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1 Introduction

This paper deals with curves in surfaces with normal singularities and the interplay
between their topological and algebraic properties.

In this directionwe provide a family of examples of curves in weighted projective
planes using a generalization of the classical Cremona transformations. This allows
us to construct infinitely many pairs of curves in weighted projective planes
defining linearly equivalent divisors and the same local type of singularities, whose
embeddings are not homeomorphic. Moreover, whose complements have non-
isomorphic fundamental groups. This is known in the literature as Zariski pairs when
referred to plane projective curves [2] since Zariski provided the first example of
such a phenomenon in [36]. The curves are obtained from a smooth cubic and three
tangent lines via a weighted Cremona transformation in Sect. 2.4. These groups are
distinguished using two different techniques. In Sect. 3.1 a topological approach
is given by obtaining presentations of the groups. These presentations, which in
general are complicated to calculate, can be derived from those of the original curve
after Cremona transformations in a very explicit geometric way. To complete this
example, we also present a more algebraic approach via cyclic coverings as was
originally used by Zariski and later developed by Steenbrink [32, Lemma 3.14],
Libgober [21], Esnault-Viehweg [14], Vaquié [35], and the first author [2]. Our
method uses a generalization of [14] given in [4], see Sect. 3.3. Section 4 is devoted
to developing some methods to construct rational cuspidal curves in weighted
projective planes which will be useful in the later sections.

The second part of the paper focuses on local properties of surface singularities.
Our main goal is to provide examples of surface germs whose link is a rational (or
even integral) homology sphere. A source of examples is given by superisolated
singularities. In Sect. 5 we introduce the determinant of a surface singularity as the
absolute value of the determinant of the intersection matrix of a resolution. This
invariant of the surface singularity can also be calculated using a partial resolution,
as shown in Sect. 5.1. Note that a surface singularity has a rational homology sphere
link if and only if the dual graph of a (partial) resolution is a tree whose vertices
are rational curves. Moreover, a rational homology sphere link is integral if the
determinant of the singularity is one. We use this criterion to study weighted Lê–
Yomdin singularities and to describe infinite families with rational and integral
homology sphere links.

In particular, following the ideas in [1, 26], one can use the Zariski pairs obtained
in Sect. 3 to construct weighted Lê–Yomdin singularities having the same Alexander
polynomials, the same abstract topology, but different embedded topology. It
would be hopeless to compute the Jordan form of the complex monodromy (the
actual invariant that distinguishes the embedded topology) without the use of the
techniques in this paper.

The last part is devoted to solving two problems on surface singularities with
a rational sphere link. Namely, in Sect. 6.1 we study Brieskorn–Pham surface
singularities {xa + yb + zc = 0} ⊂ C

3 as a special case of weighted Lê–Yomdin.
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We illustrate how to recover classical results in a simple way, namely to characterize
which ones have a rational sphere link and show that the only integral homology
spheres occur in the classical case, that is, whenever (a, b, c) are pairwise coprime.
Besides Brieskorn–Pham singularities, more examples are provided in Sect. 6.2
using weighted Cremona transformations and Kummer covers.

András Némethi asked us if it was possible to find singularities with integral
homology sphere links in the realm of weighted Lê–Yomdin singularities. The
only ones we found are the already known Brieskorn–Pham singularities. As an
alternative, in Sect. 6.3, a family of surface singularities is presented following [27],
see also [29] for the splice diagram approach. We give conditions for this family
to have a rational homology sphere link. Moreover, this family provides infinitely
many examples of integral homology sphere links which may answer the question
by András Némethi in the affirmative.

2 Quotient Singularities and Weighted Cremona
Transformations

The main objects of this work will be weighted projective planes (and lines) and
quotient singularities. A quotient singularity is a normal space which is locally
isomorphic to (X, 0) where X is the quotient of Cn by the action of a cyclic group
μm ⊂ C∗ given by

ζ · (x1, . . . , xn) = (ζ a1x1, . . . , ζ
anxn), ζm = 1, (x1, . . . , xn) ∈ C

n.

If gcd(m, a1, . . . , an) = 1, the action is faithful. We denote this singularity by
1
m

(a1, . . . , an). There are some trivial equivalences of quotient singularities such as
1
m

(a1, . . . , an) = 1
m

(da1, . . . , dan) if gcd(m, d) = 1. A less obvious one is given
by

1

m
(a1, . . . , an) ∼= d

m

(
a1,

a2

d
, . . . ,

an

d

)
if d = gcd(m, a2, . . . , an)

(see [12] as a general reference on the subject).

2.1 Curves in Quotient Surface Singularities

We introduce some notation for germs of curves in a quotient surface singularity
S := 1

d
(a, b) (with a, b, d pairwise coprime and d > 1). Let π : C2 → S be

the quotient map. Any germ of curve C ⊂ S is defined as the zero locus of a non-
constant equivariant germ f ∈ C{x, y}, that is, a germ satisfying f (ζ · (x, y)) =
ζ kf (x, y) for some k = 0, . . . , d − 1. For a fixed k, the collection of all such
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equivariant germs inherits anOS-module structure as a subset ofC{x, y} and will be
denoted byOS(k). Note that an equivariant germ is a function on S onlywhen k = 0,
that is, OS = OS(0).

Definition 2.1 A germ of curve C is said to be quasi-smooth if C is smooth as
an abstract curve. If, in addition, a defining germ for C can be found to have
multiplicity one, then C is said to be extremely quasi-smooth.

Remark 2.2 There are simple characterizations of the above concepts in terms of a
minimal resolution Ŝ → S; recall that its dual graph is a bamboo whose vertices
represent smooth rational divisors. A curve is quasi-smooth if its strict transform
in Ŝ is a curvette of an exceptional divisor, that is, smooth and transversal to it at a
smooth point of the exceptional locus. Moreover, it is extremely quasi-smooth if this
divisor is either end of the bamboo. In the particular case 1

d
(1, 1), any quasi-smooth

curve is extremely quasi-smooth, and any linear form can be the multiplicity-one
component of f . Otherwise, in 1

d
(a, b) with (a, b) �= (1, 1) the equivariant part of

multiplicity 1 of an extremely quasi-smooth f can only be given by the eigenspaces
of the cyclic action, in our notation, either x or y.

2.2 Weighted Projective Planes

In this section we briefly describe weighted projective planes in order to fix some
notation. A weight is a triple ω := (e1, e2, e3) ∈ Z

3
>0 such that gcdω = 1. The

weighted projective plane P2
ω is a normal surface obtained as the quotient ofC3 \{0}

by the action of C∗ given by

t · (x, y, z) = (te1x, te2y, te3z), t ∈ C
∗, (x, y, z) ∈ C

3 \ {0}.

Weighted projective lines are defined in a similar way. The symbol [x : y : z]ω
stands for points in P2

ω, for orbits in C3 \ {0} or their closure in C3. This variety is
covered by three quotient charts. One of them is

1
e3

(e1, e2) P2
ω \ {z = 0}

[(x, y)] [x : y : 1]ω.

Ψω,3

The other two quotient charts are defined accordingly.
Define dk := gcd(ei, ej ) and αk := ek

didj
, {i, j, k} = {1, 2, 3}. Note that η :=

(α1, α2, α3) are pairwise coprime. According to the properties described above, the
map

P2
ω P2

η

[x : y : z]ω [xd1 : yd2 : zd3]η

πη,ω

(2.1)
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is well defined since

t ·[x :y :z]ω =[te1x : te2y : te3z]ω �→[td1e1xd1 : td2e2yd2 : td3e3zd3 ]η = td1d2d3 ·[xd1 :yd2 :zd3 ]η,

and diei = αid1d2d3. Moreover, one can easily check that it is an isomorphism.
One may consider P2

ω and P2
η in a slightly different way (see also [12]). The plane

P2
η has at most 3 singular points at Px := [1 : 0 : 0]η (if α1 > 1), Py := [0 : 1 : 0]η

(if α2 > 1), and Pz := [0 : 0 : 1]η (if α3 > 1). The plane P2
ω is an orbifold where

the quotient charts Ψω,i are not normalized; the associated analytic variety to P
2
ω is

P
2
η since the normalization of the source of Ψω,i is precisely the source of Ψη,i .

2.3 Weighted Blow-ups

Let us consider now ω := (e1, e2) ∈ Z2
>0, gcdω = 1. The ω-weighted blow-up

of C2 at the origin is the map πω : Ĉ2
ω → C2 where

Ĉ
2
ω := {(x, u) ∈ C

2 × P
1
ω | x ∈ u}.

This normal variety is represented with two quotient charts. One of them is

Ψ̂ω,2 : 1

e2
(e1,−1) → Ĉ

2
ω, (x, y) �→ ((xye1, ye2), [x : 1]ω);

the other one is analogous and modeled on 1
e1

(−1, e2). The exceptional divisor of
πω is a weighted projective line which contains the singular points (0, [1 : 0]ω) (if
e1 > 1) and (0, [0 : 1]ω) (if e2 > 1) of the surface Ĉ2

ω. Note that the curvettes of
this divisor are extremely quasi-smooth if either e1 or e2 equal 1.

Let us study now three-dimensional weighted blow-ups. We recover the notation
introduced in Sect. 2.2 for a weight ω and its normalization η, both in Z

3
>0. We

consider Πω : Ĉ3
ω → C3 where

Ĉ
3
ω := {(x, u) ∈ C

3 × P
2
ω | x ∈ u}.

The normal variety is now represented with three charts. One of them is

Ψ̂ω,3 : 1

e3
(e1, e2,−1) → Ĉ

3
ω, (x, y, z) �→ ((xze1, yze2, ze3), [x : y : 1]ω);

the other two charts can analogously be defined and have as domains the quotients
1
e1

(−1, e2, e3) and 1
e2

(e1,−1, e3).

Let us study the local structure of Ĉ3
ω at Eω := Π−1

ω (0); since Πω is an
isomorphism outside this exceptional divisor the points not in Eω are smooth. Note
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that Eω is naturally isomorphic to P
2
ω; in addition by (2.1), one has P2

ω
∼= P

2
η. For

the sake of simplicity we will denote the elements of Eω only by their ω-quasi-
homogeneous coordinates. Let us denote:

Px = [1 : 0 : 0]ω, Py = [0 : 1 : 0]ω, Pz = [0 : 0 : 1]ω,

X̌ = {[0 : y : z]ω | yz �= 0}, Y̌ = {[x : 0 : z]ω | xz �= 0}, Ž = {[x : y : 0]ω | xy �= 0}.

In order to provide a stratification of Eω in terms of the singular points of the
ambient space we need a description of the singular locus.

Proposition 2.3 Let P = [x0 : y0 : 1]ω ∈ Eω ∩ Ψ̂ω,3(C
3) ⊂ Ĉ3

ω. The following
properties hold:

(1) If x0y0 �= 0 then (Ĉ3
ω, P ) is smooth.

(2) If P ∈ X̌, i.e. y0 �= 0 and x0 = 0, then (Ĉ3
ω, P ) is isomorphic to the germ at the

origin of 1
d1

(e1, 0,−1).

(3) If P ∈ Y̌ , i.e. x0 �= 0 and y0 = 0, then (Ĉ3
ω, P ) is isomorphic to the germ at the

origin of 1
d2

(0, e2,−1).

(4) If P = Pz, i.e. x0 = y0 = 0, then (Ĉ3
ω, Pz) is isomorphic to the germ at the

origin of 1
e3

(e1, e2,−1).

Proof It is only necessary to prove (2). Note that P is obtained as the image by Ψ̂ω,3
of (0, y0, 0) ∈ 1

e3
(e1, e2,−1). The isotropy subgroup of (0, y0, 0) by the action is

the cyclic group of order d1 = gcd(e2, e3). Hence at a neighborhood of (0, y0, 0)
the space looks like 1

d1
(e1, e2,−1) = 1

d1
(e1, 0,−1).

Remark 2.4 A similar statement holds for the other charts. Note that a point
satisfying property (2) above, say P = [0 : 1 : 1]ω belongs in the image of
Ψ̂ω,3, P = Ψ̂ω,3(0, 1, 0) as stated in Proposition 2.3, but also in the image of
Ψ̂ω,2, P = Ψ̂ω,2(0, 0, 1). Note that the notation for the quotient types given above
do no match, that is, 1

d1
(e1, 0,−1) if considered in Ψ̂ω,3(C

3) and 1
d1

(e1,−1, 0)

if considered in Ψ̂ω,3(C
3). To avoid this ambiguity we will simply say that given

P ∈ X̌, then (Ĉ3
ω, P ) is isomorphic to the product of (C, 0) and the germ at the

origin of 1
d1

(e1,−1). A similar property holds for Y̌ , Ž.

Remark 2.5 If d1 = e3, i.e., if e3 divides e2, in the proof of Proposition 2.3 the
condition y0 �= 0 is not needed and Pz behaves as the points in X̌. A similar property
holds for the other pairs of axes and vertices.

Notation 2.6 We fix the following notation for the strata of Eω.

• two-dimensional stratum. The stratum T is the intersection of Eω with the smooth
subvariety of Ĉ3

ω; it contains {[x : y : z]ω | xyz �= 0}. It contains also X̌ (resp. Y̌ ,
resp. Ž) if d1 = 1 (resp. d2 = 1, resp. d3 = 1) and Px (resp. Py , resp. Pz) if
e1 = 1 (resp. e2 = 1, resp. e3 = 1).
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• one-dimensional strata. Following Proposition 2.3 and the above remarks we set:

Lx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∅ if d1 = 1

X̌ ∪ {Py} if 1 < d1 = e2 �= e3

X̌ ∪ {Pz} if 1 < d1 = e3 �= e2

X if 1 < d1 = e2 = e3

X̌ otherwise.

The remaining strata Ly and Lz are defined accordingly.
• zero-dimensional strata.

Px =
{

∅ if e1 divides either e2 or e3,

{Px} otherwise.

The remaining strata Py and Pz are defined accordingly.

2.4 Weighted Cremona Transformations

The most well-known Cremona transformation of P2 corresponds to the birational
map [x : y : z] �→ [yz : xz : xy]; geometrically, this map is the composition
of the blow-ups at [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and the contractions of the
strict transforms of the lines x = 0, y = 0, z = 0 which become pairwise disjoint
(−1)-lines in the blown-up plane.

In this section we generalize this transformation to a birational map from a
weighted projective plane to P

2. Let us fix P
2
ω, ω := (e1, e2, e3), where e1, e2, e3

are pairwise coprime, i.e., ω = η. In order to stress this property we will use
the notation ei = αi , i = 1, 2, 3. Consider two positive integers β1, β2 such that
α1β1 + α2β2 = α3 + α1α2 (they exist from standard semigroup properties). These
arithmetic data provide the following map

P2
ω P2

[x : y : z]ω [yα1z : xα2z : xβ1yβ2],

Φω,β1,β2

which is a well-defined rational map (not a morphism) since the three coordinates
have ω-degree equal to α1α2 + α3. It is in fact a birational map whose inverse is
given by

P2 P2
ω

[x : y : z] y
1
α2 z

α1
α3 : x

1
α1 z

α2
α3 : x

β2
α1 y

β1
α2

ω

.
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We will show that this map is well defined as long as the radicals x
1

α1 , y
1
α2 , z

1
α3 are

chosen consistently throughout the formula. Assume x0 (resp. y0, z0) is such that
x

α1
0 = x (resp. yα2

0 = y, zα3
0 = z) and choose for instance x1 = ζα1x0. Let α̂2 ∈ Z

be such that α2α̂2 ≡ 1 mod α1. As a consequence, the following congruences hold:
α3α̂2 ≡ (α3 + α1α2)α̂2 ≡ (α1β1 + α2β2)α̂2 ≡ β2 mod α1. Then

[y0zα1
0 :x1zα2

0 :xβ2
1 y

β1
0 ]ω =[y0zα1

0 : ζα1x0z
α2
0 : ζ β2

α1
x

β2
0 y

β1
0 ]ω =

[(ζ α̂2
α1

)α1y0z
α1
0 : (ζ α̂2

α1
)α2x0z

α2
0 : (ζ α̂2

α1
)α3x

β2
0 y

β1
0 ]ω = [y0zα1

0 : x0z
α2
0 : x

β2
0 y

β1
0 ]ω.

A similar argument applies to other choices of roots of y
1
α2 and z

1
α3 . These equations

completely determine the birational map, but a more geometric description will be
useful.

Proposition 2.7 The map Φω,β1,β2 is the composition of the following blow-ups
and downs:

(1) Three simultaneous blow-ups:

(a) Type (α1, α2) at [0 : 0 : 1]ω ∼= 1
α3

(α1, α2).
(b) Type (1, β1) at [0 : 1 : 0]ω isomorphic to

1

α2
(α1, α3)= 1

α2
(α1, α1α2 + α3)= 1

α2
(α1, α1β1 + α2β2)= 1

α2
(1, β1).

(c) Type (1, β2) at [1 : 0 : 0]ω isomorphic to

1

α1
(α2, α3)= 1

α1
(α2, α1α2 + α3)= 1

α1
(α2, α1β1 + α2β2)= 1

α1
(1, β2).

(2) Three simultaneous blow-downs:

(a) Type (1, 1) at [0 : 0 : 1].
(b) Type (α2, β1) at [1 : 0 : 0].
(c) Type (α1, β2) at [0 : 1 : 0].

Proof Let us start with the three blow-ups in P2
ω. We obtain a normal rational

surface S. The preimage of the three axes appear in Fig. 1, containing the strict
transforms Lx,Ly,Lz of the lines and the exceptional components Ex,Ey,Ez.
The self-intersections and the type of the singular points are computed using [8,
Theorem 4.3].

The strict transforms of the lines coincide with the exceptional components of
a (α1, β2)-blowing-up (Ly), a (α2, β1)-blowing-up (Lx ) and a standard blowing-up
(Lz). The result of the triple blowing-down is P2.

This geometric expression will be useful for the study of curves in P2
ω via their

transforms in P2.
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1
a1

b2, 1 a3
a1a2

Ez

1
a2

b1, 1

a1
b2

Ex

1
a1b2

1
b2

a1, 1

Ly
1

a2b1
1
b1

a2, 1

Lx

a2
b1

Ey
1
Lz

Fig. 1 Weighted blow-ups of P2 in S

3 Zariski Pairs on Weighted Projective Planes

In this section, we are going to use the Cremona transformations in Sect. 2.4 to
produce Zariski pairs in weighted projective planes. By a Zariski pair we mean
two curves embedded in the same surface whose combinatorics are the same, but
whose embeddings are non-homeomorphic. As in the classical case of curves in
the projective plane, the combinatorics of a curve in a weighted projective plane
is encoded by the degrees of its irreducible components and the dual graph of
a minimal resolution of the curve (where the strict transforms of the irreducible
components of the curve are marked).

In this section we will produce families of Zariski pairs of irreducible curves.
Let us start with the combinatorics defined by a smooth projective cubic and three
tangent lines at inflection points. Note that a generic choice of a smooth cubic can
be made so that such lines are non-concurrent and hence the remaining singular
points are three nodes. This combinatorics admits a Zariski pair of sextics, see [2],
and their embeddings are distinguished by the algebraic property of whether or not
the inflection points of the cubic, that is, the three non-nodal singular points of
the sextic, which have type A6, are aligned. The image by a standard Cremona
transformation of the smooth cubics (using the three tangent lines at the axes)
produces a Zariski pair of irreducible sextics with three E6-points. In this case, the
embeddings can be proven to be different showing that the fundamental group of
their complements are not isomorphic.

Our strategy is to replace this Cremona transformation by the inverse of those
described in Sect. 2.4.
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3.1 Fundamental Groups of Complements

Let us start by recalling the two possible fundamental groups of the complements
of the sextic curves given as the union of a smooth cubic and three tangent lines at
inflection points.

Proposition 3.1 ([3]) Let C be a smooth cubic with three tangent lines X,Y,Z at
inflections which are not aligned. Then, π1(P

2 \ (C ∪ X ∪ Y ∪ Z)) is abelian.

In [3], the fundamental group of the other member of the Zariski pair is also
computed; since it is non-abelian, this invariant distinguishes the two members.
For our purpose, we need a more geometrical presentation of the group involving
meridians for all the irreducible components and such that the meridians close to
the nodes are made explicit. Let us recall the concept of meridian in order to clarify
what we mean by meridians close to a singular point.

Definition 3.2 Let Z be a connected quasi-projective manifold and let H be a
hypersurface of Z. Consider P ∈ Z \ H and K an irreducible component of H .
A homotopy class γ ∈ π1(Z \ H ; P) is called a meridian about K with respect to
H if γ = [δ] for some loop δ satisfying the following:

(1) there is a smooth complex analytic disk Δ ⊂ Z transverse to H such that
Δ ∩ H = {P ′} ⊂ K (transversality implies that P ′ is a smooth point of H ).

(2) there is a path α in Z \ H starting at P and ending at some point P ′′ ∈ ∂Δ.
(3) δ = α ∗ β ∗ α, where the operation ∗ here means concatenation of paths from

left to right, β is the closed path obtained by traveling from P ′′ along ∂Δ in the
positive direction and α represents the path α traveled in the opposite direction,
that is, α(t) := α(1 − t).

It is well known that meridians with respect to the same irreducible component
define a conjugacy class of members of the fundamental group.

Example 3.3 Let Z = C2 and H = {xy = 0} and let P := (1, 1). The paths
μx,μy : [0, 1] → Z \ H defined by

μx(t) = (e2iπt , 1), μy(t) = (1, e2iπt ),

definemeridianswith respect to the irreducible components ofH (for which the path
α is trivial). They commute as elements in the fundamental group π1(Z \ H ; P). If
Z is quasi-projective surface and H is a curve containing a node, two meridians are
close to the node if there is a common path α from the base point of π1(Z \ H ; P)

to a point close to the node such that the β-paths look like in this example.

Proposition 3.4 ([6]) Let C be a smooth cubic with three tangent lines X,Y,Z at
inflections which are aligned. Then, π1(P

2 \ (C ∪ X ∪ Y ∪ Z)) is

〈c, �x, �y , �z | [�x, �y ]=[�y, �z]=[�z, �x ]=[c, �−1
x �z]=[c, �−1

y �z]=c�xc�yc�z =1〉
(3.1)
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where c is a meridian of C, and �x, �y, �z are meridians of X,Y,Z, respectively;
moreover the meridians of the lines correspond to meridians close to the double
points.

Let us fix Φ := Φω,β1,β2 as in Sect. 2.4, and let us denote by C̃ ⊂ P2
ω the strict

transform of the smooth cubic C by Φ, where the lines X,Y,Z have equations
x = 0, y = 0, z = 0, respectively. Consider the following three homogeneous
polynomials of degree 3

Hλ(x, y, z) := x3 + y3 + z3 + 3xy(λ−1x + λy) + 3xz(x + z) + 3yz(λ−1y + λz),

where λ3 = 1. The curve Cλ = {Hλ = 0} is a smooth cubic which is tangent to the
line Lx at the inflection point [0 : 1 : −λ] and analogously for Y at [−1 : 0 : 1], and
Z at [1 : −λ : 0]. Note that for the cubic C1 the three inflection points are contained
in the line x +y + z = 0. However, for the smooth cubic Cexp 2iπ

3
the three inflection

points are not aligned.

Corollary 3.5 In the non-aligned case, π1(P
2
ω\C̃) is isomorphic to Z/3(α1α2+α3).

Proof The space P2
ω \ C̃ is homeomorphic to S \ (Ĉ ∪ Lx ∪ Ly ∪ Lz) (see Fig. 1)

and the space P2 \ (C ∪ X ∪ Y ∪ Z) is homeomorphic to S \ (Ĉ ∪ Lx ∪ Ly ∪ Lz ∪
Ex ∪ Ey ∪ Ez), where Ĉ denotes the strict transform of C in S. As a consequence of
[17, Lemma 4.18] the kernel of the epimorphism

π1(P
2 \ (C ∪ X ∪ Y ∪ Z)) � π1(P

2
ω \ C̃) (3.2)

is the normal subgroup generated by the meridians of Ex,Ey,Ez in S. Since the
source is an abelian group by Proposition 3.1, the group π1(P

2
ω \ C̃) is abelian as

well. Hence it coincides with H1(P
2
ω \ C̃;Z) ∼= Z/ deg(C̃), since C̃ contains the

vertices of P2
ω.

In order to compute the other fundamental group we need a technical result.

Lemma 3.6 Let π : Ĉ2
(α1,α2)

→ C2 be the (α1, α2)-blow-up of the origin in C2

and let E denote its exceptional component. Let X,Y ⊂ C2 be the axes (curves of
equations x = 0, y = 0, respectively), and let us keep this notation for their strict
transforms. Let U := C2 \ (X ∪ Y ) ≡ Ĉ2

(α1,α2)
\ (E ∪ X ∪ Y ).

If μX,μY ,μE denote meridians of the respective curves in π1(U) ∼= ZμX ⊕
ZμY , then (multiplicative notation) μE = μ

α1
X μ

α2
Y .

Proof Consider (1, 1) as the base point, then μX is the loop t �→ (e2iπt , 1), while
μY is the loop t �→ (1, e2iπt ). Let us pick a chart of Ĉ2

(α1,α2)
, say

1
α1

(−1, α2) C2

[(x, y)] (xα1, xα2y).
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The base point in the chart is the class of (1, 1); the equation of E is x = 0 and
hence μE is represented by t �→ [(e2iπt , 1)]. Hence, in C2 is represented by t �→
(e2iα1πt , e2iα2πt ) and the result follows.

Proposition 3.7 In the aligned case, π1(P
2
ω \ C̃) is isomorphic to Z/3(α1α2 + α3)

if 2 divides α1α2α3β1β2 and to

〈�, u | �α1α2+α3 = 1, u3 = �2〉 (3.3)

otherwise. This group is a central extension of Z/2 ∗ Z/3 by a cyclic group of
order α1α2+α3

2 .

Proof Following the proof of Corollary 3.5, the epimorphismdescribed in (3.2) also
holds in this case. Hence a presentation of π1(P

2
ω \ C̃) can be given once meridians

of Ex,Ey,Ez are written in terms of the generators provided in (3.1). Since the
meridians �x, �y, �z of the lines in the presentation (3.1) are homotopic to meridians
close to the double points, by Lemma 3.6 we have that �x�y is a meridian of Ez,

�
α1
x �

β2
z is a meridian of Ex , and �

α2
y �

β1
z is a meridian of Ey . Hence a presentation of

π1(P
2
ω \ C̃) can be obtained by adding the relations

�x�y = �α1
x �β2

z = �α2
y �β1

z = 1 (3.4)

to the presentation given in (3.1).
Finally, let us simplify this presentation. As a first step one can eliminate �x ,

since �x = �−1
y . Also, choose α̂1, α̂2 ∈ Z such that α2α̂1 − α1α̂2 = 1. Note that

�y, �z commute; then the remaining two relations in (3.4) become

�−α1
y �β2

z = �α2
y �β1

z = 1 �⇒
{
1 = �

α1β1+α2β2
z = �

α1α2+α3
z ,

�y = �
−(α̂1β2+α̂2β1)
z .

In fact, this is an equivalence. Let us denote � := �z and u := c�. Since [c, �y�] =
[c, �−1

y �] = 1, one has

1 =c�−1
y c�yc� = c�−1

y c�y��
−1c� = c�−1

y (�y�)c�
−1c� ⇐⇒

1 =(c�)2c�−1 = (c�)3�−2 ⇐⇒ �2 = u3.

Hence π1(P
2
ω \ C̃) admits a presentation

〈�, u | �α1α2+α3 = 1, [u, �α̂1β2+α̂2β1−1] = 1, u3 = �2〉. (3.5)

Note that, using �2 = u3, the relation [u, �α̂1β2+α̂2β1−1] = 1 can be either eliminated
or replaced by [u, �] = 1 depending on the parity of α̂1β2 + α̂2β1. In addition, �

can also be eliminated using �α1α2+α3 = 1 and u3 = �2 in case α1α2 + α3 is odd. In
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particular, if α̂1β2+ α̂2β1 is even or α1α2+α3 is odd, then (3.5) becomes an abelian
group. Otherwise, one obtains the presentation (3.3).

It is immediate to verify that α̂1β2 + α̂2β1 is odd and α1α2 + α3 even if and only
if α1α2α3β1β2 is odd, which ends the proof.

Corollary 3.8 The derived subgroup F of π1(P
2
ω \ C̃) (in the non-abelian case) is

the direct product of Z/(
α1α2+α3

2 ) and a free group of rank 2. The characteristic
polynomial of the action of the monodromy on F/F ′ ⊗Z C is t2 − t + 1.

3.2 A Family of Zariski Pairs of Irreducible Weighted
Projective Curves

Summarizing the previous section, let ω = (α1, α2, α3) be pairwise coprime
positive integers, and β1, β2 such that α1β1 + α2β2 = α1α2 + α3. Consider C a
smooth projective cubic and Φ1 (resp. Φ2) the weighted Cremona transformation
from P

2
ω to P2 with respect to three tangent lines to C at aligned (resp. non-aligned)

inflection points. Let us denote by Φ̃∗
i (C) the strict transform of C by the Cremona

transformation Φi .

Theorem 3.9 Under the conditions above, if α1α2α3β1β2 is odd then (Φ̃∗
1 (C),

Φ̃∗
2 (C)) is a Zariski pair of irreducible weighted projective curves of degree 3(α1α2+

α3) in P2
ω.

Proof Since both Φi , i = 1, 2 are birational and C is irreducible, then Φ̃∗
i (C), i =

1, 2 are both irreducible as well. Also, the singularities of Φ̃∗
i (C) are determined

locally by the singularities of the union of C and the lines used for the Cremona
transformation Φi . Hence, Φ̃∗

1 (C) and Φ̃∗
2 (C) have the same combinatorics. Finally,

if α1α2α3β1β2 is odd, then by Proposition 3.7 and Corollary 3.5 the fundamental
groups of their complements are not isomorphic. This ends the proof.

3.3 Cyclic Covers and Their Irregularity à la Esnault–Viehweg

The purpose of this section is to prove Theorem 3.9 via a generalization of the
Alexander polynomial method, that is, the calculation of invariants associated
with cyclic covers of the weighted projective plane ramified along the curves. In
particular, we will calculate the dimension of the eigenspaces of the homology
in degree 1 of the cover with respect to the action of the deck transformation.
This approach was originally used by Zariski [36] for sextics with six cusps in
the projective plane. Later on, Libgober [21] and Esnault [13] made significant
progress in this direction for cyclic covers and projective plane. Also Esnault-
Viehweg [14] gave the tools that allowed the first author in [2], Sabbah [31], and
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Loeser-Vaquie [23] to find descriptions of the irregularity of cyclic covers. This
approachwas extended by Libgober [22] for abelian covers. The approach presented
here is a generalization of Esnault-Viehweg’s and was developed by the authors for
cyclic covers of surfaces with abelian quotient singularities and Q-resolutions (or
partial resolutions) in [4].

Let ρ : X → P2
ω be the cyclic cover of P2

ω ramified along a reduced curve C of
degree d . Consider X̌ = ρ−1(P2

ω \ (C ∪ SingP2
ω)) the unramified part of the cover

and let σ : X̌ → X̌ be a generator of the monodromy of the unramified cover.
Let π : Y → P2

ω be aQ-embedded resolution of C. For P ∈ Sing C, let ΓP be the
dual graph of the exceptional divisor of π over P . For any v vertex of ΓP we will
denote by Ev the associated exceptional divisor over P and by mv (resp. νv − 1) the
coefficient of Ev in the divisor π∗C (resp. in Kπ , the relative canonical divisor).

The following result describes a method to recover the dimension of the
different eigenspaces of H 1(X,C) with respect to the monodromy action (or deck
transformation of the cover). A more general result can be found in [4, Theorem 4.4]
for non-reduced divisors, but we state it here for covers associated with reduced
divisors.

Theorem 3.10 ([4, Theorem 4.4]) The dimension of the eigenspace of σ ∗ acting

on H 1(X;C) for the eigenvalue e
2iπk

d , 0 < k < d , equals dim cokerπ(k) +
dim cokerπ(d−k) where

π(k) : H 0
(
P
2
ω,O

P2w

(
kH + K

P2w

))
−→

⊕
P∈SingC

O
P2ω,P

(
kH + K

P2ω

)

M(k)

C,P

,

is naturally defined given H a divisor of degree 1, KP2ω
denotes the canonical divisor,

and M(k)

C,P
is the following OP2ω,P -module of quasi-adjunction

M(k)

C,P
:=

{
g ∈ O

P2ω,P

(
kH + K

P2ω

) ∣∣∣∣ multEv π∗g >
kmv

d
− νv, ∀v ∈ ΓP

}
.

Note that the module of quasi-adjunction M(k)

C,P
is a submodule of the module

of equivariant germs OP2ω,P (�) for some � = 0, . . . , d − 1 as defined in Sect. 2.1,
namely, � is the local class of the divisor kH + KP2ω

at P . Our purpose will be to

calculate dim cokerπ(k) + dim cokerπ(d−k) for certain k and d = 3(α1α2 + α3) for
the d-cyclic cover of the curves in the family presented in Sect. 3.1.

Under the conditions of Theorem 3.9, that is, α1α2α3β1β2 odd, let us consider
the curve C̃λ := Φ̃∗

ω,β1,β2
Cλ as defined in Sect. 3.1. This curve has, in general, three

singular points at the vertices Px, Py, Pz. Recall that for ζ := exp 2iπ
3 an easy

computation given in Corollary 3.5 shows that the fundamental group of P2
ω \ C̃ζ

is abelian and hence the first cohomology group of any cyclic cover ramified along
C̃ζ vanishes.
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Fig. 2 A Q-resolution of
(C̃, Pz) Evz Ew

1
a1

a3,a2
1
a2

a3,a1

1
3 1,1

E2
w

1
3E2

vz
3a1a2 a3

a1a2

In order to understand the maps π(k) and the corresponding modules of quasi-
adjunctionM(k)

C̃,P
described in Theorem 3.10 one needs to study the singular points

of C̃ := C̃1 in P2
ω. Recall that Sing C̃ ⊇ {Px, Py, Pz}. More precisely, we will restrict

our attention to the case k
d

= 5
6 . Since d = 3(α1α2 + α3), the degrees of the curves

involved in π(k) is

dk = 5d

6
− (α1 + α2 + α3) = 5α1α2 + 3α3

2
− (α1 + α2).

Proposition 3.11 A Q-resolution of (C̃, Pz) has a dual graph with two vertices
and its exceptional set is shown in Fig. 2. Then M(k)

C̃,Pz

, k = 5d
6 , is defined by the

following conditions on germs g ∈ O
P2ω,Pz

(dk):

multEvz
π∗g ≥ 5α1α2 − 2(α1 + α2)

2α3
+ 1

2
, multEw

π∗g ≥ 15α1α2 − 6(α1 + α2)

2α3
+ 2.

Proof The result is purely local, so one can assume C is the cubic zx2−(y+x)3 = 0
at the flex [1 : −1 : 0]. Then, the local equation of C̃ at [0 : 0 : 1]ω, regarded as
[(0, 0)] ∈ 1

α3
(α1, α2), is xβ1yβ2+2α1 − (xα2 + yα1)3 = 0. Note that α1β1 + α2(β2 +

2α1) = 3α1α2 + α3 > 3α1α2. Hence the Newton polygon of this equation is a
segment of slope −α1

α2
, and we perform an (α1, α2)-blowing-up. Since we start from

a cyclic point one chart of this blow-up is given by

(x, y) �→ (x
α1
α3 , x

α2
α3 y),

i.e., the total transform is x
3α1α2

α3 (xyβ2+2α1 − (1 + yα1)3) = 0. We denote this
exceptional divisor as Evz . Hence mvz = 3α1α2

α3
and after a change of coordinates

the strict transform (through a smooth ambient point) has equation x − y3 = 0.
One can check that the multiplicity of the relative canonical divisor is νvz =

α1+α2
α3

. To complete the resolution, we perform a (3, 1)-blow up, producing a new

component Ew for which mw = 3
(
3α1α2

α3
+ 1

)
and νw = 3α1+α2

α3
+ 1.
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By definition, the module of quasi-adjunctionM(k)

C̃,Pz
is a submodule of

Oz(dk) := OP2ω,Pz
(dk) , dk = 5α1α2 + 3α3

2
− (α1 + α2).

given by the germs g ∈ Oz(dk) satisfying

multEvz
π∗g >

kmvz

d
− νvz = 5α1α2 − 2(α1 + α2)

2α3
,

multEw π∗g >
kmw

d
− νw = 15α1α2 + 3α3 − 6(α1 + α2)

2α3
.

(3.6)

Finally, note that the class of g imposes extra conditions, namely, if H = V(h),

h ∈ Oz(1), then multEv π∗
(

g

hdk

)
must be an integer for v ∈ {vz,w}. Using (3.6)

we can write multEvz
π∗g = 5α1α2−2(α1+α2)

2α3
+ εvz , for some εvz ∈ Q>0. Hence,

multEvz
π∗ ( g

hdk

)
= 5α1α2 − 2(α1 + α2)

2α3
+ εvz − dk

α3
= εvz − 3

2
α3 ∈ Z.

This implies εvz = 1
2 + nvz , nvz ∈ Z≥0. Analogously for v = w one obtains

multEw π∗ ( g

hdk

)
= 15α1α2 + 3α3 − 6(α1 + α2)

2α3
+ εw − 3

dk

α3
= εw + 3

2
∈ Z,

which implies εw = 1
2 + nw, nw ∈ Z≥0 and this ends the proof.

Proposition 3.12 A Q-resolution of (C̃, Px) is obtained with one weighted blow-
up. Then M(k)

C̃,Px
, k = 5d

6 , is defined by the following condition on germs g ∈
O

P2ω,Px
(dk):

multEvx
π∗g ≥ 3

gcd(3, α1)
· α1 + 3β2 − 2

2α1
+ 1

Proof We follow the same ideas as in the proof of Proposition 3.11. Locally we
work with the cubic xy2 − (y + z)3 = 0 (this cubic has a flex at [0 : 1 : −1]). Then,
the local equation of C̃ at [1 : 0 : 0]ω, regarded as [(0, 0)] ∈ 1

α1
(α2, α3) = 1

α1
(1, β2),

is yα1z3 − (z + yβ2)3 = 0. We can change the coordinates (not affecting the action)
where the equation becomes yα1(z − yβ2)3 − z3 = 0. In these new coordinates the
Newton polygon is non-degenerated and the singularity is resolved with a blowing-
up with exceptional component Evx . Its weight is (3, α1 + 3β2) if gcd(3, α1) = 1
and

(
1, α1

3 + β2
)
otherwise.
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The invariants are

mvx = 3
α1 + 3β2

α1
, νvx = α1 + 3β2 + 3

α1
.

Let us compute the quasi-adjunction moduleM(k)

D,Px
, as a submodule ofOx(d̄k) :=

OP2ω,Px

(
d̄k

)
, where d̄k is such that α2d̄k ≡ dk mod α1, which implies that d̄k ≡

α1+3β2−2
2 . The condition for a germ g ∈ Ox(d̄k) to be in M(k)

D,Px
is:

multEvx
π∗g > 3

α1 + 3β2 − 2

2α1
.

As above, the restriction given by g ∈ Ox(d̄k) leads to

multEvx

(
π∗ g

hd̄k

)
= 3

α1 + 3β2 − 2

2α1
+ εvx − 3

d̄k

α1
= εvx ∈ Z.

Hence, εvx ∈ Z>0.

Proposition 3.13 Let g(x, y, z) be a weighted homogeneous polynomial in kerπ(k)

with degω g = 5(α1α2+α3)−2(α1+α2+α3)
2 .

Then, there is a weighted homogeneous polynomial f , degω f = α1α2+α3, such

that g(x, y, z) = x
1
2 (α2+β1−2)y

1
2 (α1+β2−2)f (x, y, z) and

multEvz
π∗f (x, y, 1) ≥ α1α2

α3
, multEw

π∗f (x, y, 1) ≥ 3α1α2
α3

+ 1

2
,

multEvx
π∗f (1, y, z) ≥ 3β2

gcd(3, α1)α1
+ 1, multEvy

π∗f (x, 1, z) ≥ 3β1
gcd(3, α2)α2

+ 1.

Proof The exponent of xn as a factor of g is given by the maximal value n ∈ Z>0,
such that the divisor V(g) − nY is effective. Using the generalization of Noether’s
multiplicity Theorem in this context, see [8, Theorem 4.3(4)], and Proposition 3.11
one obtains

(V(g) · Y)Pz
≥ (multEvz

π∗g) · (multEvz
π∗y)α3

α1α2

≥ (5α1α2 − 2(α1 + α2))

2α1α3
+ 1

2α1
= 1

2α1α3
(5α1α2 − 2α1 − 2α2 + α3) .

Hence,

((V(g) − nY ) · Y )Pz ≥ 1

2α1α3
(5α1α2 − 2α1 − 2α2(1 + n) + α3) .
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Analogously, at Px one can use Proposition 3.12 to obtain

(V(g) · Y )Px ≥
(
3
α1 + 3β2 − 2

2α1
+ 1

)
1

α1 + 3β2
= 5α1 + 9β2 − 6

2α1(α1 + 3β2)
,

regardless of the value of gcd(3, α1). Hence,

((V(g) − nY ) · Y )Px ≥ 5α1 + 9β2 − 6 − 6n

2α1(α1 + 3β2)
.

Then a global computation of the intersection multiplicity can be bounded by

((V(g) − nY ) · Y)
P2ω

≥ ((V(g) − nY ) · Y)Pz
+ ((V(g) − nY ) · Y)Px

≥ 1

2α1α3
(5α1α2 − 2α1 − 2α2(1 + n) + α3) + 5α1 + 9β2 − 6 − 6n

2α1(α1 + 3β2)

= 1

2α1α3
(5(α1α2 + α3) − 2(α1 + α2 + α3) − 2nα2) − 1

α1
+ 5α1 + 9β2 − 6 − 6n

2α1(α1 + 3β2)

= degω(V(g) − nY ) · degω(Y )

α1α2α3
+ 3

α1 + β2 − 2 − 2n

2α1(α1 + 3β2)
.

By Bézout’s Theorem for weighted projective planes, n = 1
2 (α1 + β2 − 2). The

same calculation applies to the divisor X. This shows that g = xmynf (x, y, z),
m = 1

2 (α2 + β1 − 2) where

deg(f ) = 1

2
(5(α1α2 + α3) − 2(α1 + α2 + α3) − 2nα2 − 2mα1)

= 1

2
(5(α1α2 + α3) − 2(α1 + α2 + α3) − (α1 + β2 − 2)α2 −(α2+β1− 2)α1)

= α1α2 + α3.

The last equality follows from α1β1 + α2β2 = α1α2 + α3.
The last part follows immediately from Propositions 3.11 and 3.12 and the

additivity properties of the multiplicity.

The local algebraic information obtained in this section will help us effectively
study the morphism π(k) described in Theorem 3.10. Let us use the notation
introduced before Theorem 3.9 and at the beginning of this section, let us also denote
by X1 (resp. X2) the cyclic cover of P2

ω of order d = 3(α1α2 + α3) ramified along

Φ̃∗
1 (C) (resp. Φ̃∗

2 (C)). Finally, denote by L
(k)
i the invariant part ofH 1(Xi,OXi ) with

respect to the action of the monodromy by multiplication by exp 2πik
d

. Likewise,

we denote by π
(k)
i the map described in Theorem 3.10 for the curve Φ̃∗

i (C). The
discussion above shows the following.
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Proposition 3.14 If the product α1α2α3β1β2 is odd and k
d

= 5
6 , then

dimkerπ(k)
1 = 0 and dimkerπ(k)

2 = 1.

Proof By Proposition 3.13, the image by Φi of V(f ) is a line passing through the
three flexes. The existence of this line for Φ̃∗

2 (C) but not for Φ̃∗
1 (C) ends the proof.

The machinery developed in this section allows one to give an alternative proof
of Theorem 3.9 which is independent of fundamental group calculations.

Proof of Theorem 3.9 Since the curves Φ̃∗
1 (C) and Φ̃∗

2 (C) have the same combina-

torics and the same local type of singularities, the target space for π
(k)
1 and π

(k)
2 are

the same. Therefore Proposition 3.14 implies dim cokerπ(k)
1 = 1 + dim cokerπ(k)

2

for k
d

= 5
6 . By Theorem 3.10, dim cokerπ(k)

i = dimL
(k)
i is a birational invariant of

Xi and thus X1 �∼= X2, which implies that the fundamental groups of P2
ω \ Φ̃∗

1 (C)

and P2
ω \ Φ̃∗

2 (C) are not isomorphic and thus (Φ̃∗
1 (C), Φ̃∗

2 (C)) forms a Zariski pair.

4 Some Rational Cuspidal Curves on Weighted Projective
Planes

The study of rational cuspidal curves in P2 is a classical subject. There is an
extensive literature about them, and we recommend the beautiful paper [15] review-
ing this topic, the most relevant conjectures, and bibliography. Two outstanding
conjectures have been solved recently by Koras and Palka: the Nagata-Coolidge
conjecture [19], that is, any rational cuspidal curve can be transported to a line via a
Cremona transformation and such curves can have at most four singular points [20].
There is a strong knowledge of such curves in P2 which have helped for the solution
of these conjectures and other important problems, like the semigroup conjecture
in [15], which was proven in [10].

Only one rational cuspidal curve in P2 possesses four cusps: a quintic curve with
singular locusA6+3A2. There are many of them with three singular points, see [16]
for an infinite family. The simplest one is the cuspidal quartic with three ordinary
cusps. The standard Cremona transformation is a way to produce this curve, namely,
the standard Cremona transformation of a smooth conic with respect to three of its
tangent lines produces a tricuspidal quartic. Note that the blowing-up at the vertices
does not affect the curve, and the blowing-downs produce the three cusps.
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4.1 Rational Cuspidal Curves via Weighted Cremona
Transformations

In this section, we will study the strict transforms of the above tritangent conic
using the inverse of the weighted Cremona transformations introduced in Sect. 2.4.
As a first stage, let us compute their fundamental groups. As in Sect. 3, let us start
with the arrangement of a smooth conic and three lines, giving a presentation which
contains suitable meridians for all the components.

Let C be a smooth conic and let X,Y,Z be three distinct tangent lines to C. If the
equations of the lines are x = 0, y = 0, z = 0, respectively, then the equation of C
(up to a suitable change of coordinates) is

x2 + y2 + z2 − 2(yz + xz + xy) = 0.

The fundamental group of the complement of the smooth conic and three
tangent lines is the Artin group of the triangle T (4, 4, 2) (i.e. [9]). However, for
our purposes, it is more suitable to use a presentation with a more geometrical
interpretation. We present it here for completeness, but its proof is immediate using
the classical Zariski-van Kampen method (as in [11]).

Proposition 4.1 The fundamental group of P2 \ (C ∪ X ∪ Y ∪ Z) is isomorphic to

〈c, �x, �y, �z | [�x, �y] = [�x, �z] = [�c
y, �z] = �yc�xc�z = 1〉. (4.1)

The element c is a meridian of C, and �x, �y, �z are meridians of X,Y,Z,
respectively. Moreover, (�x, �y) are meridians close to [0 : 0 : 1], (�x, �z) are
meridians close to [0 : 1 : 0], and (�c

y = c−1�yc, �z) are meridians close to
[0 : 0 : 1].

Considering u := c�z, the above presentation of π1(P
2 \ (C ∪ X ∪ Y ∪ Z)) can

be alternatively written as:

〈u, �x, �y, �z | [�x, �y ] = [�x, �z] = [�u
y, �z] = u�yu�x�

−1
z = 1〉. (4.2)

As in Sect. 3, fixing ω, β1, β2, we consider the birational map Φ and we denote
by C̃ the strict transform of C by Φ.

Proposition 4.2 Let d := gcd(α1+2β2, α2+2β1). Then π1(P
2
ω\C̃) is the semidirect

product (Z/d)A� (Z/2(α1α2+α3))B where BAB−1 = A−1. Hence the group has
size 2d(α1α2 + α3) and it is abelian if and only if d = 1.

Remark 4.3 Note that d is odd, since α1, α2 cannot be simultaneously even.
Moreover,

gcd(d, α1) = gcd(α1, β2, α2 + 2β1) = gcd(α1, α2β2, α2 + 2β1)

= gcd(α1, α3, α2 + 2β1) = 1
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and analogously gcd(d, α2) = 1. Note also

gcd(d, β1) = gcd(d, β1, α1 + 2β2, α2) = 1,

and hence gcd(d, β2) = 1. The following congruences can easily be checked:

α1β1 ≡ −2β1β2 ≡ α2β2 mod d.

Moreover,

gcd(d, α1α2 + α3) = gcd(d, α1α2 + α3, α2(α1 + 2β2))

= gcd(d, α1α2 + α3, α1(α2 − 2β1))

= gcd(d, α1α2 + α3, 2α1β1) = 1.

Proof of Proposition 4.2 The presentation of π1(P
2
ω \ C̃) is obtained from (4.2) by

adding the relations which kill the meridians of the exceptional divisors Ex,Ey,Ez:

�x�y = �α1
x �β2

z = u−1�α2
y u�β1

z = 1. (4.3)

Let us first check that the abelianization of this quotient is Z/2(α1α2 + α3). We
will denote by [•] the class of • in the abelianization. Note that [�z] = [u]2;
moreover, using Bézout’s identity and the equations in (4.3), both [�x] and [�y]
can be expressed in terms of [�z]. Hence, the abelianization is cyclic. A presentation
matrix in terms of the generators [�y], [u] is given by

(
α2 2β1

−α1 2β2

)

whose determinant, 2(α1α2 + α3), is the size of the abelianization.
Let us study now the group itself. Note first that �y can be eliminated from (4.3)

as �y = �−1
x . Let us check that u2 is central. The last relation in (4.2) can be written

as

u2 = �z�
−1
x (u−1�xu).

We deduce that u2 commutes with �z, since it commutes with each factor; hence u2

also commutes with u�zu
−1. Also note that

�α1
x = �−β2

z , �α2
x = u�β1

z u−1 �⇒ �x = �−α̂1β2
z u�−α̂2β1

z u−1.

Then u2 commutes with �x and it is central.
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Using the last relation in (4.2) �z can also be eliminated as �z = u�−1
x u�x . The

presentation of the group becomes:

〈u, �x | [�x, u�−1
x u] = [�u

x, u�−1
x u�x ] = �

α1
x (u�−1

x u�x)β2 = u−1�
−q
x u(u�−1

x u�x)β1 = 1〉

which can be further simplified using the centrality of u2:

〈u, �x |[�x, u2]=[�x, u�xu−1]=u2β2�
α1+β2
x (u�xu−1)−β2 =u2β1(u�xu−1)−(α2+β1)�

β1
x =1〉

The map π1(P
2
ω \ C̃) → Z/2 given by u �→ 1 and �x, �z �→ 0 is well defined.

A presentation of its kernel K is obtained using Reidemeister-Schreier method. The
generators are X0 := �x , X1 := u�xu−1, and U := u2. The first two relations imply
that the group is abelian; the other relations yield:

u2β2�α1+β2
x (u�xu

−1)−β2 = 1 �⇒ Uβ2X
α1+β2
1 X

−β2
0 = Uβ2X

α1+β2
0 X

−β2
1 = 1,

u2β1(u�xu
−1)−(α2+β1)�β1

x = 1 �⇒ Uβ1X
−(α2+β1)

1 X
β1
0 = Uβ1X

−(α2+β1)

0 X
β1
1 = 1.

Let us express these relations in a matrix (the rows represent the relations and the
columns stand for the generators). These relations become (recall d = gcd(α1 +
2β2, α2 + 2β1)):

⎛
⎜⎜⎝

d −d 0
−β2 α1 + β2 β2

β1 −(α2 + β1) β1

X0 X1 U

⎞
⎟⎟⎠ ∼

⎛
⎜⎜⎝

d 0 0
−β2 α1 β2

β1 −α2 β1

X0X
−1
1 X1 U

⎞
⎟⎟⎠ .

The determinant of this matrix is d(α1α2 + α3) which is the size of K; the greatest
common divisor of the 2-minors divides d and 2α1β1, i.e., it is 1. Hence, the groupK

is cyclic of order d(α1α2 + α3). One also has that D := X0X
−1
1 is of order d .

Considering the product of the second relation to the power α2 and the third relation
to the power α1 one obtains

1 = Dα1β1−α2β2Uα1α2+α3 = Uα1α2+α3 .

>From the order in the abelianization, we deduce that U is of order α1α2 + α3.
Hence K is the direct product of the cyclic group of order d generated by D and
the cyclic group of order α1α2 + α3 generated by U . The conjugation by u satisfies
uUu−1 = U and uDu−1 = D−1. The result follows.

EmbeddedQ-resolutions of the singularities of these curves can be computed as
in Propositions 3.11 and 3.12, see Fig. 3.
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Fig. 3 Singularities of the rational cuspidal curves

4.2 Rational Cuspidal Curves via Weighted Kummer Covers

There is another simple way to produce rational cuspidal curves in weighted
projective planes from this arrangement of curves. It is quite simple but it will be
shown to be useful in the upcoming sections. Let d1, d2, d3 be pairwise coprime
integers and let ω := (e1, e2, e3), where ei := djdk, {i, j, k} = {1, 2, 3}. Following
Sect. 2.2 note that η = (1, 1, 1) and thus there is an isomorphism P2

ω → P2 given
by [x : y : z]ω �→ [xd1 : yd2 : zd3]. This map gives a geometrical interpretation to
the group

Gd1,d2,d3 := π1(P
2 \ (C ∪ X ∪ Y ∪ Z))/〈�d1

x = �d2
y = �d3

z = 1〉.

as the orbifold group of P2
ω with respect to the curve C ∪ X ∪ Y ∪ Z and index

e(C) = 0, n(X) = d1, n(Y ) = d2, n(Z) = d3 as defined in [5]. Briefly, if X is
a smooth projective surface, D = D1 ∪ . . . ∪ Ds is a normal crossing union of
smooth hypersurfaces, and ni := n(Di) ∈ Z≥0, then one can define the orbifold
fundamental group πorb

1 (X) of X with respect to D with indices ni as the quotient
of the group π1(X \ D) by the normal subgroup generated by γ

ni

i , where γi is a
meridian of Di . If D do not have normal crossings, then one resolves to a normal
crossing divisor by blowing up points and defines the index at an exceptional divisor
as the least common multiple of the indices of the components passing through the
point (in this context we set lcm(0, n) = 0).

Proposition 4.4 The abelianization of the group Gd1,d2,d3 is Z/2d1d2d3. The group
is abelian if and only if at least one of d1, d2, d3 equals 1.
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Fig. 4 Double cover ramified
along C

Proof The computation for the abelianization is straightforward. Assume d3 = 1,
then

Gd1,d2,1 = 〈�x, u | [�x, u�x︸︷︷︸
v−1

u] = 1, �d1
x = (u�xu)d2 = 1〉

= 〈�x, v | [�x, v
2] = 1, �d1

x = �d2
x v2d2 = 1〉.

Using Bézout’s identity we can express �x in terms of v and the result follows.
For the case (d1, d2, d3) �= (1, 1, 1), let us consider the double cover of P2

ramified along C. It is P1 × P
1 and the preimage C̃ of C is the diagonal; the three

lines are transformed in pairs of vertical-horizontal lines X±, Y±, Z± intersecting
C̃, see Fig. 4.

Note that the fundamental group of P1×P
1\(C̃∪X+ ∪X−∪Y+ ∪Y− ∪Z+∪Z−)

is isomorphic to the fundamental group of the projective complement of Ceva’s
arrangement. The kernel Kd1,d2,d3 of the map Gd1,d2,d3 → Z/2, u �→ 1 and the
images of the other generators vanish, it is an index 2 subgroup of Gd1,d2,d3 and
it is an orbifold fundamental group for the above configuration in P

1 × P
1; the

projection on each component induces orbifold morphisms onto P
1
d1,d2,d3

, where

P
1
d1,d2,d3

is an orbifold modeled on P1, with three quotient points of order d1, d2, d3,
respectively, and its orbifold fundamental group is isomorphic to 〈μ1, μ2, μ3 |
μ

d1
1 = μ

d2
2 = μ

d3
3 = μ3μ2μ1 = 1〉, a triangle group. The combination of

the two projections induces an epimorphism of Kd1,d2,d3 onto πorb
1 (P1

d1,d2,d3
). The

triangle is hyperbolic if {d1, d2, d3} �= {2, 3, 5} and hence its group is infinite.
If {d1, d2, d3} = {2, 3, 5}, the triangle group is the alternating group A5, with
cardinal 60. Using GAP [34] we can compute the intersection of the kernels of the
two projections (which is a subgroup of index 3600); its abelianization isZ59 and the
result follows. The computation can be checked in https://github.com/enriqueartal/
AnOrbifoldFundamentalGroup using Sagemath [33] and Binder [30].

https://github.com/enriqueartal/AnOrbifoldFundamentalGroup
https://github.com/enriqueartal/AnOrbifoldFundamentalGroup
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4.3 A rational Cuspidal Curve with Four Cusps

We present in this section a nice example in P2
(1,1,2), which is a rational curve of

degree 6 with 4 ordinary cusps – incidentally, note that 4 is the maximal number
of singular points a rational cuspidal curve can have in P2. Let us explain how to
construct it via Cremona transformations. Let us start with a tricuspidal quartic C0;
this curve, dual of the nodal cubic, has a bitangent line L. Let P0 ∈ C0∩L; its blown-
up produces a ruled surface Σ1, where the negative section E is the exceptional
component and C1, the strict transform of C0 has three cusps and one tangent fiber.
Let us consider the Nagata transformation at C1 ∩ E; the result is Σ2 and the blow-
down of the negative section produces P2

(1,1,2). The strict transform C of C1 is the
desired curve.

Proposition 4.5 The fundamental group π1(P
2
(1,1,2)\(C∪{Pz})) has a presentation

〈s, t, u | sts = tst, sus = usu, tut = utu, (stu)2 = 1〉.

Proof Following the construction it is the fundamental group of Σ2 \ (C2 ∪ E2)

where C2 is the strict transform of C and E2 is the negative section. The Zariski-van
Kampen method applied to the ruling yields the result.

4.4 Milnor Fibers

We have presented in Sect. 3 and in Sect. 4 several examples of irreducible quasi-
projective curves such that their (maybe orbifold) fundamental groups are non-
abelian. As a consequence their cones are quasi-homogeneous non-isolated surface
singularities in C3 with non simply-connected Milnor fibers.

If F ∈ C[x, y, z] is a homogeneous polynomial of degree d , an important
topological invariant is its Milnor fiber. The Milnor fiber of a homogeneous
singularity is a fiber of F : C3 \ F−1(0) → C∗, say F−1(1). The restriction
to F−1(1) of F of the natural map C3 \ {0} → P2 is a d-cyclic cover onto the
complement of the tangent cone Cd in P2, defined by an epimorphismπ1(P

2\Cd) →
Z/d .

If ω is a weight and F ∈ C[x, y, z] is an ω-quasi-homogeneouspolynomial of ω-
degree d , its Milnor fiber F = 1 can also be recovered as a d-cyclic orbifold cover
of P2

ω\Cd (the complement of the tangent ω-quasi-cone) defined by an epimorphism
πorb
1 (P2

ω \ Cd) → Z/d . If the elements of ω are pairwise coprime and the vertices
are in Cd , then the notions of π1 and πorb

1 coincide. If it is not the case, the notion of
orbifold fundamental groups apply.

The curves obtained via the Cremona transformation provide homogeneous
singularities whose topology is not complicated and such that the Milnor fiber
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has non-trivial fundamental group. The following result is a direct consequence of
Proposition 4.2.

Proposition 4.6 Let ω = (α1, α2, α3) be pairwise coprime and let β1, β2 be such
that α1α2 + α3 = α1β1 + α2β2. Let S := {Fω,β1,β2(x, y, z) = 0}, where

Fω,β1,β2(x, y, z) = y2α1z2+x2α2z2+x2β1y2β2 −2z(xα2yα1z+xα2+β1yα1 +xα2yα1+β2)

defines a ω-homogeneous singularity. Then, the fundamental group of the Milnor
fiber of S is cyclic of order gcd(α1 + 2β2, α2 + 2β1).

More complicated fundamental groups can be obtained by choosing the orbifold
variant. Let (d1, d2, d3) be a triple of pairwise coprime integers, di > 1, let ω =
(d2d3, d1d3, d1d2) be a weight, and let

Fd1,d2,d3(x, y, z) = x2d1 + y2d2 + z2d3 − 2(xd1yd2 + xd1zd3 + yd2zd3).

As a direct consequence of Proposition 4.4 we obtain the following result.

Proposition 4.7 The fundamental group of the Milnor fiber of {Fd1,d2,d3 = 0} is
infinite and non-abelian.

5 Weighted Lê–Yomdin Surface Singularities

In this section we study the relationship between (weighted) projective plane curves
and normal surface singularities whose link is a rational (or integral) homology
sphere.

5.1 The Determinant of a Normal Surface Singularity

Let (S, 0) be a germ of normal surface singularity and let K be its link. It is well
known thatK is a graphmanifold whose plumbing decorated graph is the dual graph
Γ of a simple normal crossing resolution. Each vertex v of Γ is decorated with two
numbers (gv, ev), where gv is the genus of the corresponding irreducible component
Ev and ev is its self-intersection. LetA be the intersection matrix of the graph; recall
that A is negative definite. In a natural way, A is also the presentation matrix of an
abelian group yielding the following classical result.

Proposition 5.1 The free part of H1(K;Z) has rank 2
∑

v gv+RankH1(Γ ;Z). The
torsion part is isomorphic to cokerA and, in particular, its cardinality is det(−A).



Cremona Transformations of Weighted Projective Planes, Zariski Pairs,. . . 143

As a direct consequence of this, the determinant det(−A) does not depend on
the resolution. This justifies the definition of the determinant of a normal surface
singularity.

Definition 5.2 The determinant detS of a normal surface singularity S is defined
as det(−A), where A is the intersection matrix of any resolution of S.

As a consequence, one has the following combinatorial criteria to detect rational
(resp. integral) homology sphere singularities, that is, surface singularities whose
link is a rational (resp. integral) homology sphere.

Corollary 5.3 The surface singularity S is a rational (resp. integral) homology
sphere if and only if all gv’s vanish and Γ is a tree (resp. and det S = 1).

5.2 Superisolated and Lê–Yomdin Singularities

In [15], the authors relate hypersurface singularities whose link is a rational
homology sphere with rational cuspidal curves using superisolated singularities. In
our search for more examples of surface singularities whose link is a rational (or
integral) homology sphere, a generalization of this method will be discussed here.
For the sake of completeness we present a classical result.

Definition 5.4 Let (S, 0) ⊂ (C3, 0) be the germ of a hypersurface singularity
with equation F = fd + fd+k + . . . , where the previous decomposition is the
decomposition in homogeneous parts. Assume fd �= 0, k > 0. Let Cm := VP(fm)

denote the projective zero locus in P2 of the homogeneous polynomial fm. We say
that S is a Lê–Yomdin singularity if Sing(Cd ) ∩ Cd+k = ∅. If k = 1, S is called a
superisolated singularity.

Superisolated singularities were introduced by Luengo [24]: they can be resolved
by one blow-up. In [25], the authors show that the link of a superisolated singularity
is a rational homology sphere if and only if all the irreducible components of Cd

are cuspidal rational and if the curve is reducible they only intersect at one point.
Besides the smooth case, no other one provides an integral homology sphere as can
be deduced from the following result in [24]. We reproduce the proof since it will
be generalized for other classes of singularities.

Proposition 5.5 ([24]) Let S be a superisolated singularity with tangent cone Cd

of degree d . Let Π : Ĉ3 → C3 be the blow-up of 0 ∈ S ⊂ C3 and π : Ŝ → S the
restriction of Π to the strict transform of S. If E ∼= P2 is the exceptional divisor of
Π , then the exceptional divisor of π is Cd = E ∩ Ŝ.

Moreover, if Cd,1, . . . , Cd,s denote the irreducible components of Cd and δi :=
degCd,i , then

(Cd,i ·Cd,i)Ŝ = −δi (d −δi +1), (Cd,i ·Cd,j )
Ŝ,P

= (Cd,i ·Cd,j )
P2,P , i �= j, P ∈ SingCd .
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Proof Let us assume that [0 : 0 : 1] ∈ Sing Cd . We can fix the usual chart of the
blowing-up. Assume that S = {F = 0}, where F = fd + fd+1 + . . . ; in the chart
(x, y, z) �→ (xz, yz, z) and E = {z = 0}, Ŝ = {fd(x, y, 1) + z(fd+1(x, y, 1) +
. . . ) = 0}, i.e., Cd = {z = fd(x, y, 1) = 0}. In the neighborhood of P , (E, Cd ) and
(Ŝ, Cd ) are isomorphic.We deduce that for i �= j , (Cd,i ·Cd,j )Ŝ,P

= (Cd,i ·Cd,j )P2,P .

The surfaces E and Ŝ are generically transversal, namely outside Sing Cd . The
Euler class e(E) = −L, where L is a line in E. Then,

(Cd · Cd,i)Ŝ = (e(E) · Cd,i)P2 = −δi .

Also

(Cd · Cd,i)Ŝ = (Cd,i · Cd,i)Ŝ +
∑
j �=i

(Cd,j · Cd,i)Ŝ = (Cd,i · Cd,i)Ŝ +
∑
j �=i

(Cd,j · Cd,i)P2 =

(Cd,i · Cd,i)Ŝ + δi (d − δi ),

and the result follows.

Although π is not necessarily a resolution with normal crossings, detS can be
recovered from it using its intersection matrix; it is a classical result which will
follow from a later proposition.

Corollary 5.6 If S is as above, then

detS = (d + 1)s−1 · δ1 · . . . · δs.

In particular, if Cd is irreducible, then detS = d .

Proof By Proposition 5.5, the diagonal terms of the intersection matrix for π equal
−δi(d − δi +1) and the non-diagonal terms are δi · δj . Replacing the first row by the
sum of all rows, one obtains −(δ1, . . . , δs). If we add the new first row multiplied
by δi times the ith-row (i > 1), all the non-diagonal terms vanish and the diagonal
term becomes −δi(d + 1).

For Lê–Yomdin singularities we follow the same strategy. If S = {F = 0} with
F = fd + fd+k + . . . , and we keep the notation above, the main difference is that
Ŝ is no longer smooth, in general. If P ∈ Sing Cd , then the local equation of Ŝ at P

is zk −f (x, y) = 0 where f (x, y) = 0 is the local equation of Cd at P . Intersection
theory can be used also in normal surfaces, see [18, 28] for definitions and [8] for
useful tips. As the following result shows the intersection form of a partial resolution
is also useful.

Lemma 5.7 Let (S, 0) be a normal surface singularity and let π : (X,D) → (S, 0)
be a proper birational morphism which is an isomorphism outside D = π−1(0) on
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the normal surface X. Let A be the intersection matrix for D. Then,

detS = det(−A)
∏
P∈D

det(X, P ).

Proof Note first that the product in the formula is finite since only a finite number
of singular points may arise. Let σ : (Y,E) → (X,D) be a resolution of the
singularities of X. Let B the intersection matrix of E. Instead of expressing this
matrix in terms of the irreducible components of E, we replace the strict transforms
of the components of D by their total transforms.

Then, B is replaced by a matrix B̃ , with the same determinant, which is a
diagonal sum of A and the intersection matrices of the singular points. Then,

det S = det(−B) = det(−B̃) = det(−A)
∏

P∈SingX

det(X, P ).

Proposition 5.8 Let S be a k-Lê–Yomdin singularity with tangent cone Cd of
degree d . With the notation of Proposition 5.5,

(Cd,i ·Cd,i)Ŝ = − δi (d − δi + k)

k
, (Cd,i ·Cd,j )

Ŝ,P
= (Cd,i · Cd,j )

P2,P

k
, i �= j, P ∈ SingCd .

Proof We follow the guidelines of the proof of Proposition 5.5. Note that it is not
true any more that in the neighborhood of P ∈ Sing Cd the germs (E, Cd) and
(Ŝ, Cd ) are isomorphic. However, the projection ρ(x, y, z) := (x, y) restricts to a
k : 1 proper map (Ŝ, Cd) → (E, Cd). Since π∗(π∗Cd,i) = kCd,i we have that for
i �= j

(Cd,i · Cd,j )Ŝ,P
= 1

k2
(π∗π∗Cd,i · π∗π∗Cd,j )Ŝ,P

= 1

k
(Cd,i · Cd,j )P2,P .

For the self-intersections we apply the same ideas:

(Cd · Cd,i)Ŝ = (e(E) · Cd,i)P2 = −δi

(Cd · Cd,i)Ŝ = (Cd,i · Cd,i)Ŝ +
∑
j �=i

(Cd,j · Cd,i)Ŝ = (Cd,i · Cd,i)Ŝ + δi(d − δi)

k
,

and the result follows.

A similar proof to the one of Corollary 5.6 provides the following result.

Corollary 5.9 If S is a k-Lê–Yomdin as above, then

det S = δ1 · . . . · δs ·
(

d + k

k

)s−1 ∏
P∈SingCd

det SP,k,
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where

SP,k = {zk = fP (x, y) | P ∈ Sing Cd},

and fP (x, y) = 0 is a local equation of Cd at P .
In particular, if Cd is smooth, then det S = d .

Example 5.10 Let Sk be the singularity {zk = x2 + y2}, then detSk = k. Denote by
Tk the singularity {zk = x2 + y3}, then we have

det Tk =

⎧
⎪⎪⎨
⎪⎪⎩

1 if gcd(k, 6) = 1, 6

3 if gcd(k, 6) = 2

4 if gcd(k, 6) = 3.

Note that Tk admits a Q-resolution with only one exceptional divisor. This divisor
has positive genus (equal to one) if and only if gcd(k, 6) = 6.

We did not find in the literature a general formula for this determinant. >From
the above computations and the periodicity properties of the Alexander invariants,
the following statement may be true.

Conjecture 1 Let C : f (x, y) = 0 be a germ of a reduced plane curve singularity,
and let Sk : zk = f (x, y) be a cyclic germ of surface. Let N be the order of the
semisimple factor of the monodromy of C. Then detSk is a quasi-polynomial in k of
period N .

Proposition 5.11 A k-Lê–Yomdin singularity with tangent cone Cd has as link a
rational homology sphere if and only if Cd is a union of rational cuspidal curves
with only one intersection point and the links of the k-cyclic singularities associated
with the singular points of Cd have also a rational homology sphere as a link.

The proof of this proposition is a direct consequence of the previous result. We
have not proven that Lê–Yomdin singularities do not provide integral homology
sphere links, mainly since we do not have a closed formula for the determinant of a
cyclic singularity. Our experimentation leads to this conjecture.

Conjecture 2 No k-Lê–Yomdin singularity k > 1 has an integral homology sphere
link.

5.3 Weighted Lê–Yomdin Singularities

We are going to generalize these families of singularities using weighted homoge-
neous curves. We use the notation ω, η, etc. introduced in Sect. 2.2. The following
notion of weighted Lê–Yomdin singularity was introduced in [7].
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Definition 5.12 A hypersurface (S, 0) := {F = 0} is an (ω, k)-weighted Lê–
Yomdin singularity if the following holds. Let F := fd + fd+k + . . . be the
decomposition in ω-weighted homogeneous forms, then Jac(fd) ∩ V(fd+k) = ∅.

In order to relate geometrically this definition with the definition of superisolated
and Lê–Yomdin singularities, let us consider the weighted blow-upΠω : Ĉ3

ω → C3.
In Sect. 2.3 we have described a stratification of the exceptional divisor Eω

∼= P2
ω

∼=
P2

η according to the singularities of Ĉ3
ω, see Proposition 2.3.

One needs to study the two curves Cd, Cd+k ⊂ Eω. In general, note that
fd(x, y, z) = xεxyεy zεzg(xd1, yd2, zd3), where εx, εy, εz ∈ {0, 1} and g is η-

weighted homogeneous of degree d−e1εx−e2εy−e3εz

d1d2d3
. If we see this curve in P

2
η its

equation is xεxyεy zεzg(x, y, z) = 0.

Proposition 5.13 Let S = {F = 0} be an (ω, k)-weighted Lê–Yomdin singularity
with ω-quasi-tangent cone Cd = {fd = 0}. Let Πω be the ω-blow-up, Eω

∼= P2
ω

∼=
P2

η is the exceptional divisor and Ŝ is the strict transform (and a partial resolution)
of S. Recall the stratification of Eω = P ∪ L ∪ T as given in Notation 2.6. The
structure of Ŝ along P ∈ Cd = Eω ∩ Ŝ is as follows:

(1) P ∈ T .

(a) If P /∈ Sing Cd then Ŝ is smooth at P and Eω �P Ŝ.
(b) If P ∈ Sing Cd then P /∈ Cd+k. There are local coordinates U,V,W

centered at P such that Eω = {W = 0}, Cd = {W = g(U, V ) = 0}
and Ŝ = {Wk = g(U, V )}; in particular Ŝ is smooth at P if and only if
k = 1 (but it is not transversal to Eω).

(2) P ∈ Ly (a similar statement holds for Lx,Lz).

(a) If Cd is transversal to Y at P then (Ŝ, P ) ∼= 1
d2

(e2,−1). In the quotient

ambient space (Ĉ3
ω, P ) the situation is similar to (1a).

(b) If (Cd, P ) = (Y, P ) then (Ŝ, P ) is smooth. In the quotient ambient space
(Ĉ3

ω, P ) the situation is similar to (1a).
(c) If Cd ��P Y , i.e. the order of fd(x + t, y, 1) is > 1 (P = [t : 0 : 1]), then

P /∈ Cd+k. The germ (Ŝ, P ) is isomorphic to zk = fd(x + t, y, 1) in the
threefold quotient singularity 1

d2
(0, e2,−1), where z = 0 is the equation

of Eω.

(3) P = Pz (a similar statement holds for Px, Py ).

(a) If Cd is extremely quasi-smooth at P (i.e. the order of fd(x, y, 1) is 1)
the situation is as in (1a) replacing the ambient smooth space by the
threefold quotient singularity 1

e3
(e1, e2,−1). Let h1(x, y) be the linear part

of fd(x, y, 1).

(i) If h1(x, y) is proportional to x, then (Ŝ, P ) ∼= 1
e3

(e1,−1).

(ii) If h1(x, y) is proportional to y, then (Ŝ, P ) ∼= 1
e3

(e2,−1).
(iii) Otherwise, e1 ≡ e2 mod e3 and the above cases coincide.
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(b) If Cd is not extremely quasi-smooth at P (i.e., the order of fd(x, y, 1) is >

1), then P /∈ Cd+k and d+k ≡ 0 mod e3. The germ (Ŝ, P ) is isomorphic to
zk = fd(x, y, 1) in the threefold quotient singularity 1

e3
(e1, e2,−1), where

z = 0 is the equation of Eω.

Proof The different parts of the statement will be particular cases of the following
general situation. Assume P = [0 : 0 : 1] ∈ Cd = Eω ∩ Ŝ is a point of the strict
transform Ŝ of S on the exceptional divisor Eω. The total transform of S is equal to
Ŝ + dEω and hence, its equation in the chart Ψω,3 is:

zd(fd(x, y, 1) + zk (fd+k(x, y, 1) + . . . )︸ ︷︷ ︸
q(x,y)

) = 0.

By hypothesis fd(0, 0, 1) = 0, let us denote by �(x, y) the linear part of fd(x, y, 1).
The following conditions are immediate

{
P /∈ Cd+k ⇐⇒ q(x, y) is a unit,

P ∈ Cd+k �⇒ �(x, y) �= 0.

We will consider (x1, y1, z1) a change of coordinates where

(x1, y1, z1) =

⎧⎪⎪⎨
⎪⎪⎩

(x, y, zq(x, y)
1
k ) if �(x, y) = 0,

( 1a (fd(x, y, 1) + zkq(x, y)), y, z) if �(x, y) = ax,

(x, 1
b
(fd (x, y, 1) + zkq(x, y) − ax), z) if �(x, y) = ax + by, b �= 0.

Note that the action of μe3 on (x1, y1, z1) reads as in (x, y, z). If P /∈ Cd+k then
d + k ≡ 0 mod e3.

In these coordinates Eω : z1 = 0 and Cd : W = g(x1, y1) = 0, where

g(x1, y1) =
{

fd(x1, y1, 1) if �(x, y) = 0,

�(x1, y1) otherwise.

The local equations for dEω + Ŝ are zd
1 (z

k
1 + g) = 0. If �(x, y) �= 0, then both look

like two surfaces in a quotient ambient space whose preimages in C
3 are smooth

and transversal.
The case P ∈ T locally corresponds to ω = (1, 1, 1). Note that (1a) implies

�(x1, y1) �= 0 whereas (1b) implies �(x1, y1) = 0. The case P ∈ Ly corresponds
with the choice ω = (d2, e2, d2) where (2a) and (2b) refers to � �= 0 and (2c) refers
to � = 0. Finally, P = Pz, corresponds to the choice ω = (e1, e2, e3). In this
case (3a) refers to the different cases of � �= 0 and (3b) refers to � = 0.
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The divisor Cd has an irreducible decomposition in s + εx + εy + εz components
εxX + εyY + εzZ + C̃d , where C̃d = ∑s

i=1 Cd,i and εx, εy, εz ∈ {0, 1}. Recall that
d1d2d3 divides degCd,i and we can write δi = d1d2d3δ̂i .

Consider the stratification of a weighted projective plane as above. We call a curve
in a weighted projective plane stratified smooth if it is smooth, intersects the axes
transversally and does not contain the vertices.

Proposition 5.14 Let S be an (ω, k)-weighted Lê–Yomdin singularity with quasi-
tangent cone Cd ⊂ P2

ω of degree d . With the notation of Proposition 5.8:

(1) (Cd,i · Cd,i)Ŝ = − δi (d−δi+k)
ke1e2e3

= − δ̂i (d−δi+k)
kd1d2d3α1α2α3

.

(2) If εx = 1, then (X · X)
Ŝ

= − d2
1e1(d−e1+k)

ke1e2e3
= − d2

1 (d−e1+k)

ke2e3
= − d−e1+k

kd2d3α2α3
.

Similar formulas hold for Y and Z.

(3) If i �= j , then (Cd,i · Cd,j )Ŝ = δiδj

ke1e2e3
= δ̂i δ̂j

kα1α2α3
.

(4) If εx = 1 then (Cd,i · X)
Ŝ

= d1δi

ke2e3
= δ̂i

kα2α3
. Similar formulas hold for Y and Z.

(5) If εxεy = 1 (X ·Y )
Ŝ,Pz

= d1d2
ke3

= 1
kα3

. Similar formulas hold for the other pairs
involving X, Y , and Z.

Proof We follow the ideas in the proofs of Propositions 5.5 and 5.8 with some
modifications. If ω �= η, the map π−1

η,ω : P2
η → P2

ω can be considered as the

identity where P2
ω is seen as (P2

η)
orb, where (π−1

η,ω)∗(X) = 1
d1

X, (π−1
η,ω)∗(Y ) = 1

d2
Y ,

and (π−1
η,ω)∗(Z) = 1

d3
Z. Analogously, the abstract strict transform Ŝ has a natural

orbifold embedded structure Ŝorb ⊂ Ĉ3
ω where the embedding π : Ŝ → Ŝorb has the

same properties for X,Y,Z as π−1
η,ω whenever X,Y,Z are contained in Cd .

The divisor e(Eω) in Eω ≡ P2
ω has degree 1 and Bézout’s Theorem for

the ω-projective plane states that the sum of the intersection numbers of two
divisors equals the product of the degrees divided by e1e2e3. Hence, we obtain the
same formulas as in Proposition 5.8 with two differences: e1e2e3 appears in the
denominator and all the intersection numbers are considered in Ŝorb.

When we consider the intersection numbers in Ŝ, when X appears (εx = 1), the
formulas must be multiplied by d1. A similar argument holds for Y,Z.

Corollary 5.15 If S is an (ω, k)-weighted Lê–Yomdin as above and A is the
intersection matrix of the blowing-up, then

det S = d
2εx

1 · d2εy

2 · d2εz

3 · δ1 · . . . · δs ·
(

d + k

ke1e2e3

)s−1 ∏

P∈Ŝ

det(Ŝk,P ),

where Ŝk,P is the surface singularity at P as described in Proposition 5.13.
In particular, if Cd is stratified smooth, then detS = d

e1e2e3
.
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6 Normal Surface Singularities with Rational Homology
Sphere Links

In this section we will use the results and strategies presented in Sect. 5 in
order to exhibit examples of weighted Lê–Yomdin singularities whose links are
rational homology spheres, generalizing the strategy in [15]. We will be using
Proposition 5.11 in the context of weighted Lê–Yomdin singularities.

6.1 Brieskorn–Pham Singularities

We will interpret these singularities as Lê–Yomdin singularities and study their Q-
resolution graph. Consider ω0 = (n1, n2, n3) and the Brieskorn–Pham singularity
S = {Fω0 = xn1 + yn2 + zn3 = 0} ⊂ (C3, 0), where n1, n2, n3 are not assumed to
be coprime.

Denote by e := gcdω0, and αk := 1
e
gcd(ni , nj ), where {i, j, k} = {1, 2, 3}.

Note that di := ni

eαj αk
∈ Z>0 are pairwise coprime. If

ω = (e1, e2, e3) := 1

e2α1α2α3
(n2n3, n1n3, n1n2) = (α1d2d3, α2d1d3, α3d1d2),

then Fω0(x, y, z) is an ω-weighted homogeneous polynomial of degree d :=
n1n2n3

e2α1α2α3
and hence S can be viewed as an (ω, k)-weighted Lê–Yomdin singularity

for any k ≥ 1. Following the general construction, fd = Fω0(x, y, z) =
g(xd1, yd2, zd3) = 0 can be considered a curve in P2

η
∼= P2

ω for η = (α1, α2, α3)

of η-degree dη = eα1α2α3 given by the equation g(x, y, z) = xeα2α3 + xeα1α3 +
zeα1α2 = 0. Its genus is

dη(dη − |η|)
2α1α2α3

+ 1 = e2α1α2α3 − e(α1 + α2 + α3) + 2

2
.

Since the curve Cd is transversal to the axes we obtain that the exceptional locus of Ŝ
has (in the intersection with the axes) eαi cyclic points of order di . The determinant
of the singularity is

d

(d1d2d3)2(α1α2α3)

(
d

α1
1 d

α2
2 d

α3
3

)e = ed
eα1−1
1 d

eα2−1
2 d

eα3−1
3 .

As a consequence of this discussion one obtains the following.

Proposition 6.1 The Brieskorn–Pham singularity S = {Fω0 = xn1 + yn2 + zn3 =
0} ⊂ (C3, 0) is a rational homology sphere singularity if and only if either α1 =
α2 = α3 = 1, e = 2 or αi = αj = e = 1 for some i �= j .
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Moreover, it is an integral homology sphere if and only if the exponents are
pairwise coprime.

6.2 Examples Coming from Cremona Transformations and
Kummer Covers

The purpose of this section is to provide more candidates to surface singularities
with rational homology sphere links by applying the techniques used in Sect. 4.
In particular, we will start with the strict transforms of the conic by the Cremona
transformations.

In order to do so one needs ω := (α1, α2, α3) pairwise coprime, and β1, β2 ∈
Z>0 such that α1α2 + α3 = α1β1 + α2β2. The weighted homogeneous polynomial

fω(x, y, z) = f (yα1z, xα2 z, xβ1yβ2 )

= y2α1z2 + x2α2z2 + x2β1y2β2 − 2z
(
xα2yα1z + xβ1yα1+β2 + xα2+β1yβ2

)

has ω-degree 2(α1α2 + α3) and defines a rational curve in P2
ω which is smooth

outside the vertices. Assume for simplicity that α1α2 + α3 < α1α2α3. Hence for
any generic quasi-homogeneous polynomial gω(x, y, z) of degree 2α1α2α3, F :=
fω + gω defines an (ω, k)-weighted Lê–Yomdin singularity, for k = 2(α1α2α3 −
α1α2 −α3). A partial resolution of this singularity has an exceptional locus which is
a rational curve with three singular points. In most cases the link of this singularity
is a rational homology sphere. For simplicity, we will prove it in a special case.

Proposition 6.2 With the previous notation, take α1 = 1, β1 = α3, and β2 = 1.
Then, for any α2, α3 > 1 satisfying gcd(3, k) = gcd(3, α2α3 − α2 − α3) = 1 and
a generic gω, the equation {F = fω + gω = 0} ⊂ C3 defines a surface singularity
with a rational homology sphere link.

Proof We study the strict transform of this singularity at Px, Py, Pz after an ω-
weighted blow-up. At Px , the ambient space is smooth and the strict transform has
equation

0 = xk +y2z2 + z2 +y2 −2yz (z + y + 1) = xk + (y1 + z)2z2 +y21 −2(y1 + z)z (2z + y1)

if y1 = y − z. This is topologically equivalent to 0 = xk + y2 + z3. Since
gcd(3, α2α3 − α2 − α3) = 1, by Proposition 6.1 the link of this singularity is a
rational homology sphere.

At Py , the ambient space is 1
α2

(1,−1, α3) and the strict transform has equation

fω(x, y, z) = yk + z2 + x2α2z2 + x2α3 − 2z
(
xα2z + xα3 + xα2+α3

)

= yk + z21 − 2xα2+2α3 + . . .
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if z1 = z − xα3 . This change of variable is compatible with the action; this equation
defines a singularity in C3 whose link is a rational homology sphere, and so is the
case in the quotient manifold.

By symmetry arguments, the same happens for Pz. Hence, F defines a singularity
whose link is a rational homology sphere.

Let us use the orbifold approach. Given (d1, d2, d3) pairwise coprime consider
ω := (d2d3, d1d3, d1d2); the normalized η is (1, 1, 1) and the isomorphism P2

ω →
P2 is given by [x : y : z]ω �→ [xd1 : yd2 : zd3], see (2.1). This isomorphism can be
seen as a weighted Kummer cover and the homogeneous polynomial

fω(x, y, z) = f (xd1, yd2, zd3) = x2d1+y2d2+z2d3−2
(
yd2zd3 + xd1zd3 + xd1yd2

)

of ω-degree 2d1d2d3, which defines a rational curve in P2
ω

∼= P2 and it is tangent to
the axes. In most cases the link of this singularity is a rational homology sphere. Let
us study a special case.

Proposition 6.3 For any generic quasi-homogeneous polynomial gω(x, y, z) of
degree 3d1d2d3, and d1, d2, d3 odd numbers {F := fω + gω = 0} ⊂ C

3 defines
a surface singularity with a rational homology sphere link.

Proof Note that {F = 0} defines an (ω, k)-weighted Lê–Yomdin singularity, for
k = d1d2d3. A partial resolution of this singularity has an exceptional locus which
is a rational curve with three singular points (corresponding to the tangencies). In
most cases the link of this singularity is a rational homology sphere.

By symmetry reasons we study only the strict transform of this singularity at the
tangency point with Y after an ω-weighted blow-up. After a change of coordinates
the local equation of F is

0 = zd1d2d3 + (x + 1)2d1 + y2d2 + 1 − 2
(
yd2 + (x + 1)d1 + (x + 1)d1yd2

)

= zd1d2d3 + d1
2x2 − 2yd2 + . . .

and the ambient space is 1
d2

(0, d1d3,−1). Since d1, d2, d3 are odd numbers, by

Proposition 6.1 this equation defines a singularity in C3 whose link is a rational
homology sphere, and so is the case in the quotient manifold.

6.3 Integral Homology Sphere Surface Singularities

Following ideas of the third named author, Veys, and Vos, we present an infinite
family of normal surface singularities which are complete intersection in C4 and
whose links are integral homology spheres. The splice diagram of this family is
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precisely the one given in [29, p. 765] and the corresponding semigroup conditions
are satisfied. The examples given here can be generalized to any dimension.

Let n0, n1, n2, n3 ∈ Z>0 and b20, b21, b30, b31, b32 ∈ Z≥0. Consider S the
surface singularity in (C4, 0) defined by

S = {f1 + f2 = f2 + f3 = 0} ⊂ (C4, 0), where

⎧
⎪⎪⎨
⎪⎪⎩

f1 = x
n1
1 − x

n0
0 ,

f2 = x
n2
2 − x

b20
0 x

b21
1 ,

f3 = x
n3
3 − x

b30
0 x

b31
1 x

b32
2 .

(6.1)

The purpose of this section is to show when the link of S is a rational homology
sphere as well as to characterize when it is integral. The idea is to resolve S with
Q-normal crossings and apply Lemma 5.7 to compute det S. In order to do so we
consider the Cartier divisors of S defined by Y = {f1 = 0} and Hi = {xi = 0},
i = 0, 1, 2. This family was recently studied in Vos’ PhD thesis in a more general
context and we just briefly discuss here the construction of the partial resolution
obtained in [27, section 5].

Theorem 6.4 Let S ⊂ (C4, 0) be the surface singularity defined above. Assume
n0, n1, n2, n3 ∈ Z>0 are pairwise coprime, then S is a rational homology sphere.
Moreover, in that case S is an integral homology sphere singularity if and only if
m := gcd(n3, b20n1 + b21n0) = 1.

Proof Let π1 : Ĉ4 → C4 be the weighted blow-up at the origin of C4 with
weights w1 = ( n

n0
, n

n1
, n

n2
, n

n3
) where n = n0n1n2n3. The exceptional divisor of

π1 is the weighted projective variety E1 = P3
w1
. The assumption on the integers

ni , i = 0, .., 3 being pairwise coprime implies that the exceptional divisor E1
of the restriction ϕ1 = π1|Ŝ : Ŝ → S is a rational irreducible curve which

contains three singular points of Ŝ, namely Q0 = Ĥ0 ∩ E1, Q1 = Ĥ1 ∩ E1, and
P1 = Ĥ2 ∩ E1 = Ŷ ∩ E1, see Fig. 5. The local type of the singularities at Q0 and Q1
are given by

Q0 :

⎧
⎪⎨
⎪⎩

Ŝ = 1

n0
(n1n2n3,−1)

E1 : x1 = 0, Ĥ red
0 : x0 = 0,

Q1 :

⎧
⎪⎨
⎪⎩

Ŝ = 1

n1
(−1, n0n2n3)

E1 : x0 = 0, Ĥ red
1 : x1 = 0.

Around P1 the surface Ŝ can be described inside 1
n2n3

(−1, n0n1n3, n0n1n2) as the

set of zeros of x
n2
2 − x

b′
2

0 + x
n3
3 − x

b′
3

0 x
b32
2 + (x

n2
2 − x

b′
2

0 )R′
2(x0, x2) where b′

i =
bi,0

n
n0

+ · · · + bi,i−1
n

ni−1
− n, i = 2, 3, and R′

i (0, x2) = 0. Since the monomial
with higher order will not play any role in the resolution of S, roughly speaking the
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Fig. 5 First step of the
Q-resolution of S

situation at P1 with variables [(x0, x2, x3)] can be thought of as

P1 :

⎧
⎪⎨
⎪⎩

Ŝ = {xb′
2

0 + x
n2
2 + x

n3
3 = 0} ⊂ 1

n2n3
(−1, n0n1n3, n0n1n2)

E1 : x0 = 0, Ĥ red
2 : x2 = 0, Ŷ : x

b′
2

0 + x
n2
2 = 0.

(6.2)

The points Q0 and Q1 already have Q-normal crossings, so one does not need
to blow them up anymore. Consider the previous coordinates around P1 and let

π2 be the blow-up at P1 with weights w2 = (1,
b′
2

n2
,

b′
2

n3
). The exceptional divisor

of π2 is E2 = P2
w2

/G where G is a cyclic group of order n2n3 acting diagonally

as in (6.2). The exceptional divisor E2 of the restriction ϕ2|Ŝ : Ŝ → Ŝ is again

a rational irreducible curve containing 2 + m cyclic quotient singular points of Ŝ,
namely Q12 = E1 ∩ E2, P2 = Ŷ ∩ E2, and m points Q2j ∈ Ĥ2 ∩ E2 (Fig. 6).

The composition ϕ = ϕ1 ◦ϕ2 : Ŝ → S is aQ-resolution of S and the order of the
groups at Q12, Q2j , and P2 are d , n2, and

n3
m
, respectively. Since the Q-resolution

graph is a tree and the exceptional divisors are isomorphic to P1 the link of S is
a rational homology sphere. In order to compute detS one needs to calculate the
self-intersection numbers E2

i = −ai , i = 1, 2, which can be done by exploiting
our information on the curve Y in the partial resolution of S. First, note that the
intersection of E2 with Ŷ at P2 is m. Second,

ϕ∗Y = Ŷ + N1E1 + N2E2

where N1 = n0n1n2n3 = n and N2 = b′
2+n

m
. Since Ei · ϕ∗Y = 0, i = 1, 2, one

obtains that a1 = N2
N1d

and a2 = m+ N1
d

N2
. Therefore the determinant of the intersection

matrix is given by

det(A) = det

(−a1
1
d

1
d

−a2

)
= m

N1d
.

Fig. 6 Q-resolution of S
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By Lemma 5.7 one has

det S = det(−A)n0n1dnm
2

n3

m
= nm−1

2 .

Therefore by Corollary 5.3 the link of S is a integral homology sphere if and only if
detS = 1, or equivalently, m = 1 as claimed.

Remark 6.5 If the exponents ni ’s are not pairwise coprime, then E1 = ⊔
j E1j has

n23 = gcd(n2, n3) irreducible components and E2 is irreducible. They have genus

g(E1j ) = 1

2

(
n123

n23
− 1

)(
n023

n23
− 1

)
and g(E2) = 1

2
(n23 − 1)(m − 1),

where m = gcd(n3, b) with b = b20n1 + b21n0. The determinant of S can be
rewritten as

detS =
(

b

m

)n23−1 (
N1

α

)n123−n23
(

N1

β

)n023−n23
(

n2

n23

)m−1

where N1 = lcm(n0, n1, n2, n3), α = lcm(n1, n2, n3), β = lcm(n0, n2, n3), and
nijk = ninj nk

lcm(ni ,nj ,nk)
. From here it can easily be shown that the link of S is an integral

homology sphere if and only if gcd(ni, nj ) = 1, i �= j , and m = 1. The details are
left to the reader.
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