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Abstract There is growing interest in the utilization of electric vehicles (EVs) in
logistics operations as they can cut dependency on fossil fuels, hence, significantly
contribute to the efforts on reducing carbon emissions and air pollution. However,
their limited driving range still remains as a major barrier in their adoption despite
the advancements in battery technology. In this study, we extend the well-known
Electric Vehicle Routing Problem with Time Windows by taking into account the
cargo weight, which may play a crucial role in the operational efficiency of the
EVs since it can affect the energy consumption significantly. We present the mixed-
integer linear programming formulation of the problem and perform an extensive
experimental study to investigate the influence of load on the routing decisions. We
solve small-size instances using a commercial solver, and for the large-size instances,
we develop a Large Neighbourhood Search algorithm. The results show that cargo
weight may create substantial changes in the route plans and fleet size.
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1 Introduction

Electric vehicles (EVs) have recently attracted great attention in transportation and
logistics sector as they considerably reduce dependency to oil and consequently air
pollution. The EVs are more efficient than conventional vehicles due to their electric
motor and transmission system which transfers mechanical power to the wheels (Wu
et al. 2015). Nevertheless, there are some technical drawbacks in case of using EVs.
The most significant drawback is their battery capacity, which is low, and users
should charge their batteries frequently in order to reach their destinations. Due to
this restriction, routing an EV fleet has appeared as a challenging combinatorial
optimization problem in the Vehicle Routing Problem (VRP) literature.

Electric Vehicle Routing Problem (EVRP) is an extension for VRP, where EVs
are used in the fleet instead of fossil fuel vehicles. EVs reduce tailpipe emission and
enhance green logistics. It tries to handle distribution tasks of logistics companies by
minimizing the total energy consumption cost of serving customers and satisfying
their demands. EVRP with Time Window (EVRPTW) is introduced by Schneider
et al. (2014) where a full-recharge strategy was adopted. The authors developed
the mathematical programming formulation of the problem and proposed a hybrid
Variable Neighbourhood Search (VNS) and Tabu Search (TS) algorithm to solve it.
Different variants ofEVRPandEVRPTWwere addressed in several studies including
the cases of partial recharge (Bruglieri et al. 2015; Keskin and Çatay 2016), mixed
fleet (Goeke and Schneider 2015; Hiermann et al. 2016), location routing (Schiffer
andWalther 2017), fast charging (Felipe et al. 2014; Çatay and Keskin 2017; Keskin
and Çatay 2018), non-linear charging function (Montoya et al. 2017; Froger et al.
2019), battery swapping (Yang and Sun 2015; Hof et al. 2017; Paz et al. 2018).
Desaulniers et al. (2016) also studied EVRPTW and proposed a branch-price-and-
cut algorithm to solve four different recharging strategies. Some recent studies have
dealt with the availability of recharging stations and queueing for recharging service
(Froger et al. 2017; Kullman et al. 2018; Keskin et al. 2019). A comprehensive review
of the EV technology and survey of the EVRP variants may be found in (Pelletier
et al. 2016; Pelletier et al. 2017; Erdelić and Carić 2019).

Energy consumption on the road does not only depend on the distance travelled
but many other factors including the vehicle’s weight, velocity, auxiliary equipment
(internal factors) as well as ambient temperature and road gradient (external factors).
These factors have been often neglected in the VRP literature either because they
make the problem too complex to solve or the driving range is not an issue as the
vehicles can easily refuel at a nearby gas station. However, they may play a critical
for in the operational efficiency of the EVs since they can increase their energy
consumption significantly (Rastani et al. 2019). Among them, the weight of the
transported cargo may play a crucial role in route planning. The logistics operations
of hypermarkets, hardware stores and other companies that deal with heavy loads are
examples for which a load-dependent model produces more efficient transportation
plans in comparison with basic routing models (Zachariadis et al. 2015), which
constitutes the main motivation of this study.
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Load Dependent Vehicle Routing Problem (LDVRP) was introduced in (Kara
et al. 2007). They used the weighted distance objective and relate it with the energy
requirements of vehicles. They proposed mathematical formulations for collection
and distribution cases. Xiao et al. (2012) attacked the same problem by emphasizing
the relation of the weighted distance with the fuel consumption of the vehicles within
the context of Fuel Capacitated VRP. Zachariadis et al. (2015) extended LDVRP
by considering simultaneous pick-ups and deliveries and proposed a local-search
algorithm to solve large-scale instances.

In this study, we address the load-dependent variant of EVRPTW with partial
recharges by taking into account the energy consumption associated with the cargo
carried on the vehicle. We adopt a hierarchical objective function where the primary
objective is to minimize the fleet size whereas the secondary objective is to minimize
total energy consumption. We solve small-size instances using a commercial solver,
and for the large-size instances, we develop a Large Neighbourhood Search (LNS)
algorithm.The remainder of the chapter is organized as follows: Sect. 2 introduces the
problem and formulates its mathematical programming model. Section 3 describes
the proposed LNS method. Section 4 presents the experimental study and discusses
the results. Finally, concluding remarks are provided in Sect. 5.

2 Problem Description and Mathematical Model

We tackle EVRPTWwhere a homogeneous fleet of EVs serve a set of customers with
known demands, time windows, and service times. As opposed to previous studies in
the literaturewhich assume that the energy on the battery is consumed proportional to
the distance traveled, we take into account the additional energy consumption related
to freight load. Carrying more load by an EV causes more energy consumption.
Furthermore, we allow partial recharging and its duration depends on the amount
of energy transferred. Since it is a common practice in the real world to operate
within the first phase of recharging where the energy transferred is a linear function
of the recharge duration in order to prolong the battery life (Pelletier et al. 2017),
we also assume a linear charging function. In addition, we assume that the EV can
be recharged at most once between two consecutive customers, which is practical in
last-mile logistics.We consider a pick-up problemwhere the load of the EV increases
along its tour as it visits the customers. Each EV departs from the depot with full
battery since it can be recharged overnight.

2.1 Mathematical Formulation

In line with the mathematical notation and modelling convention in the literature
(Schneider et al. 2014; Keskin and Çatay 2016; Rastani et al. 2019) we define V =
{1, …, n} as the set of customers and F as the set of recharging stations. Vertices 0
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and n + 1 denote the depot where each vehicle departs from 0 (departure depot) and
returns to n + 1 (arrival depot) at the end of its tour. We define V 0 = V ∪ {0}, Vn + 1

= V ∪ {n + 1} and V 0, n + 1 = V ∪ {0, n + 1}. Then, the problem can be represented
on a complete directed graph G = (N, A) with the set of arcs, A = {(i, j) | i, j ∈ N, i
�= j} where N = V 0, n + 1 ∪ F is the total set of nodes on the network.

The energy consumption depends on the distance traveled and the total weight of
the EV, which is affected by the cargo load carried on the EV. Each customer i ∈
V has a positive demand qi, service time si, and time window [ei, li]. All EVs have
a cargo capacity of C and a battery capacity of Q. At each recharging station, one
unit of energy is transferred in g time units. The direct distance from node i to j is
represented by dij.

Travel time from customer i to customer j is denoted by ti j if the journey is direct
and t̂ijs = tis + tsj – tij is the additional travel time if it is via station s. Note that t̂ijs
does not include the recharging time at station s. The amount of extra energy needed
in order to move one unit of cargo is represented by w. The total energy consumption
starting from customer i to customer j is calculated as (h + wui)dij, where ui is the
weight of the load on the vehicle upon departure from customer i.

The decision variables (yki, ykijs, and Yk
ijs), keep track of battery SoC of vehicle k

at arrival at customer/depot i, at arrival at station s on route (i, s, j), and at departure
from station s on route (i, s, j), respectively. τ i denotes the time when the loading
starts at customer i. The binary decision variable xkij takes value 1 if vehicle k travels
from node i to node j, and 0 otherwise whereas the binary decision variable zkijstakes
value 1 if vehicle k traverses arc (i, j), through station s.

Minimize
∑

k∈K
(yk0 − ykn+1) +

∑

i∈V0

∑

j∈Vn+1

∑

k∈K

∑

s∈F
(Y k

i js − yki js) (1)

subject to

yk0 = Q ∀k ∈ K (2)

∑

j∈Vn+1
i �= j

∑

k∈K
xki j = 1 ∀i ∈ V (3)

∑

i∈V0
i �= j

xki j −
∑

i∈Vn+1
i �= j

xkji = 0 ∀ j ∈ V, k ∈ K (4)

∑

s∈F
zki js ≤ xki j ∀i ∈ V0, j ∈ Vn+1, k ∈ K , i �= j (5)

τi + (ti j + ri )x
k
i j +

∑

s∈F
(t̂i j s z

k
i js + g(Y k

i js − yki js)) − l0(1 − xki j ) ≤ τ j

∀i ∈ V0, j ∈ Vn+1, k ∈ K , i �= j (6)
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e j ≤ τ j ≤ l j ∀ j ∈ N (7)

0 ≤ ykj ≤ yki − (h + wui )di j + M(1 − xki j +
∑

s∈F
zki js)

∀i ∈ V0, j ∈ Vn+1, k ∈ K , i �= j (8)

ykj ≤ Y k
i js − (h + wui )dsj + M(1 − zki js)

∀i ∈ V0, j ∈ Vn+1, s ∈ F, k ∈ K , i �= j (9)

0 ≤ yki js ≤ yki − (h + wui )dis + M(1 − zki js)

∀i ∈ V0, j ∈ Vn+1, s ∈ F, k ∈ K , i �= j (10)

yki js ≤ Y k
i js ≤ Qzki js ∀i ∈ V0, j ∈ Vn+1, s ∈ F, k ∈ K , i �= j (11)

ykj ≤ Q
∑

i∈V0

xki j ∀ j ∈ Vn+1, k ∈ K (12)

u j ≥ ui + q j

∑

k∈K
xki j − C(1 −

∑

k∈K
xki j )

∀i ∈ V0, j ∈ Vn+1, i �= j (13)

0 ≤ ui ≤ c ∀i ∈ V0,n+1 (14)

xki j ∈ {0, 1} ∀i ∈ V0, j ∈ Vn+1, k ∈ K (15)

xki js ∈ {0, 1} ∀i ∈ V0, j ∈ Vn+1, s ∈ F, k ∈ K (16)

The objective function (1) minimizes the total energy consumption. Constraints
(2) set the initial battery SoC of EVs at departure to full. The connectivity of customer
visits is imposed by constraints (3) whereas the flow conservation at each vertex is
ensured by constraints (4). Constraints (5) make sure that vehicle k serves customer j
after customer i if it travels from i to j by recharging its battery en-route. Constraints
(6) guarantee the time feasibility of arcs emanating from the customers (the depot).
Constraints (7) establish the service time windows restriction. Constraints (6) and
(7) also eliminate the formation of sub-tours. Constraints (8)–(11) keep track of the
battery SoC at each node and make sure that it never falls below zero whereM = Q
+ (h + w.

∑
i ∈V qi).max{dij}. Constraints (8) establish the battery SoC consistency

if the vehicle travels from customer i to customer j without recharging en-route.
Constraints (9) determine battery SoC at the arrival at customer j if the vehicle
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visits a recharging station after it has departed from customer i whereas constraints
(10) check battery SoC at the arrival at a station if the battery is recharged en-route.
Constraints (11) set the limits for battery SoCwhen the vehicle departs from a station.
Constraints (12) allow positive battery SoC at the arrival of an EV at customer j only
if that EV serves customer j. Constraints (13) keep track of the load of the vehicle
throughout its journey. Constraints (14) ensure the non-negativity of the load on the
vehicle and guarantee that the cargo capacity is not exceeded. Finally, constraints
(15) and (16) define the binary decision variables.

2.2 Energy Consumption Function

The energy consumption of an EV that travels from one node to another depends
on various factors such as its mass, shape, road gradient, acceleration, etc. By using
tractive power requirements placed on the vehicle at the wheels, the power demand
of a vehicle can be obtained using function (18) (Demir et al. 2012):

F = Ma + Mg sin θ + 0.5CaρAV
2 + MgCr cos θ (17)

Ptract (kW ) = Fv/1000 (18)

where F shows the force function as calculated in (17), M is the total weight of the
vehicle that consist of its curb weight and the cargo load (kg), a is the acceleration
(m/s2), g is the gravitational constant, θ is road gradient, Cd is the coefficient of
aerodynamic drag, ρ is the air density in (kg/m3), A is the frontal area, v is the speed
(m/s), and Cr the coefficient of rolling resistance. The tractive power requirement
can be converted to second-by-second engine power output (kW) as follows:

P = Ptract/μt f + Pacc (19)

where the vehicle’s drive train efficiency is shownbyμtf andPacc is the power demand
associated with the accessory equipment such as air conditioning, audio system
and cabin lights, which is neglected in this study. Then, the energy consumption in
(kWh/km) can be calculated as follows:

E = P/v. (20)
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3 Solution Methodology

We attempt to solve small-size instances using a commercial solver. To solve the
large-size instances, we develop an LNS method. LNS was introduced by Shaw
(1998) and aims at improving an initial solution by using several destroy and repair
mechanisms iteratively. In each iteration, some customers are removed from the
solution and reinserted into the routes to create a new feasible solution. This proce-
dure is repeated for a predetermined number of iterations. LNS and Adaptive LNS
(ALNS) have been successfully applied to many VRP variants including EVRPs and
EVRPTWs (Keskin and Çatay 2016, 2018; Goeke and Schneider 2015; Hiermann
et al. 2016; Schiffer and Walther 2017; Keskin et al. 2019; Wen et al. 2016; Schiffer
et al. 2018).

We create the initial solution using the insertion heuristic in (Keskin and Çatay
2016) where the cost of inserting a customer into a route is calculated as (h+wui)dik
+ (h + wuk)dkj– (h + wui)dij. This insertion cost is calculated for all unvisited
customers and the minimum cost insertion is performed by ensuring that the related
constraints are not violated. If an EV runs out energy, a station may be inserted
to make its tour energy feasible. We use First-Feasible Station Insertion algorithm
which will be described in Sect. 3.3. If no customer can be feasibly inserted in the
route, a new route is initialized, and the procedure is repeated until all customers are
served.

Our LNS consist of customer removal and insertionmechanisms. In each iteration,
a customer removal algorithm is applied on a feasible solution to remove a subset of
customers from the routes. If any station is no longer needed in the partial solution,
they are removed as well. Next, we apply a customer insertion algorithm that inserts
all the customers removed to repair the solution in an attempt to obtain anew improved
solution. Stations may be inserted to maintain the energy feasibility along the route.
This procedure continues until the stopping criterion is satisfied, which is a limit
on the number of iterations in our implementation. Note that the set of stations that
can be visited between any two customers is reduced by using the dominance rules
presented in (Bruglieri et al. 2016).

3.1 Customer Removal Operators

The current feasible solution is destroyed by removing γ customers. We use Worst-
Consumption, Random Worst-Consumption, Shaw, Random Worst-Time, Random,
RandomRouteRemoval andGreedyRouteRemoval procedures ofKeskin andÇatay
(2016) by modifying them for the load dependent problem. The destroy operators
are selected randomly.

• Worst-Consumption algorithm selects the customers with high energy consump-
tion imposed to the route by visiting that customer, which is calculated as (h +
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wui)dik + (h + wuk)dkj – (h + wui)dij that considers distance and cargo load
effect in energy consumption.

• Random Worst-Consumption sorts the customers with respect to the associated
energy consumptions, considers a subset of σ × γ customers with highest costs
to select γ customers randomly and remove them.

• Shaw Removal removes similar customers with respect to their energy consump-
tion, earliest service time, being in the same route, and their demand. It randomly
selects customer i and calculates the relatedness measure as Ri j = φ1 hidi j +
φ2 |ei – ej| + φ3 lij + φ4 |Di – Dj | to find similar customers j. φ1 – φ4 are the Shaw
parameters, li j = –1 if i and j are in the same route, 1 otherwise. Small Ri j shows
high similarity. So, using the non-decreasing order of the relatedness value with
customer i, γ customers are removed from the solution.

• Random Worst-Time algorithm is a version of Shaw Removal where φ1, φ3, φ4

are set equal to 0. The customers are sorted in the non-decreasing order of their
relatedness values and γ customers are randomly removed from the subset of σ

× γ customers with lowest relatedness values.
• Random Removal mechanism randomly removes γ customers from the solution.
• Random Route Removal algorithm randomly removes ω routes from the solution.
• Greedy Route Removal mechanism sorts the routes in the non-decreasing order

of the number of customers visited and removes ω routes which serve the least
number of customers.

Note that the Route Removal algorithms attempt to reduce the fleet size.

3.2 Customer Insertion Operators

We adapt Random Greedy, Regret-2, Random Time-Based, Random Greedy with
Noise Function, and Regret-2 with Noise Function repair algorithms in (Keskin
and Çatay 2016; Demir et al. 2012) for our load-dependent case. In addition, we
propose Exhaustive Greedy, Exhaustive Time-Based, Exhaustive Time-Based with
Noise Function, and Random Time-Based with Noise Function mechanisms. The
repair operators are selected randomly.

• Random Greedy Insertion selects a customer and inserts it in the best position
which leads to least increase of energy consumption.

• Regret-2 Insertion try to avoid the higher costs in the subsequent iteration. It
calculates the difference between the cost of the best insertion and the second-best
insertion for all customers and selects the customer with the highest difference.

• Random Time-Based Insertion calculates insertion costs similar to the Exhaus-
tive Time-Based algorithm, however, at first an unassigned customer is selected
randomly, and the algorithm inserts it in its best position.

• Random Greedy Insertion with Noise Function is an extension of the Random
Greedy Insertion mechanism with a degree of freedom. We use the same noise
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function presented in (Demir et al. 2012). The cost of insertion using the freedom
degree is calculated as NewCost = ActualCost + d̄με, where d̄ represents the
maximum distance in the network, the noise parameter used for diversification is
shown by μ, and ε is a random number between [–1, 1].

• Exhaustive Greedy Insertion considers all possible insertion positions for all not-
inserted customers and selects the customer-position matching which leads to
least increase of energy consumption.

• Exhaustive Time-Based Insertion calculates the difference between the route dura-
tion after and before inserting a customer as the insertion cost. For all customers,
the insertion costs in all possible positions are calculated and the customer with
least insertion cost is selected.

Note that Regret-2 with Noise Function, Exhaustive Time-Based with Noise Func-
tion,RandomTime-BasedwithNoiseFunction are extensions ofRegret-2,Exhaustive
Time-Based and Random Time-Based insertion mechanisms, respectively, using a
similar noise function.

3.3 Station Removal and Insertion Operators

As we mentioned earlier, the unnecessary stations are removed from the partial solu-
tion obtained using the destroy operator. During the repair procedure, the insertion
of a customer may not be feasible with respect to battery SoC. In that case, we first
attempt to increase the recharge quantity if a station is visited prior to arriving to that
customer. If the energy recharged at the station cannot be increased or no station is
visited en-route we apply a station insertion operator to make the insertion feasible.
Wemodified Best Station Insertion andMultiple Station Insertion operators from the
literature (Keskin and Çatay 2016; Rastani et al. 2019) and applied them for the load
dependent problem. Also, we develop First Feasible Station Insertion operator for
this problem. Note that at most one station can be inserted between two consecutive
customers in a route.

• First-Feasible Station Insertion considers the first customer (or depot) where the
vehicle arrives at with negative SoC and checks the insertion of a station in the
preceding arcs backwards. The first station which makes the problem feasible is
inserted.

• Best-Station Insertion algorithm checks all possible stations in all possible arcs
before the first customer (or depot) with negative SoC and inserts the best station
in its best position.

• Multiple-Station Insertion algorithm inserts multiple stations into a route when
the insertion of a single station cannotmake the route feasible. A station is inserted
on the arc traversed immediately before arriving at the customer (or depot) with a
negative SoC where the vehicle is recharged up to the maximum level allowed by
the battery capacity and time windows restrictions of the succeeding customers. If
the SoC is still negative at that customer or if the vehicle runs out of energy before
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reaching the inserted station, we attempt to insert another station prior to the last
customer visited before traveling to the recently inserted station. This procedure
is repeated until the route becomes energy feasible.

One of the First-Feasible Station Insertion and Best-Station Insertion algorithms
is selected randomly. If it does not make the route feasible, we resort to Multiple-
Station Insertion algorithm. Note that, we remove all stations in the solution after
every β iterations and use Best-Station Insertion algorithm to insert stations to obtain
an improved feasible solution.

4 Computational Study

Weperformed our computational tests using the dataset of Schneider et al. (2014) and
Desaulniers et al. (2016) for the small-size and large-size instances, respectively. The
small-size dataset consists of 36 instances involving 5, 10, and 15 customers, and the
large-size dataset includes 56 instances generated based on the VRPTW instances of
Solomon (1987). The instances are classified according to the geographic distribution
of the customers: clustered (c-type), random (r-type), and half clustered half random
(rc-type). Furthermore, in type-1 problems (i.e., subsets r1, c1, rc1) the planning
horizon is shorter, and customers’ time windows are narrower compared to type-2
problems (i.e., r2, c2, rc2). In our study, we only consider type-1 problems from the
large-size dataset as they better exhibit the influence of recharging decisions on route
planning (Keskin and Çatay 2016, 2018; Rastani et al. 2019).

In order to deal with realistic vehicle cargo capacity and customer demands,
we assumed an electric truck based on the specifications provided in (Demir et al.
2012). Since capacity of this vehicle is 3650 kg, we converted the demand quantities
to reasonable weights by multiplying each by (3650/original capacity) in order to
observe the effect of cargo weight on energy consumption. We assumed a drive train
efficiency of 0.9 as EVs are more efficient than internal combustion engine vehicles.
Furthermore, since the EVs in the original data are assumed to consume one unit
of energy per unit distance/time travelled, we used Eq. (20) to calculate the actual
energy consumption of an empty vehicle (i.e., 6350 kg) per unit distance and scaled
it to h = 1. We used the same approach to determine the energy consumption w
associated with unit load carried. We consider a flat network where road gradients
are zero and we neglected vehicle acceleration.

The small-size instances were solved using Gurobi 9.0 with a 2-hour time limit.
LNS was employed to solve both small- and large-size instances. LNS was coded in
Python 3.7.1 and all runs were performed on an Intel Core (TM) i7-8700 processor
with 3.20 GHz speed and 32 GB RAM. We performed five runs for each instance.
The number of LNS iterations is set to 15,000 for the small-size instances and 25,000
for the large-size.

The results for small-size instances are provided in Table 1. Column “Gurobi”
shows the results using Gurobi and “LNS” provides the results obtained by the
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Table 1 Results of small-size instances obtained using Gurobi and LNS

Instance Gurobi LNS

Load independent Load dependent Load dependent

#Veh EC t (s) #Veh EC t (s) #Veh EC t (s) Δ (%)

r104c5-s3 2 137 <1 2 142 <1 2 142 11 0.00

r105c5-s3 2 156 <1 2 159 <1 2 159 8 0.00

r202c5-s3 1 129 <1 1 144 <1 1 144 16 0.00

r203c5-s4 1 179 <1 1 181 <1 1 181 9 0.00

c101c5-s3 2 258 <1 2 266 <1 2 266 9 0.00

c103c5-s2 1 175 <1 1 187 <1 1 187 10 0.00

c206c5-s4 1 243 <1 1 251 <1 1 251 10 0.00

c208c5-s3 1 164 <1 1 169 <1 1 169 9 0.00

rc105c5-s4 2 233 <1 2 257 <1 2 257 8 0.00

rc108c5-s4 2 254 <1 2 264 <1 2 264 10 0.00

rc204c5-s4 1 185 <1 1 189 <1 1 189 16 0.00

rc208c5-s3 1 168 <1 1 171 <1 1 171 14 0.00

r102c10-s4 3 249 <1 3 336 37 3 336 27 0.00

r103c10-s3 2 206 8 2 220 1507 2 220 29 0.00

r201c10-s4 1 242 <1 1 262 6 1 270 14 2.97

r203c10-s5 1 223 <1 1 227 7200 1 227 4 0.00

c101c10-s5 3 388 <1 3 410 117 3 410 23 0.00

c104c10-s4 2 274 <1 2 309 7200 2 308 48 – 0.26

c202c10-s5 1 304 <1 1 319 8 1 319 11 0.00

c205c10-s3 2 228 <1 2 234 148 2 234 26 0.00

rc102c10-s4 4 424 <1 5 475 435 5 475 17 0.00

rc108c10-s4 3 348 <1 3 365 4472 3 365 23 0.00

rc201c10-s4 1 413 <1 1 424 <1 2 327 28 −
rc205c10-s4 2 326 <1 2 335 432 2 335 25 0.00

r102c15-s8 5 413 3 5 431 7200 5 431 28 0.00

r105c15-s6 4 336 2 4 350 7200 4 350 32 0.00

r202c15-s6 1 507 594 2 365 7200 2 365 30 0.00

r209c15-s5 1 313 11 1 362 7200 1 360 25 – 0.60

c103c15-s5 3 348 33 4 393 7200 3 402 73 −
c106c15-s3 3 275 2 3 371 7200 3 352 52 – 5.27

c202c15-s5 2 384 11 2 408 7200 2 393 44 – 3.80

c208c15-s4 2 301 1 2 310 7200 2 310 47 0.00

rc103c15-s5 4 398 117 5 416 7200 4 416 45 −
rc108c15-s5 3 370 2002 5 453 7200 3 418 40 −
rc202c15-s5 2 394 1 2 403 7200 2 403 48 0.00

rc204c15-s7 1 382 7200 1 444 7200 1 446 9 0.45
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proposed LNS algorithm. Column “Load Independent” reports the results for the
case that does not consider the increased energy consumption associated with the
cargo carried whereas column “Load Dependent” show the results for the case that
considers the load on the vehicle. The comparison of these two columns exhibits the
influence of the load on routing decisions. “#Veh”, “EC”, and “t” refer to the fleet
size, energy consumption, and run time (in seconds), respectively. The results show
that #Veh increases by one in four instances and by two in one instance (shown in
bold). Notice that these increases are very significant considering the size of the fleet.
Furthermore, we observe that EC values obtained in the load-independent case are
far from the actual energy consumption found by taking into account the cargo load.
Finally, we see that LNS finds (near-) optimal solutions inmost of the instances while
improving the solutions given by Gurobi in three instances with respect to #Veh and
in four instances with respect to EC.

We solved the large-size instances for both load-independent and load-dependent
cases using LNS. The results are provided in Table 2.We observe that #Veh increases
by one in fourteen instances (shown in bold) in the load-dependent case compared
to the load-independent. Furthermore, in the remaining 15 instances, EC increases
by 14.3% on the average. These results show the importance of considering cargo
weight in route optimization.

5 Conclusions and Future Research

In this study, we addressed EVRPTWwith partial recharge by taking into account the
energy consumption associated with the cargo carried on the vehicle. We formulated
its 0–1 mixed integer linear programming model and used it to solve small-size
instances. For solving the large-size instances, we proposed an LNS method. Our
computational tests showed how the fleet size and/or energy consumption increase in
comparison to the casewhere the load factor is neglected and revealed the importance
of considering the weight of the vehicles for more accurate route planning. Future
research on this topic may consider the road gradient as well. A loaded vehicle going
uphill will consume significantly more energy. On the other hand, when it travels
downhill it can recharge its battery with energy recuperation.
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Table 2 Results of large-size instances obtained using LNS

Instance Load independent Load dependent

#Veh EC t (s) #Veh EC t (s)

r101 19 1666 1397 19 1833 1323

r102 16 1491 1459 17 1746 1397

r103 14 1223 2365 14 1375 1910

r104 12 1115 3954 13 1253 2959

r105 15 1425 1460 16 1481 1690

r106 14 1298 2019 15 1469 2138

r107 12 1232 2482 13 1357 2211

r108 12 1082 3567 12 1190 3317

r109 14 1245 1952 14 1457 2188

r110 12 1151 3767 13 1256 3355

r111 12 1151 2749 13 1271 2955

r112 12 1091 4689 12 1204 3646

c101 12 1050 1740 12 1198 1460

c102 11 1206 2132 12 1210 1820

c103 11 1295 3231 11 1433 2418

c104 11 1049 5564 11 1456 3392

c105 11 1210 1696 12 1167 1829

c106 12 1034 2800 12 1171 3107

c107 12 1032 2860 12 1183 3116

c108 12 1087 3108 12 1215 3876

c109 11 1141 3905 12 1256 3987

rc101 17 1735 1785 17 1947 1612

rc102 15 1679 1911 16 1812 1653

rc103 14 1462 2363 14 1653 1985

rc104 12 1373 3547 13 1490 3340

rc105 15 1499 2151 15 1734 1712

rc106 14 1443 2331 15 1630 2136

rc107 13 1320 2924 13 1523 2339

rc108 12 1322 3730 13 1527 2634
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Appendix Parameters

The parameters used in LNS algorithm are displayed in Table 3.

Table 3 Parameter values

Param Description Value

γ Number of customers removed Random between [20%, 55%] of all
customers

σ Parameter used in Random
Worst-Consumption and Random
Worst-Time algorithm

1.5

ω Number of routes removed Random between [10%, 40%] of all
routes

φ1 First Shaw parameter 0.5

φ2 Second Shaw parameter 0.25

φ3 Third Shaw parameter 0.15

φ4 Fourth Shaw parameter 0.25

μ Noise parameter 0.1

ε Random number for noise function Random between [–1, 1]

α First-Feasible Station Insertion
selection probability

0.7

δ1 Worst-Consumption selection
probability

0.077

δ2 Random Worst-Consumption selection
probability

0.308

δ3 Shaw selection probability 0.231

δ4 Random Worst-Time selection
probability

0.077

δ5 Random selection probability 0.154

δ6 Random Route Removal selection
probability

0.077

δ7 Greedy Route Removal selection
probability

0.077

λ1 Exhaustive Greedy Insertion selection
probability

0.077

λ2 Random Greedy Insertion selection
probability

0.308

λ3 Regret-2 Insertion selection probability 0.154

λ4 Exhaustive Time-Based Insertion
selection probability

0.077

λ5 Random Time-Based Insertion
selection probability

0.077

(continued)
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Table 3 (continued)

Param Description Value

λ6 Random Greedy with Noise Function
Insertion selection probability

0.077

λ7 Regret-2 with Noise Function insertion
selection probability

0.077

λ8 Exhaustive Time-Based with Noise
Function insertion selection probability

0.077

λ9 Random Time-Based with Noise
Function insertion selection probability

0.077

β Number of iterations to remove and
reinsert stations

50
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