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1  �Introduction: Metal–Organic 
Framework-Based Nanostructures

The nanomaterials are the foundations of nanoscience and nanotechnology. 
Recently, nanomaterials have been assisting various fields of nano science as it 
acquires outstanding fundamental properties and structural features in between 
those of atoms and bulk materials. The self-assembly of nanomaterials which 
opened a new window of research through the controlled formation of nano-sized 
particles with distinctive chemical, biological, optical, magnetic, and electronic 
properties. Various metal nanomaterials of gold, silver, platinum, metallic oxides 
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nanoparticle of titanium, silicon, zinc, iron, and semiconducting nanomaterials as 
zinc sulfate, and cadmium sulfate are used as carrier or marker depending on a pur-
pose used for biomedical applications (Yaqoob et al. 2020; Maddela et al. 2021). 
Recently, in the development of nanotechnology, organometallic nanoparticles 
(OMNPs) with metal–organic frameworks have now emerged in order to enhance 
the structural potential when compared to nanoscale particles (Zhang et al. 2020). 
Metal–organic frameworks are usually amorphous nanomaterials also known as 
coordination polymers attached to metal nanoparticles that were first unearthed by 
Robson in 1989. Since this discovery, many researchers around the globe took inter-
est in the engineering and evolution of MOFs for nano biomedical, drug delivery, 
catalysis, separation, magnetism, storage, luminance, biosensing, and many more 
applications. However, metal–organic framework-based nanostructures (MOFsN) 
are considered as the new cohort organometallic hybrids that might also be classi-
fied according to the dimensions and order of organic–inorganic material participat-
ing into the synthesis. As the development of nanotechnology progressed, many 
researchers studied the synthesis, characterization, functionalization, and bio-
toxicity of MOFsN. Due to this advancement, a structured understanding was devel-
oped about numerous MOFsN being promising platforms for biomedical 
applications. In 1989, the metal–organic-based structural frameworks, also known 
as porous materials, were first synthesized, and reported by B.  F. Hoskins et  al. 
(Hoskins and Robson 1989; Zhang et  al. 2020). The MOFsN frameworks are 
organic–inorganic metal combined crystalline complex materials with a systematic 
arrangement of positively charged metal ions surrounded by linker such as organic 
molecules. The metal ions at the center that form a bond with functional groups of 
the organic linkers together produce a repeating, cage-like structure. As an emerg-
ing and favorable class of potential hybrid materials, it has drawn great consider-
ation for various applications due to their unique features, high porosity, a wide 
range of void shapes, higher surface areas, and multifaceted structural frameworks. 
Numerous potential applications of MOFsN have been reported such as drug deliv-
ery systems, biosensing, biocatalysts, magnetic resonance imaging (MRI), optical 
molecular imaging, separation, magnetism, and energy (Yang and Yang 2020).The 
MOFsN possess not only porosity type materials but also shows a nanometer scale 
size with enhanced surface activities due to organic linkers, which leads to a great 
superiority in the field of biomedicine (Meng et al. 2020). The MOFsN frameworks 
were synthesized by using chromium metal at central with 1,3,5-benzene tricarbox-
ylic acid or trimesic acid and 1,4-benzenedicarboxylic acid as organic linkers. The 
first time loading and releasing activities of MOFsN for the Ibuprofen drug encap-
sulation to enhance control drug release profiles were studied by Ferey et al. in 2006 
(Horcajada et al. 2006). Several studies have been reported on surface modification 
of metal nanoparticles using multiple functional groups, for instance, biological 
molecules and fluorescent materials as organic linkers for the synthesis of MOFsN 
through the various synthetic methodologies. These innovative surface modifica-
tions show major advantages for the development of liquid separation, liquids puri-
fication, gas separation, electrochemical energy storage, chemical catalysis, sensors, 
and many biomedical applications. The research and development in the area of 
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MOFs as given in Fig. 13.1 with respect to publication in this area (Barbosa et al. 
2020). Also, work done in the area of biomedical sciences is also highlighted.

1.1  �Synthesis and Structural Properties of MOFsN

The synthesis of the MOFsN could be obtained through surface functionalization of 
metal with organic linkers such as simple organic molecules, biomolecules, den-
drimers, polymers, amino acids, supramolecular, which eliminate several difficul-
ties correspond to the stability, size, and structural properties. Jian Wang et  al. 
reported and elaborated four categories of the surface modifications of metal NPs 
along with advantages and deficiencies molecular frameworks (Zhang et al. 2020). 
These categories are (a) covalent post-synthetically modification, (b) coordination 
modulation and coordinative post-synthetically modification, (c) noncovalent post-
synthetically modification, and (d) modifications on the external surfaces of MOFs 
(Fig. 13.2).

1.1.1  Covalent Post-Synthetically Modification

The modification that deals with the metal are generally covalently conjugated with 
drugs or biomolecules organic linkers to the metal, which consist of the click chem-
istry and conjugation reacting mechanisms (Fig. 13.3).

Fig. 13.1  Publication rate of work carried out on MOFs over time particularly in the biomedical 
applications (Barbosa et  al. 2020) (Copyright 2020, Chapter 4, Metal-Organic Frameworks for 
Biomedical Applications, Page: 69–92, Elsevier publication)
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Fig. 13.2  Representation of the synthetic approach of MOFsN and their self-assembly in different 
dimensionalities. (Barbosa et al. 2020) (Copyright 2020, Chapter 4, Metal-Organic Frameworks 
for Biomedical Applications, Page: 69–92, Elsevier publication)

Fig. 13.3  The conjugation reacting model of the covalent post-synthetically modification
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The drugs and biomolecules can covalently bind to the metal in MOFsN.  In 
1999, the first effective covalent post-synthetic modification of MNPs was carried 
out by Kiang et al. (Kiang et al. 1999). Furthermore, many researchers put their 
sincere efforts on covalent post-synthetic modification by using organic linkers like 
peptides, DNA, amine-modified cytosine, carboxylic acids, hydroxyls and thiols, 
green fluorescent protein, and biomacromolecules such as nucleic acid and protein 
and further studied for development of numerous applications in the field of bio-
chemical and biomedical sciences (Begum et  al. 2019; Kalaj and Cohen 2020; 
Ivancova et al. 2019; Guo et al. 2020). However, successful covalent conjugation of 
biomolecules is possible due to the presence of electrophiles in MOFsN with a 
strong binding ability (Nowroozi-Nejad et al. 2019).

The covalent conjugation plays a critical role for structural and functional con-
trol in MOFsN responsible for generating porosity and flexibility, which are afforded 
for designing materials specifically moderated toward future potential applications 
(Vardhan et al. 2019). Currently, covalent post-synthetically modified MOFsN show 
significant applications, and their physicochemical and biocompatible properties 
make them encouraging materials for drug storage, sustainable drug delivery sys-
tems, bio imaging, biosensing, magnetism, and gas adsorption (Chen and Wu 2018; 
Cui et al. 2018; Rojas et al. 2019).

1.1.2  �Coordination Modulation and Coordinative 
Post-Synthetically Modification

The organic linkers such as drugs, biomolecules are coordinated to the metal for the 
synthesis of MOFsN through coordination chemistry, which includes ligand inter-
change. The coordination mechanisms are possible when the sidechain of the mol-
ecules has active functional moieties that bind to the metals for the genesis of 
networks with a higher degree of dimension (Cai et al. 2019a). The active terminals 
are the structural feature that facilitates amino acids (amino acids with carboxylic 
groups which provide a sequence of strong coordination approaches because of 
their huge negative charge density) and peptides to coordinate with central metal at 
definite angles and directions for the formation of MOFsN through coordinate post-
synthetically modification (Rojas et al. 2017).

Generally, coordinative post-synthetically modification is significant to modify 
the surface functionality of MOFsN for developing biomedical applications, which 
can be possible during the synthetic methods (Segura et al. 2019). The major advan-
tage of the coordination modulation synthetic method is the active surface modifica-
tion of MOFsN, which is carried out during the synthetic process with biomolecules 
or simple organic molecules acting as interlocutors or modulators.

Many researchers have reported in situ coordination modulation process on sur-
face modification by using DNA, biotin (Gkaniatsou et al. 2017), folic acid, porphy-
rin, phosphates, thiols, carboxylates, and imidazoles on the surfaces of MOFsN 
(Forgan 2019; Gkaniatsou et al. 2017; Abánades Lázaro et al. 2020; Kan et al. 2018; 
Park et al. 2016; Röder et al. 2017; Wang et al. 2018).
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He Tin et al. have reported that the MOFsN microcapsules have a crystalline type 
material and rigid reticular structures that were prepared by using polymers or 
supramolecules through coordinative post-synthetically modification (He et  al. 
2018). They have expanded a competitive coordination modification in order to 
synthesize this MOFsN based microcapsules with new bowl-like structures. The 
formation of bowl-like structures of MOFsN is due to partial disintegration through 
the competitive reagents. In addition to this, flexibility is introduced into the rigid 
skeletons which is an innovative approach in designing MOF-based microcapsules 
with novel structures.

Hence, coordination mechanism is significant to produce extended active sur-
faces of MOFsN network structures, though green and scalable synthesis with very 
high chemical stability and better porosity. These types of MOFsN contain a high 
degree of dimensionality and fundamentally the most attractive structural features 
associated with their use as ligands also called surface ligand exchange (Cui 
et al. 2020).

1.1.3  Noncovalent Post-Synthetically Modification

The noncovalent post-synthetically modification consists of molecular interacting 
mechanisms such as electrostatic interaction, hydrogen bond interaction, Vander 
Walls forces, and dispersion forces. These molecular interactions between organic 
linkers and metals generate intermolecular forces (IMF) which are responsible for 
the binding of metal with molecules having active functional moieties.

However, MNPs are not stable and get agglomerated quickly they are stabilized 
using various stabilizing agents like PVA, PEG, citric acid, and so on (Zhao and 
Asuha 2010; Laurent et al. 2008). The MNPs of 1–100 nm size have been exten-
sively studied, and their colloidal suspensions used as ferrofluids having many 
potential applications in electronics, material sciences, pharmaceutics, tissue engi-
neering, biophysical, nanomagnetic thin films, nanomagnetic coating, magnetic bio-
sensor, interacting activities inducing agent, biomedical, and biochemical sciences 
(Obaidat et al. 2019). Apart from having fundamental scientific interests of MOFsN, 
they can also assist in the development of novel applications in various electrical, 
industrial, and medical fields. Their exceptional and novel size dependent properties 
have developed remarkable research for designing new applications in nanotechnol-
ogy and biomedical sciences (Jiang et al. 2019). Their synthesis and surface engi-
neering are widely been studied due to their potential applications in magnetic fluids 
(Wu et al. 2016), catalysts (Cardoso et al. 2018), biotechnology, magnetic resonance 
imaging (Zhou et al. 2019), data storage (Noqta et al. 2019), DNA separation (Noqta 
et  al. 2019), alternative current (AC) magnetic field-assisted cancer therapy 
(Shengzhe Zhao et al. 2020), and environmental remediation of heavy metals (Jawed 
et al. 2020; Thakare et al. 2021), drug delivery, and hyperthermia treatment (Gholami 
et  al. 2020). Due to their versatile applications, the stability of dispersed MNPs 
plays a critical role with a milder tendency for self-aggregation via coulombic forces 
(Yew et al. 2020). However, the MNPs are not stable and get agglomerated quickly 
and can be stabilized by using surfactants such as SDS, CTAB, MTOAC, Tweens, 
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cinnamic acid, oleic acid sorbitol, and zwitterions (Ansari et al. 2020). The MNPs 
are involved for suitable surface modifications by several coating agents for instance 
dimercaptosuccinic acid (Gutiérrez et al. 2019), dextran, starch, PEG, chitosan, pro-
teins, amino acids, silica, and others (Nosrati et al. 2017). In 2011, Wiogo et al. have 
described a stabilization of MNPs in biological media by a fetal bovine serum to 
increase the surface area to modify the MNPs for in vivo biomedical uses (Wiogo 
et al. 2011).

The tribasic citric acid was used by (Cheraghipour et al. 2012) to stabilize the 
superparamagnetic nanoparticles which not only increases the dispersity of MNPs 
in water but the terminal carboxylic group can give more sites for surface modifica-
tion (Cheraghipour et al. 2012). Thus, MNPs could play a critical role in molecular, 
bimolecular, and electronic interactions with various stabilizers for maintaining 
their stability to optimize their structural and geometric activities. The dispersion 
studies of surface engineered MNPs with polar protic solvents such as water, etha-
nol, and buffers (phosphate and tris) have been reported (Pandya and Singh 2015). 
The studies on nonaqueous dispersant medium with a series of organic acids and 
dendrimers with their increasing alkyl chain have been reported by S. R Pandya 
et al. (Pandya and Singh 2015). Furthermore, they studied their dispersion activities 
and optical behavior directly with aprotic polar, protic–aprotic, and dendritic–
aprotic polar solvents as dispersant systems. The dispersion activities and optical 
behavior in a series of first-tier dendrimers for their perfect stabilized aggregation 
and this impact of aggregation have been monitored through their UV interactions. 
An impact of a series of FA, OA, and CA that produce H+ in 1:2:3 ratios could criti-
cally influence their size and aggregation patterns. However, the above-mentioned 
studies are simple in nature and even enhance the purity and stability effects of the 
nanoparticles. The molecules like nucleoli, peptides, cysteine, pyrene, PEG, glu-
cose dehydrogenase, and methylene green have been used and linked to the surface 
of MOFsN through controlled supramolecular interactions and several strong inter-
actions (Komiyama et al. 2017).

1.1.4  Modifications on the External Surfaces

These modifications are commonly known as the absorbent mechanism and consists 
of the conjugation of biomolecules to the silica coating on the MOFsN. The organic 
linkers can be reformed on the outer surface of MOFsN by using silica-coated sur-
faces as an active absorbent required to adhere to the additional drugs or biomole-
cules to the surface of MOFsN. Several researchers and their coworkers successfully 
attached the biomolecules such as oligopeptide, folic acid, on the surface of MOFsN 
with a silica coating for developing sustainable and targeted drug delivery systems 
(Siafaka et al. 2016; de Araújo 2017; Achilefu and Black 2018). The difficulties of 
silica coating methods are sometimes toxicity caused by excess use of silica and 
hence creates a challenge for the developing applications (Gubala et al. 2020). The 
MOFsN has exceptional structural properties and evolution in the field of nanotech-
nology, hence, there are lots of studies on synthetic processes and post synthesis 
surface modifications of MOFsN for biological applications.
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2  �Biomedical Applications of MOFsN

Currently, investigation of MOFsN has attracted much attention to develop bio-
medical applications (Sun et al. 2020) because MOFsN are shown to have a hollow 
structure with some extraordinarily larger surface areas inside the molecules  
(Zeng et  al. 2015). The organic–inorganic metal-fused systems might be easily 
reformed due to the organic branched linkers with active functional groups and 
synthesized through the self-assembly mechanism of metal-attaching species, 
which leads to M4 type (multipurpose, multitasking, multitracking, and multifac-
eted) properties. The MOFsN have well-defined porosity types of structures that 
makes them different from other nanoparticle structures with higher potential activi-
ties and M4 properties required for various biochemical and biomedical applica-
tions. MOFNs have drawn attention due to their various potential uses in the field 
such as gas storage, bio separation, biocatalysis, photonics, biosensing, MRI, phar-
maceutics, biocatalyst, and biomedicine (Horcajada et al. 2012). Figure 13.4 depicts 
various functional applications of MOFsN in the various field of sciences (Fig. 13.5).

2.1  �Drug Delivery Systems

Developing a sustainable and targeted drug delivery system is essential and signifi-
cant to reduce side effects with increasing therapeutic efficacy of drugs through 
metabolic actions. Well-defined structure, larger surface area, outreach porosity, 
multi fabricated pore size, and outstanding surface functionalization of MOFsN are 
considered as encouraging nanocarriers for efficient drug delivery systems (Sun 
et al. 2020). Hence, exceptional chemical and physical properties such as surface 
adsorption, covalent binding, encapsulation, and functional molecules as building 
blocks of MOFsN make them significant nanocarriers for targeted and intracellular 
drug delivery system.

Recently, MOFsN is evolving hybrid high porosity nanomaterials that are assem-
bled from metal ions or clusters associated with organic linkers and they have ever-
increasing attention due to the exceptional physical structures and wider potential 
applications (Cao et al. 2020). The MOFsN along with high absorptivity, porosity, 
controlled drug-release mechanism, large storage capability, and hydrophobic (non-
polar)–hydrophilic (polar) nature have shown potential use for sustained and tar-
geted drug delivery mechanism by accommodating drug molecules through 
conjugation or encapsulation (Rasheed et al. 2020; Cunha et al. 2013). The struc-
tural features of MOFsN enabled high drug loadings efficiency with controlled 
release moderated by simulated physiological and chemical conditions for hydro-
philic and hydrophobic drugs (Horcajada et al. 2010; Wang et al. 2020). Table 13.1 
summarizes some reported applications of MOFsN in the drug delivery system.
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Fig. 13.4  The illustrations representing the surface coating of magnetic nanoparticle as the core 
for better stabilization (Pandya and Singh 2015)
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2.2  �Magnetic Resonance Imaging (MRI)

MRI is an impressive diagnostic analytical tool for noninvasive (does not include a 
break in the skin) tomography of the inside arrangement and functions of living 
organisms as well as local properties of tissues that provides high longitudinal reso-
lution images and deep tissue penetration without any involvement of radioactivity 
(Chen et al. 2020a; Brown et al. 2014). Basically, due to limited resolution, low 
imaging depth of penetration, poor spatial resolution, and low sensitivity in MRI, it 
becomes necessary to use contrast agents that play a vital role to improve MRI sen-
sitivity through refining the contrast in areas with brighter or darker signals that are 
regularly administered in high doses (Boxerman et  al. 2020). To overcome this 
problem, various studies have concentrated on developing multitasking imaging 
contrast agents or probes that incorporate several image improving activities into a 
particular system to achieve multitracking imaging functions in MRI (Shang et al. 
2017). In this context, MOFsN has attracted great attention as promising MRI con-
trast agent attributable to its exceptional paramagnetic/superparamagnetic proper-
ties which can create large magnetic centers under the influence of an external 
applied magnetic field (Wong et  al. 2020; Giliopoulos et  al. 2020). Hence, such 
central shell hybrid MOFsN provides an ideal platform for targeted delivery of other 
imaging and beneficial agents to unhealthy tissues because they are effective at very 
lower concentrations and can also be engineered target specific through surface 
modification using essential molecules (Chowdhury 2017). Also, MOFsN with car-
boxylate as organic linkers shows a high capacity for drug loading or release and 
T2-weighted (MRI sequence to quantify effectiveness) MRI properties with low tox-
icity (Li et al. 2015; Horcajada et al. 2010).

Meng et  al. reported MOFsN having Fe3+ assembled octahedral structure by 
using a solvothermal reaction and graphene oxide (GO) as an organic linker, 

Fig. 13.5  The functional applications of MOFsN-based materials in various field of sciences
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Table 13.1  Some reported applications of MOFsN in drug delivery system

Metal/
oxide Organic Linker Drug References

Zn4O 3,5-Dimethyl-4-carboxypyrazolato 5-Fluorouracil, caffeine, 
benzocaine, and para-amino 
benzoic acid

Noorian et al. 
(2020)

Zn (II) Imidazole and polyacrylic acid Doxorubicin Cai et al. 
(2019b)

SiO2 Poly(ethylene glycol) modified folic 
acid (PEGFA)

Doxorubicin Xie et al. 
(2018)

Zr Diaminostilbenedicarboxylate Ibuprofen Sarker et al. 
(2019)

Fe (III) 1,3,5-Benzene tricarboxylic acid Caffeine Cunha et al. 
(2013)

Fe/La Benzene-1,3,5-tricarboxylic acid Doxorubicin Lin et al. 
(2019a)

Zr (IV) 1,4-Benzenedicarboxylate Caffeine Kandiah et al. 
(2010)

Fe (III) Pyridine-3-carboxylic acid Nicotinic acid Miller et al. 
(2010)

Zr Phosphonoacetate ligand Cisplatin Lin et al. 
(2019b)

Fe (III)/ 
Fe3O4

Carboxymethyl dextran, trimesic acid Doxorubicin/daunorubicin Cherkasov 
et al. (2020)

Zn (CH3COO)2 and imidazolate-2-
carboxyaldehyde (2-ICA)

Methylprednisolone Xu et al. 
(2020)

Cu Gelatin microsphere biopolymer Methotrexate Md et al. 
(2018)

Zr (IV) Amino-triphenyl dicarboxylic acid Doxorubicin Chen et al. 
(2018)

Zn Terephthalic acid Oridonin Chen et al. 
(2019)

Cu/Zn 1,2-Bis(4-pyridyl)ethylene/hydrogel Antibacterial effects Gwon et al. 
(2020)

Fe Sodium dodecyl sulfate (SDS) Insulin Zhou et al. 
(2020)

Fe O-carboxymethyl chitosan Doxorubicin Lin et al. 
(2020)

Zr Triethylamine Camptothecin Chen et al. 
(2020b)

Mg Tetrakis (p-benzoic acid) pyrene Fluorouracil Hu et al. 
(2020)

Fe Trimesoyl1,3,5-trimethyl malonate 
ester (TTDMM) dendrimer

Silibinin and methotrexate Pandya and 
Singh (2016)
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offering a strong T2-weighted contrast with low cytotoxicity (Meng et  al. 2017). 
D. Zhang et al. reported innovative cell membrane-coated porphyrin MOFsN based 
O2-evolving photodynamic therapy (PDT) for homologous cancer cell targeting 
along with MRI and fluorescence imaging (dual mode imaging) biomedical applica-
tions (Zhang et al. 2019). The MOFsN has a superparamagnetic nature accountable 
for the enhancement of contrast to distinguish death and live tissues with limitless 
penetration and admirable imaging aptitude in MRI which could serve as robust and 
innovative materials to develop biomedical applications (Peller et al. 2016).

Hence, MOFsN are transpiring hybrid materials made up of metal ions/clusters 
as a core attached to organic linkers and their ability to transport huge numbers of 
paramagnetic and superparamagnetic metal ions (Pei et al. 2014). These MOFsN 
are considered as superlative and potentially offer advantages as MRI contrast 
agents and enhanced attention due to the probability of three-dimensional (3D) 
images with high longitudinal resolution (Qin et al. 2017).

2.3  �Biosensor

Recently, several research scientists have been working on new and novel applica-
tions of MOFsN to exploit them as electrode triggered materials that are required 
for evolving electrochemical activity with high selectivity and sensitivity to diag-
nose trace amounts of biologically active molecules. Physicochemical properties 
such as pore sizes, high surface areas, multitasking surface activities with active 
sites of MOFsN are responsible for their use as an ideal biosensor agent for electro-
chemical reactions (Wu et al. 2015; Carrasco 2018). The reported typical data of the 
MOFsN used as a biosensor for various biomedical sensing is given in Table 13.2 
(Zhou et al. 2018).

Generally, post-modified methods were used for the synthesis of MOFsN-based 
electrode biosensors with the linking of –NH2 or –SH functional groups and many 
others (Yang and Yang 2020). Some have rarely been reported MOFsN with signifi-
cant electrochemical activity as electro biosensors without post-modification syn-
thetic methods (Liu et al. 2017b). However, some of most electrochemical active 
MOFsN restrict over application in the field of electrochemistry detection due to 
poor water stability, which is related to electrochemical reactions generally carried 
out in a water environment (Fang, Zong, and Mao 2018; Taylor, Dawson, and 
Shimizu 2013). The MOFsN-based biosensors categorized in groups such as raw 
MOFsN, grafting approach, and bulk MOFsN according to their complexity and 
concerning the preparation methods for biosensor development (Carrasco 2018). 
The MOFsN having controlled size, shape, and morphology along with unique con-
ductive properties and their preparation includes inorganic metal and organic link-
ers that have significantly enhanced the performance for biosensor development 
(Yang et al. 2018).
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Table 13.2  The reported data of MOFsN based biosensors (Copyright 2018, Nanoscaled Metal-
Organic Frameworks for Biosensing, Imaging, and Cancer Therapy, Advanced Healthcare 
Materials 7 (10): 1800022 (1–21))

MOFsN Analyte
Recognition 
method Recognition limits References

H(2)dtoaCu ds-DNA FBS 1.3 × 10−9 m Chen et al. 
(2013)

Zn(II)-MOFs HIV ds-DNA FBS 10 × 10−12 m Zhao et al. 
(2016)

PCN-222@SA DNA ES 0.29 fM Ling et al. 
(2015)

Dy-MOFs Ebola virus RNA 
sequences

FBS 160 × 10−12 m Qin et al. 
(2016)

MIL-101 Thrombin; 
oxytetracycline

FBS 15 × 10−12 m; 
4.2 × 10−9

He et al. 
(2017)

Cu-3(BTC)(2)@
SiO2/BDC-PANI

Atrazine CIS 0.01 × 10−9 m Chen et al. 
(2017)

Hemin-MOFs/
PtNPs

FGFR3 mutation gene ES 0.033 fM Bhardwaj et al. 
(2015)

Fe-MIL-88B-NH2 Alpha-fetoprotein CMA 3 pg mL−1 Zhou et al. 
(2016)

Au/hemin@
MOFs

Thrombin EAS 0.068 × 10−12 m He et al. 
(2017)

Fe3O4/g-C3N4/
HKUST-1

Ochratoxin A FAS 2.57 ng mL−1 Hu et al. 
(2017)

AuNPs/Ce-MOFs Lipopolysaccharide EAS 3.3 fg mL−1 Shen et al. 
(2016)

Pt@ 
UiO-66-NH2

Telomerase activity ES 2.0 × 10(−11) IU Ling et al. 
(2016)

516-MOF Vomitoxin; 
salbutamol

EBS 0.70 pg mL−1; 
0.40 pg mL−1

Liu et al. 
(2017a)

Mn-BDC@
MWCNT

Ascorbic/uric acid, 
dopamine

ES 0.01; 0.002;
0.005 × 10−6 m

M.-Q. Wang 
et al. (2016)

Ag@Au 
nanoprism MOFs

Glucose PBS 0.038 × 10−3 m Huang et al. 
(2017)

MIL-100(Cr)-B H2O2 ES 0.1 × 10−6 m Dai et al. 
(2017)

pFeMOF/OMC H2O2 ES 0.45 × 10−6 m Liu et al. 
(2017b)

R-UiO Intracellular oxygen RLS – Xu et al. 
(2016)

FBS Fluorescence biosensor, FAS Fluorescent aptasensor, ES Electrochemical sensor, EAS 
Electrochemical aptasensor, EBS Electrochemical biosensor, CIS Conductometric immunosensor, 
CMA Chemiluminescence metalloimmunoassay, PBS Paper-based biosensor, RLS Ratiometric 
luminescent sensor
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3  �Conclusion

The MOFsN are an interesting class of organic–inorganic metal combined porous 
crystalline nanomaterials with a systematic arrangement of positively charged metal 
ions surrounded by multifunctional organic molecules or ligands and have attracted 
increasing attention in current years in fundamental scientific interest and potential 
attractive several applications. The MOFsN consider as M4 (multipurpose, multi-
tasking, multitracking, and multifaceted) types materials with innovative and 
improved structural activities which play an extremely important role in increasing 
the biomedical and biochemical applications. Besides this, MOFsN as nanosized 
materials with variable physical, chemical, and biological properties that are more 
efficient as compared to bulk materials. The modern innovative and possible appli-
cations required a better potential metal–organic nanostructure-based formulations 
with extraordinary structural activities perceived as a tool and riders for biomedical 
applications such as drug delivery, MRI, biosensors, biocatalyst, bio separation, and 
many more associated with a decrease of environment and human health risks fea-
tures. According to the intensified investigations on MOFsN exhibit important 
advantages and outstanding materials with minimized toxicity, which shows impacts 
at all stages of the development and evaluation of biomedical applications, which 
will increase their use in research areas. More active surface functionality of MOFsN 
could be designed and synthesized in order to meet the increasing biomedical 
requirements. MOFsN are excellent contrast agents that provide a new platform for 
the detection and diagnostics therapy in MRI. The synthesis and characterization of 
MOFsN for biocatalysts and bio-separation, biosensor, purification, drug delivery, 
medicine, energy-harnessing, and energy-storage fields show high growth and sig-
nificant increase during the last decade. The scope and focus of this chapter are to 
study the strategies of MOFsN fabrication and its use for the expansion of biomedi-
cal applications.
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