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Brian C. Hall

Abstract This article begins with a brief review of random matrix theory, followed
by a discussion of how the large-N limit of random matrix models can be realized
using operator algebras. I then explain the notion of “Brown measure,” which play
the role of the eigenvalue distribution for operators in an operator algebra.

I then show how methods of partial differential equations can be used to compute
Brown measures. I consider in detail the case of the circular law and then discuss
more briefly the case of the free multiplicative Brownian motion, which was worked
out recently by the author with Driver and Kemp.

1 Random Matrices

Random matrix theory consists of choosing an N ×N matrix at random and looking
at natural properties of that matrix, notably its eigenvalues. Typically, interesting
results are obtained only for large random matrices, that is, in the limit as N tends
to infinity. The subject began with the work of Wigner [43], who was studying
energy levels in large atomic nuclei. The subject took on new life with the discovery
that the eigenvalues of certain types of large random matrices resemble the energy
levels of quantum chaotic systems—that is, quantum mechanical systems for which
the underlying classical system is chaotic. (See, e.g., [20] or [39].) There is also a
fascinating conjectural agreement, due to Montgomery [35], between the statistical
behavior of zeros of the Riemann zeta function and the eigenvalues of random
matrices. See also [30] or [6].

We will review briefly some standard results in the subject, which may be found
in textbooks such as those by Tao [40] or Mehta [33].
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1.1 The Gaussian Unitary Ensemble

The first example of a random matrix is the Gaussian unitary ensemble (GUE)
introduced by Wigner [43]. Let HN denote the real vector space of N ×N Hermitian
matrices, that is, those with X∗ = X, where X∗ is the conjugate transpose of X. We
then consider a Gaussian measure on HN given by

dNe−N trace(X2)/2 dX, X ∈ HN, (1)

where dX denotes the Lebesgue measure on HN and where dN is a normalizing
constant. If XN is a random matrix having this measure as its distribution, then the
diagonal entries are normally distributed real random variables with mean zero and
variance 1/N. The off-diagonal entries are normally distributed complex random
variables, again with mean zero and variance 1/N. Finally, the entries are as
independent as possible given that they are constrained to be Hermitian, meaning
that the entries on and above the diagonal are independent (and then the entries
below the diagonal are determined by those above the diagonal). The factor of N

in the exponent in (1) is responsible for making the variance of the entries of order
1/N. This scaling of the variances, in turn, guarantees that the eigenvalues of the
random matrix XN do not blow up as N tends to infinity.

In order to state the first main result of random matrix theory, we introduce the
following notation.

Definition 1 For any N × N matrix X, the empirical eigenvalue distribution of
X is the probability measure on C given by

1

N

N∑

j=1

λj ,

where {λ1, . . . , λN } are the eigenvalues of X, listed with their algebraic multiplicity.

We now state Wigner’s semicircle law.

Theorem 2 Let XN be a sequence of independently chosen N × N random
matrices, each chosen according to the probability distribution in (1). Then as
N → ∞, the empirical eigenvalue distribution of XN converges almost surely
in the weak topology to Wigner’s semicircle law, namely, the measure supported on
[−2, 2] and given there by

1

2π

√
4 − x2 dx, −2 ≤ x ≤ 2. (2)

Figure 1 shows a simulation of the Gaussian unitary ensemble for N = 2,000,

plotted against the semicircular density in (2). One notable aspect of Theorem 2
is that the limiting eigenvalue distribution (i.e., the semicircular measure in (2))



PDE Methods in Random Matrix Theory 79

Fig. 1 A histogram of the
eigenvalues of a GUE random
variable with N = 2,000,

plotted against a semicircular
density

−2 −1 0 1 2

is nonrandom. That is to say, we are choosing a matrix at random, so that its
eigenvalues are random, but in the large-N limit, the randomness in the bulk
eigenvalue distribution disappears—it is always semicircular. Thus, if we were to
select another GUE matrix with N = 2,000 and plot its eigenvalues, the histogram
would (with high probability) look very much like the one in Figure 1.

It is important to note, however, that if one zooms in with a magnifying glass so
that one can see the individual eigenvalues of a large GUE matrix, the randomness
in the eigenvalues will persist. The behavior of these individual eigenvalues is of
considerable interest, because they are supposed to resemble the energy levels of
a “quantum chaotic system” (i.e., a quantum mechanical system whose classical
counterpart is chaotic). Nevertheless, in this article, I will deal only with the bulk
properties of the eigenvalues.

1.2 The Ginibre Ensemble

We now discuss the non-Hermitian counterpart to the Gaussian unitary ensemble,
known as the Ginibre ensemble [15].We let MN(C) denote the space of all N × N

matrices, not necessarily Hermitian. We then make a measure on MN(C) using a
formula similar to the Hermitian case:

fN e−N trace(Z∗Z) dZ, Z ∈ MN(C), (3)

where dZ denotes the Lebesgue measure on HN and where fN is a normalizing
constant. In this case, the eigenvalues need not be real, and they follow the circular
law.

Theorem 3 Let ZN be a sequence of independently chosen N × N random
matrices, each chosen according to the probability distribution in (3). Then as
N → ∞, the empirical eigenvalue distribution of ZN converges almost surely in
the weak topology to the uniform measure on the unit disk.
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Fig. 2 A plot of the
eigenvalues of a Ginibre
matrix with N = 2,000

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

Figure 2 shows the eigenvalues of a random matrix chosen from the Ginibre
ensemble with N = 2,000. As in the GUE case, the bulk eigenvalue distribution
becomes deterministic in the large-N limit. As in the GUE case, one can also
zoom in with a magnifying glass on the eigenvalues of a Ginibre matrix until the
individual eigenvalues become visible, and the local behavior of these eigenvalues
is an interesting problem—which will not be discussed in this article.

1.3 The Ginibre Brownian Motion

In this article, I will discuss a certain approach to analyzing the behavior of the
eigenvalues in the Ginibre ensemble. The main purpose of this analysis is not so
much to obtain the circular law, which can be proved by various other methods. The
main purpose is rather to develop tools that can be used to study a more complex
random matrix model in the group of invertible N × N matrices. The Ginibre case
then represents a useful prototype for this more complicated problem.

It is then useful to introduce a time parameter into the description of the
Ginibre ensemble, which we can do by studying the Ginibre Brownian motion.
Specifically, in any finite-dimensional real inner product space V , there is a natural
notion of Brownian motion. The Ginibre Brownian motion is obtained by taking V

to be MN(C), viewed as a real vector space of dimension 2N2, and using the (real)
inner product 〈·, ·〉N given by

〈X, Y 〉N := N Re(trace(X∗Y )).
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We let CN
t denote this Brownian motion, assumed to start at the origin.

At any one fixed time, the distribution of CN
t is just the same as

√
tZN, where

ZN is distributed as the Ginibre ensemble. The joint distribution of the process CN
t

for various values of t is determined by the following property: For any collection
of times 0 = t0 < t1 < t2 < · · · < tk, the “increments”

CN
t1

− CN
t0

, CN
t2

− CN
t1

, . . . , CN
tk

− CN
tk−1

(4)

are independent and distributed as
√

tj − tj−1Z
N.

2 Large-N Limits in Random Matrix Theory

Results in random matrix theory are typically expressed by first computing some
quantity (e.g., the empirical eigenvalue distribution) associated to an N ×N random
matrix and then letting N tend to infinity. It is nevertheless interesting to ask
whether there is some sort of limiting object that captures the large-N limit of
the entire random matrix model. In this section, we discuss one common approach
constructing such a limiting object.

2.1 Limit in ∗-Distribution

Suppose we have a matrix-valued random variable X, not necessarily normal. Then
we can then speak about the ∗-moments of X, which are expressions like

E

{
1

N
trace(X2(X∗)3X4X∗)

}
.

Generally, suppose p(a, b) is a polynomial in two noncommuting variables, that
is, a linear combination of words involving products of a’s and b’s in all possible
orders. We may then consider

E

{
1

N
trace[p(X,X∗)]

}
.

If, as usual, we have a family XN of N × N random matrices, we may consider the
limits of such ∗-moments (if the limits exist):

lim
N→∞E

{
1

N
trace[p(XN, (XN)∗)]

}
. (5)
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2.2 Tracial von Neumann Algebras

Our goal is now to find some sort of limiting object that can encode all of the
limits in (5). Specifically, we will try to find the following objects: (1) an operator
algebra A, (2) a “trace” τ : A → C, and (3) an element x of A, such that for each
polynomial p in two noncommuting variables, we have

lim
N→∞E

{
1

N
trace[p(XN, (XN)∗)]

}
= τ [p(x, x∗)]. (6)

We now explain in more detail what these objects should be. First, we generally
take A to be a von Neumann algebra, that is, an algebra of operators that contains the
identity, is closed under taking adjoints, and is closed under taking weak operator
limits. Second, the “trace” τ is not actually computed by taking the trace of elements
of A, which are typically not of trace class. Rather, τ is a linear functional that has
properties similar to the properties of the normalized trace 1

N
trace(·) for matrices.

Specifically, we require the following properties:

• τ(1) = 1, where on the left-hand side, 1 denotes the identity operator,
• τ(a∗a) ≥ 0 with equality only if a = 0, and
• τ(ab) = τ(ba), and
• τ should be continuous with respect to the weak-∗ topology on A.

Last, x is a single element of A.

We will refer to the pair (A, τ ) as a tracial von Neumann algebra. We will
not discuss here the methods used for actually constructing interesting examples
of tracial von Neumann algebras. Instead, we will simply accept as a known result
that certain random matrix models admit large-N limits as operators in a tracial
von Neumann algebra. (The interested reader may consult the work of Biane and
Speicher [5], who use a Fock space construction to find tracial von Neumann
algebras of the sort we will be using in this article.)

Let me emphasize that although XN is a matrix-valued random variable, x is not
an operator-valued random variable. Rather, x is a single operator in the operator
algebra A. This situation reflects a typical property of random matrix models, which
we have already seen an example of in Sections 1.1 and 1.2, that certain random
quantities become nonrandom in the large-N limit. In the present context, it is often
the case that we have a stronger statement than (6), as follows: If we sample the
XN ’s independently for different N ’s, then with probability one, we will have

lim
N→∞

1

N
trace[p(XN, (XN)∗)] = τ [p(x, x∗)].

That is to say, in many cases, the random quantity 1
N

trace[p(XN, (XN)∗)] con-
verges almost surely to the single, deterministic number τ [p(x, x∗)] as N tends to
infinity.
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2.3 Free Independence

In random matrix theory, it is often convenient to construct random matrices as
sums or products of other random matrices, which are frequently assumed to be
independent of one another. The appropriate notion of independence in the large-
N limit—that is, in a tracial von Neumann algebra—is the notion of “freeness” or
“free independence.” This concept was introduced by Voiculescu [41, 42] and has
become a powerful tool in random matrix theory. (See also the monographs [36] by
Nica and Speicher and [34] by Mingo and Speicher.) Given an element a in a tracial
von Neumann algebra (A, τ ) and a polynomial p, we may form the element p(a).

We also let ṗ(a) denote the corresponding “centered” element, given by

ṗ(a) = p(a) − τ(p(a))

We then say that elements a1, . . . , ak are freely independent (or, more con-
cisely, free) if the following condition holds. Let j1, . . . , jn be any sequence of
indices taken from {1, . . . , k}, with the property that jl is distinct from jl+1. Let
pj1 , . . . , pjn be any sequence pj1 , . . . , pjn of polynomials. Then we should have

τ(ṗj1(aj1)ṗj2(aj2) · · · ṗjn(ajn)) = 0.

Thus, for example, if a and b are freely independent, then

τ [(a2 − τ(a2))(b2 − τ(b2))(a − τ(a))] = 0.

The concept of freeness allows us, in principle, to disentangle traces of arbitrary
words in freely independent elements, thereby reducing the computation to the
traces of powers of individual elements. As an example, let us do a few computations
with two freely independent elements a and b. We form the corresponding centered
elements a − τ(a) and b − τ(b) and start applying the definition:

0 = τ [(a − τ(a))(b − τ(b))]
= τ [ab] − τ [τ(a)b] − τ [aτ(b)] + τ [τ(a)τ (b)]
= τ [ab] − τ(a)τ (b) − τ(a)τ (b) + τ(a)τ (b)

= τ [ab] − τ(a)τ (b),

where we have used that scalars can be pulled outside the trace and that τ(1) = 1.

We conclude, then, that

τ(ab) = τ(a)τ (b).

A similar computation shows that τ(a2b) = τ(a2)τ (b) and that τ(ab2) =
τ(a)τ (b2).
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The first really interesting case comes when we compute τ(abab). We start with

0 = τ [(a − τ(a))(b − τ(b))(a − τ(a))(b − τ(b))]

and expand out the right-hand side as τ(abab) plus a sum of fifteen terms, all of
which reduce to previously computed quantities. Sparing the reader the details of
this computation, we find that

τ(abab) = τ(a2)τ (b)2 + τ(a)2τ(b2) − τ(a)2τ(b)2.

Although the notion of free independence will not explicitly be used in the rest
of this article, it is certainly a key concept that is always lurking in the background.

2.4 The Circular Brownian Motion

If ZN is a Ginibre random matrix (Section 1.2), then the ∗-moments of ZN converge
to those of a “circular element” c in a certain tracial von Neumann algebra (A, τ ).

The ∗-moments of c can be computed in an efficient combinatorial way (e.g.,
Example 11.23 in [36]). We have, for example, τ(c∗c) = 1 and τ(ck) = 0 for
all positive integers k.

More generally, we can realize the large-N limit of the entire Ginibre Brownian
motion CN

t , for all t > 0, as a family of elements ct in a tracial von Neumann
algebra (A, τ ). In the limit, the ordinary independence conditions for the increments
of CN

t (Section 1.3) is replaced by the free independence of the increments of ct .

That is, for all 0 = t0 < t1 < · · · < tk, the elements

ct1 − ct0 , ct2 − ct1 , . . . , ctk − ctk−1

are freely independent, in the sense described in the previous subsection. For any
t > 0, the ∗-distribution of ct is the same as the ∗-distribution of

√
tc1.

3 Brown Measure

3.1 The Goal

Recall that if A is an N × N matrix with eigenvalues λ1, . . . , λN , the empirical
eigenvalue distribution μA of A is the probability measure on C assigning mass
1/N to each eigenvalue:
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μA = 1

N

N∑

j=1

δλj
.

Goal 4 Given an arbitrary element x in a tracial von Neumann algebra (A, τ ),

construct a probability measure μx on C analogous to the empirical eigenvalue
distribution of a matrix.

If x ∈ A is normal, then there is a standard way to construct such a measure.
The spectral theorem allows us to construct a projection-valued measure γx [23,
Section 10.3] associated to x. For each Borel set E, the projection γx(E) will, again,
belong to the von Neumann algebra A, and we may therefore define

μx(E) = τ [γx(E)]. (7)

We refer to μx as the distribution of x (relative to the trace τ ). If x is not normal,
we need a different construction—but one that we hope will agree with the above
construction in the normal case.

3.2 A Motivating Computation

If A is an N × N matrix, define a function s : C → R ∪ {−∞} by

s(λ) = log(|det(A − λ)|2/N ),

where the logarithm takes the value −∞ when det(A − λ) = 0. Note that s is
computed from the characteristic polynomial det(A−λ) of A. We can compute s in
terms of its eigenvalues λ1, . . . , λN (taken with their algebraic multiplicity) as

s(λ) = 2

N

N∑

j=1

log
∣∣λ − λj

∣∣ . (8)

See Figure 3 for a plot of (the negative of) s(λ).

We then recall that the function log |λ| is a multiple of the Green’s function for
the Laplacian on the plane, meaning that the function is harmonic away from the
origin and that

� log |λ| = 2πδ0(λ),

where δ0 is a δ-measure at the origin. Thus, if we take the Laplacian of s(λ), with
an appropriate normalizing factor, we get the following nice result.
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Fig. 3 A plot of the function
−s(λ) for a matrix with five
eigenvalues. The function is
harmonic except at the
singularities

Proposition 5 The Laplacian, in the distribution sense, of the function s(λ) in (8)
satisfies

1

4π
�s(λ) = 1

N

N∑

j=1

δλj
(λ),

where δλj
is a δ-measure at λj . That is to say, 1

4π
�s is the empirical eigenvalue

distribution of A (Definition 1).

Recall that if B is a strictly positive self-adjoint matrix, then we can take
the logarithm of B, which is the self-adjoint matrix obtained by keeping the
eigenvectors of B fixed and taking the logarithm of the eigenvalues.

Proposition 6 The function s in (8) can also be computed as

s(λ) = 1

N
trace[log((A − λ)∗(A − λ))] (9)

or as

s(λ) = lim
ε→0+

1

N
trace[log((A − λ)∗(A − λ) + ε)]. (10)

Here the logarithm is the self-adjoint logarithm of a positive self-adjoint matrix.

Note that in (9), the logarithm is undefined when λ is an eigenvalue of A. In (10),
inserting ε > 0 guarantees that the logarithm is well defined for all λ, but a
singularity of s(λ) at each eigenvalue still arises in the limit as ε approaches zero.

Proof An elementary result [24, Theorem 2.12] says that for any matrix X, we have
det(eX) = etrace(X). If P is a strictly positive matrix, we may apply this result with
X = log P (so that eX = P ) to get

det(P ) = etrace(X)
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or

trace(log P) = log[det P ].

Let us now apply this identity with P = (A − λ)∗(A − λ), whenever λ is not an
eigenvalue of A, to obtain

1

N
trace[log((A − λ)∗(A − λ))] = 1

N
log[det((A − λ)∗(A − λ))]

= 1

N
log[det(A − λ)∗ det(A − λ)]

= log(|det(A − λ)|2/N ),

where this last expression is the definition of s(λ).

Continuity of the matrix logarithm then establishes (10). �


3.3 Definition and Basic Properties

To define the Brown measure of a general element x in a tracial von Neumann
algebra (A, τ ), we use the obvious generalization of (10). We refer to Brown’s
original paper [7] along with Chapter 11 of [34] for general references on the
material in this section.

Theorem 7 Let (A, τ ) be a tracial von Neumann algebra and let x be an arbitrary
element of A. Define

S(λ, ε) = τ [log((x − λ)∗(x − λ) + ε)] (11)

for all λ ∈ C and ε > 0. Then

s(λ) := lim
ε→0+ S(λ, ε) (12)

exists as an almost-everywhere-defined subharmonic function. Furthermore, the
quantity

1

4π
�s, (13)

where the Laplacian is computed in the distribution sense, is represented by a
probability measure on the plane. We call this measure the Brown measure of x

and denote it by μx.
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The Brown measure of x is supported on the spectrum σ(x) of x and has the
property that

∫

σ(x)

λk dμx(λ) = τ(xk) (14)

for all non-negative integers k.

See the original article [7] or Chapter 11 of the monograph [34] of Mingo and
Speicher. We also note that the quantity s(λ) is the logarithm of the Fuglede–
Kadison determinant of x − λ; see [13, 14]. It is important to emphasize that,
in general, the moment condition (14) does not uniquely determine the measure
μx. After all, σ(x) is an arbitrary nonempty compact subset of C, which could, for
example, be a closed disk. To uniquely determine the measure, we would need to
know the value of

∫
σ(x)

λkλ̄l dμx(λ) for all non-negative integers k and l. There is

not, however, any simple way to compute the value of
∫
σ(x)

λkλ̄l dμx(λ) in terms
of the operator x. In particular, unless x is normal, this integral need not be equal to
τ [xk(x∗)l]. Thus, to compute the Brown measure of a general operator x ∈ A, we
actually have to work with the rather complicated definition in (11), (12), and (13).

We note two important special cases.

• Suppose A is the space of all N × N matrices and τ is the normalized trace,
τ [x] = 1

N
trace(x). Then the Brown measure of any x ∈ A is simply the

empirical eigenvalue distribution of x, which puts mass 1/N at each eigenvalue
of x.

• If x is normal, then the Brown measure μx of x agrees with the measure defined
in (7) using the spectral theorem.

3.4 Brown Measure in Random Matrix Theory

Suppose one has a family of N × N random matrix models XN and one wishes to
determine the large-N limit of the empirical eigenvalue distribution of XN. (Recall
Definition 1.) One may naturally use the following three-step process.

Step 1. Construct a large-N limit of XN as an operator x in a tracial von
Neumann algebra (A, τ ).

Step 2. Determine the Brown measure μx of x.

Step 3. Prove that the empirical eigenvalue distribution of XN converges almost
surely to μx as N tends to infinity.

It is important to emphasize that Step 3 in this process is not automatic. Indeed,
this can be a difficult technical problem. Nevertheless, this article is concerned with
exclusively with Step 2 in the process (in situations where Step 1 has been carried
out). For Step 3, the main tool is the Hermitization method developed in Girko’s
pioneering paper [16] and further refined by Bai [1]. (Although neither of these
authors explicitly uses the terminology of Brown measure, the idea is lurking there.)
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There exist certain pathological examples where the limiting eigenvalue distribu-
tion does not coincide with the Brown measure. In light of a result of Śniady [38], we
can say that such examples are associated with spectral instability, that is, matrices
where a small change in the matrix produces a large change in the eigenvalues.
Śniady shows that if we add to XN a small amount of random Gaussian noise,
then eigenvalues distribution of the perturbed matrices will converge to the Brown
measure of the limiting object. (See also the papers [19] and [12], which obtain
similar results by very different methods.) Thus, if the original random matrices
XN are somehow “stable,” adding this noise should not change the eigenvalues of
XN by much, and the eigenvalues of the original and perturbed matrices should be
almost the same. In such a case, we should get convergence of the eigenvalues of
XN to the Brown measure of the limiting object.

The canonical example in which instability occurs is the case in which XN =
nilN, the deterministic N × N matrix having 1s just above the diagonal and 0s
elsewhere. Then of course nilN is nilpotent, so all of its eigenvalues are zero. We
note however that both nil∗N nilN and nilNnil∗N are diagonal matrices whose diagonal
entries have N − 1 values of 1 and only a single value of 0. Thus, when N is
large, nilN is “almost unitary,” in the sense that nil∗NnilN and nilNnil∗N are close
to the identity. Furthermore, for any positive integer k, we have that nilkN is again
nilpotent, so that trace[nilkN ] = 0. Using these observations, it is not hard to show
that the limiting object is a “Haar unitary,” that is, a unitary element u of a tracial
von Neumann algebra satisfying τ(uk) = 0 for all positive integers k. The Brown
measure of a Haar unitary is the uniform probability measure on the unit circle,
while of course the eigenvalue distribution XN is entirely concentrated at the origin.

In Figure 4 we see that even under a quite small perturbation (adding 10−6 times
a Ginibre matrix), the spectrum of the nilpotent matrix XN changes quite a lot. After
the perturbation, the spectrum clearly resembles a uniform distribution over the unit
circle. In Figure 5, by contrast, we see that even under a much larger perturbation
(adding 10−1 times a Ginibre matrix), the spectrum of a GUE matrix changes only
slightly. (Note the vertical scale in Figure 5.)

3.5 The Case of the Circular Brownian Motion

We now record the Brown measure of the circular Brownian motion.

Proposition 8 For any t > 0, the Brown measure of ct is the uniform probability
measure on the disk of radius

√
t centered at the origin.

Now, as we noted in Section 2.4, the ∗-distribution of the circular Brownian
motion at any time t > 0 is the same as the ∗-distribution of

√
tc1. Thus, the

proposition will follow if we know that the Brown measure of a circular element
c is the uniform probability measure on the unit disk. This result, in turn, is well
known; see, for example, Section 11.6.3 of [34].
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Fig. 4 Spectra of the nilpotent matrix nilN (left) and of nilN + ε(Ginibre) with ε = 10−5 (right),
with N = 2,000
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Fig. 5 Spectrum of a GUE matrix X (left) and X + ε(Ginibre) with ε = 10−1 (right), with
N = 2,000

4 PDE for the Circular Law

In this article, I present a different proof of Proposition 8 using the PDE method
developed in [10]. The significance of this method is not so much that it gives
another computation of the Brown measure of a circular element. Rather, it is a
helpful warm-up case on the path to tackling the much more complicated problem
in [10], namely, the computation of the Brown measure of the free multiplicative
Brownian motion. In this section and the two that follow, I will show how the PDE
method applies in the case of the circular Brownian motion. Then in the last section,
I will describe the case of the free multiplicative Brownian motion.

The reader may also consult the recent preprint [29], which extends the results
of [10] to case of the free multiplicative Brownian motion with arbitrary unitary
initial distribution. Section 3 of this paper also analyzes the case of the free
circular Brownian motion (with an arbitrary Hermitian initial distribution) using
PDE methods.
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We let ct be the circular Brownian motion (Section 2.4). Then, following the
construction of the Brown measure in Theorem 7, we define, for each λ ∈ C, a
function Sλ given by

Sλ(t, ε) = τ [log((ct − λ)∗(ct − λ) + ε)] (15)

for all t > 0 and ε > 0. The Brown measure of ct will then be obtained by letting
ε tend to zero, taking the Laplacian with respect to λ, and dividing by 4π. Our first
main result is that, for each λ, Sλ(t, ε) satisfies a PDE in t and ε.

Theorem 9 For each λ ∈ C, the function Sλ satisfies the first-order, nonlinear
differential equation

∂Sλ

∂t
= ε

(
∂Sλ

∂ε

)2

(16)

subject to the initial condition

Sλ(0, ε) = log(|λ|2 + ε).

We now see the motivation for making λ a parameter rather than a variable for S:
since λ does not appear in the PDE (16), we can think of solving the same equation
for each different value of λ, with the dependence on λ entering only through the
initial conditions.

On the other hand, we see that the regularization parameter ε plays a crucial role
here as one of the variables in our PDE. Of course, we are ultimately interested
in letting ε tend to zero, but since derivatives with respect to ε appear, we cannot
merely set ε = 0 in the PDE.

Of course, the reader will point out that, formally, setting ε = 0 in (16) gives
∂Sλ(t, 0)/∂t = 0, because of the leading factor of ε on the right-hand side. This
conclusion, however, is not actually correct, because ∂Sλ/∂ε can blow up as ε

approaches zero. Actually, it will turn out that Sλ(t, 0) is independent of t when
|λ| >

√
t, but not in general.

4.1 The Finite-N Equation

In this subsection, we give a heuristic argument for the PDE in Theorem 9. Although
the argument is not rigorous as written, it should help explain what is going on. In
particular, the computations that follow should make it clear why the PDE is only
valid after taking the large-N limit.
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4.1.1 The Result

We introduce a finite-N analog of the function Sλ in Theorem 9 and compute its time
derivative. Let CN

t denote the Ginibre Brownian motion introduced in Section 1.3.

Proposition 10 For each N, let

Sλ,N (t, ε) = E{tr[log((CN
t − λ)∗(CN

t − λ) + ε)]}.

Then we have the following results.

(1) The time derivative of Sλ,N may be computed as

∂Sλ,N

∂t
= εE{(tr[((CN

t − λ)∗(CN
t − λ) + ε)−1])2}. (17)

(2) We also have

∂

∂ε
tr[log((CN

t −λ)∗(Ct −λ)+ε)] = tr[((CN
t −λ)∗(CN

t −λ)+ε)−1]. (18)

(3) Therefore, if we set

T λ,N = tr[((CN
t − λ)∗(CN

t − λ) + ε)−1],

we may rewrite the formula for ∂Sλ,N/∂t as

∂Sλ,N

∂t
= ε

(
∂Sλ,N

∂ε

)2

+ Cov, (19)

where Cov is a “covariance term” given by

Cov = E{(T λ,N )2} − (E{T λ,N })2.

The key point to observe here is that in the formula (17) for ∂Sλ,N/∂t , we have
the expectation value of the square of a trace. On the other hand, if we computed
(∂Sλ,N/∂ε)2 by taking the expectation value of both sides of (18) and squaring, we
would have the square of the expectation value of a trace. Thus, there is no PDE for
Sλ,N —we get an unavoidable covariance term on the right-hand side of (19).

On the other hand, the Ginibre Brownian motion CN
t exhibits a concentration

phenomenon for large N. Specifically, let us consider a family {YN } of random
variables of the form

YN = tr[word in CN
t and (CN

t )∗].
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(Thus, e.g., we might have YN = tr[CN
t (CN

t )∗CN
t (CN

t )∗].) Then it is known that
(1) the large-N limit of E{YN } exists, and (2) the variance of YN goes to zero. That
is to say, when N is large, YN will be, with high probability, close to its expectation
value. It then follows that E{(YN)2} will be close to (E{YN })2. (This concentration
phenomenon was established by Voiculescu in [42] for the analogous case of the
“GUE Brownian motion.” The case of the Ginibre Brownian motion is similar.)

Now, although the quantity

((CN
t − λ)∗(CN

t − λ) + ε)−1

is not a word in CN
t and (CN

t )∗, it is expressible—at least for large ε—as a power
series in such words. It is therefore reasonable to expect—this is not a proof!—that
the variance of XN will go to zero as N goes to infinity and the covariance term
in (19) will vanish in the limit.

4.1.2 Setting Up the Computation

We view MN(C) as a real vector space of dimension 2N2 and we use the following
real-valued inner product 〈·, ·〉N :

〈X, Y 〉N = N Re(trace(X∗Y )). (20)

The distribution of CN
t is the Gaussian measure of variance t/2 with respect to this

inner product

dγt (C) = dte
−〈C,C〉/t dC,

where dt is a normalization constant and dC is the Lebesgue measure on MN(C).

This measure is a heat kernel measure. If we let Et denote the expectation value
with respect to γt , then we have, for any “nice” function,

d

dt
Et {f } = 1

4
Et {�f }, (21)

where � is the Laplacian on MN(C) with respect to the inner product (20).
To compute more explicitly, we choose an orthonormal basis for MN(C) over

R consisting of X1, . . . , XN2 and Y1, . . . , YN2 , where X1, . . . , XN2 are skew-
Hermitian and where Yj = iXj . We then introduce the directional derivatives X̃j

and Ỹj defined by

(X̃j f )(a) = d

ds
f (a + sXj )

∣∣∣∣
s=0

; (Ỹj f )(Z) = d

ds
f (a + sYj )

∣∣∣∣
s=0

.

Then the Laplacian � is given by
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� =
N2∑

j=1

(
(X̃j )

2 + (Ỹj )
2
)

.

We also introduce the corresponding complex derivatives, Zj and Z̄j given by

Zj = 1

2
(X̃j − iỸj );

Z̄j = 1

2
(X̃j + iỸj ),

which give

1

4
� =

N2∑

j=1

Z̄jZj .

We now let C denote a matrix-valued variable ranging over MN(C). We may
easily compute the following basic identities:

Zj (C) = Xj ; Zj (C
∗) = 0;

Z̄j (C) = 0; Z̄j (C
∗) = −Xj . (22)

(Keep in mind that Xj is skew-Hermitian.) We will also need the following
elementary but crucial identity

N2∑

j=1

XjAXj = −tr(A), (23)

where tr(·) is the normalized trace, given by

tr(A) = 1

N
trace(A).

See, for example, Proposition 3.1 in [9]. When applied to function involving a
normalized trace, this will produce second trace.

Finally, we need the following formulas for differentiating matrix-valued func-
tions of a real variable:

d

ds
A(s)−1 = −A(s)−1 dA

ds
A(s)−1 (24)

d

ds
tr[log A(s)] = tr

[
A(s)−1 dA

ds

]
. (25)
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The first of these is standard and can be proved by differentiating the identity
A(s)A(s)−1 = I. The second identity is Lemma 1.1 in [7]; it is important to
emphasize that this second identity does not hold as written without the trace. One
may derive (25) by using an integral formula for the derivative of the logarithm
without the trace (see, e.g., Equation (11.10) in [27]) and then using the cyclic
invariance of the trace, at which point the integral can be computed explicitly.

4.1.3 Proof of Proposition 10

We continue to let Et denote the expectation value with respect to the measure γt ,

which is the distribution at time t of the Ginibre Brownian motion CN
t , so that

Sλ,N (t, ε) = Et {tr[log((C − λ)∗(C − λ) + ε)]},

where the variable C ranges over MN(C). We apply the derivative Zj using (25)
and (22), giving

ZjS
λ,N (t, ε) = Et {tr[((C − λ)∗(C − λ) + ε)−1(C − λ)∗Xj ]}.

We then apply the derivative Z̄j using (24) and (22), giving

Z̄jZjS
λ,N (t, ε) = −Et {tr[((C − λ)∗(C − λ) + ε)−1X2

j ]}
+Et {tr[((C − λ)∗(C − λ)+ε)−1Xj(C−λ)((C−λ)∗(C−λ)+ε)−1(C − λ)∗Xj ]}.

We now sum on j and apply the identity (23). After applying the heat equation (21)
with � = ∑

j Z̄jZj , we obtain

d

dt
Sλ,N (t, ε)

=
∑

j

Z̄jZjS
λ,N (t, ε)

= Et {tr[((C − λ)∗(C − λ) + ε)−1]} − Et {tr[((C − λ)∗(C − λ) + ε)−1]×
tr[(C − λ)∗(C − λ)((C − λ)∗(C − λ) + ε)−1]}. (26)

But then

(C − λ)∗(C − λ)((C − λ)∗(C − λ) + ε)−1

= ((C − λ)∗(C − λ) + ε − ε)((C − λ)∗(C − λ) + ε)−1

= 1 − ε((C − λ)∗(C − λ) + ε)−1.
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Thus, there is a cancellation between the two terms on the right-hand side of (26),
giving

∂Sλ,N

∂t
= εEt {(tr[((C − λ)∗(C − λ) + ε)−1])2},

as claimed in Point 1 of the proposition.
Meanwhile, we may use again the identity (25) to compute

∂

∂ε
tr[log((CN

t − λ)∗(Ct − λ) + ε)]

to verify Point 2 3 then follows by simple algebra.

4.2 A Derivation Using Free Stochastic Calculus

4.2.1 Ordinary Stochastic Calculus

In this section, I will describe briefly how the PDE in Theorem 9 can be derived
rigorously, using the tools of free stochastic calculus. We begin by recalling a little
bit of ordinary stochastic calculus, for the ordinary, real-valued Brownian motion.
To avoid notational conflicts, we will let εt denote Brownian motion in the real line.
This is a random continuous path satisfying the properties proposed by Einstein in
1905, namely, that for any 0 = t0 < t1 < · · · < tk, the increments

xt1 − xt0 , xt2 − xt1 , . . . , xtk − xtk−1

should be independent normal random variables with mean zero and variance tj −
tj−1. At a rigorous level, Brownian motion is described by the Wiener measure on
the space of continuous paths.

It is a famous result that, with probability one, the path xt is nowhere differen-
tiable. This property has not, however, deterred people from developing a theory of
“stochastic calculus” in which one can take the “differential” of xt , denoted dxt .

(Since xt is not differentiable, we should not attempt to rewrite this differential as
dxt

dt
dt.) There is then a theory of “stochastic integrals,” in which one can compute,

for example, integrals of the form

∫ b

a

f (xt ) dxt ,

where f is some smooth function.
A key difference between ordinary and stochastic integration is that (dxt )

2 is not
negligible compared to dt. To understand this assertion, recall that the increments
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of Brownian motion have variance tj − tj−1—and therefore standard deviation√
tj − tj−1. This means that in a short time interval �t, the Brownian motion travels

distance roughly �t. Thus, if �xt = xt+�t − xt , we may say that (�xt )
2 ≈ �t.

Thus, if f is a smooth function, we may use a Taylor expansion to claim that

f (xt+�t ) ≈ f (xt ) + f ′(xt )�xt + 1

2
f ′′(xt )(�xt )

2

≈ f (xt ) + f ′(xt )�xt + 1

2
f ′′(xt )�t.

We may express the preceding discussion in the heuristically by saying

(dxt )
2 = dt.

Rigorously, this line of reasoning lies behind the famous Itô formula, which says
that

df (xt ) = f ′(xt ) dxt + 1

2
f ′′(xt ) dt.

The formula means, more precisely, that (after integration)

f (xb) − f (xa) =
∫ b

a

f ′(xt ) dxt + 1

2

∫ b

a

f ′′(xt ) dt,

where the first integral on the right-hand side is a stochastic integral and the second
is an ordinary Riemann integral.

If we take, for example, f (x) = x2/2, then we find that

1

2
(x2

b − x2
a) =

∫ b

a

xt dxt + 1

2
(b − a)

so that

∫ b

a

xt dxt = 1

2
(x2

b − x2
a) − 1

2
(b − a).

This formula differs from what we would get if xt were smooth by the b − a term
on the right-hand side.

4.2.2 Free Stochastic Calculus

We now turn to the case of the circular Brownian motion ct . Since ct is a limit of
ordinary Brownian motion in the space of N × N matrices, we expect that (dct )

2
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will be non-negligible compared to dt. The rules are as follows; see [31, Lemma 2.5,
Lemma 4.3]. Suppose gt and ht are processes “adapted to ct ,” meaning that gt and
ht belong to the von Neumann algebra generated by the operators cs with 0 < s < t.

Then we have

dct gt dc∗
t = dc∗

t gt dct = τ(gt ) dt (27)

dct gt dct = dc∗
t gt dc∗

t = 0 (28)

τ(gt dct ht ) = τ(gt dc∗
t ht ) = 0. (29)

In addition, we have the following Itô product rule: if a1
t , . . . , a

n
t are processes

adapted to ct , then

d(a1
t · · · an

t ) =
n∑

j=1

(a1
t · · · aj−1

t ) da
j
t (a

j+1
t · · · an

t ) (30)

+
∑

1≤j<k≤n

(a1
t · · · aj−1

t ) da
j
t (a

j+1
t · · · ak−1

t ) dak
t (ak+1

t · · · an
t ).

(31)

Finally, the differential “d” can be moved inside the trace τ.

Suppose, for example, we wish to compute dτ [c∗
t ct ]. We start by applying the

product rule in (30) and (31). But by (29), there will be no contribution from the
first line (30) in the product rule. We then use the second line (31) of the product
rule together with (27) to obtain

dτ [c∗
t ct ] = τ [dc∗

t dct ] = τ(1) dt = dt.

Thus,

d

dt
τ [c∗

t ct ] = 1.

Since, also, c0 = 0, we find that τ [c∗
t ct ] = t.

4.2.3 The Proof

In the proof that follows, the Itô formula (27) plays the same role as the identity (23)
plays in the heuristic argument in Section 4.1. We begin with a lemma whose proof
is an exercise in using the rules of free stochastic calculus.

Lemma 11 For each λ ∈ C, let us use the notation

ct,λ := ct − λ.
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Then for each positive integer n, we have

d

dt
τ [(c∗

t,λct,λ)
n] = n

n−1∑

l=0

τ [(c∗
t,λct,λ)

j ]τ [(ct,λc
∗
t,λ)

n−j−1]

Proof We first note that dct,λ = dct and dc∗
t,λ = dc∗

t , since λ is a constant. We
then compute dτ [(c∗

t,λct,λ)
n] by moving the d inside the trace and then applying the

product rule in (30) and (31). By (29), the terms arising from (30) will not contribute.
Furthermore, by (28), the only terms from (31) that contribute are those where one
d goes on a factor of ct,λ and one goes on a factor of c∗

t,λ.

By choosing all possible factors of ct,λ and all possible factors of c∗
t,λ, we get n2

terms. In each term, after putting the d inside the trace, we can cyclically permute the
factors until, say, the dct,λ factor is at the end. There are then only n distinct terms
that occur, each of which occurs n times. By (27), each distinct term is computed as

τ [(c∗
t,λct,λ)

j dc∗
t ct,λ(c

∗
t,λct,λ)

n−j−2c∗
t,λ dct ]

= τ [ct,λ(c
∗
t,λct,λ)

n−j−2c∗
t,λ]τ [(c∗

t,λct,λ)
j ] dt

= τ [(c∗
t,λct,λ)

j ]τ [ct c
∗
t (ct,λc

∗
t,λ)

n−j−1] dt.

Since each distinct term occurs n times, we obtain

dτ [(c∗
t,λct,λ)

n] = n

n−1∑

j=0

τ [(c∗
t,λct,λ)

j ]τ [(ct,λc
∗
t,λ)

n−j−1] dt,

which is equivalent to the claimed formula. �

We are now ready to give a rigorous argument for the PDE.

Proof of Theorem 9 We continue to use the notation ct,λ := ct − λ. We first
compute, using the operator version of (25), that

∂S

∂ε
= ∂

∂ε
τ [log(c∗

t,λct,λ + ε)]

= τ [(c∗
t,λct,λ + ε)−1]. (32)

We note that the definition of S in (15) actually makes sense for all ε ∈ C with
Re(ε) > 0, using the standard branch of the logarithm function. We note that for
|ε| > |z| , we have

1

z + ε
= 1

ε
(
1 − (− z

ε

))
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= 1

ε

[
1 − z

ε
+ z2

ε2
− z3

ε3
+ · · ·

]
. (33)

Integrating with respect to z gives

log(z + ε) = log ε +
∞∑

n=1

(−1)n−1

n

(z

ε

)n

.

Thus, for |ε| >
∥∥c∗

t ct

∥∥ , we have

τ [log(c∗
t,λct,λ + ε)] = log ε +

∞∑

n=1

(−1)n−1

nεn
τ [(c∗

t,λct,λ)
n]. (34)

Assume for the moment that it is permissible to differentiate (34) term by term
with respect to t. Then by Lemma 11, we have

∂S

∂t
=

∞∑

n=1

(−1)n−1

εn

n−1∑

j=0

τ [(c∗
t,λct,λ)

j ]τ [(ct,λc
∗
t,λ)

n−j−1]. (35)

Now, by [5, Proposition 3.2.3], the map t �→ ct is continuous in the operator
norm topology; in particular, ‖ct‖ is a locally bounded function of t. From this
observation, it is easy to see that the right-hand side of (35) converges locally
uniformly in t. Thus, a standard result about interchange of limit and derivative
(e.g., Theorem 7.17 in [37]) shows that the term-by-term differentiation is valid.

Now, in (35), we let k = j and l = n − j − 1, so that n = k + l + 1. Then k and
l go from 0 to ∞, and we get

∂S

∂t
= ε

(
1

ε

∞∑

k=0

(−1)k

εk
τ [(c∗

t,λct,λ)
k]

)(
1

ε

∞∑

l=0

(−1)l

εl
τ [(ct,λc

∗
t,λ)

l]
)

.

(We may check that the power of ε in the denominator is k + l + 1 = n and that
the power of −1 is k + l = n − 1.) Thus, moving the sums inside the traces and
using (33), we obtain that

∂S

∂t
= ε(τ [(c∗

t,λct,λ + ε)−1])2, (36)

which reduces to the claimed PDE for S, by (32).
We have now established the claimed formula for ∂S/∂t for ε in the right

half-plane, provided |ε| is sufficiently large, depending on t and λ. Since, also,
S(0, λ, ε) = log(|λ − 1|2 + ε), we have, for sufficiently large |ε| ,
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S(t, λ, ε) = log(|λ − 1|2 + ε) +
∫ t

0
ετ [(c∗

s,λcs,λ + ε)−1]τ [(cs,λc
∗
s,λ + ε)−1] ds.

(37)
We now claim that both sides of (37) are well-defined, holomorphic functions of
ε, for ε in the right half-plane. This claim is easily established from the standard
power-series representation of the inverse:

(A + ε + h)−1 = (A + ε)−1(1 + h(A + ε)−1)−1

= (A + ε)−1
∞∑

n=0

(−1)nhn(A + ε)−n,

and a similar power-series representation of the logarithm. Thus, (37) actually holds
for all ε in the right half-plane. Differentiating with respect to t then establishes the
desired formula (36) for dS/dt for all ε in the right half-plane. �


5 Solving the Equation

5.1 The Hamilton–Jacobi Method

The PDE (16) in Theorem 9 is a first-order, nonlinear equation of Hamilton–
Jacobi type. “Hamilton–Jacobi type” means that the right-hand side of the equation
involves only ε and ∂S/∂ε, and not S itself. The reader may consult Section 3.3 of
the book [11] of Evans for general information about equations of this type. In this
subsection, we describe the general version of this method. In the remainder of this
section, we will then apply the general method to the PDE (16).

The Hamilton–Jacobi method for analyzing solutions to equations of this type is
a generalization of the method of characteristics. In the method of characteristics,
one finds certain special curves along which the solution is constant. For a general
equation of Hamilton–Jacobi type, the method of characteristics is not applicable.
Nevertheless, we may hope to find certain special curves along which the solution
varies in a simple way, allowing us to compute the solution along these curves in a
more-or-less explicit way.

We now explain the representation formula for solutions of equations of
Hamilton–Jacobi type. A self-contained proof of the following result is given
as the proof of Proposition 6.3 in [10].

Proposition 12 Fix a function H(x,p) defined for x in an open set U ⊂ R
n and p

in R
n. Consider a smooth function S(t, x) on [0,∞) × U satisfying

∂S

∂t
= −H(x,∇xS) (38)
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for x ∈ U and t > 0. Now suppose (x(t),p(t)) is curve in U × R
n satisfying

Hamilton’s equations:

dxj

dt
= ∂H

∂pj

(x(t),p(t)); dpj

dt
= − ∂H

∂xj

(x(t),p(t))

with initial conditions

x(0) = x0; p(0) = p0 := (∇xS)(0, x0). (39)

Then we have

S(t, x(t)) = S(0, x0) − H(x0,p0) t +
∫ t

0
p(s) · dx

ds
ds (40)

and

(∇xS)(t, x(t)) = p(t). (41)

We emphasize that we are not using the Hamilton–Jacobi formula to construct a
solution to the equation (38); rather, we are using the method to analyze a solution
that is assumed ahead of time to exist. Suppose we want to use the method to
compute (as explicitly as possible), the value of S(t, x) for some fixed x. We then
need to try to choose the initial position x0 in (39)—which determines the initial
momentum p0 = (∇xS)(0, x0)—so that x(t) = x. We then use (40) to get an in-
principle formula for S(t, x(t)) = S(t, x).

5.2 Solving the Equations

The equation for Sλ in Theorem 9 is of Hamilton–Jacobi form with n = 1, with
Hamiltonian given by

H(ε, p) = −εp2. (42)

Since Sλ(t, ε) is only defined for ε > 0, we take open set U in Proposition 12 to be
(0,∞). That is to say, the Hamilton–Jacobi formula (40) is only valid if the curve
ε(s) remains positive for 0 ≤ s ≤ t.

Hamilton’s equations for this Hamiltonian then take the explicit form

dε

dt
= ∂H

∂p
= −2εp (43)

dp

dt
= −∂H

∂ε
= p2. (44)
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Following the general method, we take an arbitrary initial position ε0, with the initial
momentum p0 given by

p0 = ∂

∂ε
log(|λ|2 + ε)

∣∣∣∣
ε=ε0

= 1

|λ|2 + ε0
. (45)

Theorem 13 For any ε0 > 0, the solution (ε(t), p(t)) to (43) and (44) with initial
momentum p0 = 1/(|λ|2 + ε0) exists for 0 ≤ t < |λ|2 + ε0. On this time interval,
we have

ε(t) = ε0

(
1 − t

|λ|2 + ε0

)2

. (46)

The general Hamilton–Jacobi formula (40) then takes the form

Sλ

(
t, ε0

(
1 − t

|λ|2 + ε0

)2
)

= log(|λ|2 + ε0) − ε0t

(|λ|2 + ε0)2
, 0 ≤ t < |λ|2 + ε0. (47)

Proof Since the equation (44) for dp/dt does not involve ε(t), we may easily solve
it for p(t) as

p(t) = p0

1 − p0t
.

We may then plug the formula for p(t) into the equation (43) for dε/dt, giving

dε

dt
= −2ε

p0

1 − p0t

so that

1

ε
dε = −2

p0

1 − p0t
dt.

Thus,

log ε = 2 log(p0t − 1) + c1

so that



104 B. C. Hall

ε = c2(1 − p0t)
2.

Plugging in t = 0 gives c2 = ε0. Recalling the expression (45) for p0 gives the
claimed formula for ε(t).

Assuming ε0 > 0, the solution to the system (43)–(44) continues to exist with
ε(t) > 0 until p(t) blows up, which occurs at time t = 1/p0 = |λ|2 + ε0.

Finally, we work out the general Hamilton–Jacobi formula (40) in the case at
hand. We note from (42) and (43) that p(s) dε

ds
= −2ε(s)p(s)2 = 2H(s). Since the

Hamiltonian is always a conserved quantity in Hamilton’s equations, we find that

p(s)
dε

ds
= 2H(0) = −2ε0p

2
0.

Thus, (40) reduces to

Sλ(t, ε(t)) = S(0, ε0) + H(0)t

= log(|λ|2 + ε0) − ε0p
2
0t.

Using the formula (45) for p0 gives the claimed formula (47). �


6 Letting ε Tend to Zero

Recall that the Brown measure is obtained by first evaluating

st (λ) := lim
ε→0+ Sλ(t, 0)

and then taking 1/(4π) times the Laplacian (in the distribution sense) of st (λ). We
record the result here and will derive it in the remainder of this section.

Theorem 14 We have

st (λ) =
{

log(|λ|2) |λ| ≥ √
t

log t − 1 + |λ|2
t

|λ| <
√

t
. (48)

The Brown measure is then absolutely continuous with respect to the Lebesgue
measure, with density Wt(λ) given by

Wt(λ) =
{

0 |λ| ≥ √
t

1
πt

|λ| <
√

t
. (49)

That is to say, the Brown measure is the uniform probability measure on the disk
of radius

√
t centered at the origin. The functions st (λ) and Wt(λ) are plotted for
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Fig. 6 Plot of st (λ) := Sλ(t, 0+) (left) and 1
4π

�st (λ) (right) for t = 1

t = 1 in Figure 6. On the left-hand side of the figure, the dashed line indicates the
boundary of the unit disk.

6.1 Letting ε Tend to Zero: Outside the Disk

Our goal is to compute st (λ) := limε→0+ Sλ(t, ε). Thus, in the Hamilton–Jacobi
formalism, we want to try to choose ε0 so that the quantity

ε(t) = ε0

(
1 − t

|λ|2 + ε0

)2

(50)

will be very close to zero. Since there is a factor of ε0 on the right-hand side of the
above formula, an obvious strategy is to take ε0 itself very close to zero. There is,
however, a potential difficulty with this strategy: If ε0 is small, the lifetime of the
solution may be smaller than the time t we are interested in. To see when the strategy
works, we take the formula for the lifetime of the solution—namely, |λ|2 + ε0—and
take the limit as ε0 tends to zero.

Definition 15 For each λ ∈ C, we define T (λ) to be the lifetime of solutions to the
system (43)–(44), in the limit as ε0 approaches zero. Thus, explicitly,

T (λ) = lim
ε0→0+(|λ|2 + ε0)

= |λ|2 .

Thus, if the time t we are interested in is larger than T (λ) = |λ|2 , our simple
strategy of taking ε0 ≈ 0 will not work. After all, if t > T (λ) and ε0 ≈ 0, then
the lifetime of the path is less than t and the Hamilton–Jacobi formula (47) is not
applicable. On the other hand, if the time t we are interested in is at most T (λ) =
|λ|2 , the simple strategy does work. Figure 7 illustrates the situation.
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Fig. 7 If ε0 is small and
positive, ε(s) will remain
small and positive up to time
t , provided that
t ≤ T (λ) = |λ|2

t T( )= 2

e0

Conclusion 16 The simple strategy of letting ε0 approach zero works precisely
when t ≤ T (λ) = |λ|2 . Equivalently, the simple strategy works when |λ| ≥ √

t,

that is, when λ is outside the open disk of radius
√

t centered at the origin.

In the case that λ is outside the disk, we may then simply let ε0 approach zero in
the Hamilton–Jacobi formula, giving the following result.

Proposition 17 Suppose |λ| ≥ √
t, that is, λ is outside the open disk of radius

√
t

centered at 0. Then we may let ε0 tend to zero in the Hamilton–Jacobi formula (47)
to obtain

lim
ε→0+ Sλ(t, ε) = lim

ε0→0

(
log(|λ|2 + ε0) − ε0t

(|λ|2 + ε0)2

)

= log(|λ|2). (51)

Since the right-hand side of (51) is harmonic, we conclude that

�st (λ) = 0, |λ| >
√

t .

That is to say, the Brown measure of ct is zero outside the disk of radius
√

t centered
at 0.

6.2 Letting ε Tend to Zero: Inside the Disk

We now turn to the case in which the time t we are interested in is greater than
the small-ε0 lifetime T (λ) of the solutions to (43)–(44). This case corresponds to
t > T (λ)2 = |λ|2 , that is, |λ| <

√
t . We still want to choose ε0 so that ε(t) will

approach zero, but we cannot let ε0 tend to zero, or else the lifetime of the solution
will be less than t. Instead, we allow the second factor in the formula (46) for ε(t)

to approach zero. To make this factor approach zero, we make |λ|2 + ε0 approach
t, that is, ε0 should approach t − |λ|2 . Note that since we are now assuming that
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Fig. 8 If |λ| <
√

t and we let
ε0 approach t − |λ|2 from
above, ε(s) will remain
positive until time t , and ε(t)

will approach zero

T( )= 2 t

t- 2

e0

|λ| <
√

t, the quantity t − |λ|2 is positive. This strategy is illustrated in Figure 8:
When ε0 = t − |λ|2 , we obtain ε(t) = 0, and if ε0 approaches t − |λ|2 from above,
the value of ε(t) approaches 0 from above.

Proposition 18 Suppose |λ| ≤ √
t, that is, λ is inside the closed disk of radius

√
t

centered at 0. Then in the Hamilton–Jacobi formula (47), we may let ε0 approach
t − |λ|2 from above, and we get

lim
ε→0+ Sλ(t, ε) = log t − 1 + |λ|2

t
, |λ| ≤ √

t .

For |λ| <
√

t , we may then compute

1

4π
�st (λ) = 1

πt
.

Thus, inside the disk of radius
√

t, the Brown measure has a constant density of
1/(πt).

Proof We use the Hamilton–Jacobi formula (47). Since the lifetime of our solution
is |λ|2 + ε0, if we let ε0 approach t − |λ|2 from above, the lifetime will always be
at least t. In this limit, the formula (46) for ε(t) approaches zero from above. Thus,
we may take the limit ε0 → (t − |λ|2)+ in (47) to obtain

lim
ε→0+ Sλ(t, ε) = lim

ε0→(t−|λ|2)+

[
log(|λ|2 + ε0) − ε0t

(|λ|2 + ε0)2

]

= log t − (t − |λ|2)t
t2

,

which simplifies to the claimed formula. �
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6.3 On the Boundary

Note that if |λ|2 = t, both approaches are valid—and the two values of st (λ) :=
limε→0+ Sλ(t, ε) agree, with a common value of log t = log |λ|2 . Furthermore, the
radial derivatives of st (λ) agree on the boundary: 2/r on the outside and 2r/t on
the inside, which have a common value of 2/

√
t at r = √

t . Of course, the angular
derivatives of st (λ) are identically zero, inside, outside, and on the boundary.

Since the first derivatives of st are continuous up to the boundary, we may take
the distributional Laplacian by taking the ordinary Laplacian inside the disk and
outside the disk and ignoring the boundary. (See the proof of Proposition 7.13 in
[10].) Thus, we may compute the Laplacian of the two formulas in (48) to obtain
the formula (49) for the Brown measure of ct .

7 The Case of the Free Multiplicative Brownian Motion

7.1 Additive and Multiplicative Models

The standard GUE and Ginibre ensembles are given by Gaussian measures on
the relevant space of matrices (Hermitian matrices for GUE and all matrices for
the Ginibre ensemble). In light of the central limit theorem, these ensembles can
be approximated by adding together large numbers of small, independent random
matrices. We may therefore refer to these Gaussian ensembles as “additive” models.

It is natural to consider also “multiplicative” random matrix models, which can
be approximated by multiplying together large numbers of independent matrices
that are “small” in the multiplicative sense, that is, close to the identity. Specifically,
if Zadd is a random matrix with a Gaussian distribution, we will consider a
multiplicative version Zmult

t , where the distribution of Zmult
t may be approximated

as

Zmult
t ∼

k∏

j=1

(
I + i

√
t

k
Zadd

j − t

k
Itô

)
, k large. (52)

Here t is a positive parameter, the Zadd
j s are independent copies of Zadd, and “Itô”

is an Itô correction term. This correction term is a fixed multiple of the identity,
independent of t and k. (In the next paragraph, we will identify the Itô term in the
main cases of interest.) Since the factors in (52) are independent and identically
distributed, the order of the factors does not affect the distribution of the product.

The two main cases we will consider are those in which Z is distributed according
to the Gaussian unitary ensemble or the Ginibre ensemble. In the case that Z is
distributed according to the Gaussian unitary ensemble, the Itô term is Itô = 1

2I. In
this case, the resulting multiplicative model may be described as Brownian motion
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in the unitary group U(N), which we write as UN
t . The Itô correction is essential in

this case to ensure that Zmult
t actually lives in the unitary group. In the case that Z is

distributed according to the Ginibre ensemble, the Itô term is zero. In this case, the
resulting multiplicative model may be described as Brownian motion in the general
linear group GL(N;C), which we write as BN

t .

7.2 The Free Unitary and Free Multiplicative Brownian
Motions

The large-N limits of the Brownian motions UN
t and BN

t were constructed by Biane
[3]. The limits are the free unitary Brownian motion and the free multiplicative
Brownian motion, respectively, which we write as ut and bt . The qualifier
“free” indicates that the increments of these Brownian motions—computed in the
multiplicative sense as u−1

s ut or b−1
s bt—are freely independent in the sense of

Section 2.3. In the case of bt , the convergence of BN
t to bt was conjectured by

Biane [3] and proved by Kemp [31]. In both cases, we take the limiting object to be
an element of a tracial von Neumann algebra (A, τ ).

Since ut is unitary, we do not need to use the machinery of Brown measure,
but can rather use the spectral theorem as in (7) to compute the distribution of ut ,

denoted νt . We emphasize that νt is, in fact, the Brown measure of ut , but it easier
to describe νt using the spectral theorem than to use the general Brown measure
construction. The measure νt is a probability measure on the unit circle describing
the large-N limit of Brownian motion in the unitary group U(N). Biane computed
the measure νt in [3] and established the following support result.

Theorem 19 For t < 4, the measure νt is supported on a proper subset of the unit
circle:

supp(νt ) =
{

eiθ
∣∣∣ |θ | ≤ 1

2

√
t (4 − t) + cos−1

(
1 − t

2

)}
, t < 4.

By contrast, for all t ≥ 4, the closed support of νt is the whole unit circle.

In the physics literature, the change in behavior of the support of νt at t = 4
is called a topological phase transition, indicating that the topology of supp(νt )

changes from a closed interval to a circle.
The remainder of this article is devoted to recent results of the author with Driver

and Kemp regarding the Brown measure of the free multiplicative Brownian motion
bt . We expect that the Brown measure of bt will be the limiting empirical eigenvalue
distribution of the Brownian motion BN

t in the general linear group GL(N;C). Now,
when t is small, we may take k = 1 in (52), so that (since the Itô correction is zero
in this case)
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Fig. 9 The eigenvalues of
BN

t with t = 0.1 and
N = 2.000
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BN
t ∼ I + i

√
t

k
Z, t small.

Thus, when t is small and N is large, the eigenvalues of BN
t resemble a scaled and

shifted version of the circular law. Specifically, the eigenvalue distribution should
resemble a uniform distribution on the disk of radius

√
t centered at 1.

Figure 9 shows the eigenvalues of BN
t with t = 0.1 and N = 2,000. The

eigenvalue distribution bears a clear resemblance to the just-described picture, with√
t = √

0.1 ≈ 0.316. Nevertheless, we can already see some deviation from
the small-t picture: The region into which the eigenvalues are clustering looks
like a disk, but not quite centered at 1, while the distribution within the region is
slightly higher at the left-hand side of the region than the right. Figures 10 and 11,
meanwhile, show the eigenvalue distribution of BN

t for several larger values of
t. The region into which the eigenvalues cluster becomes more complicated as
t increases, and the distribution of eigenvalues in the region becomes less and
less uniform. We expect that the Brown measure of the limiting object bt will be
supported on the domain into which the eigenvalues are clustering.

7.3 The Domains �t

We now describe certain domains 
t in the plane, as introduced by Biane in [4,
pp. 273–274]. It will turn out that the Brown measure of bt is supported on 
t . We
use here a new the description of 
t, as given in Section 4 of [10]. For all nonzero
λ ∈ C, we define
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Fig. 10 Eigenvalues of BN
t for t = 2 (left) and t = 3.9 (right), with N = 2,000
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Fig. 11 Eigenvalues of BN
t for t = 4 (left) and t = 4.1 (right), with N = 2,000

T (λ) = |λ − 1|2 log(|λ|2)
|λ|2 − 1

. (53)

If |λ|2 = 1, we interpret log(|λ|2)/(|λ|2 − 1) as having the value 1 when |λ|2 = 1,

in accordance with the limit

lim
r→1

log r

r − 1
= 1.

See Figure 12 for a plot of this function.
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Fig. 12 A plot of the
function T (λ). The function
has a minimum at λ = 1, a
saddle point at λ = −1, and a
singularity at λ = 0

We then define the domains 
t as follows.

Definition 20 For each t > 0, we define


t = {λ ∈ C| T (λ) < t} .

Several examples of these domains were plotted already in Figures 9, 10, and 11.
The domain 
t is simply connected for t ≤ 4 and doubly connected for t > 4. The
change in behavior at t = 4 occurs because T has a saddle point at λ = −1 and
because T (−1) = 4. We note that a change in the topology of the region occurs at
t = 4, which is the same value of t at which the topology of the support of Biane’s
measure changes (Theorem 19).

7.4 The Support of the Brown Measure of bt

As we have noted, the domains 
t were introduced by Biane in [4]. Two sub-
sequent works in the physics literature, the article [18] by Gudowska-Nowak,
Janik, Jurkiewicz, and Nowak and the article [32] by Lohmayer, Neuberger, and
Wettig then argued, using nonrigorous methods, that the eigenvalues of BN

t should
concentrate into 
t for large N. The first rigorous result in this direction was
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obtained by the author with Kemp [26]; we prove that the Brown measure of bt

is supported on the closure of 
t .

Now, we have already noted that 
t is simply connected for t ≤ 4 but
doubly connected for t > 4. Thus, the support of the Brown measure of the
free multiplicative Brownian motion undergoes a “topological phase transition” at
precisely the same value of the time parameter as the distribution of the free unitary
Brownian motion (Theorem 19).

The methods of [26] explain this apparent coincidence, using the “free Hall
transform” Gt of Biane [4]. Biane constructed this transform using methods of
free probability as an infinite-dimensional analog of the Segal–Bargmann transform
for U(N), which was developed by the author in [21]. More specifically, Biane’s
definition Gt draws on the stochastic interpretation of the transform in [21] given by
Gross and Malliavin [17]. Biane conjectured (with an outline of a proof) that Gt is
actually the large-N limit of the transform in [21]. This conjecture was then verified
by in independent works of Cébron [8] and the author with Driver and Kemp [9].
(See also the expository article [25].)

Recall from Section 7.2 that the distribution of the free unitary Brownian motion
is Biane’s measure νt on the unit circle, the support of which is described in
Theorem 19. A key ingredient in [26] is the function ft given by

ft (λ) = λe
t
2

1+λ
1−λ . (54)

This function maps the complement of the closure of 
t conformally to the
complement of the support of Biane’s measure:

ft : C \ 
t → C \ supp(νt ). (55)

(This map ft will also play a role in the results of Section 7.5; see Theorem 23.)
The key computation in [26] is that for λ outside 
t, we have

G−1
t

(
1

z − λ

)
= ft (λ)

λ

1

u − ft (λ)
, λ /∈ 
t . (56)

See Theorem 6.8 in [26]. Properties of the free Hall transform then imply that for
λ outside 
t, the operator bt − λ has an inverse. Indeed, the noncommutative L2

norm of (bt −λ)−1 equals to the norm in L2(S1, νt ) of the function on the right-hand
side of (56). This norm, in turn, is finite because ft (λ) is outside the support of νt

whenever λ is outside 
t . The existence of an inverse to bt − λ then shows that λ

must be outside the support of μbt .

An interesting aspect of the paper [26] is that we not only compute the support
of μbt but also that we connect it to the support of Biane’s measure νt , using the
transform Gt and the conformal map ft .
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We note, however, that none of the papers [18, 32], or [26] says anything about
the distribution of μbt within 
t ; they are only concerned with identifying the region

t . The actual computation of μbt (not just its support) was done in [10].

7.5 The Brown Measure of bt

We now describe the main results of [10]. Many of these results have been extended
by Ho and Zhong [29] to the case of the free multiplicative Brownian motion with
an arbitrary unitary initial distribution.

The first key result in [10] is the following formula for the Brown measure of bt

(Theorem 2.2 of [10]).

Theorem 21 For each t > 0, the Brown measure μbt is zero outside the closure of
the region 
t . In the region 
t, the Brown measure has a density Wt with respect to
Lebesgue measure. This density has the following special form in polar coordinates:

Wt(r, θ) = 1

r2 wt(θ), reiθ ∈ 
t,

for some positive continuous function wt . The function wt is determined entirely by
the geometry of the domain and is given as

wt(θ) = 1

4π

(
2

t
+ ∂

∂θ

2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ

)
,

where rt (θ) is the “outer radius” of the region 
t at angle θ.

See Figure 13 for the definition of rt (θ), Figure 14 for plots of the function wt(θ),
and Figure 15 for a plot of Wt. The simple explicit dependence of Wt on r is a major
surprise of our analysis. See Corollary 22 for a notable consequence of the form of
Wt.

Using implicit differentiation, it is possible to compute drt (θ)/dθ explicitly as a
function of rt (θ). This computation yields the following formula for wt, which does
not involve differentiation:

wt(θ) = 1

2πt
ω(rt (θ), θ),

where

ω(r, θ) = 1 + h(r)
α(r) cos θ + β(r)

β(r) cos θ + α(r)
, (57)

and
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Fig. 13 The quantity rt (θ) is
the larger of the two radii at
which the ray of angle θ

intersects the boundary of 
t
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Fig. 14 Plots of wt(θ) for t = 2, 3.5, 4, and 7

h(r) = r
log(r2)

r2 − 1
; α(r) = r2 + 1 − 2rh(r); β(r) = (r2 + 1)h(r) − 2r.

See Proposition 2.3 in [10].
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Fig. 15 Plot of the density Wt for t = 1

Fig. 16 The density Wt (left) and a histogram of the eigenvalues of BN
t (right), for t = 1 and

N = 2,000

We expect that the Brown measure of bt will coincide with the limiting empirical
eigenvalue distribution of the Brownian motion BN

t in GL(N;C). This expectation
is supported by simulations; see Figure 16.

We note that the Brown measure (inside 
t ) can also be written as

dμbt = 1

r2 wt(θ) r dr dθ

= wt(θ)
1

r
dr dθ

= wt(θ) d log r dθ.

Since the complex logarithm is given by log(reiθ ) = log r + iθ, we obtain the
following consequence of Theorem 21.
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Fig. 17 The eigenvalues of BN
t for t = 4.1 and N = 2,000 (left) and the logarithms thereof

(right). The density of points on the right-hand side of the figure is approximately constant in the
horizontal direction

Corollary 22 The push-forward of the Brown measure μbt under the complex
logarithm has density that is constant in the horizontal direction and given by wt in
the vertical direction.

In light of this corollary, we expect that for large N, the logarithms of the
eigenvalues of BN

t should be approximately uniformly distributed in the horizontal
direction. This expectation is confirmed by simulations, as in Figure 17.

We conclude this section by describing a remarkable connection between the
Brown measure μbt and the distribution νt of the free unitary Brownian motion.
Recall the holomorphic function ft in (54) and (55). This map takes the boundary
of 
t to the unit circle. We may then define a map

�t : 
t → S1

by requiring (a) that �t should agree with ft on the boundary of 
t and (b)
that �t should be constant along each radial segment inside 
t, as in Figure 18.
(This specification makes sense because ft has the same value at the two boundary
points on each radial segment.) We then have the following result, which may be
summarized by saying that the distribution νt of free unitary Brownian motion is a
“shadow” of the Brown measure of bt .

Theorem 23 The push-forward of the Brown measure of bt under the map �t is
Biane’s measure νt on S1. Indeed, the Brown measure of bt is the unique measure
μ on 
t with the following two properties: (1) the push-forward of μ by �t is νt ,
and (2) μ is absolutely continuous with respect to Lebesgue measure with a density
W having the form
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Fig. 18 The map �t maps 
t to the unit circle by mapping each radial segment in 
t to a single
point in S1

Fig. 19 The eigenvalues of
BN

t , mapped to the unit circle
by �t , plotted against the
density of Biane’s measure
νt . Shown for t = 2 and
N = 2,000

- -
2 0 2

W(r, θ) = 1

r2
g(θ)

in polar coordinates, for some continuous function g.

This result is Proposition 2.6 in [10]. Figure 19 shows the eigenvalues for BN
t

after applying the map �t, plotted against the density of Biane’s measure νt . We
emphasize that we have computed the eigenvalues of the Brownian BN

t motion in
GL(N;C) (in the two-dimensional region 
t ) and then mapped these points to the
unit circle. The resulting histogram, however, looks precisely like a histogram of the
eigenvalues of the Brownian motion in U(N).
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7.6 The PDE and Its Solution

We conclude this article by briefly outlining the methods used to obtain the results
in the previous subsection.

7.6.1 The PDE

Following the definition of the Brown measure in Theorem 7, we consider the
function

S(t, λ, ε) := τ [log((bt − λ)∗(bt − λ) + ε)]. (58)

We then record the following result [10, Theorem 2.8].

Theorem 24 The function S in (58) satisfies the following PDE:

∂S

∂t
= ε

∂S

∂ε

(
1 + (|λ|2 − ε)

∂S

∂ε
− a

∂S

∂a
− b

∂S

∂b

)
, λ = a + ib, (59)

with the initial condition

S(0, λ, ε) = log(|λ − 1|2 + ε). (60)

Recall that in the case of the circular Brownian motion (the PDE in Theorem 9),
the complex number λ enters only into the initial condition and not into the PDE
itself. By contrast, the right-hand side of the PDE (59) involves differentiation with
respect to the real and imaginary parts of λ.

On the other hand, the PDE (59) is again of Hamilton–Jacobi type. Thus, follow-
ing the general Hamilton–Jacobi method in Section 5.1, we define a Hamiltonian
function H from (the negative of) the right-hand side of (59), replacing each
derivative of S by a corresponding momentum variable:

H(a, b, ε, pa, pb, pε) = −εpε(1 + (a2 + b2)pε − εpε − apa − bpb). (61)

We then consider Hamilton’s equations for this Hamiltonian:

da

dt
= ∂H

∂pa

; db

dt
= ∂H

∂pb

; dε

dt
= ∂H

∂pε

;
dpa

dt
= −∂H

∂a
; dpb

dt
= −∂H

∂b
; dpε

dt
= −∂H

∂ε
. (62)

Then, after a bit of simplification, the general Hamilton–Jacobi formula in (40) then
takes the form
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S(t, λ(t), ε(t)) = log(|λ0 − 1|2 + ε0) − ε0t

(|λ0 − 1|2 + ε0)2

+ log |λ(t)| − log |λ0| . (63)

(See Theorem 6.2 in [10].)
The analysis in [10] then proceeds along broadly similar lines to those in

Sections 5 and 6. The main structural difference is that because λ is now a variable in
the PDE, the ODE’s in (62) now involve both x and λ and the associated momenta.
(That is to say, the vector x in Proposition 12 is equal to (λ, ε) ∈ C × R ∼= R

3.)
The first key result is that the system of ODE’s associated to (59) can be solved
explicitly; see Section 6.3 of [10]. Solving the ODE’s gives an implicit formula for
the solution to (59) with the initial conditions (60).

We then evaluate the solution in the limit as ε tends to zero. We follow the
strategy in Section 6. Given a time t and a complex number λ, we attempt to choose
initial conditions ε0 and λ0 so that ε(t) will be very close to zero and λ(t) will equal
λ. (Recall that the initial momenta in the system of ODE’s are determined by the
positions by (39).)

7.6.2 Outside the Domain

As in the case of the circular Brownian motion, we use different approaches for λ

outside 
t and for λ in 
t . For λ outside 
t, we allow the initial condition ε0 in the
ODE’s to approach zero. As it turns out, when ε0 is small and positive, ε(t) remains
small and positive for as long as the solution to the system exists. Furthermore, when
ε0 is small and positive, λ(t) is approximately constant. Thus, our strategy will be
to take ε0 ≈ 0 and λ0 ≈ λ.

A key result is the following.

Proposition 25 In the limit as ε0 tends to zero, the lifetime of the solution
to (62) with initial conditions λ0 and ε0—and initial moment determined by (39)—
approaches T (λ0), where T is the same function (53) that enters into the definition
of the domain 
t .

This result is Proposition 6.13 in [10]. Thus, the strategy in the previous
paragraph will work—meaning that the solution continues to exist up to time
t—provided that T (λ0) ≈ T (λ) is greater than t. The condition for success of
the strategy is, therefore, T (λ) > t. In light of the characterization of 
t in
Definition 20, we make have the following conclusion.

Conclusion 26 The simple strategy of taking ε0 ≈ 0 and λ0 ≈ λ is successful
precisely if T (λ) > t or, equivalently, if λ is outside 
t .

When this strategy works, we obtain a simple expression for limε→0+ S(t, λ, ε),

by letting ε0 approach zero and λ0 approach λ in (63). Since λ(t) approaches λ in
this limit [10, Proposition 6.11], we find that
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Fig. 20 For each λ in 
t,

there exists ε0 > 0 and
λ0 ∈ 
t such that with these
initial conditions, we have
ε(t) = 0 and λ(t) = λ

lim
ε→0+ S(t, λ, ε) = log(|λ − 1|2), λ /∈ 
t . (64)

This function is harmonic (except at λ = 1, which is always in the domain 
t ), so
we conclude that the Brown measure of bt is zero outside 
t . See Section 7.2 in
[10] for more details.

7.6.3 Inside the Domain

For λ inside 
t, the simple approach in the previous subsection does not work,
because when λ is outside 
t and ε0 is small, the solutions to the ODE’s (62) will
cease to exist prior to time t (Proposition 25). Instead, we must prove a “surjectivity”
result: For each t > 0 and λ ∈ 
t, there exist—in principle—λ0 ∈ C and ε0 > 0
giving λ(t) = λ and ε(t) = 0. See Figure 20. Actually the proof shows that λ0 again
belongs to the domain 
t ; see Section 6.5 in [10].

We then make use of the second Hamilton–Jacobi formula (41), which allows us
to compute the derivatives of S directly, without having to attempt to differentiate
the formula (63) for S. Working in logarithmic polar coordinates, ρ = log |λ| and
θ = arg λ, we find an amazingly simple expression for the quantity

∂st

∂ρ
= lim

ε→0+
∂S

∂ρ
(t, λ, ε),

inside 
t, namely,

∂st

∂ρ
= 2ρ

t
+ 1, λ ∈ 
t . (65)

(See Corollary 7.6 in [10].) This result is obtained using a certain constant of motion
of the system of ODE’s, namely, the quantity

� = εpε + 1

2
(apa + bpb)

in [10, Proposition 6.5].
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If we evaluate this constant of motion at a time t when ε(t) = 0, the εpε term
vanishes. But if ε(t) = 0, the second Hamilton–Jacobi formula (41) tells us that

(
a
∂S

∂a
+ b

∂S

∂b

)
(t, λ(t), 0) = a(t)pa(t) + b(t)pb(t).

Furthermore, a ∂S
∂a

+ b ∂S
∂b

is just ∂S/∂ρ, computed in rectangular coordinates. A
bit of algebraic manipulation yields an explicit formula for a ∂S

∂a
+ b ∂S

∂b
, as in [10,

Theorem 6.7], explaining the formula (65). To complete the proof (65), it still
remains to address certain regularity issues of S(t, λ, ε) near ε > 0, as in Section 7.3
of [10].

Once (65) is established, we note that the formula for ∂st/∂ρ in (65) is
independent of θ. It follows that

∂

∂ρ

∂st

∂θ
= ∂

∂θ

∂st

∂ρ
= 0,

that is, that ∂st /∂θ is independent of ρ inside 
t . Writing the Laplacian in
logarithmic polar coordinates, we then find that

�st (λ) = 1

r2

(
∂2st

∂ρ2 + ∂2st

∂θ2

)

= 1

r2

(
2

t
+ ∂

∂θ

(
∂st

∂θ

))
, λ ∈ 
t, (66)

where 2/t term in the expression comes from differentiating (65) with respect to ρ.

Since ∂st/∂θ is independent of ρ, we can understand the structure of the formula in
Theorem 21.

The last step in the proof of Theorem 21 is to compute ∂st/∂θ. Since ∂st/∂θ is
independent of ρ—or, equivalently, independent of r = |λ|—inside 
t, the value
of ∂st/∂θ at a point λ in 
t is the same as its value as we approach the boundary of

t along the radial segment through λ. We show that ∂st/∂θ is continuous over the
whole complex plane, even at the boundary of 
t . (See Section 7.4 of [10].) Thus,
on the boundary of 
t, the function ∂st/∂θ will agree with the angular derivative of
log(|λ − 1|2), namely

∂

∂θ
log(|λ − 1|2) = 2 Im λ

|λ − 1|2

= 2r sin θ

r2 + 1 − 2r cos θ
. (67)

Thus, to compute ∂st/∂θ at a point λ in 
t, we simply evaluate (67) at either of
the two points where the radial segment through λ intersects ∂
t . (We get the same
value at either point.)
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One such boundary point is the point with argument θ = arg λ and radius rt (θ),

as in Figure 13. Thus, inside 
t, we have

∂st

∂θ
= 2rt (θ) sin θ

rt (θ)2 + 1 − 2rt (θ) cos θ
.

Plugging this expression into (66) gives the claimed formula in Theorem 21.
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