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Abstract We give a combinatorial proof for a multivariable formula of the
generating series of type D Young walls. Based on this we give a motivic refinement
of a formula for the generating series of Euler characteristics of Hilbert schemes of
points on the orbifold surface of type D.
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1 Introduction

In this paper we survey and refine some existing formulas expressing a connection
between affine Lie algebras, Young diagram combinatorics and singularity theory
as investigated in [9, 10]. This connection is in the context of Hilbert schemes of
points on orbifold surface singularities.

Let G ⊂ SL(2,C) be a finite subgroup. The equivariant Hilbert scheme
Hilb([C2/G]) is the moduli space of G-invariant finite colength subschemes of C2,
the invariant part of Hilb(C2) under the lifted action of G. This space decomposes
as

Hilb([C2/G]) =
⊔

ρ∈Rep(G)

Hilbρ([C2/G])

where

Hilbρ([C2/G]) = {I ∈ Hilb(C2)G : H 0(OC2/I) �G ρ}
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for any finite-dimensional representation ρ ∈ Rep(G) of G; here Hilb(C2)G is
the set of G-invariant ideals of C[x, y], and �G means G-equivariant isomor-
phism. Being components of fixed point sets of a finite group acting on smooth
quasiprojective varieties, the orbifold Hilbert schemes themselves are smooth and
quasiprojective [3].

The topological Euler characteristics of the equivariant Hilbert scheme can
be collected into a generating function. Let ρ0, . . . , ρn ∈ Rep(G) denote the
(isomorphism classes of) irreducible representations of G, with ρ0 the trivial
representation. The orbifold generating series of the orbifold [C2/G] is

Z[C2/G](q0, . . . , qn) =
∞∑

m0,...,mn=0

χ
(

Hilbm0ρ0+...+mnρn([C2/G])
)

q
m0
0 · · · qmn

n

where ρ0, . . . , ρn are the irreducible representations of GΔ, and q0, . . . , qn are
formal variables.

Recall that finite subgroups of SL(2,C) are the binary polyhedral groups. These
are classified into three families: type An for n ≥ 1 (binary cyclic group of an
(n + 1)-gon), type Dn for n ≥ 4 (binary dihedral group of an n-gon) and type En

for n = 6, 7, 8 (binary tetrahedral, binary octahedral and binary icosahedral groups
respectively) [11]. To each such type there also corresponds a simply laced finite
type root system. For such a root system Δ we will denote by GΔ the corresponding
finite subgroup of SL(2,C) and by gΔ the corresponding Lie algebra. Moreover, to
each such finite type root system there also corresponds an affine Lie algebra g̃Δ

obtained as a central extension of the loop algebra of gΔ. The corresponding affine
root system is denoted as Δ̃.

Let heis be the infinite Heisenberg algebra, and let g̃Δ ⊕z heis be the Lie algebra
that is obtained from the direct sum of g̃Δ and heis by identifying the centers of the
two components. Let V0 be the basic representation of g̃Δ. Let furthermoreF be the
standard Fock space representation of heis, having central charge 1. Then V = V0 ⊗
F is a representation of g̃Δ ⊕z heis that is called the extended basic representation.
A distinguished basis of this representation was introduced by Kashiwara in the
context of the associated quantum groups; this is known as the “crystal basis”.

It is known that the equivariant Hilbert schemes Hilbρ([C2/Γ ]) for all finite
dimensional representations ρ of G are Nakajima quiver varieties [16] associated
with Δ̃, with dimension vector determined by ρ, and a specific stability condition
(see [4, 15] for more details for type A). The results of [16] on the relation between
the cohomology of quiver varieties and affine Lie algebras, specialized to this case,
imply that the direct sum of all cohomology groups H ∗(Hilbρ([C2/G])) is graded
isomorphic to the extended basic representation V of the corresponding extended
affine Lie algebra g̃Δ ⊕z heis. This result combined with the Weyl-Kac character
formula for the extended basic representation gives the following formula (see [10,
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Appendix A]):

Z[C2/GΔ](q0, . . . , qn) =
( ∞∏

m=1

(1 − qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · qmn

n (q1/2)m
·CΔ·m (1.1)

where q = ∏n
i=0 q

di

i with di = dim ρi , and CΔ is the finite type Cartan matrix
corresponding to Δ.

At least in types A and D an even stronger statement can be obtained. In these
cases the elements of the crystal basis are in bijection with certain combinatorial
objects called Young walls of type Δ. The set of Young walls of type Δ will be
denoted as WΔ; these are endowed with an n+1 dimensional multi-weight: wt(λ) =
(wt0(λ), . . . , wtn(λ)). The multi-variable generating series of objects in WΔ is

FΔ(q0, . . . , qn) =
∑

λ∈WΔ

qwt(λ)

where we used the multi-index notation

qwt(λ) =
n∏

i=0

q
wti (λ)
i .

Let Δ be of type A. It was observed first in [12] that there is a bijection

WΔ ←→ Pn+1 × Z
n (1.2)

where P is the set of ordinary partitions and n is the rank of the root system. This
serves as the starting point of the following enhancement of expression (1.1).

Theorem 1.1 ([4]) Let Δ be of type A. Then

1.

FΔ(q0, . . . , qn) =
( ∞∏

m=1

(1 − qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · qmn

n (q1/2)m
·CΔ·m.

2. There exist a locally closed decomposition of Hilb([C2/GΔ]) into strata indexed
by the elements ofWΔ. Each stratum is isomorphic to an affine space.

3. In particular,

Z[C2/GΔ](q0, . . . , qn) = FΔ(q0, . . . , qn).
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This not just gives a new proof of (1.1) in type A, but it also shows that the
combinatorics of Young walls is directly related to an explicit stratification of
Hilb([C2/GΔ]). This relation is beneficial for example in motivic calculations (see
e.g. Corollary 1.4 below). Although one can conclude Theorem 1.1 (3) from just
formally comparing Eq. (1.1) with Theorem 1.1 (1), the above mentioned relation
gives explanation for this coincidence on the level of the cells instead of just the
homologies/Euler characteristics.

The main result of the paper is a complete combinatorial proof of the following
statement.

Theorem 1.2 Let Δ be of type D. Then

FΔ(q0, . . . , qn) =
( ∞∏

m=1

(1 − qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · qmn

n (q1/2)m
·CΔ·m.

This result was already announced in [10], and the proof was sketched in
[7]; we flesh out the details in Sects. 3–4 below. Again, the starting point will
be a decomposition as in (1.2) for the type D case (see Proposition 3.2 below).
Combining Theorem 1.2 with the next result one gets a complete analogue of
Theorem 1.1 for type D, and hence also an alternative proof of (1.1).

Proposition 1.3 ([10, Theorem 4.1]) Let Δ be of type D.

1. There exist a locally closed decomposition of Hilb([C2/GΔ]) into strata indexed
by the elements ofWΔ. Each stratum is isomorphic to an affine space.

2. Moreover,

Z[C2/GΔ](q0, . . . , qn) = FΔ(q0, . . . , qn).

One can also consider a motivic enhancement of the series introduced above. Let
K0(Var) be the Grothendieck ring of quasi-projective varieties over the complex
numbers. The motivic Hilbert zeta function of the orbifold [C2/GΔ] is

Z[C2/GΔ](q0, . . . , qn) =
∞∑

m0,...,mn=0

[Hilbm0ρ0+...+mnρn([C2/GΔ])]qm0
0 · · · qmn

n .

Here [X] denotes the class of X in K0(Var), and it is not to be confused with orbifold
quotients. The series Z[C2/GΔ](q0, . . . , qn) is an element in K0(V ar)[[q0, . . . , qn]].

The combination of [2, Corollary 1.11] with Theorems 1.1 and 1.2 gives an
explicit representation for the motivic Hilbert zeta function.



Young Walls and Equivariant Hilbert Schemes of Points in Type D 37

Corollary 1.4 Let Δ be of type A or D.

Z[C2/GΔ](q0, . . . , qn) =
( ∞∏

m=1

(1 − L
m+1qm)−1(1 − L

mqm)−n

)

·
∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · qmn

n (q1/2)m
·CΔ·m

where L = [A1] ∈ K0(Var).

Once again, in type A this statement was proved in [4]. The above series has
further specializations giving formulas for the Hodge polynomials and Poincaré
polynomials of the equivariant Hilbert schemes.

Let Y ⊂ C2 be a closed subvariety invariant under the action of GΔ. One
can consider the moduli space Hilb([C2/GΔ], Y ) ⊂ Hilb([C2/GΔ]) of points
supported on Y . The corresponding motivic generating series is

Z([C2/GΔ],Y )(q0, . . . , qn) =
∞∑

m0,...,mn=0

[Hilbm0ρ0+...+mnρn([C2/GΔ], Y )]qm0
0 · · · qmn

n .

The techniques of [6] imply that

Z[C2/GΔ](q0, . . . , qn) = Z([C2/GΔ],Y )(q0, . . . , qn) · Z[(C2\Y )/GΔ](q0, . . . , qn).

This allows one to obtain further formulas from Corollary 1.4. For example,

Z([C2/GΔ],0)(q0, . . . , qn) = Z[C2/GΔ](q0, . . . , qn)

Z[(C2\0)/GΔ](q0, . . . , qn)

= Z[C2/GΔ](q0, . . . , qn)

Z(C2\0)/GΔ
(q)

= Z[C2/GΔ](q0, . . . , qn)∏∞
m=1(1 − Lm+1qm)−1(1 − Lm−1qm)

=
( ∞∏

m=1

(1 − L
m−1qm)−1(1 − L

mqm)−n

)

·
∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · qmn

n (q1/2)m
·CΔ·m,

where at the second equality we have used that GΔ acts freely away from the origin,
and at the third equality we have used the main result of [5] and that [(C2\0)/GΔ] =
[L2] − [pt] in K0(Var).
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Suppose that Δ is of type D. Let E ⊂ C
2 be the divisor defined by the ideal (xy).

This is invariant under the action of GΔ. Then

Z([C2/GΔ],E)(q0, . . . , qn) = Z([C2/GΔ],0)(q0, . . . , qn) · Z([C2/GΔ],E\0)(q0, . . . , qn)

= Z([C2/GΔ],0)(q0, . . . , qn) · Z(C2/GΔ,(E\0)/GΔ)(q)

= Z([C2/GΔ],0)(q0, . . . , qn) ·
∞∏

m=1

(1 − L
mqm)−1(1 − L

m−1qm)

=
( ∞∏

m=1

(1 − L
mqm)−n−1

)
·

∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · qmn

n (q1/2)m
·CΔ·m,

where again at the second equality we have used that GΔ acts freely away from the
origin, and at the third equality we have used [(E\0)/GΔ] = [L]−[pt] in K0(Var).

Corollary 1.5

1. There exist a locally closed decomposition of Hilb([C2/GΔ], E) into strata
indexed by the elements of WΔ. Each stratum is isomorphic to an affine space.

2. The class in K0(Var) of the stratum Hilb([C2/GΔ], E)Y corresponding to a
Young wall Y = (λ1, . . . , λn+1, m) ∈ WΔ

∼= Pn+1 × Zn is

[Hilb([C2/GΔ], E)Y ] = [L]
∑n+1

i=1 |λi |,

where |λi | = ∑
j λ

j
i .

Proof The proof of Part (1) is very similar to that of [10, Theorem 4.1]. The divisor
E is preserved by the diagonal torus action on C2 used in [10] for the stratification
of Hilb([C2/GΔ]). It follows that the torus action on Hilb([C2/GΔ], E) has the
same fixed points as the torus action on Hilb([C2/GΔ]). By [10, Theorem 4.3],

Hilb([C2/GΔ])C∗ =
⊔

Y∈WΔ

SY

where each SY is an affine space. Let Hilb([C2/GΔ], E)Y ⊂ Hilb([C2/GΔ], E)

denote the locus of ideals which flow to SY under the torus action. Since
(E \ 0)/GΔ

∼= C∗, the Zariski locally trivial fibration Hilb([C2/GΔ])Y → SY

explored in [10, Theorem 4.1] restricts to a Zariski locally trivial fibration
Hilb([C2/GΔ], E)Y → SY with affine space fibers, and a compatible torus action
on the fibers. By [1, Sect.3, Remarks] this fibration is an algebraic vector bundle
over SY , and hence trivial (Serre–Quillen–Suslin).

Part (2) follows from Part (1) and the formula for Z([C2/GΔ],E)(q0, . . . , qn)

above.
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The aim of the current paper is twofold. First, we give an exposition about
the combinatorics of the Young walls in type D. Second, we give a complete
combinatorial proof of Theorem 1.2 in the type D case.

The structure of the rest of the paper is as follows. In Sect. 2 we review the
combinatorics of the Young walls in type D. In Sect. 3 we introduce an associated
combinatorial tool called the abacus. Using this we will calculate the generating
series FΔ(q0, . . . , qn) of Young walls of type D and prove Theorem 1.2 in Sect. 4.

2 Young Walls of Type Dn

It is known that when Δ = An, n ≥ 1, the set of Young walls WΔ = P , the set
of all Young diagrams/partitions equipped with the diagonal coloring (see [8]). We
describe here the type D analogue of the set of diagonally colored partitions used in
type A, following [13, 14].

First we define the Young wall pattern of type Dn. This is the following infinite
pattern, consisting of two types of blocks: half-blocks carrying possible labels j ∈
{0, 1, n − 1, n}, and full blocks carrying possible labels 1 < j < n − 1:
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A Young wall1 of type Dn is a subset Y of the infinite Young wall pattern of type
Dn, satisfying the following rules.

1In [13, 14], these arrangements are called proper Young walls. Since we will not meet any other
Young wall, we will drop the adjective proper for brevity.
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(YW1) Y contains all grey half-blocks, and a finite number of the white blocks and
half-blocks.

(YW2) Y consists of continuous columns of blocks, with no block placed on top of
a missing block or half-block.

(YW3) Except for the leftmost column, there are no free positions to the left of
any block or half-block. Here the rows of half-blocks are thought of as two
parallel rows; only half-blocks of the same orientation have to be present.

(YW4) A full column is a column with a full block or both half-blocks present at
its top; then no two full columns have the same height.2

Let WΔ denote the set of all Young walls of type Dn. For any Y ∈ WΔ and
label j ∈ {0, . . . , n} let wtj (Y ) be the number of white half-blocks, respectively
blocks, of label j . These are collected into the multi-weight vector wt(Y ) =
(wt0(Y ), . . . , wtn(Y )). The total weight of Y is the sum

|Y | =
n∑

j=0

wtj (Y ),

and for the formal variables q0, . . . , qn,

qwt(Y ) =
n∏

j=0

q
wtj (Y )

j .

Example 2.1 The following is an example of a Young wall for Δ = D4:
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. . .

2This is the properness condition of [13].
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3 Abacus Combinatorics

Recalling the Young wall rules (YW1)–(YW4), it is clear that every Y ∈ WΔ can
be decomposed as Y = Y1 � Y2, where Y1 ∈ WΔ has full columns only, and
Y2 ∈ WΔ has all its columns ending in a half-block. These conditions define two
subsets Zf

Δ,Zh
Δ ⊂ WΔ. Because of the Young wall rules, the pair (Y1, Y2) uniquely

reconstructs Y , so we get a bijection

WΔ ←→ Zf
Δ × Zh

Δ. (3.1)

Given a Young wall Y ∈ WΔ of type Dn, let λk denote the number of blocks (full
or half blocks both contributing 1) in the k-th vertical column. By the rules of Young
walls, the resulting positive integers {λ1, . . . , λr } form a partition λ = λ(Y ) of
weight equal to the total weight |Y |, with the additional property that its parts λk are
distinct except when λk ≡ 0 mod (n−1). Corresponding to the decomposition (3.1),
we get a decomposition λ(Y ) = μ(Y ) � ν(Y ). In μ(Y ), no part is congruent to 0
modulo (n − 1), and there are no repetitions; all parts in ν(Y ) are congruent to 0
modulo (n − 1) and repetitions are allowed. Note that the pair (μ(Y ), ν(Y )) does
almost, but not quite, encode Y , because of the ambiguity in the labels of half-blocks
on top of non-complete columns.

We now introduce another combinatorial object, the abacus of type Dn [13, 14].
This is the arrangement of positive integers, called positions, in the following
pattern:

1 . . . n − 2 n − 1 n . . . 2n − 3 2n − 2
2n − 1 . . . 3n − 4 3n − 3 3n − 2 . . . 4n − 5 4n − 4

...
...

...
...

...
...

For any integer 1 ≤ k ≤ 2n − 2, the set of positions in the k-th column of the
abacus is the k-th ruler, denoted Rk . Several beads are placed on these rulers. For
k �≡ 0 mod (n − 1), the rulers Rk can only contain normal (uncolored) beads, with
each position occupied by at most one bead. On the rulers Rn−1 and R2n−2, the
beads are colored white and black. An arbitrary number of white or black beads can
be put on each such position, but each position can only contain beads of the same
color.

Given a type Dn Young wall Y ∈ WΔ, let λ = μ � ν be the corresponding
partition with its decomposition. For each nonzero part νk of ν, set

nk = #{1 ≤ j ≤ l(μ) | μj < νk}

to be the number of full columns shorter than a given non-full column. The abacus
configuration of the Young wall Y is defined to be the set of beads placed at positions
λ1, . . . , λr . The beads at positions λk = μj are uncolored; the color of the bead at
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position λk = νl corresponding to a column C of Y is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

white, if the block at the top of C is and nl is even;

white, if the block at the top of C is and nl is odd;

black, if the block at the top of C is and nl is even;

black, if the block at the top of C is and nl is odd.

One can check that the abacus rules are satisfied, that all abacus configurations
satisfying the above rules, with finitely many uncolored, black and white beads, can
arise, and that the Young wall Y is uniquely determined by its abacus configuration.

Example 3.1 The abacus configuration associated with the Young wall of Exam-
ple 2.1 is

R1 R2 R3 R4 R5 R6

1 2 3 4 5 6

7 8 9 10 11 12 3

13 14 15 16 17 18
...

...

The superscript at 12 indicates that there are 3 white beads at that position.

We now introduce certain distinguished Young walls of type Dn, and a method to
obtain them with moving the beads on the abacus. On the Young wall side, define a
bar to be a connected set of blocks and half-blocks, with each half-block occurring
once and each block occurring twice. A Young wall Y ∈ WΔ will be called a core
Young wall, if no bar can be removed from it without violating the Young wall rules.
For an example of bar removal, see [13, Example 5.1(2)]. Let CΔ ⊂ WΔ denote the
set of all core Young walls.

Based on the calculations of [13, 14] the following result was obtained in [10,
Proposition 7.2]. For completeness we include also its proof.

Proposition 3.2 Given a Young wall Y ∈ WΔ, any complete sequence of bar
removals through Young walls results in the same core core(Y ) ∈ CΔ, defining a
map of sets

core : WΔ → CΔ.

The process can be described on the abacus, respects the decomposition (3.1), and
results in a bijection

WΔ ←→ Pn+1 × CΔ (3.2)
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where P is the set of ordinary partitions. Finally, there is also a bijection

CΔ ←→ Z
n. (3.3)

Proof Decompose Y into a pair of Young walls (Y1, Y2) as above. Let us first
consider Y1. On the corresponding rulers Rk , k �≡ 0 mod (n − 1), the following
steps correspond to bar removals [13, Lemma 5.2].

(B1) If b is a bead at position s > 2n−2, and there is no bead at position (s−2n+2),
then move b one position up and switch the color of the beads at positions k

with k ≡ 0 mod (n − 1), s − 2n + 2 < k < s.
(B2) If b and b′ are beads at position s and 2n − 2 − s (1 ≤ s ≤ n − 2)

respectively, then remove b and b′ and switch the color of the beads at
positions k ≡ 0 mod (n − 1), s < k < 2n − 2 − s.

Performing these steps as long as possible results in a configuration of beads on
the rulers Rk with k �≡ 0 mod (n − 1) with no gaps from above, and for 1 ≤
s ≤ n − 2, beads on only one of Rs , R2n−2−s . This final configuration can be
uniquely described by an ordered set of integers {z1, . . . , zn−2}, zs being the number
of beads on Rs minus the number of beads on R2n−2−s [14, Remark 3.10(2)]. In the
correspondence (3.3) this gives Zn−2. It turns out that the reduction steps in this
part of the algorithm can be encoded by an (n− 2)-tuple of ordinary partitions, with
the summed weight of these partitions equal to the number of bars removed [13,
Theorem 5.11(2)].

Let us turn to Y2, represented on the rulers Rk , k ≡ 0 mod (n − 1). On these
rulers the following steps correspond to bar removals [14, Sections 3.2 and 3.3].

(B3) Let b be a bead at position s ≥ 2n−2. If there is no bead at position (s−n+1),
and the beads at position (s − 2n + 2) are of the same color as b, then shift b

up to position (s − 2n + 2).
(B4) If b and b′ are beads at position s ≥ n − 1, then move them up to position

(s − n + 1). If s − n + 1 > 0 and this position already contains beads, then b

and b′ take that same color.

During these steps, there is a boundary condition: there is an imaginary position
0 in the rightmost column, which is considered to contain invisible white beads;
placing a bead there means that this bead disappears from the abacus. It turns out
that the reduction steps in this part of the algorithm can be described by a triple of
ordinary partitions, again with the summed weight of these partitions equal to the
number of bars removed [14, Proposition 3.6]. On the other hand, the final result
can be encoded by a pair of ordinary partitions, or Young diagrams, which have the
additional property of being a pyramid.

The different bar removal steps (B1)–(B4) construct the map c algorithmically
and uniquely. The stated facts about parameterizing the steps prove the existence of
the bijection (3.2). To complete the proof of (3.3), we only need to remark further
that the set of ordinary Young diagrams having the shape of a pyramid is in bijection
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with the set of integers (see [14, Remark 3.10(2)]). This gives the remaining Z
2

factor in the bijection (3.3).

Example 3.3 A possible sequence of bar removals on the abacus and Young wall of
Examples 2.1 and 3.1 is as follows. Perform step (B1) on the beads at positions 7, 8,
10, 11. Perform step (B2) on the pairs of beads at positions (1,5) and (2,4). Perform
step (B4) four times on two beads at position 12 by moving them consecutively to
positions 9, 6 (where they take the color black), 3 and then 0 (which means removing
them from the abacus). The resulting abacus configuration is then

R1 R2 R3 R4 R5 R6

1 2 3 4 5 6

7 8 9 10 11 12
...

...

This configuration describes the following core Young wall:

2

2

2

2

1
0

1

3
4

0
1

1
0

4
3

1

3
4

1

2

2

. . .

4 Enumeration of Young Walls

We next determine the multi-weight of a Young wall Y in terms of the bijec-
tions (3.2)–(3.3). The quotient part is easy: the multi-weight of each bar is
(1, 1, 2, . . . , 2, 1, 1), so the (n + 1)-tuple of partitions contributes a factor of

( ∞∏

m=1

(1 − qm)−1

)n+1

.
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Turning to cores, under the bijection CΔ ↔ Zn, the total weight of a core Young
wall Y ∈ CΔ corresponding to (z1, . . . , zn) ∈ Zn is calculated in [14, Remark 3.10]:

|Y | = 1

2

n−2∑

i=1

(
(2n − 2)z2

i − (2n − 2i − 2)zi

)
+(n−1)

n∑

i=n−1

(
2z2

i + zi

)
. (4.1)

The next result gives a refinement of this formula for the multi-weight of Y .

Theorem 4.1 Let q = q0q1q
2
2 . . . q2

n−2qn−1qn, corresponding to a single bar.

(1) Composing the bijection (3.3) with an appropriate Z-change of coordinates in
the lattice Zn, the multi-weight of a core Young wall Y ∈ CΔ corresponding to
an element m = (m1, . . . ,mn) ∈ Zn can be expressed as

q
m1
1 · · · · · qmn

n (q1/2)m
·C·m,

where C is the Cartan matrix of type Dn.
(2) The multi-weight generating series

FΔ(q0, . . . , qn) =
∑

Y∈WΔ

qwt(Y )

of Young walls for Δ of type Dn can be written as

FΔ(q0, . . . , qn) =

∞∑

m=(m1,...,mn)∈Zn

q
m1
1 · · · · · qmn

n (q1/2)m
·C·m

∞∏

m=1

(1 − qm)n+1

.

(3) The following identity is satisfied between the coordinates (m1, . . . ,mn) and
(z1, . . . , zn) on Zn:

n∑

i=1

mi = −
n−2∑

i=1

(n − 1 − i)zi − (n − 1)c(zn−1 + zn) − (n − 1)b.

Here z1 +· · ·+ zn−2 = 2a −b for integers a ∈ Z, b ∈ {0, 1}, and c = 2b − 1 ∈
{−1, 1}.

Statement (2) clearly follows from (1) and the discussion preceding Theorem 4.1.
Statement (3) is used to achieve additional results in [10].

Let us write zI = ∑
i∈I zi for I ⊆ {1, . . . , n−2}. Each such number decomposes

uniquely as zI = 2aI − bI , where aI ∈ Z and bI ∈ {0, 1}. Let us introduce also
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cI = 2bI − 1 ∈ {−1, 1}. We will make use of the relations

aI =
∑

i∈I

ai −
∑

i1∈I,i2∈I\{i1}
bi1bi2 +

∑

i1∈I,i2∈I\{i1},i3∈I\{i1,i2}
2bi1bi2bi3 − . . . ,

bI =
∑

i∈I

bi −
∑

i1∈I,i2∈I\{i1}
2bi1bi2 +

∑

i1∈I,i2∈I\{i1},i3∈I\{i1,i2}
4bi1bi2bi3 − . . . .

To simplify notations let us introduce

rI := aI −
∑

i∈I

ai = −
∑

i1∈I,i2∈I\{i1}
bi1bi2 +

∑

i1∈I,i2∈I\{i1},i3∈I\{i1,i2}
2bi1bi2bi3 − . . . .

Using these notations the colored refinement of the weight formula (4.1) is the
following.

Lemma 4.2 Given a core Young wall Y ∈ CΔ corresponding to (zi) ∈ Zn in the
bijection of (3.3), its content is given by the formula

qwt(Y ) =

q
− ∑n−2

i=1 bi

1 q
−2a1−∑n−2

i=2 bi

2 . . . q
− ∑n−3

i=1 2ai−bn−2

n−2 (q0q
−1
1 qn−1qn)

− ∑n−2
i=1 ai (q0q

−1
1 )a1...n−2

·q 1
2

∑n−2
i=1 (z2

i +bi)+z2
n−1+z2

n

·(qb1...n−2(q−1
1 . . . q−1

n−2q
−1
n−1)

c1...n−2)zn−1(qb1...n−2(q−1
1 . . . q−1

n−2q
−1
n )c1...n−2)zn .

When forgetting the coloring a straightforward check shows that Lemma 4.2
gives back (4.1). Notice also that z2

i + bi = 4a2
i − 4aibi + 2bi is always an even

number, so the exponents are always integers.

Proof of Lemma 4.2 Suppose that we restrict our attention to blocks of color i by
substituting qj = 1 for j �= i. Clearly,

wti(Y ) ≤
∑

j

wtj (Y ) = |Y |

where |Y | is the total weight of Y . This inequality is true for each 0 ≤ i ≤ n,
and |Y | is a linear combination of the parameters {zi}1≤i≤n, their squares and a
constant. It follows from the definition of the {zi}1≤i≤n that each wti is a convex,
increasing function of them. These imply that, when considered over the reals, each
wti are at most quadratically growing, convex analytic functions of {zi}1≤i≤n. As
a consequence, each wti is again a linear combination of constants, the parameters
{zi}1≤i≤n and their products. Hence, it is enough to check that the claimed formula
is correct in two cases:
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1. when any of the zi’s is set to a given number and the others are fixed to 0; and
2. when all of the parameters are fixed to 0 except for an arbitrary pair zi and zj ,

i �= j .

First, consider that zi �= 0 for a fixed i, and zj = 0 in case j �= i.

(a) When 1 ≤ i ≤ n − 2, then the colored weight of the corresponding core Young
wall is

(q1 . . . qi)
−bi (q2

i+1 . . . q2
n−2qn−1qn)

−ai q2a2
i −2aibi+bi .

(b) When i ∈ {n − 1, n}, then the associated core Young wall has colored weight

qz2
i (q1q2 . . . qn−2qi)

zi .

Both of these follow from (4.1) and its proof in [14] by taking into account the
colors of the blocks in the pattern.

Second, assume that zi and zj are nonzero, but everything else is zero. Then the
total weight is not the product of the two individual weights, but some correction
term has to be introduced. The particular cases are:

(a) 1 ≤ i, j ≤ n − 2. There can only be a difference in the numbers of q0’s and
q1’s which comes from the fact that in the first row there are only half blocks
with 0’s in the odd columns and 1’s in the even columns. Exactly −rij blocks
change color from 0 to 1 when both zi and zj are nonzero compared to when
one of them is zero. In general, this gives the correction term (q0q

−1
1 )r1...n−2 =

(q0q
−1
1 )a1...n−2−∑n−2

i=1 ai .
(b) 1 ≤ i ≤ n − 2, j ∈ {n − 1, n}. For the same reason as in the previous case

the parity of zi modifies the colored weight of the contribution of zj , but not
the total weight of it. If zi is even, then the linear term of the contribution of zj

is q1q2 . . . qn−2qj . In the odd case it is q0q2 . . . qn−2qκ(j). This is encoded in
the correction term (qb1...n−2(q−1

1 . . . q−1
n−2q

−1
j )c1...n−2)zj where j → κ(j) swaps

n − 1 and n.
(c) i = n − 1, j = n. zn−1 and zn count into the total colored weight completely

independently, so no correction term is needed.

Putting everything together gives the claimed formula for the colored weight of
an arbitrary core Young wall.

Now we turn to the proof of Theorem 4.1. After recollecting the terms in the
formula of Lemma 4.2 it becomes

q
−b1...n−2−c1...n−2(zn−1+zn)

1

n−2∏

i=2

q
−2a1...i−1+c1...i−1bi...n−2−c1...n−2(zn−1+zn)

i

·q−a1...n−2−c1...n−2zn−1
n−1 q

−a1...n−2−c1...n−2zn
n

·q
∑n−2

i=1 (2a2
i −2aibi+bi )+b1...n−2zn−1+z2

n−1+b1...n−2zn+z2
n+r1...n−2
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Let us define the following series of integers:

m1 = −b1...n−2 − c1...n−2(zn−1 + zn) ,

m2 = −2a1 + c1b2...n−2 − c1...n−2(zn−1 + zn) ,
...

mn−2 = −2a1...n−3 + c1...n−3bn−2 − c1...n−2(zn−1 + zn) ,

mn−1 = −a1...n−2 − c1...n−2zn−1 ,

mn = −a1...n−2 − c1...n−2zn .

It is an easy and enlightening task to verify that the map

Z
n → Z

n, (z1, . . . , zn) �→ (m1, . . . ,mn)

is a bijection, which is left to the reader.

Proof of Theorem 4.1 (1) One has to check that

n∑

i=1

m2
i − m1m2 − m2m3 − · · · − mn−2(mn−1 + mn) =

=
n−2∑

i=1

(2a2
i − 2aibi + bi) + b1...n−2zn−1 + z2

n−1 + b1...n−2zn + z2
n + r1...n−2 .

The terms containing zn−1 or zn on the left hand side are

(n − 2)(zn−1 + zn)
2 + z2

n−1 + z2
n − (n − 3)(zn−1 + zn)

2 − z2
n−1 − z2

n − 2zn−1zn

+
(

2b1...n−2 +
n−3∑

i=1

2(2a1...i − c1...ibi+1...n−2) + 2a1...n−2

)
c1...n−2(zn−1 + zn)

−
(

b1...n−2 +
n−3∑

i=1

2(2a1...i − c1...ibi+1...n−2) + 2a1...n−2

)
c1...n−2(zn−1 + zn)

= b1...n−2zn−1 + z2
n−1 + b1...n−2zn + z2

n ,

since b1...n−2c1...n−2 = b1...n−2.
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The terms containing neither zn−1 nor zn on the left hand side are

b1...n−2 +
n−3∑

i=1

(2a1...i − c1...ibi+1...n−2)
2 + 2a2

1...n−2 − b1...n−2(2a1 − c1b2...n−2)

−
n−4∑

i=1

(2a1...i − c1...ibi+1...n−2)(2a1...i+1 − c1...i+1bi+2...n−2)

−2(2a1...n−3 − c1...n−3bn−2)a1...n−2 .

Lemma 4.3

2a1...i − c1...ibi+1...n−2 =
i∑

j=1

(2aj − bj ) + b1...n−2 ,

Proof

2a1...i − c1...ibi+1...n−2

= 2a1...i−1 + 2ai − 2b1...i−1bi + c1...i−1cibi+1...n−2

= 2a1...i−1 + 2ai − 2b1...i−1bi + 2c1...i−1bibi+1...n−2 − c1...i−1bi+1...n−2

= 2a1...i−1 + 2ai − bi − c1...i−1(bi+1...n−2 + bi − 2bibi+1...n−2)

= 2a1...i−1 − c1...i−1bi...n−2 + 2ai − bi ,

and then use induction.

Applying Lemma 4.3 and the last intermediate expression in its proof to the terms
considered above, they simplify to

b1...n−2 +
n−3∑

i=1

(2a1...i − c1...i bi+1...n−2)2 + 2a2
1...n−2 − b1...n−2(2a1 − c1b2...n−2)

−
n−4∑

i=1

(2a1...i − c1...ibi+1...n−2)(2a1...i − c1...ibi+1...n−2 + 2ai+1 − bi+1)

−2(2a1...n−3 − c1...n−3bn−2)a1...n−2

= b1...n−2 + (2a1...n−3 − c1...n−3bn−2)2 + 2a2
1...n−2 − b1...n−2(2a1 − c1b2...n−2)

−
n−4∑

i=1

(2a1...i − c1...i bi+1...n−2)(2ai+1 − bi+1) − 2(2a1...n−3 − c1...n−3bn−2)a1...n−2

= b1...n−2 + (2a1...n−3 − c1...n−3bn−2)(2a1...n−3 − c1...n−3bn−2 − 2a1...n−2)
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+2a2
1...n−2 − b1...n−2(2a1 − c1b2...n−2) −

n−4∑

i=1

(2a1...i − c1...i bi+1...n−2)(2ai+1 − bi+1)

= b1...n−2 + 2a2
1...n−2 − b1...n−2(2a1 − c1b2...n−2)

−
n−3∑

i=1

(2a1...i − c1...ibi+1...n−2)(2ai+1 − bi+1)

= 2a2
1...n−2 − b1...n−2(2a1 − b1) −

n−3∑

i=1

⎛

⎝
i∑

j=1

(2aj − bj ) + b1...n−2

⎞

⎠ (2ai+1 − bi+1) .

Let us denote this expression temporarily as sn−2. Taking into account that

a1...n−2 = a1...n−3 + an−2 − b1...n−3bn−2 ,

b1...n−2 = b1...n−3 + bn−2 − 2b1...n−3bn−2 ,

sn−2 can be rewritten as

2a2
1...n−3 + 2a2

n−2 + 2b1...n−3bn−2 + 4a1...n−3an−2

−4a1...n−3b1...n−3bn−2 − 4an−2b1...n−3bn−2

−(b1...n−3 + bn−2 − 2b1...n−3bn−2)(2a1 − b1)

−
n−4∑

i=1

⎛

⎝
i∑

j=1

(2aj − bj ) + b1...n−3

⎞

⎠ (2ai+1 − bi+1)

−
n−3∑

i=1

(bn−2 − 2b1...n−3bn−2)(2ai+1 − bi+1)

−
⎛

⎝
n−3∑

j=1

(2aj − bj ) + b1...n−3

⎞

⎠ (2an−2 − bn−2)

= sn−3 + 2a2
n−2 + 2b1...n−3bn−2 + 4a1...n−3an−2

−4a1...n−3b1...n−3bn−2 − 4an−2b1...n−3bn−2

−(bn−2 − 2b1...n−3bn−2)

(
n−2∑

i=1

2ai − bi

)

−
⎛

⎝
n−3∑

j=1

(2aj − bj ) + b1...n−3

⎞

⎠ (2an−2 − bn−2)
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= sn−3 + 2a2
n−2 − 2an−2bn−2 + bn−2 + 2an−2

⎛

⎝2a1...n−3 −
n−3∑

j=1

(2aj − bj )

⎞

⎠

+b1...n−3bn−2 − 2an−2b1...n−3

= sn−3 + 2a2
n−2 − 2an−2bn−2 + bn−2 − b1...n−3bn−2 ,

where at the last equality the identity

n−3∑

j=1

(2aj − bj ) = z1...n−3 = 2a1...n−3 − b1...n−3

was used.
It can be checked that s1 = 2a2

1 − 2a1b1 + b1, so induction shows that

sn−2 =
n−2∑

i=1

(2a2
i − 2aibi + bi + b1...i−1bi) .

It remains to show that

n−2∑

i=2

b1...i−1bi = r1...n−2 ,

which requires another induction argument, and is left to the reader.
(3) Apply Lemma 4.3 on

n∑

i=1

mi = −b1...n−2

−
n−2∑

i=1

(2a1...i−1 − c1...i−1bi...n−2) − 2a1...n−2 − (n − 1)c1...n−2(zn−1 + zn).

��
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