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Abstract A cyclic quotient singularity of type p2/pq−1 (0 < q < p, (p, q) = 1))
has a smoothing whose Milnor fibre is a QHD, or rational homology disk (i.e.,
the Milnor number is 0). In the 1980s, we discovered additional examples of
such singularities: three triply-infinite and six singly-infinite families, all weighted
homogeneous. Later work of Stipsicz, Szabó, Bhupal, and the author proved that
these were the only weighted homogeneous examples. In his UNC PhD thesis, our
student Jacob Fowler completed the analytic classification of these singularities, and
counted the number of smoothings in each case, except for types W , N , and M.
In this paper, we describe his results, and settle these remaining cases; there is a
unique QHD smoothing component except in the cases of an obvious symmetry of
the resolution dual graph. The method involves study of configurations of rational
curves on projective rational surfaces.

Keywords Rational homology disk smoothings · Smoothing surface singularities

Subject Classifications 14J17, 32S30, 14B07

1 Introduction

Let (X, 0) be the germ of a complex normal surface singularity. A smoothing of
(X, 0) is a morphism f : (X , 0) → (C, 0), where (X , 0) is an isolated Cohen-
Macaulay singularity, equipped with an isomorphism (f −1(0), 0) � (X, 0). The
Milnor fibre M of a smoothing is a general fibre f −1(δ), a four-manifold whose
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boundary is the link of (X, 0). The first betti number of M is 0 [3]. We say f is
a QHD (or rational homology disk) smoothing if the second betti number of M is
0 as well (the Milnor number μ = 0). In such a case, (X, 0) must be a rational
singularity.

The basic examples are smoothings of the cyclic quotient singularities of type
p2/pq−1, where 0 < q < p, (p, q) = 1 ([8, (2.7)]). For f (x, y, z) = xz−yp, one
has that f : C3 → C is a smoothing of the Ap−1 singularity, whose Milnor fibre
M has Euler characteristic p. Now consider the cyclic subgroup G ⊂ GL(3,C)

generated by the diagonal matrix [ζ, ζ q, ζ−1], where ζ = e2πi/p. G acts freely
on C3 − {0} and f is G-invariant; so there is a map f : C3/G ≡ X → C, a
smoothing of the cyclic quotient singularity Ap−1/G, which has type p2/pq − 1.
The new Milnor fibre is the free quotient M/G, of Euler characteristic 1, hence
Milnor number 0.

More examples can be produced by a similar “quotient construction"([9, 5.9.2]).
For instance, let f (x, y, z) = xyp+1 + yzq+1 + zxr+1,
N = (p + 1)(q + 1)(r + 1) + 1, and G ⊂ GL(3) the diagonal cyclic subgroup
generated by [ζ, ζ (q+1)(r+1), ζ−(r+1)], where ζ = e2πi/N . The resulting class of
examples was later named W(p, q, r) in [7, (8.3)]. Another class N (p, q, r) was
obtained by replacing (C3, 0) by a hypersurface (V , 0) ⊂ (C4, 0), G by a group
of automorphisms acting freely off the origin, and an appropriate f . Three more
families are constructed in [10].

However, the major way to produce examples uses H. Pinkham’s general method
of “smoothing with negative weight" [6] for a weighted homogeneous singularity
(X, 0). WritingX =SpecA, whereA is a graded ring, form theC∗-compactification
X̄ =Proj A[t] (where t has weight 1). X̄ has a smooth curve C̄=Proj A at infinity
(which we assume is rational), along which are several cyclic quotient singularities.
Resolving those singularities yields X̄′ with a star-shaped collection of curves Ē,
consisting of C̄ plus chains of rational curves. The associated graph Γ of these
curves is “dual” to the star-shaped resolution graph Γ ′ of the singularity; it is non-
degenerate, of signature (1, s). (See e.g.[7, (8.1)] for details.) (Beware: Γ ′ is itself
sometimes called the “dual resolution graph.”) A smoothing of negative weight of
X is a smoothing which can be extended to a smoothing of X̄′ to which Ē lifts
and is deformed trivially. The general fibre is a smooth projective surface Z, with
H 1(OZ) = 0, containing a curve E isomorphic to Ē, which supports an ample
divisor. The Milnor fibre M of this smoothing may be identified with the affine
variety Z − E ([9, (2.2)]). Thus, M is a QHD if and only if the curves of E are
rational and form a rational basis of Pic Z.

Conversely, Pinkham shows how to construct a smoothing of negative weight of
(X, 0) by starting with certain surface pairs (Z,E) satisfying some cohomological
vanishing. The author used this method to compile a large list of (only partially
published) examples of Γ which led to QHD smoothings. The paper [7] limited
greatly the possible resolution graphs Γ ′ of any singularity admitting a QHD
smoothing, and gave names to the author’s families of examples (modified slightly
in [2]). This work culminated in the Bhupal-Stipsicz theorem [1], showing that the
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author’s list of resolution dual graphs was complete for the weighted homogeneous
case.

Bhupal-Stipsicz Theorem The resolution graphs (or dual graphs) of weighted
homogeneous surface singularities admitting a QHD smoothing are exactly those
of the following types: p2/(pq − 1) cyclic quotients; W(p, q, r); N (p, q, r);
M(p, q, r); B3

2(p); C32(p); C33(p); A4(p); B4(p); C4(p).

Resolution graphs and dual graphs for these singularities are listed at the end of
this paper in Tables A.1 and A.2, from the thesis of Jacob Fowler [2]. A node (or
bullet) with no decoration is always assumed to be a −2 curve. For the remainder of
the paper, we disregard the well-understood cyclic quotients.

Previous work by H. Laufer [4] shows that the examples above with a central
curve of valency 3 are taut, i.e., have a unique analytic type, necessarily weighted
homogeneous; further, all deformations (in particular, smoothings) are of negative
weight. In case the valency is 4 (the last 3 families), [4] implies that the only analytic
invariant is the cross-ratio of the central curve, and again all deformations are of
negative weight.

Fowler’s Ph.D. Thesis [2] attacked the key questions remaining for these QHD
smoothings:

• Show the cross-ratios in the three infinite families of valency 4 examples are
uniquely determined, as in [10].

• Determine the number of QHD smoothing components in each case.
• Calculate the fundamental groups of the Milnor fibres.

We fix some language and notation. Let (X, 0) be a weighted homogeneous
surface singularity, of resolution dual graph Γ , admitting QHD smoothings.

Definition 1.1 A Γ surface is a pair (Z,E) consisting of a smooth rational surface
and rational curve configurationE such that the classes of the components ofE form
a rational basis of Pic Z, and one is given an identification of the curve configuration
E with the graph Γ .

Pinkham’s Theorem in the current situation may be found in [7, (8.1)] and
[2, (2.2.3)], yielding

Theorem 1.1 ([2, (2.3.1)]) Let (X, 0) be a singularity as above with a QHD
smoothing, and resolution dual graph Γ . Then there exists a one-to-one correspon-
dence between QHD smoothing components of (X, 0) and Γ surfaces (Z,E) up to
isomorphism.

Examples of Γ surfaces are made as follows: take a specific curve configuration
D ⊂ P2, blow up several times, obtaining π : Z → P2, with π−1(D) consisting of
a curve E of type Γ plus some −1 curves. If E spans Pic(Z) rationally, one has a
Γ surface. Given the location of the −1 curves in relation to the components of E,
one can reverse the process and blow back down.

For each Γ , Fowler makes very judicious choices of D and the points to blow
up, resulting in either one or two Basic Models (Z,E). The models forW,N , and
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M are listed on the first page of Table A.2, where small circles and light lines
indicate the location of three −1 curves which allow the entire graph to be blown
down, to four lines in general position. Basic Models for the other graphs are more
complicated and found in Fowler’s thesis [2]. The curve configuration D will be
unique up to projective equivalence. One may get two models for the same Γ and
D by blowing up in different ways (sometimes complex conjugate points). The goal
is to prove

Conjecture 1.1 Every Γ surface (Z,E) is a Basic Model.

In [2], Fowler proves most of this Conjecture; his nearly complete result,
explained below in Sect. 6 states:

Theorem 1.2 ([2]) Suppose a Γ surface (Z,E) has self-isotropic subgroup which
is basic. Then (Z,E) is a Basic Model.

Fowler also proves that the “basic self-isotropic subgroup” condition is automati-
cally satisfied in all cases except for some Γ of typeW,N , orM.

Corollary 1.1 ([2]) For Γ not of type W,N ,M, every Γ surface is a Basic Model.
In particular, for each valency 4 example, there is a unique cross-ratio for which the
corresponding singularity has a QHD smoothing.

The new contribution of the current paper is to handle the remaining cases.

Theorem 1.3 Every Γ surface of type W,N ,M is a Basic Model.

The Basic Models for types W,N , and M start with four lines in general
position, for which the fundamental group of the complement is abelian. Therefore
the Milnor fibre of a QHD smoothing of a singularity of this type has abelian
fundamental group (hence is easily computable from Γ ). More generally, we can
conclude

Theorem 1.4 Let M be the Milnor fibre of a QHD smoothing of a singularity of
type Γ .

1. If Γ is of type W,N , or M, then π1(M) is abelian.
2. If Γ is of type A4, B4, or C4, then π1(M) is metacyclic, as described in [10].

In a not-yet-published manuscript by Enrique Artal and the author, it is proved
that the fundamental group of a QHDMilnor fibre is abelian in cases C32 and C33 , and
non-abelian in case B3

2.
Once we know the number of QHD smoothings from the main theorem, we can

conclude that the explicit examples from the quotient construction (for typesW,N ,
A4, B4, C4) give a complete list of smoothing components in those cases. This also
gives the only way to compute the metacyclic fundamental group.

In Sect. 6, we give more details on Fowler’s method and list the number ofQHD
smoothing components for each Γ .

The isomorphism type of a Γ surface of typeW,N , orM is determined by the
location of the three extra −1 curves that are attached to E. For special values of
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p, q, r for which the graph Γ has a symmetry, there could be a second location of
the −1’s, leading to a different Γ surface (which, one recalls, comes equipped with
a specific identification with the graph). In light of our new result, we find

Theorem 1.5 ([2]) Consider QHD smoothing components for type W,N , and
M.

1. There are two components for W(p, p, p), N (q + 2, q, 0), and M(r + 1, q, r)

2. In all other cases, there is a unique QHD smoothing component.

(Actually, [2] neglected to mention the exceptional N case, but it fits in easily
with his work.)

Our method, already used in [1], is to blow up and down the given Γ surface
(Z,E) so that one obtains a surface (Z′, E′) with central curve of self-intersection
+1, from which a blowing-down map to P2 can be constructed. We analyze the
possible singularities of the image of E′ and the blowing up needed to reach back
to Z′, leading to location of all possible sets of essential −1 curves on Z needed for
blowing down. All solutions will be Basic Models.

2 Locations of −1 Curves

Suppose Γ is a graph of smooth rational curves E = ΣEi :

n2/q2 ..
.

. . .
. .. nt−1/qt−1

n1/q1

−d

nt /qt

Here, the continued fraction expansion n/q = b1 − 1/b2 − · · ·− 1/bs represents
a string of rational curves emanating from the center:

−b1 −b2 −bs (1)

(We shall assume that t ≥ 3.) It is well-known that

detΓ = ±n1n2 · · · nt (d −
t∑

i=1

(qi/ni)). (2)

As long as detΓ 	= 0, one can solve the equations

K · Ei + Ei · Ei = −2,
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and write

K = ΣkiEi, ki ∈ Q.

Recall a negative-definite Γ arises from the resolution of a weighted-
homogeneous surface singularity. In Section 2 of [11], the ki are computed in
this case; but only non-degeneracy of Γ was used, so the same formulas apply.

The formulas are expressed in terms of the two invariants

e = d −
t∑

i=1

(qi/ni)

χ = t − 2 −
t∑

i=1

(1/ni) = −2 +
t∑

i=1

(1 − 1/ni).

Since e 	= 0 by (2), we can define β = χ/e.
As in [11], we consider the rational cycle−(K+E). For a cyclic quotient chain as

in (1), let F1, · · · , Fs denote the curves. Define the rational cycle ei by the property
ei(Fj ) = −δij ; it is effective (i.e., has strictly positive coefficients). Then consider
the cycle Y = βe1 − es (even if s = 1.) Denote by Yk the corresponding cycle for
the kth string corresponding to nk/qk in the graph of Γ , where 1 ≤ k ≤ t . Denoting
by E0 the central curve of Γ , Proposition 2.3 of [11] yields

− (K + E) =
t∑

k=1

Yk + βE0. (3)

Lemma 2.1 Assume Γ is one of the graphs in Table A.2.

1. χ ≥ 0, and χ = 0 exactly for the log-canonical singularities W(0, 0, 0),
N (0, 0, 0), M(0, 0, 0).

2. e < 0.
3. β < 0 in all cases except the three log-canonicals above, in which case it is 0.
4. |β| < 1.

Proof The first statement is a simple check (a sum of three reciprocals of integers
is rarely at least 1). For the second, one need only consider the cases when d = 1.
But all of those examples have 2 chains of −2 curves emanating from the central
curve; such a chain has q = n − 1, so q/n ≥ 1/2. The third means checking that
χ < |e|, or

t − 2 −
t∑

i=1

(1/ni) <

t∑

i=1

(qi/ni) − d.
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This statement turns out to be equivalent to that in [11, Lemma 2.4]; but in any case,
it is an exercise. (We quickly note that d = −1 in case W ; for N , we have d = 0
and some qi = ni − 1; for typeM, two strings have qi = ni − 1.)

Proposition 2.1 Suppose (Z,E) is a surface of type Γ , where Γ is a graph in Table
A.2.

1. The canonical divisor of Z is

K =
∑

kiEi,

where for all i −1 ≤ ki < 0.
2. ki = −1 only for the log-canonical cases W(0, 0, 0), N (0, 0, 0), M(0, 0, 0),

and then only at the central curve.

Proof Since the divisors Ei span Pic Z rationally, one can write the canonical
divisor as

∑
kiEi. These coefficients can therefore be computed as above just from

the graph. In terms of the divisor −(K + E), the claim is that its coefficients
−ki − 1 are between −1 and 0, and equal 0 only at the center for the 3 special
cases. Lemma 2.1 (3) verifies this assertion for the central curve.

It remains to show that the coefficients of Yk are strictly between −1 and 0.
Writing Y = βe1 − es , all ei have strictly positive coefficients; as β ≤ 0, the
coefficients of Y are strictly negative.

Next, writing F = ∑
Fj , we claim that

(F + Y ) · Fj ≤ 0, all j ;

this implies F + Y has strictly positive coefficients, so the coefficients of Y are
bigger than −1 (one could not have F = −Y ). For j = 1, the term in question is
1 − b1 − β < 2 − b1 ≤ 0 (it does not matter if s = 1). An easier argument handles
the other cases.

Corollary 2.1 Let (Z,E) be a surface of type Γ as above, and C ⊂ Z an
irreducible curve with C · C < 0 and not a component of E. Then

1. C is a smooth rational curve with C · C = −1
2. If C · Ei = 1 for some i, then there is another Ej with C · Ej > 0.

Proof C · Ej ≥ 0 for all j , and is positive for at least one j because E supports
an ample divisor. By Proposition 2.1, we have K · C < 0, so the usual adjunction
formula yields that C is a smooth rational −1 curve, and C · K = −1. In particular,∑

(−kj )C · Ej = 1. So, the second statement will follow once we exclude that
for one of the three log-canonicals, there is a −1 curve which intersects the central
curve transversally but does not intersect any other curve. But in each of those cases,
adding such a −1 curve to E would give a non-degenerate curve configuration, so
that its class could not be a rational combination of the components of E.
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We can paraphrase the last result by saying there are no “free” −1 curves,
intersecting E only once.

3 How to Find Sets of −1 Curves

If (Z,E) is a Γ surface, where Γ is of typeW,N , orM, we wish to show that it is
a Basic Model. That means, Z contains a set of three −1 curves which allow one to
blow down to P2; the basic cases identify possible locations of the curves relative to
E. The blow downs give a projectively rigid configuration in P2 (4 lines in general
position), from which the uniqueness of the Γ surface follows.

The method (initially analogous to the one used in [1]) is to blow up and down
around the central curve of E to produce (Z′, E′), on which the new central curve
E′
0 is a smooth rational curve of self-intersection +1. The complete linear system

associated to such a curve gives a birational map Φ : Z′ → P2 which is an
isomorphism in a neighborhood of E′

0. It is the analysis of this map which will
produce −1 curves first on Z′ and then on Z. In each case, it will follow from the
construction that one has an isomorphism of Z′ − E′

0 with some open set in Z; we
can conclude (as in Corollary 2.1) that there are no “free” −1 curves on Z′, and a
curve which is not a component of E′ has self-intersection ≥ −1.

Here is how we proceed:
We noteΦ(E′

0) ≡ L is a line. Each curveC in E′ adjacent to E′
0 is smooth (there

are usually 3 such), and Φ(C) is a (possibly singular) rational plane curve of degree
d = C · E′

0 > 0. The behavior of these image curves near L is the same as it was
on Z′, and the key will be to figure out their intersections away from L. Φ(E′) will
have at most three singular points (away from L), and all possible configurations
need to be considered.

The construction of Z′ shows that the components of E′ span Pic(Z′) rationally,
so no curves are disjoint from E′, and Φ is a sequence of blowing-up points over
Φ(E′) away from L.

We note Φ−1(Φ(E′)) consists of E′ and (usually) three −1 curves, which is the
same as for the basic cases (i.e., Basic Models). For, the number of blow-downs
given by Φ depends only on K2

Z′ , which is computed from Γ ′, so is the same as in
the basic case. New curves added to Φ−1(Φ(E′)) have negative self-intersection, so
are −1 curves.

Emanating from each adjacent curve C is a chain (possibly empty) C(C) of
rational curves, frequently with a long tail of −2 curves; it is disjoint from E′

0,
so Φ sends it to a point Φ(C(C)) ∈ Φ(C). Being a smooth point of P2, its inverse
image is a “blow-downable configuration". It contains C(C), at least one −1 curve,
and any other chains C(C̃) with the same image under Φ. The inverse image of a
singular point of Φ(E′) (of course, away from the line L) is either a union of chains
and −1’s, or a single −1 curve intersecting only adjacent curves. Since there are at
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most three new −1’s added in the inverse image of Φ(E′), there are at most three
singular points.

Proposition 3.1 Φ(C(C)) is a singular point of Φ(E′). More generally, to go from
P2 to Z′, one blows up only singular points of the inverse images of Φ(E′).

Proof Suppose a smooth point on a curve in the blow-up process is blown-
up further. Then the inverse image in Φ−1(Φ(E′)) contains a smooth curve C

plus a blow-downable configuration attached transversally at a point of C. This
configuration has a −1 curve. If it were at an end, this would be a free curve, a
contradiction. If not, it would be an interior curve, and removing it would leave a
bunch of curves disjoint from E′. This also is a contradiction.

To unravel Φ, one first examines the possible intersections of the images of the
adjacent curves, noting that there are at most three singular points. In each case, Φ
must factor via the minimal resolution of the singular points of Φ(E′); one gathers
information about Φ−1(Φ(E′)), such as possible valency of curves, or whether the
−1 curves must intersect E′ transversally.

Possible blow-downable configurations on Z′ are formed by putting together
chains and −1’s. There are limits to the location of −1 curves.

Remark 3.1 The following two configurations are not negative-definite:

−1

−2 −1 −2 −2 −2 −2

The first example implies that two different chains cannot be connected at−2’s. The
second implies that a −1 curve could intersect a chain of −2 curves only at one of
its ends. But a connection at the beginning of a−2 chain (next to the adjacent curve)
has consequences.

Remark 3.2 The configuration

C

−1

P −2 −2

will, when blown-down, produce two curves which do not intersect transversally.

Consequently, if a chain emanating from the P adjacent curve begins with two −2
curves, a −1 curve intersecting the first of these cannot intersect another curve,
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unless the final curve in P2 has a non-transversal intersection. Variants of this
situation will arise as well.

It is not a priori clear that the full inverse image of Φ(E′) has normal crossings;
while a −1 intersects transversally in a blow-downable configuration, it could in
principle attach non-transversally to an adjacent curve or curves.

Finally, we introduce a notational convenience. In the various blown-up spaces
between Z′ and P2, we shall frequently refer to the image of an adjacent curve C as
C′, or C′(s) (when the self-intersection at that stage is s).

4 Type Γ = W(p, q, r)

(p + 1)

(r + 1) −(q+2) (q + 1)

−(p+2) +1 −(r+2)

Suppose we are given a surface Z of type Γ = W(p, q, r). The central curve E0
has self-intersection +1, so in the above discussion we can set Z′ = Z. The three
curves adjacent to E0 are P,Q,R, with self-intersections respectively −(p + 2),
−(q + 2),−(r + 2), and with chains consisting solely of −2 curves. We will prove
the existence of the three rational −1 curves which appear in the Basic Model. (For
the case p = q = r , there is a second choice, by flippingQ and R and their chains).
Each −1 curve will connect an adjacent curve with the end of a chain associated to
a different adjacent curve.

By earlier discussion, Φ(P),Φ(Q), and Φ(R) are lines intersecting Φ(E0) =
L in distinct points. Thus Φ(E) either contains three lines through one point, or
consists of four lines in general position. But having a triple point would mean there
is only one singular point, so that all three chains would be connected by three−1’s.
Remark 3.1 shows this is impossible. So Φ(E) has three ordinary double points, and
hence Φ−1(Φ(E)) has normal crossings and only curves of valency two (of course,
not counting intersection with E0).

Each chain connects to other curves in E only with a −1 attached at one of
its ends. That −1 cannot connect with another chain (Remark 3.1), so intersects
an adjacent curve. The three −1’s are distributed among the three chains. By
Remark 3.1, the −1 curve appended to a chain must intersect at the far end.

If the −1 at the end of C(P ) intersects Q, then Φ(C(P )) is the intersection of
the lines Φ(P) and Φ(Q). Therefore, the intersection point Φ(P) ∩ Φ(R) must be
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the image of the chain C(R), whose −1 curve attachment at the end must intersect
P . Consequently, Φ(Q) ∩ Φ(R) comes from the chain C(Q), with a −1 attached
to R. Blowing-down E completely in this way, collapsing first the 3 −1’s and then
the adjacent −2’s (which have become −1’s), one sees that this can happen only if
p = q = r .

On the other hand, if the −1 curve emanating from the end of C(P ) intersects R,
then the same analysis shows the resulting placement of two −1’s as before always
blows down exactly to 4 lines in general position. Thus, one has a unique location
of the −1’s (seen in Table A.2), except in case p = q = r , in which case there is a
second possibility. These are exactly the Basic Models forW .

5 Type Γ = N (p, q, r), p > 0

(p + 1)

(r + 1) (q + 2)

−(p+2) −(q+2) 0 −(r+2)

We consider initially the case p > 0. Proceed to a new (Z′, E′) as follows: First,
blow-up any point on the central curve not on one of the three adjacent curves. This
makes the central curve a −1 curve, with four curves emanating from it, and adds
a new curve F . Now blow-down the old central curve and the one above it in the
graph above, yielding:

(p − 1)
P

−1
(r + 1) (q + 2)

Q R

−(p+2) −q
+1

X
−r

The curve F has now become a +1 central curveE′
0, intersecting transversally a −1

curve P , from which a chain of (p − 1) −2 curves emerge. The two other original
adjacent curves are still adjacent, but their self-intersections are now −q and −r;
we call the new ones Q and R. But now Q and R are simply tangent to each other
and to E′

0, and P,Q,R all intersect it at the same point of the central curve. (We
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use the symbolX as a reminder that the intersections are not transversal.) The usual
comparison with Z shows that Z′ has no free −1’s, and the only negative curves off
E′ are −1’s.

Proceeding as above, one constructs Φ : Z′ → P2. Then Φ(E′) consists of the
line Φ(E′

0) = L, two smooth conics Φ(Q) and Φ(R) intersecting each other and L

simply tangentially at a point of L, and a line Φ(P) intersecting transversally at that
point. By the usual argument, there are three additional −1’s in Φ−1(Φ(E′)). Here
are the possibilities for the other intersections of the images of the three adjacent
curves:

Case I The two conics intersect tangentially at one other point, and the line passes
through it (one singular point).

Case II The two conics intersect tangentially at one other point, and the line
intersects each conic at a different point (three singular points).

Case III The two conics intersect transversally at two other points, and the line
passes through one of these points (two singular points).

Resolving singularities in each case, one finds that the inverse image of Φ(E′)
has normal crossings and a unique curve of valency three (of course, away from
E′
0), which is not an adjacent curve.
The inverse image of a singular point of Φ(E′) is a blow-downable graph which

is a combination of −1 curves and some of the three chains. In particular, C(P ) and
C(R) each become blow-downable with a −1 curve appended at the end; further,
each one could attach to a chain only at the −(p + 2) location of C(Q) (via
Remark 3.1). When p = 1, then C(P ) is the empty chain; but at least one −1
curve must still emerge from P , since Φ(P) intersects the other curves.

5.1 Case I for N (p, q, r), p > 0

Case I does not occur. Since one cannot have a valency four curve, a simple check
shows there is no way to attach all three chains using three −1’s to get one blow-
downable configuration (even in case p = 1 when C(P ) is empty).

5.2 Case II for N (p, q, r), p > 0

In Case II, the conics Φ(Q) and Φ(R) are tangent away from L and the line Φ(P)

intersects each once, so there are three singular points. That means C(Q) must
become blow-downable either with the addition of a single −1 curve, or with a
single −1 joining it and another chain. One computes that adding a single −1 to
C(Q) can make it blow-downable only if p = r and the −1 is attached to the
−2 curve adjacent to the −(p + 2). That −1 curve must intersect one of the other
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adjacent curves. But as in Remark 3.2, blowing down would give the image of that
adjacent curve a worse than simple tangency with Φ(Q). This is a contradiction.

The only other option is to attach C(R) with a −1 adjoined at the −(p + 2) entry
of C(Q); this blows down exactly when p = q + 2. However, if r > 0 one sees that
Φ(Q) and Φ(R) will have a higher order of tangency; this is ruled out.

So, consider the special situation p = q+2 and r = 0. We show there is a unique
way to find three −1’s which blow-down this E′. The graph is

(q + 1)

P

−1

(q + 2)

Q R

−(q+4) −q +1

X
0

The above discussion states that the−(q+4) curve has valency three inΦ−1(Φ(E′))
and connects with a −1 curve from one of the ends of C(R).

Here is the minimal blow-up of Φ(E′) which separates the line and two conics:

M (−2)

R (1)
N (−1)

Q (1)

−1 P (−1) −1

Recall P ′(−1),Q′(1), R′(1) are the images of the adjacent curves on partial blow-
ups plus their self-intersections there. New curves M ′ and N ′ have been named.
We specify what is needed in order to blow-up further to get to E′. Since P has
degree −1, there can be no further blow-ups along the bottom line. One cannot
blow-up between N ′(−1) and M ′(−2), as an M ′(−3) (with degree ≤ −3) would
eventually become the−(q+4) curve, but not adjacent toQ.N ′(−1)must be blown
up somewhere, else the inverse image of a singular point would be a single −1 and
−2, but not intersecting P . Therefore, N ′ is the valency three curve which will
eventually become the −(q + 4) curve. But that curve is adjacent to Q, so the only
place N ′(−1) can be blown-up is at the intersection with R′(1). After one blow-up,
one reaches

R (0) −1 N (−2)
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As R has self-intersection 0, the only further blowing-up takes place between the
−1’s and the curve on the right. After q+2 of such blow-ups, one hasR′(0) followed
by (q +2) −2’s, followed by a −1, followed by N ′(−(q +4)). This completes most
of the blow-up to E′. It remains only to complete the portion

P (−1)) −1 Q (1)

This must be done in the usual way of blowing up (q + 1) times between the −1
and Q′(1). This completes the blowing up to reach E′.

We note the locations of the three −1’s which allow the blow-down: between the
end of C(R) and the −(q + 4) curve; between the end of C(P ) and Q; and between
P and R. As mentioned before, pulling these curves back to Z gives two of the −1’s
seen by using the symmetry (given the special values of p, q, r) between the top and
right hand chains in the graph. The third of the −1’s on Z can be found in the above
example by pulling back from Z′ the inverse image of one of the lines through an
intersection of the two conics.

5.3 Case III for N (p, q, r), p > 0

There are two singular points; the two conics meet in two distinct points, and the
line Φ(P) passes through one of those. The minimal resolution is

Q (2) −1

P (0) M (−1) R (2)

As P ′(0) has but one connection with the rest of the graph, as before one must blow
up between it and M ′(−1), eventually reaching P ′(−1) followed by (p − 1) −2’s,
followed by a −1, followed by M ′(−(p + 1)). If there were no further blow-ups
between M ′(−(p + 1)) and Q′(2) or R′(2), then E′ itself would contain a curve
intersecting both R and Q. This does not happen, so the M ′ curve must be blown-
up at least once more and become M ′(−(p + 2)), the −(p + 2) curve in C(Q)

adjacent to Q.
Thus, one has P followed by C(P ) (even if empty) followed by −1 attached to

the −(p + 2) curve. Since Q is adjacent to that curve, in the above diagram there
is no blowing-up between them; to reach Q of degree −q , one blows up repeatedly
along the top row. This yieldsQ followed by a−1 followed by (q+2) −2’s followed
by R′(2). In other words, Q is attached via a −1 with the end of C(R), accounting
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for the intersection point of the two conics not involving the line. The only way for
C(Q) to attach is via a −1 at its end intersecting R.

This is exactly the placement of the three −1’s on Z′ as would happen in the
basic case. Passing from Z′ back to Z, the −1’s and their relative location stays the
same. We recover a Basic Model.

5.4 Type Γ = N (0, q, r)

In this situation, we proceed from (Z,E) to (Z′, E′) exactly as before, first by
blowing up to add one curve, and then blowing down two curves. The difference is
that there is now no longer an adjacent curve P ; rather, there are just two adjacent
curves Q and R, each simply tangent to each other and to the central curve E′

0. In
this case, the map Φ sends E′ to the line L and the two conics Φ(Q) and Φ(R), and
two −1’s are needed to make the blow-down.

As p = 0, the chains C(Q) and C(R) consist solely of −2-curves, so cannot
be connected via a −1. They are individually blow-downable by the usual addition
of a −1 curve at the beginning or end of the chain. So, Φ(E′) has two singular
points, hence the conics intersect transversally. If either of these −1’s occurred at
the beginning of a chain, then blowing down the chain would give a tangency or
worse. Thus, the −1’s are at the far ends of the chains, and blowing down each
chain gives one of the two intersection points of the conics Φ(Q) and Φ(R). Thus,
there is a unique blow-down, so the basic case is the only one.

If one pulls these two −1’s from Z′ back to Z, one might ask where is the third
−1 needed for blow-down. This can be found by pulling back to Z′ and then Z one
of the lines connecting the central point of L with an intersection point of the two
quadrics. Again, this is a Basic Model.

6 Type Γ = M(p, q, r)

(p + 1)

(r + 2) (q + 2)

−1 −(q+2) −(r+2) −(p+2)

We refer to the three strings emanating from the central −1 curve in the diagram
as the r, p, and q directions. Start with the assumption that p, r > 0. To form the
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desired (Z′, E′), blow-down the central −1 curve and the first two curves in the r

direction. Then the first curve in the p direction is the new E′
0, of self-intersection+1, and E′ is

(p − 1)

P

(r − 1) (q + 2)
R Q

−1 +1

X
−(q−1) −(r+2) −(p+2)

The new central configuration consists of a +1 curve E′
0 and three adjacent

curves P,Q,R, but their intersections are no longer transversal. Q is a −(q − 1)
curve with a tangency of order 3 with E′

0 at a point, andR intersectsE′
0 at that point,

transversally to both E′
0 and Q. Finally, P intersects E′

0 transversally at a different
point. Note that again there are no free −1 curves on Z′, given this property on Z.

The new map Φ : Z′ → P2 arising from E′
0 makes Φ(E′

0) = L a line, Φ(Q) a
rational cubic curve with triple tangency at a point of L, Φ(R) a line through that
central point transversal to both L and the cubic, and Φ(P) a line transversal to L

intersecting at a different point.
A rational cubic curve is either nodal or cuspidal, and each type is unique up

to projective equivalence. Each has a unique flex point, i.e., smooth point whose
tangent line intersects with multiplicity 3. A calculation shows that a line through
that flex point cannot be tangent to the curve at a smooth point. As a result, here are
the only possible configurations of Φ(E′) with at most three singular points:

Case Ic (resp. In) Cubic is cuspidal (resp. nodal), Φ(R) passes through the
singular point, Φ(P) has multiplicity three at that point (one singular point for
Φ(E′))

Case IIc (resp. IIn) Cubic is cuspidal (resp. nodal), Φ(R) passes through the
singular point, Φ(P) passes through the singular point plus another point of the
cubic (two singular points)

Case IIIc (resp. IIIn) Cubic is cuspidal (resp. nodal), Φ(R) intersects the cubic
in two distinct smooth points, Φ(P) passes through one of those two points and
the singular point (three singular points)

We rule out all but Case In using the interplay between requirements of the graph
E′ and resolution of the singularities of Φ(E′). One cannot dismiss a priori the
occurrence of a non-transversal intersection of a −1 curve with another curve.
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6.1 Case III for M(p, q, r), p, r > 0

In Case III , Φ(E′) would have an ordinary triple point involving all three curves.
The inverse image of this singular point would be a single −1 curve with valency
(at least) three, intersecting all adjacent curves or their chains. We show this cannot
happen. Blowing up the three singular points yields the curve configuration

−1 Q −1

P (−1) −1 R (−1)

Here as before P ′(−1) indicates the image of P , with self-intersection −1. The
dotted connection on the top row between a−1 andQ′ indicates that the intersection
of the curves is not transversal; Q′ intersects tangentially in the cusp case, and in
two points in the nodal. Since P has self-intersection −2, to reach Z′ one needs to
blow-up the intersection of P ′(−1) with exactly one of its neighboring−1’s. If one
blows up at the −1 above, that would make Q′ intersect non-transversally with a
−2 curve, which must be resolved. That further resolution would introduce a fourth
−1 curve disjoint from the other three; this is a contradiction.

So, one would have to blow up between P ′(−1) and the −1 on its right,
converting that valency three curve to a −2, hence no longer eligible to be the −1 of
valency three or more. The only other possible way to get a trivalent −1 would be
to blow up the non-transversal intersection between Q′ and the −1 on its left. In the
case of a node, this would result in a new trivalent curve, but it would be a−2. In the
case of a cusp, the only way to get a trivalent curve would be to blow-up twice, in
which case the original −1 intersecting Q′ would become a −3. However, P does
not intersect a curve of degree ≤ −3 (only a −2 or −1 is allowed). This completes
the argument.

6.2 Case II for M(p, q, r), p, r > 0

Φ(E′) has two intersection points, with minimal resolution

Q −1 R (0)

−1 P (0)
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The dotted line again refers to the non-transverse intersections due to the cusp or
node. Since R has self-intersection −1, one must blow up the point between R′(0)
and its neighbor, converting it to a −2 and obtaining a new −1. But one cannot
have a non-transverse intersection between Q′ and a −2, so that must be blown up,
converting the −2 to a −3 and inserting a −1 connecting it to Q′ (in both the node
and cusp cases). That makes three disjoint −1’s. But P ′(0) now intersects a −3
curve, yet P does not; so, that intersection point must be blown up, giving a fourth
−1, which is not allowed.

6.3 Case I for M(p, q, r), p, r > 0

Here Φ(E′) has one singular point. Blowing it up gives a −1 curve we shall call
M ′(−1). It has a simple intersection with R′(0), which intersects no other curves.
Since R has self-intersection −1, the only way to achieve that is to blow-up the
intersection, giving

R (−1) −1 M (−2)

Further, the only way to achieve the string C(R) with (r − 1) −2 curves is to
repeatedly blow up −1’s away from R′(−1):

(r − 1)

R (−1) −1 M (−(r+1))

Consider next the other intersections of M ′. The cubic curve has become Q′(5).
In the cuspidal case,M ′(−(r+1)) intersectsQ′(5) tangentially at a point through

which P ′(0) passes transversally. Blowing up that point gives a new −1 curve
N ′(−1). It has a simple intersection with P ′(−1), which intersects no other curves.
SinceP has self-intersection−2, as above one has to blow-up this intersection point.
Continuing as before, one gets part of the graph around N ′ as

(p − 1)

P (−2) −1 N (−(p+1))
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There is as well a point where N ′, M ′, and Q′ intersect transversally. Since all
these curves will appear in E′, this point must be blown-up. Putting everything
together gives the graph

(r − 1)
Q

(p − 1)

R (−1) R (−2)

−1

M (−(r+3)) −1 N (−(p+2))

−1

But this configuration cannot be completed to produce E′ plus three −1 curves. For
instance, the −1 appended to the chain C(R) would intersect a curve whose valency
remains two, hence an end of a chain. But the self-intersection of that curve is ≤ −3,
an impossibility. The cuspidal case is eliminated.

We are down to the nodal case.M ′(−(r+1)) intersectsQ′(5) transversally in two
points, through one of which P ′(0) passes with a third tangent direction. Following
the same procedure as in the cuspidal case, one reaches the graph

(r − 1 p() − 1)
Q (4)

R (−1)

−1

M (−(r+2)) N (−(p+1))

−1

R (−2)

Now, Q has self-intersection −(q − 1), so q + 3 further blow-ups are needed next
to Q′(4).

Suppose the first blow-up is between it and M ′(−(r + 2)). Then the new −1 is
the third one in the diagram, so all future blow-ups of Q′ must be adjacent to a −1.
The final position between M ′ and Q′ is therefore

(q + 2)

M (−(r+3)) −1 Q (−(q−1))

Note that N ′(−(p + 1)) still intersects M ′ and Q′. This fits with the original E′
exactly when r + 2 = p + 1 and r + 3 = p + 2, i.e., p = r + 1. In that situation,
the three desired −1’s connect the ends of the three chains as follows: C(P ) to the
−(r + 2) curve; C(R) to the −(p + 2) curve; and C(Q) to Q. Pulling these −1’s
back to Z gives the Basic Model for the special value p = r + 1, when the graph
has an obvious symmetry.

If the first blow-up takes place between Q′(4) and N ′(−(p + 1)), then the same
procedure as above gives E′ for all values of p, q, r . Here, the −1 locations with
the ends of chains are: C(P ) to the −(p + 2) curve; C(R) to the −(r + 2) curve;
and C(Q) to Q. Pulling back to Z, one recovers the −1’s for the Basic Model, for
all values p, q, r (assuming still that p, r > 0).
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6.4 Type Γ = M(0, q, r), r ≥ 1

We construct Z′ as above, noting that the one curve in the p direction is the new
central curve. The diagram is as before, with only two curves adjacent to the central
E′
0:

(r − 1 q() + 2)

R Q

−1 +1 −(q−1) −(r+2) −2

As before, Q is a −(q − 1) curve with a tangency of order three with E′
0 at a point,

and R intersects E′
0 at that point, transversally. The basic case requires two −1’s to

blow down, so the same should be true in general.
If the line Φ(R) did not pass through the singular point of the cubic Φ(Q), it

would intersect it in two distinct points, giving three singular points on Φ(E′). This
cannot happen, so Φ(R) passes through the singular point. If the singular point is
a cusp, the same argument as above produces the same contradiction: the −1 at the
end of C(R) would be intersecting a curve of valency two and self-intersection less
than or equal to −3.

So, the singular point is a node, and one gets a picture as before which gives a
−1 at the end of C(R):

(r − 1)
Q (4)

R (−1)

−1

M (−(r+2)) −1

As before, there is a unique way to complete to E′, with −1 curves appended to the
end of chains as follows: C(R) at the −(r + 2) curve, and C(Q) at Q. Pulling back
to Z, and adding on the pull-back of the line on Z′ through the node and the central
point of L, gives the Basic Model.

6.5 Type Γ = M(p, q, 0), p ≥ 1

Again, we have the same Z′, but E′ is now

(p − 1 q() + 2)

P Q

+1 −(q−1) −2 −(p+2)
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Again Q intersects E′
0 with multiplicity three, while P intersects it transversally at

a different point. As in the basic case, two −1’s are needed to blow-down.
We rule out thatΦ(E′) could have two singular points, for whichΦ(P) intersects

the cubic at the singular point plus one other. Note that C(Q) can be made blow-
downable with the addition of a single −1 only in case p = q + 2, and the −1 is
added to the−2 to the right of the−(p+2). In that case, one would have a −2 curve
of valency three. A brief check of the resolution of Φ(E′) shows that a valency
three curve arises only when all non-transversality (from the cusp or node) has
been resolved; thus, Φ−1(Φ(E′)) has normal crossings. Therefore the appended−1
curve to C(Q) intersects P or Q transversally. But blowing-down produces a higher
order tangency between two curves, as in Remark 2.3. So this case is eliminated. In
addition, one cannot combine C(Q) and C(P ) with one −1 into a blow-downable
configuration.

That leaves the case of one singular point of Φ(E′), with Φ(P) intersecting there
with multiplicity three. The same argument as in the original situation shows one
cannot have a cuspidal cubic, else C(P ) (or just P , if p = 1) would have a −1
intersecting a valency two curve with self-intersection ≤ −3. So, one must have a
nodal cubic, for which Φ(P) is tangent to one of the branches of the node. The same
partial resolution as above is

(p − 1)
Q (4)

M (−2) N (−(p+1))

−1

P (−2)

Again, one can blow-up between Q′ and N ′ repeatedly, and have a completion of
E′ by adjoining a −1 at the end of C(P ) with the −(p + 2) and the end of C(Q)

with Q. If however p = 1, one may blow up between Q′ and M ′, and find another
solution by letting −1’s attach C(P ) with the −2 curve to the right of Q, and C(Q)

with Q. This gives the desired existence of only one (or two, in the special case)
configuration(s) of −1’s on Z′, and then pulling back gives Basic Models on Z.

6.6 Type Γ = M(0, q, 0)

One uses the same Z′. There is now one chain, C(Q), which consists solely of −2
curves. One makes it blow-downable only by letting a −1 connect Q itself with one
or the other end of the chain. It is easy to check that this is possible only if the −1
is at the far end of the chain, so there is a unique way to blow-down. So, one must
be in the case of the Basic Model.
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7 Self-Isotropic Subgroups and Fowler’s Method

If L is a non-degenerate lattice, the dual L∗ = Hom(L,Z) admits a non-degenerate
pairing into Q. Thus, the finite discriminant group D(L) = L∗/L admits a non-
degenerate discriminant pairing into Q/Z. Overlattices L ⊂ M of the same rank
correspond to isotropic subgroups M̄ = M/L of the discriminant group. If M is
unimodular, then M̄ is self-isotropic. The importance of these notions in smoothing
surface singularities may be found in [5, Section 2].

If Γ is one of the dual graphs listed in the Bhupal-Stipsicz Theorem, it gives rise
to a lattice and discriminant groupD(Γ ). On a Γ surface (Z,E), the lattice E(Γ ) =
⊕iZ[Ei] spanned by the divisor classes in Pic(Z) comes with an identification with
the lattice of Γ .

Definition 7.1 Let (Z,E) be a Γ surface. Then the self-isotropic group of (Z,E)

is the subgroup I of D(Γ ) associated with the unimodular overlattice E(Γ ) ⊂
Pic(Z) ⊂ E(Γ )∗.

Fowler studied in [2] the important map

ξ : {Isomorphism classes of Γ surfaces (Z,E)} → {Self-isotropic subgroups of D(Γ )}

7.1 Fowler’s Approach

Definition 7.2 A self-isotropic subgroup I ⊂ D(Γ ) is called basic if it is
associated with a Basic Model Γ surface.

Whenever D(Γ ) has only one self-isotropic subgroup (as happens most of the
time), then of course being “basic” is not an extra condition. On the other hand,
there are examples of Γ of types W,N ,M which have non-basic self-isotropic
subgroups (hence the need for the Theorem in this paper). One of Fowler’s main
theorems is

Theorem 7.1 ([2]) Let (Z,E) be a Γ surface whose self-isotropic subgroup is
basic. Then (Z,E) is basic.

If a Γ surface (Z,E) has basic self-isotropic subgroup I , the goal is to prove that
it is itself basic. This is accomplished by locating in a precise location −1 curves on
Z which allow one to blow down in a unique way. The assumption that I is basic
implies that for each potential −1 curve, there is a line bundle L with the correct
intersection properties with all Ei . If L has a section giving an irreducible curve, it
will be the sought after −1.

Fowler achieves this for every potential −1 curve, via a case by case look at all
the types of Γ , of course assuming that the self-isotropic subgroup is basic.

Fowler starts with general considerations about K similar to those in Sect. 1. He
concludes (using Riemann–Roch) that L has a non-zero section, so is represented
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by an effective divisor

L =
∑

niEi +
∑

mjFj .

Here the Fj are irreducible curves not among the Ei . One needs to show that all the
ni are 0 as well as all but one of the mj .

The method involves locating in each case various exceptional nef divisors N .
Then

N · L =
∑

ni(N · Ei) +
∑

mj(N · Fj ) ≥ 0.

ByL’s intersection properties, one can frequently arrange that the productN ·L = 0.
In this case, if N ·Ei > 0, then necessarily ni = 0. Note that if Fj is not a −1 curve,
then it is nef (Corollary 2.1).

For instance, in case W , suppose one wishes to prove the existence of a −1
curve connecting the end of the chain C(P ) with R. Let L be the divisor above
representing the potential curve, and choose first N = E0, the central curve. Then
L · N = 0, while N dots to 1 with the central curve and the three adjacent curves.
We conclude that the corresponding four coefficients ni in the expansion of L equal
0. If we choose as nef divisor N = (p + 2)E0 + P , then again L · N = 0, so the
coefficient of the neighbor of P is 0 as well.

Fowler develops very efficient methods for all Γ to show that each potential −1
curve actually does exist. This allows careful analysis of the blow-down.

7.2 Number of QHD Smoothing Components

Combining the main result Theorem 1.3 of this paper with Fowler’s results, here
is the final count of QHD smoothing components for weighted homogeneous
singularities:

1. Two components forW(p, p, p), N (q + 2, q, 0), andM(r + 1, q, r), with two
different self-isotropic subgroups in each case.

2. A unique component for all otherW,N , andM.
3. A unique component for type B3

2 and C33 .
4. Two components for type C32 , with the same self-isotropic subgroup.
5. Two components for typeA4 with two different isotropic subgroups in each case.
6. Two components for types B4 and C4(p), p > 0, with one self-isotropic

subgroup in each case.
7. A unique component for type C4(0).

As mentioned before, Fowler shows the existence of two components is a
consequence either of a symmetry in the graph Γ or of complex conjugation in
the blowing-up process.
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Appendix

See Tables A.1 and A.2.

Table A.1 Graphs in the families W,N ,M,B3
2, C32 , C33 ,A4,B4, and C4

hparGylimaF

W(p, q, r)

N (0, q, r)

N (p, q, r)

p ≥ 1

M(0, q, 0)

M(0, q, r)

r ≥ 1

M(p, q, 0)

p ≥ 1

Continued on next page
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Table A.1 (Continued)

hparGylimaF

M(p, q, r)

p, r ≥ 1

B3
2(p)

C3
2(p)

C3
3(p)

A4(p)

B4(p)

C4(p)
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Table A.2 The dual graphs to the graphs in the families W,N ,M,B3
2, C32 , C33 ,A4,B4, and C4

hparglauDylimaF

W(p, q, r)

N (p, q, r)

M(p, q, r)

Continued on next page
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Table A.2 (Continued)

hparglauDylimaF

B3
2(p)

C3
2(p)

C3
3(p)

A4(p)

Continued on next page
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Table A.2 (Continued)

hparglauDylimaF

B4(p)

C4(p)
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