ntθ + m)) =
O(n log n + � log � + �rmaxn|T |(ntθ + m)). Additional space requirement for
Algorithm 1 is to store the Community array which requires O(n) space, for
Bk

S and Bk
T require O(�), for TK requires O(�|T |), for storing MIIA path

O(n(niθ + noθ)) [8], for aggregated influence probability O(m), for S and
T

′
require O(n) and O(|T ′ |), respectively. Formal statement is presented in

Theorem 1.

Theorem 1. Time and space requirement of Algorithm 1 is of O(n log n +
|T | log |T | + � log � + �rmaxn|T |(ntθ + m)) and O(n(niθ + noθ) + �|T | + m),
respectively.

3.2 Methodology Based on Effective Marginal Influence Gain
Computation of Users (EMIG-U)

As observed in the experiments, computational time requirement of Algorithm 1
is very high. To resolve this problem, Algorithm 2 describes the Effective
Marginal Influence Gain Computation of Users (EMIG-U) approach, where
after community detection and budget distribution, high frequency tags from
the communities are chosen (Line 3 to 11), and effective influence probability for
each of the edges are computed. Next, from each of the communities until their
respective budget is exhausted, in each iteration the node that causes maximum
EMIG value are chosen as seed nodes. As described previously, time requirement
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Algorithm 2: Effective Marginal Influence Gain Computation of User
(EMIG-U)
Data: Social Network G, Tag Set T , Node Cost Function CS , User-Tag Count

Matrix M, Tag Cost Function CT , Budget B
Result: Seed set S ⊆ V(G), and Tag set T

′ ⊆ T
1 Execute Line Number 1 to 14 of Algorithm 1;
2 Sort each row of the TK matrix;
3 for i = 1 to |K| do
4 for j = 1 to |T | do
5 if C(tj) ≤ Bk

T [i] and tj /∈ T
′
then

6 T
′
= T

′ ∪ {tj}; Bk
T [i] = Bk

T [i] − CT (tj);
7 end

8 end

9 Bk
T [max] = Bk

T [max] + Bk
T [i];

10 end
11 for All (uiuj) ∈ E(G) do
12 Compute aggregated influence using Equation 1;
13 end
14 for i = 1 to |K| do
15 while Bk

S [i] > 0 do
16 u = argmax

v∈VKi
(G)\S,C(v)≤Bk

S [i]

δv; S = S ∪ {u};

17 Bk
S [i] = Bk

S [i] − CS(u);

18 end

19 Bk
S [max] = Bk

S [max] + Bk
S [i];

20 end

for executing Line 1 to 14 is O(n log n + |T | log |T | + n|T | + n + � + � log �) =
O(n log n + |T | log |T | + n|T | + � log �). Sorting each row of the matrix TK
requires O(�|T | log |T |) time. For any arbitrary community Kx, the number of

times the for loop will run in the worst case is of O(
BT

Kx

C(T min
Kx

)
). Let, tmax =

max
Kx∈{K1,K2,...,K�}

BT
Kx

C(T min
Kx

)
. Also, in every iteration, it is to be checked whether the

selected tag is already in T
′
or not. Hence, the worst case running time from Line

3 to 11 will be of O(�tmax|T ′ |). Computing aggregated influence probabilities for
all the edges (Line 12 to 14) requires O(m|T ′ |) time. For the community Kx, the

number of times the while loop in Line 16 will run in worst case is of O(
BS

Kx

C(Smin
Kx

)
).

Let, smax = max
Kx∈{K1,K2,...,K�}

BS
Kx

C(Smin
Kx

)
. Hence, the number of times the marginal

influence gain will be computed is of O(�smaxn). Contrary to Algorithm 1, in
this case MIIA path needs to be computed only once after the tag probability
aggregation is done. Hence, worst case running time from Line 15 to 22 is of
O(�smaxn + ntθ). The worst case running time of Algorithm 2 is of O(n log n +
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|T | log |T | + n|T | + � log � + �|T | log |T | + �tmax|T ′ | + m|T ′ | + �smaxn + ntθ) =
O(n log n + n|T | + � log � + �|T | log |T | + �tmax|T ′ | + m|T ′ | + �smaxn + ntθ).
It is easy to verify that the space requirement of Algorithm 2 will be same as
Algorithm 1. Hence, Theorem 2 holds.

Theorem 2. Running time and space requirement of Algorithm 2 is of
O(n log n + n|T | + � log � + �|T | log |T | + �tmax|T ′ | + m|T ′ | + �smaxn + ntθ) and
O(n(niθ + noθ) + �|T | + m), respectively.

3.3 Efficient Pruning Technique (EMIG-U-Pru)

Though, Algorithm 2 has better scalability compared to Algorithm 1, still it is
quite huge. The main performance bottleneck of Algorithm 2 is the excessive
number of EMIG computations. Hence, it will be beneficial, if we can prune off
some of the nodes, in such a way that even if we don’t perform this computation
for these nodes, still it does not affect much on the influence spread. We propose
the following pruning strategy. Let, Si denotes the seed set after the ith iteration.
∀u ∈ V (G)\Si, if the outdegree of u, i.e. outdeg(u) will be decremented by
|N in(u) ∩ Si|, where N in denotes the set of incoming neighbors of u. All the
nodes in V (G)\Si are sorted based on the computed outdegree to cost ratio
and top-k of them are chosen for the EMIG computation. We have stated for
the ith iteration. However, the same is performed in every iteration. Due to the
space limitation, we are unable to present the entire algorithm and its analysis.
However, we state the final result in Theorem 3.

Theorem 3. Running time and space requirement of the proposed pruning
strategy is of O(n log n + �|T | log |T | + n|T | + � log � + �tmax|T ′ | + m|T ′ | +
�smax(nmax|S| + nmax log nmax + k) + ntθ) and O(n(niθ + noθ) + �|T | + m),
respectively.

4 Experimental Evalution

We use three datasets, namely, Last.fm [3], Delicious [3], and LibraryThing
[10]. No. of nodes, edges and tags in these datasets are 1288, 11678, and 11250;
1839, 25324, and 9749; and 15557, 108987, and 17228, respectively. For all the
three datasets it have been observed that the frequency of the tags decreases
exponentially. Hence, instead of dealing with all the tags, we have selected 1000
tags in each datasets using most frequent tags per community. Now, we describe
the experimental setup. Initially, we start with the influence probability setting.

– Trivalency Setting: In this case, for each edge and for all the tags influence
probabilities are randomly assigned from the set {0.1, 0.01, 0.001}.

– Count Probability Setting: By this rule, for each edge (uiuj) its influence
probability vector is computed as follows. First, element wise subtraction
from Mui to Muj is performed. If there are some negative entries, they
are changed to 0. We call the obtained vector as Mui−uj . Next, 1 is added
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with each entries of the vector Mui . We call this vector as Mui+1. Now,
the element wise division of Mui−uj is performed by Mui+1. The resultant
vector is basically the influence probability vector for the edge (ujui). Here
1 is added with each of the entries of Mui before the division just to avoid
infinite values in the influence probability vector.

– Weighted Cascade Setting: Let, N in(ui) denotes the set of incoming
neighbors for the node ui. In standard weighted cascade setting, ∀uj ∈
N in(ui), the influence probability for the edges (ujui) is equal to 1

degin(ui)
.

Here, we have adopted this setting in a little different way. Let, Mui denotes
the tag count vector of the user ui (ith row of the matrix M). Now,
∀uj ∈ N in(ui), we select the corresponding rows from M, apply column-
wise sum on the tag-frequency entries and perform the element wise division
of the vector Mui by the summed up vector. The resultant vector is assigned
as the influence probability for all the edges from ∀uj ∈ N in(ui) to ui.

Cost and Budget. We have adopted the random setting for assigning selection
cost to each user and tag as mentioned in [7]. Selection cost for each user and tag
are selected from the intervals [50, 100] and [25, 50], respectively uniformly at ran-
dom. We have experimented with fixed budget values starting with 1000, contin-
ued until 8000, incremented each time by 1000, i.e., B = {1000, 2000, . . . , 8000}.

The following baseline methods have been used for comparison.

– Random Nodes and Random Tags (RN+RT): According to this
method, the allocated budget is divided into two equal halves. One half will
be spent for selecting seed nodes and the other one for selecting tags. Now
seed nodes and tags are chosen randomly until their respective budgets are
exhausted.

– High Degree Nodes and High Frequency Tags (HN+HT): In this
method, after dividing the budget into two equal halves, high degree nodes
and high frequency tags are chosen until their respective budget is exhausted.

– High Degree Nodes and High Frequency Tags with Communities
(HN+HT+COM): In this method, after dividing the budget into two equal
halves, first the community structure of the network is detected. Both of these
divided budgets are further divided among the communities based on the
community size. Then apply HN+HT for each community.

The implementations have been done with Python 3.5 + NetworkX 2.1 on a
HPC Cluster with 5 nodes each of them having 64 cores and 160 GB of memory
and available at https://github.com/BITHIKA1992/BIM with Tag.

Figure 2 shows the Budget vs. Influence plot for all the datasets. From the
figures, it has been observed that the seed set selected by proposed method-
ologies leads to more influence compared to the baseline methods. For the
‘Delicious’ dataset, for B = 8000, under weighted cascade setting, among the
baseline methods, HN+HT+COMM leads to the expected influence of 744,
whereas the same for EMIG-UT, EMIG-U, EMIG-U-Prunn methods are
804, 805, and 805, respectively, which is approximately 8% more compared to

https://github.com/BITHIKA1992/BIM_with_Tag
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(a) Delicious (Tri) (b) Delicious (Count) (c) Delicious (WC)

(d) Last.fm (Tri) (e) Last.fm (Count) (f) Last.fm (WC)

(g) LibraryThing (Tri) (h) LibraryThing (Count) (i) LibraryThing (WC)

Fig. 2. Budget Vs. influence plot for Delicious, Last.fm, and LibraryThing datasets
under the trivalency, weighted cascade and count probability settings.

HN+HT+COMM. The influence due to the seed set selected by EMIG-U-
Prunn under Weighted Cascade, trivalency, and, Count setting are 805, 816, and
861 which are 62.5%, 63.2% and 66.85% of the number of nodes of the network,
respectively. Also, we observe that for a given budget, the number of seed nodes
selected by the proposed methodologies are always more compared to baseline
methods. For example, under the trivalency setting with B = 8000, the number
of seed nodes selected by RN+RT, HN+HT, and HN+HT+COMM meth-
ods are 54. The same for EMIG-UT, EMIG-U, and EMIG-U-Prunn are 59,
62, and 62, respectively.

In case of ‘Last.fm’ dataset also, similar observations are made. For exam-
ple, under trivalency setting with B = 8000, the expected influence by the
proposed methodologies EMIG-UT, EMIG-U, and EMIG-U-Prunn are
1230, 1226, and 1219, respectively. The same by RN+RT, HN+HT, and
HN+HT+COMM methods are 515, 1067, and 1184, respectively. In this
dataset also, it has been observed that the number of seed nodes selected by
the proposed methodologies are more compared to the baseline methods. For
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example, in trivalency setting, with B = 8000, the number of seed nodes selected
by HN+HT+COMM, and EMIG-U-Prunn are 51 and 59, respectively.

In LibraryThing dataset, the observations are not fully consistent with pre-
vious two datasets. It can be observed from Fig. 2 ((g), (h), and (i)) that due
to the pruning, the expected influence dropped significantly. As an example,
in trivalency setting, for B = 8000, the expected influence by EMIG-U and
EMIG-U-Prunn methods are 5265 and 4673, respectively. It is due to the fol-
lowing reason. Recall, that in the EMIG-U-Prunn methodology, we have only
considered 200 nodes for computing marginal gain in each iteration. As this
dataset is larger than previous two, hence their are many prospective nodes for
which the marginal has not been computed. However, it is interesting to observe
still the number of seed nodes selected by the proposed methodologies are more
compared to baseline methods.

Due to space limitation, we are unable to discuss about computational time
requirement. However, we mention one observation is that the ratio between
the computational time of EMIG-U and EMIG-U-Prunn for the Delicious,
Last.fm, and LibraryThing are approximately 1.1, 2, and 10, respectively.
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