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Abstract The problem we are considering came up in connection with the classi-
fication of singularities in positive characteristic. Then it is important that certain
invariants like the determinacy can be bounded simultaneously in families of
formal power series parametrized by some algebraic variety. In contrast to the
case of analytic or algebraic families, where such a bound is well known, the
problem is rather subtle, since the modules defining the invariants are quasi-finite
but not finite over the base space. In fact, in general the fibre dimension is not
semicontinuous and the quasi-finite locus is not open. However, if we pass to the
completed fibres in a family of rings or modules we can prove that their fibre
dimension is semicontinuous under some mild conditions. We prove this in a rather
general framework by introducing and using the completed and the Henselian tensor
product, the proof being more involved than one might think. Finally we apply
this to the Milnor number and the Tjurina number in families of hypersurfaces and
complete intersections and to the determinacy in a family of ideals.
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1 Introduction

In connection with the classification of singularities defined by formal power series
over a field a fundamental invariant is the modality of the singularity (with respect
to some equivalence relation like right or contact equivalence). To determine the
modality one has to investigate adjacent singularities that appear in nearby fibres.
This cannot be done by considering families over complete local rings but one has
to consider families of power series parametrized by some algebraic variety in the
neighbourhood of a given point. To determine potential adjacencies, an important
tool is the semicontinuity of certain singularity invariants like, for example, the
Milnor or the Tjurina number. Another basic question is if the determinacy of
an ideal can be bounded by a semicontinuous invariant. In the complex analytic
situation the answer to these questions is well known and positive, but for formal
power series the problem is much more subtle than one might think at the first
glance. This is mainly due to the fact that ideals or modules that define the invariants
are quasi-finite but not finite over the base space.

The modality example shows that the questions treated in this paper are rather
natural and appear in important applications. Moreover, the semicontinuity in
general is a very basic property with numerous applications in many other contexts.
Therefore we decided to choose a rather general framework with families of
modules presented by matrices of power series and parametrized by the spectrum of
some Noetherian ring. It is not difficult to see that the fibre dimension is in general
not semicontinuous and that the quasi-finite locus is in general not open (in contrast
the case of ring maps of finite type, where the quasi-finite locus is open by Zariski’s
Main Theorem, cf. Proposition 2.7), see Examples 2.3 and 2.4. It turns out that the
situation is much more satisfactory if we consider not the fibres but the completed
fibres and we prove the desired semicontinuity for the completed fibre dimension
under some conditions on the family. To guarantee that the completed fibre families
behave well under base change we introduce the notion of a (partial) completed
tensor product and study its properties in Sects. 2.1 and 2.2.

Unfortunately, we cannot prove the semicontinuity of the completed fibre
dimension in full generality. We prove it if either the base ring has dimension
one (in Sect. 2.3), or if the base ring is complete local containing a field, or if
the presentation matrix has polynomials or algebraic power series as entries (in
Sect. 2.5). Together, these cases cover most applications (see Corollary 2.7 for a
summary). To treat the latter case, we use Henselian rings and the Henselian tensor
product, for which we give a short account in Sect. 2.4. It would be interesting to
know, if the result holds for presentation matrices with arbitrary power series as
entries or if there are counterexamples. In Sect. 2.6 we consider also the case of
families of finite type over the base ring and prove a version of Zariski’s main
theorem for modules. Moreover, we compare the completed fibre with the usual
fibre.

In Sect. 3 we apply our results to singularity invariants. We discuss and compare
first the notions of regularity and smoothness (over a field) and show that both
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notions coincide for the completed fibres (Lemma 3.3). Under the restrictions
mentioned above, we prove the semicontinuity of the Milnor number and Tjurina
number for hypersurfaces (Sect. 3.2) and the Tjurina number for complete inter-
sections (Sect. 3.4) as well as an upper bound for the determinacy of an ideal
(Sect. 3.3). Since the base ring may be the integers, our results are of some interest
for computational purposes. For example, if a power series has integer coefficients
then the Milnor number over the rationals is bounded by the Milnor number modulo
just one (possibly unlucky) prime number if this is finite (see Corollary 3.1 and,
more generally, Corollary 2.4 and Remark 2.5).

We assume all rings to be associative, commutative and with unit. Throughout
the paper k denotes an arbitrary field, A a ring, R = A[[x]], x = (x1, · · · , xn), the
formal power series ring over A and M an R-module. For our main results we will
assume that A is Noetherian and that M is finitely generated as R-module.

2 Quasi-Finite Modules and Semicontinuity

2.1 The Completed Tensor Product

Let A be a ring, R = A[[x]] and M an R-module. For any prime ideal p of A let
k(p) = Ap/pAp be the residue field of p. k(p) = Quot(A/p) is the quotient field of
A/p and hence k(p) = A/p if p is a maximal ideal. We considerM via the canonical
map A ↪−→ R as an A-module and set

M(p) := Mp ⊗Ap k(p) = (M ⊗A Ap) ⊗Ap k(p) = M ⊗A k(p),

which is called the fibre of M over p. M(p) is a vector space over k(p) and its
dimension is denoted by

dp(M) := dimk(p) M(p).

M is called quasi-finite1 over p if dp(M) < ∞. We are interested in the behavior of
dp(M) as p varies in SpecA, in particular in finding conditions under which dp(M)

is semicontinuos on SpecA.
We say that a function d : SpecA → R, p �→ dp, is (upper) semicontinuous at p

if p has an open neighbourhood U ⊂ SpecA such that dq ≤ dp for all q ∈ U . d is
semicontinuous on SpecA if it is semicontinuous at every p ∈ SpecA.

For finitely presented A-modules M the semicontinuity of p �→ dp(M) is
true and well known (cf. Lemma 2.1). However, in many applications M is not

1For M = R/I , I an ideal, this is the original definition of Grothendieck. Nowadays most authors
(e.g. [15]) require in addition that R is of finite type over A.
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finitely generated over A but finite over some A-algebraR. Such a situation appears
naturally in algebraic geometry, when one considers families of schemes or of
coherent sheaves over SpecA. But then it is usually assumed that the ringR is either
of (essentially) finite type over A (in algebraic geometry) or an analytic A-algebra
(in complex analytic geometry). When we study families of singularities defined
by formal power series (cf. Sect. 3), we have to consider R = A[[x]], which is not
of finite type over A. As far as we know, this situation has not been systematically
studied and it leads to some perhaps unexpected results. For example, dp(M) is in
general not semicontinuous on SpecA (cf. Examples 2.3 and 2.4).

It turns out that the situation is much more satisfactory if we pass from the usual
fibres to the completed fibres, that is, we consider the completed fibre dimension

d̂p(M) := dimk(p) M(p)∧,

where M(p)∧ is the 〈x〉-adic completion of the R(p)-module M(p). To guarantee
that the completed fibres behave well when p varies in SpecA, we introduce the
notion of a completed tensor product below.

For a finitely presented A-module M the semicontinuity of p → dp(M) is well
known:

Lemma 2.1 If M is a finitely presented A-module then dp(M) is semicontinuous
on SpecA. Moreover, if M is A-flat, then dp(M) is locally constant on SpecA.

Proof Fix p ∈ SpecA and consider a presentation of M ,

Ap P−→ Aq → M → 0,

with matrix P = (pij ), pij ∈ A. Applying ⊗Ak(p) to this sequence we get the
exact sequence of vector spaces

k(p)p
P p−→ k(p)q → M(p) → 0,

with entries of P p being the images of pij in k(p). Then dp(M) is finite and
dp(M) = q − rank(P p). Since rank(P p) ≤ rank(P q) for all q in some
neighbourhoodU of p, the claim follows.

If M is flat, then Mp is free over the local ring Ap for a given p ∈ SpecA. By
[12], Theorem 4.10 (ii) (and its proof) there exists an f /∈ p such that Mf is a free
Af -module of some rank r and hence dq(M) = r for q in the open neighbourhood
D(f ) of p.

We introduce now the completed tensor product. Let us denote by

〈x〉 := 〈x1, . . . , xn〉R
the ideal in R generated by x1, . . . , xn. More generally, if S is an R-algebra, then
〈x〉S denotes the ideal in S generated by (the images of) x1, . . . , xn.



Semicontinuity of Singularity Invariants 211

For an R-module N denote by

N∧ := lim←− N/〈x〉mN

the 〈x〉-adic completion of N . If N is also an S-module for some R-algebra S,
then 〈x〉mN = (〈x〉S)mN , and hence the 〈x〉-adic completion and the 〈x〉S -adic
completion of N coincide.

Definition 2.1 Let A be a ring, R = A[[x]], B an A-algebra and M an R-module.
We define the completed tensor product of R and B over A as the ring

R⊗̂AB := lim←−
(
(R/〈x〉m) ⊗A B

)

and the completed tensor product of M and B over A as the module

M⊗̂AB := lim←−
(
(M/〈x〉mM) ⊗A B

)
.

If N is an A-module, we define the R-module

M⊗̂AN := lim←−
(
(M/〈x〉mM) ⊗A N

)

and call it the completed tensor product of M and N over A.

One reason why we consider the completed tensor product is that it provides
the right base change property in the category of rings of the form A[[x]] by the
following Proposition 2.1.1.

Proposition 2.1 The completed tensor product has the following properties
(assumptions as in Definiton 2.1).

1. A[[x]]⊗̂AB = (R ⊗A B)∧ = B[[x]].
2. M⊗̂AN = (M ⊗A N)∧.

3. If M is finitely presented over R and N is a finitely presented B-module, then

M⊗̂AN ∼= (M ⊗A N) ⊗R⊗AB fl(R⊗̂AB).

4. The canonical map M ⊗A N → M⊗̂AN is injective if A is Noetherian, M finite
over R and N finite over A.

5. If 〈x〉m ⊂ AnnR(M) for some m then M⊗̂AN = M ⊗A N for every A-module
N .

Proof

1. We have lim←−
(
A[[x]]/〈x〉m ⊗A B

)
= lim←−

(
A[x]/〈x〉m ⊗A B

)
= lim←− B[x]/〈x〉m =

B[[x]], showing the second equality. The first follows since (R/〈x〉m) ⊗A B =
(R ⊗A B)/〈x〉m(R ⊗A B).
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2. Since (M/〈x〉mM)⊗A N = (M ⊗A N)/〈x〉m(M ⊗A N) the equality follows and
that (M ⊗A N)∧ is the 〈x〉R as well as the 〈x〉R⊗AB-adic completion of M ⊗A N .

3. If M resp. N are finitely presented over R resp. B, then M ⊗A N is finitely
presented overR⊗A B. Hence we can apply (the proof of) [1, Proposition 10.13]
and use 1. to show the isomorphism.

4. If A is Noetherian then R is Noetherian. If M is finitely generated over R and
N finitely generated over A then M ⊗A N is finitely generated over R. The
injectivity follows from 2. and [1, Theorem 10.17 and Corollary 10.19], since
〈x〉 is contained in the Jacobson radical of R by Lemma 2.4.

5. If 〈x〉mM = 0 for some m, then M⊗̂AN = M ⊗A N by definition of the
completed tensor product.

Corollary 2.1 The completed tensor product is right-exact on the category of
finitely presented modules. That is, let

M ′ → M → M ′′ → 0, resp.
N ′ → N → N ′′ → 0

be exact sequences of finitely presented R-modules resp. B-modules. Then the
sequences of finitely presented R⊗̂AB-modules

M ′⊗̂AN → M⊗̂AN → M ′′⊗̂AN → 0, resp.
M⊗̂AN ′ → M⊗̂AN → M⊗̂AN ′′ → 0

are exact.

Proof The sequences M ′ ⊗A N → M ⊗A N → M ′′ ⊗A N → 0 and M ⊗A N ′ →
M ⊗A N → M ⊗A N ′′ → 0 are exact. Now tensor these sequences with R⊗̂AB

over R ⊗A B and apply Proposition 2.1.3.

Corollary 2.2

(i) R⊗̂AA = R.
(ii) If S is multiplicatively closed in A then A[[x]]⊗̂A(S−1A) = (S−1A)[[x]].

(iii) For any R-module M we have M⊗̂AA = M∧.
(iv) If M is finitely presented over R then M = M∧. If moreover N is finitely

presented over A, then M⊗̂AN = M ⊗A N .

Proof (i) and (ii) follow immediately from Proposition 2.1.1, (iii) is a special case
of Proposition 2.1.2 and (iv) follows from (i) and Proposition 2.1.3 with B = A.

Applying Corollary 2.1 and Proposition 2.1.1 we get

Corollary 2.3 If A[[x]]p T−→ A[[x]]q → M → 0 is an A[[x]]-presentation of M

and B an A-algebra, then

M⊗̂AB = coker
(
B[[x]]p T−→ B[[x]]q).
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Remark 2.1 Let A be Noetherian and B an A-algebra. If 〈x〉 is contained in
the Jacobson radical of R ⊗A B, then R⊗̂AB is faithfully flat over R ⊗A B,
by Proposition 2.1.1 and [12, Theorem 8.14]. Note however that although 〈x〉 is
contained in the Jacobson radical of R by Lemma 2.4 below, it need not be in the
Jacobson radical of R ⊗A B (cf. Example 2.2).

Example 2.1 Let 〈f1, . . . , fk〉 ⊂ R = A[[x]] be an ideal and M =
A[[x]]/〈f1, . . . , fk〉. If p is a prime ideal in A then R⊗̂AAp = Ap[[x]] and form
Corollary 2.3 we get M⊗̂AAp = Ap[[x]]/〈f1, . . . , fk〉. If k(p) is the residue field
of A at p then M⊗̂Ak(p) = k(p)[[x]]/〈f1, . . . , fk〉, something what one expects
as fibre of M over p. While Ap[[x]] and k(p)[[x]] are nice local rings, the subrings
R ⊗A Ap ⊂ Ap[[x]] and R ⊗A k(p) ⊂ k(p)[[x]] are in general not local if p is not
a maximal ideal (see Example 2.2).

Remark 2.2 Proposition 2.1.1 with B = A[[y]], y = (y1, . . . , ym), implies

A[[x]]⊗̂AA[[y]] = A[[x, y]].

Now let A be Noetherian. If I resp. J are ideals in A[[x]] resp. A[[y]], we get from
Corollary 2.1

A[[x]]/I⊗̂AA[[y]]/J = A[[x, y]]/〈I, J 〉A[[x, y]].

We call an A-algebra a formal A-algebra if it is isomorphic to an A-algebra
A[[x]]/I . For two formal A-algebras B = A[[x]]/I and C = A[[y]]/J the
completed tensor product can be defined as B⊗̂AC = A[[x, y]]/〈I, J 〉A[[x, y]].
It has the usual universal property of the tensor product in the category of formal
A-algebras, analogous to the analytic tensor product for analytic algebras (cf. [5,
Chapter III.5]). Thus, Definition 2.1 generalizes the completed tensor product of
formal A-algebras.

2.2 Fibre and Completed Fibre

Let again A be a ring and M an R = A[[x]]-module. We introduce the completed
fibre M̂(p) and the completed fibre dimension d̂pM of M for p ∈ SpecA and
compare it with the usual fibre M(p) and the usual fibre dimension dpM .

At the end of this section we give examples, showing that semicontinuity of
dp(M) does not hold in general on SpecA, even if A = C[t] or A = Z

(Examples 2.3 and 2.4). However, we show in the next Sects. 2.3 and 2.5 that, under
some conditions, semicontinuity holds for the completed fibre dimension d̂p(M).

Notation 2.1 We have canonical maps

A
j

↪−→ R
π−→→ R/〈x〉 i−→∼= A,
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with i ◦ π ◦ j = id and for an ideal I ⊂ R we set I := π(I). On the level

of schemes we have the maps SpecA
i∗−→∼= V (〈x〉) π∗

↪−→ SpecR
j∗
−→→ SpecA, with

i∗(p) = 〈p, x〉, j∗(〈p, x〉) = 〈p, x〉 ∩ A = p for p ∈ SpecA. We denote by

np := 〈p, x〉 = 〈p, x1, . . . , xn〉R
the ideal in R generated by p ∈ SpecA and x1, . . . , xn. The family

f := j∗ : SpecR → SpecA

has the trivial section σ = (i ◦ π)∗ : SpecA → SpecR, p �→ np, and the
composition h := π ◦ j : A ∼= R/〈x〉 induces an isomorphism

h∗ : V (〈x〉) ∼=−→ SpecA,

the restriction of f to V (〈x〉). We call Rp := R ⊗A Ap the stalk of R over p. Rp is
not a local ring, its local ring at np is (Rp)np = Rnp with residue field k(np) = k(p)
(by Lemma 2.2 below).

If M is an R-module, we call Mp = M ⊗A Ap the stalk of M over p and we are
interested in the behavior of M along the section σ . However, we are not interested
in theR(p)-modulesM(p) sinceR(p) is not a power series ring (and does not behave
nicely). We are interested in the completed stalk M̂p and in the completed fibres
M̂(p), which we introduce now.

Definition 2.2 Let A be a ring, R = A[[x]], M an R-module and p ∈ SpecA.

1. We set R̂p := R⊗̂AAp, a local ring isomorphic to Ap[[x]] (Proposition 2.1.1),
and call the R̂p-module

M̂p := M⊗̂AAp

the completed stalk of M over p.
2. The ring R̂(p) := R⊗̂Ak(p) is called the completed fibre of R over p. It is a local

ring isomorphic to k(p)[[x]] (Proposition 2.1.1). The R̂(p)-module

M̂(p) := M⊗̂Ak(p) = M̂p ⊗Ap k(p)

is called the completed fibre of M over p.
3. M̂(p) is a k(p)-vector space and we call its dimension

d̂p(M) := dimk(p) M̂(p)

the completed fibre dimension of M over p.
4. M is called quasi-completed-finite over p if d̂p(M) < ∞.
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The map A → R induces a map of local rings Ap → Rnp and for an R-module
M we have the fibre M(p) = M ⊗A k(p) of M w.r.t. A → R and the fibre

Mnp(p) = Mnp ⊗Ap k(p) = Mnp/pMnp

of Mnp w.r.t.Ap → Rnp . The fibres are in general different but the completed fibres
coincide by Lemma 2.3 if M is finitely R-presented.

Let us first compare the fibre M(p) with its completed fibre M̂(p).

Lemma 2.2 For any R-module M the following holds.

(i) M̂p = (Mp)
∧ and M̂(p) = M(p)∧.

(ii) np is a prime ideal in R with np ∩ A = p and the residue field of np in R

satisfies k(np) = k(p).
(iii) If n is any prime ideal in R containing 〈x〉, then n = np with p = n ∩ A ∈

SpecA.

Proof Statement (i) follows from Proposition 2.1.1. The first statement of (ii)
follows since R/np = A/p is an integral domain. Since R/np = A/p we have
k(np) = Quot(R/np) = Quot(A/p) = k(p). (iii) is obvious.

Remark 2.3 We have strict flat inclusions Ap � Rp � Rnp � Ap[[x]] of rings that
are Noetherian if A is Noetherian.

The strictness is easy to see. E.g. g0 + ∑
|α|≥1(gα/hα)xα, g0 /∈ p, with arbitrary

hα ∈ R � np, is a unit in Ap[[x]] but it is not contained in Rnp , where only
finitely many different denominators are allowed. We have Rp = S−1R, with S

the multiplictive set A � p and Rnp = (Rp)np . Since localization preserves flatness
([1, Corollary 3.6]) and the Noether property ([1, Proposition 7.3]), the inclusions
Ap ⊂ Rp ⊂ Rnp are flat and the rings are Noetherain if A is Noetherain. The
flatness of Ap[[x]] overRnp follows, since the first is the 〈x〉-adic completion of the
second by Lemma 2.2 (i). Since both rings are local, Rnp ⊂ Ap[[x]] is faithfully
flat.

The rings Rp and Rnp are “strange” subrings of Ap[[x]]. The ring Ap[[x]] is of
interest in applications (cf. Sect. 3), while the ringsRp andRnp are of minor interest.
By the following Lemma 2.3 we have (Rp)

∧ = (Rnp)
∧ = Ap[[x]].

Example 2.2 As an example letA = k[t] andR = A[[x]]with t and x one variable,
p = 〈0〉 ∈ SpecA. We have Ap = k(p) = k(t) and

Rp = k[t][[x]] ⊗k[t ] k(t) = {g/h | g ∈ k[t][[x]], h ∈ k[t] � 0},

g = g0 + ∑
i≥1 gix

i, gi ∈ k[t], a subring strictly contained in R⊗̂AAp =
k(t)[[x]].
• 〈x〉 is contained in the Jacobson radical of R⊗̂AAp by Lemma 2.4.
• 〈x〉 is not contained in the Jacobson radical of Rp = R ⊗ Ap.
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To see this, note that the element t − x is a unit in R⊗̂AAp, since 1/(t − x) =
1/t

∑
i≥0(x/t)i , but 1/(t − x) is not an element in Rp. The ideal 〈t − x〉 is a

maximal ideal in Rp, since Rp/〈t − x〉 ∼= k((t)) (see Example 2.3.2), but x /∈ m
since otherwise t ∈ m, contradicting the fact that t is a unit Rp.

• The rings Rp and R(p) are in general not local.
Since Rp/〈x〉 = k(t), the ideals 〈x〉 and 〈t − x〉 are two different maximal ideals
and Rp = R(p) (p = 〈0〉) is not local.

Lemma 2.3 Let M be a finitely presented R-module and p ∈ SpecA.

1. We have isomorphisms

M̂p
∼= Mnp⊗̂ApAp = Mnp⊗̂AA = (Mnp)

∧.

2. M̂(p) ∼= (Mnp/pMnp)
∧.

3. If M = coker
(
A[[x]]p T−→ A[[x]]q) then

M̂p = M⊗̂AAp = coker
(
Ap[[x]]p T−→ Ap[[x]]q),

M̂(p) = coker
(
k(p)[[x]]p T−→ k(p)[[x]]q).

Note that R̂p = Ap[[x]] = (Rp)∧ ∼= (Rnp)
∧ and R̂(p) = k(p)[[x]] = R(p)∧ ∼=

(Rnp/pRnp)
∧ are local rings but Rp �∼= Rnp and R(p) �∼= Rnp/pRnp , since Rp and

R(p) are in general not local.

Proof

1. The natural inclusionRnp = A[[x]]np ↪−→ Ap[[x]] is given as follows. Let h/g ∈
Rnp with h, g ∈ R, g /∈ np and write g = g0 − g1 with g0 ∈ A and g1 ∈ 〈x〉R.
Then g /∈ np = 〈p, x〉 iff g0 /∈ p and g is a unit in Rnp iff its image in Ap[[x]] is
a unit. We get

h/g = g−1
0 h

(1 − g1/g0)
= g−1

0 h
∑

i≥0

(g1/g0)
i ∈ Ap[[x]].

Now it is not difficult to see that the induced map A[[x]]np/〈x〉m →
Ap[[x]]/〈x〉m is bijective (a finite sum

∑m−1
|α|=0(aα/bα)xα, aα, bα ∈ A, bα /∈ p

in Ap[[x]] can be written as 1/b
∑m−1

|α|=0(aαb′
α)xα with b = ∏

bα /∈ np,
b′
α = b/bα ∈ A, and hence is in A[[x]]np). We get

Rnp⊗̂AA = lim←− A[[x]]np/〈x〉m ⊗A A = lim←− Ap[[x]]/〈x〉m = Ap[[x]]

and also Rnp⊗̂ApAp = Ap[[x]] = R∧
np

. Now apply Corollary 2.1 to the

presentation of M and deduce the claim for M⊗̂AAp.
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2. M̂(p) = M⊗̂A(Ap/pAp) = (M⊗̂AAp)/p(M⊗̂AAp) = M∧
np

/pM∧
np

by
Corollary 2.2 (iv) and the first statement of this lemma. Since Mnp is finitely
presented over Rnp we have M∧

np
= Mnp ⊗Rnp

R∧
np
, which implies the result.

3. This follows from Corollary 2.3.

Over maximal ideals the fibre and the completed fibre coincide:

Lemma 2.4 Let A be Noetherian and M a finitely generated R-module. For a ⊂ A

a maximal ideal the following holds.

(i)

M̂(a) = M(a), d̂a(M) = da(M).

(ii) R/aR = R(a) = R̂(a) = k(a)[[x]] and aR is a prime ideal in R.
(iii) na is a maximal ideal of R and any maximal ideal of R is of the form na for

some a ∈ MaxA. Hence 〈x〉 is contained in the Jacobson radical of R.
(iv) M(a) = M/aM ∼= Mna/aMna .

Proof

(i) Since a is maximal, k(a) = A/a is a finiteA-module. Corollary 2.2 (iv) implies
M̂(a) = M⊗̂AA/a = M ⊗A A/a = M(a).

(ii) This follows from (i) and the fact that R/aR = k(a)[[x]] is integral.
(iii) Cf. [12, §1, Example 1] and [1, Chapter 1, Exercise 5]).
(iv) M/aM = M ⊗A A/a = M(a) = M̂(a) = M⊗̂AA/a = coker(Rp

na⊗̂AA/a →
R

q
na⊗̂AA/a) = Mna/aMna , as in the proof of Lemma 2.3.

As a first step to semicontinuity we show below (Lemma 2.5) that the vanishing
locus of d̂p(M) is open. For an arbitrary A-module M

SuppA(M) := {p ∈ SpecA | Mp �= 0}

denotes the support of M and AnnA(M) = {f ∈ A | fM = 0} the annihilator ideal
of M .

In general SuppA(M) is not closed in SpecA, but if M a finitely generated A-
module, then it is well known that SuppA(M) = V (AnnA(M)), which is closed in
SpecA. More generally we have:

Remark 2.4 For any A-module M we have

SuppA(M) ⊂ V (AnnA(M)).

If R is an A-algebra and M an R-module, then AnnA(M) = AnnR(M) ∩ A. If M is
a finite R-module then

SuppA(M) = V (AnnA(M))
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and hence SuppA(M) is closed in SpecA.
To see the first claim, let p ∈ SpecA. Note that p /∈ SuppA M ⇔ Mp = 0 ⇔

∀m ∈ M ∃f ∈ A, f /∈ p, fm = 0 and that p /∈ V (AnnA(M)) ⇔ AnnA(M) �

p ⇔ ∃f /∈ p, fM = 0. Hence p /∈ V (AnnA(M)) implies p /∈ SuppA(M), i.e.
SuppA(M) ⊂ V (AnnA(M)).

Now let M be generated over R by m1, . . . ,mk ∈ M . If Mp = 0, choose fi ∈
A, fi /∈ p, fimi = 0. Then f = f1 · · · fk /∈ p satisfies fM = 0 and hence f ∈
AnnA(M). We get p /∈ V (AnnA(M)) and hence the other inclusion SuppA(M) ⊃
V (AnnA(M)).

In our situation for R = A[[x]] and M finitely R-presented we have (possibly
strict) inclusions (cf. Lemma 2.2)

{p ∈ SpecA | d̂p(M) �= 0} ⊂ {p | dp(M) �= 0} ⊂ SuppA(M),

where the first (Lemma 2.5) and the last (Remark 2.4) sets are closed in SpecA,
while the middle set may not be closed (Example 2.3.4).

Lemma 2.5 Let M be a finitely presented R = A[[x]]-module.

1. We have (possibly strict) inclusions

{p ∈ SpecA | d̂p(M) �= 0} ⊂ {p | dp(M) �= 0} ⊂ SuppA(M),

where the first and the last sets are closed in SpecA, while the middle set may
not be closed.

2. The map SuppR(M) → SuppA(M), n �→ n ∩ A, is dominant and induces a
homeomorphism

V (〈x〉) ∩ SuppR(M)
≈−→ {p ∈ SpecA | d̂p(M) �= 0}.

Hence {p ∈ SpecA | d̂p(M) = 0}, the vanishing locus of d̂p(M), is open in
SpecA.

3. Let A′ = A/AnnA(M), R′ = A′[[x]] and denote by M ′ the module M

considered as A′-module. Then M ′ is a finitely presented R′-module and for
p ∈ Spec(A′) ⊂ Spec(A) we have Mp = M ′

p, M(p) = M ′(p), M̂p = M̂ ′
p,

and M̂(p) = M̂ ′(p). For p ∈ Spec(A) \ Spec(A′) the modules Mp,M(p), M̂p,
and M̂(p) vanish.
In particular, we may consider M as an A′-module, whenever we study the fibres
or the completed fibres of M .

Proof

1. The first inclusion follows from Lemma 2.2(i), the second from the definition.
For an example where these inclusions are strict, see Example 2.3.2, 3 and 2.3.4.



Semicontinuity of Singularity Invariants 219

The first set is closed by item 2. and the third by Remark 2.4. In Example 2.3.4
the middle set is not closed.

2. Since AnnA(M) = AnnR(M) ∩ A, the map A/AnnA(M) → R/AnnR(M) is
injective and induces therefore a dominant morphism Spec(R/AnnR(M)) →
Spec(A/AnnA(M)). The first claim follows hence from Remark 2.4.

For the second claim considerA[[x]]p T−→ A[[x]]q → M → 0, a presentation

of M with T = (tij ), tij ∈ A[[x]], and let p ∈ SpecA. Then k(p)[[x]]p T ′−→
k(p)[[x]]q → M̂(p) → 0 is a presentation of M̂(p) with T ′ = (t ′ij ), t ′ij ∈
k(p)[[x]], the induced map (Corollary 2.3).

Now M̂(p) = 0 iff T ′ is surjective, i.e., iff the 0-th Fitting ideal (the ideal
of q-minors) of T ′ contains a unit u′ ∈ k(p)[[x]]. Write u′ as u′ = u′

0 + u′
1

with u′
0 ∈ k(p) � {0}, u′

1 ∈ 〈x〉k(p)[[x]]. Since Fitting ideals are compatible
with base change, the 0-th Fitting ideal F0 ⊂ A[[x]] of M contains an element
u = u0 + u1 ∈ A[[x]] with u0 ∈ A, u1 ∈ 〈x〉A[[x]], that maps to u′ under
A[[x]] → Ap[[x]] → Ap/pAp[[x]]. Hence u′ is a unit iff u0 /∈ p, i.e., iff
〈x, p〉 /∈ V (F0 + 〈x〉). The result follows since SuppR(M) = V (F0).

3. Any R-presentation of M induces obviously an R′-presentation of M ′. The
equalities Mp = M ′

p and M(p) = M ′(p) for p ∈ Spec(A′) are clear,

the equalities M̂p = M̂ ′
p and M̂(p) = M̂ ′(p) follow from this and from

Lemma 2.2(i). Since SuppA(M) = Spec(A′) by Remark 2.4, Mp = M(p) = 0
for p /∈ Spec(A′) and Lemma 2.2(i) implies then M̂p = M̂(p) = 0.

At the end of this section we give two examples where dp(M) is not semicon-
tinuous on SpecA while d̂p(M) is. The examples show also that M̂(p) = 0 may
happen for M(p) �= 0.

Example 2.3 Let A = K[t], K an algebraically closed field, R = A[[x]], and
M = R/〈t − x〉 ∼= K[[t]] as A-module via f (x, t) �→ f (t, t), with t and x one
variable each. The following properties illustrate the difference between the fibres
and the completed fibres. Let a = 〈t − c〉, c ∈ K , denote the maximal ideals in A.
By Lemma 2.4 M̂(a) = M(a) = M/aM which is isomorphic to K[[t]]/〈t − c〉.
Hence M(〈t〉) = K and M(〈t − c〉) = 0 for c �= 0.

1. M is not finitely generated over A, da(M) = d̂a(M) < ∞ for a ∈ MaxA and
da(M) is semicontinuous on MaxA:
K[[t]] is not finite over K[t] and da(M) = 1 if c = 0 and 0 if c �= 0.

2. dp(M) is not semicontinuous on SpecA:
The prime ideal 〈0〉 is contained in every neighbourhood of a = 〈t〉 in SpecA.
It satisfies k(〈0〉) = K(t) and we get M(〈0〉) ∼= K[[t]] ⊗A K(t) = K((t)), the
field of formal Laurent series. Since dimK(t) K((t)) = ∞, d〈0〉(M) = ∞, while
da(M) ≤ 1 for a ∈ SpecA � 〈0〉.

3. d̂p(M) is semicontinuous on SpecA:
We have M̂(〈0〉) = K(t)[[x]]/〈t − x〉 by Corollary 2.3. Since t is a unit in K(t),
d̂〈0〉(M) = 0.
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4. M(a) = Ma/aMa = 0 does not imply Ma = 0:
In fact, we have M〈t−c〉 ∼= K[[t]]〈t−c〉 as a K[t]-module. For c �= 0 we get
K[[t]]〈t−c〉 = K((t)) (since t /∈ 〈t − c〉) while K[[t]]〈t−c〉/〈t − c〉K[[t]]〈t−c〉 =
K((t))/〈t − c〉 = 0. We have {p | d̂p(M) �= 0} = {〈t〉} � {p | dp(M) �= 0} =
{〈t〉, 〈0〉} � SuppA(M) = SpecA.

5. M is flat over A. By 1. and 3. we cannot expect any continuity of dp(M) or
d̂p(M) on MaxA or on SpecA for flat A-modules.

6. The quasi-finite locus of A → A[[x]]/〈t − x〉 is not open in SpecA:
The quasi-finite locus {p ∈ SpecA | dp(M) < ∞} is SpecA � 〈0〉 by 1. and
2. Recall that if B is a ring of finite type over A, then the quasi-finite locus of
A → B is open by Zariski’s main Theorem (cf. [15, 10.122]).

7. The quasi-completed-finite locus of A → A[[x]]/〈t − x〉 is open in SpecA:
Let us call {p ∈ SpecA | d̂p(M) < ∞} the quasi-completed-finite locus. It is
SpecA in our example.
In general, if semicontinuity of d̂p(M) holds (Corollary 2.7), then the quasi-
completed-finite locus is open.

Example 2.4 The following example may be of interest for arithmetic and compu-
tational purposes. It goes along similar lines as Example 2.3.

Let A = Z, R = Z[[x]], and M = R/〈x − p〉, p ∈ Z a prime number. Since
R = lim←− Z[x]/〈x〉n we obtain M = lim←− Z/pn = Ẑ〈p〉, the ring of p-adic integers.

Now let 〈q〉 ∈ MaxZ.
If q �= p then q is a unit in Z〈p〉 hence in Ẑ〈p〉 and M ⊗Z Z/q = M/〈q〉M =
Ẑ〈p〉/qẐ〈p〉 = 0.
If q = p then M ⊗Z Z/p = Ẑ〈p〉/pẐ〈p〉 = Z/p.

Hence d〈q〉(M) = dimZ/q M ⊗Z Z/q is 0 if q �= p and 1 if q = p.
On the other hand, looking at the prime ideal 〈0〉 we get

M̂(〈0〉) = M⊗̂ZQ = Q[[x]]/〈x − p〉 = 0,

while

M(〈0〉) = M ⊗Z Q = Ẑ〈p〉 ⊗Z Q = Quot(Ẑ〈p〉)

has dimension d〈0〉(M) = dimQ Quot(Ẑ〈p〉) = ∞.
To see the last equality in the formula for M(〈0〉) one checks that the following

diagram has the universal property of the tensor product:

ˆ
p

i1
Quot( ˆ p ) = ( ˆ p )p

j2

i2 j1

.
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Here i1, i2 and j2 are the canonical inclusions and j1 is given as follows: if α, β ∈ Z,
p � β, then j1(

α
pmβ

) = 1
pm

α
β
, α

β
∈ Ẑ〈p〉 since p � β. The universality of the diagram

is easily seen. If T is a Z − algebra and φ : Ẑ〈p〉 → T and ψ : Q → Z are Z-
algebra homomorphisms then the morphism σ : (Ẑ〈p〉)p → T , given as σ(α/pm) =
φ(α)ψ(1/pm), p � α is the unique one, making the obvious diagram commutative.

2.3 Semicontinuity Over a 1-Dimensional Ring

In this section A will be Noetherian and M a finitely generated R-module (unless
we say otherwise). Then R = A[[x]] is Noetherian and M is finitely presented as
R-module. At the moment we can prove the semicontinuity of dq(M) on SpecA

in full generality only under certain assumptions on the irreducible components
of SuppR(M). This includes the case dimA = 1 where dimA denotes the Krull
dimension of A. The case of arbitrary Noetherain A is treated in the next section
under the assumption that the presentation matrix of M is algebraic.

In an important special case semicontinuity holds for arbitrary A:

Proposition 2.2 Let A be Noetherian and M a finitely generated R-module.

1. If SuppR(M) ⊂ V (〈x〉) then M is finitely generated over A and M̂(q) = M(q)

for all q ∈ SpecA. In particular semicontinuity of d̂p(M) = dp(M) holds at any
p ∈ SpecA.

2. If M is finitely generated as an A-module (in particular dp(M) < ∞ for p ∈
SpecA), then d̂p(M) ≤ dp(M) and d̂p(M) (as well as dp(M)) is semicontinuous
at any p ∈ SpecA.

Proof

1. Since V (AnnR(M)) = SuppR(M) ⊂ V (〈x〉), we have 〈x〉 ⊂ √
AnnR(M) and

there exists an m such that 〈x〉m ⊂ AnnR(M). We get a surjection

A[[x]]/〈x〉m → R/AnnR(M)

and since A[[x]]/〈x〉m is finitely generated over A this holds for R/AnnR(M)

too. Since M is finitely generated over R/AnnR(M) it is finitely generated over
A and hence finitely presented. By Lemma 2.1 there is an open neighborhood
U of p in SpecA such that dq(M) ≤ dp(M), q ∈ U. By Proposition 2.1.5,
M̂(q) = M(q) for all q ∈ SpecA, showing the claim.

2. Let m < m′ be two strictly positive integers and consider the natural surjective
maps

R −→ R/〈x〉m′ −→ R/〈x〉m.
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By the right exactness of the tensor product, they induce surjective maps

M −→ M/〈x〉m′
M −→ M/〈x〉mM.

and

M(p) = M ⊗A k(p) −→ M/〈x〉m′
M ⊗A k(p)

πm,m′ (p)−−−−−→ M/〈x〉mM ⊗A k(p).

Since M is finitely generated over A, all the modules appearing in the last
sequence are finite-dimensional k(p)-vector spaces, with dimk(p)(M(p)) =
dp(M) by definition. Since πm,m′(p) is surjective for all m < m′, the elements
of the inverse system {M/〈x〉mM ⊗A k(p)}m of finite-dimensional k(p)-vector
spaces have dimensions increasing with m and bounded above by dp(M). Thus
dimk(p)

(
M/〈x〉mM ⊗A k(p)

)
stabilizes for large m. Hence, for m large

M/〈x〉mM ⊗A k(p) = lim←−
m′

(M/〈x〉m′
M ⊗A k(p)) = M⊗̂Ak(p) = M̂(p).

This implies d̂p(M) = dimk(p) M̂(p) ≤ dp(M).

To see the semicontinuity of d̂p(M), we use the semicontinuity of dp(M) (by
Lemma 2.1). It follows that there exists an open neighbourhoodU of p such that the
sequence {dimk(q)

(
M/〈x〉mM ⊗A k(q)

)}m is bounded by dp(M) simultaneously for
all q ∈ U . Hence,

dq(M/〈x〉mM) = dimk(q)(M/〈x〉mM ⊗A k(q)) = dimk(q)(M̂(q)) = d̂q(M)

for a fixed large m and q ∈ U . Since M/〈x〉mM is finitely A-generated, Lemma 2.1
implies that dp(M/〈x〉mM) is semicontinuous, and so is d̂p(M).

The inequality d̂p(M) ≤ dp(M) of item 2. and its proof, as well as Example 2.6,
were suggested to us by the anonymous referee. Note that d̂p(M) = dp(M) for
p a maximal ideal (by Lemma 2.4), but that d̂p(M) < dp(M) may happen by
Example 2.7 for p not maximal.

Before we formulate the next result, we introduce some notations to be used
throughout this section. Consider a minimal primary decomposition of AnnR(M),

AnnR(M) = r∩
i=1

Qi ⊂ R.

SinceM is finitely generated overR, SuppR(M) = V (AnnR(M)) = r∪
i=1

V (Qi) and

dimM = dim SuppR(M).
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Let P1, . . . Ps ⊂ R be the minimal associated primes of 〈x〉. Since they
correspond via h : A ∼= R/〈x〉 to the minimal associated primes P̄1, . . . P̄s of A, we
have dimV (Pj ) ≤ dimA.

Lemma 2.6 For A Noetherian, M finitely generated over R and p ∈ SpecA the
following holds:

1. Let A′ be the reduction of A, R′ = A′[[x]] and M ′ the R′-module M ⊗R R′. Then
M̂ ′(p) ∼= M̂(p) and hence d̂p(M

′) = d̂p(M).
2. Let Q ⊂ R be an ideal. Then d̂p(M/QM) ≤ d̂p(M).
3. If Qi �⊂ np for some 1 ≤ i ≤ r , then d̂q(M) = d̂q(M/QM), with Q = ∩j �=i Qj ,

for q in some neighbourhood of p in SpecA.
4. If Qi ⊂ np and dimV (Qi) > dim(A/Qi ∩ A)p for some 1 ≤ i ≤ r , then

d̂p(M) = ∞.
5. Let U = SpecB ⊂ SpecA be an affine open neighbourhood of p and MB =

M ⊗A B the restriction of M to U . Then M̂B(q) = M̂(q) for all q ∈ U .

Proof

1. Since p ∈ SpecA contains the nilpotent elements, A′/p′ = A/p, where p′ is the
image of p in A′, and hence the residue field does not change if we pass from A

to A′. By Proposition 2.1.1 we have R̂′(p′) = R′⊗̂A′k(p) = k(p)[[x]] = R̂(p).

Consider a presentation Rp T−→ Rq → M → 0 of M . Applying ⊗RR′, we
get a presentation of M ′, R′p T−→ R′q → M ′ → 0. Apply ⊗̂Ak(p) to the first
resp. ⊗̂A′k(p) to the second exact sequence above. The sequences stay exact by
Corollary 2.1. Since (R̂(p))k = (R̂′(p′))k it follows that the canonical morphism
M → M ′ induces an isomorphism M̂(p) ∼= M̂ ′(p).

2. Since (M/QM)⊗̂Ak(p) = M⊗̂Ak(p)/Q(M⊗̂Ak(p)) by Corollary 2.1, the result
follows.

3. Qi �⊂ np means that np is not a point of V (Qi). Hence nq /∈ V (Qi) and Mnq =
(M/Q)nq for nq in some neighbourhood of np in V (〈x〉). The result follows
from Lemma 2.3.

4. Set R̄ := R/Qi , Ā := A/Qi ∩ A and M̄ := M/QiM . Then Qi ⊂ AnnR(M̄) ⊂√
(Qi) and dim R̄np = dim M̄np = dimV (Qi) > dim Āp by assumption.

Considering M̄ as R-module, we have M̄⊗̂Ak(p) = M̄(p)∧ = (M̄np/pM̄np)
∧

by Lemma 2.3. Since the R̄np-modules M̄(p) and its 〈x〉-adic completion M̄(p)∧
have the same Hilbert-Samuel function w.r.t. np, their dimension coincides (cf.
[7, Corollary 5.6.6]). Moreover, pR̄np is the annihilator of M̄np/pM̄np and
therefore dim M̄(p)∧ = dim R̄np/pR̄np .

We apply now [12, Theorem 15.1] to the map of local rings Āp → R̄np and get
that dim R̄np/pR̄np ≥ dim R̄np − dim Āp > 0 and hence dimk(p) M̄(p)∧ = ∞.

Then d̂p(M) = dimk(p) M(p)∧ = ∞ by 2. of this lemma.
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5. We may assume that B = Af for some f /∈ p. Since Aq = (Af )q for q ∈ U =
D(f ), we have k(q) = Af ⊗A k(q). Now Proposition 2.1.1 implies M̂Af (q) =
(M ⊗A Af )⊗̂Ak(q) = (M ⊗A Af ⊗A k(q))∧ = M(q)∧ = M̂(q).

Proposition 2.3 Let A be Noetherian, M a finitely generated R-module and fix
p ∈ SpecA. Let Q1, . . . ,Qr be the primary components of AnnR(M), which we
renumerate such that

I. V (Qi) ⊂ V (〈x〉) for 1 ≤ i ≤ k,
II. V (Qi) �⊂ V (〈x〉) for k + 1 ≤ i ≤ r,

and set QI := k∩
i=1

Qi and QII := r∩
i=k+1

Qi. Assume that either (a) V (QII ) = ∅
(i.e., k = r), or (b) dimV (QII ) > dimV (QII ∩ A) or (c) np is an isolated point of
V (〈x〉) ∩ V (QII ).

Then there is an open neighbourhoodU of p in SpecA such that d̂q(M) ≤ d̂p(M)

for all prime ideals q ∈ U.

Proof We set MI := M/QI M and MII := M/QIIM. Then AnnR(MI ) = QI

and AnnR(MII ) = QII . By Lemma 2.6.3 we may assume that Qi ⊂ np for all
1 ≤ i ≤ r .

We have SuppR(MI ) = V (QI ) ⊂ V (〈x〉). By Proposition 2.2 there is an open
neighborhoodU1 of p in SpecA such that

d̂q(MI ) ≤ d̂p(MI ), q ∈ U1. (2.1)

(a) If V (QII ) = ∅, then M = MI and the claim follows from (2.1).
(b) If dimV (QII ) > dimV (QII ∩ A) then dimV (Qi) > dim(A/Qi ∩ A)p for

some i and hence d̂p(M) = ∞ by Lemma 2.6.4, implying the claim.
(c) Now let np be an isolated point of V (〈x〉) ∩ V (QII ). Then there exists an open

neighbourhoodU2 ⊂ SpecA of p such that MI,nq = Mnq if q ∈ U2 \ {p}. Since
d̂q(M) = dimk(Mnq/qMnq)

∧ we get

d̂q(M) = d̂q(MI ), q ∈ U2 \ {p}. (2.2)

Using (2.1) and (2.2), we have d̂q(M) ≤ d̂p(MI ) for q ∈ U1 ∩ U2 \ {p} and by
Lemma 2.6.2

d̂p(MI ) ≤ d̂p(M). (2.3)

Hence d̂q(M) ≤ d̂p(M) for q ∈ U1 ∩ U2.

As a corollary we get the following theorem, which was already proved for
maximal ideals in A = k[t] in [6].
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Theorem 2.1 Let A be Noetherian, M a finitely generated R-module and p ∈
SpecA. If dimp(SuppA(M)) ≤ 1 then there is an open neighbourhood U of p in
SpecA such that

d̂q(M) ≤ d̂p(M) for all q ∈ U.

Proof By Lemma 2.5.3 we may assume that AnnA(M) = 0, such that SuppA(M) =
A. We may further assume that dimA = dimV (〈x〉) = 1 and d̂p(M) < ∞. Using
the notations from Proposition 2.3, we have dimV (QII ∩ A) ≤ 1 and by the proof
of Proposition 2.3(b) that dimV (QII ) ≤ 1. Hence, either V (QII ) = ∅, or np is an
isolated point of V (〈x〉) ∩ V (QII ). The result follows from Proposition 2.3.

Corollary 2.4 Let A = Z and let M be a finitely generated Z[[x]]-module, x =
(x1 · · · xn), given by a presentation

Z[[x]]r → Z[[x]]s → M → 0.

Denote by

Mp := M̂(〈p〉) = coker
(
Fp[[x]]r T̄−→ Fp[[x]]s)

if p ∈ Z is a prime number and by

M0 := M̂(〈0〉) = coker
(
Q[[x]]r T̄−→ Q[[x]]s)

the induced modules.

1. Fix a prime number p. If dimFp Mp < ∞ then dimFp Mp ≥ dimQ M0. Moreover,
for all except finitely many prime numbers q ∈ Z, dimFp Mp ≥ dimFq Mq .

2. If dimQ M0 < ∞ then dimQ M0 ≥ dimFq Mq for all except finitely many prime
numbers q ∈ Z, and hence “=” for all except finitely many prime numbers q ∈ Z.

The first part of statement 1. follows, since 〈0〉 is in every neighbourhood of p. In
particular dimQ M0 is finite if dimFp Mp is finite for some prime number p.

Remark 2.5 The corollary is important for practical computations in computer
algebra systems. For simplicity let I be an ideal in Z[[x]] generated by polynomials,
M = Z[[x]]/I , and Ip the image of I in Fp[[x]]. The dimension of Q[[x]]/I resp.
of Fp[[x]]/Ip, if finite, is equal to the dimension ofQ[x]〈x〉/I resp. of Fp[x]〈x〉/Ip .
These dimensions can be computed in the localizations Q[x]〈x〉 resp. Fp[x]〈x〉 by
computing a Gröbner or standard basis of I resp. of Ip w.r.t. a local monomial
ordering (cf. [7]). Such algorithms are implemented e.g. in SINGULAR [4]. Usually
the computations over Q are very time consuming or do not finish, due to extreme
coefficient growths, and therefore often modular methods are used. The above
corollary says that for all except finally many prime numbers p we have equality
dimQQ[x]〈x〉/I = dimFp Fp[x]〈x〉/Ip, and if this holds p is sometimes called
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a “lucky” prime. This fact can also be proved by Gröbner basis methods. More
interesting is however that dimQQ[x]〈x〉/I < ∞ if there exists just one p (lucky or
not) such that dimFp Fp[x]〈x〉/Ip < ∞ and that the first dimension is bounded by
the latter. This was stated in [13] without proof.

2.4 Henselian Rings and Henselian Tensor Product

In this section we recall some basic facts about Henselian rings and introduce
similarly to the complete tensor product a Henselian tensor product. For details
about Henselian rings see [15] or [9]. The Henselian tensor product is needed in
Sect. 2.5 for algebraically presented modules. We start with some basic facts about
étale ring maps.

Definition 2.3

1. A ring map φ : A −→ B is called étale if it is flat, unramified and of finite
presentation.2

2. φ is called standard étale if B = (A[T ]/F )G, F,G ∈ A[T ], the univariate
polynomial ring, F monic and F ′ a unit in B.

3. φ is called étale at q ∈ Spec(B) if there exist g ∈ B � q such that A −→ Bg is
étale.

The following proposition lists some basic properties of étale maps. The results can
be found in section 10.142 of [15].

Proposition 2.4

1. The map A −→ Af is étale.
2. A standard étale map is an étale map.
3. The composition of étale maps is étale.
4. A base change of étale maps is étale.
5. An étale map is open.
6. An étale map is quasi-finite.
7. Given φ : A −→ B and g1, . . . , gm ∈ B generating the unit ideal3 such that

A −→ Bgi is étale for all i then φ : A −→ B is étale.
8. Let φ : A −→ B be étale. Then there exist g1, . . . , gm ∈ B generating the unit

ideal such that A −→ Bgi is standard étale for all i.
9. Let S ⊂ A be a multiplicatively closed subset and assume that φ′ : S−1A −→

B ′ is étale. Then there exists an étale map φ : A −→ B such that B ′ = S−1B

and φ′ = S−1φ.

2φ is unramified if it is of finite type and the module of Kähler differentials ΩB/A vanishes. φ is of
finite presentation if B ∼= A[x1, . . . , xn]/〈f1, . . . , fm〉 as A-algebras.
3I.e., Spec(A) = ∪D(gi).
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10. Let φ′ : A/I −→ B ′ be étale for some ideal I ⊂ A. Then there exist an étale
map φ : A −→ B such that B ′ = B/IB and the obvious diagram commutes.

Definition 2.4 Let A be a ring and I ⊂ A an ideal. A is called Henselian with
respect to I if the following holds4 (Univariate Implicit Function Theorem):
Let F ∈ A[T ], the univariate polynomial ring, such that F(0) ∈ I and F ′(0) is a
unit modulo I . Then there exists a ∈ I such5 that F(a) = 0.

Next we associate to any pair (A, I), I ⊂ A an ideal, the Henselization Ah
I , i.e. the

“smallest” Henselian ring with respect to I , such that Ah
I ⊂ ÂI = lim←−

(
A/In

)
the

I -adic completion.

Definition 2.5

1. Let A be a ring and I ⊂ A an ideal. The ring

Ah
I = lim−→

(
B | A −→ B an étale ring map inducing A/I ∼= B/IB

)

is called the Henselization of A with respect to I .
2. The Henselization ofA[x],A any ring, x = (x1, . . . , xn), with respect to I = 〈x〉

is denoted by A〈x〉. We call A〈x〉 the ring of albegraic power series over A.

The Henselization has the following properties (cf. section 15.11 and 15.12 of [15]):

Proposition 2.5 Let A be ring and I ⊂ A an ideal.

1. Ah
I is Henselian with respect to Ih = IAh

I and A/Im = Ah
I /(I

h)m for all m.
2. A is Henselian with respect to I if and only if A = Ah

I .
3. If A is Noetherian then the canonical map A −→ Ah

I is flat.

4. If A is Noetherian then the canonical map Ah
I −→ ÂI is faithfully flat and ÂI is

the Ih-adic completion of Ah
I .

Remark 2.6 The definition of the Henselization implies that Ah
I is contained in the

algebraic closure of A in ÂI . If A is excellent6 then Ah
I is the algebraic closure of

A in ÂI . This is even true under milder conditions, see [9]. In this situation C〈x〉 is
called the ring of algebraic power series of C[[x]].

Next we prove a lemma which we need later in the applications.

4Note, that (similarly to the I -adic completion) the condition implies that I is contained in the
Jacobson radical of A. If we start with an ideal contained in the Jacobson radical then it is enough
to consider monic polynomials F in the definition.
5Note that a is uniquely determined by the condition a ∈ I , [9].
6For the definition of excellence see 15.51 [15]).
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Lemma 2.7 Let A be a ring and p ∈ Spec(A) a prime ideal. Let C = Ap, I = pC
and f1, . . . , fm ∈ Ch

I . Then there exists an étale map A −→ B such that

1. f1, . . . , fm ∈ B,
2. there exists a prime ideal q ∈ Spec(B) such that q ∩ A = p.

Proof By definition we have

Ch
I = lim−→

(
D | C −→ D étale inducing C/I = D/ID

)
.

We choose D from the inductive system above such that f1, . . . , fm ∈ D. Since
(C, I) is a local ring and C/I = D/ID, the ideal ID is a maximal ideal in D and
we have ID ∩ C = I . Using Proposition 2.4 (9) for the multiplikatively closed
system S = A � p we find an étale map A −→ B ′ such that D = S−1B ′. This
implies that f1, . . . , fm ∈ B ′

g for a suitable g ∈ S. Let B = B ′
g and q = ID ∩ B

then A −→ B is étale having the properties 1. and 2.

Next we define the Henselization of an A-moduleM with respect to an ideal I ⊂ A

similarly to the definition of the Henselization of A with respect to I .

Definition 2.6 Let A be a ring, I ⊂ A an ideal and M an A-module. The module

Mh
I = lim−→

(
M ⊗A B | A −→ B étale inducing A/I = B/IB

)

is called the Henselization of M with respect to I .

Lemma 2.8 Mh
I = M ⊗A Ah

I .

Proof The lemma follows since the direct limit commutes with the tensor product
(cf. 10.75.2 [15]).

Definition 2.7 Let A be a ring, R = A〈x〉, B an A-algebra and M an R-module.
We define the henselian tensor product of R and B over A as the ring

R ⊗h
A B := lim−→

(
C | B[x] −→ C étale inducing B = C/〈x〉C) = B〈x〉).

M⊗h
AB := lim−→

(
M⊗AC | B[x] −→ C étale inducing B = C/〈x〉C)=M⊗AB〈x〉).

The Henselian tensor product has similar properties as the complete tensor
product. Especially we obtain the following lemma.

Lemma 2.9 If A〈x〉p T−→ A〈x〉q → M → 0 is an A〈x〉-presentation of M then

M ⊗h
A B = coker

(
B〈x〉p T−→ B〈x〉q)

.

In particular R ⊗h
A k(p) = k(p)〈x〉 for p ∈ SpecA.
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Definition 2.8 Let A be a ring, R = A〈x〉 and M an R-module. We define for
p ∈ SpecA the R ⊗h

A k(p) = k(p)〈x〉-module

Mh(p) := M ⊗h
A k(p)

and call it the Henselian fibre of M over p. Moreover, we set

dh
p(M) := dimk(p) Mh(p).

2.5 Semicontinuity for Algebraically Presented Modules

Let A be Noetherian and M finitely generated as R = A[[x]]-module. Then M

is finitely R-presented and in this section we assume that M has an algebraic
presentation matrix. That is, there exists a presentaion

Rp T−→ Rq → M → 0

with T = (tij ) a q × p matrix such that tij ∈ A〈x〉, x = (x1, . . . , xn), the ring
of algebraic power series over A (cf. Definition 2.5), e.g. tij ∈ A[x]. Under this
assumption we shall prove the semicontinuity of d̂b(M) for b ∈ SpecA.

We set R0 = A〈x〉 and M0 = coker(Rp
0

T−→ R
p
0 ). Then using the 〈x〉-adic

completion we obtain R∧
0 = R and M∧

0 = M .

Lemma 2.10 Let B ⊃ A be an A-algebra, b ∈ SpecB and a = b ∩ A. Then

d̂a(M) < ∞ ⇔ d̂b(M⊗̂AB) < ∞ ⇔ dh
b(M0 ⊗h

A B) < ∞

and

d̂a(M) = d̂b(M⊗̂AB) = dh
b(M0 ⊗h

A B).

Proof M⊗̂AB is considered as an R⊗̂AB = B[[x]]-module andM0⊗h
AB asR0⊗h

A

B = B〈x〉-module. Therefore we have

d̂a(M) = dimk(a)(M⊗̂Ak(a))

d̂b(M⊗̂AB) = dimk(b)(M⊗̂AB⊗̂Bk(b))

dh
b(M0 ⊗h

A B) = dimk(b)(M0 ⊗h
A B ⊗h

B k(b))
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and

M⊗̂Ak(a) = coker(k(a)[[x]]p T̄−→ k(a)[[x]]q)
M⊗̂AB⊗̂Bk(b) = coker(k(b)[[x]]p T̄−→ k(b)[[x]]q)
M0 ⊗h

A B ⊗h
B k(b) = coker(k(b)〈x〉p T̄−→ k(b)〈x〉q)

with T̄ = (t̄ij ) and t̄ij the induced elements in k(a)[x] resp. k(b)[x].

If d̂b(M⊗̂AB) < ∞ there exists an N0 such that 〈x〉NM⊗̂AB⊗̂Bk(b) = 0 for
N ≥ N0 and hence

M⊗̂AB⊗̂Bk(b) = coker(k(b)[[x]])p/〈x〉N T̄−→ (k(b)[[x]])q/〈x〉N
= (

coker(k(a)[[x]]/〈x〉N)p
T̄−→ (k(a)[[x]]/〈x〉N)q

) ⊗k(a) k(b).

Since this holds for every N ≥ N0, we obtain d̂a(M) < ∞. Similarly we
can see that d̂a(M) < ∞ implies d̂b(M ⊗A B) < ∞ and in both cases we
obtain d̂a(M) = d̂b(M ⊗A B). This gives the first equality in the Lemma. Since
B〈x〉/〈x〉N = B[[x]]/〈x〉N we get the remaining claims.

Lemma 2.11 Let (A,m,k) be a local Noetherian Henselian ring and R a local
quasi-finite (i.e. dimk R/mR < ∞) and finite type A-algebra in the Henselian
sense.7 Then R is a finite A-algebra, i.e., finitely generated as an A-module.

Proof This is an immediate consequence of Proposition 1.5 of [10].

Corollary 2.5 Let (A,m,k) be a local Noetherian Henselian ring and R a local
and finite type A-algebra in the Henselian sense. If M is a finitely generated and
quasi-finite (i.e. dimk M/mM < ∞) R-module, then M is a finitely generated A-
module.

Proof Passing from R to R/AnnR(M) we may assume that AnnR(M) = 0. In this
case dimk M/mM < ∞ implies dimk R/mR < ∞. Lemma 2.11 implies that R is
a finitely generated A-module. Since M is finitely generated over R it follows that
M is a finitely generated A-module.

Theorem 2.2 Let A be a Noetherian ring, R = A[[x]], x = (x1, . . . , xn), and M

a finitely generated R-module admitting a presentation

Rp T−→ Rq → M → 0

7R is an A-algebra of finite type in the Henselian sense if R = A〈t1, . . . , ts〉 for suitable
t1, . . . , ts ∈ R.
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with algebraic presentation matrix T = (tij ), tij ∈ A[x] or, more generally, ∈ A〈x〉.
Fix p ∈ SpecA with d̂p(M) < ∞. Then there is an open neighbourhood U of p in
SpecA such that

d̂q(M) ≤ d̂p(M) for all q ∈ U.

Proof Recall that R0 = A〈x〉 is the Henselization of A[x] with respect to 〈x〉
and M0 = coker(Rp

0
T−→ R

p

0 ). Denote by Ah the henselization of the local
ring Ap with respect to its maximal ideal. We set Rh := Ah〈x〉 and8 Mh :=
coker

(
(Rh)p

T−→ (Rh)q
) = M0 ⊗h Rh. Then Lemma 2.10 implies d̂p(M) =

dh
p(Mh) and Corollary 2.5 that Mh is a finitely generated Ah-module (Rh is a finite

type Ah-algebra in the Henselian sense). Lemma 2.7 implies that there is an étale
neighbourhood π : SpecB → SpecA of p such that M0 ⊗h

A B = coker
(
(R0 ⊗h

A

B)p
T−→ (R0 ⊗h

A B)q
)
is a finitely generated B-module and M0 ⊗h

A B ⊗h
B Ah = Mh.

Choose b ∈ SpecB such that b ∩ A = p. This is possible because of Lemma 2.7.
Corollary 2.5 and Lemma 2.1 imply that there is an open neigbourhood Ũ ⊂ SpecB

of b such that for c ∈ Ũ we have dc(M0 ⊗h
A B) ≤ db(M0 ⊗h

A B). Since π is étale
it is open (Proposition 2.4), U := π(Ũ) is an open neighbourhood of p in SpecA

and for any q ∈ U ∩ SpecA there exists a c ∈ Ũ ∩ SpecB with c ∩ A = q. From
Lemma 2.10 we obtain d̂q(M) = dc(M0 ⊗h

A B) ≤ db(M0 ⊗h
A B) = d̂p(M).

The important property of Henselian local rings is that quasi-finite implies finite
(in the sense of Corollary 2.5). Examples of Henselian local rings are quotient rings
of the algebraic power series rings A = k〈y〉/I over some field k, and analytic
k-algebras.9

If A is a complete local ring containing a field, then any finitely generated R-
module M can be polynomially presented and semicontinuity of d̂p(M) holds, as
we show now. We start with the following proposition, based on the Weierstrass
division theorem.

Proposition 2.6 Let (A,m,k) be a Noetherian complete local ring containing k,
R = A[[x]], x = (x1, . . . , xn), and M a finitely generated R-module such that
dimk M/mM < ∞. Let J = AnnR(M). Then there exist f1, . . . , fs , s ≥ n, with
the following properties:

1. fi ∈ A[x] for all i.
2. fn−i+1 ∈ A[x1, . . . , xi ] is a Weierstrass polynomial with respect to xi for i =

1, . . . , n.
3. J = 〈f1, . . . , fs〉A[[x]].

8Note that Rh is the Henselization of Ap[x] with respect to the maximal ideal 〈p, x〉.
9An analytic k-algebra is the quotient k{y}/I , y = (y1, . . . , ys), of a convergent power series ring
over a complete real-valued field k (cf. [8]). E.g., if k is any field with the trivial valuation, then
k{y} = k[[y]] is the formal power series ring; if k ∈ {R,C}, then k{y} is the usual convergent
power series ring.
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Proof To prove the statements we use induction on n, the number of the variables
x. The assumption implies that dimk(R/J + mR) < ∞, i.e. the ideal J + mR

is primary to the maximal ideal 〈x〉 + mR of R. This implies that xb
n ∈ J + mR

for some b. Therefore there exists g ∈ J , g = xb
n + f with f ∈ mR. We know

by Cohen’s structure theorem that A = k[[y]]/I for suitable variables y and an
ideal I ⊂ k[[y]]. We can apply in the following the Weierstrass preparation and
division theorem to representatives in k[[y, x]] and then take residue classes mod
I . Obviously g is xn-general. The Weierstrass preparation theorem implies g =
uh, u a unit in R, and h ∈ A[[x1, . . . , xn−1]][xn] a Weierstrass polynomial with
respect to xn. To simplify the notation we assume that g is already a Weierstrass
polynomial with respect to xn. Setting R0 = A[[x1, . . . , xn−1]], the Weierstrass
division theorem (cf. [8, Theorem I.1.8]) says that for any f in R there exist unique
h ∈ R and r ∈ R0[xn] such that f = hg + r , degxn

(r) ≤ b − 1. In other words, as
R0 modules we have

R = R · g ⊕ R0 · xb−1
n ⊕ R0 · xb−2

n ⊕ · · · ⊕ R0. (*)

We may thus assume that J = 〈g1, . . . , gr 〉 with g1 = g and gi ∈ R0[xn] with
degxn

(gi) ≤ b − 1.
If n = 1 then R0 = A and the claim follows from (*). If n ≥ 2 then M is a

finitely generated R0-module since

• R/〈g〉 is finite over R0 and
• g ∈ AnnR(M), i.e. M is a finitely generated R/〈g〉-module.

Now let J0 = AnnR0(M). By induction hypothesis there are f2, . . . , fl , l ≥ n, such
that

1. fi ∈ A[x1, . . . , xn−1] for all i.
2. fn−i+1 ∈ A[x1, . . . , xi] is a Weierstrass polynomial with respect to xi for i =

1, . . . , n − 1.
3. J0 = 〈f2, . . . , fl〉R0.

Now denote by f1 be the remainder of the division of g successively by f2, . . . , fn

and by fl+i the remainder of gi by f2, . . . , fn for i > 1. These are polynomials in
x1, . . . , xn. Then f1, . . . , fs satisfy the conditions 1. to 3. of the proposition.

Corollary 2.6 Let (A,m,k) be a Noetherian complete local ring containing k,
R = A[[x]] and M a finitely generated R-module such that dimkM/mM < ∞.
Then M is polynomially presented.

Proof Assume M has a presentation matirx T = (gij ), gij ∈ A[[x]]. Let
J = AnnR(M). The assumption implies that dimk R/(J + mR) < ∞. Using
Proposition 2.6 we obtain that R/J is a A-finite and J = 〈f1, . . . , fs〉 with
fn−i+1 ∈ A[x1, . . . , xi ] a Weierstrass polynomial with respect to xi for i =
1, . . . , n, n ≤ s. This implies that M has a presentation as R/J -module with
presentation matrix T having entries in R/J . Now we can divide representatives
in R of the entries of T successively by the Weierstrass polynomials fn−i+1,
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i = 1, . . . , n. The remainders are polynomials in A[x] representing the entries of
T , which proves the claim.

Let us collect the cases for which we proved that semicontinuity of d̂p(M) holds.

Corollary 2.7 Let A be Noetherian and M a finitely generated R-module. Let p ∈
SpecA and assume that one of the following conditions is satisfied:

1. M is finitely generated as A-module, e.g. SuppR(M) ⊂ V (〈x〉), or
2. dimA = 1, or
3. M is algebraically R-presented, or
4. (A,m,k) is a complete local ring containing a field.10

Then there is an open neighbourhood U ⊂ SpecA of p such that d̂q(M) ≤ d̂p(M)

for all q ∈ U. In particular, the quasi-completed-finite locus {p ∈ SpecA | d̂p(M) <

∞} is open.

Proof Statement 1. follows from Proposition 2.2, statement 2. from Theorem 2.1
and 3. from Theorem 2.2. Statement 4. follows from 3. and Corollary 2.6.

We do not know if semicontinuity of d̂p(M) holds in general for A Noetherian of
any dimension and M finitely but not necessarily algebraically presented over R.

Remark 2.7 For completeness we recall cases where semicontinuity of the usual
fibre dimension dp(M) on SpecA holds if M is an arbitrary finitely presented R-
module, for different (local) rings A and R.

• (A,m,k) local Noetherian Henselian, R a finite type A-algebra in the Henselian
sense (by Corollary 2.5 and Lemma 2.1).

• A = k{y}/I an analytic k-algebra and R = k{y, x}/J with Ik{y, x} ⊂ J (by
Greuel et al. [8, Theorem I.1.10]).

• A a Noetherian complete local ring containing a field, R = A[[x]]. This is a
special case of the previous item.We mention it, sinceR is of the form considered
in this paper.

• In the complex analytic situation with A = C{y}/I , y = (y1, . . . , ys), and R =
C{y, x}/J , IC{y, x} ⊂ J , x = (x1, . . . , xn), we have the following stronger
statement: A → R induces a morphism of complex germs f : (X, 0) → (Y, 0),
(X, 0) = V (J ) ⊂ (Cn × C

s, 0), (Y, 0) = V (I) ⊂ (Cs, 0) and f the projection.
For a sufficiently small representative f : X → Y , M induces a coherent OX-
module F on X and dm(M) < ∞, m the maximal ideal of A = OY,0, means
that the fibre dimension over 0 ∈ Y is finite, i.e. d0(F) := dimCF0/mF0 < ∞.

Then, for sufficiently small suitable X and Y , is f | SuppF is a finite morphism
and f∗F is a coherentOY -module (cf. [8, Theorem I.1.67]). It follows that

dy(F) := dimC f∗F ⊗OY,y
C =

∑

z∈f −1(y)

dimCFz/myFz

10By Cohen’s structure theorem this is equivalent to A ∼= k[[y]]/I , k a field.
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is upper semicontinuous at 0 ∈ Y , i.e. 0 has an open neighbourhoodU ⊂ Y such
that dy(F) ≤ d0(F) for all y ∈ U.

In the above cases M is finite over A if it is quasi-finite over A and hence
semicontinuity of dp(M) holds by Lemma 2.1. Example 2.3 shows that for A an
affine ring and R = A[[x]] semicontinuity of dp(M) does in general not even hold
for polynomially presented modules.

2.6 Related Results

Instead of families of power series let us now consider families of algebras of finite
type, a situation which is quite common in algebraic geometry. We treat the more
general case of families of modules.

Let A be a ring, R = A[x]/I of finite type over A and M a finitely presented
R-module. M is called quasi-finite at n ∈ SpecR over A if dimk(p) Mn/pMn < ∞
with p ∈ SpecA lying under n. M is called quasi-finite over p ∈ SpecA if it is
quasi-finite at all primes n ∈ SpecR lying over p, and M is quasi-finite over A if it
is quasi-finite at all primes n ∈ SpecR. The following proposition is a generalization
of results from [15], where the case of ring maps is treated.

Proposition 2.7 Let A be a ring, R an A-algebra of finite type over A, M a finitely
presented R-module and f : SpecR → SpecA the induced map of schemes.

1. The following are equivalent:

a. M is quasi-finite over A,
b. dp(M) = dimk(p) M(p) = ∑

n∈f −1(p) dimk(p) Mn/pMn < ∞ ∀p ∈ SpecA,
c. The induced map A → S := R/AnnR(M) is quasi-finite.

2. (Zariski’s main theorem for modules). The quasi-finite locus of M

{n ∈ SpecR | M is quasi-finite at n}

is open in SpecR.

Proof

1. (a) ⇒ (b): We have to show that the support of M(p) is finite. By [15,
Lemma 29.19.10], if R = A[x]/I is a ring of finite type and quasi-finite over
A, the induced map f : SpecR → SpecA has finite fibres R(p) = R ⊗A k(p) =
k(p)[x]/I (p). It follows that 2. holds if M is a ring of finite type over A.

In the general case let I = AnnR(M). Then S = R/I is of finite type over
A, M is finitely presented over S and hence Supp(S) = Supp(M). Moreover, let
J (p) be the annihilator of the finitely generated R(p)-module M(p) satisfying
V (J (p)) = Supp(M(p)). Since R(p) is Noetherian and dimk(p) Mn(p) <

∞ by assumption, we have nNMn(p) = 0 for some N by Nakayama’s
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lemma. Hence nN ⊂ J (p)Rn(p) and dimk(p) Rnfl(p)/J (p)Rnfl(p) < ∞. In
general, the annihilator is not compatible with base change, hence I (p) is in
general different from J (p). But for a finitely presented module the annihilator
coincides up to radical with a Fitting ideal, and Fitting ideals are compatible
with base change. It follows that

√
J (p)Rn(p) = √

I (p)Rn(p) and therefore
dimk(p) Rn(p)/I (p)Rn(p) = dimk(p) Sn(p) < ∞, which means that A → S

is quasi-finite at n ([15, Definition 10.121.3]). Since this holds for each n ∈
SpecR, the map A → S is quasi-finite and by [15, Lemma 29.19.10] the set
Supp(M(p)) = Supp(S(p)) is finite.

(b) ⇒ (c): If dp(M) < ∞ for all p ∈ SpecA, then dimk(p) Mn/pMn < ∞
for all n and p under n. Then A → S is quasi-finite by the previous step.

(c) ⇒ (a): If A → S is quasi-finite then dimk(p) Sn(p) < ∞ for all p and n
over p. Since Mn(p) is finitely presented as Sn(p)-module, dimk(p) Mn(p) < ∞
for all p and n over p and M is quasi-finite over A.

2. In the first and third step of 1. we proved dimk(p) Sn(p) < ∞ if and only if
dimk(p) Mn(p) < ∞, and hence M is quasi-finite at n iff A → S is quasi-
finite at n. It follows from a version of Zarisk’s main theorem as proved in [15,
Lemma 10.122.13] that the set {n ∈ Spec S | A → S is quasi-finite at n} is open
in SpecS and thus of the form U ∩ S with U open in SpecR. If n ∈ V =
SpecR \ SpecS then Mn(p) = 0, hence M is quasi-finite at n ∈ V . Thus, the
quasi-finite locus of M is the open set U ∪ V .

Example 2.5 In the situation of Proposition 2.7, although the quasi-finite locus of
M is open in SpecR, we cannot expect semicontinuity of dp(M) on SpecA. We
give an example showing that the vanishing locus of dp(M) is not open in SpecA:
Let K be an algebraically closed field, A = K[y], R = A[x] and M = R/〈xy − 1〉.
Then M is quasi-finite over A but dp(M) is not semicontinuous since dp(M) = 0 if
p = 〈y〉 and dp(M) = 1 otherwise.

By Corollary 2.7.4, semicontinuity of d̂p(M) holds for M a finitely generated
A[[x]]-module if (A,m) is a complete Noetherian local ring containing a field under
the assumption that SuppA(M) = A but SuppR(M) �⊂ V (〈x〉) (the difficult case).
The question arose whether completeness was necessary. The following example
shows that this is not the case.

Example 2.6 We give an example of a non-complete local ring (A,m) and a finitely
presented R = A[[x]]-module M which is also a finitely presented A-module with
SuppR(M) being not contained in V (〈x〉) and AnnA(M) = 0.
Let k be a field and t1, t2 independent variables. Let A = k[t1]〈t1〉[[t2]] and R =
A[[x]]with x a single variable. The ringA is local with maximal idealm = 〈t1, t2〉A
and not complete. LetM = R/〈x−t2〉. ThenAnnR(M) = 〈x−t2〉 and SuppR(M) =
V (〈x − t2〉 �⊂ V (〈x〉) and AnnA(M) = 〈x − t2〉∩A = (0). Since M is polynomially
presented, d̂p(M) is semicontinuous.

Let M be a finitely presented R = A[[x]]-module and also finitely presented as
an A-module with A Noetherian. In Proposition 2.2 we have shown the semiconti-
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nuity of dp(M) and d̂p(M) on SpecA, as well as the inequality d̂p(M) ≤ dp(M).

The following example shows that d̂p(M) < dp(M) may happen.

Example 2.7 A modification of Example 2.3 shows that d̂p(M) �= dp(M) may
happen for A a power series ring. Let A = K[[t]], K a field, R = A[[x]], and
let M = R/〈t − x〉 ∼= K[[t]]. For the two prime ideals 〈0〉 and 〈t〉 of A we get:

k(〈0〉) = K((t)), k(〈t〉) = K , M(〈0〉) ∼= K[[t]] ⊗K[[t ]] K((t)) = K((t)),
M(〈t〉) ∼= K and d〈0〉(M) = d〈t〉(M) = 1. Hence dp(M) is semicontinuous (even
continuous) on SpecA as predicted in Remark 2.7, third item.

M̂(〈0〉) ∼= K((t))[[x]]/〈t −x〉 = 0, M̂(〈t〉) ∼= K and d̂〈0〉(M) = 0, d̂〈t〉(M) = 1.
Hence dp(M) is semicontinuous on SpecA as predicted by Corollary 2.7. Note that
M is finitely presented as A-module and we have d̂〈0〉(M) < d〈0〉(M).

3 Singularity Invariants

3.1 Isolated Singularities and Flatness

Recall that a local Noetherian ring (A,m) is said to be regular ifm can be generated
by dimA elements. A Noetherian ring A is said to be regular if the local ring Ap is
regular for all p ∈ SpecA. For arbitrary Noetherian rings the regular locus RegA :=
{p ∈ SpecA | Ap is regular} need not be open in SpecA. However, RegA is open if
A is a complete Noetherian local ring ([12, Corollary of Theorem 30.10]) and the
non-regular locus {p ∈ SpecA | Ap is not regular} is closed.

However, in our situation of families of power series, the notion of formal
smoothness is more appropriate than that of regularity. Formal smoothness is a
relative notion and refers to a morphism, while regularity is an absolute property
of the ring. The notions are related as follows. Let (A,m) be a local ring containing
a field k. If A is formally smooth over k (w.r.t. the m-adic topology) then A is
regular and the converse holds if the residue field A/m is separable over k (see
Remark 3.1). Hence formal smoothness of A over k coincides with regularity if k
is a perfect field. The notions also coincide for arbitrary k if A is the quotient ring
of a formal power series ring over k by an ideal (cf. Lemma 3.2).

We recall now basic facts about formal smoothness. For details and proofs see
[12] and [11].

Definition 3.1 Let A be a ring, B an A-algebra defined by φ : A −→ B and I

an ideal in B. The A-algebra B is called formally smooth with respect to the I -
adic topology (for short B is I -smooth over A) if for any A-algebra C and any
continuous11 A-algebra homomorphism u : B −→ C/N , N an ideal in C with

11Here we consider B with the I -adic topology and C/N with the discrete topology; u is
continuous if u(Im) = 0 for some m.
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N2 = 0, there exist σ : B −→ C such that πσ = u.

B
u

σ

C/N

A

φ

v
C

π

If I = 0 then B is called a formally smooth A-algebra.

Remark 3.1

1. A formally smooth map of finite presentation is smooth ([15] Proposi-
tion 10.137.13).

2. A[x], x = (x1, . . . , xn), is smooth over A ([15] Lemma 10.137.4).
3. A[[x]] is 〈x〉-smooth over A ([12] page 215).
4. Let (A,m) be a local ring containing a field k.

a. A ism-smooth over k iff A is geometrically regular, i.e. A⊗k k′ is a regular
ring for every finite extension field k′ of k ([12, Theorem 28.7 ]).

b. Assume that A/m is separable over k. Then A is m-smooth over k iff A is
regular ([12] Lemma 1, page 216).

We now generalize example 1 on page 215 of [12].

Lemma 3.1 Let A be a ring, B a A-algebra, I an ideal in B and B̂ the I -adic
completion of B. φ : A −→ B is I -smooth iff φ̂ : A −→ B̂ is I B̂-smooth.

Proof Assume that B is I -smooth over A and consider the following commutative
diagram:

B
û

σ̂

C/N

A

φ̂

v
C

π

with N2 = 0. We have to prove that there exists σ̂ such that πσ̂ = û. Since û is
continuous there exist m such that û(InB̂) = 0. Let i : B −→ B̂ be the cononical
map such that φ̂ = iφ. The I -smoothness ofB implies that there exists σ : B −→ C

such that σπ = ûi. û(InB̂) = 0 implies σ(Im) ⊂ N . Since N2 = 0 we obtain
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σ(I 2m) = 0. We obtain the following commutative diagram:

B

î2m

B

i

i2m
B/I 2m

u2m

σ2m

C/N

A
v

φ

C

π

Now we define σ̂ = σ2mî2m. This proves that φ̂ : A −→ B̂ is I B̂-smooth.
Now assume that φ̂ : A −→ B̂ is I B̂-smooth. Consider the following

commutative diagram:

B
u

σ

C/N

A

φ

v C

π

with N2 = 0. We have to prove that there exists σ such that πσ = u. Since φ̂ :
A −→ B̂ is I B̂-smooth there exists σ̂ : B̂ −→ C with πσ̂ = û. Now we define
σ = σ̂ i and obtain πσ = u.

The following important theorem is due to Grothendieck ([12] Theorem 28.9).

Theorem 3.1 Let (A,m) be a local ring and (B, n) a local A-algebra. Let B̄ =
B/mB and n̄ = n/mB. Then B is n-smooth over A iff B̄ is n̄-smooth over A/m and
B is flat over A.

Definition 3.2 Let A be a ring and B an A-algebra defined by φ : A −→ B. We
define the smooth locus of φ by

Sm(φ) := {P ∈ Spec(B)|Aφ−1(P ) −→ BP is P -smooth}.

and the singular locus of φ by

Sing(φ) := Spec(B) � Sm(φ).

Remark 3.2 Let A be a ring and B an A-algebra defined by φ : A −→ B. The
Theorem 3.1 of Grothendieck implies that

Sm(φ) ={P ∈ Spec(B) | AQ −→ BP ,Q = φ−1(P ), is flat
and BP /QBP is PBP /QBP − smooth over k(Q)}.
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Now let k be a field, k[[x]], x = (x1, · · · , xn), the formal power series ring over
k and I an ideal in 〈x〉k[[x]]. If I is generated by f1, . . . , fm we denote by Jac(I)

the Jacobian matrix (∂fj /∂xi) and by Ik(J ac(I)) the ideal generated by the k × k-
minors of Jac(I) (which is independent of the chosen generators fj ). The following
lemma gives equivalent conditions for the maximal ideal 〈x〉 ∈ B = k[[x]]/I to be
contained in the smooth locus Sm(φ) of the map φ : k → B (Remark 3.2).

Lemma 3.2 If dimk[[x]]/I = d the following are equivalent.

1. k[[x]]/I is 〈x〉-smooth over k.
2. k[[x]]/I is regular.
3. Id(J ac(I)) = k[[x]] (Jacobian criterion).
4. k[[x]]/I ∼= k[[y1, . . . , yd ]].
Proof The equivalence of 1. and 2. follows from [12, Lemma 1, p. 216], the
equivalence of 3. and 4. is the inverse mapping theorem for formal power series.12

Obviously 4. implies 2. From [12, Theorem 29.7, p. 228 in] we deduce that 2.
implies 4.

Remark 3.3 Part of the lemma can be generalized by extending the proof of
Theorem 30.3 in [12] as follows:
Let P be a prime ideal in k[[x]] containing I = 〈f1, . . . , fm〉 and m the maximal
ideal of A = k[[x]]P /Ik[[x]]P . Then Id(J ac(I)) = k[[x]]P implies that A is
m-smooth over k (or geometric regular by Remark 3.1).

We use the Jacobian criterion to define the singular locus of ideals in power series
rings over a field.

Definition 3.3

1. If B = k[[x]]/I is pure d-dimensional (i.e. dimB/P = d for all minimal primes
P ∈ SpecB) we define the singular locus of B (or of I ) as

Sing(B) = V (I + Id(J ac(I)).

2. If B is not pure dimensional we consider the minimal primes P1, . . . , Pr of B.
Then B/Pi is pure dimensional and we define the singular locus of B as

Sing(B) =
⋃r

i=1
Sing(B/Pi) ∪

⋃

i �=j
V (Pi) ∩ V (Pj ),

which is a closed subscheme of SpecB. The points in SpecB\Sing(B) are called
non-singular points of B.

3. We say that k[[x]]/I (or I ) has an isolated singularity (at 0) if the maximal ideal
〈x〉 is an isolated point of Sing(k[[x]]/I) or if 〈x〉 is a non-singular point.

12Given f1, . . . , fn ∈ k[[x1, . . . , xn]] then det (
∂fi

∂xj
) is a unit iff k[[x1, . . . , xn]] = k[[f1, . . . , fn]]

([8, Theorem I.1.18]).
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Remark 3.4 Let i : k −→ B be the obvious inclusion. Then Sing(B) = Sing(i)
whenever k is perfect, but not in general. A counterexample is given for instance,
by letting char(k) = p > 0, a ∈ k \ kp and B = k[[x1, x2]]/〈xp

1 − ax
p
2 〉.

Note that Sing(B) carries a natural scheme structure given by the Fitting ideal I +
Id(J ac(I)) ⊂ k[[x]] if B is pure d-dimensional. In general we endow Sing(B) with
its reduced structure.

Now let us consider families. Let A be a Noetherian ring, F1, . . . , Fm ∈
〈x〉A[[x]], I ⊂ A[[x]] the ideal generated by F1, . . . , Fm and set B := A[[x]]/I .
We describe now the smooth locus of the map φ : A → B along the section
σ : SpecA → SpecB, p �→ np = 〈x, p〉, of Specφ.

For p ∈ SpecA denote by Fi(p) the image of Fi in k(p)[[x]]. Note that
F1(p), . . . , Fm(p) generate the ideal Î (p) ⊂ k(p)[[x]], and that we have (by
Lemma 2.3.3) for the completed fibre of φ over p

B̂(p) = (Bnp/pBnp)
∧ = k(p)[[x]]/Î(p).

The maximal ideals of the local rings of the fibre Bnp/pBnp and the completed fibre

B̂(p) are generated by np/p = 〈x〉. Assume that φ : A → B is flat. Then the
theorem of Grothendieck says

np ∈ Sm(φ) ⇔ Bnp is np-smooth over Ap

⇔ Bnp/pBnp is 〈x〉-smooth over k(p).

Lemma 3.3 With the above notations assume that φ : A → B is flat. Denote by

Singσ (φ) := {np ∈ SpecB | Bnp is not np-smooth over Ap}

the singular locus of φ along the section σ . Then

Singσ (φ) = {np ∈ SpecB | B̂(p) is not regular}.

Proof Bnp/pBnp is 〈x〉-smooth over k(p) iff (Bnp/pBnp)
∧ = k(p)[[x]]/Î(p) is

〈x〉-smooth over k(p) by Lemma 3.1. The claim follows from Lemma 3.2.

Since we assumed B to be flat over A, we have dim B̂(p) = dimBnp − dimAp

(by Matsumura [12, Theorem 15.1]). If φ is of pure relative dimension d (i.e. B̂(p)
is pure d-dimensional for all p) then Lemma 3.2 implies

Singσ (φ) = {np ∈ SpecB | Îd (J ac(I))(p) is a proper ideal of k(p)[[x]]},

where Jac(I) is the Jacobian matrix (∂Fj/∂xi) and Id(J ac(I)) ⊂ A[[x]] the ideal
defined by the d × d-minors.
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3.2 Milnor Number and Tjurina Number of Hypersurface
Singularities

Let k be a field and f ∈ k[[x]], x = (x1, · · · , xn) a formal power series. The most
important invaraints are the Milnor number μ(f ) and the Tjurina number τ (f ),
defined as

μ(f ) = dimk k[[x]]/j (f ),

τ (f ) = dimk k[[x]]/〈f, j (f )〉,

where j (f ) = 〈∂f /∂x1, . . . , ∂f /∂xn〉 is the Jacobian ideal of f . We say that f has
an isolated critical point (at 0) resp. an isolated singularity (at 0) if μ(f ) < ∞ resp.
τ (f ) < ∞. Note that τ (f ) < ∞ iff k[[x]]/〈f 〉 has an isolated singularity in the
sense of Definition 3.3.

Remark 3.5 Let char(k) = 0. It is proved in [3, Theorem 2] that for f ∈ 〈x〉,
μ(f ) < ∞ ⇔ τ (f ) < ∞ but it is easy to see that this is not true in positive
characteristic. We have always τ (f ) ≤ μ(f ) and τ (f ) = μ(f ) ⇔ f ∈ j (f ). If
k = C and if f ∈ 〈x〉2 has an isolated singularity, this is equivalent to f being
quasi homogeneous by a theorem of K. Saito (see [14]). His proof generalises to
any algebraically closed field of characteristic zero (cf. [2, Theorem 2.1]).

We consider now families of singularities. Let A be a Noetherian ring and F ∈
R = A[[x]]. Set

j (F ) := 〈∂F/∂x1, . . . , ∂F/∂xn〉

and for p ∈ SpecA denote by F(p) the image of F in k(p)[[x]]. Then the Milnor
number

μ(F(p)) = dimk(p) k(p)[[x]]/j (F (p))

and the Tjurina number

τ (F (p)) = dimk(p) k(p)[[x]]/〈F(p), j (F (p))〉

are defined, and we deduce now the semicontinuity of μ(F(p)) and τ (F (p)).

Proposition 3.1 Let A be Noetherian, F ∈ R = A[[x]] and p ∈ SpecA. Assume
that V (j (F )) ⊂ V (〈x〉) resp. V (〈F, j (F )〉) ⊂ V (〈x〉) (as sets), or dimA = 1,
or F ∈ A[x], or A is a complete local ring containing a field. Then μ(F(p)) and
τ (F (p)) are semicontinuous at p ∈ SpecA.

Proof Set M = R/j (F ) resp. M = R/〈F, j (F )〉, then SuppR(M) = V (j (F ))

resp. SuppR(M) = V (〈F, j (F )〉). Using Lemma 2.3 we get d̂q(M) = μ(F(q))

resp. d̂q(M) = τ (F (q)) for q ∈ SpecA. The result follows from Corollary 2.7.
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Corollary 3.1 Let F ∈ Z[x], p ∈ Z a prime number and denote by Fp the image
of F in Fp[[x]] and by F0 the image of F in Q[[x]].

If μ(Fp) is finite, then μ(Fp) ≥ μ(F0) and μ(Fp) ≥ μ(Fq) for all except finitely
many prime numbers q ∈ Z. In particular, if μ(Fp) is finite for some p then μ(F0)

is finite.
If μ(F0) is finite, then μ(F0) ≥ μ(Fq) (and hence “=”) for all except finitely

many prime numbers q ∈ Z.
The same holds for the Tjurina number.

Example 3.1 We illustrate the corollary by a simple example. Let F = F0 = xp +
x(p+1) + yq with p, q prime numbers. Then μ(F0) = (p − 1)(q − 1), μ(Fp) =
p(q − 1) ≥ μ(F0) while μ(Fq) = ∞. Moreover, for any prime number r �= p, q

we have μ(Fr) = μ(F0).

3.3 Determinacy of Ideals

Let I be a proper ideal of k[[x]] and f1, . . . , fm a minimal set of generators of I . I
is called contact k-determined if for every ideal J of k[[x]] that can be generated by
m elements g1, . . . , gm with gi −fi ∈ 〈x〉k+1 for i = 1, . . . ,m, the local k-algebras
k[[x]]/I and k[[x]]/J are isomorphic. I is called finitely contact determined if I is
contact k-determined for some k. It is easy to see (cf. [6, Proposition 4.3]) that these
notions depend only on the ideal and not on the set of generators.

The ideal I or the ring k[[x]]/I is called a complete intersection if
dimk[[x]]/I = n − m and an isolated complete intersection singularity (ICIS)
if it has moreover an isolated singularity.

Set f = (f1, . . . , fm) ∈ k[[x]]m and denote by 〈∂f /∂x1, . . . , ∂f /∂xn〉 the sub-
module of k[[x]]m, generated by the m-tuples ∂f /∂xi = (∂f1/∂xi, . . . , ∂fm/∂xi),
i = 1, . . . , n. We define

TI := k[[x]]m
/

Ik[[x]]m + 〈∂f /∂x1, . . . , ∂f /∂xn〉.

If I is a complete intersection, then τ (I) := dimk TI is called the Tjurina
number of I. For a complete intersection TI is concentrated on the singular locus
of k[[x]]/I (Definiton 3.3) and τ (I) is finite iff I has an isolated singularity. This
follows from [6, Lemma 3.1], where it is shown that the ideals I + In−m(Jac(I))

and Annk[[x]](TI ) have the same radical.
The module TI is used in the following theorem.

Theorem 3.2 ([6], Theorem 4.6) Let I ⊂ k[[x]] be a proper ideal and k infinite.
Then the following are equivalent:

(i) I is finitely contact determined.
(ii) dimk TI < ∞.

(iii) R/I is an isolated complete intersection singularity.
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If one of these condition is satisfied then I is contact (2 dimk TI − ord(I) + 2)-
determined, where ord(I) = max{k | I ⊂ 〈x〉k}. The implications (iii) ⇔ (ii) ⇒
(i) hold for any field k, as well as (i) ⇒ (ii) for hypersurfaces.

Proposition 3.2 Let A be Noetherian, F1, . . . , Fm ∈ 〈x〉A[[x]]. Let I ⊂ A[[x]]
be the ideal generated by F1, . . . , Fm and Î (p) ⊂ k(p)[[x]], p ∈ SpecA, the ideal
generated by F1(p), . . . , Fm(p) ∈ k(p)[[x]].

Assume that V (I + In−m(Jac(I))) ⊂ V (〈x〉) (as sets), or dimA = 1, or Fi ∈
〈x〉A[x] for i = 1, . . . ,m, or A is a complete local ring containing a field.

Then any p ∈ SpecA has an open neighbourhood U ⊂ SpecA such that for all
q ∈ U dimk(p) T

Î (p)
≥ dimk(q) T

Î (q)
.

Proof By Greuel and Pham [6, Lemma 3.1] Supp(TI ) = V (I + In−m(Jac(I))).
The claim follows from Corollary 2.7.

3.4 Tjurina Number of Complete Intersection Singularities

We show first that being a regular sequence in a flat family of power series in R =
A[[x]] is an open property.

Proposition 3.3 Let A be a Noetherian ring, Fi ∈ 〈x〉R, i = 1, . . . ,m and M a
finitely generated R-module. For p ∈ SpecA we denote by Fi(p) the image of Fi in
R̂(p) = k(p)[[x]] and by Finp the image of Fi in Rnp(p) (cf. Definition 2.2).

(i) If p ∈ SpecA then F1(p), . . . , Fm(p) is an M̂(p)-sequence iff F1np, . . . , Fmnp

is an Mnp(p)-sequence.
(ii) Let F1, . . . , Fm be an M-sequence and let M/〈F1, . . . , Fm〉M be A-flat. Then

F1(p), . . . , Fm(p) is an M̂(p)-sequence for all p ∈ SpecA.
(iii) Let p ∈ SpecA and F1(p), . . . , Fm(p) an M̂(p)-sequence. If M/〈F1, . . . , Fm〉

M is flat over A, then there exists an open neighbourhood U of p in SpecA

such that F1(q), . . . , Fm(q) is a M̂(q)-sequence for all q in U .

Proof Set M0 = M,Mi = M/〈F1, . . . , Fi 〉M and consider for i = 1, . . . ,m the
exact sequence

0 → Ki−1 → Mi−1
Fi−→ Mi−1 → Mi → 0, (*)

with Ki−1 the kernel of Fi .

(i) By Lemma 2.3.2 R̂(p) = Rnp(p)
∧ and M̂i(p) = Mi,np(p)

∧ for all i and hence

Fi(p) = F∧
inp

: (Mi−1,np(p))
∧ → (Mi−1,np(p))

∧.
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Since Mi,np(p) is a finite Rnp-module we have (by Atiyah and Macdonald [1,

Theorem 10.13]) M̂i(p) = Mi,np(p)⊗Rnp
R∧
np
. Moreover R∧

np
is faithfully flat

over the local ring Rnp ([12, Theorem 8.14]). Hence Finp : Mi−1,np(p) →
Mi−1,np(p) is injective iff Fi(p) : M̂i−1(p) → M̂i−1(p) is injective.

(ii) By assumption Ki−1 = 0 for i = 1, . . . ,m and M/〈F1, . . . , Fm〉M is A-
flat. By Lemma 2.4 the Jacobson radical of R contains 〈x〉 and F1, . . . , Fm

is a regular sequence contained in the Jacobson radical. Hence Mi is A-flat
and Mi,np is Ap-flat for all i (repeated application of [12, Theorem 22.2]).
Tensoring 0 → Mi−1,np → Mi−1,np → Mi,np → 0 with ⊗Apk(p) we get
an exact sequence 0 → Mi−1,np(p) → Mi−1,np(p)) → Mi,np(p) → 0 for
i = 1, . . .m by [12, Theorem 22.3]. Now apply (i).

(iii) Localizing the exact sequence (*) at np we get an exact sequence of finite
Rnp-modules. Taking the 〈x〉-adic completion, the sequence stays exact and
we see that (Ki−1,np)

∧ = ker
(
F∧

inp
: (Mi−1,np)

∧ → (Mi−1,np)
∧)

. By

Lemma 2.3 M̂i−1(p) = (Mi−1,np)
∧ ⊗Ap k(p) and Fi(p) = F∧

inp
⊗Ap k(p), and

by assumption Fi(p) is injective. We apply now repeatedly [12, Theorem 22.5
] to Ap → R̂np = Ap[[x]] and to F∧

inp
to get that (Ki−1,np)

∧ = Ki−1,np ⊗Rnp

R∧
np

= 0 and that (Mi,np)
∧ = Mi,np ⊗Rnp

R∧
np

is flat over Ap for all i. Since
R∧
np

is faithfully flat over Rnp this implies Ki−1,np = 0 and that Mi,np is flat
over Ap.

The support of the R-module Ki−1 is closed and hence (Ki−1)
∧
nq

= 0 for q in an
open neighbourhoodU of p in SpecA. Moreover the flatness of M/〈F1, . . . , Fm〉M
implies that M∧

nq
/〈F1, . . . , Fm〉M∧

nq
is Aq-flat. Applying [12, Theorem 22.5 ] now

to F∧
inq

: (Mi−1)
∧
nq

→ (Mi−1)
∧
nq

we get that M̂i−1(q) → M̂i−1(q) is injective and

that F1(q), . . . , Fm(q) is an M̂(q)-sequence.

Proposition 3.4 Let A be a Noetherian ring and I ⊂ 〈x〉A[[x]] an ideal generated
by F1, . . . , Fm, such that A[[x]]/IA[[x]] is A-flat. For p ∈ SpecA denote by Î (p) ⊂
k(p)[[x]] the ideal generated by F1(p), . . . , Fm(p).

1. If Î (p) is a complete intersection, then Î (q) is a complete intersection for q in an
open neighbourhood of p in SpecA.

2. Assume that Î (p) is an ICIS and that the hypotheses of Proposition 3.2 are
satisfied. Then Î (q) is an ICIS with τ (I (p)) ≥ τ (I (q)) for q in an open
neighbourhood of p in SpecA.

Proof

1. We may assume that F1(p), . . . , Fm(p) is a k(p)[[x]]-sequence. By Proposi-
tion 3.3 F1(q), . . . , Fm(q) is a k(q)[[x]]-sequence, hence Î (q) is a complete
intersection, for q in an open neighbourhood of p in SpecA.

2. follows from Proposition 3.2 since for Î (q) ⊂ k(q)[[x]] a complete intersection
dimk(q) T

Î(q)
is the Tjurina number of Î (q).
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