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Abstract In this work we study the topology of complex non-isolated hypersurface
singularities. Inspired by work of Siersma and others, we compare the topology
of the link Lf with that of the boundary of the Milnor fiber, ∂Ff . We review the
three proofs in the literature showing that for functions C3 → C, the manifold
∂Ff is Waldhausen: one by Némethi-Szilárd, another by Michel-Pichon and a more
recent one by Fernández de Bobadilla-Menegon.We then consider an arbitrary real
analytic space with an isolated singularity and maps on it with an isolated critical
value. We study and define for these the concept of vanishing zone for the Milnor
fiber, when this exists. We then introduce the concept of vanishing boundary cycles
and compare the homology of Lf and that of ∂Ff . For holomorphic map germs
with a one-dimensional critical set, we give a necessary and sufficient condition to
have that ∂Ff and Lf are homologically equivalent.
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1 Introduction

Given an analytic map-germ (Rm, 0)
h→ (Rn, 0), m > n, with a critical value at

0, a fundamental problem is understanding the way the non-critical levels h−1(t)

degenerate to the special fiber V := h−1(0). For instance, when f : (Cm, 0) →
(C, 0) is holomorphic, the celebrated fibration theorem of Milnor [17, 34], says that
one has a locally trivial fibration:

f −1(Dη \ {0}) ∩ Bε
f−→ Dη \ {0} ,

where Bε denotes a sufficiently small ball around the origin in Rm and Dη is a
sufficiently small disc around 0 in C. The set N(ε, η) := f −1(Dη \ {0}) ∩ Bε is
usually called a Milnor tube for f and the fibers Ft := f −1(t) ∩ Bε , t �= 0, are
now called the Milnor fibers. Hence one has a family of diffeomorphic manifolds
Ft that form a fiber bundle and degenerate to the special fiber V . A lot of interesting
work has been done studying how this degeneration process Ft � V takes place
for holomorphic map-germs. This has given rise to a vast literature concerning
vanishing cycles and vanishing homology.

This article takes an alternative viewpoint, following our previous work [27] that
we briefly explain in what follows. This springs from work by R. Randell [43], D.
Siersma [47, 48], F. Michel and A. Pichon [28–30, 32], A. Némethi and Á. Szilárd
[39] and J. Fernández de Bobadilla and A. Menegon [13]. For this we recall that a
real analytic map-germ h as above has a link, which by definition is Lh := h−1(0)∩
Sε , the intersection of V with a sufficiently small sphere. The link and its embedding
in Sε determine fully the topology of V at 0 and its local embedding in the ambient
space (see [34] and [10, Chapter 1, Section 5]).

We shall denote the link by L0 when we want to emphasize that this is the special
fiber in the family {Lt := ∂Ft } with t in a small disc in Rn.

The link L0 is a real analytic variety and it is non-singular if h has an isolated
critical point at 0. In that case, by Ehresmann’s fibration lemma,L0 is isotopic to the
boundary Lt of the Milnor fiber Ft . Otherwise, when h has a non-isolated critical
point on V , the variety L0 is singular: that is the setting we envisage in this paper.

Given an analytic map-germ h as above, consider a Milnor tube N(ε, η) :=
h−1(Dη \ {0}) ∩ Bε , and let us assume this is a fiber bundle over Dη \ {0} with
projection h (unlike the complex setting, this hypothesis is not always satisfied for
real analytic map-germs; see for instance [46] for a thorough discussion about that
topic). The fibers Ft := h−1(t) ∩ Bε , t �= 0, are compact manifolds with boundary
Lt . While the family {Ft } degenerates to the special fiber V := h−1(0) ∩ Bε , the
corresponding family of boundaries {Lt }t �=0, which are smooth compact manifolds,
degenerates to the link L0, which is singular.

The purpose of this work is to study and compare the topology of both Lt and
L0 by looking at the degeneration process {Lt }t �=0 � L0.

We begin this article with a few words about the degeneration of the Milnor
fibers to the special fiber, and about the corresponding process as we look at the
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boundaries (Sect. 2). Then, in Sect. 3, we focus on the case of holomorphic map
germsC3 → C and describe briefly some of the ideas in András Némethi and Ágnes
Szilárd’s excellent book [39], where it is proved that in this setting, the boundary of
the Milnor fiber, which is a 3-manifold, is always Waldhausen. That theorem was
announced in 2003 by Françoise Michel and Anne Pichon, providing a proof that
worked fine for certain families of singularities. Their complete proof was published
in 2016. There is also a third proof by Javier Fernández de Bobadilla and Aurélio
Menegon that works more generally: for real analytic map-germs of the form f ḡ :
C3 → C with a Milnor fibration. Taking g to be constant one gets the previous
assertion. In Sect. 3 we briefly discuss these three viewpoints.

Section 4 is a brief summary of [26], and an extension of it to the case of real
analytic map-germs f : (X, 0) → (Rn, 0), m > n, where X is an m-dimensional
real analytic space with an isolated singularity at 0, f has an isolated critical value at
0 and it has a Milnor fibration in a tube. We introduce the notion of a vanishing zone
for f and for the Milnor fibers. This means a regular neighborhood W of the link
LΣ := Σ ∩ Sε of the singular set of V = f −1(0), with smooth boundary ∂W , such
that for every regular value t with ‖t‖ sufficiently small, one has that the boundary
of the Milnor fiber ∂Ft meets ∂W transversally, and ∂Ft \(Ft ∩W) is diffeomorphic
to Lf \ (Lf ∩ W), where Lf := V ∩ Sε is the link of V .

Section 5 is part of [1], a work in progress where we look at the homology of the
boundary of the Milnor fiber for holomorphic map germs Cn+1 → C. In analogy
with the classical notion of vanishing homology for the Milnor fiber, we introduce
the notion of the vanishing boundary homology. For this we observe that there is a
specialization morphism from the homology of ∂Ff to the homology of the link. We
state a theorem from [1] about the homology groups of ∂Ff when the critical set is
one-dimensional, which is a special case of a more general theorem. As a corollary
we give, for holomorphic map-germs with one-dimensional critical set, a necessary
and sufficient condition for having that the boundary of the Milnor fiber and the link
are homologically equivalent. We give examples of such cases.

In Sect. 6 we conclude with a couple of remarks. One is for map-germs defined
on analytic spaces with arbitrary singular locus. Another is for map-germs with
non-isolated critical value. We actually look at an example where the critical values
have real codimension 1, so they split the target into several connected components.
Yet, the singularities in question are all real analytic isolated complete intersections,
and this implies that we have a Milnor fibration over each component. Although
the topology of the Milnor fibers varies as we change from one sector to another,
they all have boundary isotopic to the link. Notice that if the dimension of the link
is even, this implies that all Milnor fibers have the same Euler characteristic. If the
dimension of the link is odd, we only have that the Euler characteristic of the Milnor
fibers coincides modulo 2.
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2 From the Non-critical Level to the Special Fiber

The starting point is the classical Milnor’s fibration theorem for holomorphic maps,
see [34] and [17]. Consider a holomorphic function-germ with a critical point at 0:

f : (Cn+1, 0) → (C, 0).

Set V = f −1(0) and let Lf = V ∩ Sε , for ε > 0 sufficiently small, be the link.
Given ε, choose δ > 0 small enough with respect to ε, so that every fiber f −1(t)

with |t| ≤ δ meets transversally the sphere Sε; that such a δ exists for every Milnor
sphere Sε is a consequence of the fact that f has the Thom af -property, by Hironaka
[14].

Set D∗
δ := Dδ \ {0}, where Dδ is the disc of radius δ ⊂ C centered at 0, and

consider the Milnor tube:

N(ε, δ) = f −1(D∗
δ ) ∩ Bε .

Then part of Milnor’s theorem (which follows from Ehresmann’s fibration theorem
extended to manifolds with boundary) says that we have a locally trivial fibration:

f : N(ε, δ) −→ D
∗
δ .

The fibers Ft are the local regular levels of the function.We denote the Milnor fibers
by Ft when we emphasize that this corresponds to the value t , or by Ff when we
look at an arbitrary Milnor fiber of f .

So the Milnor fibers are a family of complex Stein manifolds, the local non-
critical levels of the function, that degenerate to the special fiber, the critical level
V = F0 as t tends to 0. A lot of interesting work, particularly in the isolated
singularity case, has been done studying how this degeneration process Ft � V

takes place (Fig. 1).
When f has an isolated critical point, the fiber Ft is diffeomorphic to a 2n-ball

to which one attaches μ = μ(f ) handles of middle index n, where μ is the Milnor
number of f at 0, by Lê and Perron [19] and Milnor [34]. This number can be
computed as the intersection number:

μ = dimC

On+1,0

Jacf
,

where Jacf is the Jacobian ideal, generated by the partial derivatives of f . The
middle homology group Hn(Ft ) is free of rank μ, generated by μ cycles that
“vanish” as Ft degenerates into the special fiber, since V is locally a cone. Therefore
these are called vanishing cycles and the Milnor number counts how many of these
Ft has.
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Fig. 1 The Milnor fibers Ft degenerating to the special fiber F0

The concept of vanishing cycles was first mentioned by Grothendieck in a letter
to Serre in 1964 [6, p. 214], where he analyses the difference between the (étale)
cohomology of the special fiber and that of the generic fiber in certain families. His
theory was developed by Deligne in [9] and has had immense applications.

When f , as above, has non-isolated critical points, the fiber Ft , being a Stein
manifold, has the homotopy type of a CW-complex of middle dimension, by
Andreotti and Frankel [2] and Milnor [34], and it is (n − s − 1)-connected by
Kato and Matsumoto [15], where s is the complex dimension of the singular set
of V = f −1(0). In this case, by Massey [23], Ft is diffeomorphic to a 2n-ball
to which one attaches handles of various indices, as indicated by the Lê numbers.
The homology groups of F are called groups of vanishing cycles. These have
been investigated by several authors; see for instance [23, 24, 48], and [9] for a
more general viewpoint. See [44] for a survey on recent results concerning the
algebraic computation of vanishing cycles of an algebraic function on a complex
quasi-projective variety.

More generally, given an analytic map-germ (Rm, 0)
h→ (Rn, 0), m > n, with an

isolated critical value at 0. Under suitable conditions, one still has a locally trivial
fibration as above

h−1(Dη \ {0}) ∩ Bε
h−→ Dη \ {0} ,

where Bε denotes a sufficiently small ball around the origin and Dη is a sufficiently
small disc around 0 in R

n. The set N(ε, η) := h−1(Dη \ {0}) ∩ Bε is usually called
a Milnor tube for h, and the fibers Ft := h−1(t) ∩ Bε , t �= 0, are the Milnor
fibers of h. A fundamental problem is understanding how the non-critical levels
h−1(t) degenerate to the special fiber V := h−1(0). We refer to [46, Section 13]
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for a thorough account on the subject of Milnor fibrations for real and complex
singularities.

We now follow [27] and take an alternative viewpoint to the problem of studying
how the non-critical levels degenerate to the special fiber. This springs from work
by Randell [43], Siersma [47, 48], Michel-Pichon [28–30, 32], Némethi-Szilárd [39]
and Fernández de Bobadilla-Menegon [13].

For this we recall that a real analytic map-germ h as above has a link, which
by definition is L0 := h−1(0) ∩ Sε , the intersection of V with a sufficiently small
sphere. The link and its embedding in Sε determine fully the topology of V at 0 and
its local embedding in the ambient space (cf. [10, 34]).

The link L0 is real analytic and it is non-singular if h has an isolated critical point
at 0. In that case L0 is a smooth manifold, isotopic to the boundaryLt of the Milnor
fiber Ft . Otherwise L0 is singular: that is the setting we envisage in this paper.

Given an analytic map-germ h as above, consider a Milnor tube N(ε, η) :=
h−1(Dη \ {0}) ∩ Bε , and let us assume this is a fiber bundle over Dη \ {0} with
projection h. The fibers Ft := h−1(t) ∩ Bε , t �= 0, are compact manifolds with
boundaryLt . While the family {Ft } degenerates into the special fiberF0 := h−1(t)∩
Bε , one also has the corresponding family of boundaries {Lt }t �=0 degenerating to the
link L0, which may be singular. In the sequel we look at the topology of both Lt

and L0, and we study of the degeneration process {Lt }t �=0 � L0 for both, real and
complex singularities.

This is interesting for two reasons. On the one hand, the boundary of the Milnor
fiber, being a smooth manifold, is in many ways easier to handle than the link.
Understanding the way Lt degenerates into L0 throws light into the topology of
the link, and hence into that of V , just as the study of the vanishing cycles on the
Milnor fiber throws light into the topology of the special fiber. On the other hand,
we can argue conversely: understanding the degeneration Lt � L0 allows us to
get information about Lt out from L0 itself. For instance, this was the approach
followed in [13, 28, 30, 39] to show that in the case of holomorphic map-germs in
3 complex variables, and also for map germs of the form f ḡ, the boundary Lt is a
Waldhausen manifold (see the following section).

3 The Case of Complex Surfaces

Now consider a non-constant holomorphic function-germ,

f : (C3, 0) → (C, 0),

with a one-dimensional critical set at 0. Set V = f −1(0) and Σ = Σ(f ) ⊂ V , the
singular set. Let Lf = V ∩ Sε be the link of V and LΣ = Lf ∩ Σ the link of Σ .
Notice that LΣ is the singular set of the real analytic three-dimensional variety Lf ,
and LΣ is a disjoint union of circles S1, one for each branch of V . We denote by F

the Milnor fiber of f and ∂F is its boundary,
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R. Randell [43] and D. Siersma [47, 48] determined the homology of the
boundary ∂F in several cases, finding, among other things, examples where ∂F is
a homology sphere. It was also noticed in [47, 48] that the boundary ∂F consists of
two parts, which are compact manifolds glued along their common boundary, which
is a disjoint union of tori S1 × S1, one for each connected component of LΣ . One
of these is the portion of ∂F contained within a tubular neighborhood of LΣ ; the
other is the closure of its complement. Following [30] we call these the vanishing
zone of ∂F and the trunk, respectively. The interior of the trunk is diffeomorphic to
Lf \ LΣ . This is discussed with care in the following Sect. 4, so we only say a few
words here. This decomposition plays a key role in the work of Némethi-Szilárd
[39], Michel-Pichon [30] and Fernández de Bobadilla and Menegon [13]. Those
works give three different proofs of the fact that in the setting we now envisage, the
boundary ∂F is a Waldhausen manifold. We now say a few words about each of
these works.

Recall that a 3-manifold M is a Seifert manifold if it fibers over a surface S

with fiber the circle S1 and this fibration is locally trivial away from a finite number
of points in S. The fibers over those points are called the exceptional fibers. So for
instance, every circle bundle over a surface is a Seifert manifold with no exceptional
fibers.

A 3-manifoldM is aWaldhausenmanifold if there exist finitely many tori S1×S1

in M , such that cutting M along these torii, the complement is Seifert. And we know
from [40] that a 3-manifoldM is Waldhausen if and only if it is a graph (or plumbed)
manifold.

Plumbing is a construction introduced by Milnor [33] in order to exhibit the
existence of exotic spheres. In that construction, the “building blocks”, so to say,
are n-dimensional disc bundlesE over compact n-manifoldsB. The boundary ∂E is
an Sn−1 bundle over B. Given two of these, say (E1, B1) and (E2, B2), to perform
plumbing on them we choose a small disc Di in each Bi , so that Ei restricted to
this disc is a product of two n-discs, Dn × Di . Then we identify the points in E1
and E2 contained in Ei |Di by identifying a point (x, y) ∈ E1|D1 with the point
(y, x) ∈ E2|D2 . What we get is a 2n-dimensional compact manifold E1#E2 with
boundary and with corners. But the corners can be smoothed out in an essentially
unique way, up to isotopy.

At the level of the boundaries what we are doing is removing from each ∂Ei the
interior of a product Sn−1 × Di , and then identifying the boundaries Sn−1 × Sn−1

i

by the map (x, y) 
→ (y, x).
A plumbed manifold is a manifold obtained by iterating this construction a finite

number of times. The relevant case in this section is when n = 2, all manifolds and
bundles are oriented, and we are plumbing oriented 2-disc bundles over compact 2-
manifolds with no boundary. Recall that up to diffeomorphism, every such manifold
is classified by its genus. And the oriented 2-disc bundles E over every such
manifold B are classified by their Euler class, an integer, which equals the self-
intersection number of B in E regarded as the zero-section. Hence in this setting, to
every plumbed manifold we can associate a plumbing graph G: to each vertex in G

we associate a weightw ∈ Z and a genus g ∈ N. This represents a choice of a closed
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oriented 2-manifoldB of genus g, and a 2-disc bundleE over B with Euler class w.
If two vertices are connected by an edge, we do plumbing in the corresponding Ei .
If we have more than one edge joining two vertices, we repeat this operation several
times, choosing disjoint discs.

That is why in singularity theory, in the case n = 2, plumbed manifolds are also
called graph manifolds. It is not hard to see that every Waldhausen manifold is a
graph manifold and viceversa, cf. [40].

Notice that to every graph manifold one associates naturally a symmetric matrix
A = ((Ei,j )), called the intersection matrix. The elements in the diagonal are the
weights wi of the vertices, and the rest of the coefficients are the number of edges
connecting the corresponding vertices.

As an example, let (V , p) be a normal complex surface singularity, and let
π : ˜V → V be a good resolution; recall that good means that each irreducible
component Si of the exceptional divisor E is non-singular, all Si intersect transver-
sally and no three of them intersect. We may now consider its dual graph: to each Si

we associate a vertex vi , with a genus gi which is the genus of Ei and a weight,
the self-intersection number of Si in ˜V . We then join two vertices vi , vj by as
many edges as the intersection number Si · Sj . We get a plumbing graph. The result
of performing plumbing according to this graph is a 4-manifold, homeomorphic
to a tubular neighborhood of the exceptional divisor E in ˜V , and its boundary is
diffeomorphic to the link Lf . ThereforeLf is a graph manifold, and we know from
[11, 35] that the corresponding intersection matrix is negative definite. In fact the
converse is also true: by Grauert’s contractibility criterium, every graph manifold
with negative definite intersection matrix, is orientation preserving homeomorphic
to the link of a normal complex surface singularity, cf. [40].

Let us consider again a non-constant holomorphic function-germ with a non-
isolated critical point at 0,

f : (C3, 0) → (C, 0).

We now say a few words about three different points of view that have been used to
establish, among other things, three different proofs of the fact that in this setting,
the boundary of the Milnor fiber is a graph manifold.

3.1 A Glance on Némethi-Szilárd’s Work for Surface
Singularities

As pointed out in the introduction to [39], the work by András Némethi and Ágnes
Szilárd has its roots in several of the milestones in singularity theory, some of these
arising from the rich interplay one has between 3-manifolds and isolated complex
surface singularities.
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The 3-manifolds that arise as links of normal complex surface singularities,
which are the graph manifolds with negative definite intersection matrix, are a
particularly interesting class of manifolds, with certain properties that make these
manifolds provide a ground for a better understanding of important invariants in low
dimensional topology.

In fact, given a normal isolated singularity germ (V , 0), the link Lf can always
be regarded as being the boundary of a neighborhood of the special fiber π−1(0)

of a resolution ˜V
π→ V . If V is a hypersurface, or more generally a smoothable

singularity, then Lf can also be regarded as being the boundary of the Milnor fiber.
One thus has two natural holomorphic fillings of the link: the resolution and the
Milnor fiber, and this gives rise to remarkable index-theoretical relations (see for
instance [12, 16] and [45, Ch. IV] for the case where V has dimension two). This
has been used by Andras in many articles, to produce remarkable results concerning
Seiberg-Witten invariants, Floer homology and many other important 3-manifolds
invariants, see for instance [36, 37].

Looking at 3-manifolds that are boundaries of Milnor fibers of non-isolated

complex singularities defined by an equation C3 f→ C extends the class of
manifolds that arise from complex singularities. In this setting the Milnor fiber still
provides a holomorphic filling for the natural contact structure on the boundary;
but one does not have, a priori, the corresponding resolution of the singularity,
since the Milnor fiber already is non-singular. A remarkable outcome of the work of
Némethi and Szilárd in [39] is that even though these manifolds cannot be in general
links of isolated complex singularities, they do appear naturally as links of certain
real analytic singularities. Then, resolving these singularities one may regard the
boundary of the Milnor fiber as being the boundary of a tubular neighborhood of the
resolution, and one gets from this a graph decomposition. In fact the proof in [39]
actually provides also an explicit Waldhausen decomposition of it. This is used in
[39] to study the topology and geometry of ∂F .

The main algorithm in [39] springs from a Iomdin series associated to f . In fact,
given f as above, let g be a holomorphic function germ inC3 such that (f, g) defines
an isolated complete intersection. Now consider singularities of the form {f = |g|k}
for k > 0. One has that for large k, its link is independent of the choice of k, and it
turns out to be diffeomorphic to ∂F . That means that ∂F appears as the boundary
of an arbitrary small neighborhood of a real analytic germ. After resolving this real
analytic singularity, the tubular neighbourhood of the exceptional set provides a
plumbing representation of ∂F .

The way Némethi and Szilárd resolve the above singularities is very interesting,
because it not only gives a resolution, but it provides also a lot more information
about the singularities in question, and about the boundary ∂F . This springs from
their earlier work [38], explained in Chapter 6 of their book, where they introduce
a decorated graph Γ to study hypersurface singularities in three variables with one-
dimensional singular locus. That is their main tool in [38] for getting resolution
graphs of the singularities in question. Starting with a hypersurface germ f as above,
choose g so that (f, g) forms an ICIS. Then the graph Γ yields to a resolution of
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the singularities in the Iomdin series f + gk for k large. Moreover, the same graph
Γ also contains enough information to allow them to determine the boundary ∂F .
This is done by looking at the aforementioned singularities {f = |g|k} for k large.

The work of Némethi and Szilárd was extended by O. Curmi in [7] to functions
defined on an arbitrary ambient space. To be precise, Curmi considers the germ
(X, 0) of a three-dimensional complex analytic variety, and the germ of a reduced
holomorphic function f : (X, 0) → (C, 0) such that its zero locus V (f ) contains
the singular locus of X. Then it is proved that the boundary of the Milnor fiber
of f is a graph manifold. This is further refined in [8] where the author gives an
algorithm for describing the corresponding plumbing graph of the boundary of the
Milnor fiber of Newton non degenerate surface singularities.

3.2 On the Work of Michel-Pichon-Weber

The references for this subsection are the articles [28–32] by Françoise Michel,
Anne Pichon and Claude Weber. In [28] the authors consider a holomorphic map-
germ f : (C3, 0) → (C, 0) and state the theorem that the boundary ∂F of the
Milnor fiber is a graph manifold, with a sketch of the proof (with a gap pointed out
in [29]). Complete proofs of this theorem are given in [31, 32] for special families of
singularities. Shortly after the appearance of the book by A. Némethi and Á. Szilárd
[39], F. Michele and A. Pichon provided a complete proof which is in the spirit of
the original method they proposed.

The idea is the following. Firstly they split the boundary ∂Ff in two parts, as
already explained, which essentially are the trunk and the vanishing zone; the work
above essentially comes from the fact that in these papers the authors do not work
with the singular variety V but with its normalization. That the trunk is Waldhausen
follows from the classical theory of complex surface singularities, by taking first a
normalization of V and then a good resolution. Since the trunk and the vanishing
zone are glued along tori, the hard part is showing that the vanishing zone of ∂Ff

has a Waldhausen structure compatible with the boundary.
The key point is the use of a “carousel in family”. In fact, recall that given a map-

germ g : (C2, 0) → (C, 0), D. T. Lê developed a remarkable method to construct
the corresponding Milnor fiber, known as “the carousel”, see for instance [18] or
the expository article [20]. When g is irreducible, so it has only one branch, then
we know from [3] that its link is an iterated torus knot determined by the Puiseux
pairs of g. Yet, the Puiseux expansions actually give an additional structure near the
singular point, observed by D. T. Lê, that gives rise to what he called the carousel
associated to the singularity. This is obtained by considering an auxiliary linear
form 	, general enough for g, and looking at the distribution of points {zj } in the
intersection {	 = t} ∩ {g(x, y) = 0}. Then the carousel arises by a careful study of
how the Puiseux pairs describe the points in which the line {	 = t} meets the Milnor
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fiber, which are distributed regularly around each point {zj }, and their distribution
is determined iteratively by the Puiseux pairs.

In the setting we envisage here, we want to show that the Milnor fiber of the map-
germ f : (C3, 0) → (C, 0) has a graphmanifold structure within the vanishing zone
W . This manifoldW has a connected component for each component of the singular
set LΣ := Σ ∩ Sε of the link Lf : V ∩ Sε, where V = f −1(0). Each component
of LΣ is a circle. If at each point z ∈ LΣ we take a small complex two-dimensional
disc Hz transversal to LΣ what we get in that disc is the germ of a plane curve.
The Milnor fiber of the restriction f |Hz is then described by a carousel. Doing this
in a “coherent way” for all points in the corresponding connected component of
LΣ , we get a family of carousels, parameterized by the circle S1. Hence, in order
to construct the part of the Milnor fiber contained in the vanishing zone, we may
consider, for each connected component of LΣ , a family of carousels parameterized
by the circle S1. After taking care of a number of highly non-trivial subtleties, this
shows that the boundary of the Milnor fiber of f is a graph manifold.

3.3 On the Work of Fernández de Bobadilla and Menegon

To finish this section, we say a few words about [13]. This actually considers a more
general setting. Let (X, 0) be a three-dimensional complex analytic germ with an
isolated singularity at the origin in some CN , and let f, g be holomorphic function-
germs (X, 0) → (C, 0) such that:

• V (f ) := f −1(0) and V (g) := g−1(0) have no common irreducible components;
• the real analytic map-germ f ḡ : (X, 0) → (C, 0) has an isolated critical value;

and
• the real analytic map-germ f ḡ : (X, 0) → (C, 0) has a Milnor fibration. That is,

we assume that there exists small positive real numbers ε > 0 and δ > 0 with
0 < δ � ε � 1 such that the restriction

(f ḡ)|(f ḡ)−1(D∗
δ )∩X∩Bε

: (f ḡ)−1(D∗
δ ) ∩ X ∩ Bε −→ D∗

δ

is the projection of a locally trivial fibration, whereBε andD∗
δ are a small enough

discs around the origin in CN and C respectively.

Then it is proved in [13] that the boundary of the Milnor fibre ∂Ff ḡ := (f ḡ)−1(t)∩
X ∩ Sε, for t ∈ D∗

δ , is a Waldhausen manifold.
Of course, taking g to be constant one is back in the situation envisaged

previously. In other words, this work by Fernández de Bobadilla and Menegon gives
a third proof of the theorem that the boundary of the Milnor fiber for holomorphic
map germs in three complex variables is a Waldhausen manifold, and that proof
works, more generally, for maps f ḡ and the ambient space X being any three-
dimensional complex space which is non-singular away from a point.
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The first step in the proof is based on studying the Milnor fibre of a map-germ of
the form f ḡ defined on a complex surface with a an isolated singularity, in terms of
an embedded resolution of {fg = 0}. This uses previous work by Pichon and Seade
[42] about Milnor fibrations for such maps. Then they proceed to dimension 3. They
first split the boundary of the Milnor fibre of f ḡ into two parts as before: the trunk
and the vanishing zone, which are glued together along a finite union of tori. Most
of the work goes for showing that the part of the Milnor fibre inside the vanishing
zone is a Waldhausen manifold. They do so by means of a slicing argument, and
then using their previous results in dimension 2. A key point is noticing that it is
sufficient to decompose the transversal Milnor fibre into pieces which are invariant
under the corresponding vertical monodromy, and which decompose the vanishing
zone into Waldhausen pieces. This is proved by showing that the vanishing zone
can be decomposed into pieces that are either fibre bundles over a circle with fibre a
cylinder, or it is a finite unramified covering of aWalhausenmanifolds, and therefore
it is also Waldhausen.

4 The Vanishing Zone

We now consider the germ at 0 ∈ R
N of a real analytic variety X such that X \ {0}

is a smooth manifold of real dimension m. We consider real analytic map-germs

f : (X, 0) → (Rn, 0) , m > n > 0,

with an isolated critical value at 0, which admit a local Milnor fibration in a tube.
That is, there is a Milnor ball Bε for f , and δ > 0, depending on ε, such that if we
let N(ε, δ) be the Milnor tube N(ε, δ) := f −1(D∗

δ ) ∩ Bε , where D∗
δ is a punctured

ball in Rn around 0 of radius δ, then one has a locally trivial fibration

f |N(ε,δ) : N(ε, δ) → D
∗
δ . (1)

This is a stringent condition and yet, there are enough examples to make it
an interesting setting. For instance, the above conditions are satisfied in all the
following examples:

(a) f has an isolated critical value at 0 and f −1(0) has positive dimension.
(b) X is complex analytic and f is a C-valued holomorphic map.
(c) X is a complex analytic surface with a normal singularity at 0, and f is of the

form f = hḡ where h, g are holomorphic with no common branch (see [42]).
(d) f is a polar weighted mixed polynomial R2m → R2.

Statement (a) essentially follows from the classical Ehresmann’s fibration the-
orem, using the implicit function theorem (cf. [4, 5]). Statement (b) follows from
Hironaka’s theorem in [14], stating that every such map is Thom regular; (c) follows
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from [42]. For (d) see Oka’s paper [41]: the polar action ensures that the critical
value must be isolated, while the radial action ensures the transversality condition.

One has the following folklore theorem (see for instance [5, Theorem 2.7] or [26,
Proposition 2.5]).

Theorem 4.1 Let (X, 0) be as above and let f : (X, 0) → (Rn, 0),m > n > 0,
be real analytic with an isolated critical value at 0 ∈ Rn. Assume f satisfies the
following transversality condition: for every Milnor sphere Sε there exists δ > 0,
depending on ε, such that each fiber f −1(t) with |t| ≤ δ intersects transversally the
sphere Sε . Then f has a local Milnor-Lê fibration.

Given f as in this theorem, set V = f −1(0) ∩ X and equip X with a Whitney
stratification for which V and its singular set Σ are union of strata. Let Sε be a
sufficiently small Milnor sphere for f so that LX := X ∩ Sε is the link of X, and
therefore Lf := V ∩ Sε is the link of V and LΣ is that of Σ . We denote by ∂Ft the
boundary of a Milnor fiber Ft , so:

∂Ft := f −1(t) ∩ X ∩ Sε ,

for t ∈ Dδ\{0}. Then ∂Ft is a smooth submanifold of LX that degenerates to the
link Lf as |t| goes to 0.

Following the previous discussion, we aim to study and compare the topology of
∂Ft with that ofLf . For this we want to define and show the existence of a vanishing
zone for ∂Ft . We follow [27]:

Theorem 4.2 There exists a compact regular neighborhood W of LΣ in LX such
that:

• W has smooth boundary ∂W and this boundary intersects Lf transversally;
• W has LΣ as a deformation retract;
• for every t sufficiently close to 0 we have ∂Ft\W̊ is diffeomorphic to Lf \W̊ ,

where W̊ is the interior.
• If the critical set Σ of f is either smooth or an isolated singularity, then W can

be chosen to be a fiber bundle over L(Σ) with fiber a 2(n− k)-dimensional ball,
where k is the dimension of Σ .

• If there is a Whitney stratification of V so that each connected component of
Σ\{0} is a single stratum, then the intersection Wt := ∂Ft ∩ W is a topological
fiber bundle over LΣ , for every t sufficiently near 0.

The proof is exactly like that of [27, Theorem 2.5] and is left to the reader.
Notice that in the last statement in Theorem 4.2 the condition that each connected
component of Σ\{0} be a single stratum is rather stringent. This implies the local
topological triviality that gives the fiber bundle structure in that statement.

Definition 4.3 A vanishing zone for f is a regular neighborhood W of LΣ in LX

as in Theorem 4.2.
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5 The Vanishing Boundary Homology

Consider now an irreducible and reduced complex analytic germ (X, 0) of pure
dimension n + 1 in some C

m, and let f : (X, 0) → (C, 0) be holomorphic. We
know from [49] that taking the representative of X to be small enough, f has
a unique critical value at 0. And we know from [14] that f has the Thom af -
property, which implies the transversality condition in Theorem 4.1. Hence one has
a Milnor fibration in a tube, which is a special case of Lê’s fibration theorem in
[17], which holds for X with arbitrary singularities. Notice that if X has a non-
isolated singularity at 0, then the Milnor fibers of f may not be smooth, due to the
singularities of X.

Theorem 4.2 hints on looking at relations between the homology of ∂Ff and that
of the link Lf . In fact one has a specialization morphism (à la Verdier, cf. [25, 50]),

S : H∗(∂Ff ) −→ H∗(Lf ) ,

by observing that the vanishing zoneW extends to a regular neighborhood ˜W of Lf

that contains the boundary of Ff for all Milnor fibers over points sufficiently near 0.
Thus one has a morphism H∗(∂Ff ) → H∗( ˜W) induced by the inclusion. Also, ˜W

has Lf as a deformation retract, so one gets an isomorphism H∗( ˜W) → H∗(Lf ).
The specialization S is the composition of these two morphisms.

In [1] we show that S is surjective whenever the germ (X, 0) is an ICIS. It would
be interesting to know whether or not S is always surjective.

We call the kernel of S the vanishing boundary homology of the Milnor fiber,
HV∗ (∂Ff ). By Theorem 4.2, HV∗ (∂Ff ) has support in the vanishing zone W .
Similarly, following [9], the elements in H∗(∂Ff ) can be thought of as being the
nearby boundary cycles.

In order to study the vanishing and the nearby boundary cycles we prove in [1]
the following general theorem:

Theorem 5.1 Let p : E → M be a fibration with fiber F , where E, M , and F are
CW-complexes of dimension 2n − 1, 2k − 1, and 2(n − k) respectively. Assume that
F � ∨

μ Sn−k , M is 0-connected and 2k − 1 ≤ n − k (k > 0). Then:

1. The Leray-Serre spectral sequence of p collapses to the term E2∗,∗.
2. The induced homomorphism p∗ : H	(E;Z) → H	(M;Z), with 0 ≤ 	 ≤ 2k − 1,

has the following properties:

a. If 2k − 1 < n − k, then p∗ is an isomorphism;
b. If 2k − 1 = n − k, then p∗ is an isomorphism when 	 < 2k − 1 and when

	 = 2k − 1 it is surjective with kernel isomorphic to (Zμ)π1(M), the group of
coinvariants of the action of π1(M) on the homology of the fiber.

Recall that the group of coinvariants is the quotient of Hn−k(F ) by the subgroup
generated by elements of the form g · a − a, with g ∈ G and a ∈ Hn−k(F ).
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In particular one has the following theorem; some of the statements in it can also
be proved using the Wang sequence as Milnor does in [34, Chapter 8].

Theorem 5.2 Let p : E → S1 be a fiber bundle over the circle with fiber F a
compact manifold of dimension 2n − 2 (n ≥ 2), which is homotopically equivalent
to a bouquet of μ (n − 1)-spheres (μ > 0). Consider the monodromy action of
G ≡ π1(S

1) on Hn−1(F ) ∼= ⊕

μ Z. We denote by Hn−1(F )G the group of invariants
of the action, i.e., the fixed points, and by Hn−1(F )G the group of coinvariants.
Then:

1. For all n ≥ 2 we have:

• Hq(E) ∼= 0 for all q �= 0, 1, n − 1, n, and
• Hn(E) ∼= Hn−1(F )G which is a free abelian group.

2. For n = 2 we have:

• H0(E) ∼= Z and H1(E) ∼= H1(F )G ⊕ Z.
• rankH2(E) = rankH1(E) − 1.
• p∗ is an epimorphism with kernel isomorphic to H1(F )G.

3. For n > 2 we have:

• H0(E) ∼= Z ∼= H1(E) and Hn−1(E) ∼= Hn−1(F )G.
• rankHn(E) = rankHn−1(E).
• p∗ : H1(E) → H1(S

1) is an isomorphism.

Similar arguments yield:

Theorem 5.3 With the hypothesis of Theorem 5.2, let i : F ↪→ E be the inclusion
of a fiber in the total space. Then the induced homomorphism i∗ in homology
satisfies:

• In all cases, its kernel is the image of the homomorphism h∗ − Id : Hn−1(F ) →
Hn−1(F ), where h∗ is induced by the monodromy action.

• If n > 2, i∗ is surjective.
• If n = 2, i∗ is never surjective: its image is isomorphic to the group of

coinvariants H1(F )G.

Now consider a holomorphic function-germ (Cn+1, 0) → (C, 0) with a non-
isolated singularity at 0. Notice we know from [27] that in general, the link Lf

is not homeomorphic to ∂Ff . In fact [27, Theorem 2.8] says that if n = 2 and
the critical set is one-dimensional, then the boundary of the Milnor fiber is never
homeomorphic to the link.

We have the following immediate corollary to the theorems above:

Corollary 5.4 Consider a holomorphic function-germ f : (Cn+1, 0) → (C, 0)
with a one-dimensional critical set Σ at 0. Assume for simplicity that the singular
set Σ of V = f −1(0) is irreducible. Let ε > 0 be small enough so that Lf := V ∩Sε

is the link of V and the circle LΣ := Σ ∩ Sε is the link of Σ . Let z be a point in
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LΣ , F⊥
f a transversal Milnor fiber at z and h∗ : Hn−1(F

⊥
f ;Z) → Hn−1(F

⊥
f ;Z)

the corresponding monodromy morphism. Then Lf and the boundary ∂Ff are
integrally homologically equivalent if and only if h∗ − Id is an isomorphism.

Example 5.5 Consider the function f (x, y, z) = xa + ybz where a and b are
positive integers with a, b > 1. Then the boundary of the Milnor fiber is
homologically equivalent over the integers to the link. To show this, notice first
that its critical locus is Σ = {x = y = 0}. We can take in C3 balls with corners
(B4

ε1
×B2

ε2
) ⊂ (C2×C). ThenLΣ = {0}×S1ε2and the vanishing zoneW = B4

ε1
×S1ε2

fibers over S1 with fiber the ball Bz := B4
ε1

× {z}. We have

Wt = {(x, y, z) ∈ B
4
ε1

× S
1
ε2

; xa + ybz = t} ,

which fibers over S1 with fiber

Ft,z := {(x, y) ∈ B
4
ε1

; xa + ybz = t} ,

for z ∈ S1ε2 . Let us denote by F⊥
t,z the transversal Milnor fiber at a point z ∈ LΣ .

One finds (see [1]) that the induced monodromy homomorphism,

h∗ : H1(F
⊥
t,z) → H1(F

⊥
t,z) ,

is given by the following (a − 1)(b − 1) × (a − 1)(b − 1)-matrix:

[h∗] =

⎛

⎜

⎜

⎜

⎝

M O . . . O

O M . . . O
...

...
. . .

...

O O . . . M

⎞

⎟

⎟

⎟

⎠

,

where O is the (b − 1)× (b − 1) zero-matrix and M is the (b − 1) × (b − 1)-matrix
given by

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 0 0 . . . 0
−1 0 1 0 . . . 0
−1 0 0 1 . . . 0
...

...
...

...
. . .

...

−1 0 0 0 . . . 1
−1 0 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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which appears exactly (a − 1)-times in the matrix [h∗]. Then

[h∗ − I∗] =

⎛

⎜

⎜

⎜

⎝

N O . . . O

O N . . . O
...

...
. . .

...

O O . . . N

⎞

⎟

⎟

⎟

⎠

,

where N is the (b − 1) × (b − 1)-matrix given by

N =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2 1 0 0 . . . 0 0
−1 −1 1 0 . . . 0 0
−1 0 −1 1 . . . 0 0
...

...
...

...
. . .

...

−1 0 0 0 . . . −1 1
−1 0 0 0 . . . 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

whose determinant is not zero. Therefore the homomorphism h∗ − I∗ is an
isomorphism, so Lf and the boundary ∂Ff are integrally homologically equivalent.

6 Concluding Remarks

We finish this note with a couple of remarks about more general settings:

Remark 6.1 We may look at germs of holomorphic maps (X, 0)
f→ (C, 0) where

X is a complex analytic space with arbitrary singularities. In this general setting, if
f has an isolated singularity at 0 with respect to some Whitney stratification, by Lê
[17] one has a locally trivial fibration

f |N(ε,δ) : N(ε, δ) → D
∗
δ ,

where N(ε, δ) := f −1(D∗
δ ) ∩ Bε , Bε ⊂ Rm is a Milnor ball for f and D

∗
δ is

a punctured ball in Rn around 0, as before. Thus one has the Milnor fibers Ft

degenerating to the special fiber V = f −1(0) ∩ X ∩ Bε as t tends to 0, and a
degeneration of the boundary ∂Ft to the link Lf . In this setting one can show
the existence of a vanishing zone essentially as in Theorem 4.2. One must replace
diffeomorphisms by homeomorphisms, transversality by topological transversality,
and Ehresmann’s fibration lemma by the first Thom-Mather isotopy lemma.

Remark 6.2 When considering real analytic map-germs (Rm, 0) → (Rn, 0),
generically the discriminant Δf , i.e., the set of critical values, has codimension
1. In that case Δf disconnects the target into several connected components, so
if one has a fibration, the base space has several components and the fibers over
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different components can change. Yet, if the variety V = f −1(0), is a complete
intersection of dimension m − n in R

m with an isolated singularity at a point, say
0, then Theorem 4.1 together with the implicit function theorem imply that we have
a Milnor-Lê fibration, which is locally trivial. We still have that the Milnor fibers
degenerate to the special fiber. This is obvious when n = 1. In that well-studied
case we have the right Milnor fibers, and the left Milnor fibers.

For instance, let us look at the following particularly nice example, investigated
thoroughly by S. López de Medrano in various papers, e.g. [21, 22]. Consider the
map Cn → C defined by:

ψ(z) =
n

∑

i=1

λi |zi |2

where the λi are non-zero complex numbers in the Siegel domain. This means that
their convex hull contains the origin 0 ∈ C. We further assume that the λi are generic
in the sense that no two of them are in the same line through the origin.

The zero-set V := V (ψ) is a real analytic complete intersection inCn defined by
two quadrics, the real and the imaginary parts of ψ . This has a unique singular point
at 0 ∈ Cn. The topology of the link of V was determined by López de Medrano and
it is homeomorphic to a connected sum of products of spheres (depending on the
λi ). For n = 3 the link always is the 3-torus S1 × S1 × S1.

The critical set of ψ consists of the n coordinate axes. The discriminant (the
critical values) are the n half-lines L1, · · · ,Ln determined by the λi . These half-
lines split the plane C into n sectors, and the topology of the fibers of ψ changes
as we move from one sector to another. Yet one has that all Milnor fibers have the
same boundary, which is diffeomorphic to the link. In fact one has:

Theorem 6.3 Let f : (Rm, 0) → (Rn, 0) define a real analytic isolated complete
intersection singularity of dimension m − n > 0. Then all Milnor fibers have
diffeomorphic boundaries and these are isotopic to the link Lf .

The proof is simple and it is left to the reader.
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