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Abstract This chapter considers the two-echelon supply chain network design with
unreliable facilities when nodes related to facilities in both echelons fail under
disruptions. A new mixed-integer programming (MIP) model is proposed for a
reliable facility location with possible customer reassignment in different proba-
bilistic scenarios. The maintaining of the materials flow between different echelons
of the network is investigated under network disruptions. The performance of global
optimization is investigated by comparing this approach with independent and non-
integrated optimization. The objective function of the problem seeks to minimize
expected costs, including fixed and service costs in the supply chain, such that main-
taining the demand flow in both echelons of the network interconnects them. The
medium- and large-sized problems are solved using a custom-designed Lagrangian
dual decomposition algorithm. Our computational results show that the proposed
algorithm is efficient for the given problems, efficiently overcomes the computa-
tional complexity of the problems, and provides good-quality solutions within an
acceptable time.

Keywords Supply chain optimization · Reliable facility location · Dual
decomposition · Location and allocation

1 Introduction

Facility location problems involve the study of determining locations of |J| facilities
with the finite or infinite capacity among |I| demand points, and making assign-
ment decisions to serve a set of clients. The objectives of location and allocation
are to achieve a trade-off between first-stage setup costs and second-stage service

M. Rohaninejad (B) · Z. Hanzálek
Czech Institute of Informatics Robotics and Cybernetics, Czech Technical University in Prague,
Prague, Czech Republic
e-mail: rohaninejad.sm@gmail.com

R. Tavakkoli-Moghaddam
School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
P. Golinska-Dawson et al. (eds.), Smart and Sustainable Supply Chain
and Logistics – Trends, Challenges, Methods and Best Practices, EcoProduction,
https://doi.org/10.1007/978-3-030-61947-3_25

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61947-3_25&domain=pdf
mailto:rohaninejad.sm@gmail.com
https://doi.org/10.1007/978-3-030-61947-3_25


364 M. Rohaninejad et al.

and transportation costs. Facility location problems have extensively been studied;
various types of facilities (e.g., factories, warehouses, stores, airports, hospitals, and
emergency departments) have been examined (Rohaninejad et al. 2017). In clas-
sical facility location problems, it is assumed that clients always get service from
the facilities and the facilities are always available. Considering realistic situations,
these assumptions are not likely valid.

Every year, many companies are faced with unexpected events in their supply
chain networks. From time to time, network performance can be disrupted for
various reasons; for example, natural disasters, power outages, changes of ownership,
operational risks, and strike actions. The strategic nature of supply chain decisions
differentiates them from operational-level decisions, such asmachine scheduling and
short-termmaterial requirement planning. Hence, uncertainties in a supply chain can
impose heavy costs on the system by completely stopping the flow of the network
for a lengthy period. In this paper, this default assumption is used to design a reliable
network, whose facilities are unreliable. Continuous changes in the network structure
(i.e., first-stage decisions) are impossible and without justification in facility location
problems with facility disruptions. Designing optimal supply chains when facilities
are subject to random disruptions is an appropriate response to dealing with this type
of uncertainty, which is located in the class of provider-side uncertainty (randomness
in facility capacity or reliability of facilities, etc.).

Considering reliability in facility location problemsmakes it possible that a system
continues to functionwith theminimal losswhen its components fail. Reliable design
of a facility location problem considers a change in second-stage decisions by reas-
signing client demand to other facilities far from their regularly assigned facilities
or arranging backup facilities for failed facilities. The reliable uncapacitated facility
location problem (RUFLP), was first studied by Snyder and Daskin (2005). They
formulated the problem as a linear MIP, called “implicit formulation” (IF), which
employedLagrangian relaxation for efficient solutions.A similar studywas presented
byBerman et al. (2007), who relaxed the assumption of identical failure probabilities,
which was a basic assumption of the model presented by Snyder and Daskin (2005).
Then, they developed several exact and heuristic approaches. Other studies, such
as Cui et al. (2010) and Shen et al. (2011), have formulated the RUFLP with non-
identical failure probabilities. In addition to a scenario-based model of the problem,
Shen et al. (2011) also provided a mixed-integer nonlinear programming model and
provided several approximation algorithms that can produce near-optimal solutions.
Cui et al. (2010) proposed a compact mixed-integer programming (MIP) model and
a continuum approximation (CA) model to study the problem and used Lagrangian
relaxation to solve the models. In a reliable capacitated facility location problem
(RCFLP), Aydin and Murat (2013) developed a model for the RCFLP and presented
a novel hybrid method, namely swarm intelligence-based sample average approxi-
mation (SIBSAA), to solve their model. Peng et al. (2011) presented an RCFLP to
minimize the nominal cost (when no disruptions occur) and at the same time reducing
the disruption risk by applying the p-robustness criterion, in which bounds the cost in
disruption scenarios. Li et al. (2013a) investigated reliable facility location problems,
while the failure of the facilities was correlated. Fan et al. (2018) proposed a reliable
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location model for a nexus of interdependent infrastructure systems. Their model
aims to locate the optimal facility locations in multiple heterogeneous systems to
balance the trade-off between the facility investment and the expected nexus opera-
tion performance. Afify et al. (2019) are proposed an evolutionary learning technique
to near-optimally solve Reliable p-Median Problem and Reliable Uncapacitated
Facility Location Problem considering heterogeneous facility failure probabilities,
one layer of backup and limited facility fortification budget.

Multi-echelon supply chain design has been extensively studied in classical
facility location problem. To the best of the authors’ knowledge, there have been
a few studies on the multi-echelon in reliable facility location problems. These
studies assumed that facility disruption occurs only at one echelon of the network.
For example, Razmi et al. (2013) proposed a scenario base mixed-integer linear
programming (MILP) model for redesigning a reliable single product, single period,
and two-echelon logistics network. In this paper, we consider the two-echelon reli-
able facility location with unreliable facilities when nodes related to facilities in
both echelons fail under disruptions. The analysis of problems that involve single-
echelon supply chains and decisions made under that assumption may lead to many
errors. In other words, the single-echelon perspective on a supply chain of goods and
services lacks the required accuracy and efficiency in cases, in which the network
itself is part of a larger network and interacts with other echelons and layers of the
network. Decisions, actions, and reactions at each echelon of the supply chain can
have significant effects on other echelons. For this reason, we intend to study the
RFLP by taking into account all the echelons of the supply chain. Rohaninejad et al.
(2018) first considered the RCFLP in a multi-echelon manner with the possibility
of disruption in all echelons. They presented the new scenario-based formulation to
maintain the materials flow between different echelons of the network under facili-
ties disruptions. In continue of their study, this paper examines whether the design of
reliablemulti-echelon facility location problemswith a global optimization approach
(i.e., integrated optimization in all echelons) is more effective than independent and
non-integrated optimization. The answer is to provide an insight for the owners of
the supply chain, in which “how effective is the cooperation between the owners of
each echelon of the network?”

A review of the literature on the RFLP regarding complexity shows that the
RUFLP is NP-hard (Li et al. 2013b). The RCFLP, which involves the addition of
capacity constraints, is NP-hard as well because the RCFLP reduces to the RUFLP
when the capacities of the facilities tend towards infinity. In another hand, using
the implicit formulation provided by Snyder and Daskin (2005) to provide low-
complexity formulation has somedrawbacks. This type of formulation has limitations
when it is extended to problems with different failure probabilities for facilities,
partial allocation of client demand to facilities, the possibility of partial disruption of
facilities, facility capacity constraints andmulti-echelon networks. Tracking demand
flows across different network echelons is not possible or not easy in multi-echelon
networks by implicit formulation. So using the scenario-based formulation is in
priority. The scenario-based approach is flexible and can be used for our considered
problem; however, there might be numerous scenarios, (in our case, if J facilities
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are assumed that each of them can fail independently, there are 2J failure scenarios)
and the complexity of the model increases exponentially by increasing the number
of scenarios. Therefore, due to the complexity of the model, a custom-designed
Lagrangian dual decomposition algorithm is proposed for this problem.

The literature on the RFLP presents various solution procedures: heuristic or
approximation procedures (Shen et al. 2011; Rohaninejad et al. 2015; Aboolian et al.
2013); Lagrangian relaxation algorithms (Snyder and Daskin 2005; An et al. 2015);
continuum approximation (Li and Ouyang 2010); exact methods (Rohaninejad et al.
2018; Hatefi and Jolai 2014) and metaheuristic algorithms (Aydin and Murat 2013;
Peng et al. 2011).

The remaining sections are organized as follows. The problem definitions are
defined in Sect. 2. Section 3 presents a new MILP model of the problem. Section 4
illustrates the proposed solution method. Section 5 provides the computational
results. Finally, Sect. 6 outlines the conclusion and some suggestions for future
research.

2 Problem Definition

In this paper, we consider a two-echelon reliable facility location problem (TE-
RFLP).While considering a two-echelon instead of single-echelon RFLP, we assume
that there is the possibility of a failure of facilities at both echelons of the network.
In the TE-RFLP, we assume that facilities at the first echelon of the chain are clients
at the second echelon of the chain and vice versa. In other words, the client demand
at the second echelon of the supply chain is equal to the coefficient of the total client
demand at the first echelon assigned to it as a facility at the first echelon. Demand
in the first echelon is predetermined; however, the demand in the second echelons is
uncertain and dependent on the first echelon. Therefore, it is necessary to examine
two-echelon systems from an integrated perspective to enhance the reliability of
the whole system. Figure 1 depicts a schematic representation of the relationship
between the echelons in a supply chain. This figure shows that potential sites at each
echelon are potential clients at a higher echelon. As well, actual sites (openings)
at each echelon are actual clients at a higher echelon. In this figure, it is clear that
the flow of demand is interdependent at all echelons. It is assumed, that the flow
of demand may be discontinued from one echelon to a higher echelon, and demand
is supplied from outside the network by paying a higher cost (i.e., penalty cost). In
other words, all open facilities need to supply their client demand from inside the
network (its higher echelons), or from the outside network by paying a penalty cost.

In the TE-RFLP, the facilities have two operational levels, namely active and
inactive. In an active mode, the facilities are fully available and inactive facilities
cannot provide any services to the clients and are out of reach. The aim of solving this
problem is to design a reliable network for a two-echelon supply chain to minimize
the expected total fixed costs and service costs (including the expected transportation
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Fig.1 Relationship between echelons in a two-echelon supply chain design

costs and costs incurred for failing to meet client demand). Other assumptions of the
problem are as follows:

• The potential sites for establishing facilities are predefined and discrete.
• There is no relationship between facilities at an echelon.
• The problem is a single-product model.
• The allocation of a demand node to more than one facility node is not allowed. In

other words, partial or fractional allocation of demand to a facility is not allowed.
• There is a fixed cost to establish a facility.
• There is a transportation cost to allocate a demand node to a facility node.
• There is a penalty cost for supplying demand from outside the network.
• The maximum number of facilities that can be established in each location is one.
• The network is two-echelon and all facilities in each echelon are the same (e.g.,

all facilities are wholesalers or retailers).
• The problem parameters (e.g., demand in the first echelon, distance, and failure

probabilities) are specified.
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3 Notation and Formulation

The indices, parameters and variables of the proposed model are as follows:

Model indices:

i Client index.
j Potential site index.
l Echelon index; (l = 1, 2).
s Scenario index s ∈ S

Model parameters:

di Demand quantity of client i in the first echelon.
sl, j Fixed cost of opening facility j in echelon l.
cl,i, j Transportation cost per unit demand of client i in echelon l that is serviced by

facility j.
hl,i Penalty cost per unit of client i demand in echelon l if its demand is not met.
β j Conversion coefficient of demand volume from the first echelon to the second

echelon for facility j in the first echelon (1 ≤ β_j ≤ 2).
Il Total number of clients in echelon l.
Jl Total number of potential sites in echelon l.
qs Probability of scenario s.
bl, j,s 1 if facility j in echelon l is active and functional under scenario s; 0, otherwise.
G A positive large number.

Model variables:

yl, j 1 if facility j at echelon l is opened; 0, otherwise
Xl,i, j,s 1 if client i assigned to facility j at echelon l under scenario s; 0, otherwise
Zl,i,s 1 if demand of client i at echelon l is not met under scenario s; 0, otherwise
ui, j,s A positive variable specifies the demand of client i provided by facility j at

second echelon under scenarios
vi,s A positive variable specifies the demand of client i at second echelon that

is not met under scenarios

Themathematicalmodel of theTE-RFLPbased on the scenario-based formulation
is as follows:

Min
∑

l

∑

j≤Jl

sl, j yl, j +
∑

s

⎛

⎝
∑

i≤I1

∑

j≤J1

c1,i, j di X1,i, j,s +
∑

i≤I2

∑

j≤J2

c2,i, j ui, j,s

⎞

⎠qs

+
∑

s

(
∑

i≤I1

h1,i di Z1,i,s +
∑

i≤I2

h2,i vi,s

)
qs (1)

s.t
∑

j≤J1

X1,i, j,s + Z1,i,s = 1 ∀i ≤ I1; s (2)
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∑

j≤J2

X2,i, j,s + Z2,i,s ≤ 1 ∀i ≤ I2; s (3)

∑

j≤J2

ui, j,s + vi,s =
∑

i ′ ≤I1

(
di ′ β j ′ X1,i ′ , j ′ ,s

)
∀i ≤ I2; j ′ = i; s (4)

ui, j,s ≤ GX2,i, j,s ∀i ≤ I2; j ≤ J2; s (5)

vi,s ≤ GZ2,i,s ∀i ≤ I2; s (6)

∑

i≤Il

Xl,i, j,s ≤ Gbl, j,s yl, j ∀l; j ≤ Jl; s (7)

Objective function (1) consists of the total expected cost of facility fixed charge,
transportation, and unmet demands penalty. Constraints (2) and (3), which refer to
the first and second echelons respectively, ensure that all actual client demand is
supplied from inside or outside the network. Since not all the second-echelon clients
will necessarily become actual clients in Constraint (3), inequality is used instead
of equality. For this reason, Constraint (3) is not enough to establish the demand
flow in the second echelon; we need to add Constraint (4) to the model. Constraint
(4), which refers to the second echelon (l = 2) of the supply chain, has conditions
similar to Constraint (2). However, the right side of this constraint ensures when a
facility in the first echelon becomes a client in the second echelon, its demand in the
second echelon is a function of the number of orders it accepted in the first echelon.
The combination of Constraints (5) and (6) with Constraint (4) prevents a partial
assignment (i.e., assigning a part of the client’s demand to a facility). Constraint (7)
prevents assignment to a facility that has not been opened.

4 Lagrangian Dual Decomposition

Lagrangian dual decomposition (LDD) is a classical method for combinatorial opti-
mization. This method is an important special case of the Lagrangian relaxation
algorithm, in which the original problem decomposes to two or more combinatorial
optimization problems. In this algorithm, we assume that there is a minimization
problem as follows:

Min
(x,y,z)

f (x, z) + g(y, z) (8)

By decoding the problem, it can be found:

Min
(x,y,z1,z2)

f (x, z1) + g(y, z2) (9)
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s.t.

z1 = z2 (10)

We introduce a vector of Lagrange multiplier λ. The Lagrangian is now.

L(x, y, z1, z2, λ) = f (x, z1) + g(y, z2) + λ(z1 − z2) (11)

And the dual objective is as follows:

L(λ) = min
(x,y,z1,z2)

L(x, y, z1, z2, λ) = min
(x,y,z1,z2)

{ f (x, z1) + g(y, z2) + λ(z1 − z2)}
= min

(x,z1)
{ f (x, z1) + λz1} + min

(y,z2)
{g(y, z2) − λz2}

= min
(x,z)

{ f (x, z) + λz} + min
(y,z)

{g(y, z) − λz}
(12)

Equation (12) is a lower bound for the original problem and the tightest lower
bound can be shown by:

max
(λ)

L(λ) = max
(λ)

{
min
(x,z)

{ f (x, z) + λz} + min
(y,z)

{g(y, z) − λz}
}

(13)

We solve each sub-problems of the relation (13) for the current λ separately and
then update the λ for improve the sub-gradient level.

4.1 Custom Designed LDD

To solve the proposed model, we decompose the model based on the N subsets
(en; n = 1, . . . , N ) of scenarios, so that

⋃N
n=1en = S. For creating each subset

with the similar importance and weight, we first sort all scenarios based on their
probability value (qs) in a list, then for each subset, we select one scenario from the
first of the list and then one another scenario from the end of the list. We repeat this
procedure until the subset is filled (i.e., the number of members reaches a predefined
value), and then the next subset will create until all possible scenarios assign to a
subset. Then, to do the LDD method, we introduce the new first stage variables ynl, j
for each subsets of scenarios (y1l, j , y

2
l, j , . . . , y

N
l, j |l = 1, 2; j = 1, . . . ., Jl ). Finally,

we add the non-anticipative constraints y1l, j = y2l, j = · · · = yNl, j so that establish
these constraints by equations as follows:

N∑

n=1

kn ynl, j = 0 ∀l; j ≤ Jl (14)
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where k1 = 1 − N and kn = 1 for n = 2, . . . , N .
Then, we relax the non-anticipative constraints and set the λ as a vector of

Lagrangian multi-players that are related to these constraints. The objective function
of Lagrangian relaxation for each set of scenarios are as follows:

L(λ) = Min
∑

l

∑

j≤Jl

(
N∑

n=1

1

N
s
l, j
ynl, j

)
+

∑

l

∑

j≤Jl

(
λl, j

N∑

n=1

kn ynl, j

)
+

N∑

n=1

ϑ
(
yn, en

)

= Min
N∑

n=1

⎛

⎝
∑

l

∑

j≤Jl

(
1

N
s
l, j
ynl, j + λl, j k

n ynl, j

)
+ ϑ

(
yn, en

)
⎞

⎠ (15)

where

ϑ
(
yn , en

) =
∑

s∈en

⎛

⎝
∑

i≤I1

⎛

⎝h1,i di Z1,i,s +
∑

j≤J1

c1,i, j di X1,i, j,s

⎞

⎠+
∑

i≤I2

⎛

⎝h2,i vi,s +
∑

j≤J2

c2,i, j ui, j,s

⎞

⎠

⎞

⎠qs (16)

.
Now, we can decompose the problem to N subproblem with minimization of

Relation (17) for each n ∈ {1, . . . , N }. Also, the feasible solution space of the
problem will be divided based on each subset of scenarios.

Min
n≤N

⎧
⎨

⎩
∑

l

∑

j≤Jl

(
1

N
s
l, j
ynl, j + λl, j k

n ynl, j

)
+ ϑ

(
yn, en

)
⎫
⎬

⎭ (17)

4.2 Updating the Lagrangian Multiplayer

The Lagrangian multipliers λl, j are updated at per iteration using standard sub-
gradient optimization by Fisher (Fisher 2004). So, given the initial value of multi-
player (λ(0)

l, j ), a sequence value of multiplayer in iteration (tλ(t)
l, j ) is generated

by:

λ
(t)
l, j = max

{
0, λ(t−1)

l, j + β(t−1)

(
N∑

n=1

kn ynl, j

)}
(18)

ynl, j is optimal to the previous iteration and β(t) is a positive scaler step size.

β(t) = �(t−1) Z∗
UB − ZLB

‖∑N
n=1 k

n ynl, j‖
2 (19)
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In Eq. (19), Z∗
UB is the best upper bound so far. ZLB is the lower bound at the

current iteration. Also, �(t−1)ε(0, 2] and we start with �(0) = 2 and �(t) is halved
if the improvement in the Lagrangean lower bound is not more than 0.2% in Lmax

consecutive iterations.

4.3 Generate the Upper Bound

Gradient method, a feasibility procedure is applied to generate an upper bound for
the Lagrangian problem. So, after obtaining the lower bound, we propose a simple
heuristic method to find a feasible solution at per iteration of the Lagrangian proce-
dure, but possibly not an optimal solution. Since the non-anticipative Constraints
(14) are relaxed, therefore, the ynl, j are not equal in different subsets of scenarios. So,
we generate a feasible solution in three steps as follows.

Step (1) Fixing the value of yl, j to 1 if they are 1 in minimum 50% of the optimal
solution related to each subset of scenarios; 0, otherwise.
Step (2) Fixing the value of Xl,i, j,s and their dependent variables (Zl,i,s, ui, j,s, vi,s)
for each i ≤ Il and s to their optimal value if Constraint (7) is not violated after
inserting the value of yl, j .
Step (3) Solve the simplified original model for finding the optimum value of
remained variables in the feasible state.

If the value of the new feasible solution is better than the incumbent upper bound,
then the new value becomes the incumbent upper bound.

4.4 Pseudo Code of the Algorithm

The step-by-step pseudo code of the proposed algorithm is outlined in Fig. 2.

Fig.2 Pseudo code of the proposed LDD algorithm
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Fig. 3 Compare the results obtained sp100;8;2 by changing the size of the scenario’s subsets

Fig. 4 Compare the CPU
time (seconds) of sp100;8;2
by changing the size of the
scenario’s subsets

5 Computational Results

In this section, the credibility of the presented mathematical model and the perfor-
mance and effectiveness of the presented heuristic algorithm are evaluated and
compared with each other. The mathematical model and the LDD method are coded
in the GAMS 24.1.2 software and solved by the CPLEX solver for the MIP models
and run on a PC with 4 GHz processor and 8 GB of RAM. To compare the results of
the proposed MIP formulation and LDD method two Relative Percentage Deviation
criteria that called RPD is used. These performance measures are calculated based
on the deviation of solutions to the best solution that achieved by MIP model and
LDD. The RPD criterion for solution method A is calculated as follows (Note that
the index A denotes a solution method.):
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RPDA = (objectve function)A − Minimum(objectve functions)

Minimum(objectve functions)
(20)

Also, to demonstrate the effectiveness and quality of LDD algorithm, we use three
criteria (i.e., GAP1, GAP2, GAP3). The gap between the lower bound (LB) and the
upper bound (UB) is calculated by:

GAP1 = 2 ∗ UB − LB

UB + LB
(21)

The distances between the upper bound (UB) and the optimal solution (OP) are
denoted as GAP2, and between the lower bound (LB) and the optimal solution (OP)
are denoted as GAP3. The distances are calculated by:

GAP2 = 2 ∗ UB − OP

UB + OP
(22)

GAP3 = 2 ∗ OP − LB

OP + LB
(23)

5.1 Generating Random Instances of the Problem

This section describes the testing of the proposed algorithms on 12 data sets that
are generated randomly. The data set consists of 25–325 nodes for small to large
instances. In each case, demands di in the first echelon are drawn from a normal
distribution with (μ = 100; δ = 30) and rounded to the nearest integer. Fixed costs
sl, j for l = 1 are drawn from U[30,000; 80,000] and rounded to the nearest integer.
Fixed costs sl, j for l = 2 are drawn from U[120,000; 200,000] and rounded to the
nearest integer. Penalty costs hl,i are drawn from U[1000; 3000] and rounded to the
nearest integer.

Also, for each instance with
∑

l Il clients and
∑

l Jl facilities, the locations of
clients and facilities are determined randomly within a square, whose length and
width are equal to ∂ = (∑

l Il + ∑
l Jl

)(
2.8 − 0.01

(∑
l Il + ∑

l Jl
))
. Transportation

costs cl,i, j are set equal to the Euclidean distance between i and j . The full failure
probability of facilities in the first echelon is equal to 0.15 and in the second echelon
is equal to 0.12. The scenarios of each instance are generated simply by taking into
account all the possible combinations of active and inactive facilities. The probability
of each scenario is computed by multiplying the probabilities of facilities according
to their situation in an active or inactive scenario.

Ultimately, each instance is labelledwith (a; b; c),wherea indicates thenumber of
clients in the first echelon; b indicates the number of potential sites in the first echelon
(potential clients in the second echelon) and c indicates the number of potential sites in
the second echelon. The size of these parameters influences both the solution quality
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and the efficiency of the proposed procedures. To find the best trade-off between the
algorithm speed and solution quality, the runtime of the solution methods is limited
to 3600 s.

5.2 Numerical Examples

In this subsection, we present the results of the numerical examples to show the
validity of the proposed mathematical model and the efficiency of the presented
solution method. Table 1 shows a comparison of the optimal results obtained by the
scenario-based MIP model and the proposed LDD algorithm. This table shows that
the proposed LDD algorithm can provide the optimal solution in all cases, which the
scenario-based formulation is provided with a feasible solution in predefined time
restriction (i.e., 3600 s).

When the size of the problem increases, the scenario-based formulation loses its
effectiveness; solving problems of sp100;10;2 and larger is not possible with this
formulation in predefined time restriction. Instead, the LDD can obtain a feasible
solution for larger-sized problems. Therefore, considering the average difference of
0% between the best upper bound of the LDD algorithm and the optimal solution of
the scenario-based formulation canbe foundby theLDDalgorithmhas the reasonable
performance for larger-sized problems. This algorithm can also reduce the total
solution time of sp18;5;2 to sp100;8;2 cases from 7910 to 294 s. Finally, concerning
the inefficiency of the scenario-based formulation for large-sized problems, we can

Table 1 Comparison of the results obtained by the proposed mathematical model and LDD

Sample
problems

Scenario-based formulation (CPLEX
Solver)

Proposed LDD algorithm (CPLEX
Solver)

Time (s) Best upper
bound

RPD
(%)

Time (s) Best upper
bound

RPD
(%)

sp18;5;2 45 2,241,719 0.0 12 2,241,719 0.0

sp30;5;2 753 3,712,944 0.0 26 3,712,944 0.0

sp50;8;2 2152 4,964,309 0.0 47 4,964,309 0.0

sp80;8;2 2607 7,319,741 0.0 77 7,319,741 0.0

sp100;8;2 2353 9,327,565 0.0 132 9,327,565 0.0

sp100;10;2 > 3600 - - 440 7,892,730 -

sp120;12;3 > 3600 - - 1361 8,622,641 -

sp150;15;4 > 3600 - - 2714 8,718,256 -

sp200;15;4 > 3600 - - 2615 12,350,919 -

sp200;20;5 > 3600 - - > 3600 14,748,366 -

sp250;20;5 > 3600 - - > 3600 17,362,641 -

sp300;20;5 > 3600 - - > 3600 22,477,543 -



376 M. Rohaninejad et al.

Table 2 Criteria related to the quality of the LDD algorithm

Sample
problems

Proposed LDD algorithm Optimal
objective
function

Best upper
bound

Best lower
bound

Gap 1 (%) Gap 2 (%) Gap 3 (%)

sp18;5;2 2,241,719 2,241,719 0,00 0,0 0,00 2,241,719

sp30;5;2 3,712,944 3,703,125 0,26 0,0 0,26 3,712,944

sp50;8;2 4,964,309 4,941,372 0,46 0,0 0,46 4,964,309

sp80;8;2 7,319,741 7,285,340 0,47 0,0 0,47 7,319,741

sp100;8;2 9,327,565 9,002,588 3,55 0,0 3,5 9,327,565

sp100;10;2 7,892,730 7,621,409 3,50 - - -

sp120;12;3 8,622,641 8,370,264 2,97 - - -

sp150;15;4 8,718,256 8,405,831 3,65 - - -

sp200;15;4 12,350,919 11,518,202 6,98 - - -

sp200;20;5 14,748,366 13,564,572 8,36 - - -

sp250;20;5 17,362,641 14,355,617 18,9 - - -

sp300;20;5 22,477,543 16,539,741 30,4 - - -

propose theLDDalgorithm as a suitable alternative to the scenario-based formulation
and an efficient algorithm for two-echelon reliable uncapacitated facility location
problems.

Table 2 shows the criteria related to the performance of the LDD algorithm. The
table shows that the LDD algorithm allows using of the scenario-based model for
larger-sized problems. On the other hand, according to the gap criterion, we are
confident that the LDD algorithm can provide high-quality solutions (i.e., optimal
or most closely optimal solution) in problems. The Gap 1 criterion is less than 5%
in the 8 first samples and also less than 10% in the10 first samples {sp18,5;2 to
sp200;20;5}. Therefore, we can recommend the use of the LDD algorithm to solve
the scenario-based model of the TE-RFLP, especially for medium-sized problems.

Figures 3 and 4 show the comparative graphs of the results obtained from the
LDD algorithm by changing the size of scenario’s subsets, for the criteria of the
best upper bound (UB) and lower bound (LB) values and also the CPU time. These
graphs are shown for sp100;8;2. In this examination, we consider five levels for the

size of the scenario’s subsets, including
{

|S|
2 ,

|S|
3 ,

|S|
4 ,

|S|
5 ,

|S|
6

}
. These figures show

the complexity of the problem is increased and the gap between the upper and lower
bounds is decreased by increasing in the size of the subset. Based on these figures,
creating a trade-off between the quality and complexity is so important by selecting
the optimal size of subsets.

Table 3 shows the performance results of the LDD algorithm under the influence
of changes in the failure probabilities of the facilities in the sp100,8;2. Based on
this table results, the LDD algorithm shows sustainable performance under different
scenarios of the failure probability and provided an optimal or near-optimal solution
in many cases. In the LDD algorithm, except for p1 = p2 = 0.9, where we see a
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Table 3 Performance of the LDD as a result of changes in the failure probabilities

Failure probability Proposed LDD algorithm MIP Model

Best upper bound RPD (%) Optimal objective function

0.1 9,264,505 0.00 9,264,505

0.2 12,814,921 0.00 12,814,921

0.3 16,641,569 0.00 16,641,569

0.4 16,936,220 0.00 16,936,220

0.5 18,639,821 1.02 18,450,932

0.6 18,611,058 0.00 18,611,058

0.7 19,762,360 2.58 19,265,783

0.8 21,787,049 10.87 19,651,377

0.9 25,919,553 28.67 20,144,518

1.0 20,787,349 0.00 20,787,349

significant drop in quality (RPD= 28.67%), we do not notice any significant changes
in the performance of this method in other failure probabilities. The average RPD,
regardless of p1 = p2 = 0.9, is 1.61%.

Ourmodels are based on the assumption of integrated optimization at all echelons.
Establishing this assumption requires cooperation between the owners of all echelons
of the network. Table 4 examines how effective is this cooperation. This table shows
the results obtained from solving the model in the two approaches: the integrated
optimization and hierarchical optimization. Each echelon is independently optimized
from other echelons in the hierarchical approach. At first, the lowest echelon of the
network (i.e., echelon 1) is optimized and its results are fixed. Next, the second

Table 4 The results obtained from two integrated and hierarchical optimization

Sample problems Integrated optimization (LDD
algorithm)

Hierarchical optimization (MIP
formulation)

RPD (%) Objective
function

RPD (%) Objective
function

sp18;5;2 0.0 2,241,719 10,9 2,486,900

sp30;5;2 0.0 3,703,125 10,8 4,102,477

sp50;8;2 0.0 4,941,372 14,0 5,632,101

sp80;8;2 0.0 7,285,340 9,0 7,941,365

sp100;8;2 0.0 9,002,588 23,7 11,139,247

sp100;10;2 0.0 7,621,409 14,4 8,720,741

sp120;12;3 0.0 8,370,264 24,5 10,422,348

sp150;15;4 0.0 8,405,831 15,8 9,730,512

sp200;15;4 0.0 11,518,202 14,1 13,137,920
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echelon is optimized and its results are fixed. According to the results of Table 4,
the priority of the integrated approach to the hierarchical approach is evident. The
averageRPDcriterion in this approach is 15.8%better than the hierarchical approach.

6 Conclusions

Wedeveloped a newmixed-integer programming (MIP)model based on the scenario-
based formulation for two-echelon reliable facility location problems. However, the
computational complexity of the scenario-based model made it less applicable for
medium- and large-sized problems. Therefore, we were able to develop the use of
this formulation for larger-sized problems by providing a Lagrangian dual decompo-
sition algorithm. The computational results showed that the proposed algorithm was
an efficient method for the scenario-based formulation in medium- and large-scale
problems that provided a high quality of solutions with reasonable running time and
resilience to change the failure probabilities of facilities. Also, the computational
results showed that the adoption of an integrated approach to make a decision and
simultaneous optimization at all echelons are much more effective than hierarchical
optimization. Therefore, interaction and collaboration between owners of different
echelons of the network are strongly recommended.

Future studies can focus on developing exact solution methods to solve the
problem. Also, in multi-echelon systems, different types of relationships between
echelons can be studied. For example, the failure probability of a facility or the cost
of providing demand from a facility depends on the planned level of reliability in the
other echelons of the network. For this reason, the lower reliability of the system in
an echelon increases the costs of providing demand and the probability of failure in a
lower echelon, and vice versa. It is also recommended to develop the implicit formu-
lation for the problem with the aim of reduction in the complexity of the problem in
future studies.
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