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Abstract This article consists of two parts. The first part is a survey on the normal
reduction numbers of normal surface singularities. It includes results on elliptic
singularities, cone-like singularities and homogeneous hypersurface singularities.
In the second part, we prove a new results on the normal reduction numbers and
related invariants of Brieskorn complete intersections.
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1 Introduction

In this paper, we survey results on the normal reduction numbers of normal complex
surface singularities and some related topics [24, 26, 28, 29], and prove new results
on the normal reduction numbers of Brieskorn complete intersections. The normal
reduction number has appeared in the study of normal Hilbert polynomials from a
ring-theoretic point of view (cf. [6, 14]). We study the normal reduction numbers
of the local ring of normal surface singularities using resolution of singularities,
and we wish to know what kind of geometric property of singularities relates to the
normal reduction numbers.
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Let us briefly recall some basic facts about integral closure and reduction of
ideals in a local ring. Let (A, m) be a Noetherian local ring and / an m-primary
ideal (namely, VI = m). Let I denote the integral closure of [, that is, / is an ideal
of A consists of all elements z € A such that 7" + ¢;z2" ' + - -+ + ¢, = 0 for some
n>1landc¢ € I (i =1,...,n). The ideal I is said to be integrally closed if
I = 1. Anideal Q C I is called a reduction of I if I"*! = QI" for some n > 0. It
is known that an ideal Q is a reduction of I if and only if I C Q (cf. [5, 1.2.5]). For
areduction Q of I, ro(/) := min {n | I"*! = QI" } is called the reduction number
of I with respect to Q.

Let (V, p) be a normal complex surface singularity! and Oy p the local ring of
the singularity with maximal ideal m. Let I C Oy, , be an m-primary integrally
closed ideal. It is known that any minimal reduction of / is generated by two
elements and that two general elements of / generate a minimal reduction of /
(see [5, 8.3.7, 8.6.6]). Suppose that Q is a minimal reduction of /. We define two
normal reduction numbers, which are analogues of the reduction number r¢o (1), as
follows:

nr(/) = min{n € Zso | "t = QI"},

t(I) = min{n € Z>o | INt! = QIN forevery N > n}.

We note that nr(/) and 1(/) are independent of the choice of Q (see e.g. [4,
Theorem 4.5], Proposition 3.2), though rg (/) is not independent of the choice of
a minimal reduction Q in general. It is obvious by the definition that nr(/) < r(1).
We will show that T(I) < p,(V, p)+ 1 in general (see Proposition 3.2). We can also
show that for any integer g > 2 there exists a singularity (V, p) with nr(/) = 1 and
t(l) = pg(V, p) +1 = g + 1 (Example 4.5). We define

nr(V, p) = max{nr(J) | J is an m-primary integrally closed ideal of Oy},

t(V, p) = max{r(J) | J is an m-primary integrally closed ideal of Oy ,}.

The invariant 1(V, p) naturally appears in several situation as follows. For any m-
primary integrally closed ideal I C Oy, there exist a resolution 7 : X — V and
a divisor Z on X such that Ox(—Z) is w-generated and I = m,.Ox(—Z), (see
Sect.2). Let r := 1(I). By the definition of r and Proposition 3.2, we have the
following:

(1) Briangon-Skoda type inclusion (cf. [3, 13]): I"t* C O fork > 1.
(2) The natural homomorphism 7,Ox (—nZ) @ m.Ox(—Z) — 7.Ox(—(n+1)Z)
is surjective forn > r.

n our papers [24, 26, 28, 29], we treat a singularity (Spec A, m), where (A, m) is an excellent
normal two-dimensional local ring such that the residue field k is algebraically closed and k C A.
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(3) The function ¢ (n) := dim¢ H*(Ox)/H®(Ox(—nZ)) is a polynomial function
of n forn > r;note that ¢ (n) = x(Onz) +h'(Ox) —h'(Ox(—nZ)) by Kato’s
Riemann-Roch Theorem ([8]).

So we expect that the normal reduction numbers can characterize good singularities.
For example, we see that (V, p) is a rational singularity if and only if 7(V, p) =
1 (see Proposition 3.6). However, we can only show that 7(V, p) = 2 if (V, p)
is an elliptic singularity (see Theorem 3.9, Proposition 5.13). At present, we have
computed the normal reduction numbers only for some special cases, and we do not
know whether those invariants are topological or not.

This paper is organized as follows. Sections 2—4 are devoted to a survey of
fundamental results on the normal reduction numbers and some related topics. We
refer the reader to [20] and [32] for basic facts about normal surface singularities.
In Sect. 2, we set up notation and briefly recall the basic results on the cohomology
groups of ideal sheaves of cycles on a resolution space. Then we mention a question
about the range of the dimension of those cohomology groups. In Sect.3, we
give a relation between the normal reduction numbers and the dimension of the
cohomology groups associated with an m-primary integrally closed ideal in Oy ,
and review fundamental results on the normal reduction numbers. Then we review
the results on elliptic singularities. In Sect. 4, we consider the cone-like singularities,
namely, those homeomorphic to the cone over a nonsingular curve. We give an
upper bound of T using the genus and gonality of the curve and the self-intersection
number of the fundamental cycles. Then we show a formula for the normal reduction
numbers of homogeneous hypersurface singularities. In Sect. 5, we prove an explicit
formula for r of the maximal ideal of a Brieskorn complete intersection and apply
the formula to classify elliptic singularities, which are natural generalization of the
results about Brieskorn hypersurface singularities in [28].

2 Cycles and Cohomology

Let (V, p) be a normal complex surface singularity, namely, the germ of a normal
complex surface V at p € V. We always assume that V' is Stein and suitably small.
Let w: X — V denote a resolution of the singularity (V, p) with exceptional set
E = 7~ !(p) and let { E;};c1 denote the set of irreducible components of E. We call
a divisor on X supported in E a cycle and denote by Y ZE; the group of cycles.

For a function i € H%(Ox(—E)), we denote by (h)g € Y ZE; the exceptional
part of the divisor divy (h); so, divy (h) — (h)g is an effective divisor containing no
components of E. We simply write (h) g instead of (h o ) for h € m.

Anelementof Y QE; := ()_ZE;) ® Qs called a Q-cycle. A Q-cycle D is said
to be nef (resp. anti-nef) if DE; > 0 (resp. DE; < 0) for all i € Z. Note that if
D # 0 is anti-nef, then D > E.
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Definition 2.1 The maximal ideal cycle on X is the minimum of {(h)g |h € m}
and denoted by Mx. There exists a Q-cycle Zg, such that (Kx + Zg,)E; = 0 for
every i € Z, where K is a canonical divisor on X. We call Zg, the canonical cycle
on X.

In the following, we assume that Z > 0 is a cycle such that Ox(—Z) has
no fixed component, namely, there exists a function » € H 9(Ox(—2)) such
that (h)g = Z. We say that Ox(—Z) is generated if it is mw-generated (i.e.,
¥, Ox(—Z) — Ox(—Z) is surjective). For any coherent sheaf F on X, we write
H!(F) = H (X, F) and hi (F) = dimc(H! (F)).

Definition 2.2 The geometric genus of the singularity (V, p) is defined by
pe(V. p) = h'(Ox).

Definition 2.3 Let A > 0 be an effective cycle on X and let
h(a) = max {n'(Op) | B € Y ZE;, B =0, Supp(B) C Supp(4) |.

We put h'(Op) = 0if B = 0. There exists a unique minimal cycle C such that
h'(Oc) = h(A) (cf. [32, 4.8]). We call C the cohomological cycle of A. Note that
pg(V, p) = h(E) and that if (V, p) is Gorenstein and 7 is the minimal resolution,
then Zg, is the cohomological cycle of E ([32, 4.20]).

We define a reduced cycle A+ to be the sum of the components E; C E such
that AE; = 0.

Remark 2.4 Let Fy, ..., Fi be the connected component of Z+ and let (Vi, pi) be
the normal surface singularity obtained by contracting F;. If C is the cohomological
cycle of Z+, we have

k
h'(Oc) =) pe(Vi, pi).
i=1

Definition 2.5 Let ¢(Z) = h'(Ox(—Z2)) and gz(n) = h'(Ox(—nZ)) forn > 0.
Let s(Z) = min {n €Z=0 |qz(n) =qz(n+1) }

Proposition 2.6 (See [26, §3], [24, 3.6]) We have the following.

() gz(n) = qgz(n + 1) for every integer n > 0.

@) Ifqz(1) = pg(V, p), namely, s(Z) = 0, then g(n) = py(V, p) forn > 0.

(3) If Ox(—2) is generated, then qz(n) = qz(s(Z)) = h'(Oc¢) forn > s(Z),
where C is the cohomological cycle of Z*.

4) Ox(—nZ) is generated for n > s(Z).

We are interested in the range of the function ¢. Let A (resp. .A’) denotes the set
of the pairs (¥, W) such that W > 0 is a cycle on a resolution ¥ — V such that
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Oy (—W) is generated (resp. has no fixed components). Clearly, A C A’. Let

a(A) = {1 Oy =Wy 1 r. W) € A}, gy = {n'©Or=wy) [r.w) e A},
By Proposition 2.6, we have

The proof of the following theorem is included in the proof of [24, 3.12].
Proposition 2.7 We have the equality

q(A) = {0, L,..., pe(V. p)}.

Conjecture 2.8 For every normal complex surface singularity, the equality q(A) =
q(A) holds.

At present, we have the equality ¢g(A) = ¢(A’) only for a few cases (cf.
Proposition 3.11, Example 4.5). Some results related to Conjecture 2.8 are obtained
in [16].

The next lemma is used in Sect.5. For a Q-cycle D, let Ox(D) = Ox (D)),
where | D | denotes the integral part of D.

Lemma 2.9 Let C < E be a reduced cycle and {I,},¢7., a filtration of Oy such
that (h)g > nC foralln € Zx=o and all h € I, \ {0} and that @n>0 L/ L1 is
reduced. Assume that there exists an anti-nef Q-cycle C = > a;E; suchthata; = 1
for E; < C and CE; = 0 for every E; £ C. Moreover assume that there exists
an integer d > 0 such that dC e Y ZE; and (h)g = dC for some h € 1. Then
I, =1, :=m,0x(— I’lC)p

Proof First we show that I, C Tn foreveryn > 0.Leth € I, and A = (h)g — nC.
We write A = A — Ap, where Ay and Aj are effective and have no common
components. Since (h)g > nC, by the assumption on C, we have Supp(Az) C
Supp(C C) = Supp(E — C), and hence CAy =0.1f A, # 0, then 0 < —A2
AA2~— (h)E Ao; it contradicts that (k) g is anti-nef. Hence A = A > 0, namely,
hel,.

From the arguments in §2.2-2.4 of [36], since @n>0 I,/ I,+1 is reduced, we have
aQ-cycle D > Osuchthat I, = m,Ox(—nD), for alln € Z>g, and we may assume
that d D ei ZE; and Ox (—dD) is generated. The 1nclu51on 1 C Id implies that
dD > dC. Since there exists & € Iz such that dC = (h)g > dD, we obtain
C =D.
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3 Cohomology and Normal Reduction Numbers

Let m C Oy,, denote the maximal ideal. In the following, we always assume that
I C Opy,p is an m-primary integrally closed ideal, namely, / satisfies that VI =
mand I = I. Let Q be a minimal reduction of /. Then there exist a resolution
m: X — Vandacycle Z > 0 such that

I = IZ = JT*Ox(—Z)p

and I0x = Ox(—2Z) (cf. [12, §6]). In this case, we say that I is represented
by a cycle Z on X. We use the symbol “Iz” only when Ox(—Z) is generated.
Conversely, such an ideal Iz is m-primary and integrally closed. Note that /71, =
17+ 7. Thus we can write
nr(I/z) = min {n € Z=g |I(n+1)z = Qlyz },
t(Iz) =min{n € Z-o | Imt1yz = Qlmz, m > n}.

In the rest of this section, we always assume that [ is represented by a cycle Z

on X, namely, I = I7.

Definition 3.1 We put g(/) = gq(Z) = W (Ox(—2)); this is independent of the
representation of / (cf. [25, Lemma 3.4]).

Proposition 3.2 (Cf. [26, §2]) Let q;(n) := q(I") = qz(n) forn > 0. We have the
following.

(1) For any integer n > 1, we have
2q1(n) +dimc (1" /QI") = qi(n + 1) + g1 (n — ).
In particular,
nr(l) = min {n € Zzo |qr(n — 1) = q1(n) = q1(n) —qr(n + 1) }.
(2) We have
(1) = min{n € Z>o |qr(n — 1) = q1(n) }.

In particular, t(I) = s(Z) +1 < pg(V, p) + 1 and q;(n) = q;(s(2)) for every
n>s(2).

Proof We write H (Z) := H'(Ox(—Z)). Let hj,ho € H°Z) and Q :=
(h1, ha) C Oy, p. Suppose that hy, hy are sufficiently general so that Q is a minimal
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reduction of I = Iz and that the following sequence is exact:

—hy

0— Ox(—(n — DZ) 2% 0 (—nz)®? G Ox(—=(n +1)Z) — 0.

Taking cohomology, we obtain the long exact sequence:
0> 1"0 > 1"t > H'(n - 1)Z) > H' 1 2)®* > H' (n+ 1)Z) = 0.
This yields (1). We write
dimc(I"t1/QI") = Aj(n — 1) — Ay (n) > 0,
where Aj(n) = qr(n) — qr(n + 1). By Proposition 2.6 (1), Aj(n) > 0. Therefore,
if Ay(n — 1) =0, then A;(n + k) = 0 for k > 0. Hence we have (2).

By the argument similar to the proof of Proposition 3.2, we have

Proposition 3.3 ([28,2.9]) Letr = nr(I). Then

rr=1/2+4q@) < pg(V, p).

In [28, 3.13], the hypersurface V = {x% + y + z¢ = 0} C C? with pg(V,0) =
r(r — 1)/2 are classified.

Remark 3.4 Let X — Y be the contraction of Z1 (cf. Remark 2.4). Then we obtain
thatt(/) — 1 = min {n € Zso | H'(I"Oy) = 0} (cf. [24, 3.8]).

Remark 3.5 The ideal I is called the pg-ideal if g(I) = pg(V, p). It immediately
follows from Proposition 2.6 that r(/) = 1 if and only if / is a pg-ideal. Moreover,
the following are equivalent (see [25, 3.10], [26, 4.1]):

* [isa pg-ideal.
* Oc(—=Z) = Oc, where C is the cohomological cycle of E.
* The Rees algebra P, . I" is a Cohen-Macaulay normal domain.

The pg-ideals have nice properties and studied in [25-27]. For example, if I is a
pg-ideal and J an m-primary integrally closed ideal of Oy ,, then /J = IJ and
q(1J) = q(J); in particular, p¢-ideals form a semigroup with respect to the product
(cf. [25, 2.6, 3.5]).

The singularity (V, p) is said to be rational if pg(V, p) = 0. Rational surface
singularities can be characterized in many ways [1, 10, 12, 22, 27]. We have also a
characterization in terms of the normal reduction numbers as follows.

Proposition 3.6 ([29, 1.1]1) The following are equivalent:

(1) (V, p) is a rational singularity.
(2) Every m-primary integrally closed ideal in Oy, is a p,-ideal.
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3) ¥V, p) = L.
) nr(V, p) = 1.

Remark 3.7 The singularities with 1(m) = 1 (m is a pg-ideal in this case) have
been characterized in [31, 5.2]. In case (V, p) is Gorenstein and pg(V, p) > 0, the
condition r(m) = 1 implies that (V, p) is an elliptic double point (see [26, 4.3], [24,
4.10)).

The elliptic singularities were introduced by P. Wagreich, and the theory of those
singularities were developed by Wagreich [37], H. Laufer [11], M. Reid [32, §4],
S.S.-T. Yau [38—41], M. Tomari [34, 35], and A. Némethi [21], Nagy—Némethi
[17,18].

Let Z ¢ denote the fundamental cycle on X, namely, the minimal non-zero anti-
nef cycle. The fundamental genus py(V, p) is defined by ps(V, p) = pa(Zy) =
1-— X(Ozf)- By the Riemann-Roch formula, ps(V, p) = Z¢(Zy + Kx)/2 + 1.
This is independent of the choice of a resolution, and hence a topological invariant
of the singularity (V, p).

Definition 3.8 The singularity (V, p) is said to be ellipticif ps(V, p) = 1.
The following are well-known:

(1) For any positive integer m, there exists an elliptic singularity (V, p) with
pe(V, p) = m (Yau [41, §2]).

(2) For any elliptic surface singularity (V’, p’), there exists an elliptic singularity
(V, p) with pe(V,p) = 1 such that (V’, p’) and (V, p) have the same
topological type (Laufer [11, Theorem 4.1]).

Theorem 3.9 (See [24, §3]) If (V, p) is elliptic, then nr(V, p) = 1(V, p) = 2. In
fact, s(W) =1 for any (Y, W) € A'.

The point of the proof of Theorem 3.9 is as follows. Using Yau’s elliptic
sequences and Rohr’s vanishing theorem [33], we have

Proposition 3.10 (Cf. [24, 3.11]) If (V, p) is elliptic and W > 0 is a cycle on X
such that Ox (—W) has no fixed component, then W (Ox(=W)) = h! (Ocy), where
Cw is the cohomological cycle of W+.

This proposition implies that hl((’)cz) =gqgz(n) forn > 1 (take W = nZ).If I is
not a pg-ideal, then s(Z) = 1, and (/) = 2 by Proposition 3.2 (2).

Proposition 3.11 (cf. [24, 3.12]) If (V, p) is elliptic, then q(A) = q(A).

Proof By Proposition 2.7, there exist a resolution Y and cycles Wy, ..., W,,g(v, )
on Y such that g(W;) = i. Since s(W;) = 1, Propositions 2.6 and 3.10 imply that
Oy (—2W;) is generated and g (W;) = ¢ 2W;).

Problem 3.1 Characterize the singularities (V, p) with ©(V,p) = 2. Is the
converse of Theorem 3.9 true?
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We define a topological invariant min-pg(V, p) to be the minimum of the
geometric genus pg of normal complex surface singularities homeomorphic to
(V, p). For example, if (V, p) is elliptic, then 1(V, p) — 1 = 1 = min-p,(V, p)
by Theorem 3.9 and Laufer’s result mentioned above. Let us recall that r(V, p) <
pg(V, p) + 1 (Proposition 3.2).

Problem 3.2 For a normal complex surface singularity (V, p), does the inequality
r(V,p) < min-pg(V,p) + 1 hold? Characterize singularities which satisfy
t(V, p) = min-p,(V, p) + 1.

4 Cone-Like Singularities

If C is a nonsingular projective curve over C and D an ample divisor on C, then
V(C, D) := Spec@P,-.c H 0(Oc¢(nD)) is a normal surface with at most an isolated
singularity at the “vertex”(cf. [30]). Such a singularity is called a cone singularity.
The exceptional set of the minimal resolution of V(C, D) is isomorphic to C
with self-intersection number —deg D. For example, if R = @,>0R, is a two-
dimensional normal graded ring generated by R| over Ry = C, then Spec R has a
cone singularity.

Definition 4.1 Letmp: X¢o — V be the minimal resolution of the singularity (V, p)
and F the exceptional set of mo. We call (V, p) a cone-like singularity if F consists
of a unique smooth curve. Note that in this case (V, p) is homeomorphic to the cone
singularity (V (F, —F|F), vertex).

In the rest of this section, we always assume that (V, p) is a cone-like singularity.
Let g denote the genus of the exceptional curve F of the minimal resolution
70: Xo — V and let d = —F?. Assume that g > l.Letm: X — V be any
resolution with exceptional set E as in the preceding section. Then we have a natural
morphism X — Xo. We denote by Eg C X the proper transform of F'; this is the
unique irreducible exceptional curve on X with positive genus. Note that d = —Z2
because F is the fundamental cycle on X; the number d is sometimes called the
degree of (V, p).

Definition 4.2 Let C be a nonsingular projective curve. The gonality of the curve
C is the minimum of the degree of surjective morphisms from C to P!, and denoted
by gon(C). It is known that gon(F) < [(g + 3)/2].

Definition 4.3 For any o € R, let [[«]] = min{m € Z |m > «}. For example,

(211 =[5/21=3.

We give an upper bound for r(V, p) using the invariants g, d, gon(Ey). Note that
g and d are topological invariant of (V, p), but gon(Ejp) is not.



168 T. Okuma

Theorem 4.4 ([29, 3.9]) Let (V, p) be a cone-like singularity and let I = Iz be
an m-primary integrally closed ideal represented by a cycle Z on the resolution X.
Then we have the following.

(1) If ZEy = 0, then ¥(I) < [[(2g — 2)/d]] + 1.
(2) If ZEy < 0, thent(I) < [[(2g — 2)/ gon(Ep)]] + 1.

In particular, ©(V, p) < [[(2g — 2)/min{d, gon(E)}]] + 1.

For the proof we apply Rohr’s vanishing theorem (see [29, §3] for the details).
The following example is a special case of [29, 3.10] (take b = g).

Example 4.5 Let C be a hyperelliptic curve with genus g > 2 and Dy a divisor on
C which is the pull-back of a point via the double cover C — P!. Let D = gDy and
V = SpecP,,- HOX,Oc(nD)). Then C = F C Xg. We have pg(V,p) =gby
Pinkham [30, Theorem 5.7].

If we take a general element i € HO(OX0 (=F)), thendivyx,(h) = F 4+ H, where
H is the non-exceptional part and F' N H consists of distinct 2g points Py, ..., Pyg.
We may assume that Py + P, ~ Dgy. Let ¢ X — X be the blowing-up with
center {Ps3, ..., Pa,} and let Z = (h)g, the exceptional part of divy (h). If we put
E; = d)_l(Pi) for3 <i <2g,then Z = Eg +2(E3 + - - - + E2,). We can see that
Ox (—Z) is generated since a general element of H%(Ox(—2F)) has no zero on H.

Then we have 1! (Ox(—(g — 1)Z)) > h'(Og,(—(g — 1)Z)) = h'(K¢c) = 1
and H 1((’)X(—gZ)) = 0. It follows from Proposition 2.6 (1) and Proposition 3.2
(2) that gz(n) = g —n for 0 < n < g. Hence we have r(Iz) = po(V,p) +1 =
[[(2g — 2)/ gon(E)]] + 1, nr(Iz) = 1, q(A) = g(A).

4.1 Homogeneous Hypersurface Singularities

Assume that V C C? is a hypersurface defined by a homogeneous polynomial
f € Clx, y, z] with degree d > 3 (degx = degy = degz = 1) having an isolated
singularity at the origin p € C3. Then F = {f = 0} C P2, g = (d — 1)(d — 2)/2.
Let D = —F|r. Then V = Spec@,,- H%Oc(nD)). Since m = I, we have

d-3

d—1- d-—
qF(n)=h1(@Y(—”F))=Zhl(oF(mD))=Z< 2 m>=< 3”)1

m>n m=n

Hence we have nr(m) = r(m) = d — 1 by Proposition 3.2. By the definition,
t(V, p) > d — 1. On the other hand, by Namba’s theorem (Max Noether’s theorem)
[19, Theorem 2.3.1], we have gon(F) = d — 1. By Theorem 4.4, we have

(V,p) =2 -2)/d-Dl+1=[ld-2-2/d-D]]l+1=d - 1L



Normal Reduction Numbers of Normal Surface Singularities 169

Hence we obtain
Theorem 4.6 ([29,4.1]) nr(m) =1t(m) =nr(V, p) =1(V,p) =d — 1.

Remark 4.7 (See [29, §4]) Suppose that R = @,>0R, is a normal graded ring
generated by R over Ry = C and V = Spec R. Thenm” = m”. Leta(R) denote the
a-invariant of R (see [2]). If O is a minimal reduction of m generated by elements
of Ry, we can see

ma(R)+2 4 Qma(R)+l and nr(m) = a(R) + 2 = t(m).

If R =Clx, y, z]/(f) as above, then a(R) = d — 3 (cf. [2, (3.1.6)]).

5 Brieskorn Complete Intersections

In [28], we obtained an explicit expression of r(m) for Brieskorn hypersurfaces
using ring-theoretic arguments and gave a classification of Brieskorn hypersurfaces
having elliptic singularities. In this section, we extend these results to the case of
Brieskorn complete intersections, using resolution of singularities.

In the following, we assume that V. C C™ is a Brieskorn complete intersection
define by the following m — 2 polynomials:

qllx(llldl_'_'_qlmxyanm (ql/ E(C, i=37-'-am)7
where a; are integers such that 2 < a; < --- < a,,. We also assume that V has an

isolated singularity at the origin p € C™. Then, since every maximal minor of the
matrix (g;;) does not vanish (see [7, §7]), we may assume that

10---0 p1 qu
01---0 p2 @

(gij) = S , , (5.1
00---1 pm—2 gm-2

where p;, g; # 0and p;q; # pjq; fori # j.
5.1 The Maximal Ideal Cycle, the Fundamental Cycle,
and the Canonical Cycle

We summarize the results in [15] which will be used in this section; those are a
natural extension of the hypersurface case obtained by Konno and Nagashima [9].
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Enul.gAm Em72~,§m Em.,sm 8m

Fig. 1 The weighted dual graph of a Brieskorn complete intersection

In the following, we assume that 7 : X — V is the minimal good resolution. Since
(V, p) is Gorenstein, the canonical cycle Zg, is an effective cycle.
We define positive integers ¢, ¢;, o, «;, &, &i, and A; as follows:2

£:=lem(ay,...,an), £ :=Ilem(ay,...,d;,...,an,), where d; is omitted,

A

a =L/, a:=a1- oy, g:=ai--an/l, & :=guai/a;, A :=L/a;.
We easily see that the polynomials xl.a T+ p,-xfn’": 11 +g;x;" are weighted homogeneous
polynomials of degree ¢ with respect to the weights (A1, ..., A;). Then the
weighted dual graph of the exceptional set E is as in Fig. 1, where

Sw 8w

m
E=FEo+3 3 % Fuue
w=1v=I1£&=1
g denotes the genus of the central curve Ey, cp = —E(z), and ¢,y = _Ei,u,s (see

[15, 4.4]).
For any Q-cycle B on X and any irreducible component F' C E, let cffr(B)
denote the coefficient of F in B. Let Z® = (x;)E.

2Using the notation of [15, §3], we have [ = d,, {; = diym, ¢ = Rimy> Mi = €ims A = €m = €m-
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Theorem 5.1 ([15, 4.4]) We have the following:

m Sy éw
20 =B+ Y)Y Y0 B 0 i<
w=1v=I£&=1

where A(()i) and the sequence {Ag?v’ é} are determined as follows:

) ._,®O .
Ay = )\w’o’s = A,

)\'(i) L 1 ifw =1
wstrLS 0 l:fw 7é i,
(@) _ @ (i)
)Lw,v—l,’;‘ - )"w,v,écw*v - )\w,v+l,5‘

The cycle ZW is the smallest one among the cycles Z > 0 such that Z is anti-
nef and cffg,(Z) = A; (cf. [15, 2.1]). In particular, we have Mx = ZM | since
)tl == )\m~

Theorem 5.2 ([15, 5.3]) We have

(m —2)l i
Zey=E+ " T Zo— ) 7%,

w=1

where Zy is the anti-nef cycle such that cffg(Zo) = o and Zo(E — Ep) = 0.
Theorem 5.3 ([15,5.1,5.2,5.4]) If Ay > «a, then Zy = Zy and

1 R _1" m Aw
pf(v’p)zzo‘:(m_z)g_(a I )g_2§ }+1.
=1 ¥

If w < a, then Zy = Mx and

1 R 2 Am /O -1 Am m—1 Aw
" w=1 ¥

5.2 The Normal Reduction Numbers

Since Mx = (x;;) g by Theorem 5.1, Ox (—Mx) has no fixed components; however,
it is not generated in general.
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Let H = divy(x;,,) — Mx. Then E + H is simple normal crossing and the set
of the base points of the linear system |Ox (—M)]| is an empty set or {11, ..., 5, },
where {t:} = Ej; 5,6 N H (see Theorem 5.1). Let us look in detail at a point. Let
x, y be the local coordinates at e € X suchthat E = {x =0} and H = {y = 0}. We

write 1; = )\,(Qsm’s and § = nm—1 — Nm- Then § > 0 and mOx ;. = (Xm—1, Xm) =
(xMmy, xMm=1) = xM (y, xé)'
Proposition 5.4 ([15, 6.4]) The following conditions are equivalent:

(1 §=0
(2) The base points of the linear system |Ox(—M)| on E is empty.

If § > 0, each base point can be resolved by a succession of § blowing-ups at the
intersection of the exceptional set and the proper transform of H.

Let ¢: Y — X be the minimal morphism such that mQy is invertible and let
F = d)_l(E). Let Wi = (xj)F (i = 1,...,m), and let My denote the maximal ideal
cycle on Y and Hy the proper transform of H on Y. Then

W; = ¢*Z" fori #m, Wy =My =¢*Z" + Ky/x, (5.2)
where Ky, x = Ky — ¢*Kx. Now, m is represented by My and m" = I, . Fix
an irreducible component F¢ C F intersecting Hy. For any cycle W on Y, we write

y (W) = cffp, (W). Note that y (My) is independent of the choice of a component
intersecting Hy (see Theorem 5.1) and

y(Wi) =mni fori #m, y(Wy)=yMy)=nm +38=nm-1. (5.3)
Lemma 5.5 Let (uy,...,un) € (Z=o)™. For any positive integer n,
m

m—2
[T em srondonivy 3" =
x;' em" ifandonlyif 0
i=1

i=1

n— (Um—1+um)

am—1

Proof We have ([T/L, x;*) . = W := Y /L, u; W;. First we show that [ /L, x; €
m” if and only if y (W) > y(nMy). Clearly, if W > nMy, then y (W) > y(nMy).
So we show the converse. Let W —nMy = D{ — D,, where D and D, are effective
cycles without common components. By the assumption, D, has no components of
F intersecting Hy. Thus My Dy = 0. Then 0 < D1 Dy — D% = WD, < 0. Hence
D, = 0. We have proved the claim.

We have the following (see [9, Lemma 1.2 (4)] for the first equality):

N = Aijoam =4L/ajoy, (1 <i<m—1). 5.4)
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Then we have

m—1

y(W) —y(My) = Y winli + tmilm—1 — M1
i=1

-2
_ l (niu;_'_um_l—l—um—n).
(o) a;

Am—
i=1 m=1

This implies the assertion.

Let P C A := Clxy, ..., xn] denote the ideal generated by the polynomials
{x{" + pix;" '+ qixp" |i =1,...,m —2} defining V. C C™. For simplicity,
let P also denote the ideal in C{xy, ..., x,} generated by these polynomials; so

Ov,p = C{x1,..., xu}/P. We easily see the following (cf. [23, Theorem 3.1]).
Lemma 5.6 Forany 1 <i < m, the quotient ring A/(P + (x;)) is reduced.

Proposition 5.7 For n € Z>g, let I, C Oy, be an ideal generated by monomials
[T, x;'* such that

m—2
Ui (n/nm 1) — Wm-1+ um)
iz ai am—1
Then I,y,,_, = w" for n € Z>. In particular, m" is generated by monomials.

Proof First we show that G := @nzo I,,/I,4+1 is reduced. It follows from (5.3)
and (5.4) that the inequality is equivalent to the following (cf. the proof of
Lemma 5.5):

m m—1
v ((fo") ) =Y wini + Umim—1 = n. (5.5)
i=1 F

i=1

Therefore the filtration {/, },¢z., is induced from the weight filtration of the power

series ring C{xy, ..., x,,} with weight vector (91, ..., Dm—1, Nm—1) € Z". Let I C
A = Clxy, ..., x;] denote the ideal generated by the leading form, with respect
to these welghts of the polynomials {x;" + pix," ' +qixy i =1,....,m —2}.

Then A/I is complete intersection and isomorphic to G (cf. the proof of [23,
Theorem 2.6)). If a,—1 = ay, then G = A/P. If a1 < am, then G =
(A/P + (xm))[xm] and thus G is reduced by Lemma 5.6.

Let C = ) ¢, Fg, the sum of the irreducible components of F intersecting Hy.
From (5.5), every h € I, satisfies (h) > nC. Now we can apply Lemma 2.9. Since
Nm— 1C My, we obtain that I, , = m”".

Let Q = (xm—1,xm) C Oy, p. Then x;“ € Q forevery i, and thus Q is a minimal
reduction of m (cf. [5, 8.3.6]).
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Theorem 5.8 We have the following.
(1)

m—2 a 1
- I
nr(m) = f(m) = | ap— Z .
(2) The image of the monomials ]_[l__l X; ! such that
— n+1 ]
Z and O0<u;<ai—1 (=1,....,m—2)

in the vector space "t/ Qm" form a basis. In particular, dimc (m"+1/Qm™n)
is a non-increasing function of n.

Proof Note that Qm” and m"*! are generated by monomials for every n > 0 by
Proposition 5.7. Let N = Lam,l Z;"z_lz(a,- -1 /aiJ. First we prove that Qm” =

mtl forn > N.Letv =[]/, x; € m*+!. By Lemma 5.5, we have
m—2
Z uj - n+1— (Um-1+um) _ n— (Up-1+um—1)
— ai - am—1 am—1
i=1
Therefore, if u;,—1 > 1 oru,, > 1, we have v/x,,—1 € m" or v/x,, € m”, and hence
v € Qm’. We consider the case that u,,—1 = u,, = 0 and u; > a; for some 1 < i <
m — 2; we may assume that i = 1. Then it follows that)cl1 e xll a‘(xm 1,xm ),
since x{! + p1x;" ' + qixp" = 0. We show that w1 = (" xS -2 x;
om”. Letw' = wy /xpm—1 = (x| a1 )]_[ x;'". Since
up —ap m=2, n+1 n—(am_1—1)
_ ; — (ap—y —
+ > -1=
2 .

a am—1 am—1

3

i=2

we have w’ € m" by Lemma 5.5. Thus w1 = xpm—1w’ € Qm”. In a similar way, we

also have that wy := (x}" ™ “'x,") [7L; l'."' € Qm", since ”_(Z’"’:_l) > "_5“’”1_1).
m— m—

Hence we obtain that v € (w1, wy) C Qm’. Next assume that u,, | = u,, = 0 and
u; < a; forl <i <m — 2. Then we have

m—2 m—2

Zai_lzzui2n+l.
a )

i=1 ! i=1
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However this implies that n < N — 1. Hence we obtain that Qm" = m*+1 for
n>N.
Next we prove that QmN=1 £ mV. Let v := [[">x“~'. Then v ¢ Q, because

Ay — .
Ov,p/Q =Clxi, ..., xm}/ (" ... x5 Xm—1, Xm). However, since

we have v € m¥ by Lemma 5.5. Hence we obtain that T(m) = N.
From the arguments above, we see that (2) holds, because any non-trivial
linear combinations of those monomials is not in the ideal P + (x;;—1, X)) =

(], X" Xm—1, Xm). Since dimc(m?*+!/Qm™) is a non-increasing function
of n, we have nr(m) = r(m) (cf. Proposition 3.2).

Example 5.9 If m = 3, we have

nr(m) = {az(ajll— DJ ,

ai(n+1)
a

( [al(n—i-l)—‘ >
=max | a; — ” ,0].

The formula for g (m) in [28, 3.8] is generalized as follows.

dime (m !/ Qmn) = ﬁ{u Y/

§u§a1—1}

Proposition 5.10 Let p(n+ 1) = dimc(m™+!/Qm") and g(n) = h' (Oy (—nMy))
forn > 0. Then we have the following:

n 2 - . .
q(n) =pg(V,p) + 2(My — MyKy) + Z(Vl +1-0D)p@).
i=1
(Note that the same formula holds for any normal surface singularity.)

Proof 1t is well-known that the multiplicity of Oy, coincides with dim¢c Oy, ,/Q
(e.g., [5, 11.2.2]). Thus we have p(1) = dimc(m/Q) = —M% — 1. From the exact
sequence

0— Oy(—My) - Oy - Oy, — 0,

we have

1
q(1) = q0) = x(Omy) —1 = x(Omy) + Mz + p(1) = 2<M§ — MyKy)+ p(1).
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For n > 1, it follows from Proposition 3.2 (1) that

n 1 n
g —qn—=1)=q() = qO) + Y _pl) = (M7 — MyKy) + 3 _ p(i).

i=2 i=1
Hence we obtain
n n
q(m) —q(0) =, (Mj = MyKy) + 3 (n+1=i)p(i). o
i=1
Remark 5.11 The invariant M2 My Ky can be computed from ay, ..., a, as

follows. First we have M% = —mult(V, p) = — ]_[l | a; (see [15, 6.3]). On the
other hand, from (5.2), we have

M} + MyKy = M} + MxKx +2(Ky/x)* = 2pa(Mx) — 2 — 288

We have seen a formula for p, (M) in Theorem 5.3.

5.3 Elliptic Singularities of Brieskorn Type

We classify the exponents (ay, ..., a,) such that (V, p) is elliptic, applying the
formula for r(m).

Theorem 5.12 (V, p) is elliptic if and only if (a1, ..., an) is one of the follow-
ing.

(1) (a1,az,a3) =(2,3,a),a > 6.

2) (a1, az,a3) = 12,4,a),a > 4.

A3) (a1, az,a3) =2,5,a),5<a <09.

@) (ay,az,a3) =(3,3,a),a > 3.

) (a1,az,a3) =(3,4,a),4 <a <5.

6) (ai,ar,asz,a4) = (2,2,2,a),a > 2.

Proof For the case (1)—(6) in the theorem, we can check that « > A, and obtain
pr(V, p) = 1 using Theorem 5.3.
Assume that (V, p) is elliptic. By Theorems 3.9 and 5.8, we have

i — 1
3> am-1 Z “ > am—1(m —2)/2>m —2.
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Hence m < 4. We first consider the case m = 4. We have a3 < 3, and thus a; =
a =a3 =2.Thena/ry =a4/2 > 1and py(V, p) = 1 by Theorem 5.3,
-1
Next assume that m = 3. Then we have r(m) = (@ )a < 2, and thus
ai
(a1 —1D(az —3) <2.1fap =2,thena; =2 and (V, p) is arational. Hence a; > 3
and the list of (ay, ay) is as follows:

(2,3),(2,4),(2,5),3,3),3,4).

We can see that o > A3 for those cases. So it follows from Theorem 5.3 that

1
pr(V,p) = 5 {a1a; —ay —az — 2 [lem(ay, az)/az] — 1) ged(ay, ax)} + 1.

Let us look at each case.

(1) The case where (a1, a2) = (2,3). We know that (V, p) is rational if a3 < 5.
Hence a3 > 6. We have a/A3 = a3/ gcd(6,a3) and pr(V, p) = 1.

(2) The case where (a1, a2) = (2,4), a3 > 4. We have o/A3 = a3/4if 4 | a3,
a/A3 = az/2 otherwise, and p(V, p) = 1.

(3) The case where (a1, a2) = (2,5),a3 > 5. We have a/A3 = a3/ gcd(10, a3) and
pr(V,p)=3—1[10/a3]. Sine ps(V, p) = 1, we have a3 < 9.

(4) The case where (a1,a2) = (3,3), az > 3. We have a/A3 = a3/3 and
pr(V,p)=1forallaz > 3.

(5) The case where (a1, a2) = (3,4),a3 > 4. We have o /A3 = a3/ ged(12, a3) and
pr(V,p)=4—1T12/a3]. Sine py(V, p) = 1, we have a3 < 5.

Hence we have proved the theorem.

From the proof of Theorem 5.12, we obtain thatT(m) = 2 and ps(V, p) > 2 if
(a1,a2,a3) = (2,5,a) witha > 10 or (3,4, a) with a > 6. For the cases (2, 5, a)
with a > 10 and (3, 4, a) with a > 8, letting QO = (y, zz) and I = Q, we have
t(/) > 3. Hence we obtain the following.

Proposition 5.13 ([28, 4.5]) ©(V, p) = 2 ifand only if py(V, p) = 1, except for
the cases (ay, ...,an) = (3,4,6), (3,4,7).

For the reader’s convenience, we put some information about the two exceptional
cases above. Both singularities have p, = 3 and py = 2. The weighted dual graph
I (resp. I») of {x3 + y* + 2% = 0} (resp. {x> + y* + z7 = 0}) is as in Fig. 2.

=2 2
h: (- B Q-0
(1

Fig. 2 The weighted dual graphs I} and 1>
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As we have seen above, the equality r(V, p) = r(m) does not hold in general
(see also Remark 3.7).

Problem 5.1 For a given normal surface singularity (V, p), characterize m-primary
integrally closed ideals / C Oy, (or, cycles which represent /) such that 1(V, p) =
t(I). Characterize normal surface singularities (V, p) such that 7(V, p) = r(m).
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