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Abstract. Temporal networks are networks that edges evolve over time.
Network embedding is an important approach that aims at learning low-
dimension latent representations of nodes while preserving the spatial-
temporal features for temporal network analysis. In this paper, we pro-
pose a spatial-temporal higher-order graph convolutional network frame-
work (ST-HN) for temporal network embedding. To capture spatial-
temporal features, we develop a truncated hierarchical random walk sam-
pling algorithm (THRW), which randomly samples the nodes from the
current snapshot to the previous one. To capture hierarchical attributes,
we improve upon the state-of-the-art approach, higher-order graph con-
volutional architectures, to be able to aggregate spatial features of dif-
ferent hops and temporal features of different timestamps with weight,
which can learn mixed spatial-temporal feature representations of neigh-
bors at various hops and snapshots and can well preserve the evolving
behavior hierarchically. Extensive experiments on link prediction demon-
strate the effectiveness of our model.

Keywords: Temporal networks · Representation learning ·
Higher-order graph convolutional network · Spatial-temporal features ·
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1 Introduction

In recent years, network science has become very popular for modeling complex
systems and is applied to many disciplines, such as biological networks [4], traffic
networks [14], and social networks [17]. Networks can be represented graphically:
G = 〈V,E〉, where V = {v1, . . . , vn} represents a set of nodes, and n is the num-
ber of nodes in the network, and E ⊆ {V × V } represents a set of links (edges).
However, in the real world, most networks are not static but evolve with time,
and such networks are called temporal networks [2]. A temporal network can be
defined as Gt = 〈V,Et〉, which represents a network G = 〈V,E〉 evolving over
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time and generates a sequence of snapshots {G1, . . . , GT }, where t ∈ {1, . . . , T}
represents the timestamps. The key point for temporal network analysis is how
to learn useful temporal and spatial features from network snapshots at different
time points [5]. One of the most effective temporal network analysis approaches
is temporal network embedding, which aims to map each nodes of each snapshot
of the network into a low-dimensional space. Such a temporal network embed-
ding method is proved to be very effective in link prediction, classification and
network visualisation [12]. However, one of the biggest challenges in temporal
network analysis is to reveal the spatial structure at each timestamp and the
temporal property over time [5].

Many network embedding methods have been proposed in the past few years
[4]. DeepWalk [10] adopt neural network to learn the representation of nodes.
GraphSAGE [7] leverages node feature information to efficiently generate node
embeddings for previously unseen data. But both methods focus on static net-
works. In order to obtain temporal network embedding, the following methods
have been proposed in the literature. BCGD [17] only captures the spatial fea-
tures, and LIST [16] and STEP [2] capture the spatial-temporal features by
matrix decomposition. However, they cannot represent the highly nonlinear fea-
tures [13] due to the fact that they are based on matrix decomposition. At
present, the emergence of deep learning techniques brings new insights into this
field. tNodeEmbed [12] learns the evolution of a temporal network’s nodes and
edges over time, while DCRNN [8] proposes a diffusion convolutional recurrent
neural network to captures the spatio-temporal dependencies. To achieve effec-
tive traffic prediction, STGCN [14] replaces regular convolutional and recurrent
units that integrating graph convolution and gated temporal convolution. The
flexible deep embedding approach (NetWalk) [15] utilises an improved random
walk to extract the spatial and temporal features of the network. More recently,
DySAT [11] computes node representations through joint self-attention along
with the two dimensions of the structural neighborhood and temporal dynam-
ics, and dyngraph2vec [6] learns the temporal transitions in the network using a
deep architecture composed of dense and recurrent layers. However, these meth-
ods are not considered learning mixed spatial-temporal feature representations of
neighbours at various hops and snapshots. Therefore, the representation ability
of temporal networks is still insufficient.

To tackle the aforementioned problems, we propose in the current paper a
spatial-temporal Higher-Order Graph Convolutional Network framework (ST-
HN) for temporal network embedding hierarchically (the overview of ST-HN is
described in Fig. 1). Some work [10] shows that extracting the spatial relation of
each node can be used as a valid feature representation for each node. Moreover,
the current snapshot topological structure of temporal networks is derived from
the previous snapshot topology, it is necessary to combine the previous snapshot
to extract the spatial-temporal features for the current snapshot. Inspired by
these ideas, we develop a truncated hierarchical random walk sampling algorithm
(THRW) to extract both spatial and temporal features of the network, which
randomly samples the nodes from the current snapshot to the previous one and it
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Fig. 1. Overview of the framework ST-HN. (a) Model input which is a temporal net-
work Gt. (b) A spatial-temporal feature extraction layer which extracts Γ (v, tSta , tEnd)
of each node v of each network snapshot. (c) An embedding layer (ST-HNs) which maps
each node of each snapshot to its D-dimensional representation. (d) Model output: Yt

with t ∈ {1, . . . , T}, where each Yt ∈ RN×k (N is the number of nodes and K is the
dimension) is the representation of Gt;

can well extract networks’ spatial-temporal features. Because snapshots closer to
the current snapshot contributes more to the current snapshot for temporal fea-
tures. The THRW also incorporates a decaying exponential to assign longer walk
length to more recent snapshots, which can better preserve the evolving behav-
ior of temporal networks. Inspired by social networks, a user’s friends contain
some information, and friends of their friends have different information, all of
which are useful, so we should consider these features together. Then, we improve
upon the state-of-the-art approach, higher-order graph convolutional architec-
tures, to embed the nodes, which can aggregate spatial-temporal features hierar-
chically and further reinforces the time-dependence for each snapshot. Besides, it
can learn mixed spatial-temporal feature representations of neighbors at various
hops and snapshots. Finally, we test the embedded vector’s performance on link
prediction task to verify its performance.

Our major contributions in this work can be summarised as follows. (1) We
propose a model ST-HN to perform temporal network embedding. The model
improves upon a Higher-Order Graph Convolutional Architecture (MixHop) [1]
to hierarchically aggregate temporal and spatial features, which can better learn
mixed spatial-temporal feature representations of neighbours at various hops
and snapshots and can further reinforces the time-dependence for each network
snapshot. (2) We also propose the THRW method for both spatial and tempo-
ral feature extraction. It adopts a random walk to sample neighbours for the
current node v from the current snapshot to the previous snapshots, which can
well extract networks’ spatial-temporal features. It also incorporates a decaying
exponential to assign longer walk length to more recent snapshots, which can
better preserve the evolving behavior of temporal networks. (3) Extensive exper-
iments on link prediction demonstrate that our ST-HN consistently outperforms
a few state-of-the-art baseline models.

2 Related Work

In this section, we briefly summarise related work for temporal network embed-
ding. Network embedding for static networks has been extensively studied (e.g.,
see a recent literature survey [4]). Since networks are continually evolving with
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time in real-life, hence it is necessary to study network embedding for temporal
networks. One common approach is based on matrix decomposition to explore
the spatial topology of the networks [17]. The main idea is that the closer two
nodes are in the current timestamp, the more likely they are to form a link in the
future timestamp. However, real-life networks are often evolving, methods con-
sidering only spatial information may have poor performance. There exist a few
other methods focusing on both spatial and temporal evolution features such as
STEP [2] and LIST [16]. STEP constructs a sequence of higher-order proximity
matrices to capture the implicit relationships among nodes, while LIST defines
the network dynamics as a function of time, which integrates the spatial topology
and the temporal evolution. However, they have a limited ability to extract the
correlation of high dimensional features since they are based on matrix decom-
position. In recent years, neural network-based embedding methods have gained
great achievements in link prediction and node classification [11]. tNodeEmbed
[12] presents a joint loss function to learns the evolution of a temporal network’s
nodes and edges over time. DCRNN [8] adopts the encoder-decoder architecture,
which uses a bidirectional graph random walk to model spatial dependency and
recurrent neural network to capture the temporal dependencies. STGCN [14]
integrates graph convolution and gated temporal convolution through Spatio-
temporal convolutional blocks to capture spatio-temporal features. The DySAT
model [11] stacks temporal attention layers to learn node representations, which
computes node representations through joint self-attention along with the two
dimensions of the structural neighborhood and temporal dynamics, while dyn-
graph2vec [6] learns the temporal transitions in the network using a deep archi-
tecture composed of dense and recurrent layers, which learns the structure of
evolution in dynamic graphs and can predict unseen links. NetWalk [15] is an
flexible deep embedding approach, and it uses an improved random walk to
extract the spatial and temporal features. However, these methods are not con-
sidered to learn mixed spatial-temporal feature representations of neighbours
at various hops and snapshots. Therefore, the representation ability of these
methods for temporal networks is still insufficient.

3 Problem Formulation

We introduce some definitions and formally describe our research problem.

Definition 1 (Node W-walks neighbours). Let G = 〈V,E〉 be a network.
For a given node v, its W -walks neighbours are defined as the multi-set N(v,W )
containing all the nodes with W steps using a random walk algorithm on the
network G.

Definition 2. Let Gt = 〈V,Et〉 be a temporal network. For a node v, its all W -
walks neighbours from time tSta up to time tEnd (i.e., tSta ≤ tEnd) are defined
as Γ (v, tSta , tEnd) =

⋃tEnd

t=tSta
{N t(v,W t)}, where W t represents the number of

steps of random walk at timestamp t and W t−1 = a∗W t, where a represents the
decaying exponential between 0 and 1, and N t(v,W t) is a multi-set of W -walks
neighbours of v in a network snapshot Gt where t ∈ {tSta , . . . , tEnd}.
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Algorithm 1: Truncated hierarchical random walk sampling (THRW)
Input : Gt〈V, Et〉: a temporal network;

W t: the number of steps at snapshot t;
N : sampling temporal window size;
a: decaying exponential;

Output: X[i] with i ∈ {1, . . . , T}, where each X[i] consists of the neighbour
sets within the network snapshots of window size N for every node v;

1 for i ∈ {1, . . . , T} do
2 if i − N ≤ 0 then
3 for v ∈ V do
4 X[i].add(Γ (v, 1, i))
5 end

6 else
7 for v ∈ V do
8 X[i].add(Γ (v, i − N + 1, i))
9 end

10 end

11 end

Temporal Network Embedding: For a temporal network Gt = 〈V,Et〉, we
can divide it evenly into a sequence of snapshots {G1, . . . , Gt} by timestamp t.
For each snapshot Gt, we aim to learn a mapping function f t : vi → Rk, where
vi ∈ V and k represents dimensions and k 	 |V |. The purpose of the function
f t is to preserve the similarity between vi and vj on the network structure and
evolution patterns of a given network at timestamp t.

4 Our Method

In this section, we introduce our model ST-HN. We firstly propose a truncated
hierarchical random walk sampling algorithm (THRW) to extract both spatial
and temporal features for each node (Sect. 4.1). Then, we use the proposed ST-
HNs to embed the node for each snapshot (Sect. 4.2).

4.1 Spatial-Temporal Feature Extraction

We propose the THRW algorithm (Algorithm 1) to sampling Γ (v, tSta , tEnd)
for each node v. Algorithm 1 has three parameters: W t the number of steps in
random walks of a given node v at snapshot t, N a sampling window size defining
how many previous network snapshot are taken into account when sampling v’s
nodes, and a is a decaying exponential defining the current snapshot to have
more steps than the previous snapshot (see Definitions 1 and 2 for more details
of these parameters). In Algorithm 1, each X[i] represents the sets of nodes
for all nodes in the network at time i, i.e, Γ (v, i − N + 1, i), thus X contains
all such sets, i.e., X[i] with i ∈ {1, . . . , T}, for the complete network snapshot
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Fig. 2. The THRW algorithm: an illustrative example

sequence. The first layer loop is used to select snapshot at time i from the
temporal network Gt(V,E), and the purpose is to traverse all the snapshots.
The algorithm extracts spatial and temporal features from N snapshots to better
simulate the evolutionary behavior of the temporal network. If the number of the
previous snapshots is greater than N , sampling neighbour nodes is performed
between i − N + 1 and i snapshots. Otherwise, it is only sampled from the very
first snapshot to the current snapshot i. The second loop is to sample the sets of
neighbours for every node in the network. As shown in Fig. 2, there are 6 nodes
in the temporal network, and we extract features with the previous 2 snapshots
for the node 1 in the current snapshot Gt. If we set W t = 8 and a= 0.5, then
for the snapshot Gt the walk length is 8 and the multi-set of sampled nodes is
{1,2,3,1,5,4,3,1}. For the snapshot Gt−1, the walk length is 4 and the multi-set
of sampled nodes is {1,2,3,2}, and for the snapshot Gt−2 the walk length is 2
and the multi-set of sampled nodes is {1,2}. Then we combine the previous 2
snapshots sampled nodes as the final features for the node 1 of the snapshot Gt:
{1,2,3,1,5,4,3,1,1,2,3,2,1,2}.

4.2 ST-HNs

Our proposed model refers to Higher-Order Graph Convolutional Architectures
via Sparsified Neighborhood Mixing (MixHop) [1], which mixes feature repre-
sentations of neighbors at various distances to learn neighborhood mixing rela-
tionships. More precisely, it combine 1-hop, 2-hop, . . . , neighbours in distinct
feature spaces such that it can effectively aggregate features of different hops in
the network. Each layer of MixHop is formally defined as follows:

H(i+1) = ‖Pj=0σ(LjH(i)W
(i)
j ) (1)

where H(i) ∈ RN×di and H(i+1) ∈ RN×di+1 are input and output of layer i. N

represents the number of network nodes. W
(i)
j ∈ Rdi×di+1 is a weight matrix.

σ is a nonlinear activation function. Lj is a symmetrically normalized Laplace
matrix and can be constructed by Lj = D− 1

2 AD
1
2 . A is an adjacency matrix

with self-connections: A = A + IN , where IN is a self-connections matrix. D
is a diagonal degree matrix with Dmm =

∑
n Amn, where m represents a row

and n represents a column, and j is the powers of L, ranging from 0 to P . Lj
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denotes the matrix L multiplied by itself j times, and ‖ denotes column-wise
concatenation. For example, L2 represents 2-hop neighbours in feature spaces.
The MixHop model can learn features in difference feature space between imme-
diate and further neighbours, hence it has a better representational capability.
However, for temporal networks, MixHop cannot capture their temporal fea-
tures. Our model, ST-HNs, improves upon MixHop and utilizes an aggregator
to learn mixed spatial-temporal feature representations of neighbours at various
hops and snapshots.

To solve the problem above, we propose Spatial-Temporal Higher-Order
Graph Convolutional Temporal Network (ST-HNs), where each node of each
snapshot aggregate spatial and temporal features from their 1-hop neighbours
to P -hop neighbours through the previous A snapshot. In this way, it can learn
mixed spatial-temporal feature representations of neighbours at various hops
and snapshots. Our model is formally defined as follows:

Hi =

{ ‖ {⊕(Yt−A, . . . , Yt−1), Xt} if i = 0

‖Pj=0σ(LjH(i−1)W
(i−1)
j ) if i ∈ [1, . . . , M ]

(2)

where P is the number of powers defining aggregation features of different hops
in the network, M is the number of layers, ‖ represents concatenation operate,
A is the temporal window size defining the number of the snapshots used to
aggregate spatial-temporal features, and the operator ⊕ represents an aggrega-
tor. We adopt the GRU aggregator to aggregate the temporal features of the
previous A snapshots, which can further reinforce the time-dependence for each
snapshot of temporal networks. The GRU aggregator is based on an GRU archi-
tecture [3]. The input is a number of network snapshots {Yt−A, . . . , Yt−2} and
the ground truth is the most recent snapshot Yt−1, where the Yt−1 ∈ RN×k is the
representation of Gt−1, where N represents the number of nodes, k represents
dimensions and k 	 N . Y1 can be obtained from the MixHop (Eq. 1) with M
layers. If the number of the previous snapshots is greater than A, aggregation
is performed between t − A and t − 1 snapshots. Otherwise, it is only aggregate
from the very first snapshot to the snapshot t − 1. We use the input and ground
truth to train the GRU model and update parameter. After training, we shift
the window one step forwards to obtain the representation of temporal features
Y . The Y and Xt are concatenate to get the aggregated spatial-temporal feature
H0, where Xt ∈ RN×d0 is a feature matrix of each node of the snapshot at time
t and it is obtained by the THRW algorithm (see Algorithm 1). The model input
is the aggregated spatial-temporal feature H0. Through M times ST-HNs layers,
the model output is HM = Z ∈ RN×dM , where Z is a learned feature matrix.
The Z contains mixed spatial-temporal feature representations of neighbours at
various hops and snapshots and it can better preserve the temporal and spa-
tial features of temporal networks. For each snapshot, to learn representations,
zu, u ∈ V, in a fully unsupervised setting, we apply a graph-based loss function
to tune the weight matrices wi

j , j ∈ (1, . . . , P ), i ∈ (1, . . . ,M). The loss function
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Table 1. The statistics of four temporal networks.

Network #Nodes #Links Clustering coefficient Format

Hep-Ph 28,093 4,596,803 28.0% Undirected

Digg 30,398 87,627 0.56% Directed

Facebook wall posts 46,952 876,993 8.51% Directed

Enron 87,273 1,148,072 7.16% Directed

encourages nearby nodes to have similar representations and enforces that the
representations of disparate nodes are highly distinct:

Loss =
1
N

N∑

u=1

(zu − Mean(Adj(zu)))2 (3)

where N is the number of nodes, Adj(zu) obtains neighborhood node represen-
tation of u. Mean means average processing.

5 Experiments

We describe the datasets and baseline models, and present the experimental
results to show ST-HN’s effectiveness for link prediction in temporal networks.

5.1 Datasets and Baseline Models

We select four temporal networks from different domains in the KONECT
project.1 All networks have different sizes and attributes. Their statistic proper-
ties present in Table 1. Hep-Ph dataset is the collaboration network of authors
of scientific papers. Nodes represent authors and edges represent common pub-
lications. For our experiment, we select 5 years (1995–1999) and denote them as
H1 to H5. Digg dataset is the reply network of the social news website. Nodes
are users of the website, and edges denote that a user replied to another user.
We evenly merged it into five snapshots by day and denote it as D1 to D5. Face-
book wall posts dataset is the directed network of posts to other user’s wall on
Facebook. The nodes represent Facebook users, and each directed edge repre-
sents one post. For our experiment, we combined 2004 and 2005 data into one
network snapshot and defined it as W1. The rest of the data is defined as W2

to W5 by year and each snapshot contains a one-year network structure. Enron
dataset is an email network that sent between employees of Enron between 1999
and 2003. Nodes represent employees and edges are individual emails. We select
five snapshots in every half year during 2000-01 to 2002-06 and denote them as
E1 to E5. For our experiments, the last snapshot was used as ground-truth of
network inference and the other snapshots was used to train the model.

1 http://konect.uni-koblenz.de/.

http://konect.uni-koblenz.de/
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Table 2. Prediction results (AUC values).

Model Hep-Ph Digg Facebook wall posts Enron

BCGD 0.60 0.68 0.74 0.64

LIST 0.63 0.73 0.72 0.67

STEP 0.61 0.74 0.76 0.71

NetWalk 0.69 0.71 0.74 0.72

ST-HN 0.74 0.81 0.83 0.79

Baselines: We compare ST-HNs with the following baseline models: LIST [16]
describes the network dynamics as a function of time, which integrates the spatial
and temporal consistency in temporal networks; BCGD [17] proposes a temporal
latent space model for link prediction, which assumes two nodes are more likely
to form a link if they are close to each other in their latent space; STEP [2]
utilises a joint matrix factorisation algorithm to simultaneously learn the spa-
tial and temporal constraints to model network evolution; NetWalk [15] model
updates the network representation dynamically as the network evolves by clique
embedding, and it focuses on anomaly detection, and we adopt its representation
vector to predict the link.

Parameter Settings: In our experiments, we randomly generate the number
of non-linked edges smaller than twice linked edges to ensure data balance [17].
For the Hep-Ph and Digg, we set the embedding dimensions as 256. For the
Facebook wall posts dataset and Enron, we set the embedding dimensions as
512. For different datasets, the parameters for baselines are tuned to be optimal.
Other settings include: the learning rate of the model is set as 0.0001; the number
of powers P is set as 3; the number of steps W is set as 200; the temporal window
A is set as 3; the sampling temporal window N is set as 3; the M for layers of
the ST-HNs is set as 5; the decaying exponential a is set as 0.6. For the result of
our experiments, we adopt the area under the receiver operating curve (AUC)
to evaluate predictive power for future network behaviors of different methods
and we carry out five times independently and reported the average AUC values
for each dataset.

5.2 Experimental Results

We compare the performance of our proposed model on the four datasets with
four baselines for link prediction. We use ST-HNs to embed each node into a vec-
tor at each snapshot. Then we use the GRU to predict the vector representation
of each node for the very last snapshot. In the end, we use the obtained represen-
tations to predict the network structure similar to [11]. Table 2 summarises the
AUCs of applying different embedding methods for link prediction over the four
datasets. Compared with other models, our model, ST-HN, achieves the best per-
formance. Essentially, we use the THRW algorithm to sampling Γ (v, tSta , tEnd)
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Fig. 3. Results of parameter sensitivity analysis.

for each node v, which can better capture both spatial and temporal features
for each node. It also incorporates a decaying exponential to assign longer walk
length to more recent snapshots, which can better preserve the evolving behavior
of temporal networks. Then we apply ST-HNs to embed spatial-temporal fea-
tures of nodes, which can aggregate spatial-temporal features hierarchically and
learn mixed spatial-temporal feature representations of neighbours at various
hops and snapshots and can further reinforcing the time-dependence for each
snapshot. In this way, our embedding method can well preserve the evolving
behaviour of the networks.

5.3 Parameter Sensitivity Analysis

We further perform parameter sensitivity analysis in this section, and the results
are summarised in Fig. 3. Specifically, we estimate how different the number of
powers P and the temporal window A and the number of steps W and the
decaying exponential a can affect the link prediction results.

The Number of Powers P : We vary the power from 1 to 5, to prove the effect
of varying this parameter. As P increases from 1 to 3, performance continues
to increase due to the mixing of neighbour information with more hops in the
current node. The best result is at P = 3 (the detail is described in Fig. 3a).
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After which the performance decreases slightly or remains unchanged, while P
continues to increase. The reason might be that the further away from the current
node, the less information there is about the current node.

Temporal Window Size A: Due to the fact that the Digg dataset contains
sixteen-days records, we split it by day and it will generates 16 snapshots. Since
the Digg dataset has more snapshots than others, we select 7 snapshots to ana-
lyze the parameter A. We vary the window size from 1 to 6 to check the effect
of varying this parameter. The results show that the best results are obtained
when A = 3. The reason might be that the closer snapshot is to the current snap-
shot, the more information can be captured about the current snapshot. But the
accuracy no longer increases, when A continuously increases (see Fig. 3b).

The Number of Steps W and the Decaying Exponential a: Since W
and a jointly determine the sampling size of the current node, we analyse these
two parameters together. When analysing W , a is set to 0.6. The experimental
results show that the performance is the best when W = 200. As W increases
from 50 to 200, performance continues to increase. The reason might be that the
more nodes sampled, the more features of the current node are included. But the
accuracy no longer increases, when W continuously increases. When analyzing a,
W is set to 200. The experimental results show that the performance is the best
when a = 0.6. As a increases from 0.2 to 0.6, performance continues to increase.
The reason might be that the previous snapshot contains useful features for
the current snapshot, as the number of sampled features increases. After which
the performance decreases slightly or remains unchanged, while a continue to
increase (the detail is described in Fig. 3c and 3d).

6 Conclusion

We have proposed a new and effective framework, ST-HN, for temporal network
embedding. Through intensive experiments we demonstrated its effectiveness
in link prediction. In particular, we proposed the THRW algorithm to extract
spatial-temporal features in each snapshot to model network evolution. More-
over, we proposed the ST-HNs framework to embed nodes in the network, which
can learn mixed spatial-temporal feature representations of neighbours at var-
ious hops and snapshots and can well preserve the evolving behavior of the
network hierarchically and can further reinforcing the time-dependence for each
snapshot. Our future work will study performance improvements from different
aggregation methods and aggregate other information [9] in temporal networks.
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