
Real Seifert Forms, Hodge Numbers
and Blanchfield Pairings

Maciej Borodzik and Jakub Zarzycki

Abstract In this survey article we present connections between Picard–Lefschetz
invariants of isolated hypersurface singularities and Blanchfield forms for links.
We emphasize the unifying role of Hermitian Variation Structures introduced by
Némethi.
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1 Introduction

Understanding a mathematical object via decomposing it into simple pieces is a
very general procedure in mathematics, which can be seen in various branches and
various fields. These procedures, often very different from each other, sometimes
share common properties. In some cases, one mathematical object is defined in
several fields and one procedure of decomposing is known under different names
in different areas of mathematics.

The aim of this article is to show a bridge between real Blanchfield forms in
knot theory and real Hermitian Variation Structures in singularity theory. In fact, we
want to explain that these two apparently distant objects describe (almost) the same
concept. Moreover, the methods for studying these two objects are very close. To be
more specific, classification of simple Hermitian Variation Structures is an instance
of a procedure known in algebraic geometry and algebraic topology as dévissage,
which—in a vague sense—can be seen as a refinement of a primary decomposition
of a torsion module over a PID. Dévissage is an important method of studying
abstract linking forms, in particular, Blanchfield forms.
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These two points of view: the Hodge-theoretical one and the algebraic one, give
possibility to apply methods of one field to answer questions that arise in another
field. In this way, the first author and Némethi gave a proof of semicontinuity of a
spectrum of a plane curve singularity [5] using Murasugi inequality of signatures.
Conversely, the Hodge theoretic approach to Blanchfield forms, allows us to define
Hodge-type invariants for links in S3. Using these invariants we can quickly
compute knot invariants based on a small piece of data: an exemplary calculation is
shown in Example 4.1.

Another feature of Hodge-theoretical perspective is the formula for the Tristram–
Levine signature, which we state in Proposition 4.7. This formula allows us to
define the analog of the Tristram–Levine signature for twisted Blanchfield pairings,
compare Definition 6.2. Many existing constructions of similar objects involve a
choice of a matrix representing a pairing, see [7, Section 3.4]. However, finding
a matrix representing given pairing, even for pairings over C[t, t−1] is not a
completely trivial task, see e.g. [7, Proposition 3.12]. The approach through Hodge
numbers allows us to bypass this difficulty.

The structure of the paper is the following. In Sect. 2 we recall the basics of
Picard–Lefschetz theory. This section serves as a motivation for introducing abstract
Hermitian Variation Structures in Sect. 3. Section 4 recalls the construction of a
Hermitian Variation Structure for general links in S3. We also clarify several results
of Keef, which were not completely correctly referred to in [6]. In Sect. 5 we give
a definition of Blanchfield forms. We show that there is a correspondence between
real Blanchfield forms and real Hermitian Variation Structures associated with the
link. Moreover, the classification of the two objects is very similar.

In the last Sect. 6 we sketch the construction of twisted Blanchfield pairings and
introduce Hodge numbers for such structures. We show how to recover the signature
function from such a pairing. An example is given by Casson–Gordon signatures.

2 Milnor Fibration and Picard-Lefschetz Theory

Let f : (Cn+1, 0) → (C, 0) be a polynomial map with 0 ∈ C
n+1 an isolated critical

point.

Theorem 2.1 (Milnor’s Fibration Theorem, See [23]) For ε > 0 sufficiently
small, the map Ψ : S2n+1

ε \ f −1(0) → S1 given by Ψ (z) = f (z)
‖f (z)‖ is a locally

trivial fibration. The fiber Ψ −1(1) has the homotopy type of a wedge sum of some
finite number of spheres Sn.

The map Ψ can be explicitly described near the set f −1(0). Namely, choose a
sufficiently small regular neighborhood N of f −1(0). It has a structure of a trivial
D2 bundle over f −1(0). Choose polar coordinates (r, φ) on D2 \ {0}. For some
choice of trivialization N ∼= f −1(0)×D2, the map Ψ is given by Ψ (x, r, φ) = 1

2π
φ

(here x ∈ f −1(0), r, φ are coordinates on the disk). See [35, Section 2.4.13] for
more details.
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Let Ft be the fiber Ψ −1(t). The geometric monodromy ht is a diffeomorphism
ht : F1 → Ft , smoothly depending on t , which corresponds to the trivialization of
the Milnor fibration on the arc of S1 from 1 to t . Note that ht is well-defined only
up to homotopy.

Definition 2.1 The homological monodromy is the map h : Hn(F1;Z) →
Hn(F1;Z) induced by the monodromy.

Remark 2.1 The monodromy map in N \ f −1(0) can be defined to be ht (x, r, 0) =
(x, r, 2πt). In particular, h1 is the identity on F1 ∩ (N \ f −1(0)).

The homological monodromy is not the only invariant that can be associated with
the Milnor fibration. Let ˜F1 = F1 \ N . Then ˜F1 is a manifold with boundary
homotopy equivalent to F1. The monodromy map h1 takes ˜F1 to ˜F1 and it is the
identity on ∂ ˜F1.

Consider now a relative cycle α ∈ Hn(˜F1, ∂ ˜F1;Z). The cycle h1(α) − α has no
boundary, hence it is an absolute cycle.

Definition 2.2 The variation map var : Hn(˜F1, ∂ ˜F1;Z) → Hn(˜F1;Z) is the map
defined as var α = h1(α) − α.

Remark 2.2 Poincaré–Lefschetz duality for F1 implies that Hn(˜F1, ∂ ˜F1;Z) ∼=
Hom(Hn(˜F1;Z),Z). Therefore, the variation map can be regarded as a map from
Hn(F1;Z)∗ to Hn(F1;Z).

We can also define a bilinear form based on linking numbers of n-cycles in S2n+1.

Definition 2.3 The Seifert form is the map L : Hn(F1,Z) × Hn(F1,Z) → Z given
by L(α, β) = lk(α, h 1

2
β).

Here lk(A,B) is the generalized linking pairing of two disjoint n-cycles in S2n+1.
A classical definition deals first with the case when Hn(B;Z) ∼= Z, e.g. B is a
closed connected orientable n-dimensional manifold. In this case, the choice of
isomorphism Hn(B;Z) ∼= Z (eg. given by choosing an orientation of B) gives,
via Alexander duality, an isomorphism Hn(S

2n+1 \ B;Z) ∼= Z. Then, we define
lk(A,B) as the class of A in Hn(S

2n+1 \ B;Z). The definition is later extended to
the case when B is a sum of cycles with Hn(B;Z) ∼= Z.

There are relations between the variation map, the Seifert form and the mon-
odromy. These are usually called Picard–Lefschetz formulae. References include
[35, Lemma 4.20] and [1].

Theorem 2.2 The Seifert form, the variation map, the monodromy and the inter-
section form on Hn(F1;Z) are related by the following formulae:

L(var a, b) = 〈a, b〉
〈a, b〉 = −L(a, b) + (−1)n+1L(b, a)

h = (−1)n+1 var(var−1)∗.
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Here 〈·, ·〉 denotes the intersection form on Hn(F1;Z).

Theorem 2.2 is a motivation to introduce Hermitian Variation Structures, which are
the subject of the next section.

3 Hermitian Variation Structures and Their Classification

3.1 Abstract Definition

Let F be a field of characteristic zero. By · we denote the involution of F: if F = C,
then it is a complex conjugation, if F = R,Q, then the involution is the identity. Set
ζ = ±1.

Definition 3.1 A ζ -Hermitian variation structure over F is a quadruple
(U ; b, h, V ) where

(HVS1) U is a finite dimensional vector space over F;
(HVS2) b : U → U∗ is a F-linear endomorphism with b∗ ◦ θ = ζb, where θ :

U → U∗∗ is the natural isomorphism;
(HVS3) h : U → U is b-orthogonal, that is h

∗ ◦ b ◦ h = b;
(HVS4) V : U∗ → U is a F-linear endomorphism with θ−1 ◦ V ∗ = −ζV ◦h∗ and

V ◦ b = h − I .

The motivation is clearly Picard–Lefschetz theory. Suppose f : (Cn+1, 0) → (C, 0)

is a polynomial map as in Sect. 2. The following result is a direct consequence of
Theorem 2.2.

Proposition 3.1 Consider the quadruple (U, b, h, V ), where U = Hn(F1;C),
b : Hn(F1;C) → Hn(F1, ∂F1;C) = HomC(Hn(F1;C);C) is the Poincaré–
Lefschetz duality, h : U → U is the homological monodromy and V is the variation
map. Then (U, b, h, V ) is a Hermitian Variation Structure over C with ζ = (−1)n.

Relations (HVS3) and (HVS4) suggest that having two of the three operators b, h

and V we can recover the third one. This is true under some conditions, which we
are now going to spell out.

Lemma 3.1

(a) If b is an isomorphism then V = (h − I)b−1. The HVS is determined by the
triple (U ; h, b)

(b) If V is an isomorphism then h = −ζV (θ−1 ◦ V ∗)−1 and b = −V −1 −
ζ (θ−1 ◦ V ∗)−1. So V determines the HVS.

Definition 3.2 The HVS such that b is an isomorphism is called nondegenerate. If
V is an isomorphism, we say that the HVS is simple.
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3.2 Classification of HVS Over C

In [25] Némethi provides a classification of simple HVS over F = C. This
classification is based on a Jordan block decomposition of the operator h. Note
that we do not usually assume that all the eigenvalues of the monodromy operator
are roots of unity, as is the case of the HVS associated with isolated hypersurface
singularities.

Following [25] we first list examples of HVS. Then we state the classification
result. In the following we let Jk denote the k-dimensional matrix {cij }, with cij = 1
for j = i, i +1 and cij = 0 otherwise, that is, Jk is the single Jordan block of size k.

Example 3.1 Let ν ∈ C∗ \ S1 and � ≥ 1. Define

V2�
ν =

(

C
2�;

(

0 I

ζ I 0

)

,

(

νJ� 0
0 1

ν̄
J ∗

�
−1

)

,

(

0 ζ(νJ� − I)
1
ν̄
J ∗

�
−1 − I 0

))

.

Then V2�
ν is a HVS. Furthermore, V2�

ν and V2�
1/ν are isomorphic.

Before we state the next example, we need a simple lemma.

Lemma 3.2 Let k ≥ 1 and ζ = ±1. Up to a real positive scaling, there are
precisely two non-degenerate matrices bk± such that

bk±
∗ = ζb and J ∗

k bk±Jk = bk±.

The entries of bk± satisfy (bk±)i,j = 0 for i + j ≤ k and bi,k+1−i = (−1)i+1b1,k.
Moreover, (bk±)1,k is a power of i.

Convention 3.1 By convention, we choose signs in such a way that
(bk±)1,k = ±i−n2−k+1, where n is such that ζ = (−1)n.

Using bk± we can give an example of a HVS corresponding to the case μ ∈ S1.

Lemma 3.3 Let μ ∈ S1 and k ≥ 1 be an integer. Up to isomorphism, there are two
non-degenerate HVS such that h = μJk . These structures have b = bk+ and b = bk−,
respectively.

For these two structures we use the notation:

Vk
μ(±1) =

(

C
k; bk±, μJk, (μJk − I)(bk±)−1

)

.

These two structures are simple unless μ = 1. For μ = 1 we need another
construction of a simple HVS.
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Lemma 3.4 Suppose k ≥ 2. There are two degenerate HVS with h = Jk. These
are:

˜Vk
1 (±1) =

(

C
k;˜b±, Jk, ˜V k±

)

,

where

˜bk± =
(

0 0
0 bk−1±

)

and ˜V k± is uniquely determined by b and h. Moreover, ˜Vk
1 (±1) is simple.

While Lemma 3.4 deals with the case k ≥ 2, there remains the case k = 1. Then,
with μ = 1, that is, h = 1, all possible structures can be enumerated explicitly.
These are the following.

V1
1 (±1) = (C,±i−n2

, I, 0)

˜V1
1 (±1) = (C, 0, I,±in

2+1)

T = (C, 0, I, 0).

In the above list, the structures V1
1 (±1) and T are non-simple, and ˜V1

1 (±1) are
simple.

Concluding, for any μ ∈ S1 and in each dimension k, there are precisely two
non-equivalent simple variation structures with h = μJk . We use the following
uniform notation for them:

Wk
μ(±1) =

{

Vk
μ(±1) if μ = 1

˜Vk
1 (±1) if μ = 1.

(3.1)

The following result is one of the main results of [25].

Theorem 3.2 A simple HVS is uniquely expressible as a sum of indecomposable
ones up to ordering of summands and up to an isomorphism. The indecomposable
pieces are

Wk
μ(±1) for k ≥ 1, μ ∈ S1

V2�
ν for � ≥ 1, 0 < |ν| < 1.

Definition 3.3 Let M be a simple HVS. The Hodge number pk
μ(±1) for μ ∈ S1

is the number of times the structure Wk
μ(±1) enters M as a summand. The Hodge

number q�
ν for |ν| ∈ (0, 1) is the number of times the structure V2�

ν enters M as a
summand.
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For an isolated hypersurface singularity, the whole ‘Picard–Lefschetz package’,
that is, the monodromy, the variation map, the intersection form and the Seifert
form, are defined over the integers. Passing to C in the definition of a Hermitian
Variation Structure means that some information is lost. While we do not know how
to recover the part coming from integer coefficients, the part of data coming from
real coefficients is easy to see.

Suppose M = (U, b, h, V ) is a HVS over R. We construct a complexification
of M by considering MC = (U ⊗ C, b ⊗ C, h ⊗ C, V ⊗ C). Using Definition 3.3
we can associate Hodge numbers with MC. The following result is implicit in [25],
see also [6, Lemma 2.14].

Lemma 3.5 The Hodge numbers of M satisfy

pk
μ(u) = pk

μ((−1)k+1+sζu) and q�
ν = q�

ν .

Here s = 1 if μ = 1, otherwise s = 0.

The definition of a HVS is a generalization of the definition of Milnor’s isometric
structure [24]; compare also [26]. Lemma 3.1 implies that if the intersection form is
an isomorphism, then the HVS is determined by the underlying isometric structure.
Classification Theorem 3.2 shows, that the only simple degenerate HVS correspond
to the eigenvalue μ = 1. This is the main feature of the concept of a HVS: it allows
us to deal with the case μ = 1.

3.3 The Mod 2 Spectrum

The spectrum of an isolated hypersurface singularity was introduced by Steenbrink
in [31]. It is an unordered s-tuple of rational numbers a1, . . . , as ∈ (0, n+1], where
n is the dimension of the hypersurface and s is the Milnor number. The spectrum
is one of the deepest invariants of hypersurface singularities. The definition of the
spectrum involves the study of mixed Hodge structures associated with a singular
point. We now show, following Némethi, that the mod 2 reduction (the tuple
a1 mod 2, . . . , as mod 2) of the spectrum can be recovered from Hodge numbers.
In particular, for plane curve singularities, the whole spectrum is determined by the
Hodge numbers.

Theorem 3.3 (See [25, Theorem 6.5]) Let pk
μ(u) be the Hodge numbers of an

isolated hypersurface singularity in Cn+1. For any α ∈ (0, 2) \ {1}, the multiplicity
of α in the mod 2 spectrum is equal to

∞
∑

k=1

∑

ε=±1

kp2k
μ (ε) +

∞
∑

k=1

∑

ε=±1

(k + 1 − ε�α�)p2k+1
μ (ε),

where μ = e2πiα.
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The integer part of the spectrum, i.e. the case α ∈ {1, 2} can be treated in a similar
manner.

4 HVS for Knots and Links

From now on we assume that ζ = −1, so we consider only (−1)-variation
structures.

4.1 Three Results of Keef

The monodromy, the variation and the intersection form for an isolated hypersurface
singularity are defined homologically. The construction does not involve any
analytic structure, that is, we need only existence of a topological fibration of the
complement of the link of singularity over S1. Therefore, if we have any fibered link
L ⊂ S3, we can use the same approach as above to define a HVS for such link. With
a choice of a basis of H1(F ), where F is the fiber, the variation map is the inverse
of the Seifert matrix.

The construction can be extended further: take a link with Seifert matrix S and
associate to it a simple HVS with variation map S−1. Now the Seifert matrix is
defined only up to S-equivalence (see [16, Section 5.2]) and need not be invertible in
general. We shall use results of Keef to show that every Seifert matrix is S-equivalent
to a block sum of an invertible matrix and a zero matrix. This invertible matrix is
well-defined up to rational congruence (for an analogous result for knots refer to
[16, Theorem 12.2.9]). Therefore, a HVS for any link in S3 is defined.

Hereafter, where we mean S-equivalence, we mean S-equivalence with rational
coefficients. As shown in [33], not all the results carry over to the case of Z.

Proposition 4.1 (See [19, Proposition 3.1]) Any Seifert matrix S for a link L is
S-equivalent over Q to a matrix S′ which is a block sum of a zero matrix and an
invertible matrix Sin.

Proposition 4.2 (See [19, Theorem 3.5]) Suppose S = S0 +Sin and T = T0 +Tin

be two matrices over Q, presented as block sums of a zero matrix (that is, S0 and
T0) and an invertible matrix (that is, Sin and Tin). The matrices S and T are S-
equivalent if and only if they are congruent over Q. Furthermore, if S and T have
the same size, then congruence of S and T is equivalent to congruence of Sin and
Tin.

Proposition 4.3 (See [19, Theorem 3.6]) Two matrices S and T are S-equivalent
over Q if and only if their Seifert systems are isomorphic.
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Here, a Seifert system relative to a square matrix S consists of the module AS =
Q[t, t−1]/(tS−ST ) and a pairing on the torsion part of AS as defined in [19, Section
2].

From these three results we deduce the following fact. This result was often used
in [6], but actually its proof was never written down in detail.

Proposition 4.4 Suppose S is S-equivalent to matrices S′ and S′′, which are both
block sums of zero matrices S′

0 and S′′
0 and S′

in, S′′
in, such that S′

in, S
′′
in are non-

degenerate. Then S′
in and S′′

in are congruent over Q.

Proof As Q[t, t−1] is a PID, the module AS ′ = AS ′′ decomposes as a direct sum of
the free part and the torsion part. The sizes of S′

0 and S′′
0 are equal to the rank over

Q[t, t−1] of the free part of the module.
Let T A denote the torsion-part of AS ′ = AS ′′ . The order of T A is the degree of

the polynomial det(tS′
in − S′

in
T
) = det(tS′′

in − S′′
in

T
). As S′

in and S′′
in are invertible,

the degree of det(tS′
in − S′

in
T
) is equal to the size of S′

in. Therefore, the sizes of
S′

in and S′′
in are equal. By Proposition 4.2, this shows that S′

in and S′′
in are congruent

over Q.

Remark 4.1 One would be tempted to guess that given a matrix S, the size of S0 is
dim(ker S ∩ ker ST ). Such remark was made in [5, Section 2.2] but it was nowhere
used. In fact, it is false. For a counterexample, take

S =
⎛

⎝

0 0 1
1 0 0
0 0 0

⎞

⎠ .

One readily checks that ker S ∩ ker ST = 0 but S is S-equivalent to the matrix (0).
So dim S0 = 1.

Definition 4.1 Let L ⊂ S3 be a link with Seifert matrix S. Suppose S is S-
equivalent to S′, which is a block sum of a zero matrix and an invertible matrix
Sin. The Hermitian Variation Structure for L is the Hermitian Variation Structure
M(L) for which the variation operator is the inverse of Sin.

>From Proposition 4.4 we deduce the following result.

Corollary 4.1 The Hermitian Variation Structure M(L) is independent on the S-
equivalence class of the matrix S, i.e. it is an invariant of L.

4.2 HVS for Links and Classical Invariants

Given the link L ⊂ S3 and the HVS M(L) we define Hodge numbers for L. Denote
them pk

μ(±1) and q�
ν . The Hodge numbers determine the one-variable Alexander

polynomial of L over R and the signature function. To describe the relation in more
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detail, we introduce a family of polynomials.

B1(t) = (t − 1), B−1(t) = (t + 1)

Bμ(t) = (t − μ)(1 − μt−1) μ ∈ S1, im μ > 0
(4.1)

Bμ(t) = (t − μ)(1 − μ−1t−1) μ ∈ R, 0 < |μ| < 1

Bμ(t) = (t − μ)(t − μ)(1 − μ−1t−1)(1 − μ−1t−1) μ /∈ S1 ∪ R, 0 < |μ| < 1.

The (Laurent) polynomials Bμ for μ∉{1,−1} are characterized by the property that
they have real coefficients, they are symmetric (Bμ(t) = Bμ(t−1)) and they cannot
be presented as products of real symmetric polynomials. Moreover, these are (up
to multiplication by t) the characteristic polynomials of the monodromy operators
associated with HVS Wk

μ. With notation (4.1) we obtain (see [7, Section 4.1]):

Proposition 4.5 Let L be a knot. Then—up to multiplication by a unit inR[t, t−1]—
the Alexander polynomial of L is equal to

ΔL(t) =
∏

μ∈S1

im μ≥0

∏

k≥1
u=±1

Bμ(t)p
k
μ(u) ·

∏

0<|ν|<1
im ν≥0

∏

�≥1

Bν(t)
q�
ν . (4.2)

Another result gives the minimal number of generators of the Alexander module
of a knot L over R[t, t−1]; see [6, Section 4.3].

Proposition 4.6 Suppose ΔL is not identically zero. The minimal number of
generators of the Alexander module over R[t, t−1] is equal to

max

⎛

⎝max
μ∈S1

∑

k,u

pk
μ(u), max

0<|ν|<1

∑

�

q�
ν

⎞

⎠ .

The Hodge numbers of a link determine its Tristram–Levine signature. Recall that
for a link L, the Tristram–Levine signature σL(z) is the signature of the Hermitian
matrix (1 − z)S + (1 − z)ST , where S is s Seifert matrix for L; see the recent survey
of Conway [11] for the definition, properties and recent applications of signatures.

We will now show that the Hodge numbers determine the Tristram–Levine
signature. The following two results can be deduced from [6, Proposition 4.14],
see also [7, Section 5].

Proposition 4.7 Let L be a link and z0 = eix ∈ S1 (x ∈ (0, π)) be such that z0 is
not a zero of the Alexander polynomial of L. Then

σL(z0) = −
∑

y∈[0,x)

∑

u∈{−1,1}
k odd

upk
eiy (u) +

∑

y∈(x,π)

∑

u∈{−1,1}
k odd

upk
eiy (u). (4.3)
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Proposition 4.8 With notation of Proposition 4.7 if z0 is a root of the Alexander
polynomial, then:

σL(z0) − 1

2

(

lim
t→0+ σL(eit z) + σL(e−it z)

)

=
∑

u∈{−1,1}
k even

upk
z0

(u). (4.4)

The bottomline of Propositions 4.7 and 4.8 is that the Hodge numbers pk
μ(u) with

k odd determine the values of signature functions outside of roots of the Alexander
polynomial, while the Hodge numbers with k even determine the jumps at the roots.
Note that the jumps at the roots of the signature function (i.e. the left-hand side
of (4.4)) are not concordance invariants.

Propositions 4.5, 4.7, 4.8 and 4.6 can be used to determine the Hodge numbers
directly, without referring to explicit study of the Jordan block decomposition.

Example 4.1 Let K = 820. It is known that K is slice. From [10] we read off that
ΔK = (t − μ)2(t − μ)2 for μ = 1

2 (1 + i
√

3). Moreover, the Nakanishi index (the
minimal number of generators of the Alexander module of K) is 1. This data alone
will determine all the Hodge numbers and—up to sign—also the signature function.

Namely, by Proposition 4.5 we know that for all λ = μ, k ≥ 1 and u ∈ {−1, 1},
we must have pk

λ(u) = 0. Otherwise the Alexander polynomial for K has a root a λ.
As the Alexander polynomial of K has a double root at μ, we infer that

∑

k,u pk
μ(u) = 2. As pk

μ(u) ≥ 0 for all k, u, we have essentially two possibilities.

• p1
μ(+1) + p1

μ(−1) = 2;
• for some u ∈ {−1, 1}, p2

μ(u) = 0 and for (k,w) = (2, u) we have pk
μ(w) = 0.

Now the Nakanishi index of K is 1; by Proposition 4.6 the first case does not occur.
Therefore p2

μ(u) = 1 and without extra data we cannot determine the sign u.
We conclude from Propositions 4.7 and 4.8 that the Tristram–Levine signature

of K is zero except for μ and μ, where it attains the value u.
Note that the maximum absolute value of the signature function is a lower bound

for the unknotting number; see [11, Theorem 2.6] or [4, Theorem 4.1]. In particular,
the n-fold connected sum of K , nK has unknotting number at least n/2.

Remark 4.2 Finding bounds for the unknotting number of smoothly slice knots
is a notoriously difficult problem, because most known invariants that bound the
unknotting number, are actually bounds for the 4-genus.

4.3 Signatures, HVS and Semicontinuity of the Spectrum

Hodge numbers can be used to provide the relation between the signature of the link
of singularity and the mod 2 spectrum. For simplicity, we state the result for curve
singularities in C2.
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Theorem 4.1 (See [6, Corollary 4.15]) Let f : C
2 → C define an isolated

singularity with link L and spectrum Sp. Suppose x ∈ (0, 1) is such that neither
x nor x + 1 belong to the spectrum. Then

σL(e2πix) = −#Sp ∩ (x, x + 1) + #Sp \ [x, x + 1].

Theorem 4.1 can be regarded as a generalization of Litherland’s formula expressing
the signature of a torus knot in terms of the number elements in Spp,q ∩ (x, x + 1),
where Spp,q = { i

p
+ j

q
, 1 ≤ i < p, 1 ≤ j < q} is the spectrum of singularity

xp − yq = 0; see [21].
Spectrum of singularity is semicontinuous under deformation of singularities.

While stating the result of Steenbrink and Varchenko [32, 34] is beyond the scope
of this survey, we note that in [5], Murasugi inequality for signatures of links was
used to obtain semicontinuity results.

5 Blanchfield Forms

We now pass to defining Blanchfield forms. In some sense, Blanchfield forms
generalize Hermitian Variation Structures, although the connection might be hard
to observe at first. We restrict to the case of knots, referring to [15] for the case of
links. First, we need to set up some conventions. Suppose R be a ring with involution
(usually we consider R = Z,Q,R with trivial involution or R = C with complex
conjugation). The ring R[t, t−1] has an involution given by

∑

aj tj = ∑

aj t
−j .

5.1 Definitions

Let K ⊂ S3 be a knot. Let X = S3 \ K . By Alexander duality H1(X;Z) = Z.
Hurewicz theorem implies the existence of a surjetion π1(X) → Z. We call
the cover of X corresponding to this surjection the universal abelian cover of
X. We denote it by ˜X. The first homology group H1(˜X;Z) has a structure of
Z[t, t−1]-module, with multiplication by t being induced by the action of the deck
transformation on ˜X. This module is called the Alexander module of K . Usually it
is denoted by H1(X;Z[t, t−1]); in Sect. 5 we will denote it by H .

Blanchfield [2] defined a bilinear pairing H × H → Q(t)/Z[t, t−1]. He also
proved that it is Hermitian and non-degenerate. The pairing is nowadays called the
Blanchfield pairing of K . Instead of going through the definition of the form, we
will show how the pairing is computed.

Theorem 5.1 Let K be a knot and let S be a Seifert matrix for K , assume the
size of S is n. Denote Λ = Z[t, t−1]. Then H = Λn/(tS − ST )Λn and with this
identification the Blanchfield pairing is (x, y) �→ xT (t−1)(S−tST )−1y ∈ Q(t)/Λ.
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Remark 5.1 There is some confusion in the literature about the correct statement of
Theorem 5.1. We refer the reader to [13], where various possibilities are discussed
and some commonly appearing mistakes are corrected.

Theorem 5.1 shows that a Seifert matrix of K determines the Blanchfield pairing.
The reverse implication is also true; see e.g. [30, 33].

Theorem 5.2 The S-equivalence class of a Seifert matrix of a knot K is determined
by the Blanchfield form.

The importance of a Blanchfield form in knot theory justifies the following abstract
definition.

Definition 5.1 Let R be an integral domain with (possibly trivial) involution. Let
Ω be the field of fractions of R.

A linking form over R is a pair (M, λ), where M is a torsion R-module and
λ : M × M → Ω/R is a non-singular sesquilinear pairing. Here ‘non-singular’
means that the map M → HomR(M,Ω/R) induced by λ is an isomorphism.

We refer to Ranicki’s books [28] and [29] for a detailed study of abstract linking
forms and their properties.

5.2 Blanchfield Pairing Over R[t, t−1]

We will now study classification of Blanchfield pairings over R[t, t−1]. As in
Sect. 3.2 we will first give some examples and then, based on these examples, we
state the classification result. First we deal with the case μ ∈ S1.

Definition 5.2 Let μ ∈ S1, im μ > 0. Let k > 0, ε ∈ {−1, 1}. The hermitian form
e(μ, k, ε) is the pair (M, λ), where

M = R[t, t−1]/Bλ(t)
k

λ(x, y) = εxy

Bμ(t)k
.

The second definition is for μ /∈ S1.

Definition 5.3 Suppose ν ∈ C, im ν ≥ 0 and 0 < |ν| < 1. For � > 0 we define the
hermitian form f(ν, �) as the pair (M, λ), where

M = R[t, t−1]/Bλ(t)
�

λ(x, y) = xy

Bν(t)�
.
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Note that Definitions 5.2 and 5.3 do not cover the case μ = ±1. These two cases
are special, because B±1(t) is not symmetric, but they do not occur in knot case,
because ±1 is never a root of the Alexander polynomial of a knot.

The following result goes back at least to Milnor, see [24, Theorem 3.3]. We
present the statement from [3], see also [7].

Theorem 5.3 Suppose (M, λ) is a non-degenerate linking form over R[t, t−1] such
that the multiplication by (t ± 1) is an isomorphism of M . Then (M, λ) decomposes
into a finite sum:

(M, λ) =
⊕

i∈I

e(μi, ki, εi ) ⊕
⊕

j∈J

f(νj , �j ), (5.1)

where μi ∈ S1, 0 < |νj | < 1, and im μi > 0, im νj ≥ 0 Such a decomposition is
unique up to permuting summands.

Theorem 5.3 motivates the following definition.

Definition 5.4 Let (M, λ) be as in the statement of Theorem 5.3. The number ek
μ(ε)

(respectively f �
ν ) is the number of times the form e(μ, k, ε) (respectively f(ν, �))

enters (M, λ) as a direct summand.

5.3 Variation Operators and Linking Forms

Let M be a simple HVS over R with variation operator V with ζ = −1. Let S =
V −1. Motivated by Theorem 5.1 define the pairing (M, λ) by

M = R[t, t−1]n/(tS−ST )R[t, t−1]n, λ(x, y) = xT (t−1)(S−tST )−1y. (5.2)

We call this form the linking form associated to M. We have the following result.

Proposition 5.1 Let μ ∈ S1, im μ > 0. Suppose M = Vk
μ(ε)⊕Vk

μ((−1)kε). Then,
the linking form associated with M is equal to e(μ, k, ε).

Proof The statement is well-known to the experts. The underlying R[t, t−1]-
modules are clearly isomorphic and the sign ε is determined by comparing
appropriate signatures, see [17, 18] and also Conway’s survey [11, Section 4.2].

It is instructive to give an elementary proof of Proposition 5.1 in case k = 1. The
method of computing the sign of a non-degenerate pairing over R[t, t−1]/Bμ(t)k

is as follows. Take an element v ∈ R[t, t−1]/Bμ(t)k and compute λ(v, v) =
q/Bμ(t)k . If q is coprime with Bμ, then the sign of q(μ) (this is clearly a real
number) is precisely the sign of e(μ, k, ε). A proof of the last statement follows
quickly from the proof of [3, Proposition 4.2].
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We will first compute the Seifert matrix S and then λ(v, v) via (5.2). From
Lemma 3.2 we have b1

ε = −εi. Therefore, the variation operator associated with
V1

μ(ε) is εi(μ−1). The variation operator corresponding to V1
μ(ε)⊕V1

μ(−ε) is thus
equal to

V = ε

(

i(μ − 1) 0
0 −i(μ − 1)

)

.

Hence

S = V −1 = −iε

|μ − 1|2
(

ξ 0
0 ξ

)

,

where ξ = i(μ − 1). Write in polar coordinates ξ = r cos φ + ir sin φ. Then, S is
congruent to the matrix

S = ε

r

(

cos φ sin φ

− sin φ cos φ

)

,

The module R[t, t−1]/Bμ(t) is isomorphic to the module R[t, t−1]2/(tS −
ST )R[t, t−1]2.

Since det(S − tST ) = tBμ(t), we have for any v ∈ R[t, t−1]2:

λ(v, v) = vT (t −1)(S− tST )−1v = vT (t − 1)εr

tBμ(t)

(

(1 − t) cos φ −(1 + t) sin φ

(1 + t) sin φ (1 − t) cos φ

)

v

Now take the vector v = (1, 0) and consider its class in R[t, t−1]2/(tS−ST ), which
we denote by the same letter. We obtain

λ(v, v) = ε(t − 2 + t−1)r cos φ

Bμ(t)
.

Now the sign of 2−μ−μ is positive. To see the sign of cos φ we note that im μ > 0,
hence μ − 1 is in the second quadrant, so i(μ − 1) is in the third one, thus cos φ is
negative.

Remark 5.2 An analog of Proposition 5.1 for μ /∈ S1 is trivial, because the pairing
is determined by the underlying module structure.

The following result is an easy consequence of Proposition 5.1.

Theorem 5.4 There is an equality pk
μ(ε) = ek

μ(ε), q�
ν = f �

ν .
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6 Twisted Blanchfield Forms and Applications

One of the features of the Hodge-theoretic point of view on Blanchfield pairings
is that we can define signature-type invariants of pairings on torsion R[t, t−1]-
modules, which do not necessarily come from Seifert matrices. In particular, we
can easily define signature-type invariants for twisted Blanchfield pairings. This
includes for instance so-called Casson-Gordon signatures.

6.1 Construction of Twisted Pairings

We begin with a general construction. For a 3-manifold X we consider its universal
cover ˜X. This space is acted upon by π1(X). With C∗(˜X) denoting the singular chain
complex of ˜X, we can regard C∗(˜X) as a left module over Z[π1(X)]. Suppose that
M is a (R,Z[π1(X)])-module for some ring R (by this we mean a left R-module and
a right Z[π1(X)-module). We define C∗(X; M) = M ⊗Z[π1(X)] C∗(˜X). This chain
complex of left R-modules is called the twisted chain complex of X. Its homology
is called the twisted homology of X; see [7, Section 6.1], [20].

A special instance of this operation is when we consider a representation
β : π1(X) → GLd(R) for some ring R with involution and some integer d > 0.
The space Rd has a structure of right Z[π1(X)]-module: an action of γ ∈ π1(X)

is the multiplication the vector in Rd by β(γ ) from the right. Taking M = Rd and
repeating the construction from the paragraph above, we obtain the twisted chain
complex C∗(X; Rd

β) (we write the subscript β) to stress that this is a twisted chain
complex).

Let us specify our situation more. Restrict to the case X is a closed 3-manifold
(the case of manifolds with boundary has also been studied, but there are more
technical details). Suppose R = F[t, t−1] for some field F and β : π1(X) →
GLd(R) is a unitary representation.

If the twisted homology group H1(X;F[t, t−1]d) is F[t, t−1]-torsion, then one
can define a hermitian non-singular pairing

H1(X;F[t, t−1]dβ) × H1(X;F[t, t−1]dβ) → F(t)/F[t, t−1];

see [7, 22, 27]. This pairing is usually called the twisted Blanchfield pairing.

6.2 Twisted Hodge Numbers and Twisted Signatures

We specify now to the situation, when F = R and X = M(K), the zero-framed
surgery on a knot K . Let β : π1(X) → GLd(R[t, t−1]) be a unitary represen-
tation such that H1(X;R[t, t−1]dβ) is R[t, t−1]-torsion. Assume furthermore that
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H1(X;R[t, t−1]dβ) has no (t ± 1)-torsion. Then the twisted Blanchfield pairing is
defined and by Theorem 5.3 above, it decomposes as a sum of e(μ, k, ε) and f(ν, �).

Definition 6.1 The twisted Hodge number pk
μ(ε)β and f �

ν,β is the number of times
the summand e(μ, k, ε), respectively f(ν, �) enters the decomposition (5.1).

Having defined twisted Hodge numbers, we can define twisted signatures via an
analog of (4.3).

Definition 6.2 Suppose μ = e2πix , x ∈ (0, 1/2). The function

μ �→ σβ(μ) =
∑

k odd
ε=±1

⎛

⎝pk
μ(ε)β + 2

∑

y∈(0,x)

pk
e2πiy (ε)β

⎞

⎠

is called the twisted signature function. The function is extended via σβ(μ) =
σβ(μ).

There is a subtle difference between Definition 6.2 and Proposition 4.7. The
classical result, Proposition 4.7, sums contributions of the Hodge numbers in a range
including 0. Therefore it is perfectly possible that the signature function is equal to
1 for all values close to 1. This is the case for example for the Hopf link.

Definition 6.2 sums over y in an open interval (0, x), so the previous behavior
is impossible. This is not merely a technical issue: it seems difficult to extend the
definition of twisted signature to get a meaningful contribution of μ = 1.

6.3 A Few Words on Case F = C

The construction of Hodge numbers via classification of linking pairings can be
done over C[t, t−1]. We can define e(μ, k, ε) for μ ∈ S1, and f(μ, k) for 0 < |μ| <

1. The underlying module structure is C[t, t−1]/(t − μ)k. However, the specific
construction seems to be harder than in case over R; see [7, Section 2]. Once this
technical difficulty is overcome, we can define twisted Hodge numbers and twisted
signatures essentially via Definitions 6.1 and 6.2.

An important instance of twisted signatures over C[t, t−1] are signatures defined
from Casson–Gordon invariants introduced by Casson and Gordon, see [8, 9].
In short, let K be a knot and let n be an integer. Consider the n-fold cyclic
branched cover Ln(K). Let m be a prime power coprime with n. For any non-trivial
homomorphism χ : H1(Ln(K);Z) → Zm we can construct a unitary representation
π1(M(K)) → GLn(C[t, t−1]). The concrete formula for the representation is
beyond the scope of this article, we refer to [7, Section 8.1] The signature associated
to this representation via Definition 6.2 is called a Casson-Gordon signature
σχ,m : S1 → Z. Casson–Gordon sliceness obstruction can be translated into
vanishing of some Casson–Gordon signatures. The following result is stated in [7,
Theorem 8.8, Corollary 8.16] as a corollary of a result of Miller and Powell [22].
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Theorem 6.1 Let K be a topologically slice knot. Then for any prime power n,
there exists a metabolizer P of the linking form on H1(Ln(K);Z) such that for
any prime power qa and any non-trivial homomorphism χ : H1(Ln(K);Zqa ) → Z

vanishing on P , there is b ≥ a such that σχ,qb is zero almost everywhere on S1.

The main feature of Theorem 6.1 is computability. Miller and Powell [22] gave an
algorithm to compute the twisted Blanchfield pairing using Fox differential calculus.
The methods of [7], which we presented in this article, allow us to compute the
Casson-Gordon signatures. As an application [7] and later [12] could prove non-
sliceness of some linear combinations of iterated torus knots, generalizing previous
results of Hedden et al. [14].

6.4 A Closing Remark

The two decomposition results: the classification of HVS of Theorem 3.2 and the
classification of real Blanchfield forms in Theorem 5.3 share many properties. There
are some differences, which we now want to summarize.

The classification of HVS deals much more efficiently with the case μ = 1,
because of the special definition of a simple HVS for μ = 1. The presence of (t−1)-
torsion modules in the theory of linking forms is a source o notorious technical
difficulties.

The classification of Blanchfield forms is more general and is usually much easier
to generalize. The construction of twisted Blanchfield pairings is a straightforward
generalization of the construction of the classical pairing. Also, in many classifica-
tion results, it is more convenient to have a single object (a pairing), than a quadruple
of objects.
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