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Abstract Picking is a core process of logistics. The challenge of acquiring personnel
for operations and handling steadily changing product ranges can be tackled by part-
wise automated picking systems to create a cooperative working environment for
human pickers and picking robots. This chapter is motivated to enable a stepwise
transformation frommanual picking to highly automated picking processes by coop-
erative and learning robots. The main goal is to guarantee reliable order fulfilment by
implementationof a feedback-loopbetweenhumans and robots for error handling and
to gather data for machine learning algorithms to increase the performance of object
detection. In this chapter a concept for measurement and evaluation of system perfor-
mance is introduced ensuring successful processing of picking orders and training of
picking robots to improve their ability for object detection. It is based on the amount
of picking orders, the picking capacity of humans and robots, and the probability
for successful automated order picking considering the training effort during system
design. The proposed concept can be used for overall capacity planning as well as
for operational control of picking processes.

1 Introduction

Modern supply chains are challenged by an increasing complexity and short product
life cycles. Therefore, picking as central logistic process during order fulfilment must
adapt to changing product ranges.Another rising challenge is the lack of personnel for
manual picking processes. Therefore, automated picking systems handling steadily a
changingproduct range becomemore andmore important. In recent years, using tech-
nical progresses in robotics general concepts for automated picking are developed
(Zou et al. 2019; Krug et al. 2016) or applied for specific use cases (Mester andWahl
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2019). Thereby, the general concepts focus on automation of movement or manip-
ulation of objects and not on an integrated handling of heterogenous and dynamic
article ranges. Verbeet et al. (2019) propose a cooperative picking system to guar-
antee reliable automated picking by robots realized by a feedback-loop improving
robots’ ability for object detection by human support.

Classic methods for capacity planning and performance evaluation to control
and design must be extended for partwise automated systems. The adaptive process
model proposed by Verbeet et al. (2019) for a proposed cooperative picking system
considers humans to support robots in addition to their normal workload to enable
the learning process. In this system, not successful object detection during picking is
the start of a learning process and therefore desired if overall order fulfilment is still
guaranteed. The system is to be designed in such a way that all picking orders are
completed, and the capacity of humans and robots is utilized. Furthermore, picking
robots should reach their performance limits to trigger the proposed cooperative
learning process to increase the picking performance of the whole system in the long
term.

This chapter introduces a concept to calculate such an equilibrium of capacity
for a partial automated picking system based on the adaptive process model. The
calculation can be used to carry out a general capacity assessment based on available
capacities and a pool of picking orderswhile allocating these picking orders to human
pickers and robots by mathematical optimization. The overall system efficiency of
picking robots’ ability for object detection can be evaluated by an average probability

for a successful object detection. For this, the threshold
−
PBreak is calculated defining

an average value for successful object detection of a single article.
The remainder of this chapter is organized as follows. In the second chapter,

related work from the fields of existing robotic picking systems as well as planning
and evaluation of order picking systems is discussed. This review shows the lack of
a concept considering capacity during evaluation and design of cooperative partwise
automated picking systems. The adaptive process model for an automated cooper-
ative picking system is described in the third chapter. The fourth chapter proposes
evaluation concepts for overall capacity planning, a preselection for order assignment
and a calculation approach of a capacity-based working point. These concepts are
discussed in fifth chapter and in the final chapter this paper is closed by a conclusion
containing a brief summary and further research.

2 Related Work

Grosse et al. (2017) mention the following planning problems for picking systems:
layout design (structure and dimension of shelfs), storage assignment (allocation of
items to storage positions), zoning (assignment of working area to pickers), order
batching (consolidation or splitting of picking orders), routing (sequence of picking
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positions and routing), and technical equipment (supporting equipment). In this
paper, the problem of order assignment is added.

Many research activities focus on batching, sequencing and routing in order
picking systems with multiple pickers (Scholz et al. 2017) and Chabot (2018) shows
order picking is influenced most by facility layout, storage assignment policy and
routing strategy. Jane and Laih (2005) improve utilization and completion time of
a synchronized zone manual order picking system by a heuristic solving a natural
cluster model. Yu and de Koster (2009) define order batching and zoning of the
picking area using a queuing network approximation model. Bukchin et al. (2012)
batch orders in a dynamic finite-horizon environment to minimize order tardiness
and overtime costs of pickers using aMarkov decision process-based approach to set
an optimal decision-making policy. Lin et al. (2016) use Particle Swarm Optimiza-
tion to solve the problems of order batching and picker routing. Zhang et al. (2017)
present an approach to solve the on-line order batching and sequencing problemwith
multiple (manual) pickers using a hybrid rule-based algorithm minimizing turnover
time (completion time of an order). In addition, they present a review about previous
work about order batching. Pinto and Nagano (2020) solve the Optimized Billing
Sequencing (order fulfilment) and Optimized Picking Sequence (batching, route
planning) problems by combination of two genetic algorithms. Valle and Beasley
(2019) discuss approaches using queueing theory, simulation, mathematical opti-
mization and heuristics for system analysis, design optimization, and operations
planning and control.

Henn (2015) is considering order assignment. The task of order assignment is
strongly connected to workload balancing. In fast picking environments demand
cannot be taken as known resulting in the requirement of shorter execution times of
picking orders and a dynamicworkload balancing (deKoster et al. 2007).Vanheusden
et al. (2017) show a necessity to balance workload within a picking system not only
in long-term range but also within a day or during a shift due to the steady rising
requirement of flexibility. A reliable forecast is necessary to balance workload. van
Gils et al. (2017) provide an overview of various time series forecasting models for
predicting the workload within a picking system and indicators for measurement
of accuracy of forecasting results. In van Gils (2019) different planning problems
considering various real-life features to match demand and resource allocation are
combined. Tu et al. (2019) focus on workload balancing within an order picking
system by storage assignment. Merschformann et al. (2018) show that order assign-
ment has themajor impact on throughput of a picking systemusing a robotic transport
system. Chen et al. (2017) combine different strategies of order sequencing, order
release and storage assignment to balance workload and capacity.

Molnár (2004) suggests an integrated concept for planning a picking system by a
genetic algorithm solving a constraint programming model followed by a simulation
to estimate the number of pickers and picking schedule considering time constraints
while minimizing total costs. Hwang and Cho (2006) plan a warehouse by mini-
mizing costs considering throughput and storage space with a concept to measure
travel time of transporters for manual picking and using a simulation model to define
the necessary number of transporters. Seyedrezaei et al. (2012) present a dynamic
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mathematical model for the order picking planning problemmaximizing order fulfil-
ment considering product life, customer importance, probabilistic demand, and back-
order strategy. Kłodawski and Jachimowski (2013) propose a concept for using an ant
algorithm for planning a picking system considering various parameters but doesn’t
provide a definition for an evaluation function.

Amechanism to evaluate a picking system is the basis for planning and operational
decisions. A qualitative approach for evaluation of a picking system is a Balanced
Scorecard (Heine andWenzel 2013). In contrast, VDI describes more than 350 KPIs
for a quantitative evaluation of logistics processes (VDI 2007). Many quantitative
concepts evaluate a picking system’s performance by order fulfilment. Chabot (2018)
uses order lead time for evaluation. Gong et al. (2010) define a framework to evaluate
different storage and order picking policies by a DEA model considering total costs
and service level. Brynzér et al. (1994) present an evaluation methodology using
zero-based analysing of manual picking processes. Dallari et al. (2009) describe a
design methodology for picking systems measuring performance by response time,
picking rate and number of pickers. Pan and Wu (2012) evaluate the efficiency of a
multi-picker system by estimation of the number of picking items per time to avoid
inaccuracies during measurement of travel distance or travel time due to conges-
tion. Yu and de Koster (2009) use mean throughput time of an arbitrary order as
measurement of efficiency. Lamballais et al. (2017) evaluate the performance of a
Robotic Mobile Fulfilment System (RMFS) that realizes a parts-to-picker environ-
ment by measuring maximum order throughput, robot utilization, and order cycle
time. Hwang and Cho (2006) evaluate a system by transportation time of transporters
for manual picking.

The mathematical concepts mentioned so far mainly minimize used time and
travelled distance. Grosse et al. (2017) point out time to be still the most important
indicator to evaluate the outcome of an order picking system. A review presented
by Gu et al. (2010) shows amongst others the evaluation of performance by analytic
models considering travel time or service time. Jane and Laih (2005) measure the
improvement of completion time, Bukchin et al. (2012) use a measurement by slack,
i.e. comparison of an order’s picking time and its remaining time to supply. Zou et al.
(2019) minimize the total time needed to pick items of an order. Manzini et al. (2007)
evaluate performance of order picking by travel distance. Hsieh and Huang (2011)
show how strategies of storage assignment, order batching and picker routing affect
the overall performance also measured by travel distance Lin et al. (2016). measure
the total picker routing distance. In Hernandez et al. (2017) the evaluated metrics
are travel distance and travel time and Pinto and Nagano (2020) also combine these
metrics by maximizing order portfolio billing and minimizing total picking time
and travel distance. In Seyedrezaei et al. (2012) the degree of order fulfilment is
maximized.

Hanson et al. (2018) and Jaghbeer (2019)mention the categories throughput, order
lead time, availability, flexibility, quality, training time, resource utilization, costs,
and ergonomics to evaluate performance of robotic picking systems. Jaghbeer (2019)
states no studies using these categories for robot-to-parts picking systems exist.
Even considering further technical and conceptual progress in automated picking,
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robots will depend on humans in order picking systems. Therefore, an efficient setup
of an operational human–robot picking system needs a reliable human–machine-
interaction (Azadeh et al. 2017). Bonini et al. (2019) propose a method to distribute
various tasks among humans and robots within a warehouse to use synergies in
human–machine-interaction. Hoffman (2019) describes the successful coordination
of humans and robots as robot collaborative fluency measured by specific metrics for
idle time for humans and robots each, concurrent activity, functional delay, and inter-
action between objectives.Within RMFS a lot of research about cooperation of trans-
port robots delivering shelfs with articles to pickers located at static picking stations
exists (Zou et al. 2019; Valle & Beasley 2019; Hanson et al. 2018). Implications for
humans within a cooperative human–robot picking environment are discussed by
Lee et al. (2017). An overview of different types of co-working (cell, coexistence,
synchronized, cooperation, collaboration) canbe found atBender et al. (2016).RMFS
can be implemented with approaches for navigation in a warehouse. Some research
on navigation can be found in Nguyen et al. (2016) or Hernandez et al. (2017). Maga-
zino realizes a picking robot capable of travelling to shelves, picking specific articles
(shoe boxes) and delivering them to a transfer station (Mester andWahl 2019).Within
this system robots and humans work in parallel within a joint area. Bormann et al.
(2019) show a buckling arm robot mounted on a mobile platform detecting objects
by a camera system. They state the need for an adequate amount of training samples
to enable a reliable object detection. The collection of these samples is automated by
an object recording station collecting colored 3d point clouds. Furthermore, different
systems for bin picking (Martinez et al. 2015) or shelf picking (Liang et al. 2015;
Zhang et al. 2016; Zhu et al. 2016; Wahrmann et al. 2019) are proposed. Gripping of
complex formed articles is discussed by Liu et al. (2019) and Kozai and Hashimoto
(2018) calculate the risk for collision in case of different objects in a picking scene.
Verbeet et al. (2019) describe a cooperative human–robot picking system using an
integrated feedback-loop to improve the ability of object detection of robots. The
following section explains this concept in detail.

3 Cooperative Picking System

Rieder and Verbeet (2019) present an adaptive process model to realize a cooperative
picking system containing an Application-Phase and a Learning-Phase. This model
was extended by Verbeet et al. (2019) by an Adjustment-Phase and a Cooperation-
Phase as well as by a conceptual picking system describing its components and their
interactions. The model is shown in Fig. 1. Within the Learning-Phase models for
object detection are created and improved using image data recorded in a controlled
environment as well as data from operational processes. This phase is decoupled
from operational order picking within the Application-Phase where humans and
robots work in parallel within a picking environment. A picking robot is supposed
to successfully grip and withdraw from a storage location after a successful object
detection. In case of an unsuccessful object detection it tries to find a solution on its
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Fig. 1 Adaptive process model for picking-robots (Verbeet et al. 2019)

own by predefined options during the Adjustment-Phase, e.g. by moving its camera
to a different position. If this is not successful, the Cooperation-Phase is triggered
calling a human picker (Emergency Call) to support the robot by picking the article
and generating feedback for an improvement of object detection. This feedback
contains image data gathered from the operative situation at the shelf by the robot’s
camera and information added by the human picker (article-ID, position of article
defined by a bounding box) to enable training.

The process model can be realized using an agent-based system architecture,
whose components are shown in Fig. 2. A Warehouse-Managemen-System (WMS)
is responsible for administration of inventory data and allocation of picking orders.
Human pickers and picking robots cooperatively process assigned orders, whereby
human pickers are interactingwith IT systems and picking robots bywearables (Kong
et al. 2019). Furthermore, a Picture Recording Machine is used for efficient and
controlled image recording (Rieder and Verbeet 2019). These images are stored on a
data server and are used for training of models for object detection by a computation
cluster. Communication is realized by MQTT enabling topic controlled publishing
and receiving of FIPA-conform Agent Communication Language (ACL) messages.
Interaction patterns define the sequence ofmessages between components and embed
it into the picking processes.

Each article can be successfully detected by a picking robot with a probability of
POD. An average probability is introduced to evaluate picking robots’ performance
for successful object detection. Theworking points PBreak (EffortRobot =BenefitRobot),
PHuman (ErrorRobot = ErrorHuman), and PImprove (Epoch-� = δLimit) are defined. This
probability describes the efficiency of object detection but not the overall perfor-
mance of the system. Regarding the overall system performance, the capacity of
human pickers and picking robots and the effort for Emergency Calls resulting from
unsuccessful object detectionmust be considered. The assignment of orders to human
pickers and picking robots during the interaction pattern “Picking Order” is of major
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Fig. 2 Picking system to realize the adaptive process model according to Verbeet et al. (2019)

importancewithin this capacitive evaluationbecause it enablesworkloadbalancing. It
is realized by a one-stage auction process arranged according toContractNet Protocol
(FIPA 2001) allocation orders depending on the effort for order fulfilment measured
by time and using current workload, order lead time and duration of probably arising
Emergency Calls.

The adaptive process model must reserve capacity to allow the feedback-loop
to improve object detection. Therefore, an equilibrium between order fulfilment and
improvement must be found, i.e. a working point must be defined at which fulfilment
of all picking orders is guaranteed but robots are free to cause Emergency Calls to
gather operational data. In the following chapter, a calculation for such an equilibrium
is presented to setup picking capacity and control order assignment ensuring order
fulfilment while maximizing robots’ workload to trigger Emergency Calls.

4 System Evaluation

The general approach is a capacitive evaluation of the performance of a picking
system. It can be used for proactive capacity planning or operational control of order
assignment. Moreover, an approach for an overall performance evaluation of picking
robots’ ability for object detection is proposed according to the classification of
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Verbeet et al. (2019) using a minimal probability of object detection Break to define
an efficient working point for picking robots.

4.1 Capacity Planning of Picking System

According to the adaptive process model picking orders can be fulfilled by humans
and robots in parallel. The overall picking performance of a system is reduced by the
robots’ dynamic learning process respectively by Emergency Calls. The following
calculation enables the evaluation if a specific order assignment, i.e. an allocation
of picking orders to human pickers and picking robots, allows the execution of all
orders with the existing capacity. Basis for this calculation is a demand forecast for
a time interval, e.g. one shift, containing articles and their number of picks, whereby
this forecast is divided into two subsets for humans and robots each:

DF =
∑

Article, Forecast

PicksArticle, Forecast (1)

DF = SubsetRobot + SubsetHuman

=
∑

Article, Robot

PicksArticle, Robot+
∑

Article, Human

PicksArticle, Human (2)

During the processing of orders from SubsetRobot, unsuccessful object detection
can trigger an Emergency Call leading to a time effort for human (LEC,H) and robot
(LEC,R). This effort is assumed to be constant for a picking system and can be
evaluated from empirical data (Verbeet et al. 2019). The expected total effort for
human pickers and picking robot is the sum of the effort for a single Emergency Call
multiplied with the probability for an unsuccessful object detection weighted by the
number of picks from SubsetRobot:

LEC,H,SR =
∑

Article, Robot

(
PicksArticle, Robot · LEC,H · (

1 − POD,Article
))

(3)

LEC,R,SR =
∑

Article, Robot

(
PicksArticle,Robot · LEC,R · (

1 − POD,Article
))

(4)

A picking capacity for human pickers (CH) and picking robots (CR) is calculated
by multiplying an individual picking rate (picks per time unit) depending on ware-
house organisation and picking environment with the number of humans respectively
robots:
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CH = PickingRateSingleHuman · NumberHuman (5)

CR = PickingRateSingleRobot · NumberRobot (6)

In addition, an effective working time (WT) without breaks, charging or technical
down time within the time interval of the forecast is defined. The two subsets must
be defined in such a way that they can be fulfilled with the existing picking capacity:

CH · WT − LEC,H,SR

WT
≥ SubsetHuman (7)

CR · WT − LEC,R,SR

WT
≥ SubsetRobot (8)

To enable a picking system to fulfil all picking orders the effective picking capacity
of all humans and robots reduced by the capacity to handle Emergency Calls must be
greater than or equal to the demand forecast. Therefore, the following equilibrium is
defined:

CH · WT − LEC,H,SR

WT
+ CR · WT − LEC,R,SR

WT
≥ DF (9)

The linear optimization model from Fig. 3 is based on the Eqs. (1)–(9) and calcu-
lates the subsets. The goal is to maximize the workload of robots and humans subject

Fig. 3 Calculation of subsets by linear programming in OPL
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to capacity restrictions and total order fulfilment. Therefore, robots are assigned as
many picking orders as possible to learn from resulting Emergency Calls. The model
is programmed in OPL using OPL-Studio 12.8.0.0 (IBM 2020).

The picking system is modelled by the constant input parameters working time
WT, theoretical picking capacity (C_R and C_H) and a set of articles each possessing
a probability for successful object detection POD. Constraints are the capacity restric-
tions from Eqs. (7) to (8). The subsets are defined by the additional variables
PicksRobot and PicksHuman defining the number of picks of an article within its
corresponding subset. After introducing these variables, order fulfilment can also be
defined as constraint by matching the sum of PicksRobot and PicksHuman against
an article’s picks within D_F.

4.2 Preselection for Order Assignment

The equilibrium defined by Eq. (5) can also be used for a preselection during order
assignment. Two variants are introduced: the generation of a list of articles which

may be assigned to a robot and the calculation of a threshold
−
POD for the expected

probability for successful object detection during order picking.

4.2.1 Preselection by Article List

If the articles of a picking order are part of SubsetRobot, robots are considered by
the WMS during order assignment process. There is no need for a robot-specific
assignment: Offering many human-only orders will stepwise increase their workload
(order queue). When orders accessible by robots are offered, this workload will
increase their effort values increasing the probability robots will win the auction.
The effect of this mechanism is shown in Fig. 4.

It assumes the initial forecast DF in total is reliable within working time WT
but does not consider the variation of DemandReal over time. Therefore, it must be
encountered by a feedback control during operation. At first, an initial calculation
of subsets is using a linear smoothed total demand DF for WT as DemandCalculation,0.
By a rolling recalculation which is based on the remaining working time and the
difference of executed orders and original forecast new subsets are defined. In each
recalculation a new POD for an article can also be considered. These recalculations
are heavily affected by the rolling time span: the smaller the time span, the more
effective is the matching of forecast and real demand. In contrary, the system is not
allowed to trigger many Emergency Calls and learning is limited. Greater time spans
allow higher delay during order fulfilment but enable a higher amount of Emergency
Calls and thereby more input data for learning.

In Fig. 4 recalculations for the time values t1, t2 und t3 are shown. Even if all
existing orders are fulfilled at t1, the number of executed orders C1 is beneath the
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Fig. 4 Concept for a rolling calculation of subsets for a preselection before order assignment

calculated DemandCalculation,0 resulting in lower capacity for Emergency Calls and
“pulling” OrderFulfilment upwards. The same effect can be observed at t2, whereby
actually a real backlog of picking orders exists. At t3, the number of executed orders
is above the last recalculation DemandCalculation,2 and more capacity for Emergency
Calls is considered during the calculation of subsets, although the backlog still exists.

The question arises why a preselection is necessary during an order assignment
by an auction which inherently should balance the workload. One reason is the
variation of demand during WT. If an order’s deadline for fulfilment is the end
of WT, a statistical approach is sufficient because temporary backlog induced by
Emergency Calls can be caught up over time. But if too much capacity is bound by
Emergency Calls and due times for picking orders exist, there must be a regulating
mechanism. Free capacity at the end of WT resulting from this mechanism can be
used for learning orders described in Verbeet et al. (2019) to further improve object
detection. A problem according to this mechanism can arise from the calculation of
subsets by the linear program. Its solution is not unique, and articles can occur rarely
in a subset. This effect could be avoided by further constraints or some higher meta
control of the optimizing.



52 M. Rieder and R. Verbeet

4.2.2 Preselection by Threshold

The forecast DF is defined as a set of picks, i.e. no connection between picks and

articles exists and the subsets are abstract volumes of picks. A threshold
−
PThreshold is

calculated according to the expected probability of object detection for the articles

of SubsetRobot and is compared with
−
POrder before the initial call for bids during order

assignment. However, the POD of a single article can be lower than
−
PThreshold. In

general,
−
P is defined as the arithmetic mean of object detection POD weighted with

the set of picks for a set of articles as shown in Eq. (10). Thereby, Eqs. (3) and (4)
can be defined by using a constant value for object detection:

−
P =

∑

Article

(
PicksArticle∑

Article PicksArticle
· POD,Article

)
(10)

LEC,H,SR = SubsetRobot · LEC,H ·
(
1 − −

PSubset, Robot

)
(11)

LEC,R,SR = SubsetRobot · LEC,R ·
(
1 − −

PSubset, Robot

)
(12)

The linear programshown inFig. 3 ismodifiedbydefining a subset as a set of picks.
Using the Eqs. (11) and (12) the article-specific POD is replaced by a constant value.
This value is minimized by the goal function. The equilibrium from Eq. (5) is still a
constraint forcing the calculated POD to be the smallest value allowing an allocation
of subsets. However, the goal function loses its linearity by this modification and
therefore the optimization model is solved by Constraint Programming (using CP)
in OPL-Studio. This also makes a modification by “dexpr” and a scaling-factor of
100 necessary because this method only accepts integers. The resulting optimization
model is shown in Fig. 5.

At recalculation the set of executed picks and the remaining working time are
updated. If there are more executed orders than expected, more capacity for Emer-

gency Calls is released,
−
PThreshold is reduced, and robots are assigned more picking

orders. In contrast, if execution is beneath the expected value, P: −
Threshold must be

increased to raise picking performance by reducing the chance of triggering Emer-
gency Calls. This approach is using a general POD enabling the handling of articles
with a weak POD by picking robots. On the other hand, control of operational order
fulfilment is weaker as picks are treated independent from articles.
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Fig. 5 Calculation of
−
PThreshold by linear programming in OPL

4.3 Definition of Working Point for System Efficiency

Verbeet et al. (2019) introduce different thresholds to evaluate object detection of an
article. PBreak is of major importance for real applications defining an equilibrium
of effort for Emergency Calls and successful picks by robots. But to evaluate the
efficiency of robots the overall system performance must be considered. A system
can work in an efficient way even if the probabilities of object detection for single
articles are less than PBreak. Consequently, an average probability of object detection
for all articles is defined as well as an equilibrium between effort and benefit of using
robots.

The Eqs. (13) and (14) calculate an expected effort for humans (LEC,H,F) and
robots (LEC,R,F) for the forecast DF. In Eq. (15) an equilibrium is defined equalizing
the picking capacity of robots reduced by their effort due toEmergencyCalls, i.e. their
effective picking capacity and the effort of human pickers for handling Emergency
Calls:

LEC,H,F = DF · LEC,H ·
(
1− −

P

)
(13)

LEC,R,F = DF · LEC,R ·
(
1− −

P

)
(14)

LEC,H,F

WT
= CR · WT − LEC,R,F

WT
(15)
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Therefore, by P; − the capacity human pickers must reserve for error handling is
defined. However, this does not give any information about the ability of the picking
system to fulfil all picking orders. This is guaranteed by meeting Eq. (9). In this case
−
P matches

−
PBreak and can be calculated by transforming Eq. (15):

−
PBreak = 1 − CR · WT2

DF · (LEC,R + LEC,H)
(16)

Comparing
−
PBreak and

−
PReal the efficiency of picking robots can be evaluated,

whereby
−
PReal is calculated from real probabilities for object detection POD:

−
PBreak >

−
PReal: Human pickersmust expendmore capacity for handling Emergency

Calls than robots can compensate by executing successful picks, i.e. the effective
picking capacity of the system would be higher without robots.

−
PBreak = −

PReal: The effort of human pickers for handling Emergency Calls and
contribution of successful picks executed by robots equals each other. At this point,
the system benefits from the collection of data to improve the ability of object

detection of the picking robots resulting in an increasing
−
PReal.

−
PBreak <

−
PReal: Picking robots are working efficient, meaning the effort of humans

and robots for handling Emergency Calls is smaller than robots’ contribution by
executed picks. Consequently, the effective picking capacity is increased by the
deployment of robots.

5 Discussion

The presented calculation approaches specify the mechanism for order assignment
of the interaction pattern “Picking Order” and enable a capacitive evaluation of the
picking system. However, the static input variables are problematic, i.e. the time
requirements for calculating the effort value during order assignment and the empir-
ical loss values for an Emergency Call LEC,H and LEC,R. These assumptions make
sense for a sufficiently large picking system that is evaluated over a longer period, so
the real expectancy values match with the values of the assumptions. In systems with
strongly fluctuating travel times, assuming constant effort can lead to an unaccept-
able weighting of POD. Therefore, the mentioned input variables should be calculated
dynamically. For the calculation of the duration of an emergency call, standardized
time assessments of processes such as MTM (Britzke 2010) can be used to calculate
them context-dependent. Empirical data can be generated from an operative system
using the approach described by Feldhorst (2018). Within robots, time values can be
derived from calculations of their internal controller.
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The preselection based on the capacitive equilibrium from Eq. (5) requires a static
forecast for a time interval. This assumption is acceptable in systems with plannable
or predictable demands. Without such a known lead a system can only be controlled
reactively making the concept not reliable, because fluctuating demand must be
covered by additional time buffer or resources. Alternatively, a forecast could be
generated for each recalculation based on current order data and empirical values
from previous periods. The threshold calculation is a statistical approach allowing
a system to fluctuate to a certain degree and only slightly limits the auctioning
process of order assignment. However, an empirical study must show whether the
calculated threshold values are reliable. The approach tends to be more resilient the
more complex the system is, i.e. the more articles exist, and the more robots and
humans can process orders. The calculation of PBreak is an approach to evaluate the
general efficiency of picking robots. In Verbeet et al. (2019), the additional working
points PHuman and PImprove are also defined, whereby PImprove describes a very artificial
value which can only be achieved in exceptional cases in operational systems. Most
articles are expected to reach values between PBreak and PHuman to meet the capacity
restrictions and ensure order processing.

The evaluations are based on a capacitive view of humans and robots and initially
do not make any statements about economic aspects of the picking system. For
such a consideration, an additional cost model would have to be integrated into the
calculation. This cannot be formulated generally for the heterogeneous requirements
and technical specifications of picking systems, which is why a capacitive approach
was chosen in this paper.

6 Conclusions

The challenge of finding personnel for picking and handle continuously changing
article ranges can be countered with partially automated picking systems creating
a cooperative working environment for humans and picking robots. The motivation
is to ensure reliable order fulfilment by implementation of a feedback-loop (Emer-
gency Call) between humans and robots for error handling and data collection for
machine learning algorithms in order to continuously improve object detection and
thereby improve overall performance of picking robots. In this paper, a concept
for measurement and evaluation of system performance to ensure the processing of
picking orders and the training of picking robots is introduced.

The proposed approach is using a capacitive evaluation of a picking system to
define equilibrium between the requirements of order processing, the picking perfor-
mance of humans and robots and the effort for improving object detection of the
robots. In a picking system this equilibrium can be used for strategic evaluation of
the automated picking performance of robots (working point), for tactical resource
planning (capacity planning) or for operational workload balancing (order assign-
ment). Even if this evaluation mechanisms extend the adaptive process model and
the conceptual picking system, there are still open questions for future research.



56 M. Rieder and R. Verbeet

The presented calculation uses static assumptions for actually dynamic parameters
making its equations only reliable for complex systems considering a sufficiently
long runtime. However, the evaluation concept can be expanded by context-based
calculations using MTM-based approaches. The actions of robots can be evaluated
based on functions of their internal control, e.g. travel time between picking locations
as outcome from path planning.

The components for a demonstrator, which is to validate the presented evaluation
approach with empirical data, have been developed at Ulm University of Applied
Sciences in recent months. The configuration of these components and the definition
of suitable scenarios are still pending and will be completed soon. The evaluation
approach will also be integrated into an intra-logistic scenario with real robots. These
provide context-dependent estimations for the required time of their actions in order
to enable a dynamic and context-based calculation of time effort and fulfilment time
during order processing.

The model for object detection is also subject of current research. In current
work, a singular neural network is used for the detection of all existing articles
in a picking system. An alternative approach pursues the dynamic combination of
several neural networks for one article each, which are compared for object detection
with one another by an algorithm based on their storage locations provided by an
overall WMS. This is intended to modularize object detection and shorten training
times. The comparison “singular” versus “combined” can also be carried out by the
demonstrator.
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