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Abstract Determinantal singularities are an important class of singularities, gener-
alizing complete intersections, which recently have seen a large amount of interest.
They are defined as preimage of Mt

m,n the sets of matrices of rank less than t . The
rank stratification of Mt

m,n gives rise to some interesting structures on determinantal
singularities. In this article we will focus on one of these, namely the Tjurina
transform. We will show some properties of it, and discuss how it can or cannot
be used to find resolutions of determinantal singularities.
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1 Introduction

Hypersurface singularities have in general been the starting point of singularity
theory. They have some very good properties, one of the most important is the
existence of the Milnor fibration [8]. The Milnor fibration makes it possible to define
the Milnor number μ, which is a very important invariant. So a goal in singularity
theory is to find more general families of singularities, for which it is possible to
define the Milnor number. A classical example of a generalization, for which the
Milnor number can be defined, is the isolated complete intersections. Determinantal
singularities are a generalization of complete intersections. They are defined as the
preimage of the set of m × n matrices of rank less than t under certain holomorphic
maps. They have seen a lot of interest lately, including several different ways to
define the Milnor number of certain classes of determinantal varieties by Ruas and
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Pereira [10], Damon and Pike [2] and Nuño Ballesteros et al. [9]. Moreover, Ebeling
and Gusein-Zade defined the index of a 1-form [3], and their deformation theory has
also been studied by Gaffney and Rangachev in [6].

In this article we study other aspects of determinantal singularities, not directly
related to deformation theory, namely, transformations and resolutions. They played
a very important role in [3], and the Tjurina transform, which will be one of our main
subjects, was also studied for the case Cohen-Macaulay codimension 2 by Frühbis-
Krüger and Zach in [5].

We first recall the Tjurina transform, Tjurina transpose transform and Nash
transform for the model determinantal singularity in Sect. 3 as done in [3]. This will
be our starting point for introducing the transformations for general determinantal
singularities. We also explore how these transformations are related and how they
are not, and give a description of their homotopy type. We introduce the Tjurina
transform (and its transpose) for general determinantal singularities in Sect. 4, give
some general properties, for example that the Tjurina transforms of most complete
intersections are themselves complete intersections, and give some methods to find
the Tjurina transform. In Sect. 5 we show that under some general assumptions the
Tjurina transform or its dual is a complete intersection. This means that Tjurina
transform cannot be used to provide resolutions in general, but in Sect. 6 we
illustrate that by changing the determinantal type of the Tjurina transform of certain
hypersurface singularities, we can continue the process of taking Tjurina transform,
and in the end reach a resolution. Section 2 introduces determinantal singularities
and notions of transformations used throughout the article.

2 Preliminaries

In this section we give the basic definitions and properties of determinantal
varieties/singularities, and transformations we will need. We will in general follow
the notation used in [3].

2.1 Determinantal Singularities

Let Mm,n be the set of m × n matrices over C. Then we define the model
determinantal variety of type (m, n, t), denoted by Mt

m,n, for 1 ≤ t ≤ min{n,m}
to be the subset of Mm,n consisting of matrices A of rank(A) < t . Mt

m,n has a
natural structure of an irreducible algebraic variety, with defining equations given
by requiring that the t × t minors have to vanish. The dimension of Mt

m,n is
mn − (m − t + 1)(n − t + 1). The model determinantal variety is often called
generic determinantal variety as for example in [10].
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The singular set of Mt
m,n is Mt−1

m,n and the decomposition of Mt
m,n =

⋃t
i=1(M

i
m,n \ Mi−1

m,n ), where M0
m,n := ∅, is a Whitney stratification.

Let F : U ⊆ CN → Mm,n be a map with holomorphic entries. X := F−1(Mt
m,n)

is a determinantal variety of type (m, n, t) if codim(X) = codim(Mt
m,n) = (m −

t + 1)(n − t + 1). X has the structure of an analytic variety, with equations defined
by the vanishing of the t × t minors of the matrix F(x). We call this a variety as
is custom in the treatment of determinantal singularities and singularity theory in
general, even though X need not to be reduced or irreducible. The question if X

is reduced or not is not important, since we will always consider X as a subset of
CN (later a subset of a complex manifold) equipped with the classical topology. In
general in this article by a variety we mean a subset of CN or a complex analytic
manifold given locally as the zero set of a set of analytic equations with appropriate
compatibility conditions. This means that we do not distinguish between a set given
by non reduced equations, and the same set given by their reduced equations. We
also do not make any assumptions on irreducibility. This is because we are interested
in studying the classical topology of these sets which does not see whether the
equations are reduced or not. Also even if we start with a reduced and irreducible
equation, then many of the constructions we will make from them will not give
reduced or irreducible equations.

The singular set of X includes F−1(Mt−1
m,n ). We make a decomposition X =

⋃t
i=1 Xi , where Xi := F−1(Mi

m,n \ Mi−1
m,n ). Notice that even if X = F−1(Mt

m,n)

is an irreducible determinantal singularity which is given by reduced equations then
Y := F−1(Ms

m,n) for s < t might not be irreducible, might not be a determinantal
singularity or might be given by non reduced equations.

When we talk about the determinantal variety X, we do not just consider X as a
variety in CN but also the map F : U ⊆ CN → Mm,n used to define the variety.
We will as is customary not include F in the notation and just write X, but one has
to remember that the determinantal singularity also includes the map F . We will
therefore also only consider two determinantal varieties X and X′ equal if they are
given by the same map.

We define determinantal singularities as germs of determinantal varieties, i.e.
a germ of a space (X, 0) defined as the preimage if of Mt

m,n under a germ of a
holomorphic map F : (U, 0) ⊆ (CN, 0) → Mm,n.

Let GLn(ON) be the group of invertible n × n matrices with entries in ON the
sheaf of germs of holomorphic functions on CN . Let H := GLm(ON) × GLn(ON)

and R the group of analytic isomorphisms of (Cn, 0). Then the group R × H acts
on map-germs F : (U, 0) ⊆ (CN, 0) → Mm,n by composition in the source and
multiplication on the left and on the right in the target. We say that two determinantal
singularities (X, 0) and (Y, 0) are equivalent (or G-equivalent), if their defining
maps are in the same orbit of this action. This in particular implies that (X, 0) is
isomorphic to (Y, 0) as germs of varieties.

If F is transverse to the stratum Mi
m,n \ Mi−1

m,n at F(x), then the singularity
at x only depends upon rank(F (x)). We therefore call such a point essentially
nonsingular. This naturally leads to the next definition.
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Definition 2.1 Let (X, 0) be a determinantal singularity defined by the map-germ
F . Then (X, 0) is an essentially isolated determinantal singularity (or EIDS for
short) if there exists a neighbourhood U ⊂ CN of the origin such that all points
x ∈ U \ {0} are essentially nonsingular.

An EIDS needs of course not be smooth, but the singularities away from {0}
are controlled, i.e. they only depend on the strata they belong to. An example of an
EIDS is any isolated complete intersection given the type of a (1,m, 1) (or (m, 1, 1))
determinantal singularity.

If (X, 0) is a determinantal singularity of type (m, n, t) given by F : U ⊆ CN →
Mm,n satisfying F(0) 	= 0 and s := rank F(0), then one can find another map
F ′ : U ′ ⊆ CN → Mm−s,n−s with F ′(0) = 0 such that F ′ gives (X, 0) the structure
of a determinantal singularity of type (m − s, n − s, t − s) where U ′ ⊆ U are open
neighbourhoods of the origin. This can be done by action on F by H to be of the

form

(
ids 0
0 F ′

)

in a neighbourhood of 0.

2.2 Transformations

Definition 2.2 Let X be a variety and V ⊂ X a closed subvariety, then a
transformation of (X, V ) is a variety X̃ together with a proper surjective analytic
morphism π : X̃ → X, such that π : π−1(X \ V ) → X \ V is an isomorphism and
π−1(X \ V ) = X̃.

Here closure is the topological closure in the classical topology. The last require-
ment ensures that dim(π−1(V )) < dim(X).

This definition is sometimes also called a modification, but since we in this paper
work with the Tjurina transform, we will use the word transform.

A resolution of (X, SingX) is then just a transformation where X̃ is smooth.
We want to compare the different transformations, so we define a map between
transformations as follows.

Definition 2.3 Let f : T1 → T2 be a map between two different transformations
of the same space and subspace πi : (Ti, Ei) → (X, V ). Then we call f a map
of transformations if π1 = π2 ◦ f . We call a map of transformation f an analytic
morphism of transformations if it is an analytic morphism and an isomorphism of
transformations, if it is an isomorphism of varieties.

3 Resolutions of the Model Determinantal Varieties

In [3] the authors introduce three different natural ways to resolve the model
determinantal variety Mt

m,n. The first is the same as the Tjurina transform of
(Mt

m,n,M
t−1
m,n ) which was introduced by Tjurina in [12], and also used [13] and
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[5]. Kempf also introduced the same transformation in his thesis [7] under the
name canonical desingularization, and under that name it is for example used
by Eisenbud in [4]. The Tjurina transform is defined as the following variety in
Mm,n × Gr(n − t + 1, n):

Tjur(Mt
m,n) : = {(A,W) ∈ Mm,n × Gr(n − t + 1, n) | A(W) = 0}

= {(A,W) ∈ Mm,n × Gr(n − t + 1, n) | W ⊆ ker(A)}

by considering A ∈ Mt
m,n as a linear map A : Cn → Cm. It is shown in [1],

that this is a smooth variety. Let π : Tjur(Mt
m,n) → Mt

m,n be the restriction of
the projection to the first factor. Then over the regular part of Mt

m,n we have that
the map A → (A, ker A) is an inverse to π , hence π : Tjur(Mt

m,n) → Mt
m,n is a

resolution. Corollary 3.3 in [5] shows that their definition gives the same as this one,
their proof also works for general n,m and t .

The second resolution is as the Tjurina, but considering A ∈ Mt
m,n as a linear

map A : Cm → Cn. This is of course the map given by the transpose of A, so we
get the following:

TjurT (Mt
m,n) : = {(A,W) ∈ Mm,n × Gr(m − t + 1,m) | AT (W) = 0}

= {(A,W) ∈ Mm,n × Gr(m − t + 1,m) | W ⊆ ker(AT )}

It is clear from the definition that this is also a smooth variety, the same proof
as in the case of Tjurina transform works. If one chooses a Hermitian inner
product on Cm, then one gets that the relation W ⊆ ker(AT ) is equivalent to
the relation Im(A) ⊆ W̄⊥ where V ⊥ is the orthogonal complement with respect
to the Hermitian inner product and W̄ is the image of W under the real linear
isomorphism given by complex conjugation. The choice of Hermitian inner product
also gives an isomorphism of real algebraic varieties between Gr(m − t + 1,m)

and Gr(t − 1,m) defined by sending V to V ⊥. Hence composing this with the real
algebraic isomorphism induced on Gr(m − t + 1,m) by complex conjugation gives
an real isomorphism of Gr(m − t + 1,m) and Gr(t − 1,m) defined by sending W

to W̄⊥. Using this we get that this transform is also real isomorphic to:

TjurT (Mt
m,n)

∼= {(A, V ) ∈ Mm,n × Gr(t − 1,m) | Im(A) ⊆ V }. (1)

This resolution is called the dual canonical resolution in [7].
The third resolution considered by Ebeling and Gusein-Zade is the Nash

transform of Mt
m,n. In section 1 of [3] they show how to get the Nash transform

which can be stated as the following proposition:

Proposition 3.1 For a model determinantal variety the Nash transform is isomor-
phic to the following variety:

{(A,W1,W2) ∈ Mm,n× Gr(n − t+1, n) × Gr(t−1,m) | ker(A) ⊇ W1 and Im(A) ⊆ W2}.
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It is only a sketch of a proof to this proposition that is given in [3], and we
will below show that the two different spaces in the proposition are homeomorphic
(remember we are using the classical topology, and not the Zariski topology).

Proof of Homeomorphism In [1] they show that for A ∈ Mt
m,n \ Mt−1

m,n , that is the
regular points, TAMt

m,n = {B ∈ Mm,n | B
(

ker(A)
) ⊆ Im(A)}. Consider the map

α : Gr(n− t +1, n)×Gr(t −1,m) → Gr(dt
m,n,mn), where dt

m,n := mn− (m− t +
1)(n − t + 1) = dim(Mt

m,n), given by α(V,W) := {B ∈ Mm,n | B(V ) ⊆ W }. It is
clear that α(V,W) is a linear subspace of Mm,n. To find the dimension of α(V,W)

we will use the basis Bij of Mm,n defined given a basis vj of Cn and a basis wi of
Cm as Bij (vj ) = wi and rank(Bij ) = 1. We choose a basis of Cn such that V =
Span{v1, . . . , vn−t+1} and a basis of Cm such that the W = Span{w1, . . . , wt−1}.
Then α(V,W) is spanned by the Bij ’s that send one of the first n − t + 1 basis
vectors of Cn to one of the first t − 1 basis vectors of Cm, and the Bij ’s that send
one of the last t − 1 basis vectors of Cn to any basis vector of Cm. This implies
that dim α(V,W) = (n − t + 1)(t − 1) + (t − 1)m = dt

m.n. Hence α(V,W) ∈
Gr(dt

m,n,mn).
We will first show that α is injective. Assume that there exist two pairs (W1,W2)

and (V1, V2) such that α(W1,W2) = α(V1, V2). Assume that W1 	= V1, let v1 ∈ V1
and v1 /∈ W1, since dim(W1) = dim(V1) such a v1 exists, and choose v2 /∈ V2.
Define the linear map B as the map of rank 1 with B(v1) := v2. Then B(W1) =
{0} ⊆ W2 and hence B ∈ α(W1,W2), but B(V1) = Span{v2} 	⊆ V2, so B /∈
α(V1, V2) and we have a contradiction. Assume now that there exist pairs (W1,W2)

and (W1, V2) such that α(W1,W2) = α(W1, V2). Assume that W2 	= V2, choose
v1 ∈ W1 and choose v2 ∈ V2 and v2 /∈ W2, since dim(W2) = dim(V2) such
a v2 exists. Define B as the linear map as the map of rank 1 with B(v1) := v2.
Then B(W2) = Span{v2} ⊆ V2 so B ∈ α(W1, V2), but Span{v2} 	⊆ W2 so B /∈
α(W1,W2) so we have a contradiction. This shows that α is injective.

Next we will show that α is continuous. Let (Vi,Wi) ∈ Gr(n − t + 1, n) ×
Gr(t − 1,m) be a convergent sequence and let (V ,W) := lim(Vi,Wi). Let
Bi := α(Vi,Wi), and choose a convergent subsequence B′

i which exists because
Gr(dt

m,n,mn) is compact. Let B := limB′
i , choose B ∈ B and Bi ∈ B′

i a sequence
of matrices converging to B. Choose v ∈ V and vi ∈ Vi a sequence converging to v,
set wj := Bjvj for any j where Bj is defined. Now since Bj and vj converge, wj

converges to w := Bv, but wj ∈ Wj and hence its limit is in W . So for all v ∈ V

and all B ∈ B Bv ∈ W , hence B ⊂ α(V,W). But since dim
(B) = dim

(
α(V,W)

)

we have that B = α(V,W). So any convergent subsequence of Bi converges to
α(V,W), this implies that Bi converges to α(V,W) since Gr(dt

m,n,mn) is compact.
Therefore, lim α(Vi,Wi) = α(lim(Vi,Wi)) for all convergent sequences, hence α

is continuous.
Since α is a continuous map from a compact Hausdorff space to a compact space

it is closed, and since it is injective this implies it is an topological embedding
(Closed Map Lemma).

Let β : (Mt
m,n \ Mt−1

m,n ) → Mm,n × Gr(n − t + 1, n) × Gr(t − 1,m) be the map
β(A) = (

A, ker(A), Im(A)
)
. We define the map α′ : Mm,n × Gr(n − t + 1, n) ×
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Gr(t − 1,m) → Mm,n × Gr(dt
m,n,mn) by α′(A, V,W) = (A, α(V,W)). Then

(α′ ◦ β)(A) = (A,B), where

B = α
(

ker(A), Im(A)
) = {B ∈ Mm,n | B

(
ker(A)

) ⊆ Im(A)} = TAMt
m,n

So α′ ◦ β is the same as the Gauss map on the regular part of Mt
m,n. Then

we have that Nash(Mt
m,n) = (α′ ◦ β)(Mt

m,n \ Mt−1
m,n ). Since α and hence α′ is

a closed topological embedding we have Nash(Mt
m,n) = α′

(
β(Mt

m,n \ Mt−1
m,n )

)
.

Moreover, since α′ is an embedding it follows that Nash(Mt
m,n) is homeomorphic

to β(Mt
m,n \ Mt−1

m,n ).

The last part of the proof is determining β(Mt
m,n \ Mt−1

m,n ). Now β(Mt
m,n \

Mt−1
m,n ) = {(A, ker A, Im A) ∈ Mm,n × Gr(n − t + 1, n) × Gr(t − 1,m)} and we

want to show that the closure N is

{(A, V,W) ∈ Mm,n × Gr(n − t+1, n) × Gr(t−1,m) | ker(A) ⊇ V and Im(A) ⊆ W }.

First assume that (A, V,W) ∈ β(Mt
m,n \ Mt−1

m,n ) is not in N . This implies that that
there is a v ∈ V such that Av 	= 0 or a v′ ∈ Cn such that Av′ /∈ W . In the first

case let (Ai, Vi,Wi) be a sequence in β(Mt
m,n \ Mt−1

m,n ) converging to (A, V,W)

and vi ∈ Vi a sequence converging to v, then Aivi converges to Av but Aivi = 0
so this contradicts Av /∈ N . In the second case let (A′

i , V
′
i ,W

′
i ) be a sequence in

β(Mt
m,n \ Mt−1

m,n ) converging to (A, V,W) and v′
i ∈ V ′

i a sequence converging to v′,
then A′

iv
′
i converges to Av′ but Aiv

′
i ∈ W and hence Av′ ∈ W since W is closed,

this gives a contradiction. Let (A, V,W) ∈ N and let r = rank A. Now V ⊂ ker A,
so let V ′ ⊂ Cn be a subspace satisfying V ⊕ V ′ = ker A, and Im A ⊂ W so let
W ′ ⊂ Cm be a subspace satisfying Im A ⊕ W ′ = W . Let A′ be a matrix of rank
t − 1 − r , such that ker A′ ⊕ V ′ = Cn and Im A′ = W ′, such a matrix exists since
dim V ′ = dim W ′ = t − 1 − r . Set Ai = A+ 1

i
A′ then ker Ai = ker A

⋂
ker 1

i
A′ =

ker A
⋂

ker A′ = V and Im Ai = Im A + Im 1
i
A′ = W . Hence (Ai, Vi,Wi) :=

(Ai, V ,W) is a sequence in β(Mt
m,n \ Mt−1

m,n ) converging to (A, V,W), so N ⊆
β(Mt

m,n \ Mt−1
m,n ) which finishes the proof.

An important consequence of this is the following:

Corollary 3.1 Nash(Mt
m,n) is a complex manifold.

Proof Using the description of Nash(Mt
m,n) given in Proposition 3.1 we get that the

projection to the two last factors Gr(n − t + 1, n) × Gr(t − 1,m) gives Nash(Mt
m,n)

the structure of the total space of a vector bundle over a complex manifold.

It follows from Definition 2.3 and Proposition 3.1, that we have a map of trans-
formations f : Nash(Mt

m,n) → Tjur(Mt
m,n) by setting f (A, V,W) = (A, V ) and a

map of transformations g : Nash(Mt
m,n) → TjurT (Mt

m,n) by setting g(A, V,W) =
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(A,W) and using (1). These maps are never isomorphisms, as we will see later
when we determine the homotopy type of these spaces.

Proposition 3.2 There does not exist a continuous maps of transformations
between Tjur(Mt

m,n) and TjurT (Mt
m,n).

Proof We start by using (1) to identify TjurT (Mt
m,n) with the set {(A,W) ∈ Mm,n×

Gr(t − 1,m) | Im(A) ⊆ W }. Let f : Tjur(Mt
m,n) → TjurT (Mt

m,n) be a map of
transformations, this implies that over π−1(Mt

m,n \ Mt−1
m,n ) we have f (A, ker A) =

(A, Im A). Let {x1, . . . , xn} be a basis of Cn and {y1, . . . , ym} be a basis for Cm.
Let A be the matrix in these bases of the map A(a1x1 + · · ·+ anxn) = a1y1 + · · · +
at−2yt−2 + 0yt−1 + · · · + 0ym, notice that there is at least 2 zeros at the end since
t ≤ m. Now rank A = t − 2 and hence A ∈ Mt−1

m,n . Let V = Span{xt, . . . , xn} then
it is clear that ker A ⊃ V .

We now define two different sequences of matrices A1
s and A2

s where Ai
s ∈ Mt

m,n.

The first is defined as A1
s (a1x1+· · ·+anxn) := a1y1+· · ·+at−2yt−2+ 1

s
at−1yt−1+

0yt + · · · + 0ym and the second is defined as A2
s (a1x1 + · · · + anxn) := a1y1 +

· · · + at−2yt−2 + 0yt−1 + 1
s
at−1yt + 0tt+1 + · · · + 0ym. It is clear that ker Ai

s = V

and lims→∞(Ai
s, V ) = (A, V ) for i = 1, 2. Since Ai

s ∈ Mt
m,n \ Mt−1

m,n we get
that f (Ai

s, V ) = (Ai
s, Im Ai

s). Let W1 := Span{y1, . . . , yt−1} = Im A1
s and W2 :=

Span{y1, . . . , yt−2, yt } = Im A2
s . If f was continuous, then we would have that

f (A,W) = f (lims→∞(Ai
s, V )) = lims→∞ f (Ai

s, V ) = (A,Wi) for i = 1, 2. But
W1 	= W2 hence f cannot be continuous. The argument that there is no continuous
map of transformations from TjurT Mt

m,n to Tjur Mt
m,n is similar.

Next we determine the homotopy type of the transformations, and the above
shows that in the case Tjur(Mt

m,n) and TjurT (Mt
m,n) are homotopy equivalent they

are not isomorphic as transformations. Even in the case n = m where Tjur(Mt
m,m)

and Tjurt (Mt
m,m) are isomorphic as real varieties by the isomorphism given by

(A,W) → (A, W̄⊥), they are not isomorphic as transformations.

Proposition 3.3 Let π : (T (Mt
m,n), E) → (Mt

m,n,M
t−1
m,n ) be one of the three

transformations discussed above. Then T (Mt
m,n) deformation retracts onto π−1(0).

This gives that Nash(Mt
m,n) ∼ Gr(n − t + 1, n) × Gr(t − 1,m), Tjur(Mt

m,n) ∼
Gr(n − t + 1, n) and TjurT (Mt

m,n) ∼ Gr(t − 1,m), where ∼ denotes homotopy
equivalence.

Proof We will only show this for Nash(Mt
m,n). The other proofs are similar. Define

F : Nash(Mt
m,n) × C → Nash(Mt

m,n) as F(A, V,W, s) = fs(A, V,W) =
(sA, V,W), using the identification for the Nash transformation given by Propo-
sition 3.1. The map is well defined since (sA)(V ) = s(A(V )) = 0 and Im(sA) =
Im(A) ⊂ W if s 	= 0 and Im(sA) = {0} ⊂ W if s = 0. It is continuous since
it is just scalar multiplication. Restrict the map to s ∈ [0, 1]. Then f1 = id,
fs |π−1(0) = id|π−1(0) and f0(Nash(Mt

m,n)) = π−1(0). Hence fs is a deformation
retraction, and Nash(Mt

m,n) deformation retracts onto π−1(0).
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4 Transformations of General Determinantal Singularities

In this section we will introduce the transformations defined above for general
determinantal varieties. We start by introducing the Tjurina transform. The Tjurina
transform of a determinantal variety has been introduced in several places before
for example in [1, 3, 12, 13] and [5]. They in general define the Tjurina transform
of a determinantal variety X of type (m, n, t) given by F : CN → Mm,n as the
fibre product X ×F Tjur(Mt

m,n), which works very well in the cases they consider.
But this definition gives the following problem in a more general setting: assume
that dim(X) ≤ (t − 1)(n − t + 1) and let p : X ×F Tjur(Mt

m,n) → X be the
projection to the first factor. Then p−1(0) ∼= Gr(n− t + 1, n), hence the exceptional
fibre of p has dimension greater than or equal to the dimension of X. This means
that the fibre product does not satisfy the conditions to be a transformation given
in Definition 2.2.1 We will give an alternative definition that does not have this
problem. It should be said that in [3] and [5] they only consider the Tjurina
transformation in situations where this does not happen, and that our definition
agrees with theirs in these cases. We will see in Proposition 4.3 when the two
definitions agree in general.

Definition 4.1 Let X be a determinantal variety of type (m, n, t) given by
F : CN → Mm,n and assume that Xt = X, define B : Xt → Gr(t − 1, n) as
the map that sends x into the row space of F(x). Then we define the Tjurina
transform Tjur(X) of X as

Tjur(X) :=
{
(
x,W

) ∈ Xt × Gr(t − 1, n)
∣
∣ W = B(x)

}

⊆ X × Gr(t − 1, n),

where we again use the topological closure in the classical topology, and we define
the map πTj : Tjur(X) → X as the projection to the first factor.

Remember as always we think of the determinantal variety X as the space X and
the map F , hence as we just write X for the determinantal variety including the map
F , we also write Tjur(X) for the Tjurina transform which of course also depends of
the map F .

The assumption that Xt = X is to avoid cases where there are irreducible
components of X that do not give components of Xt . If (X, 0) is an EIDS then
(X, 0) always satisfies this condition in a neighbourhood of the origin.

It is clear that this satisfies the conditions of Definition 2.2 to be a transformation
of (X,X<t ) where X<t := ∪t−1

i=1Xi = F−1(Mt−1
m,n ), since πTj |Tjur(X)\(πTj )−1(Xt )

is

the inverse of B, it is surjective because Xt = X and proper since all fibres are
either points or closed subsets of Gr(t − 1, n) hence compact.

1It is of course also possible that p−1(0) is a irreducible component of X ×F Tjur(Mt
m,n) even

without the condition on the dimensions, we will discuss this later in Proposition 4.3.
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Notice that the choice of a Hermitian inner product on Cn gives a real linear
isomorphism between the complex conjugate of the row space of F(x) and
ker

(
F(x)

)
and a real algebraic isomorphism Gr(t − 1, n) ∼= Gr(n − t + 1, n).

Hence we get a real analytic isomorphism

Tjur(X) ∼=
{
(
x,W

) ∈ Xt × Gr(n − t + 1, n) | W = ker F(x)

}

⊆ X × Gr(n − t + 1, n).

We use the row space in our definition, since it makes calculation easier as we see
later.

Proposition 4.1 Let (X, 0) be a determinantal singularity of type (m, n, 1), then
(Tjur(X), 0) = (X, 0).

Proof Since X is of type (m, n, 1) we have that Tjur(X) ⊆ X × Gr(0, n) = X and
B is constant. The result then follows since Tjur(X) = X1 = X.

Notice that all determinantal singularities of type (m, n, 1) are local complete inter-
sections, and that any local complete intersection can be given as a determinantal
singularity of type (m, n, 1), in fact by a determinantal singularity of type (m, 1, 1)

of (1, n, 1). Hence the Proposition says that given the natural representation of
a local complete intersection, then the Tjurina transform do not improve the
singularity.

Hypersurfaces singularities can also some times be given as determinantal singu-
larities of type (m,m,m), and we will later see some examples of hypersurfaces
of type (m,m,m) for which the Tjurina transform is useful to simplify their
singularities.

To study the local properties of the Tjurina transform closer we will use the
following matrix charts on Gr(t −1, n). Let I ⊂ {1, . . . , n} such that #I = t −1. For
each such I = {i1, . . . , it−1} let a = (aji) j ∈ 1, . . . , t − 1 and i ∈ {1, . . . , n} \ I

be a (t − 1) × (n − t + 1) matrix with variables aji ∈ C. We define a chart of
Gr(t −1, n) by the (t −1)×n matrix AI (a) which consists of the columns Ci given
as follows:

Ci =
⎛

⎜
⎝

a1i

...

a(t−1)i

⎞

⎟
⎠ if i /∈ I, and Cil =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the 1 is in the lth entry.

If we consider a ∈ Mt−1,n−t+1 = C(t−1)(n−t+1) then we can use AI(a) to define
a map ÃI : C(t−1)(n−t+1) → Gr(t − 1, n) by sending a to the row space of AI (a).
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{
ÃI

}
I

is a cover of Gr(t − 1, n) by algebraic maps, and if UI = Im(ÃI ) then the

change of coordinates from Ã−1
I (UI ∩ UJ ) to Ã−1

J (UI ∩ UJ ) is given by AT
J AI (a).

To see the row space of F(x) in a given chart AI , we construct the following
(m + t − 1) × n matrix:

F̃
Tj
I (x, a) :=

(
AI(a)

F (x)

)

.

Then the row space of F(x) is contained in ÃI (a) if and only if rank F̃
Tj
I (x, a) =

t − 1.
Let T̃jurI (X) := (F̃

Tj
I )−1

(
Mt

m+t−1,n

) ⊂ X × C(t−1)(n−t+1), and

π̃
Tj
I : T̃jurI (X) → X be the projection to the first factor. Then T̃jurI (X) is the

restriction of the fibre product X ×F Tjur(Mt
m,n) to the chart on CN × Gr(t − 1, n)

given by I .
From the above construction we get TjurI (X) := Tjur(X) ∩ (X × Im ÃI ) ⊂

T̃jurI (X), but they are not necessarily equal. Notice that TjurI (X) is the restriction
of the Tjurina transform Tjur(X) to the chart on CN × Gr(t − 1, n) given by I .
TjurI (X) can be thought of as the strict transform of X in T̃jurI (X). Moreover,
T̃jurI (X) is not necessarily a determinantal singularity. We have (π

Tj
I )−1(Xt ) =

(π̃
Tj
I )−1(Xt). This implies that dim T̃jurI (X) = max

(
dim X, dim(π̃

Tj
I )−1(X<t)

)
.

Now dim(π̃
Tj
I )−1(X<t ) is the largest of the dimensions of the pullback of

X1, . . . , Xt−1. Hence (π̃
Tj
I )−1(Xs) ⊂ X × Gr(t − 1, n) consists of the pairs

(x,W) such that x ∈ Xs and row space of F(x) is a subset of W . We will denote
the row space of F(x) by RxF . Since rank F(x) = s − 1 we can write all such
W as W = RxF + WF(x) where WF(x) is (t − s)-dimensional subspace of the
complement of RxF ⊂ CN . Moreover, for any t − s dimensional subspace V in the
complement of RxF ⊂ CN we have rank(RxF + V ) = t − 1. Hence we get that{
W ∈ Gr(t − 1, n) | RxF ⊂ W

}
is isomorphic to Gr(t − s, n − s + 1). So we get

that dim(π̃
Tj
I )−1(Xs) = dim F−1((Ms

m,n \ Ms−1
m,n ) + dim Gr(t − s, n − s + 1).

The above implies that dim T̃jurI (X) = dim TjurI (X) = dim X if and only if

dim(π̃
Tj

I )−1(Xs) ≤ dim X − dim Gr(t − s, n − s + 1)

= N − (m − t + 1)(n − t + 1) − (t − s)(n − t + 1)

= N − (m − s + 1)(n − t + 1)

for all s = 1, . . . , t . If X has an isolated singularity, this becomes N ≥ m(n− t +1).

Proposition 4.2 If dim T̃jurI (X) = dim X then T̃jurI (X) is a determinantal
variety.



300 H. M. Pedersen

Proof We just need to check if codim T̃jurI (X) = codim Mt
m+t−1,n = (m + t −

1 − t + 1)(n − t + 1) = m(n − t + 1). But codim T̃jurI (X) = codim TjurI (X) =
codim X+(t−1)(n−t+1) = (m−t+1)(n−t+1)+(t−1)(n+t−1) = m(n−t+1).

In this case we get that T̃jurI (X) is a determinantal variety of type (m + t −
1, n, t). But rank F̃

Tj
I (0, 0) = t−1, so one can find another matrix F ′

I (x, a) defining
T̃jurI (X) such that F ′

I (0, 0) = 0 and this is a determinantal variety of type (m+ t −
1 − (t − 1), n − (t − 1), t − (t − 1)) = (m, n − t + 1, 1). Since codim T̃jurI (X) =
m(n − t + 1) we get that T̃jurI (X) is a complete intersection. We will later show
how to explicitly find F ′

I (x, a) also in the case dim T̃jurI (X) 	= dim X.
We can also use this to determine when TjurI (X) and T̃jurI (X) are equal. Notice

that T̃jurI (X) = (
X×F Tjur(Mt

m,n)
)∩(

X×Im ÃI

)
, hence the next proposition also

answers the question, when is our definition of Tjurina transform the same as the one
used by other authors. Remember that we earlier defined Xs := F−1(Ms

m,n\Ms−1
m,n ).

Proposition 4.3 Let X be a determinantal variety. Then T̃jurI (X) = TjurI (X) if
and only if dim Xs < N−(m−s+1)(n−t+1) for all s ∈ 1, . . . , t−1. Furthermore,
if (X, 0) is an EIDS, then T̃jurI (X) = TjurI (X) if and only if dim X1 < N −m(n−
t + 1).

Proof Since Tjur(X) is a transformation, we have that dim πTj (Xt−1) < dim X.
Then the above calculations of the dimensions of the fibres give the inequalities,
and we get the only if direction.

So assume that the inequalities are satisfied, this implies dim TjurI (X) =
dim T̃jurI (X) and dim(π̃

Tj
I )−1(Xt−1) < dim X. Now TjurI (X) is a union of

irreducible components of T̃jurI (X), and each irreducible component of TjurI (X) is
not a proper subvariety of any irreducible variety of the same dimension, since they
are closed. This implies that if T̃jurI (X) 	= TjurI (X) then there exists another irre-
ducible component V ⊆ T̃jurI (X) not contained in TjurI (X). But since T̃jurI (X)

is a complete intersection it is equidimensional, and hence dim V = dim TjurI (X).
Since (π

Tj
I )−1(Xt ) = (π̃

Tj
I )−1(Xt ) we have that V ⊂ (π̃

Tj
I )−1(Xt−1), but this is a

contradiction since dim V > dim π̃
Tj
I (Xt−1).

For the case of EIDS remember that if (X, 0) is an EIDS, 1 < s < t and Xs 	= ∅
then codim Xs = (m − s + 1)(n − s + 1). Hence the inequality of the first part
of the theorem is satisfied for all 1 < s < t and therefore one only needs that
dim X1 < N − (m − 1 + 1)(n − t + 1) to get the conclusion T̃jurI (X) = TjurI (X).

If X is a determinantal singularity and we assume that X = Xt then dim Xt =
N − (m − t + 1)(n − t + 1). But remember even if Xs 	= ∅ for some s < t then
Xs needs not be a determinantal singularity, and hence dim Xs can be larger than
N − (m− s+1)(n− s +1) as the following example shows. Hence the assumptions
of Proposition 4.3 need not be satisfied.
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Example 4.1 Let X := F−1(M3
3,3) be the determinantal singularity given by the

matrix:

F(x, y, z) :=
⎛

⎝
x 0 z

y x 0
0 y x

⎞

⎠ .

We have that X is the variety given by the equation x3 + y2z = 0, which have the
z-axis as its singular set. X is determinantal since codim X = 1 = codim M3

3,3.
Now X3 is X minus the z-axis, X2 is the z-axis minus the origin and X1 is the
origin. This implies that the codim X2 = 2 but codim M3

3,3 = 4, so X do not satisfy
Proposition 4.3.

We now want to give an explicit method to find F ′
I (x, a). Let I =

{i1, . . . , it−1} ⊂ {1, . . . , n} as before. Now by adding columns of the form −ajiCij

to the i’th column, for all i /∈ I and all j = 1, . . . , t − 1, we get a matrix which
has t − 1 linearly independent rows Rij of the form Rij = (0, . . . , 0, 1, 0, . . . , 0),
where the 1 is the ij entry. To this matrix we then add rows of the form −flij (x)Rij

to the l + t −1’th row for l = 1, . . . ,m and j = 1, . . . , t −1. We now have a matrix
F̄I (x, a) consisting of the following columns:

F̄i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
f1i (x) − ∑t−1

j=1 ajif1ij (x)

...

fmi(x) − ∑t−1
j=1 ajifmij (x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

if i /∈ I, and F̄il =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the 1 in F̄il is on the lth entry. The t × t minors of F̄I (x, a) still defines
T̃jurI (X). Notice that we can choose special minors Δl,i , with l ∈ {1, . . . ,m} and
i /∈ I , where each row and each column have a single non zero entry, which is
1 except for the li’th entry which is fli (x) − ∑t−1

j=1 ajiflij (x). This implies that

T̃jurI (X) is defined by the (n − t + 1)m equations fli(x) − ∑t−1
j=1 ajiflij (x) = 0.

Hence it is defined by the 1×1 minors of the matrix m×(n− t +1) matrix F ′
I (x, a)

with columns:

F ′
i =

⎛

⎜
⎜
⎝

f1i (x) − ∑t−1
j=1 ajif1ij (x)

...

fmi (x) − ∑t−1
j=1 ajifmij (x)

⎞

⎟
⎟
⎠ if i /∈ I.
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This still does not imply that T̃jurI (X) is a determinantal variety, since the
codimension might not be right. Even if T̃jurI (X) is a determinantal variety, it might
have components of maximal dimension which is contained in (π̃Tj )−1(X<t) and
hence T̃jurI (X) 	= TjurI (X), as we will see in the next examples.

Example 4.2 Let X be the irreducible determinantal variety of type (2, 3, 2) defined
by the following matrix

F1(x, y, z,w) :=
(

wl y x

z w yk

)

,

with k, l > 2. Then T̃jurI (X) is a determinantal variety for all I . Let us start by
looking in the chart defined by I = {1}.

F ′{1}(x, y, z,w, a2, a3) :=
(

y − a2w
l x − a3w

l

w − a2z yk − a3z

)

.

The equations y − a2w
l = 0, x − a3w

l = 0 and w − a2z = 0 all just give
the variables x, y and w as functions of z, a2 and a3. Using these equations the
last equation becomes a

k(l+1)
2 zkl − a3z = 0 which shows that T̃jurI (X) has two

irreducible components. The first given by {x = y = z = w = 0} which is the fibre
over the origin. The second irreducible component, which is TjurI (X), is given by
the equations y −a2w

l = 0, x −a3w
l = 0, w−a2z = 0 and a

k(l+1)
2 zk(l−1)−a3 = 0

and is hence smooth.
Now let us look closer on the equations in the chart defined by I = {2}.

F ′{2}(x, y, z,w, a1, a3) :=
(

wl − a1y x − a3y

z − a1w yk − a3w

)

.

Notice that the equations x−a3y = 0 and z−a1w = 0 define x and z as holomorphic
functions of the other variables, and give embeddings of a C4 into C6. Now if we
multiply the equations yk − a3w = 0 and wl − a1y = 0 we get:

0 = (yk − a3w)(wl − a1y) = ykwl − a1y
k+1 − a3w

l+1 + a1a3yw

= ykwl − a1a3yw − a1a3yw + a1a3yw = yw(yk−1wl−1 − a1a3).

Hence we see that T̃jurI (X) is not irreducible. y = 0 and w = 0 both define the fibre
(π̃

Tj
I )−1(0) which is two dimensional and therefore cannot be a subset of TjurI (X).

Therefore, TjurI (X) is given by the equations yk−1wl−1 − a1a3 = 0, wl − a1y = 0
and yk −a3w = 0. Hence it can be given as a determinantal variety of the same type
as X given by the matrix

(
wl−1 y a3

a1 w yk−1

)

.



On Tjurina Transform and Resolution of Determinantal Singularities 303

The case of the last chart I = {3} is similar to that of the first chart, hence in that
chart we also have that TjurI (X) is smooth. In all charts we have that T̃jurI (X) 	=
TjurI (X).

Example 4.3 Let X ⊂ C4 be the determinantal variety of type (3, 2, 2) given by

F2(x, y, z,w) :=
⎛

⎝
wl z

y w

x yk

⎞

⎠ ,

with k, l > 2. Then T̃jurI (X) is given in the two charts I = {1}, {2} by the matrices

F ′{1}(x, y, z,w, a1) :=
⎛

⎝
z − a1w

l

w − a1y

yk − a1x

⎞

⎠ and F ′{2}(x, y, z,w, a2) :=
⎛

⎝
wl − a2z

y − a2w

x − a2y
k

⎞

⎠

In this case we see that T̃jurI (X) = TjurI (X), and hence the Tjurina transform of
X is a complete intersection.

Notice that the underlying varieties in Examples 4.2 and 4.3 are the same, it
is just their representations as determinantal varieties which are different. In fact
the difference is that F1(x, y, z,w) = F2(x, y, z,w)T . In Example 4.2 we get that
T̃jurI (X) 	= Tjur(X) and in Example 4.3 that T̃jurI (X) = Tjur(X). This does not
contradict Proposition 4.3 since in Example 4.2 the inequality dim Xs < N − (m −
s + 1)(n − t + 1) is not satisfied for s = 1 since N − (m − 1 + 1)(n − t + 1) =
4 − 3(3 − 2 + 1) = 0. In Example 4.3 the inequality is satisfied and we get that
T̃jurI (X) = Tjur(X).

Let us define TjurT (X).

Definition 4.2 Let X be a determinantal variety of type (m, n, t) given by
F : CN → Mm,n such that Xt = X, define C : Xt → Gr(t − 1,m) as the
map that sends x into the column space of F(x). Then we define TjurT (X) of X as

TjurT (X) =
{
(
x,W

) ∈ Xt × Gr(t − 1,m)
∣
∣ W = C(x)

}

⊆ X × Gr(t − 1,m),

and we define the map πTjT : TjurT (X) → X as the projection to the first factor.

This definition gives us that TjurT (X) = Tjur(XT ), where XT is X but defined as
a determinantal singularity by FT : CN → Mn,m. This means that we can define

T̃jur
T
I (X) as for Tjur(X), either by setting T̃jur

T
I (X) = T̃jurI (X

T ) or by defining it
using F̄ T

I (x, a) := (
F(x) AT

I (a)
)
, where I now is a subset of 1, . . . ,m.

This immediately gives us the following results.

Proposition 4.4 T̃jur
T

I (X) is a determinantal variety if and only if dim Xs ≤ N −
(m − t + 1)(n − s + 1) for all s ∈ 1, . . . , t .
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Proposition 4.5 T̃jur
T

I (X) = TjurTI (X) if and only if dim Xs < N − (m − t +
1)(n − s + 1) for all s ∈ 1, . . . , t − 1.

Notice that this definition of TjurT (Mt
m,n) is the same as the one we gave earlier,

since the column space of a matrix is the same as its image.
The next example shows that just like the blow-up and the Nash transform, the

Tjurina transform of a normal variety needs not be normal and that the dimension
of the singular set can increase under the Tjurina transform.

Example 4.4 (Tjur(X) Might Have Singular Locus of Larger Dimension that X)
Let X be the hypersurface with an isolated singularity at the origin given by z2 −
x4 − x2y3 − x2y5 − y8 = 0. It can be given as a determinantal variety of type

(2, 2, 2) by the matrix
(

z x2+y3

x2+y5 z

)
. We get that the Tjurina transform is given by

the following matrices

F ′{1}(x, y, z, a2)=
(

x2 + y3 − a2z

z − a2(x
2 + y5)

)

and F ′{2}(x, y, z, a1)=
(

z − a1(x
2 + y3)

x2 + y5 − a1z

)

.

In the first chart we can, by a change of coordinates, see that we have the
hypersurface x2 + y3 − a2

2(x
2 + y5) = 0, which has all of the a2-axis as its singular

set. In the same way the second chart gives us the hypersurface x2 + y5 − a2
1(x2 +

y3) = 0, which has the a1-axis as its singular set. Hence Tjur(X) has singularities
of codimension 1, and is, therefore, not normal. It also illustrates that the singular
set of Tjur(X) might have larger dimension than the singular set of X.

Notice in general that if X is a determinantal singularity given by a matrix F

such that all entries in F have orders ≥ 2 then the singular set of Tjur(X) contains
the full fibre over the common zero locus of the entries of F .

We saw in Sect. 3 that Nash(Mt
m,n)

∼= Tjur(Mt
m,n) ×Mt

m,n
TjurT (Mt

m,n) where
the isomorphism is real algebraic. Is this then true in general? Is Nash(X) ∼=
Tjur(X) ×X TjurT (X)? The answer is unfortunately no as we can see in the
following. Let X be the determinantal singularity defined in Example 4.2. There we
saw that the exceptional divisor of Tjur(X) consists of two irreducible components.
In Example 4.3 we got that the exceptional divisor of TjurT (X) is a single
irreducible curve. Hence the exceptional divisor of Tjur(X)×X TjurT (X) consists of
three irreducible curves. But in [12] Tjurina shows that (X, 0) is a minimal surface
singularity with the following minimal dual resolution graph.

−2 −2 −3 −2 −2

k − 1 l − 1.

Following the work of Spivakovsky [11] the irreducible components of the excep-
tional divisor of the normalized Nash transform of a surface singularity correspond
to the irreducible components of the exceptional divisor of the minimal resolution
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intersecting the strict transform of the polar curve of a generic plane projection. By
Theorem 5.4 in Chapter III of [11] we find that the polar of a generic plane projection
of X intersects the exceptional divisor in two different components. This implies
that the exceptional divisor of Nash(X) has at most two components, since the
number of components cannot decrease under normalization. Hence Nash(X) and
Tjur(X)×X TjurT (X) have non isomorphic exceptional divisors, and can, therefore,
not be isomorphic as transformations.

5 When Is the Tjurina Transform a Complete Intersection

In Lemma 5.2 of their article [5] Frühbis-Krüger and Zach find conditions under
which the Tjurina transforms of Cohen-Macaulay codimension 2 singularities in C5

only have isolated complete intersection singularities. In this section we give some
general condition on when the Tjurina transform of an EIDS is a local complete
intersection.

If (X, 0) is an EIDS, remember that it means that F is transverse to all strata of
Mt

m,n in a punctured neighbourhood of the origin, then we get the following result
concerning the Tjurina transform.

Proposition 5.1 Let (X, 0) ⊂ CN be an EIDS of type (m, n, t), then Tjur(X) is a
local complete intersection if N − m(n − t + 1) > dim X1 and TjurT (X) is a local
complete intersection if N − n(m − t + 1) > dim X1.

Proof To show that Tjur(X) is a local complete intersection, it is enough to
show that TjurI (X) is a complete intersection for all I . To do this we show that
TjurI (X) = T̃jurI (X). Since (X, 0) is EIDS then by Proposition 4.3 we just
need that dim X1 < N − m(n − t + 1) which follows from the assumption. So
TjurI (X) = T̃jurI (X) and T̃jurI (X) is a complete intersection. Hence Tjur(X) is a
local complete intersection.

The proof for TjurT (X) is similar, just exchange n and m.

We are in different situations if X1 = {0} or if X1 	= {0}. Let us first give the
following theorem that takes care of the second case.

Theorem 5.1 Let (X, 0) be ab EIDS and assume that X1 	= {0}. Then Tjur(X) and
TjurT (X) are both local complete intersections.

Proof Assume that X is defined by F : CN → Mm,n. Since (X, 0) is an EIDS there
exist an open neighbourhood of the origin U such that for x ∈ (X1 \ {0}) ∩ U

we have that F is transverse to the strata M1
m,n at x. But this implies that F is a

submersion at x because M1
m,n = {0}. Hence there is an open neighbourhood in CN

of (X1 \ {0})∩U on which F is a submersion. Then the Submersion Theorem gives
that (X1 \ {0}) ∩ U is a smooth manifold of dimension N − mn. Adding the origin
to (X1 \ {0})∩U does not change the dimension (but might make it singular), hence
dim X1 = N − mn.
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Proposition 5.1 is then satisfied for both Tjur(X) and TjurT (X) since mn >

m(n − t + 1) and mn > n(m − t + 1) for all 1 < t ≤ min{m,n}. If t = 1 the result
follows from Proposition 4.1.

If X1 = {0} then the equations to determine whether Tjur(X) is a local complete
intersection becomes dim X1 = 0 < N − m(n − t + 1) or m(n − t + 1) < N

and likewise TjurT (X) is a local complete intersection if n(m − t + 1) < N . The
assumption on N can be replaced by an assumption on t and the strata of X as seen
in the next proposition.

Proposition 5.2 Let (X, 0) be an EIDS of type (m, n, t), where t ≥ 3,X1 = {0} and
X2 	= ∅. Then at least one of Tjur(X) and TjurT (X) is a local complete intersection.

Proof First notice that since t ≥ 3 one of the following two inequalities holds
n − 1 < m(t − 2) or m − 1 < n(t − 2). We will first show that if the first equation
holds, then Tjur(X) is a local complete intersection.

Assume that n − 1 < m(t − 2). To show that Tjur(X) is a complete intersection,
we just need to show that 0 < N − m(n − t + 1). Now 0 < dim X2 = N − (m −
1)(n− 1) = N − mn+ m + n − 1 < N − mn+ m + m(t − 2) = N − m(n− t + 1)

by the assumption X2 	= ∅. So Tjur(X) is a local complete intersection.
If m − 1 < n(t − 2), then the same argument with exchanging m and n shows

that TjurT (X) is a local complete intersection.

As we saw in Examples 4.2 and 4.3, this proposition can still hold if t < 3, but
next we will give an example with t = 2 where we have TjurI (X) 	= T̃jurI (X) and

TjurTJ (X) 	= T̃jur
T
J (X) for all I, J . But in the example, both Tjur(X) and TjurT (X)

are complete local intersections.

Example 5.1 Let X ⊂ C3 be the determinantal variety of type (3, 2, 2) given by

F(x, y, z,w) :=
(

z y xk−3

0 x y

)

.

For k > 4. Then T̃jurI (X) is given in the three charts I = {1}, {2}, {3} as follows.
In the first chart the matrix is

F ′{1}(x, y, z, a2, a3) :=
(

y − a2z xk−3 − a3z

x y − a3x

)

.

We see that T̃jur{1}(X) is the fibre over 0 (given by x = y = z = 0) union the z-axis
(given by x = y = a2 = a3 = 0), so we get that Tjur{1}(X) is the z-axis.

In the second chart we get

F ′{2}(x, y, z,w, a1, a3) :=
(

z − a1y xk−3 − a3y

−a1x y − a3x

)

.
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Here we see that T̃jur{2}(X) is the fibre over 0 (given by x = y = z = 0) union
the curve singularity given by xk−4 − a2

3 = 0, y = a3x and a1 = z = 0. Hence
Tjur{2}(X) is an Ak−5 plane curve singularity embedded in C5.

In the last chart we get

F ′{3}(x, y, z,w, a1, a2) :=
(

z − a1x
k−3 y − a2x

k−3

−a1y x − a2y

)

.

Now we see that T̃jur{3}(X) is the fibre over 0 (given by x = y = z = 0) union the
curve given by 1 − a2

2xk−4 = 0, y = a2x
k−3 and a1 = z = 0. Hence Tjur{3}(X) is

a smooth curve in this chart.
So Tjur(X) is a line disjoint union an Ak−5 curve, and the fibre over 0 is 2

dimensional.
If we calculate T̃jur

T

I (X) in the charts {1} and {2}, we get

F ′{1}(x, y, z, a2) =
⎛

⎝
−a2z

x − a2y

y − a2x
k−3

⎞

⎠ and F ′{2}(x, y, z,w, a1) =
⎛

⎝
z

y − a1x

xk−3 − a1y

⎞

⎠ .

We see that in the first chart we have a line union the fibre over 0 and in the second
chart we have an Ak−5 curve singularity union the fibre over zero.

So in this case we have that Tjur(X) and TjurT (X) are the same, a line disjoint
union an Ak−5. Notice that in this case Tjur(X) is also a local complete intersection.
Now X is the union of a line l and an Ak−3 singularity intersecting at the origin. We
see that the transformation has separated the line and the singularity, and improved
the singularity i.e. what was before an Ak−3 singularity is now an Ak−5 singularity.

In Theorem 5.1 we saw that X1 	= {0} both Tjur(X) and TjurT (X) are local
complete intersections and in Proposition 5.2 we saw that if t ≥ 3 then one of
Tjur(X) or TjurT (X) is a local complete intersection. The case t = 1 is not
interesting, because in this case Tjur(X) = TjurT (X) = X and X is a complete
intersection. The next proposition will explain the case t = 2.

Proposition 5.3 Let (X, 0) be an EIDS of type (m, n, 2) with X1 = {0}, then one
of Tjur(X) or TjurT (X) is a local complete intersection if min(n,m) ≤ dim X.

Proof To prove that Tjur(X) is a complete intersection we just need to see that
0 = dim X1 < N − m(n − t + 1) = N − m(n − 1) by Proposition 5.1. But
(m−t+1)(n−t+1) = (m−1)(n−1) = codim X, hence N = (m−1)(n−1)+dim X.
Then the inequality becomes 0 < (m − 1)(n − 1) + dimX − m(n − 1). Hence
Tjur(X) = T̃jur(X) and hence a complete intersection if n − 1 < dim X. The case

TjurT (X) = ˜TjurT (X) is gotten by exchanging n and m.

These results are only in one direction, because what we really prove is that if

the inequalities are satisfied, then Tjur(X) = T̃jur(X) or TjurT (X) = ˜TjurT (X).
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But Tjur(X) or TjurT (X) can still be local complete intersections, even if this is not
true, as we saw in Example 5.1.

6 Using Tjurina Transform to Resolve Hypersurface
Singularities

In the previous section we saw that very often the Tjurina transform is a complete
intersection of type (m, n, 1), which means that one cannot get a resolution by using
only the Tjurina transform because of Proposition 4.1. Notice also that in several of
the examples Tjur(X) is normal, so using only Tjurina transform and normalizations
will also not produce a resolution. In the next example we will look at the case of
the An surface singularities and see that the Tjurina transform in some cases can be
used to achieve a resolution.

Example 6.1 (An Singularities) In this example we show how different representa-
tions of the simple An singularity can lead to different Tjurina transforms.

First we can represent An as a determinantal singularity of type (1, 1, 1), then
the Tjurina transform of An is just An itself, by Proposition 4.1. But we can also
represent An as the determinantal singularity of type (2, 2, 2) defined by:

F(x, y, z) =
(

x zl

zn−l+1 y

)

,

where 0 < l ≤ n. In this case we get that the Tjurina transform is given by:

F ′{1}(x, y, z, a2) =
(

zl − a2x

y − a2z
n−l+1

)

and F ′{2}(x, y, z, a1) =
(

x − a1z
l

zn−l+1 − a1y

)

.

So we see that Tjur(An) using these representations has an Al−1 and an An−l

singularity, so we have simplified the singularity. It is clear that by writing these
new Am singularities as determinantal singularities of type (2, 2, 2), we can apply
the Tjurina transform again to simplify the singularity. By repeatedly doing this we
can resolve the An singularity.

As we can see in Example 6.1 the Tjurina transform depends not only on the
singularity type of X but we can also get different transforms if we have different
matrix presentations of the same type.

In the next example we will show how to obtain a resolution through repeated
Tjurina transforms changing the determinantal type and matrix presentation. By this
we mean that if the Tjurina transform gives us a complete intersection of the form
(m, n, 1), which by change of coordinates locally can be seen as a hypersurface, we
will then write this hypersurface as a determinantal singularity of type (t, t, t).
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Example 6.2 (E7 Singularity) The simple surface singularity E7 can be defined by
the equation y2 + x(x2 + z3) = 0. This can be seen as the determinantal singularity

of type (2, 2, 2) given by the following matrix:
(

y x2+z3

−x y

)
. We then perform the

Tjurina transform and get:

F ′{1}(x, y, z, a2) =
(

x2 + z3 − a2y

y + a2x

)

and F ′{2}(x, y, z, a1) =
(

y − a1(x
2 + z3)

−x − a1y

)

.

By changing coordinates we see that F ′{1} is equivalent to the hypersurface x2 +
z3 + w2x = 0, which has a singular point at (0, 0, 0), and F ′{2} is equivalent to the

hypersurface x + v2(x2 + z3) = 0 which is non singular.
So we will continue working in the first chart, and we will denote this singularity

Tjur(E7). The exceptional divisor E1 = (πTj )−1(0) is given by x = z = 0. We

now write Tjur(E7) as the matrix
(

x −z2

z x+w2

)
and perform the Tjurina transform.

F ′{1}(x, z,w, a2) =
( −z2 − a2x

x + w2 − a2z

)

and F ′{2}(x, z,w, a1) =
(

x + a1z
2

z − a1(x + w2)

)

.

The first chart is equivalent to the hypersurface yw2 − z2 − y2z = 0 which has
a singularity at (0, 0, 0), and the second chart is equivalent to v(w2 − vz2) − z =
0 which is smooth. The exceptional divisor consist of two components, the strict
transform of the exceptional divisor from before (which we still denote by E1) is
given by z = y = 0 and a new component E2 given by x = w = 0. They intersect
each other in the singular point.

We will continue in the first chart and denote this singularity by Tjur2(E7). It can

be given by the matrix
(

y −z

z w2−yz

)
as a determinantal singularity of type (2, 2, 2).

Its Tjurina transform is given by

F ′{1}(y, z,w, a2)=
( −z − a2y

w2 − yz − a2z

)

and F ′{2}(y, z,w, a1)=
(

y + a1z

z − a1(w
2 − yz)

)

.

In the first chart we have the hypersurface xy2 + w2 + x2y = 0 which has (0, 0, 0)

as its only singular point. The second chart is z+v(w2 −vz2) = 0 which is smooth.
The exceptional divisor consist of E1 given by z = v = 0 (so it only exists in the
second chart), E2 given by x = w = 0 and the new E3 given by y = w = 0. E1
and E2 do not meet, but E3 intersects them both, E1 in a smooth point and E2 in
the singular point.

We present the singularity Tjur3(E7) as the matrix
( xy w

−w x+y

)
. Its Tjurina

transform is then given by

F ′{1}(x, y,w, a2) =
(

w − a2xy

x + y + a2w

)

and F ′{2}(x, y,w, a1) =
(

xy − a1w

−w − a1(x + y)

)

.
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In the first chart we have the hypersurface x + y + v2xy = 0 which is smooth.
The second chart gives the hypersurface singularity xy + z2(x + y) = 0, which
has a singular point at (0, 0, 0). E1 does not exist in these charts, but intersects E3
in a smooth point in the other charts. E2 is given by x = z = 0, E3 is given by
y = z = 0 and the new E4 is given by x = y = 0. E2, E3 and E4 intersect each
other in the singular point.

Next we can present the singularity Tjur4(E7) by the matrix
(

x z(x+y)
−z y

)
. Its

Tjurina transform is then given by

F ′{1}(x, y, z, a2) =
(

z(x + y) − a2x

y + a2z

)

and F ′{2}(x, y, z, a1) =
(

x − a1z(x + y)

−z − a1y

)

.

The first chart gives the hypersurface zx − wx − wz2 = 0 which has a singular
point at (0, 0, 0), and the second chart gives x + v2y(x + y) = 0 which is smooth.
The exceptional divisor consists of E2 given by z = v = 0 so not in the chart that
contains the singularity, E3 given by z = w = 0, E4 given by x = w = 0 and E5
given by x = z = 0. E2 intersects E5 in a smooth point, E3, E4 and E5 intersect
each other in the singular point, and E3 intersects E1 in a smooth point outside these
charts.

We can present Tjur5(E7) by the matrix
(

z x
w x−wz

)
. In this case its Tjurina

transform is given by

F ′{1}(x, z,w, a2)=
(

x − a2z

x − wz − a2w

)

and F ′{2}(x, z,w, a1)=
(

z − a1x

w − a1(x − wz)

)

.

The first chart gives the hypersurface yz − wz + yw = 0 which has a singularity at
(0, 0, 0), and the second chart gives the smooth hypersurface w − vx − v2wx = 0.
The exceptional divisor consists of E1 and E2 that do not appear in any of these
charts, E3 given by z = v = 0 (so only appearing in the second chart), E4 given by
w = y = 0, E5 given by z = y = 0 and E6 given by w = z = 0. E3 intersects E1
and E6 in different smooth points, E2 intersects E5 in a smooth point, E4, E5 and
E6 intersect each other in the singular point.

For Tjur6(E7) we use the matrix
( y w

z z+w

)
. We get that its Tjurina transform is

given by

F ′{1}(y, z,w, a2) =
(

w − a2y

z + w − a2z

)

and F ′{2}(y, z,w, a1) =
(

y − a1w

z − a1(z + w)

)

.

The first chart gives the smooth hypersurface z+ xy − xz = 0, and the second chart
gives z − vz − y = 0 which is also smooth. So we have reached a resolution of E7.
The exceptional divisor consist of E1, . . . , E7, where only E4 . . . , E7 appear in the
last two charts. E4 is given by y = x − 1 = 0, E5 is given by z = v = 0, E6 is
given by z = x = 0 and E7 is given by z = y = 0. E7 intersects E4, E5 and E6 in
three different smooth points, E2 intersects E5 in a smooth point, and E3 intersects
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E1 and E6 in two different smooth points. If we represent the exceptional divisor by
a dual resolution graph (where vertices represent the curves and edges represent the
intersection points) we get:

E1 E3 E6 E7 E5 E2

E4

which is indeed the E7 graph.

One can also use this method to produce resolutions of the Dn and E6
singularities, and probably many more. But it is not always possible to use this
method. For example the E8 given by x2 + y3 + z5 = 0 cannot be written as the
determinant of a 2 × 2 matrix which is 0 at the origin of C3, nor can it be written
as the determinant of a larger matrix such the value at the origin is 0. If the value at
the origin is not zero, then the Tjurina transform does not improve the singularity, it
only changes variables.
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