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Abstract This article consists of two parts. The first part is a survey on the normal
reduction numbers of normal surface singularities. It includes results on elliptic
singularities, cone-like singularities and homogeneous hypersurface singularities.
In the second part, we prove a new results on the normal reduction numbers and
related invariants of Brieskorn complete intersections.
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1 Introduction

In this paper, we survey results on the normal reduction numbers of normal complex
surface singularities and some related topics [24, 26, 28, 29], and prove new results
on the normal reduction numbers of Brieskorn complete intersections. The normal
reduction number has appeared in the study of normal Hilbert polynomials from a
ring-theoretic point of view (cf. [6, 14]). We study the normal reduction numbers
of the local ring of normal surface singularities using resolution of singularities,
and we wish to know what kind of geometric property of singularities relates to the
normal reduction numbers.
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Let us briefly recall some basic facts about integral closure and reduction of
ideals in a local ring. Let (A,m) be a Noetherian local ring and I an m-primary
ideal (namely,

√
I = m). Let I denote the integral closure of I , that is, I is an ideal

of A consists of all elements z ∈ A such that zn + c1z
n−1 + · · · + cn = 0 for some

n ≥ 1 and ci ∈ I i (i = 1, . . . , n). The ideal I is said to be integrally closed if
I = I . An ideal Q ⊂ I is called a reduction of I if In+1 = QIn for some n ≥ 0. It
is known that an ideal Q is a reduction of I if and only if I ⊂ Q (cf. [5, 1.2.5]). For
a reduction Q of I , rQ(I) := min

{
n
∣
∣ In+1 = QIn

}
is called the reduction number

of I with respect to Q.
Let (V , p) be a normal complex surface singularity1 and OV,p the local ring of

the singularity with maximal ideal m. Let I ⊂ OV,p be an m-primary integrally
closed ideal. It is known that any minimal reduction of I is generated by two
elements and that two general elements of I generate a minimal reduction of I

(see [5, 8.3.7, 8.6.6]). Suppose that Q is a minimal reduction of I . We define two
normal reduction numbers, which are analogues of the reduction number rQ(I), as
follows:

nr(I) = min{n ∈ Z≥0 | In+1 = QIn},
r̄(I) = min{n ∈ Z≥0 | IN+1 = QIN for every N ≥ n}.

We note that nr(I) and r̄(I) are independent of the choice of Q (see e.g. [4,
Theorem 4.5], Proposition 3.2), though rQ(I) is not independent of the choice of
a minimal reduction Q in general. It is obvious by the definition that nr(I) ≤ r̄(I).
We will show that r̄(I) ≤ pg(V, p)+1 in general (see Proposition 3.2). We can also
show that for any integer g ≥ 2 there exists a singularity (V , p) with nr(I) = 1 and
r̄(I) = pg(V, p) + 1 = g + 1 (Example 4.5). We define

nr(V , p) = max{nr(J ) | J is an m-primary integrally closed ideal of OV,p},
r̄(V , p) = max{r̄(J ) | J is an m-primary integrally closed ideal ofOV,p}.

The invariant r̄(V , p) naturally appears in several situation as follows. For any m-
primary integrally closed ideal I ⊂ OV,p, there exist a resolution π : X → V and
a divisor Z on X such that OX(−Z) is π-generated and I = π∗OX(−Z)p (see
Sect. 2). Let r := r̄(I). By the definition of r̄ and Proposition 3.2, we have the
following:

(1) Briançon-Skoda type inclusion (cf. [3, 13]): I r+k ⊂ Qk for k ≥ 1.
(2) The natural homomorphismπ∗OX(−nZ)⊗π∗OX(−Z) → π∗OX(−(n+1)Z)

is surjective for n ≥ r .

1In our papers [24, 26, 28, 29], we treat a singularity (SpecA,m), where (A,m) is an excellent
normal two-dimensional local ring such that the residue field k is algebraically closed and k ⊂ A.
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(3) The function φ(n) := dimC H 0(OX)/H 0(OX(−nZ)) is a polynomial function
of n for n ≥ r; note that φ(n) = χ(OnZ)+h1(OX)−h1(OX(−nZ)) by Kato’s
Riemann-Roch Theorem ([8]).

So we expect that the normal reduction numbers can characterize good singularities.
For example, we see that (V , p) is a rational singularity if and only if r̄(V , p) =
1 (see Proposition 3.6). However, we can only show that r̄(V , p) = 2 if (V , p)

is an elliptic singularity (see Theorem 3.9, Proposition 5.13). At present, we have
computed the normal reduction numbers only for some special cases, and we do not
know whether those invariants are topological or not.

This paper is organized as follows. Sections 2–4 are devoted to a survey of
fundamental results on the normal reduction numbers and some related topics. We
refer the reader to [20] and [32] for basic facts about normal surface singularities.
In Sect. 2, we set up notation and briefly recall the basic results on the cohomology
groups of ideal sheaves of cycles on a resolution space. Then we mention a question
about the range of the dimension of those cohomology groups. In Sect. 3, we
give a relation between the normal reduction numbers and the dimension of the
cohomology groups associated with an m-primary integrally closed ideal in OV,p

and review fundamental results on the normal reduction numbers. Then we review
the results on elliptic singularities. In Sect. 4, we consider the cone-like singularities,
namely, those homeomorphic to the cone over a nonsingular curve. We give an
upper bound of r̄ using the genus and gonality of the curve and the self-intersection
number of the fundamental cycles. Then we show a formula for the normal reduction
numbers of homogeneous hypersurface singularities. In Sect. 5, we prove an explicit
formula for r̄ of the maximal ideal of a Brieskorn complete intersection and apply
the formula to classify elliptic singularities, which are natural generalization of the
results about Brieskorn hypersurface singularities in [28].

2 Cycles and Cohomology

Let (V , p) be a normal complex surface singularity, namely, the germ of a normal
complex surface V at p ∈ V . We always assume that V is Stein and suitably small.
Let π : X → V denote a resolution of the singularity (V , p) with exceptional set
E = π−1(p) and let {Ei}i∈I denote the set of irreducible components ofE. We call
a divisor on X supported in E a cycle and denote by

∑
ZEi the group of cycles.

For a function h ∈ H 0(OX(−E)), we denote by (h)E ∈ ∑
ZEi the exceptional

part of the divisor divX(h); so, divX(h) − (h)E is an effective divisor containing no
components of E. We simply write (h)E instead of (h ◦ π)E for h ∈ m.

An element of
∑

QEi := (
∑

ZEi)⊗Q is called aQ-cycle. AQ-cycleD is said
to be nef (resp. anti-nef ) if DEi ≥ 0 (resp. DEi ≤ 0) for all i ∈ I. Note that if
D �= 0 is anti-nef, then D ≥ E.
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Definition 2.1 The maximal ideal cycle on X is the minimum of {(h)E | h ∈ m }
and denoted by MX . There exists a Q-cycle ZKX such that (KX + ZKX)Ei = 0 for
every i ∈ I, whereKX is a canonical divisor onX. We call ZKX the canonical cycle
on X.

In the following, we assume that Z > 0 is a cycle such that OX(−Z) has
no fixed component, namely, there exists a function h ∈ H 0(OX(−Z)) such
that (h)E = Z. We say that OX(−Z) is generated if it is π-generated (i,e.,
π∗π∗OX(−Z) → OX(−Z) is surjective). For any coherent sheaf F on X, we write
Hi(F) = Hi(X,F) and hi(F) = dimC(H i(F)).

Definition 2.2 The geometric genus of the singularity (V , p) is defined by
pg(V, p) = h1(OX).

Definition 2.3 Let A ≥ 0 be an effective cycle on X and let

h(A) = max
{
h1(OB)

∣
∣
∣B ∈

∑
ZEi, B ≥ 0, Supp(B) ⊂ Supp(A)

}
.

We put h1(OB) = 0 if B = 0. There exists a unique minimal cycle C such that
h1(OC) = h(A) (cf. [32, 4.8]). We call C the cohomological cycle of A. Note that
pg(V, p) = h(E) and that if (V , p) is Gorenstein and π is the minimal resolution,
then ZKX is the cohomological cycle of E ([32, 4.20]).

We define a reduced cycle A⊥ to be the sum of the components Ei ⊂ E such
that AEi = 0.

Remark 2.4 Let F1, . . . , Fk be the connected component of Z⊥ and let (Vi, pi) be
the normal surface singularity obtained by contracting Fi . If C is the cohomological
cycle of Z⊥, we have

h1(OC) =
k∑

i=1

pg(Vi, pi).

Definition 2.5 Let q(Z) = h1(OX(−Z)) and qZ(n) = h1(OX(−nZ)) for n ≥ 0.
Let s(Z) = min

{
n ∈ Z≥0 | qZ(n) = qZ(n + 1)

}
.

Proposition 2.6 (See [26, §3], [24, 3.6]) We have the following.

(1) qZ(n) ≥ qZ(n + 1) for every integer n ≥ 0.
(2) If qZ(1) = pg(V, p), namely, s(Z) = 0, then q(n) = pg(V, p) for n ≥ 0.
(3) If OX(−Z) is generated, then qZ(n) = qZ(s(Z)) = h1(OC) for n ≥ s(Z),

where C is the cohomological cycle of Z⊥.
(4) OX(−nZ) is generated for n > s(Z).

We are interested in the range of the function q . Let A (resp. A′) denotes the set
of the pairs (Y,W) such that W > 0 is a cycle on a resolution Y → V such that
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OY (−W) is generated (resp. has no fixed components). Clearly,A ⊂ A′. Let

q(A) =
{
h1(OY (−W)) | (Y,W) ∈ A

}
, q(A′) =

{
h1(OY (−W))

∣∣ (Y,W) ∈ A′ }.

By Proposition 2.6, we have

q(A) ⊂ q(A′) ⊂ {0, 1, . . . , pg(V, p)}.

The proof of the following theorem is included in the proof of [24, 3.12].

Proposition 2.7 We have the equality

q(A′) = {0, 1, . . . , pg(V, p)}.

Conjecture 2.8 For every normal complex surface singularity, the equality q(A) =
q(A′) holds.

At present, we have the equality q(A) = q(A′) only for a few cases (cf.
Proposition 3.11, Example 4.5). Some results related to Conjecture 2.8 are obtained
in [16].

The next lemma is used in Sect. 5. For a Q-cycle D, let OX(D) = OX(�D�),
where �D� denotes the integral part of D.

Lemma 2.9 Let C < E be a reduced cycle and {In}n∈Z≥0 a filtration of OV,p such
that (h)E ≥ nC for all n ∈ Z≥0 and all h ∈ In \ {0} and that

⊕
n≥0 In/In+1 is

reduced. Assume that there exists an anti-nef Q-cycle C̃ = ∑
aiEi such that ai = 1

for Ei ≤ C and C̃Ei = 0 for every Ei �≤ C. Moreover assume that there exists
an integer d > 0 such that dC̃ ∈ ∑

ZEi and (h)E = dC̃ for some h ∈ Id . Then
In = Ĩn := π∗OX(−nC̃)p.

Proof First we show that In ⊂ Ĩn for every n ≥ 0. Let h ∈ In and Δ = (h)E − nC̃.
We write Δ = Δ1 − Δ2, where Δ1 and Δ2 are effective and have no common
components. Since (h)E ≥ nC, by the assumption on C̃, we have Supp(Δ2) ⊂
Supp(C̃ − C) = Supp(E − C), and hence C̃Δ2 = 0. If Δ2 �= 0, then 0 < −Δ2

2 ≤
ΔΔ2 = (h)EΔ2; it contradicts that (h)E is anti-nef. Hence Δ = Δ1 ≥ 0, namely,
h ∈ Ĩn.

From the arguments in §2.2–2.4 of [36], since
⊕

n≥0 In/In+1 is reduced, we have
aQ-cycleD > 0 such that In = π∗OX(−nD)p for all n ∈ Z≥0, and we may assume
that dD ∈ ∑

ZEi and OX(−dD) is generated. The inclusion Id ⊂ Ĩd implies that
dD ≥ dC̃. Since there exists h ∈ Id such that dC̃ = (h)E ≥ dD, we obtain
C̃ = D.
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3 Cohomology and Normal Reduction Numbers

Let m ⊂ OV,p denote the maximal ideal. In the following, we always assume that
I ⊂ OV,p is an m-primary integrally closed ideal, namely, I satisfies that

√
I =

m and Ī = I . Let Q be a minimal reduction of I . Then there exist a resolution
π : X → V and a cycle Z > 0 such that

I = IZ := π∗OX(−Z)p

and IOX = OX(−Z) (cf. [12, §6]). In this case, we say that I is represented
by a cycle Z on X. We use the symbol “IZ” only when OX(−Z) is generated.
Conversely, such an ideal IZ is m-primary and integrally closed. Note that IZIZ′ =
IZ+Z′ . Thus we can write

nr(IZ) = min
{
n ∈ Z>0

∣
∣ I(n+1)Z = QInZ

}
,

r̄(IZ) = min
{
n ∈ Z>0

∣∣ I(m+1)Z = QImZ, m ≥ n
}
.

In the rest of this section, we always assume that I is represented by a cycle Z

on X, namely, I = IZ.

Definition 3.1 We put q(I) = q(Z) = h1(OX(−Z)); this is independent of the
representation of I (cf. [25, Lemma 3.4]).

Proposition 3.2 (Cf. [26, §2]) Let qI (n) := q(In) = qZ(n) for n ≥ 0. We have the
following.

(1) For any integer n ≥ 1, we have

2qI (n) + dimC(In+1/QIn) = qI (n + 1) + qI (n − 1).

In particular,

nr(I) = min
{
n ∈ Z≥0 | qI (n − 1) − qI (n) = qI (n) − qI (n + 1)

}
.

(2) We have

r̄(I) = min
{
n ∈ Z≥0 | qI (n − 1) = qI (n)

}
.

In particular, r̄(I) = s(Z)+ 1 ≤ pg(V, p)+ 1 and qI (n) = qI (s(Z)) for every
n ≥ s(Z).

Proof We write Hi(Z) := Hi(OX(−Z)). Let h1, h2 ∈ H 0(Z) and Q :=
(h1, h2) ⊂ OV,p. Suppose that h1, h2 are sufficiently general so that Q is a minimal
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reduction of I = IZ and that the following sequence is exact:

0 → OX(−(n − 1)Z)
(h1 h2)−−−−→ OX(−nZ)⊕2

(−h2
h1

)
−−−→ OX(−(n + 1)Z) → 0.

Taking cohomology, we obtain the long exact sequence:

0 → InQ → In+1 → H 1((n − 1)Z) → H 1(nZ)⊕2 → H 1((n + 1)Z) → 0.

This yields (1). We write

dimC(In+1/QIn) = ΔI(n − 1) − ΔI (n) ≥ 0,

where ΔI(n) = qI (n) − qI (n + 1). By Proposition 2.6 (1), ΔI (n) ≥ 0. Therefore,
if ΔI (n − 1) = 0, then ΔI (n + k) = 0 for k ≥ 0. Hence we have (2).

By the argument similar to the proof of Proposition 3.2, we have

Proposition 3.3 ([28, 2.9]) Let r = nr(I). Then

r(r − 1)/2 + q(r) ≤ pg(V, p).

In [28, 3.13], the hypersurface V = {xa + yb + zc = 0} ⊂ C
3 with pg(V, o) =

r(r − 1)/2 are classified.

Remark 3.4 Let X → Y be the contraction ofZ⊥ (cf. Remark 2.4). Then we obtain
that r̄(I) − 1 = min

{
n ∈ Z≥0

∣
∣H 1(InOY ) = 0

}
(cf. [24, 3.8]).

Remark 3.5 The ideal I is called the pg-ideal if q(I) = pg(V, p). It immediately
follows from Proposition 2.6 that r̄(I) = 1 if and only if I is a pg-ideal. Moreover,
the following are equivalent (see [25, 3.10], [26, 4.1]):

• I is a pg-ideal.
• OC(−Z) ∼= OC , where C is the cohomological cycle of E.
• The Rees algebra

⊕
n≥0 In is a Cohen-Macaulay normal domain.

The pg-ideals have nice properties and studied in [25–27]. For example, if I is a
pg-ideal and J an m-primary integrally closed ideal of OV,p, then IJ = IJ and
q(IJ ) = q(J ); in particular,pg-ideals form a semigroup with respect to the product
(cf. [25, 2.6, 3.5]).

The singularity (V , p) is said to be rational if pg(V, p) = 0. Rational surface
singularities can be characterized in many ways [1, 10, 12, 22, 27]. We have also a
characterization in terms of the normal reduction numbers as follows.

Proposition 3.6 ([29, 1.1]) The following are equivalent:

(1) (V , p) is a rational singularity.
(2) Every m-primary integrally closed ideal in OV,p is a pg-ideal.
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(3) r̄(V , p) = 1.
(4) nr(V , p) = 1.

Remark 3.7 The singularities with r̄(m) = 1 (m is a pg-ideal in this case) have
been characterized in [31, 5.2]. In case (V , p) is Gorenstein and pg(V, p) > 0, the
condition r̄(m) = 1 implies that (V , p) is an elliptic double point (see [26, 4.3], [24,
4.10]).

The elliptic singularities were introduced by P. Wagreich, and the theory of those
singularities were developed by Wagreich [37], H. Laufer [11], M. Reid [32, §4],
S.S.-T. Yau [38–41], M. Tomari [34, 35], and A. Némethi [21], Nagy–Némethi
[17, 18].

Let Zf denote the fundamental cycle on X, namely, the minimal non-zero anti-
nef cycle. The fundamental genus pf (V, p) is defined by pf (V, p) = pa(Zf ) =
1 − χ(OZf ). By the Riemann-Roch formula, pf (V, p) = Zf (Zf + KX)/2 + 1.
This is independent of the choice of a resolution, and hence a topological invariant
of the singularity (V , p).

Definition 3.8 The singularity (V , p) is said to be elliptic if pf (V, p) = 1.

The following are well-known:

(1) For any positive integer m, there exists an elliptic singularity (V , p) with
pg(V, p) = m (Yau [41, §2]).

(2) For any elliptic surface singularity (V ′, p′), there exists an elliptic singularity
(V , p) with pg(V, p) = 1 such that (V ′, p′) and (V , p) have the same
topological type (Laufer [11, Theorem 4.1]).

Theorem 3.9 (See [24, §3]) If (V , p) is elliptic, then nr(V , p) = r̄(V , p) = 2. In
fact, s(W) = 1 for any (Y,W) ∈ A′.

The point of the proof of Theorem 3.9 is as follows. Using Yau’s elliptic
sequences and Röhr’s vanishing theorem [33], we have

Proposition 3.10 (Cf. [24, 3.11]) If (V , p) is elliptic and W > 0 is a cycle on X

such that OX(−W) has no fixed component, then h1(OX(−W)) = h1(OCW ), where
CW is the cohomological cycle of W⊥.

This proposition implies that h1(OCZ) = qZ(n) for n ≥ 1 (take W = nZ). If I is
not a pg-ideal, then s(Z) = 1, and r̄(I) = 2 by Proposition 3.2 (2).

Proposition 3.11 (cf. [24, 3.12]) If (V , p) is elliptic, then q(A) = q(A′).

Proof By Proposition 2.7, there exist a resolution Y and cycles W0, . . . ,Wpg(V ,p)

on Y such that q(Wi) = i. Since s(Wi) = 1, Propositions 2.6 and 3.10 imply that
OY (−2Wi) is generated and q(Wi) = q(2Wi).

Problem 3.1 Characterize the singularities (V , p) with r̄(V , p) = 2. Is the
converse of Theorem 3.9 true?
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We define a topological invariant min-pg(V, p) to be the minimum of the
geometric genus pg of normal complex surface singularities homeomorphic to
(V , p). For example, if (V , p) is elliptic, then r̄(V , p) − 1 = 1 = min-pg(V, p)

by Theorem 3.9 and Laufer’s result mentioned above. Let us recall that r̄(V , p) ≤
pg(V, p) + 1 (Proposition 3.2).

Problem 3.2 For a normal complex surface singularity (V , p), does the inequality
r̄(V , p) ≤ min-pg(V, p) + 1 hold? Characterize singularities which satisfy
r̄(V , p) = min-pg(V, p) + 1.

4 Cone-Like Singularities

If C is a nonsingular projective curve over C and D an ample divisor on C, then
V (C,D) := Spec

⊕
n≥0 H 0(OC(nD)) is a normal surface with at most an isolated

singularity at the “vertex”(cf. [30]). Such a singularity is called a cone singularity.
The exceptional set of the minimal resolution of V (C,D) is isomorphic to C

with self-intersection number − degD. For example, if R = ⊕n≥0Rn is a two-
dimensional normal graded ring generated by R1 over R0 = C, then SpecR has a
cone singularity.

Definition 4.1 Let π0 : X0 → V be the minimal resolution of the singularity (V , p)

and F the exceptional set of π0. We call (V , p) a cone-like singularity if F consists
of a unique smooth curve. Note that in this case (V , p) is homeomorphic to the cone
singularity (V (F,−F |F ), vertex).

In the rest of this section, we always assume that (V , p) is a cone-like singularity.
Let g denote the genus of the exceptional curve F of the minimal resolution
π0 : X0 → V and let d = −F 2. Assume that g ≥ 1. Let π : X → V be any
resolution with exceptional set E as in the preceding section. Then we have a natural
morphism X → X0. We denote by E0 ⊂ X the proper transform of F ; this is the
unique irreducible exceptional curve on X with positive genus. Note that d = −Z2

f

because F is the fundamental cycle on X0; the number d is sometimes called the
degree of (V , p).

Definition 4.2 Let C be a nonsingular projective curve. The gonality of the curve
C is the minimum of the degree of surjective morphisms from C to P1, and denoted
by gon(C). It is known that gon(F ) ≤ �(g + 3)/2�.
Definition 4.3 For any α ∈ R, let [[α]] = min {m ∈ Z | m > α }. For example,
[[2]] = [[5/2]] = 3.

We give an upper bound for r̄(V , p) using the invariants g, d , gon(E0). Note that
g and d are topological invariant of (V , p), but gon(E0) is not.
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Theorem 4.4 ([29, 3.9]) Let (V , p) be a cone-like singularity and let I = IZ be
an m-primary integrally closed ideal represented by a cycle Z on the resolution X.
Then we have the following.

(1) If ZE0 = 0, then r̄(I) ≤ [[(2g − 2)/d]] + 1.
(2) If ZE0 < 0, then r̄(I) ≤ [[(2g − 2)/ gon(E0)]] + 1.

In particular, r̄(V , p) ≤ [[(2g − 2)/min{d, gon(E0)}]] + 1.

For the proof we apply Röhr’s vanishing theorem (see [29, §3] for the details).
The following example is a special case of [29, 3.10] (take b = g).

Example 4.5 Let C be a hyperelliptic curve with genus g ≥ 2 and D0 a divisor on
C which is the pull-back of a point via the double coverC → P

1. Let D = gD0 and
V = Spec

⊕
n≥0 H 0(X,OC(nD)). Then C ∼= F ⊂ X0. We have pg(V, p) = g by

Pinkham [30, Theorem 5.7].
If we take a general element h ∈ H 0(OX0(−F)), then divX0(h) = F +H , where

H is the non-exceptional part and F ∩H consists of distinct 2g points P1, . . . , P2g .
We may assume that P1 + P2 ∼ D0. Let φ X → X0 be the blowing-up with
center {P3, . . . , P2g} and let Z = (h)E , the exceptional part of divX(h). If we put
Ei = φ−1(Pi) for 3 ≤ i ≤ 2g, then Z = E0 + 2(E3 + · · · + E2g). We can see that
OX(−Z) is generated since a general element of H 0(OX(−2F)) has no zero on H .

Then we have h1(OX(−(g − 1)Z)) ≥ h1(OE0(−(g − 1)Z)) = h1(KC) = 1
and H 1(OX(−gZ)) = 0. It follows from Proposition 2.6 (1) and Proposition 3.2
(2) that qZ(n) = g − n for 0 ≤ n ≤ g. Hence we have r̄(IZ) = pg(V, p) + 1 =
[[(2g − 2)/ gon(E0)]] + 1, nr(IZ) = 1, q(A) = q(A′).

4.1 Homogeneous Hypersurface Singularities

Assume that V ⊂ C
3 is a hypersurface defined by a homogeneous polynomial

f ∈ C[x, y, z] with degree d ≥ 3 (deg x = deg y = deg z = 1) having an isolated
singularity at the origin p ∈ C

3. Then F ∼= {f = 0} ⊂ P
2, g = (d − 1)(d − 2)/2.

Let D = −F |F . Then V = Spec
⊕

n≥0 H 0(OC(nD)). Since m = IF , we have

qF (n) = h1(OY (−nF)) =
∑

m≥n

h1(OF (mD)) =
d−3∑

m=n

(
d − 1 − m

2

)
=
(

d − n

3

)
.

Hence we have nr(m) = r̄(m) = d − 1 by Proposition 3.2. By the definition,
r̄(V , p) ≥ d − 1. On the other hand, by Namba’s theorem (Max Noether’s theorem)
[19, Theorem 2.3.1], we have gon(F ) = d − 1. By Theorem 4.4, we have

r̄(V , p) ≤ [[(2g − 2)/(d − 1)]] + 1 = [[d − 2 − 2/(d − 1)]] + 1 = d − 1.
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Hence we obtain

Theorem 4.6 ([29, 4.1]) nr(m) = r̄(m) = nr(V , p) = r̄(V , p) = d − 1.

Remark 4.7 (See [29, §4]) Suppose that R = ⊕n≥0Rn is a normal graded ring
generated byR1 overR0 = C and V = SpecR. Thenmn = mn. Let a(R) denote the
a-invariant of R (see [2]). If Q is a minimal reduction of m generated by elements
of R1, we can see

ma(R)+2 �= Qma(R)+1 and nr(m) = a(R) + 2 = r̄(m).

If R = C[x, y, z]/(f ) as above, then a(R) = d − 3 (cf. [2, (3.1.6)]).

5 Brieskorn Complete Intersections

In [28], we obtained an explicit expression of r̄(m) for Brieskorn hypersurfaces
using ring-theoretic arguments and gave a classification of Brieskorn hypersurfaces
having elliptic singularities. In this section, we extend these results to the case of
Brieskorn complete intersections, using resolution of singularities.

In the following, we assume that V ⊂ C
m is a Brieskorn complete intersection

define by the following m − 2 polynomials:

qi1x
a1
1 + · · · + qimxam

m (qij ∈ C, i = 3, . . . ,m),

where ai are integers such that 2 ≤ a1 ≤ · · · ≤ am. We also assume that V has an
isolated singularity at the origin p ∈ C

m. Then, since every maximal minor of the
matrix (qij ) does not vanish (see [7, §7]), we may assume that

(qij ) =

⎛

⎜
⎜⎜
⎝

1 0 · · · 0 p1 q1

0 1 · · · 0 p2 q2
...

...
. . .

...
...

...

0 0 · · · 1 pm−2 qm−2

⎞

⎟
⎟⎟
⎠

, (5.1)

where pi, qi �= 0 and piqj �= pjqi for i �= j .

5.1 The Maximal Ideal Cycle, the Fundamental Cycle,
and the Canonical Cycle

We summarize the results in [15] which will be used in this section; those are a
natural extension of the hypersurface case obtained by Konno and Nagashima [9].
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Fig. 1 The weighted dual graph of a Brieskorn complete intersection

In the following, we assume that π : X → V is the minimal good resolution. Since
(V , p) is Gorenstein, the canonical cycle ZKX is an effective cycle.

We define positive integers �, �i , α, αi , ĝ, ĝi , and λi as follows:2

� := lcm(a1, . . . , am), �i := lcm(a1, . . . , âi , . . . , am), where âi is omitted,

αi := �/�i, α := α1 · · · αm, ĝ := a1 · · · am/�, ĝi := ĝαi/ai, λi := �/ai.

We easily see that the polynomials x
ai

i +pix
am−1
m−1 +qix

am
m are weighted homogeneous

polynomials of degree � with respect to the weights (λ1, . . . , λm). Then the
weighted dual graph of the exceptional set E is as in Fig. 1, where

E = E0 +
m∑

w=1

sw∑

ν=1

ĝw∑

ξ=1

Ew,ν,ξ ,

g denotes the genus of the central curve E0, c0 = −E2
0 , and cw,v = −E2

w,ν,ξ (see
[15, 4.4]).

For any Q-cycle B on X and any irreducible component F ⊂ E, let cffF (B)

denote the coefficient of F in B. Let Z(i) = (xi)E .

2Using the notation of [15, §3], we have l = dm, �i = dim, αi = nim, λi = eim, λm = emm = em.
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Theorem 5.1 ([15, 4.4]) We have the following:

Z(i) = λ
(i)
0 E0 +

m∑

w=1

sw∑

ν=1

ĝw∑

ξ=1

λ
(i)
w,ν,ξEw,ν,ξ (1 ≤ i ≤ m),

where λ
(i)
0 and the sequence {λ(i)

w,ν,ξ } are determined as follows:

λ
(i)
0 := λ

(i)
w,0,ξ := λi,

λ
(i)
w,sw+1,ξ :=

{
1 if w = i

0 if w �= i,

λ
(i)
w,ν−1,ξ = λ

(i)
w,ν,ξ cw,ν − λ

(i)
w,ν+1,ξ .

The cycle Z(i) is the smallest one among the cycles Z > 0 such that Z is anti-
nef and cffE0(Z) = λi (cf. [15, 2.1]). In particular, we have MX = Z(m), since
λ1 ≥ · · · ≥ λm.

Theorem 5.2 ([15, 5.3]) We have

ZKX = E + (m − 2)l

α
Z0 −

m∑

w=1

Z(w),

where Z0 is the anti-nef cycle such that cffE0(Z0) = α and Z0(E − E0) = 0.

Theorem 5.3 ([15, 5.1, 5.2, 5.4]) If λm ≥ α, then Zf = Z0 and

pf (V, p) = 1

2
α

{

(m − 2)ĝ − (α − 1)ĝ

l
−

m∑

w=1

ĝw

αw

}

+ 1.

If λm ≤ α, then Zf = MX and

pf (V, p) = 1

2
λm

{

(m − 2)ĝ − (2 �λm/αm� − 1)ĝm

λm

−
m−1∑

w=1

ĝw

αw

}

+ 1.

5.2 The Normal Reduction Numbers

SinceMX = (xm)E by Theorem 5.1,OX(−MX) has no fixed components; however,
it is not generated in general.
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Let H = divX(xm) − MX. Then E + H is simple normal crossing and the set
of the base points of the linear system |OX(−M)| is an empty set or {t1, . . . , tĝm

},
where {tξ } = Em,sm,ξ ∩ H (see Theorem 5.1). Let us look in detail at a point. Let
x, y be the local coordinates at tξ ∈ X such thatE = {x = 0} and H = {y = 0}. We

write ηi = λ
(i)
m,sm,ξ and δ = ηm−1 − ηm. Then δ ≥ 0 and mOX,tξ = (xm−1, xm) =

(xηmy, xηm−1) = xηm(y, xδ).

Proposition 5.4 ([15, 6.4]) The following conditions are equivalent:

(1) δ = 0
(2) The base points of the linear system |OX(−M)| on E is empty.

If δ > 0, each base point can be resolved by a succession of δ blowing-ups at the
intersection of the exceptional set and the proper transform of H .

Let φ : Y → X be the minimal morphism such that mOY is invertible and let
F = φ−1(E). Let Wi = (xi)F (i = 1, . . . ,m), and let MY denote the maximal ideal
cycle on Y and HY the proper transform of H on Y . Then

Wi = φ∗Z(i) for i �= m, Wm = MY = φ∗Z(m) + KY/X, (5.2)

where KY/X = KY − φ∗KX. Now, m is represented by MY and mn = InMY . Fix
an irreducible component Fξ ⊂ F intersecting HY . For any cycle W on Y , we write
γ (W) = cffFξ (W). Note that γ (MY ) is independent of the choice of a component
intersecting HY (see Theorem 5.1) and

γ (Wi) = ηi for i �= m, γ (Wm) = γ (MY ) = ηm + δ = ηm−1. (5.3)

Lemma 5.5 Let (u1, . . . , um) ∈ (Z≥0)
m. For any positive integer n,

m∏

i=1

x
ui

i ∈ mn if and only if
m−2∑

i=1

ui

ai

≥ n − (um−1 + um)

am−1
.

Proof We have
(∏m

i=1 x
ui

i

)
F

= W := ∑m
i=1 uiWi . First we show that

∏m
i=1 x

ui

i ∈
mn if and only if γ (W) ≥ γ (nMY ). Clearly, if W ≥ nMY , then γ (W) ≥ γ (nMY ).
So we show the converse. Let W −nMY = D1−D2, whereD1 and D2 are effective
cycles without common components. By the assumption, D2 has no components of
F intersecting HY . Thus MY D2 = 0. Then 0 ≤ D1D2 − D2

2 = WD2 ≤ 0. Hence
D2 = 0. We have proved the claim.

We have the following (see [9, Lemma 1.2 (4)] for the first equality):

ηi = λi/αm = �/aiαm (1 ≤ i ≤ m − 1). (5.4)
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Then we have

γ (W) − γ (nMY ) =
m−1∑

i=1

uiηi + umηm−1 − nηm−1

= l

αm

(
m−2∑

i=1

ui

ai

+ um−1 + um − n

am−1

)

.

This implies the assertion.

Let P ⊂ A := C[x1, . . . , xm] denote the ideal generated by the polynomials{
x

ai

i + pix
am−1
m−1 + qix

am
m | i = 1, . . . ,m − 2

}
defining V ⊂ C

m. For simplicity,
let P also denote the ideal in C{x1, . . . , xm} generated by these polynomials; so
OV,p = C{x1, . . . , xm}/P . We easily see the following (cf. [23, Theorem 3.1]).

Lemma 5.6 For any 1 ≤ i ≤ m, the quotient ring A/(P + (xi)) is reduced.

Proposition 5.7 For n ∈ Z≥0, let In ⊂ OV,p be an ideal generated by monomials∏m
i=1 x

ui

i such that

m−2∑

i=1

ui

ai

≥ (n/ηm−1) − (um−1 + um)

am−1
.

Then Inηm−1 = mn for n ∈ Z≥0. In particular, mn is generated by monomials.

Proof First we show that G := ⊕
n≥0 In/In+1 is reduced. It follows from (5.3)

and (5.4) that the inequality is equivalent to the following (cf. the proof of
Lemma 5.5):

γ

((
m∏

i=1

x
ui

i

)

F

)

=
m−1∑

i=1

uiηi + umηm−1 ≥ n. (5.5)

Therefore the filtration {In}n∈Z≥0 is induced from the weight filtration of the power
series ring C{x1, . . . , xm} with weight vector (η1, . . . , ηm−1, ηm−1) ∈ Z

m. Let I ⊂
A = C[x1, . . . , xm] denote the ideal generated by the leading form, with respect
to these weights, of the polynomials

{
x

ai

i + pix
am−1
m−1 + qix

am
m | i = 1, . . . ,m − 2

}
.

Then A/I is complete intersection and isomorphic to G (cf. the proof of [23,
Theorem 2.6]). If am−1 = am, then G = A/P . If am−1 < am, then G ∼=
(A/P + (xm))[xm], and thus G is reduced by Lemma 5.6.

Let C = ∑ĝm

ξ=1 Fξ , the sum of the irreducible components of F intersecting HY .
From (5.5), every h ∈ In satisfies (h)F ≥ nC. Now we can apply Lemma 2.9. Since
ηm−1C̃ = MY , we obtain that Inηm−1 = mn.

Let Q = (xm−1, xm) ⊂ OV,p. Then x
ai

i ∈ Q for every i, and thus Q is a minimal
reduction of m (cf. [5, 8.3.6]).
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Theorem 5.8 We have the following.

(1)

nr(m) = r̄(m) =
⌊

am−1

m−2∑

i=1

ai − 1

ai

⌋

.

(2) The image of the monomials
∏m−2

i=1 x
ui

i such that

m−2∑

i=1

ui

ai

≥ n + 1

am−1
and 0 ≤ ui ≤ ai − 1 (i = 1, . . . ,m − 2)

in the vector space mn+1/Qmn form a basis. In particular, dimC(mn+1/Qmn)

is a non-increasing function of n.

Proof Note that Qmn and mn+1 are generated by monomials for every n ≥ 0 by

Proposition 5.7. Let N =
⌊
am−1

∑m−2
i=1 (ai − 1)/ai

⌋
. First we prove that Qmn =

mn+1 for n ≥ N . Let v = ∏m
i=1 x

ui

i ∈ mn+1. By Lemma 5.5, we have

m−2∑

i=1

ui

ai

≥ n + 1 − (um−1 + um)

am−1
= n − (um−1 + um − 1)

am−1
.

Therefore, if um−1 ≥ 1 or um ≥ 1, we have v/xm−1 ∈ mn or v/xm ∈ mn, and hence
v ∈ Qmn. We consider the case that um−1 = um = 0 and ui ≥ ai for some 1 ≤ i ≤
m − 2; we may assume that i = 1. Then it follows that x

u1
1 ∈ x

u1−a1
1 (x

am−1
m−1 , x

am
m ),

since x
a1
1 + p1x

am−1
m−1 + q1x

am
m = 0. We show that w1 := (x

u1−a1
1 x

am−1
m−1 )

∏m−2
i=2 x

ui

i ∈
Qmn. Let w′ = w1/xm−1 = (x

u1−a1
1 x

am−1−1
m−1 )

∏m−2
i=2 x

ui

i . Since

u1 − a1

a1
+

m−2∑

i=2

ui

ai

≥ n + 1

am−1
− 1 = n − (am−1 − 1)

am−1
,

we have w′ ∈ mn by Lemma 5.5. Thus w1 = xm−1w
′ ∈ Qmn. In a similar way, we

also have that w2 := (x
u1−a1
1 x

am
m )

∏m−2
i=2 x

ui

i ∈ Qmn, since n−(am−1−1)
am−1

≥ n−(am−1)
am−1

.

Hence we obtain that v ∈ (w1, w2) ⊂ Qmn. Next assume that um−1 = um = 0 and
ui < ai for 1 ≤ i ≤ m − 2. Then we have

m−2∑

i=1

ai − 1

ai

≥
m−2∑

i=1

ui

ai

≥ n + 1

am−1
.
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However this implies that n ≤ N − 1. Hence we obtain that Qmn = mn+1 for
n ≥ N .

Next we prove that QmN−1 �= mN . Let v := ∏m−2
i=1 x

ai−1
i . Then v �∈ Q, because

OV,p/Q = C{x1, . . . , xm}/(xa1
1 , . . . , x

am−2
m−2 , xm−1, xm). However, since

m−2∑

i=1

ai − 1

ai

≥ N

am−1
,

we have v ∈ mN by Lemma 5.5. Hence we obtain that r̄(m) = N .
From the arguments above, we see that (2) holds, because any non-trivial

linear combinations of those monomials is not in the ideal P + (xm−1, xm) =
(x

a1
1 , . . . , x

am−2
m−2 , xm−1, xm). Since dimC(mn+1/Qmn) is a non-increasing function

of n, we have nr(m) = r̄(m) (cf. Proposition 3.2).

Example 5.9 If m = 3, we have

nr(m) =
⌊

a2(a1 − 1)

a1

⌋
,

dimC(mn+1/Qmn) = �

{
u ∈ Z

∣
∣∣
∣
a1(n + 1)

a2
≤ u ≤ a1 − 1

}

= max

(
a1 −

⌈
a1(n + 1)

a2

⌉
, 0

)
.

The formula for q(m) in [28, 3.8] is generalized as follows.

Proposition 5.10 Let p(n+1) = dimC(mn+1/Qmn) and q(n) = h1(OY (−nMY ))

for n ≥ 0. Then we have the following:

q(n) = pg(V, p) + n

2
(M2

Y − MY KY ) +
n∑

i=1

(n + 1 − i)p(i).

(Note that the same formula holds for any normal surface singularity.)

Proof It is well-known that the multiplicity of OV,p coincides with dimC OV,p/Q

(e.g., [5, 11.2.2]). Thus we have p(1) = dimC(m/Q) = −M2
Y − 1. From the exact

sequence

0 → OY (−MY ) → OY → OMY → 0,

we have

q(1) − q(0) = χ(OMY ) − 1 = χ(OMY ) + M2
Y + p(1) = 1

2
(M2

Y − MY KY ) + p(1).
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For n ≥ 1, it follows from Proposition 3.2 (1) that

q(n) − q(n − 1) = q(1) − q(0) +
n∑

i=2

p(i) = 1

2
(M2

Y − MY KY ) +
n∑

i=1

p(i).

Hence we obtain

q(n) − q(0) = n

2
(M2

Y − MY KY ) +
n∑

i=1

(n + 1 − i)p(i). ��

Remark 5.11 The invariant M2
Y − MY KY can be computed from a1, . . . , am as

follows. First we have M2
Y = −mult(V , p) = −∏m−2

i=1 ai (see [15, 6.3]). On the
other hand, from (5.2), we have

M2
Y + MY KY = M2

X + MXKX + 2(KY/X)2 = 2pa(MX) − 2 − 2δĝm.

We have seen a formula for pa(MX) in Theorem 5.3.

5.3 Elliptic Singularities of Brieskorn Type

We classify the exponents (a1, . . . , am) such that (V , p) is elliptic, applying the
formula for r̄(m).

Theorem 5.12 (V , p) is elliptic if and only if (a1, . . . , am) is one of the follow-
ing.

(1) (a1, a2, a3) = (2, 3, a), a ≥ 6.
(2) (a1, a2, a3) = (2, 4, a), a ≥ 4.
(3) (a1, a2, a3) = (2, 5, a), 5 ≤ a ≤ 9.
(4) (a1, a2, a3) = (3, 3, a), a ≥ 3.
(5) (a1, a2, a3) = (3, 4, a), 4 ≤ a ≤ 5.
(6) (a1, a2, a3, a4) = (2, 2, 2, a), a ≥ 2.

Proof For the case (1)–(6) in the theorem, we can check that α ≥ λm and obtain
pf (V, p) = 1 using Theorem 5.3.

Assume that (V , p) is elliptic. By Theorems 3.9 and 5.8, we have

3 > am−1

m−2∑

i=1

ai − 1

ai

≥ am−1(m − 2)/2 ≥ m − 2.
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Hence m ≤ 4. We first consider the case m = 4. We have a3 < 3, and thus a1 =
a2 = a3 = 2. Then α/λ4 = a4/2 ≥ 1 and pf (V, p) = 1 by Theorem 5.3,

Next assume that m = 3. Then we have r̄(m) =
⌊

(a1 − 1)a2
a1

⌋
≤ 2, and thus

(a1 − 1)(a2 − 3) ≤ 2. If a2 = 2, then a1 = 2 and (V , p) is a rational. Hence a2 ≥ 3
and the list of (a1, a2) is as follows:

(2, 3), (2, 4), (2, 5), (3, 3), (3, 4).

We can see that α ≥ λ3 for those cases. So it follows from Theorem 5.3 that

pf (V, p) = 1

2
{a1a2 − a1 − a2 − (2 �lcm(a1, a2)/a3� − 1) gcd(a1, a2)} + 1.

Let us look at each case.

(1) The case where (a1, a2) = (2, 3). We know that (V , p) is rational if a3 ≤ 5.
Hence a3 ≥ 6. We have α/λ3 = a3/ gcd(6, a3) and pf (V, p) = 1.

(2) The case where (a1, a2) = (2, 4), a3 ≥ 4. We have α/λ3 = a3/4 if 4 | a3,
α/λ3 = a3/2 otherwise, and pf (V, p) = 1.

(3) The case where (a1, a2) = (2, 5), a3 ≥ 5. We have α/λ3 = a3/ gcd(10, a3) and
pf (V, p) = 3 − �10/a3�. Sine pf (V, p) = 1, we have a3 ≤ 9.

(4) The case where (a1, a2) = (3, 3), a3 ≥ 3. We have α/λ3 = a3/3 and
pf (V, p) = 1 for all a3 ≥ 3.

(5) The case where (a1, a2) = (3, 4), a3 ≥ 4. We have α/λ3 = a3/ gcd(12, a3) and
pf (V, p) = 4 − �12/a3�. Sine pf (V, p) = 1, we have a3 ≤ 5.

Hence we have proved the theorem.

From the proof of Theorem 5.12, we obtain that r̄(m) = 2 and pf (V, p) ≥ 2 if
(a1, a2, a3) = (2, 5, a) with a ≥ 10 or (3, 4, a) with a ≥ 6. For the cases (2, 5, a)

with a ≥ 10 and (3, 4, a) with a ≥ 8, letting Q = (y, z2) and I = Q, we have
r̄(I) ≥ 3. Hence we obtain the following.

Proposition 5.13 ([28, 4.5]) r̄(V , p) = 2 if and only if pf (V, p) = 1, except for
the cases (a1, . . . , am) = (3, 4, 6), (3, 4, 7).

For the reader’s convenience, we put some information about the two exceptional
cases above. Both singularities have pg = 3 and pf = 2. The weighted dual graph
Γ1 (resp. Γ2) of {x3 + y4 + z6 = 0} (resp. {x3 + y4 + z7 = 0}) is as in Fig. 2.

Fig. 2 The weighted dual graphs Γ1 and Γ2
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As we have seen above, the equality r̄(V , p) = r̄(m) does not hold in general
(see also Remark 3.7).

Problem 5.1 For a given normal surface singularity (V , p), characterizem-primary
integrally closed ideals I ⊂ OV,p (or, cycles which represent I ) such that r̄(V , p) =
r̄(I). Characterize normal surface singularities (V , p) such that r̄(V , p) = r̄(m).
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