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Abstract We study motivic Chern classes of cones. First we show examples of
projective cones of smooth curves such that their variousK-classes (sheaf theoretic,
push-forward and motivic) are all different. Then we show connections between the
torus equivariant motivic Chern class of a projective variety and of its affine cone,
generalizing results on projective Thom polynomials.
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1 Introduction

We study two different topics in this paper. The common technical issue is to
understand the motivic properties of cones. Equivariant motivic classes of cones
were studied in [17] previously. Our results are related, but the philosophy is
somewhat different. We try to stay in K-theory without using the transition to
cohomology using the Chern character. We hope to convince the reader that some
of the arguments are more transparent in K-theory.

In the first part we introduce three different notions of the K-class of a
projective subvariety, and show by examples that they are different.We explain their
connection with classical algebraic geometric invariants as the Hilbert function and
polynomial, and the arithmetic genus. We discuss the equivariant version, too, study
the transversality properties and how these properties connected to K-theoretic
Thom polynomials.
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The second part is an attempt to introduce the motivic version of the projective
Thom polynomial. The cohomological projective Thom polynomial was introduced
by András Némethi, Richárd Rimányi and the author in [7] and used later in other
projects. I hope that this motivic version will be just as useful in applications.

2 What Is the K-Class of a Subvariety?

There are several candidates for the K-class of a subvariety of an ambient smooth
variety M . We show that they are different and have different functorial properties.

2.1 Algebraic K-Theory and the Sheaf K-Class

First we recall the basic constructions in algebraic K-theory following [11, §15.1]:
For any scheme X, K0X denotes the Grothendieck group of vector bundles

(locally free sheaves) on X. Each vector bundle E determines an element, denoted
by [E], in K0X. K0X is the free abelian group on the set of isomorphism classes of
vector bundles, modulo the relations

[E] = [E′] + [E′′],

wheneverE′ is a subbundle of a vector bundleE, with quotient bundleE′′ = E/E′.
The tensor product makes K0X a ring. For any morphism f : Y → X there is an
induced pull-back homomorphism

f ∗ : K0X → K0Y,

taking [E] to [f ∗E], where f ∗E is the pull-back bundle; this makes K0 a
contravariant functor from schemes to commutative rings.

The Grothendieck group of coherent sheaves on X, denoted by K0X, is defined
to be the free abelian group on the isomorphism classes of coherent sheaves on X,
modulo the relations

[F ] = [F ′] + [F ′′],

for each exact sequence

0 → F ′ → F → F ′′ → 0

of coherent sheaves.
For any proper morphism f : X → Y , there is a push-forward homomorphism

f∗ : K0X → K0Y,
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which takes [F ] to ∑
i≥0(−1)i[Rif∗F ], where Rif∗F is Grothendieck’s higher

direct image sheaf.
On any X there is a canonical “duality” homomorphism:

K0X → K0X

which takes a vector bundle to its sheaf of sections. When X is non-singular, this
duality map is an isomorphism. The reason for this is that a coherent sheaf F on a
non-singular X has a finite resolution by locally free sheaves, i.e., there is an exact
sequence

0 → En → En−1 → · · · → E1 → E0 → F → 0

with E0, . . . , En locally free. The inverse homomorphism from K0 to K0 takes [F ]
to

∑n
i=0(−1)i[Ei], for such a resolution.

In this paper we only study the case when X is non-singular, so we identify K0
with K0 and denote the pushforward by f!. We can define the sheaf K-class of a
subvariety Y by [OY ] ∈ K0(X).

2.2 Topological K-Theory

Topological K-theory is a complex oriented cohomology theory, which has several
consequences. Any complex vector bundle E → X has an Euler class e(E) ∈
Ktop(X). (In this notation we incorporated the fact that Ktop is 2-periodic.) The
Euler class of a line bundle L is given by e(L) = 1 − [L∗]. Similarly to ordinary
cohomology a complex submanifold Y of the complex manifold M represents a
class [Y ⊂ M] ∈ Ktop(M). Given a complex vector bundle E with a section σ :
M → E transversal to the zero section we have e(E) = [σ−1(0) ⊂ M]. We
have an obvious map from algebraic K-theory to topological K-theory, which is an
isomorphism for Pn, so in the remaining of the paper we identify these rings and
also drop the upper and lower 0 indices.

Theorem 2.1 The forgetful map K → Ktop respects pushforward,

by Atiyah and Hirzebruch [1], in particular for a complex submanifold Y of the
complex manifold M we have

[Y ⊂ M] = [OY ].

The main goal of this section is to explore how to define this class for non smooth
subvarieties.
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2.3 The K-Theory of Pn

K(Pn) = Z[t]/((1− t)n+1), where t = [γ ], the class of the tautological line bundle.
The corresponding sheaf is O(−1). The dual bundle is L = O(1). L has sections
transversal to the zero section so we get that

e(L) = 1 − t = [Pn−1 ⊂ P
n].

We will also denote this class by H , the class of the hyperplane. Therefore we also
have the description K(Pn) = Z[H ]/(Hn+1).

2.4 Hilbert Polynomial

We show now that for the subvariety X ⊂ P
n the class [OX] contains the same

information as the Hilbert polynomial of X.
For X ⊂ P

n let S = C[x0, . . . , xn] denote the ring of polynomials, IX � S

the ideal of X and S(X) := S/IX the homogeneous coordinate ring of X. The
coordinate ring is a graded ring S(X) = ⊕

Sj (X) and we would like to encode the
dimensions hj (X) := dim Sj (X) (i.e. j �→ hj (X) is the Hilbert function of X).
Notice that the embedding of X is encoded in the grading of S(X). It is well-known
that there is a unique polynomial pX(x)—the Hilbert polynomial of X—such that
hj (X) = pX(j) for j 	 0. For us it will be more convenient to use the Hilbert
series

HS(X) :=
∞∑

j=0

hj (X)tj .

For example for X = P
n we have hj (X) = (

n+j
n

)
which is clearly a polynomial of

degree n in j . The coefficients are certain Stirling numbers. On the other hand the
Hilbert series has a particularly simple form:

HS(Pn) =
∑(

n + j

n

)

tj = 1

(1 − t)n+1
. (1)

The key property of the Hilbert series is (see e.g. in [14])

Theorem 2.2 There is a unique polynomial (the K-polynomial)KX(t), such that

HS(X) = KX(t)

(1 − t)n+1 .
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Now we can state the proposed connection of the sheaf K-class with the Hilbert
polynomial (see e.g. [4, §21]):

Proposition 2.1 [OX] = KX(t) in K(Pn) = Z[t]/((1 − t)n+1).

Notice that adding a multiple of (1 − t)n+1 to KX(t) changes only finitely many
hj ’s, so the Hilbert polynomial doesn’t change.KX(t) encodes the Hilbert function
and [OX] encodes the Hilbert polynomial. In this sense the natural generalization of
the Hilbert polynomial for X ⊂ M is the K-class [OX] ∈ K(M).

Example 2.1 It is not difficult to calculate (see [12]), that for three generic points
X ⊂ P

2 we have hX(j) = 3 for all j > 0 (notice that hX(0) = 1 for all nonempty
X!), and for three collinear points Y ⊂ P

2 we have hY (1) = 2 and hY (j) = 3 for
all j > 1. Therefore

HS(X) =
(
3

∑
tj

)
− 2 = 3

1 − t
− 2 = 3(1 − t)2 − 2(1 − t)3

(1 − t)3

and

HS(Y ) = HS(X) − t = 3(1 − t)2 − (t + 2)(1 − t)3

(1 − t)3
,

so their Hilbert polynomial i.e. their sheaf K-class agrees, but theirK-polynomial is
different. We will see later that the K-polynomial can be interpreted as the GL(1)-
equivariant sheaf K-class of the cone.

Using standard resolution techniques (Koszul complex) one can show that

Corollary 2.1 Let X = (f1, . . . , fk) ⊂ P
n be a complete intersection. Then the

sheaf-theoretic K-class

[OX] =
k∏

i=1

(1 − tdi ),

where di is the degree of the generator fi .

Remark 2.1 Theorem 2.2 and Proposition 2.1 implies that the assignment X �→
pX(m) induces a map of K(Pn) to Q(m)/(mn+1), the truncated ring of the possible
Hilbert polynomials, but this is only an additive homomorphism. According to (1)
the base change is given by

Hn �→1, Hn−1 �→ m+1, Hn−2 �→ 1

2
m2+3

2
m+1, Hn−3 �→ 1

6
m3+m2+11

6
m+1,

etc.
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The dimension and the degree of X can be read off from the Hilbert polynomial. In
fact some people use this fact to define the dimension and the degree. Translating
this connection to the H -variable we get

Corollary 2.2 The sheaf K-class of X ⊂ P
n has the form [OX] = ∑n

i=d qiH
i ,

where d is the codimension of X and qd = deg(X).

Remark 2.2 If the ideal of X ⊂ P
n is known, then the ‘hilbert_numerator’

command of Sage (Singular) calculates [OX]. Also Maple has the ‘HilbertSeries’
which has to be multiplied by the denominator (1 − t)n+1. These calculations are
feasible only for small examples.

2.5 The Pushforward K-Class

This is also only defined for closed subvarieties: Take a resolution ϕ : X̃ → X ⊂ Y ,
where Y is smooth.

[X] := ϕ∗[OX̃].

It is a non-trivial fact that this class is independent of the resolution. By Theorem 2.1
we have

Proposition 2.2

[X] = ϕ!1,

for the K-theory pushforward.

For singular X this is not easy to calculate. Even if we know a resolution, the
K-group of X̃ can be complicated. However for X = ⋃k

i=1 Xi where Xi are the
irreducible components of X, we clearly have

[X] =
k∑

i=1

[Xi], (2)

which helps if the components are smooth. Almost by definition we have

Theorem 2.3 If X is irreducible with only rational singularities, then

[OX] = [X].

Indeed, in this case Rif∗OX̃ = 0 for i > 0, and R0f∗OX̃ = OX always holds for
X normal.
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2.6 Motivic Invariants and the Motivic K-Class

The motivic K-class is defined as the constant term of the motivic Chern class:

Definition 2.1 ([2]) Suppose that X ⊂ Y , with Y smooth, then the motivic K-class
of X is

mC0(X) := mC(X)y=0,

where the ambient manifold Y is not denoted if it is clear from the context.

A simple consequence of the definition is that mC0(X) = [X] for smooth X.
Let us recall what motivic invariants are. The surprising (and not so easy to prove)

fact (Fulton) is that χ(W) = χ(W \U)+χ(U) for anyU ⊂ W for (quasiprojective)
varieties over C. Over the reals this is not true: e.g. W = R, U = {0}. We will call
these type of invariants motivic.

Main examples are the Chern–Schwartz–MacPherson (CSM) and the motivic
Chern class. There are several variations, but I prefer now the following setup: Let
h∗ be a complex oriented cohomology theory (ordinary cohomology for CSM and
K-theory for motivic Chern class). Then a motivic class for h∗ is a functor

m(U ⊂ M) ∈ h∗(M)

(or in h∗(M)[y] for the motivic Chern class) for pairs of varieties (note thatU in not
necessarily closed in M , it is a constructible subset) if it has the motivic property:
m(W) = m(W \ U) + m(U) for any U ⊂ W , and a property I will call homology
property: Suppose that f : M → N is proper and f is an isomorphism restricted to
U ⊂ M , then

f!m(U ⊂ M) = m(f (U) ⊂ N). (!)

This property means that m(U ⊂ M) essentially depends only on U and the
dependence on the embedding is very simple. For example the fundamental
cohomology class of U has this property, and the reason for that is that there is
a fundamental homology class as well. We restrict ourselves to M smooth though it
is not necessary. This property is also called covariant functoriality.

We claim that any motivic class in the above sense is determined by its value on
closed submanifolds. Indeed, for any pair U ⊂ M with U,M smooth but U not
necessarily closed in M there is a proper map f : M̃ → M such that

1. f |f −1(U) : f −1(U) → U is an isomorphism,

2. The „divisor” D := M̃ \ f −1(U) is the union of closed submanifolds Di, i =
1, . . . , s such that for all I ⊂ s = {1, 2, . . . , s} the intersection DI := ⋂

i∈I Di

is a submanifold.
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By the weak factorization theorem such a map (called proper normal crossing
extension) always exists. Then, by the motivic and the homology property we have:

m(U ⊂ M) =
∑

I⊂s

(−1)|I |f I
! m(DI ) , (3)

where f I = f |DI , and we use the convention that m(M) := m(M ⊂ M).
For a smooth variety M we define mC(M) := λy(T ∗M), where for any complex

vector bundle λy(E) = ∑rankE
i=0 [ΛiE]yi . Notice that λy(E) is a natural K-theory

analogue of the total Chern class of cohomology theory. The existence of the motivic
Chern class is proved in [2]. The definition of the equivariant version is again
straightforward, see in [10].

The motivic property of mC is inherited by mC0.

Example 2.2 Let X be a projective cubic plane curve. Then its sheaf-class is
1− t3 = 3H −3H 2. For the smooth cubics all three classes agree. For the others see
Table 1. The calculations are straightforward for the reducible ones. For the nodal
and cuspical ones we use the fact that they have a rational resolution ϕ : P1 → P

2

of degree 3. First we need to calculate ϕ!1. Since ϕ!1 depends only on the degree,
we have

ϕ!1 = i!f!1,

where i : P1 → P
2 is the linear inclusion and f : P1 → P

1 has degree 3. Since i is
injective, it is easy to see that i!1 = H and i!H = H 2. Less obvious is to calculate
f!1:

Lemma 2.1 Let fd : P1 → P
1 has degree d . Then

fd !1 = d − (d − 1)H.

Table 1 K-classes of plane cubics

Description of X Shape Representant [OX] [X] mC0(X)

Nodal cubic x3 + y3 + xyz 3H − 3H 2 3H − 2H 2 3H − 3H 2

Cuspidal cubic x3 + y2z 3H − 3H 2 3H − 2H 2 3H − 2H 2

Conic and intersecting line x3 + xyz 3H − 3H 2 3H − H 2 3H − 3H 2

Conic and tangent line x2y + y2z 3H − 3H 2 3H − H 2 3H − 2H 2

Three nonconcurrent lines xyz 3H − 3H 2 3H 3H − 3H 2

Three concurrent lines x2y + xy2 3H − 3H 2 3H 3H − 2H 2
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Proof Let vd : P1 → P
d be the degree d Veronese embedding. The image Cd is

smooth, so vd !1 = [Cd ⊂ P
d ]. Using the Hilbert polynomial or Corollary 2.5 we

can see, that [Cd ⊂ P
d ] = Hd−1

(
d − (d − 1)H

)
. Let id : P1 → P

d be the linear
embedding. Then idfd is homotopic to vd , so vd !1 = id !fd !1. On the other hand
id !Hj = Hj+d−1, implying our result. ��

Therefore ϕ!1 = i!f!1 = i!(3 − 2H) = 3H − 2H 2 = [ ] = [ ]. Using
the definition (3) of the motivic class (notice that these resolutions are evidently

normal crossing) we get that mC0( ) = ϕ!1 since ϕ injective in this case, and
mC0( ) = ϕ!1 − H 2 since ϕ has a double point in this case.

Theorem 2.4 ([2]) If X has only Du Bois singularities then [OX] = mC0(X).

Also the definition of Du Bois singularity can be found in [2]. Additional infor-
mation can be found in [17]. Important cases of Du Bois singularities are rational
singularities, transversal union of smooth varieties (these are not rational) and cone

hypersurfaces in C
n of degree d ≤ n. We can see from our calculations that ,

and are not Du Bois.

Example 2.3 Let X = En−k ∪ En−l ⊂ P
n, where Ej is a j -dimensional projective

subspace. We assume that En−k and En−l are in general position and k, l > 0.
Then X has only Du Bois singularities, therefore [OX] = mC0(X). The latter can
be easily calculated by the motivic property:

mC0(X) = (1 − t)k + (1 − t)l − (1 − t)k+l ,

where the last term is 0 in the K-group if k + l > n, i.e. En−k ∩ En−l = ∅. On the
other hand

[En−k ∪ En−l ] = [En−k] + [En−l] = (1 − t)k + (1 − t)l .

The calculation of [OX] is usually done using the Hilbert syzygy theorem by
calculating a resolution. For non obvious examples this is difficult, even with
computers. Let us demonstrate this on X = E1 ∪ E1 ⊂ P

3. Then IX = (x, y) ·
(w, z) = (xw, xz, yw, yz). The four relations are

g1 : z −w 0 0
g2 : 0 0 z −w

g3 : −y 0 x 0
g4 : 0 −y 0 x

Finally we have a relation among the relations: yg1 − xg2 + zg3 − wg4. This gives
us

[OX] = 1 − 4t2 + 4t3 − t4,

which is indeed congruent to 2(1 − t)2 modulo (1 − t)4.
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2.7 The Todd Genus

We have already seen that understanding pushforward is essential in our calcula-
tions. Compared to cohomology, K-theory has a new feature. Let coX : X → ∗
denote the collapse map of X for X projective and smooth. Then the Todd genus

Td(X) := coX !1 =
∫

X

1 = χ(X,OX) ∈ Z

is a non-trivial invariant. (In this paper the integral sign will always denote the K-
theory pushforward to the point.) This is a genus in the sense that it defines a ring
homomorphism from the complex cobordism ring to the ring of integers.

As being a genus suggests it is enough to calculate Td(Pn) to be able to calculate
more involved examples. It is a key result in K-theory, in particular the proof
of Theorem 2.1 uses it. It is usually proved using the topological Grothendieck–
Riemann–Roch theorem.

Theorem 2.5 ([1]) For any n ∈ N the Todd genus of the projective space Pn is 1:

Td(Pn) = 1.

Then by basic properties of pushforward immediately yields:

Corollary 2.3 Let X ⊂ P
n be smooth with K-theory fundamental class

[X] =
n∑

i=0

qiH
i = q(H).

Then Td(X) = ∑n
i=0 qi = q(1).

Proof Notice first that Td(X) = ∫

Pn

[X], then we can apply the integral formula

∫

Pn

n∑

i=0

qiH
i = q(1). (4)

��
Recalling the connection of [X] = [OX] with the Hilbert polynomial pX we have
that q(1) = pX(0). Recall that the arithmetic genus is defined as

pa(X) := (−1)dimX(pX(0) − 1),
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so we see that it is essentially the same as the Todd genus for smooth X. In
other words the Todd genus of X is equal to its holomorphic Euler characteristics
χ(X,OX).

2.8 Genus of Smooth Hypersurfaces

For a smooth degree d hypersurface Xd ⊂ P
n we have [X] ≡ 1 − td , so a simple

binomial identity implies that

Corollary 2.4 The arithmetic genus of the smooth degree d hypersurface Xd ⊂ P
n

is
(
d−1
n

)
.

Notice that by definition
(
d−1
n

) = 0 for d ≤ n. This is the first sign that
hypersurfaces of degree higher that n behaves very differently then the low degree
ones.

Corollary 2.5 For the degree d rational normal curve Xd ⊂ P
d we have [Xd ⊂

P
d ] = dHd−1 − (d − 1)Hd .

Indeed, by Corollary 2.2. we have [Xd ⊂ P
d ] = dHd−1 + qdHd . But Xd

∼= P
1 so

1 = Td(Xd) = d + qd . �

2.9 The χy Genus

A straightforward extension of the Todd genus is the χy -genus of Hirzebruch:

χy(X) :=
∫

X

λy(T
∗X),

for X projective and smooth. In general if X ⊂ M for M projective and smooth we
can define

χy(X) :=
∫

M

mC(X ⊂ M), (5)

which is independent of the embedding of X (the reader is encouraged to check
this), providing a motivic extension of the χy genus. Clearly, substituting y = 0 into
the χy genus we obtain the Todd genus if X is smooth, and the holomorphic Euler
characteristics is general.

Example 2.4 It is instructive to calculate χy(Pn). Since we have the short exact
sequence of vector bundles

0 → C → Ln+1 → TP
n → 0,
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and λy is multiplicative, we have

mC(Pn) = (1 + yt)n+1

1 + y
≡ (1 + yt)n+1 − (−y)n+1(1 − t)n+1

1 + y

=
n∑

i=0

(1 + yt)i(y(t − 1))n−i .

Applying the integral formula (4) by substituting t = 0 we arrive at

χy(Pn) = 1 − y + y2 − · · · ± yn,

which was already calculated by Hirzebruch.

Remark 2.3 It is interesting to write mC(Pn) in the form
∑n

i=0 qiH
i for qi ∈ Z[y]

(See e.g. in [4, §22]):

mC(Pn) =
n∑

i=0

(
n + 1

i

)

(−y)i(1 + y)n−iH i.

For the next example we recall the “divisor trick”, the multiplicativity of λy implies
the following:

Corollary 2.6 Suppose that Y is the zero locus of a section of a vector bundle
E → M , which is transversal to the zero-section. Then the motivic Chern class is

mC(Y ⊂ M) = e(E)λy(−E)mC(M).

Example 2.5 A smooth degree d hypersurface Zd ⊂ P
n is the zero locus of a

section of the line bundle (γ ∗)d . Using the divisor trick we get

mC(Zd) = (1 + yt)n+1

1 + y
· 1 − td

1 + ytd
.

A closed formula for the χy genus gets complicated, so we give the answer for small
n only:

n = 2 : χy(Zd) =
((

d − 1

2

)

− 1

)

(y − 1),

n = 3 : χy(Zd) =
((

d − 1

3

)

+ 1

)

(y − 1)2 +
(

2

(
d − 1

3

)

− 4

(
d

3

)

− d + 2

)

y.

Substituting y = 0 we can see that it is consistent with 2.4.
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3 Cones

The simplest singularities in some sense are the conical ones. We study two closely
related cases.

3.1 The Projective Case

Proposition 3.1 Let X ⊂ P
n be smooth and denote its cone in P

n+1 by X̂. Then
for the unique polynomials qi ∈ Z[y] and q̂i ∈ Z[y] such that mC(X ⊂ P

n) =∑n
i=0 qiH

i and mC(X̂ ⊂ P
n+1) = ∑n+1

i=0 q̂iH
i we have

q̂i = (1 + y)qi − yqi−1 for i = 0, . . . , n and q̂n+1 = 1 − yqn − (1 + y)χy(X),

where q−1 = 0 and as we mentioned before χy(X) = ∑n
i=0 qi .

Proof First notice that j : Pn → P
n+1 is transversal to X̂ and intersect in X. We

assumed that X is smooth, so we have the pullback formula:

mC(X)

mC(Pn)
= j∗

(
mC(X̂)

mC(Pn+1)

)

. (6)

Definition 3.1 The motivic Chern class has its Segre version just as the Chern–
Schwartz–MacPherson class:

mS(X ⊂ M) := mC(X ⊂ M)

mC(M)
.

Multiplicativity of λy implies that the motivic Segre class behaves nicely with
respect to transversal maps:

Proposition 3.2 Let f : A → M be a proper (in the topological sense) map
of smooth varieties such that f is transversal to X ⊂ M in the sense that it is
transversal to the smooth part of X and does not intersect the singular part of X.
Then

mS(f −1(X) ⊂ A) = f ∗ mS(X ⊂ M).

Using that j∗(H) = H and j∗ mC(Pn+1)
mC(Pn)

= 1 + yt we get that

q̂i = (1 + y)qi − yqi−1 for i = 0, . . . , n. (7)

To calculate q̂n+1 we consider the blowup at the vertex 0 of the cone. Restricting
to the preimage of the cone we get a normal crossing resolution ϕ : Y → X̂ ⊂ P

n+1,
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where Y is a fiber bundle over X with fiber P1. From the definition (3) we have

mC(X̂ \ 0) = ϕ!λy(Y ) − χy(X)Hn+1. (8)

The first term is difficult to calculate directly so we push forward (8) to a point:

χy(X̂ \ 0) = χy(Y ) − χy(X). (9)

Now we use that Y → X is the projective bundle of a vector bundle, so

χy(Y ) = χy(P
1)χy(X) = (1 − y)χy(X),

implying

χy(X̂) = 1 − yχy(X).

(This product property of χy was already known by Hirzebruch, see e. g. [13].) On
the other hand χy(X̂) = ∑n+1

i=0 q̂i and χy(X) = ∑n
i=0 qi , so we can express q̂n+1

using (7). ��
Remark 3.1 Proposition 3.1. immediately generalises toX being a constructible set,
if we use the motivic extension of the χy genus, i.e. we take (5) as the definition of
the χy genus for any constructible set.

Substituting y = 0 we get the following:

Corollary 3.1 Express mC0(X̂ ⊂ P
n+1) and mC0(X ⊂ P

n) in their reduced form,
i.e as polynomials of degree at most n + 1 and n, respectively, in the variable H .
Then

mC0(X̂ ⊂ P
n+1) = mC0(X ⊂ P

n) + (1 − Td(X))Hn+1.

Remark 3.2 The other two K-classes of a cone can also be calculated. For the
pushforward K-class we can use the same resolution as above:

[X̂] = ϕ!1,

so Proposition 3.1 implies that

[X̂] = mC0(X̂) + (Td(X) − 1)Hn+1 = [X].

So the three K-classes of the cone differs only in the top coefficient, which is 0 for
the pushforward class and (1 − Td(X)) for the motivic K-class.

For the sheaf theoretic K-class of X̂ we need more than the corresponding one
for X. It follows from the definition, that K

X̂
(t) = KX(t). Write KX(t) = ∑

piH
i

as a polynomial (of degree possibly much higher than n + 1) of H = 1 − t . Then
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the reduced form of the sheaf theoretic K-class of X and X̂ are
∑n

i=0 piH
i , and

∑n+1
i=0 piH

i , respectively.

Remark 3.3 For CSM classes the calculation is simpler: for csm(X) :=∑n
i=0 qiH

i ∈ H ∗(Pn) and csm(X̂) := ∑n+1
i=0 q̂iH

i ∈ H ∗(Pn+1) we get
q̂i = qi + qi−1 for i ≤ n and q̂n+1 = χ(X̂) = qn + 1 = χ(X) + 1.

Example 3.1 Corollary 3.1 allows us to find irreducible examples of varieties for
which all 3 K-classes are different. Let X = Zd ⊂ P

2 a smooth curve of degree d .
Then mC0(Zd) ≡ 1 − td ≡ dH − (

d
2

)
H 2. Then

mC0(Ẑd) = dH −
(

d

2

)

H 2 +
(

d − 1

2

)

H 3.

On the other hand

[O
Ẑd

] ≡ 1 − td ≡ dH −
(

d

2

)

H 2 +
(

d

3

)

H 3,

and

[Ẑd ] = mC0(Zd ⊂ P
n) + Hn+1 = dH −

(
d

2

)

H 2

by the previous remark.
Therefore all these 3 classes of Ẑd are different if d ≥ 4. It implies that these

hypersurfaces are not Du Bois. In fact it is known that Ẑd ⊂ P
n+1 is Du Bois if and

only if d ≤ n + 1, so this calculation detects all the non Du Bois cases among the
Ẑd ’s.

Remark 3.4 Pushing forward the three K-classes to the point we get 3 different
extensions of the Todd genus to singular varieties.

∫
Pn[OX] is the holomorphic Euler

characteristics.
∫
Pn[X] = Td(X̃) is the Todd genus of the resolution (note that this

is independent of the resolution!). We can call χy=0 := ∫
Pn mC0(X) the motivic

Todd genus of X. Our calculations show that for X = Ẑ, the projective cone of the
smooth variety Z,

∫
Pn[X] = Td(X̃) = Td(Z) and χy=0(X) = 1, so even these

three Todd genus extensions are different for the projective cone of a smooth curve
of degree d if d ≥ 4. A similar example was discovered in [17, ex 14.1].

4 Equivariant Classes

If an algebraic linear group G acts on M , then we can define the Grothendieck
group KG

0 (M) of coherent G-sheaves. Also we can define the Grothendieck group
K0

G(M) of G-vector bundles. For smooth M they are isomorphic. For M = C
n and
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P
n the forgetful map to KG

top(M)—the Grothendieck group of topological G-vector
bundles—is also isomorphism. The ringK(BGM) is much bigger, we will not use it.
The definition of the equivariant motivic Chern classes and the various equivariant
K-classes are straightforward, one can repeat the same definitions equivariantly.
For the existence of the equivariant motivic Chern class and more details about
equivariant K-theory see e.g. [10]. Notice that compared to cohomology the
transition to the equivariant theory is much smoother, we do not need classifying
spaces and approximation of the classifying spaces by algebraic varieties.

There are several reasons to introduce equivariant theory in this context. One
is that implicitly we are already using scalar equivariant objects: vector bundles
admit a canonical scalar action therefore they admit equivariant Euler class, which
in cohomology can be identified with the total Chern class and in K-theory with λy

of the vector bundle, which is the starting point of building the motivic Chern class.
The second reason is that the definition of the Hilbert function is based on a

scalar action: the homogeneous coordinate ring of X ⊂ P
n is graded according to

the natural scalar action on it. This implies the following reformulation:
Consider first the scalar Γ := GL(1)-action on C

n+1. For any X ⊂ P
n the cone

CX ⊂ C
n+1 is Γ -invariant, so its structure sheaf OCX is a coherent Γ -sheaf.

Proposition 4.1 The Grothendieck group KΓ
0 (Cn+1) is isomorphic to Z[t, t−1] via

the restriction map to the origin, and

[OCX]Γ = KX(t).

The first statement is proved in [3, 5.4.17]. The statement on the K-polynomial is
folklore, see [14, p. 172]. It is essentially equivalent to [3, 6.6.8]. Consequently the
Kirwan-type homomorphism KΓ

0 (Cn+1) → K0(P
n) with t �→ t maps KX(t) =

[OCX]Γ to [OX], i.e. assigns the Hilbert polynomial to the Hilbert function.

Remark 4.1 Notice, that t as an element in the representation ring of Γ := GL(1)
is the inverse of the standard representation. It looks awkward first but this is the
choice which reflects that the hyperplane is the zero locus of a section of the dual
of the tautological bundle. A more conceptual explanation will be given in 4.3.1.

The third reason to introduce the equivariant theory might be the most important:
Equivariant motivic,K , etc classes on G-invariant subvarieties are universal classes
for degeneracy loci. Let us explain this statement in more details. An introduction
into the cohomological theory can be found e.g. in [5, §2.] and for the CSM case in
[6] and [15], so we concentrate on the K-theory cases here.

4.1 Universal Classes in K-Theory

Let G be a connected linear algebraic group and suppose that πP : P → M is a
principal G-bundle over the smooth M and A is a smooth G-variety. Then we can
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define a map

a : KG(A) → K(P ×G A)

by association: For any G-vector bundle E over A the associated bundle P ×G E is
a vector bundle over P ×G A.

Proposition 4.2 Let Y ⊂ A be G-invariant. Then

mS(P ×G Y ⊂ P ×G A) = a
(
mSG(Y ⊂ A)

)
.

The proof can be found in [9, Pr 8.7]. Substituting y = 0 we get the corresponding
statement for the motivic K-class:

Proposition 4.3 Let Y ⊂ A be G-invariant. Then

mC0(P ×G Y ⊂ P ×G A) = a
(
mCG

0 (Y ⊂ A)
)
.

Similarly one can show the analogous statement for the push forward K-class:

Proposition 4.4 Let Y ⊂ A be a G-invariant subvariety. Then

[P ×G Y ⊂ P ×G A] = a[Y ⊂ A]G.

For the proof you need to check that for a G-equivariant resolution ϕ : Ỹ → A of
Y the induced resolution ϕ̂ : P ×G Ỹ → P ×G A of P ×G Y has the property
ϕ̂!1 = aϕ!1.

For the sheaf K-class we have

Proposition 4.5 Let Y ⊂ A be a G-invariant subvariety. Then

[OP×GY ] = a[OY ]G.

In most applications A is a vector space and a section σ : M → P ×G A

sufficiently transversal to P ×G Y is given. For example

Corollary 4.1 Suppose that σ : M → P ×G A is a section motivically transversal
to P ×G Y . Then

mS(Y (σ ) ⊂ M) = a
(
mSG(Y ⊂ A)

)
,

where Y (σ) = σ−1(P ×G Y) is the Y -locus of the section σ .
If A is a vector space then we identify the K-theory of M with the K-theory of

P ×G A via σ ∗.

For the proof and the definition of motivically transversal see [9, §8]. The
corollary implies the analogous statement for mC0.



198 L. M. Fehér

For the push forward K-class a weaker transversality condition is sufficient: we
only need that the pullback of the resolution ϕ : Ỹ → A by σ is a resolution of
σ−1(Y ).

Recently Rimanyi and Szenes studied the K-theoretical Thom polynomial of the
singularity A2 in [16]. They choose the push forward K-class which means that for
a reasonably wide class of maps theirK-theoretical Thom polynomial calculates the
push forward K-class of the A2-locus. It would be interesting to study the motivic
version of their K-theoretical Thom polynomial.

For the sheaf K-class the conditions are more complicated. Y has to be Cohen-
Macaulay of pure dimension (in many applications like [16] this is not satisfied). If
σ−1(Y ) is also of pure dimension and its codimension agrees with the codimension
of Y then [OY (σ )] = a[OY ]G, where Y (σ) is the pull back scheme. To ensure that
Y (σ) is reduced we need further transversality conditions.

4.2 Equivariant Classes of Cones in Cohomology: The
Projective Thom Polynomial

Earlier we explained the connection between the motivic Chern class of X ⊂ P
n

and of its projective cone. Just as interesting is the case of the affine cone, however
we are forced to use equivariant setting, otherwise there is not enough information
in the class of the affine cone.

Suppose that a complex torus T of rank k acts on C
n+1 linearly, i.e. a

homomorphism ρ : T → GL(n + 1) is given. We assume that the action contains
the scalars: there is a non zero integer q and a homomorphism ϕ : GL(1) → T

such that ρϕ(z) = zqI for all z ∈ GL(1). Suppose that X ⊂ P
n is T-invariant. Then

CX ⊂ C
n+1 is also T-invariant and we can compare their various classes. The first

such connection was found about the equivariant cohomology class in [7], what we
recall now.

After reparamerization of T we can assume that ϕ(z) = diag(zw1 , . . . , zwk ),
where the integers w1, . . . , wk are the weights of ϕ. Then we have the following:

Proposition 4.6 The T-equivariant cohomology class

[X ⊂ P
n] ∈ H ∗

T
(Pn) = Z[a1, . . . , ak][x]/(

n+1∏

i=1

(bi − x)),

where x = cT1 (γ ) is the equivariant first Chern class of the tautological bundle
with the induced T-action and bi are the weights of the T-action on C

n+1, can be
expressed from the T-equivariant cohomology class

[CX ⊂ C
n+1] ∈ H ∗

T
(Cn+1) = Z[a1, . . . , ak]
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by the substitution

[X] = sub([CX], ai �→ ai − wi

q
x).

This formula has several useful applications, in particular it helps to calculate the
degree of certain subvarieties (see e.g. [8]). There is a counterpart which is quite
obvious in cohomology:

Proposition 4.7 The T-equivariant cohomology class

[CX ⊂ C
n+1]T ∈ H ∗

T
(Cn+1) = Z[a1, . . . , ak]

can be expressed from the T-equivariant cohomology class

[X ⊂ P
n]T ∈ H ∗

T
(Pn) = Z[a1, . . . , ak][x]/(

n+1∏

i=1

(bi − x))

by the substitution

[CX ⊂ C
n+1]T = sub([X]T, x �→ 0),

where the substitution is done into the reduced form of [X]T, the unique polynomial
of x degree at most n representing [X]T in Z[a1, . . . , ak][x].

4.3 Projective Thom Polynomial for the Motivic Chern Class

There is an analogous result for the motivic Chern class. First we need to understand
KT(Pn).

4.3.1 The Kirwan Map in K-Theory

We have a Kirwan-type surjective map κ : KΓ ×T(Cn+1) → KT(Pn). More
generally let V be a Γ × T-vector space for a connected algebraic group Γ and
assume that P ⊂ V is an open Γ × T-invariant subset such that π : P → P/Γ is a
principal Γ -bundle over the smooth M := P/Γ .

Strictly speaking Γ acts on V from the left, and on P on the right, so we need to
define

pg := g−1p (10)

for all g ∈ Γ and p ∈ P ⊂ V .
Notice first that we have a restriction map r : KΓ ×T(V ) → KΓ ×T(0). Then for

a Γ × T-representation W we can apply the association map W → P ×Γ W to
induce a map a : KΓ ×T(0) → KT(M), and we can define κ := ar .
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Specializing to V = C
n+1, Γ = GL(1) acting as scalar multiplication, P =

C
n+1 \ 0 we obtain κ : KΓ ×T(Cn+1) → KT(Pn). Notice that the switch between

left and right action explained above implies that κ(t) = [γ ]T for t denoting the
inverse of the standard representation of Γ = GL(1), explaining the convention in
Remark 4.1.

The T-bundle Hom(γ,Cn+1) over Pn has a nowhere zero T-equivariant section
(the inclusion of γ into the trivial bundle Pn × C

n+1), therefore

eT
(
Hom(γ,Cn+1)

) =
n+1∏

i=1

(1 − t/βi) = 0.

It can be checked that this is the only relation, therefore

KT(Pn) ∼= Z[α1, α
−1
1 , . . . , αk, α

−1
k ][t, t−1]/(

n+1∏

i=1

(1 − t/βi)).

The relation can be rewritten as
∏n+1

i=1 (t−βi) = 0 which implies that any element
ω ∈ KT(Pn) can be written uniquely as a polynomial of degree at most n in t with
coefficients in KT (i.e. Pn is equivariantly formal in K-theory for linear T-actions).
We call this polynomial the reduced form of ω.

4.3.2 The Affine to Projective Formula

The analogue of Proposition 4.6 for motivic classes is similar, and the proof is
essentially the same:

Theorem 4.1 The T-equivariant motivic Segre class

mST(X ⊂ P
n)∈KT(Pn)[y] = Z[α1, α

−1
1 , . . . , αk, α

−1
k ][t, t−1]/(

n+1∏

i=1

(1− t/βi))[y],

where t = [γ ]T is the class of the tautological bundle with the induced T-action
and βi are the characters of the T-action on C

n+1, can be expressed from the T-
equivariant motivic Segre class

mST(C0X ⊂ C
n+1) ∈ KT(Cn+1)[y] = Z[α1, α

−1
1 , . . . , αk, α

−1
k ][y]

by the substitution

mST(X) = sub(mST(C0X), αi �→ αi · t
− wi

q ),

where C0X = CX \ 0.
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It is natural to use the motivic Segre class because it has the transversal pull back
property. We need to use C0X instead of CX, because C0X is the preimage of X

under the quotient map Cn+1 \ 0 → P
n.

Strictly speaking the motivic Segre class lives in the completion of KT(Pn)[y]
because of the division with mC(Pn), but we will not denote this completion. At the
end we are mainly interested in the motivic Chern class where the completion is not
needed.

Proof First notice that by a simple change of variables we have

Proposition 4.8 If the T-action contains the scalars as above then

mSΓ ×T(Z) = sub(mST(Z), αi �→ αi · t
− wi

q )

for any T-invariant (therefore Γ × T-invariant) constructible subset Z ⊂ C
n+1.

On the other hand we have

Proposition 4.9

mST(X) = κ mSΓ ×T(C0X),

as a special case of [9, Thm 8.12]. ��
We can translate the result to motivic Chern class easily:

Theorem 4.2 The T-equivariant motivic Chern class of X ⊂ P
n can be calculated

via the substitution

mCT(X) = 1

1 + y
sub(mCT(C0X), αi �→ αi · t

− wi
q ).

This formula probably can be used to calculate the Hilbert polynomial of certain
subvarieties of the projective space.

Corollary 4.2 Applying Proposition 4.9 to the trivial torus we get

mS(X) = κ mSΓ (C0X),

implying that

mC(X) = 1

1 + y
κ mCΓ (C0X).
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4.4 The Projective to Affine Formula

Interestingly, the calculation of mCT(C0X) from mCT(X) is more involved than
the obvious formula of Proposition 4.7 for the corresponding cohomology classes.
The projective cone formula 3.1 already indicates the subtleties ahead of us. Finding
such formula is important since some motivic Chern class calculations are simpler
in the projective case than in the affine case, as unpublished works of B. Kőműves
show. In this section we give an “inverse” to Theorem 4.2:

Theorem 4.3 Suppose that the torus T acts linearly on Cn+1 and X ⊂ P
n. Then

mCΓ ×T(C0X) = (1 + y)
(
mCT(X) − χy(X)[0]Γ ×T

)
,

where [0]Γ ×T is the Γ ×T-equivariantK-class of the origin, andmCT(X) is written
in the reduced form in the variable t , the T-equivariant class of the tautological
bundle γ .

Notice that the χy genus has no T-equivariant version. This is called the rigidity of
the χy genus, see e.g. [17, pr. 7.2].

Before proving the theorem let us have a look at the case when T is the trivial
torus.

Corollary 4.3 Suppose that X ⊂ P
n is a constructible subset. Then the affine cone

minus the origin C0X ⊂ C
n+1 is invariant for the scalar action of Γ = GL(1), and

mCΓ (C0X) = (1 + y)
(
mC(X) − χy(X)[0]),

where [0] = (1 − t)n+1 is the Γ -equivariant K-class of the origin, and mC(X) is
written in the reduced form in the variable t , the K-theory class of the tautological
bundle γ .

An other way to express Corollaries 4.9 and 4.3 together is that written in the
variable H = 1 − t the coefficients of (1 + y)mC(X) (in the reduced form) and
mCΓ (C0X) are the same, except mCΓ (C0X) has also an n + 1’st coefficient to
assure that the sum of the coefficients is zero.

Comparing with Proposition 4.1 we can see an important difference between the
sheaf K-class and the motivic K-class: The scalar-equivariant motivic K-class of
the cone of X contains no additional information than the motivic K-class of X, on
the other hand the scalar-equivariant sheaf K-class of the cone of X determines the
Hilbert function not just the Hilbert polynomial of X.

Example 4.1 Let us study the case X = P
k ⊂ P

n. Then by Remark 2.3 and the
simple fact that i!(H j) = Hj+n−k for the inclusion i : X → P

n we have

mC(Pk ⊂ P
n) =

k∑

i=0

(
k + 1

i

)

(−y)i(1 + y)k−iH n−k+i .
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For the cone we have the product formula (see [9, §2.7])

mCΓ (Ck+1 ⊂ C
n+1) = (1 − t)n−k(1 + yt)k+1,

so removing the origin we get

mCΓ (C0X ⊂ C
n+1) = (1 − t)n−k(1 + yt)k+1 − (1 − t)n+1.

We know from Example 2.4 that χy(X) = 1 − y + y2 − · · · ± yk = 1−(−y)k+1

1+y
so

Corollary 4.3 gives the identity

(

(1 + y)

k∑

i=0

(
k + 1

i

)

(−y)i(1 + y)k−iH n−k+i

)

− (1 − (−y)k+1)Hn+1 =

= (1 − t)n−k(1 + yt)k+1 − (1 − t)n+1,

where H = 1 − t , which of course can be checked directly.

The idea of the proof of Theorem 4.3 is that we first prove it for the special case
of X being a projective space, and show how this result implies the result for general
X.

Example 4.2 Suppose that the torus T acts on C
n+1 with characters β1, . . . , βn+1.

Let X = P
k ⊂ P

n be invariant for the induced T-action on P
n. Without loss of

generality we can assume that CX is spanned by the first k + 1 eigenvectors. Then

mCΓ ×T(Ck+1 \ 0 ⊂ C
n+1) = M − R,

where

M :=
k+1∏

i=1

(

1 + yt

βi

) n+1∏

i=k+2

(

1 − t

βi

)

,

and

R := [0]Γ ×T =
n+1∏

i=1

(

1 − t

βi

)

,

where R is also the relation in KT(Pn) after identifying t with the T-equivariant
class of γ . On the other hand we have

(1 + y)mCΓ ×T(Pk ⊂ P
n) ≡ M,



204 L. M. Fehér

but this is not the reduced form yet, the coefficient of tn+1 is not zero. Comparing
M and R we can see that the reduced form is

(1 + y)mCT(Pk ⊂ P
n) = M − (−y)k+1R,

so the right hand side of Theorem 4.3 becomes

(1 + y)(mCT(Pk ⊂ P
n) − χy(Pk)R) = M − (−y)k+1R − (1 − (−y)k+1)R,

since (1 + y)χy(P
k) = 1 − (−y)k+1. Consequently we see that Theorem 4.3 holds

for these examples.

The next step is to prove Theorem 4.3 for X being a T-invariant smooth
subvariety of Pn. In this case the blowup of Cn+1 at the origin provides a ϕ : Y →
C

n+1 proper normal crossing extension for C0X, where Y is the total space of the
restriction of the tautological bundle γ → P

n to X. The resolution factors as

Y
j

P
n ×C

n+1
π

C
n+1 ,

which implies that

mCΓ ×T(C0X) =
∫

Pn

mCT(X)λy(γ ∗)e(Cn+1/γ ) − e(Cn+1)

∫

Pn

mCT(X),

(11)

where the λy class and the Euler classes are Γ × T-equivariant.
It is quite difficult to use (11) for calculations. Luckily we do not need it. We only

need to notice that (11) implies that the left hand side can be calculated from the
reduced form of mCT(X) providing a KT[y]-module homomorphism. This implies
that it is enough to check 4.3 for a basis of the space of polynomials of degree
at most n in the variable t and coefficients in KT[y]. We claim that the cases of
Example 4.2 will give such a basis. Indeed, substituting βi = 1 and y = 0 we get
mC0(P

k ⊂ P
n) = (1 − t)n−k .

The last step is to extend the result to all T-invariant constructible subsets of Pn.
For that we just have to notice that all 3 components of the formula are motivic and
we finished the proof of Theorem 4.3. �

Forgetting the scalar action we still get a nontrivial statement:

Theorem 4.4 Suppose that the torus T acts linearly on Cn+1. Then

mCT(C0X) = (1 + y)
(
mCT(X)|t=1 − χy(X)[0]T

)
,

where [0]T is the T-equivariantK-class of the origin, andmCT(X) is written in the
reduced form in the variable t .
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