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Preface

Harmonic Analysis and Applications publishes high-quality works devoted to a
broad spectrum of areas in which Harmonic Analysis plays a central role. This
branch of Mathematics is known for its applicability in a plethora of diverse areas,
such as Differential Equations, Number Theory, Optimization Theory, Represen-
tation Theory, Quantum Mechanics, Neuroscience, and Signal Processing, to name
just a few, in the interplay of Mathematics, Physics, Finance, Electrical Engineering,
Computer Science, and other branches.

The goal of the book in hand is to present essential developments in various
areas in which Harmonic Analysis is applied. Particularly, the contributed chapters
discuss topics on structure and optimization in computational harmonic analysis,
sampling and approximation in shift invariant subspaces of L2(R), optimal rank one
matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns,
Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and
automatic annotation by combining modern harmonic analysis tools, harmonic
functions in slabs and half-spaces, Andoni-Krauthgamer-Razenshteyn characteri-
zation of sketchable norms, random matrix theory, and multiplicative completion of
redundant systems in Hilbert and Banach function spaces.

The chapters within this book have been chosen to represent a variety of different
topics and have been contributed by eminent experts, presenting the state of the art in
the corresponding topics and problems treated. Effort has been made for the content
of the book to constitute a valuable resource for graduate students but also senior
researchers working on Harmonic Analysis and its various interconnections with
related areas.

We would like to express our sincere thanks to all contributors of book chapters
who have participated in this publication, especially under the very difficult
circumstances caused by the current unprecedented Coronavirus global crisis. Last
but not least, we would like to warmly thank the staff of Springer for their valuable
help throughout the publication process of this book.

Zurich, Switzerland Michael Th. Rassias
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Sampling and Approximation in Shift
Invariant Subspaces of L2(R)

Nikolaos Atreas

Abstract Let φ be a continuous function in L2(R) with a certain decay at infinity
and a non-vanishing property in a neighborhood of the origin for the periodization of
its Fourier transform ̂φ. Under the above assumptions on φ, we derive uniform and
non-uniform sampling expansions in shift invariant spaces Vφ ⊂ L2(R). We also
produce local (finite) sampling formulas, approximating elements of Vφ in bounded
intervals of R, and we provide estimates for the corresponding approximation error,
namely, the truncation error. Our main tools to obtain these results are the finite
section method and the Wiener’s lemma for operator algebras.

1 Introduction

Sampling theory allows the recovery of a function f from a pre-determined
sequence of linear functionals (measurements) cf =

(

cn(f )
)

on a sampling set
τ = (τn); see [11, 14, 25, 31, 40] for an overview on sampling theory and
applications. Before we state the classical sampling theorem, we provide some
notation. Throughout this text, Lp(K) (1 ≤ p ≤ ∞) denotes the space of all p-
integrable functions on a Lebesgue measurable setK ⊆ R with usual norm ‖·‖Lp(K)
(or ‖ · ‖Lp for brevity, in case K = R). If p = 2, we denote by 〈·, ·〉L2 the usual
inner product on the Hilbert space L2. We define the Fourier transform of a function
f ∈ L1 by

̂f (ξ) =
∫

R

f (x)e−2πiξxdx, ξ ∈ R

and we recall the Plancherel theorem extending the definition of the Fourier
transform from the space L1 ∩ L2 to an isometric isomorphism onto L2. For any

N. Atreas (�)
School of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of
Thessaloniki, Thessaloniki, Greece
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2 N. Atreas

Ω > 0, we say that a square-integrable function g is Ω-bandlimited, if ĝ(ξ) = 0
for all |ξ | > Ω , and we denote by

BΩ = {g ∈ L2 : g is Ω- bandlimited},

the corresponding well-known Paley Wiener subspace of L2. Now we have:

Theorem 1 ((Classical sampling theorem) [12]) Let T ,Ω > 0 be such that
2TΩ ≤ 1. Then, every function f ∈ BΩ can be reconstructed from the formula

f (x) = T
∑

n∈Z
f (nT )

sin(2πΩ(x − nT ))
π(x − nT ) , x ∈ R, (1)

where the convergence is uniform on R and in the L2-sense.

The function sincΩ(x) = sin(2πΩx)
πx

is a sampling function for BΩ . If 2TΩ <

1, then the set {sincΩ(· − nT ) : n ∈ Z} is overcomplete in BΩ ; hence
the above sampling expansion is not unique. On the other hand, if 2TΩ = 1,
then the set {sincΩ(· − nT ) : n ∈ Z} is an orthonormal basis for BΩ ,
and Theorem 1 becomes the well-known Shannon-Whittaker-Kotelnikov sampling
theorem, providing uniqueness of the reconstruction formula (1). Notice that in (1),
the sampling period is equal to T , the sampling set is τ = {nT : n ∈ Z} and
the sampling theorem is called uniform or regular, because τ is equispaced. The
sampling rate is equal to the number of samples per second, i.e., it is equal to 1

T
.

Hence, the minimum sampling rate for perfect reconstruction in (1), called Nyquist
rate, is equal to 2�.
Theorem 1 is important because it is a prototype of a digital to analog reconstruction
formula and vice versa. Roughly speaking, an Ω-bandlimited (analog) signal f is
associated with a discrete set c(f ) = {f (nT )}n∈Z, and formula (1) provides the
means for perfect reconstruction of f on R. In order to model this process, e.g. for
2TΩ = 1, we could say that

(i) the sampling operator S : BΩ � f �−→ cf = {f (nT )} ∈ �2(Z) is bounded
and invertible and

(ii) the reconstruction operator R : �2(Z) �−→ BΩ is the adjoint of the sampling
operator, i.e., RS(f ) = S∗Sf = f for all f ∈ BΩ .

Here and hereafter, �2 = �2(Z) denotes the Hilbert space of all square summable
sequences c : Z→ C with usual inner product 〈·, ·〉�2 and norm ‖ · ‖�2 .
Theorem 1 can be extended to cover the case of non-square integrable bandlimited
functions (see [13, Theorem 3.1]) or to cover the d-dimensional bandlimited case
(see [11]). Moreover, the sinc function in (1) can be replaced with another sampling
function with a more rapid decrease at infinity, to enable local approximation of f
in bounded intervals of R. To this direction, we have:

Theorem 2 ([9]) Let T ,Ω > 0 be such that 2TΩ ≤ 1. Then we may find a
rapidly decreasing function s in B 1

2T
, such that every function f ∈ BΩ can be
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reconstructed from the formula

f (x) = T
∑

n∈Z
f (nT )s(x − nT ), (2)

where the convergence is uniform on R and in the L2-sense.

Theorem 2 can be extended in order to cover the case of non-necessarily bandlimited
functions as well. This generalization is motivated, because in practice there are
no bandlimited functions. Hence, we may select the sampling function in (2) to
be a non-bandlimited function. Even more generally, we could design the whole
sampling process so that information about f is gathered not on the sequence
of its sampled values {f (nT )}n∈Z but on more general averaging measurements,
obtained, for example, from a convolution process of the original function f with a
suitable kernel function, say φ ∈ L2(R), on a sampling set τ , i.e.,

L2(R) � f �−→ f ∗ φ(−·) ∈ L2(R) �−→
sampling

cf =
{〈f, φ(· − τn)〉L2

}

n∈Z. (3)

Notice that the above generalized sampling scheme (3) is ill-posed on L2(R)

[30, 32]. For well-posedness, we need to determine a certain subspace ofL2 where f
lives in and require a space for the sample vector cf to stay. For more about average
sampling expansions, we refer to [1, 3, 4, 7, 9, 30, 36, 37] and related references
therein.

Below we deal with classical (rather than average) sampling expansions on a
class of (non-necessarily bandlimited) subspaces of L2, namely, the shift invariant
spaces.

2 Uniform Sampling in Shift Invariant Spaces of L2

The original motivation to select a shift invariant space V of L2(R) originates from
Theorems 1 and 2. Another think is that the theory of shift invariant space fits
perfectly with Fourier Analysis. Indeed, the representation (2) or (3) for any Ω-
bandlimited function implies that BΩ is a T -shift invariant subspace of L2. More
generally, given a generator function φ ∈ L2, let

V 0
φ = span{φ(· − k) : k ∈ Z}

be a subspace of L2 containing all finite linear combinations of the integer shifts of
φ. Notice here that when we talk about a finite sequence, we mean a sequence where
at most finitely many entries are non-zero. Consider the L2-closure of V 0

φ to be

Vφ = spanV 0
φ .
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Definition 1 ([17, Thm 3.6.6]) We say that the set {φ(· − k) : k ∈ Z} forms a
Riesz basis for Vφ , if there exist two positive constants A and B such that for any
finite scalar sequence {ck}, we have

A
∑

k

|ck|2 ≤
∥

∥

∥

∑

k

ckφ(· − k)
∥

∥

∥

2

L2
≤ B

∑

k

|ck|2.

For an excellent review about the theory of Riesz bases and the theory of frames,
we refer to [17]. Now, we may prove the following:

Theorem 3 (Sampling theorem for shift invariant spaces) Let φ be a continuous
function on R such that

‖φ‖Wp(L∞,uα) =
∥

∥

{‖uα(· − n)φ(· − n)‖L∞[− 1
2 ,

1
2 ]

}

n∈Z
∥

∥

�p
<∞, (4)

where 1 ≤ p ≤ +∞, uα(x) = (1+ |x|)α for some α > 1− 1
p
and

Φ†(ξ) =
∑

n∈Z
φ(n)e−2πinξ �= 0 for any ξ ∈ [− 1

2
,

1

2

]

. (5)

Then the set {φ(· − k) : k ∈ Z} is a Riesz basis for its closed linear span
Vφ = span{φ(· − k) : k ∈ Z}, and moreover, Vφ is a sampling subspace of L2,
i.e., any function f ∈ Vφ is uniquely and stably reconstructed from its sample set
L (f ) = {f (n)}n∈Z by the formula

f =
∑

n∈Z
f (n)S(· − n) (6)

in theL2-sense and uniformly on compact intervals ofR, for some sampling function
S whose Fourier transform is determined by the following equality

̂S(ξ) = ̂φ(ξ)

Φ†(ξ)
, ξ ∈ R.

Proof The assumption α > 1− 1
p

on the exponent of the polynomial weight uα in
condition (4) ensures that φ ∈ L1 ∩ L2. In order to prove this claim, it suffices to
prove that ‖φ‖W1(L∞,uα) < ∞. Indeed, let q be the conjugate exponent of p (i.e.,
1
p
+ 1
q
= 1). Then we have

‖φ‖W1(L∞,uα) =
∥

∥

{ ‖φ(· − n)‖
L∞[− 1

2 ,
1
2 ]

}

n∈Z
∥

∥

�1
= ‖(φuα)u−1

α ‖W1(L∞,u0 )

≤ ‖φ‖Wp(L∞,uα )
(
∑

n∈Z

1

(|n| + 1/2)αq

)1/q ≤ C‖φ‖Wp(L∞,uα ) <∞. (7)
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In addition, we observe that Vφ is a space of continuous square integrable
functions on R, and moreover the 2π -periodic function |Φ†| in condition (5) is
continuous on

[− 1
2 ,

1
2

]

and so

‖Φ†‖0 = min
γ∈[− 1

2 ,
1
2 ]|Φ

†(γ )| > 0 and ‖Φ†‖∞ = max
γ∈[− 1

2 ,
1
2 ]|Φ

†(γ )| <∞.

This also implies that the set {φ(· − k) : k ∈ Z} is a Riesz basis for its closed
linear span Vφ ; see [17, Thm 7.2.3]. We now define the infinite matrix

Φ = {Φm,n = φ(m− n)}m,n∈Z (8)

as an operator on �2. Then, for any c ∈ �2, we apply the Parseval equality, and we
obtain

‖Φc‖2
�2
=

∫ 1

0
|Φ†(ξ)|2∣∣

∑

n

cne
−2πinξ

∣

∣

2
dξ

and so

‖Φ†‖2
0‖c‖2

�2
≤ ‖Φc‖2

�2
≤ ‖Φ†‖2∞‖c‖2

2 for all c ∈ �2. (9)

Therefore, the operator Φ is bounded on �2, and it has bounded inverse on �2.
Let f be an element of Vφ uniquely expressed by

f (x) =
∑

n

cn(f )φ(x − n),

in the L2-sense and pointwise on R. Denote by df = {f (k) : k ∈ Z} to be the
sequence of sampled values of f at the integers x = k. Then

f (k) =
∑

n

cn(f )φ(k − n) ⇐⇒ df = Φcf ⇐⇒ cf = Φ−1df ,

where

Φ−1 : �2 → �2 :
(

Φ−1c
)

n
=

∑

k

Φ−1
n,kck n, k ∈ Z.
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Hence

f =
∑

n

cn(f )φ(· − n) =
∑

n

(

Φ−1df
)

n
φ(· − n) =

∑

k

f (k)S(· − k),

where S =∑

n Φ
−1
0,nφ(· − n). Since S is a sampling function for Vφ (i.e.,

∑

n
̂S(ξ +

n) = 1), we have

S =
∑

n

Φ−1
0,nφ(· − n) ⇐⇒ ̂S =

(
∑

n

Φ−1
0,ne

−2πin·)
̂φ (10)

⇐⇒
∑

n

̂S(· + n) =
(
∑

k

Φ−1
0,ke

−2πik·)∑

n

̂φ(· + n)

⇐⇒ 1 =
(
∑

k

Φ−1
0,ke

−2πikξ
)

Φ†(ξ) ⇐⇒
∑

k

Φ−1
0,ke

−2πikξ = 1

Φ†(ξ)
.

Substituting the last equality in (10), we obtain ̂S = ̂φ

Φ† .

Equation (6) is a well-known result of a regular sampling expansion for shift
invariant spaces, including the above Theorems 1 and 2 and wavelet sampling
expansions [38, Theorem 9.2].

3 Perturbation Sampling in Shift Invariant Spaces

Let φ be a continuous function on R satisfying the assumptions (4) and (5) and Vφ be
its corresponding shift invariant space as in Sect. 2. In a variety of applications, the
sampling process may not be uniform, but rather shifted or perturbed by a bounded
sequence Δ = {δn}n∈Z, called perturbation sequence. Δ could be either known, or
unknown, if it is caused from disturbances of the acquisition device or jitter. In both
cases we talk about a non-uniform sampling scheme [10, 18, 29, 40], and a basic
problem is to examine whether the resulting irregular sampling set {n + δn}n∈Z
satisfies an inequality similar to (9):

C‖c‖�2 ≤ ‖{f (n+ δn)}n‖�2 ≤ D‖c‖�2 , (11)

for all c ∈ �2 and for some positive constants C,D. If this double inequality holds,
then there exists another Riesz basis {ψΔn }n∈Z for Vφ providing a unique and stable
reconstruction formula for elements f ∈ Vφ of the form

f =
∑

n∈Z
f (n+ δn)ψΔn .
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The above equation is a non-uniform or perturbation sampling formula. Stable
perturbed sampling sets and formulas have been studied extensively; see [1–3, 5–
8, 12, 15, 24, 27, 28, 33, 39] and references therein. It is useful to detect the
largest bound of the perturbation sequenceΔ for which (11) holds, called maximum
perturbation. In this section, we derive a class of perturbed sampling expansions
under a maximum perturbation δφ . To do that, first we consider the bounded and
boundedly invertible operator Φ = {Φm,n = φ(m− n) : m, n ∈ Z} of Eq. (8), and
we denote by

Φτδ =
{

(

Φτδ
)

m,n
= φ(τm − n)

}

m,n∈Z (12)

to be a distortion of Φ, where τδ = {τn = n + δn : |δn| ≤ δ}n∈Z is a sampling set
on R for some δ > 0 and τδ is also an ordered and ε-separated sampling set, in the
sense that for some ε > 0, we have

τm+1 − τm ≥ ε > 0, for all m ∈ Z.

Let

Gφ : R+ → R
+ : Gφ(x) =

∑

n∈Z
sup|y|≤x |φ(y + n)− φ(n)| (13)

be a continuous, increasing and unbounded function on R
+ with G(0) = 0 and

δφ = inf
{

x > 0 : Gφ(x) ≥ ‖Φ†‖0

}

, (14)

where ‖Φ†‖0 > 0 by assumption (5). Then 0 < δφ < +∞.

Definition 2 Let φ, τδ,Φτδ and δφ be as above. If 0 ≤ δ < δφ , then we say that the
operator Φτδ belongs in the class Fδφ .

Now we are ready to prove the following:

Theorem 4 ([7] (Perturbation theorem for shift invariant subspaces of L2)) Let
φ, τδ, δφ be as above, and the operatorΦτδ belongs in the class Fδφ of Definition 2.
Then the set τδ is a set of stable sampling for Vφ (i.e. (11) holds), and so every
function f ∈ Vφ is uniquely reconstructed from the set of sampled values Lτδ (f ) =
{f (τn)}n∈Z from the formula

f (x) =
∑

n∈Z
f (τn)ψ

τδ
n (x) (15)

in the L2-sense and uniformly on compact intervals of R, where
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ψτδn (x) =
∑

k∈Z

(

Φτδ
)−1
k,n
φ(x − k) (16)

andΦ−1
τδ

is the inverse of the operatorΦτδ . Furthermore, the set {ψτδn }n∈Z is a Riesz
basis for the space Vφ .

Proof The detailed proof is presented in [7]. Here we give a brief sketch. The crucial
think is to prove that the operator Φτδ ∈ Fδφ satisfies (11). We have

‖Φτδc‖�2‖c‖�2 ≥
∣

∣

∣〈Φτδc, c〉�2

∣

∣

∣ ≥
∣

∣

∣

∣

∣〈Φc, c〉�2

∣

∣− ∣

∣〈(Φτδ −Φ)c, c〉�2

∣

∣

∣

∣

∣. (17)

By using the Cauchy-Schwarz inequality and the definition (13), we obtain

∣

∣〈(Φτδ −Φ)c, c〉�2

∣

∣ ≤ Gφ(δ)‖c‖2
�2
.

Substituting this bound and the lower bound of (9) into (17), we obtain

‖Φτδc‖�2 ≥ C‖c‖�2 , (18)

with C = ‖Φ†‖0 −Gφ(δ) > 0, since Φτδ belongs in the class Fδφ . Obviously, (18)
holds for the adjoint operator Φ∗τδ as well. On the other hand, taking into account
the upper bound of (9), we can show that

‖Φτδc‖�2 ≤ ‖Φc‖�2 + ‖(Φτδ −Φ)c‖�2 ≤
(‖Φ†‖∞ +Gφ(δ)

)‖c‖�2

≤ (‖Φ†‖∞ +Dφ,δφ
)‖c‖�2 ,

where Dφ,δφ is a positive constant depending on the selection of φ and the number
δφ . Summarizing, there exist two positive constants C,D such that

C‖c‖�2 ≤ ‖Φτδc‖�2 ≤ D‖c‖2 for all c ∈ �2

and the above lower inequality holds for Φ∗τδ as well. Therefore, Φτδ is onto �2, and
so there exists a unique sequence c ∈ �2 such that f (x) = ∑

k∈Z ckφ(x − k) and
consequently,

Lτδ (f ) = Φτδc,

where Lτδ (f ) = {f (τn)}n∈Z. By following the same steps as in the Proof of
Theorem 3, we obtain the result.

Below, we present some examples. Let φ be generator and sampling function of
Vφ , i.e., φ(n) = δ0,n, where δ0,n is the Kronecker’s delta symbol. Then Φ†(ξ) =
∑

n∈Z φ(n)e−2πinξ = 1 for all ξ in
[− 1

2 ,
1
2

]

, and so by (14), we obtain
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δφ = inf{x ∈ R
+ : Gφ(x) ≥ 1},

where Gφ is as in (13). Consider the B2-spline φ(x) = 1 − |x| for |x| ≤ 1 and
φ(x) = 0 elsewhere. Then, for any 0 ≤ x ≤ 1, we observe that

Gφ(x) = sup|y|≤x(1− |φ(y)|)+ sup|y|≤x |φ(y − 1)| + sup|y|≤x |φ(y + 1)| = 3x.

Therefore

δφ = inf{x ∈ [0, 1] : 3x ≥ 1} = 1

3
.

Notice that if Δ = {δn}n∈Z is a positive (or negative) sequence, then δφ = 1
2 ,

an estimate obtained in [16, 28] as well. Moreover this estimate is optimal in the
sense that for δφ = 1

2 , the resulting sampling set is not stable [2]. Let us consider

the function φ(x) = ( sin(πx)
πx

)4
, x ∈ R. In this case for any 0 ≤ x ≤ 1/2, we have

Gφ(x) = 1− φ(x)+ 2
∞
∑

n=1

φ(n− x)

and from this equality, we obtain numerically a maximum perturbation

δφ = inf{x ∈ R
+ : Gφ(x) ≥ 1} ≈ 0.455.

Consider functions of the form φc(x) = e−c|x|, c > 0. In this case we use the
Poisson summation formula to obtain

Φ†(γ ) = 2c
∑

n∈Z

1

c2 + (γ + n)2 , γ ∈
[− 1

2
,

1

2

]

.

Since ‖Φ†‖0 = Φ†( 1
2 ), we have δφ = inf

{

x ∈ R
+ : Gφ(x) ≥ Φ†( 1

2 )
}

where

Gφ(x) = 1− φ(x)+ 2
∞
∑

n=1

(φ(n− x)− φ(n))

for 0 ≤ x ≤ 1/2. If c = 1, we find numerically that δφ ≈ 0.21. We work similarly

for functions of the form φ(x) = e−cx2
, c > 0.
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4 Local Sampling and Approximation

Besides its theoretical importance, the sampling formula (15) is difficult to be imple-
mented numerically, because we must know an infinite number of sampled data, and
we need to compute the inverse operator Φ−1

τδ
. It could be desirable to establish a

numerically implemented sampling reconstruction formula approximating elements
of Vφ on compact intervals of R and be able to control the corresponding truncation
error. So far, we considered operators (infinite matrices) Φτδ , produced from a
function φ with a certain decay rate (4). It turns out that all these operators belong
in the Gröchenig-Shur class Ap,uα [20] which contains operators A = {am,n}m,n∈Z
with norm

‖A‖Ap,uα
= supn∈Z‖{uα(m− n)am,n}m∈Z‖�p
+ supm∈Z‖{uα(m− n)am,n}n∈Z‖�p <∞.

Furthermore, by assuming that Φτδ ∈ Fδφ (recall Definition 2 in the previous
section), then every operator Φτδ in this class belongs also in the space B2 of all
bounded operators on �2 with usual norm ‖·‖B2 , and it has a bounded inverseΦ−1

τδ
∈

B2. Therefore Wiener’s lemma for infinite matrices can be applied on elements
of the class Fδφ . Here, we mention that Wiener’s lemma is a classical result in

Fourier Analysis, stating that the inverse 1
f

of a non-vanishing absolutely convergent
Fourier series of a function f possesses again an absolutely convergent Fourier
series. Therefore, instead of a direct verification that 1

f
has an absolutely convergent

Fourier series which requires checking whether the Fourier coefficients of 1
f

are
absolutely summable, Wiener’s lemma forms a much easier test, by checking only
that f has no zeros. Hence, a difficult condition related with invertibility can be
replaced by an easier and more convenient condition. But Wiener’s lemma is more
than that. It is a much more deep result about the invertibility and spectrum of certain
operators. From a more abstract point of view, Wiener’s lemma is about invertibility
in a Banach algebra. Naimark understood that the original Wiener’s lemma is a result
about two Banach algebras, the algebra C(T) of continuous functions on T = [0, 1]
and its subalgebra A (T) of functions with absolutely convergent Fourier series. In
this spirit, we can give the following:

Definition 3 Let A ⊆ B be two Banach algebras with a common identity. Then
A is called inverse-closed in B, if

a ∈ A and a−1 ∈ B→ a−1 ∈ A .

The inverse-closedness is often extremely useful for the study of invertibility,
because the large algebra contains more invertible elements, and so our potentialities
to show invertibility are broader. Since in this section we consider operators in the
Grochenig-Shur class Ap,uα , let us see how a variation of Wiener’s lemma may help
us understand the spectrum of these (convolution-type) operators.
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Proposition 1 ([34, Theorem 4.1] (Wiener’s lemma for the Grochenig-Shur
class)) The class Ap,uα is inverse-closed in the algebra B2 of all bounded
operators from �2 to �2.

Now we have:

Proposition 2 LetFδφ ⊂ B2 be the class of operators in Definition 2. ThenFδφ ⊂
Ap,uα , and so every element Φτδ ∈ Fδφ satisfies Φ

−1
τδ
∈ Ap,uα .

Proof Let Φτδ be defined in (12) for some sampling set τδ = {τn = n+ δn : |δn| ≤
δ}n∈Z. Fix an integer i. Then for any j ∈ Z, we have

1+δ+|τi−j | ≥
{

1+ δ + |i − j | − |δi | ≥ 1+ |i − j |, |δi | ≤ |i − j |
1+ δ + |δi | − |i − j | ≥ 1+ |δi | ≥ 1+ |i − j |, |δi | ≥ |i − j | .

Therefore, if uα is the polynomial weight related to the decay of φ, then for any
1 ≤ p < +∞, we have

∥

∥

{

uα(i − j)
(

Φτδ
)

i,j

}

j∈Z
∥

∥

p

�p
=

∑

j∈Z

(

(1+ |i − j |)α|φ(τi − j)|
)p

≤
∑

j∈Z

(

(1+δ+|τi−j |)α|φ(τi−j)|
)p=(1+δ)αp

∑

j∈Z

(

1+|τi−j |
1+δ

)αp|φ(τi − j)|p

< (1+ δ)αp
∑

j∈Z

(

(1+ |τi − j |)α|φ(τi − j)|
)p ≤ (1+ δ)αp‖φ‖pWp(L∞,uα ) <∞

and for p = +∞ we obtain a similar estimate. The same bound holds if we
interchange the position of i’s and j ’s in the above estimations. Therefore Φτδ ∈
Ap,uα . The rest follow from Proposition 1. Hence, there exists a constant C′
(depending on the norms ‖Φτδ‖A1,uα

and ‖Φ−1
τδ
‖B2 and on some other constants

which are affected only from the weight uα), such that

‖Φ−1
τδ
‖Ap,uα

≤ C′ <∞. (19)

For more details about Wiener’s lemma for infinite matrices, we refer to [20, 26,
34, 35], and for an excellent overview on Wiener’s lemma and its variations, we refer
to [22] and references therein. The bound (19) enables us to deduce that the Riesz
basis {ψτδn }n∈Z associated to the reconstruction formula (15) inherits the decay rate
form φ. In fact we can show the following:

Proposition 3 Let Φτδ ∈ Fδφ . Then the Riesz basis (ψτδn )n∈Z of Vφ related to the
reconstruction formula (15) satisfies

‖(ψτδn )‖p,∞,uα =
∥

∥

∥

∥

∥(uα(· − τn)ψτδn (·))n∈Z
∥

∥

�p

∥

∥

∥

L∞
< +∞.
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Proof Let (ψτδn )n∈Z be as in (16), x ∈ R and Yn,x =
{

k ∈ Z : |k − x| ≤ |n−x|
2

}

.
Then for 1 ≤ p < +∞ and with the notation ‖Φ−1

τδ
‖∞ = supk,n∈Z|(Φ−1

τδ
)k,n|, we

have

∥

∥

(

uα(x − τn)ψτδn (x)
)

n

∥

∥

p

�p

≤ 2p−1
(

∥

∥

(‖(uα(x − τn)(Φ−1
τδ
)·,n φ(x − ·)

)‖�1(Yn,x)

)

n

∥

∥

p

�p

+ ∥

∥

(‖(uα(x − τn)(Φ−1
τδ
)·,n φ(x − ·)

)‖�1(R−Yn,x)
)

n

∥

∥

p

�p

)

≤ 2p−1
(

∥

∥

(‖(uα(x − τn)(Φ−1
τδ
)·,n φ(x − ·)

)‖p�p(Yn,x)
)

n

∥

∥

�1

+ ∥

∥

(‖(uα(x − τn)(Φ−1
τδ
)·,n φ(x − ·)

)‖p
�p(R−Yn,x)

)

n

∥

∥

�1

)

≤ 2p−1‖φ‖p−1
L∞

∥

∥

(‖(uα(x − τn)(Φ−1
τδ
)·,n φ

1
p (x − ·))‖p�p(Yn,x)

)

n

∥

∥

�1

+ 2p−1‖Φ−1
τδ
‖p−1∞

∥

∥

(‖(uα(x − τn)(Φ−1
τδ
)

1
p·,n φ(x − ·)}‖p�p(R−Yn,x)

)

n

∥

∥

�1

)

≤ 2p−1(1+ δ)αp‖φ‖p−1
L∞

∥

∥

(‖(uα(x − n)(Φ−1
τδ
)·,n φ

1
p (x − ·))‖p�p(Yn,x)

)

n

∥

∥

�1(Z)

+ 2p−1(1+ δ)αp‖Φ−1
τδ
‖p−1∞

∥

∥

(‖(uα(x − n)(Φ−1
τδ
)

1
p·,n φ(x − ·))‖p�p(R−Yn,x)

)

n

∥

∥

�1

)

,

(20)

because φ ∈ L∞(R) (see (7)), Φ−1
τδ
∈ Ap,uα ⊂ A1,u0 , and finally

uα(x − τn) = (1+ |(x − n)+ (n− τn)|)α ≤ (1+ δ + |x − n|)α

= (1+ δ)α
(

1+ |x − n|
1+ δ

)α ≤ (1+ δ)αuα(x − n).

For the first term in the right-hand side of (20), i.e., for any k ∈ Yn,x , we have

uα(x − n) ≤ 2α
(

1+ |x − n|
2

)α ≤ 2α
(

1+ |n− x| − |k − x|
)α ≤ 2αuα(k − n),

and by using this inequality, we immediately deduce that the first term of (20) is
bounded by 2p−12αp(1 + δ)αp‖φ‖p−1

L∞ ‖φ‖W1(L∞,u0)‖Φ−1
τδ
‖pAp,uα

. For the second
term in the right-hand side of (20), we observe that for k /∈ Yn,x , we have

uα(x − n) ≤ 2α
(

1+ |x − n|
2

)α ≤ 2αuα(x − k)
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and so we obtain a bound of the form

2p−12αp(1+ δ)αp‖Φ−1
τδ
‖p−1∞ ‖Φ−1

τδ
‖A1,u0

‖φ‖pW∞(Lp,uα ).

If p = +∞ we easily obtain

‖(ψτδn )‖∞,∞,uα ≤ 2α(1+ δ)α
(

‖φ‖W∞(L1,u0 )
‖Φ−1

τδ
‖A∞,uα

+ ‖Φ−1
τδ
‖A1,u0

‖φ‖W∞(L∞,uα )
)

and the proof is complete.

In order to produce a numerically implementable reconstruction formula for the
space Vφ approximating the sampling formula (15), we need to obtain a reasonable
approximation of the inverse operator Φ−1

τδ
appearing in the representation of the

Riesz basis functions ψτδn . To do that we employ the finite section method, [19, 23].
This method involves approximating the operator Φτδ with a square “section” of
the infinite matrix Φτδ (and Φ−1

τδ
with the inverse of this square section, if it exists)

and examine if the resulting new formula provides an approximation of the original
sampling formula in some sense. Let us briefly describe the method. Assume that
A : U → V is a linear invertible operator between two normed infinite dimensional
spaces of sequences U and V and we want to solve the equation Af = g. For any
natural number N , let

PNf = (. . . ,−fN,−fN−1, . . . , fN−1, fN , . . .)

be the orthogonal projection of an element f ∈ U (or V ) onto a 2N+1-dimensional
subspace of U (or V ),

AN = PNAPN, and gN = PNg.

Then, we try to solve the “finite” system ANx = gN (for n = −N, . . . , N)
and examine the relation of this “approximate” solution (if it exists) with the actual
solution Ax = b. For a detailed convergence analysis of the finite section method,
we refer to [21]. We now consider a finite set X containing successive integers, and
for any positive integer R, we define the R-neighborhood of X by

XR = {min X − R, . . . ,max X + R}.

Let

PXR : �2(Z)→HXR : PXRc =
{

cn, n ∈ XR
0, elsewhere
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be the projection of a sequence c ∈ �2 onto a finite dimensional subspace HXR and
let

Φτδ,Y =
{
(

Φτδ
)

m,n
, m, n ∈ Y

0, elsewhere
(21)

be the finite section of a matrix Φτδ ∈ Fδφ on Y × Y ⊂ Z
2. Then if Φτδ,XR is the

finite section of a matrixΦτδ ∈ Fδφ as in (21), then by exploiting (18) for PXRc and
by recalling the boundness of Φτδ , we easily obtain

C‖PXRc‖�2 ≤
∥

∥

(

Φτδ,XR
)

c
∥

∥

�2
≤ D‖PXRc‖�2 for all c ∈ �2 (22)

for some positive constants C,D. In addition, for the inverse matrixΦ−1
τδ,XR

, we may
prove the following:

Proposition 4 The inverse matrix Φ−1
τδ,XR

belongs in Ap,uα , and there exists a
positive constantC0 independent of the selection of the setX and the positive integer
R such that

supm,n∈XR
{

∥

∥

{

uα(m−n)
(

Φτδ
)−1
m,n

}

m

∥

∥

�p(XR)
,
∥

∥

{

uα(m−n)
(

Φτδ
)−1
m,n

}

n

∥

∥

�p(XR)

}

≤ C0.

Proof For any finite subset Y of Z, we obviously have

∥

∥Φτδ,Y
∥

∥

Ap,uα
≤ ∥

∥Φτδ

∥

∥

Ap,uα
<∞. (23)

Consider now a partition YXR,λ = {s + λ|XR| : s ∈ XR}λ∈Z of Z and determine
the infinite block-diagonal operator

Φ
†
XR
=

∑

λ∈Z
Φτδ,YXR,λ

.

Then, for any c ∈ �2, we have

‖Φ†
XR
c‖2
�2
=

∑

l∈Z
‖Φτδ,YXR,l c‖2

�2

and so, by (22), we obtain

C‖c‖2 ≤ ‖Φ†
XR
c‖2 ≤ D‖c‖2 for all c ∈ �2 (24)

for some positive constants C,D as above. Hence Φ†
XR

is bounded on �2 and has

bounded inverse determined by
(

Φ
†
XR

)−1 = ∑

λ∈Z
(

Φτδ,YXR,λ
)−1
. By applying

Wiener’s lemma for infinite matrices, we obtain
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∥

∥(Φ
†
XR
)−1

∥

∥

Ap,uα
≤ C0

for some constant C0 independent of the setX and the positive integer R (recall (19)
and combine with (23) and (24)). Since (Φ†

XR
)−1
i,j =

(

Φτδ,XR
)−1
i,j

for any i, j ∈ XR ,
the result is proved.

Now we can state the main result of the chapter.

Theorem 5 ([7] (Local theorem for shift invariant spaces)) Consider a shift
invariant sampling space Vφ , whose sampling formula is determined by (15) with
respect to an ordered and ε-separated perturbed sampling set τδ = {τn}n∈Z. For
any f ∈ Vφ and for any bounded interval X , define by

f ∗(x) =
∑

n∈XR
f (τn)ϕ

τδ
n (x)

the finite reconstruction approximation of f on X , where the set XR is the R-
neighborhood of the set X = {n ∈ Z : τn ∈X },

ϕτδn (x) =
∑

m∈X3R

(

Φτδ,X3R

)−1
m,n
φ(x −m)

and Φ−1
τδ,X3R

is the inverse of a square matrix Φτδ,X3R as in (21). Then there exists a
positive constant C independent of the bounded interval X , the set X, the positive
integerR, and the function f such that the error when we reconstruct f onX using
the finite reconstruction approximation f ∗ is bounded by

supx∈X |f (x)− f ∗(x)| < C
(‖{f (τn)}‖�2(XR)

R
2α− 3

2q

+ ‖{f (τn)}‖�2(Z−XR)
R
α− 1

2q

)

.

Here, the number α > 1 − 1
p
, (p ≥ 1) is the exponent of the polynomial weight

uα(x) = (1 + |x|)α related to the decay rate of φ, and q is the conjugate exponent
of p.

Proof A more detailed proof is demonstrated in [7]. For any f ∈ Vφ , and for any
x ∈X , where X is a bounded interval of R, we have

f (x)− f ∗(x) =
∑

n∈XR
f (τn)(ψ

τδ
n (x)− ϕτδn (x))+

∑

n/∈XR
f (τn)ψ

τδ
n (x), (25)

where XR is the R-neighborhood of the set X = {n ∈ Z : τn ∈ X }. Taking into
account the definition of τ and for the above values of x, we can show that

|x − τn| =
{

x − τn ≥ ε(minX − 1− n), minX > n
τn − x ≥ ε(n−maxX − 1), maxX < n

.
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To bound the second term of the right-hand side of (25), we apply the Cauchy-
Schwarz inequality, and we use the above estimate on |x − τn| and the bound
‖(ψτδn )‖p,∞,uα <∞ obtained in Proposition 3 to obtain

supx∈X
∑

n/∈XR
|ψτδn (x)|2 = supx∈X

∑

n/∈XR
|uα(x − τn)ψτδn (x)|2u−2

α (x − τn)

≤ supx∈X
∥

∥

∥

(

(uα(x − τn)ψτδn (x))2
)

n

∥

∥

∥

�p(Z−XR)
∥

∥

(

uα(ε·)−2)
∥

∥

�q (Z−{−R,...,R})

≤ ‖(ψτδn )‖2
p,∞,uα

∥

∥

(

uα(εn)
−2)

∥

∥

�q(Z−{−R,...,R}) < C1‖(ψτδn )‖2
p,∞,uαR

2α− 1
q ,

(26)

for some positive constant C1 depending on α, ε, q.
In order to compute an upper bound for the first term in (25), we need estimates for
supx∈X

∑

n∈XR |ψτδn (x)− ϕτδn (x)|2. By definition

φ(x − l) =
∑

n∈Z

(

Φτδ
)

n,l
ψτδn (x) =

∑

n∈X3R

φ(τn − l)ψτδn (x)+
∑

n/∈X3R

φ(τn − l)ψτδn (x).

Since by (22) the projection matrix Φτδ,X3R = {φ(τn − l) : n, l ∈ X3R} is
invertible, we multiply both sides of the above equality with the inverse matrix
Φ−1
τδ,X3R

, and we obtain

∑

k∈XR
|ψτδk (x)− ϕτδk (x)|2 =

∑

k∈XR

∣

∣

∣

∑

l∈X3R

(

Φτδ,X3R

)−1
l,k

∑

n/∈X3R

(

Φτδ
)

n,l
ψτδn (x)

∣

∣

∣

2

≤ 2
∑

k∈XR

∣

∣

∣

∑

l∈X2R

(

Φτδ,X3R

)−1
l,k

∑

n/∈X3R

(

Φτδ
)

n,l
ψτδn (x)

∣

∣

∣

2

+2
∑

k∈XR

∣

∣

∣

∑

l∈X3R−X2R

(

Φτδ,X3R

)−1
l,k

∑

n/∈X3R

(

Φτδ
)

n,l
ψτδn (x)

∣

∣

∣

2
. (27)

First we deal with the first term of the right-hand side of (27). Taking into
account the decay estimates obtained in Proposition 4 and the above estimate (26),
we compute

supx∈X
∑

k∈XR

∣

∣

∣

∑

l∈X2R

(

Φτδ,X3R

)−1
l,k

∑

n/∈X3R

(

Φτδ
)

n,l
ψτδn (x)

∣

∣

∣

2

≤ ∥

∥Φ−1
τδ,X3R

∥

∥

2
A1,u0

supx∈X
∑

l∈X2R

∣

∣

∣

∑

n/∈X3R

(

Φτδ
)

n,l
ψτδn (x)

∣

∣

∣

2

≤ ∥

∥Φ−1
τδ,X3R

∥

∥

2
A1,u0

supx∈X
∑

l∈X2R

(
∑

n/∈X3R

∣

∣

(

Φτδ
)

n,l

∣

∣

)
∑

n/∈X3R

|ψτδn (x)|2
∣

∣

(

Φτδ
)

n,l

∣

∣
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≤ ∥

∥Φ−1
τδ,X3R

∥

∥

2
A1,u0

(

supl∈X2R

∑

n/∈X3R

∣

∣

(

Φτδ
)

n,l

∣

∣

)(

supn/∈X3R

∑

l∈X2R

∣

∣

(

Φτδ
)

n,l

∣

∣

)

(

supx∈X
∑

n/∈X3R

|ψτδn (x)|2
)

≤ ∥

∥Φ−1
τδ,X3R

∥

∥

2
A1,u0
‖Φτδ‖2

Ap,uα

(

supl∈X2R

∥

∥

{

uα(n− l)
}

n

∥

∥

�q (Z−X3R)

)

(

supn/∈X3R

∥

∥

{

uα(n− l)
}

l

∥

∥

�q(Z−X2R)

)(

supx∈X
∑

n/∈X3R

|ψτδn (x)|2
)

<
∥

∥Φ−1
τδ,X3R

∥

∥

2
A1,u0
‖Φτδ‖2

Ap,uα

C2

R2α−2/q

C1‖{ψτδn }‖2
W(�p,L∞)

R2α−1/q = C′

R
4α− 3

q

, (28)

where the constant C1 is as in (26) and the constant C2 depends only on α and q.
Hence the overall constant C′ depends neither on X nor on R, because the norm
∥

∥Φ−1
τδ,X3R

∥

∥

A1,u0
is independent of the set X and the positive integer R. We work

similarly for the second term in the right-hand side of (27). In this case we obtain
the bound

supx∈X
∑

k∈XR

∣

∣

∣

∑

l∈X3R−X2R

(

Φτδ,X3R

)−1
l,k

∑

n/∈X3R

(

Φτδ
)

n,l
ψτδn (x)

∣

∣

∣

2

<
∥

∥Φ−1
τδ,X3R

∥

∥

2
Ap,uα

∥

∥Φτδ

∥

∥

2
A1,u0

‖{ψτδn }‖2
W(�p,L∞) C1 C3

R
4α− 3

q

= C′′

R
4α− 3

q

, (29)

where the constant C1 is as in (26) and the constant C3 depends on α and q.
The overall constant C′′ does not depend on the set X or the positive integer R
for the same reasons as above. The bounds (28) and (29) are applied to (27). The
resulting bound together with the bound (26) are applied to (25), and then the result
is obtained.

In some cases the sampled data f (n) are perturbed without our knowledge, i.e.,
the sequence Δ = {δn} is unknown. Then jitter error appears. To be more precise,
assume we are given a set of sampled data L (f ) = {f (τn)}n∈Z on a sampling set
τδ = {n + δn}n∈Z (where the elements δn are unknown) of a function f ∈ Vφ . We
are interested in a bound on the L∞-norm of the difference

∣

∣

∣f (x)−
∑

n∈Z
f (n+ δn)ψ(x − n)

∣

∣

∣.

We have:

Proposition 5 For any f ∈ Vφ , we have
∥

∥

∥f −
∑

n∈Z
f (n+ δn)ψ(· − n)

∥

∥

∥

L∞
≤ ‖f ‖L2‖φ‖W2(L∞,u0 )

A‖Φ†‖0
Gφ(δ),
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where Φ† andGφ are defined in (5) and (13), respectively, and A is the lower Riesz
bound of the set {φ(· − n)}n∈Z.
Proof Let F(x) = {φ(x − m)}m∈Z and Φ = {Φm,n = φ(m − n)}n,m∈Z be the
bounded and invertible operator of Sect. 2. If f (τn) = ∑

m∈Z cmφ(τn − m) for
some unique c ∈ �2 and if Φτδ is an infinite matrix as in (12), then

∥

∥

∥f −
∑

n∈Z
f (τn)ψ

τ
n

∥

∥

∥

L∞
≤ ‖f (· + δn)− f (·)‖�2

∥

∥ {‖ψ(· − n)}‖�2

∥

∥

L∞

= ∥

∥

(

Φτδ −Φ
)

c
∥

∥

�2
‖Φ−1F(x)‖�2 ≤ Gφ(δ)‖c‖�2‖Φ†‖−1

0 ‖φ‖W2(L∞,u0 )

≤ Gφ(δ)
A
‖f ‖L2‖Φ†‖−1

0 ‖φ‖W2(L∞,u0 )
.
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Optimal �1 Rank One Matrix
Decomposition

Radu Balan, Kasso A. Okoudjou, Michael Rawson, Yang Wang,
and Rui Zhang

Abstract In this paper, we consider the decomposition of positive semidefinite
matrices as a sum of rank one matrices. We introduce and investigate the properties
of various measures of optimality of such decompositions. For some classes of pos-
itive semidefinite matrices, we give explicitly these optimal decompositions. These
classes include diagonally dominant matrices and certain of their generalizations,
2× 2, and a class of 3× 3 matrices.

2010 Mathematics Subject Classification Primary 45P05, 47B10; Secondary
42C15.

1 Introduction

The finite-dimensional matrix factorization problem that we shall investigate was
partially motivated by a related infinite-dimensional problem, which we briefly
recall.

Suppose that H is an infinite-dimensional separable Hilbert space, with norm ‖·‖
and inner product 〈·, ·〉. Let I1 ⊂ B(H) be the subspace of trace-class operators. For
a detailed study on trace-class operators, see [5, 9]. Consider an orthonormal basis
{wn}n≥1 for H, and let

H
1 =

{

f ∈ H : |||f ||| :=
∞
∑

n=1

|〈f,wn〉| <∞
}

.
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For a sequence c = (cmn)
∞
m,n=1 ∈ �1, we consider the operator Tc : H → H

given by

Tcf =
∞
∑

m=1

∞
∑

n=1

cmn〈f,wn〉wm.

We say that Tc is of Type A with respect to the orthonormal basis {wn}n≥1 if, for
an orthogonal set of eigenvectors {gn}n≥1 of Tc such that Tc =∑∞

n=1 gn ⊗ gn, with
convergence in the strong operator topology, we have that

∞
∑

n=1

|||gn|||2 <∞.

Similarly, we say that the operator Tc is of TypeB with respect to the orthonormal
basis {wn}n≥1 if there is some sequence of vectors {vn}n≥1 in H such that Tc =
∑∞
n=1 vn ⊗ vn with convergence in the strong operator topology and we have that

∞
∑

n=1

|||vn|||2 <∞.

It is easy to see that if Tc is of Type A, then it is of Type B. However, there exist
finite rank positive trace-class operators which are neither of Type A nor of Type
B. We refer to [7] for more details. In [1], we proved that there exist positive trace-
class operators Tc of Type B which are not of Type A. Furthermore, this answers
negatively a problem posed by Feichtinger [6].

Our main interest is in a finite-dimensional version of the above problem. Before
stating it, we set the notations that will be used through this chapter.

For n ≥ 2, we denote the set of all complex Hermitian n × n matrices as
Sn := Sn(C), positive semidefinite matrices as Sn+ := Sn+(C), and positive definite
matrices Sn++ := Sn++(C). It is clear that Sn+ is a closed convex cone. Note that
Sn = Sn+ − Sn+ is the (real) vector space of Hermitian matrices. We will also use the
notation U(n) for the set of n× n unitary matrices.

For A ∈ Sn, we let ‖A‖1,1 = ∑n
k,�=1 |Ak,�|, and we let ‖A‖I1 =

∑n
k=1 |λk|

where λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of A. We recall that the operator
norm of A ∈ Sn is given by ‖A‖op = max{|λk| :, λ1 ≤ λ2 ≤ . . . ≤ λn} where
{λk}nk=1 is the set of eigenvalues of A. In addition, the Frobenius norm of A is given

by ‖A‖Fr =
√

trAA∗ =
√

∑n
k=1

∑n
�=1 |Ak�|2. One important fact that will be used

implicitly throughout the paper is that all the norms defined on Sn are equivalent
and thus give rise to the same topological structure on Sn.

Similarly, for a vector x = (xk)
n
k=1 ∈ C

n, and p ∈ (0,∞), we let ‖x‖pp =
∑n
k=1 |xk|p define the usual �p norm, p ≥ 1, with the usual modification when
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p = ∞ and p = 0. As pointed out above, all these norms are equivalent on C
n and

give rise to the same topology.
The goal of this chapter is to investigate optimal decompositions of a matrix

A ∈ Sn+(C) as a sum of rank one matrices. In Sect. 2, we introduce some measures
of optimality of the kinds of decompositions we seek and investigate the relationship
between these measures. However, before doing so, we give an exact statement
of the problems we shall address and review some results about the convex cone
Sn+(C). In Sect. 3, we restrict our attention to some classes of matrices in Sn+(C),
including diagonally dominant matrices. Finally, in Sect. 4, we report on some
numerical experiments designed to find some of these optimal decompositions.

2 Preliminaries and Measures of Optimality

In the first part of this section, we collect some foundational facts on convex subsets
of Sn. The second part will be devoted to introducing some quantities that will serve
as measures of optimality of the decomposition results we seek.

2.1 Preliminaries

We denote the convex hull of a set S by coS. For the compact set X = {xx∗ :
x ∈ C

n and ‖x‖1 = 1}, we let � = coX and � = co (X ∪ {0}). Observe that
� ⊂ Sn+(C). In fact, the following result holds.

Definition 2.1 An extreme point is a point such that it is not a convex combination
of other points.

Lemma 2.2 � is closed and compact convex subset of Sn+(C) with int � �= ∅.
Furthermore, the set of extreme points of � is X ∪ {0}.

The proof is based on one of the versions of the Minkowski-Carathéodory
Theorem, which, for completeness, we recall. We refer to [3, 4, 8] for more details
and background.

Theorem 2.3 ([4, Proposition 3.1][8, Lemma 4.1] (Minkowski-Carathéodory
Theorem)) Let A be a compact convex subset of a normed vector space X of finite
dimension n. Then any point in A is a convex combination of at most n+ 1 extreme
points. Furthermore, we can fix one of these extreme points resulting in expressing
any point in A is a convex combination of at most n extreme points in addition to
the one we fixed.

Proof of Lemma 2.2 � can be written as
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� =
{
m
∑

k=1

wkxkx
∗
k : m ≥ 1, an integer, w1, .., wm ≥ 0,

m
∑

k=1

wk ≤ 1, ‖xk‖1 = 1, 1 ≤ k ≤ m
}

=
⋃

m≥1

{
m
∑

k=1

wkxkx
∗
k : w1, .., wm ≥ 0,

m
∑

k=1

wk ≤ 1, ‖xk‖1 = 1, 1 ≤ k ≤ m
}

=
⋃

m≥1

�m,

where �m =
{ m
∑

k=1
wkxkx

∗
k : w1, .., wm ≥ 0,

m
∑

k=1
wk ≤ 1, ‖xk‖1 = 1, 1 ≤ k ≤ m

}

.

Notice that �1 ⊂ �2 ⊂ .. ⊂ �m ⊂ .. ⊂ �. By Minkowski-Carathéodory Theorem
if T ∈ �, then T ∈ �dim Sn(C)+1. Therefore

� =
⋃

m≥1

�m = �1 ∪ . . . ∪�n2+1 = �n2+1

=
{
n2+1
∑

k=1

tkxkx
∗
k :

n2+1
∑

k=1

tk = 1, tk ≥ 0, ‖xk‖1 = 1,∀k, 1 ≤ k ≤ n2 + 1
}

We recall that the dimension of Sn(C) as a real vector space over is n2. As such,
and since X is compact, we conclude that � as a convex hull of a compact set is
compact.

To show that int � �= ∅, take 1
2n2 I ∈ �. We prove that for 0 < r < 1

2n2 , we have
the ball

Br

(

1

2n2
I

)

=
{ 1

2n2
I + T : T = T ∗; ‖T ‖op < r

}

⊂ �.

Let T =
n
∑

k=1
λkvkv

∗
k , ‖vk‖2 = 1, and |λk| ≤ ‖T ‖op < r. Now

1

2n2
I + T = 1

2n2

n
∑

k=1

vkv
∗
k +

n
∑

k=1

λkvkv
∗
k

=
n

∑

k=1

(

1

2n2
+ λk

)

‖vk‖2
1 ·

(

vk

‖vk‖1

)

·
(

vk

‖vk‖1

)∗
.

Also

‖vk‖1 =
n

∑

j=1

|vk,j | ≤
⎛

⎝

n
∑

j=1

|vk,j |2
⎞

⎠

1
2

·
⎛

⎝

n
∑

j=1

1

⎞

⎠

1
2

= √n‖vk‖2 = √n.
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Hence

‖ 1

2n2
I + T ‖1,1 ≤

n
∑

k=1

(

1

2n2
+ λk

)

‖vk‖2
1 ≤ n

(

1

2n2
+ r

)

n = 1

2
+ rn2 < 1

In addition, because r < 1
2n2 , we conclude that

〈( 1
2n2 I + T )x, x〉 ≥ ‖x‖2( 1

2n2 − r) ≥ 0

for all x ∈ C
n. Consequently, 1

2n2 I + T ≥ 0. We conclude that Br
(

1
2n2 I

)

⊂ �
where we use the norm ‖A‖1,1 for convenience. ��

By a similar argument, � is also compact convex subset of Sn+(C).

2.2 Measures of Optimality

We next introduce and study the properties of some quantities defined on Sn and
which will serve as measures of optimality of the rank one decompositions of
matrices in Sn+.

Definition 2.4 For A ∈ Sn+, let

γ+(A) := inf
A=∑

n≥1
gng∗n

∑

n≥1

‖gn‖2
1. (1)

If A ∈ Sn, we let

γ (A) := inf
A=∑

n≥1
gnh∗n

∑

n≥1

‖gn‖1‖hn‖1, (2)

and

γ0(A):= inf
A=B−C,
B,C∈Sn+

(γ+(B)+ γ+(C))= inf
A=∑

n≥1
gng∗n−

∑

k≥1
hkh

∗
k

⎛

⎝

∑

n≥1

‖gn‖21 +
∑

k≥1

‖hk‖21

⎞

⎠ .

(3)

We collect some of the properties of these functionals.

Proposition 2.5 The functionals given in Definition 2.4 are sub-additive. In partic-
ular, the following statements hold.

(a) Given A,B ∈ Sn+, we have γ+(A+ B) ≤ γ+(A)+ γ+(B)
(b) Given A,B ∈ Sn, we have γ (A+ B) ≤ γ (A)+ γ (B)
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(c) Given A,B ∈ Sn, we have γ0(A+ B) ≤ γ0(A)+ γ0(B)

In addition, if a ≥ 0, we have γ+(aA) = aγ+(A) when A ∈ Sn+, and
{

γ (aA) = |a|γ (A)
γ0(aA) = |a|γ0(A)

for A ∈ Sn and a ∈ R.

Proof Let ε > 0 and choose {gk}k≥1 ⊂ C
n and {hk}k≥1 ⊂ C

n such that

{

∑

k≥1 ‖gk‖2
1 ≤ γ+(A)+ ε/2

∑

k≥1 ‖hk‖2
1 ≤ γ+(B)+ ε/2

with A =∑

k≥1 gkg
∗
k and B =∑

k≥1 hkh
∗
k. It follows that

A+ B =
∑

k≥1

gkg
∗
k +

∑

k≥1

hkh
∗
k =

∑

�≥1

f�f
∗
� ,

after reindexing. Furthermore,

∑

�≥1

‖f�‖2
1 =

∑

k≥1

‖gk‖2
1 +

∑

k≥1

‖hk‖2
1 ≤ γ+(A)+ γ+(B)+ ε.

The rest of the statements are proved in a similar manner, so we omit the details.
��

The next result gives a comparison among the quantities defined above.

Proposition 2.6 For any A ∈ Sn, the following statements hold.

(a) γ (A) ≤ γ0(A) ≤ 2γ (A).
(b) ‖A‖I1 ≤ ‖A‖1,1 ≤ γ0(A) ≤ 2γ (A). If, in addition, we assume that A ∈ Sn+,

then we have

‖A‖I1 ≤ ‖A‖1,1 ≤ γ0(A) ≤ γ+(A).

Proof

(a) Let A ∈ Sn such that A = A∗ = ∑

k≥1
gkg

∗
k −

∑

k≥1
hkh

∗
k . Then,

γ (A) ≤
∑

k≥1

‖gk‖2
1 +

∑

k≥1

‖hk‖2
1.

Consequently, γ (A) ≤ γ0(A).
Fix ε > 0 and let {gk}Mk=1, {hk}Mk=1 be such that A =∑M

k=1 gkh
∗
k and
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M
∑

k=1

‖gk‖1‖hk‖1 ≤ γ (A)+ ε.

Furthermore, rescale gk and hk so that ‖gk‖1 = ‖hk‖1.
Let xk = 1

2 (gk + hk) and yk = 1
2 (gk − hk). Then

M
∑

k=1

xkx
∗
k −

M
∑

k=1

yky
∗
k =

1

2

M
∑

k=1

gkh
∗
k +

1

2

M
∑

k=1

hkg
∗
k = A

Note also ‖xk‖1 ≤ ‖gk‖1 = ‖hk‖1 and ‖yk‖1 ≤ ‖gk‖1 = ‖hk‖1. Thus

γ0(A) ≤
M
∑

k=1

‖xk‖2
1 +

M
∑

k=1

‖yk‖2
1 ≤ 2

M
∑

k=1

‖gk‖2
1 ≤ 2γ (A)+ 2ε.

Since ε > 0 was arbitrary, the second inequality follows.
(b) Since ‖A‖I1 = maxU∈U(n) Real tr(AU), let U0 ∈ U(n) denote the unitary that

achieves the maximum and makes the trace real. Then

‖A‖I1=tr(AU0) =
n

∑

k=1

n
∑

�=1

Ak�(U0)�k ≤
(

n
∑

k=1

n
∑

�=1

|Ak�|
)

·
(

max
k

max
�
|(U0)�k|

)

≤
n

∑

k=1

n
∑

�=1

|Ak�| = ‖A‖1,1.

Suppose that A ∈ Sn+ and let ε > 0. Choose {gk}k≥1 ⊂ C
n such that A =

∑

k≥1 gkg
∗
k and

∑

k≥1

‖gk‖2
1 < γ+(A)+ ε.

It follows that

γ0(A) ≤
∑

k≥1

‖gk‖2
1 < γ+(A)+ ε.

��
The upper bound 2γ (A) is tight as we show in Proposition 2.8. We next show that
‖ · ‖1,1 and γ (·) are identical on Sn.

Lemma 2.7 For any A ∈ Sn, we have ‖A‖1,1 = γ (A). Consequently, (Sn, γ ) is a
normed vector space.

Proof Let A ∈ Sn and ε > 0. Choose {gj }j≥1, {hj }j≥1 ⊂ C
n such that A =

∑

j

gjh
∗
j with

∑

j

‖gj‖1 · ‖hj‖1 ≤ γ (A)+ ε. It follows that
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‖A‖1,1=
∑

i,j

|Ai,j |=‖
∑

j

gjh
∗
j‖1,1≤

∑

j

‖gjh∗j‖1,1≤
∑

j

‖gj‖1 · ‖hj‖1≤γ (A)+ε.

Thus ‖A‖1,1 ≤ γ (A).
On the other hand, for A ∈ Sn, we can write: A = (Ai,j )i,j = (∑

j

(Ai,j ))i · δTi ,
then

γ (A) ≤
∑

j

‖Ai,j‖1 · ‖δi‖1 =
∑

i,j

|Ai,j | = ‖A‖1,1.

Therefore ‖A‖1,1 = γ (A). ��
In fact, γ0 defines also a norm on Sn. More precisely, we have the following

result.

Proposition 2.8 (Sn, γ0) is normed vector space. Furthermore, γ0 is Lipschitz with
constant 2 on Sn:

sup
A,B∈Sn,A�=B

|γ0(A)− γ0(B)|
‖A− B‖1,1

= 2. (4)

Proof We have already established in Proposition 2.5 that γ0 satisfies the triangle
inequality and is homogenous. Furthermore, suppose that γ0(A) = 0. It follows that
A = 0.

For the last part, let A,B ∈ Sn. We have

γ0(B) = γ0(B − A+ A) ≤ γ0(B − A)+ γ0(A)

γ0(A) = γ0(B − B + A) ≤ γ0(B)+ γ0(−B + A)

So |γ0(B)− γ0(A)| ≤ γ0(B − A) ≤ 2γ (B − A) ≤ 2‖B − A‖1,1.

To show the Lipschitz constant is exactly 2 (and hence the upper bound 2 is tight
in Proposition 2.6(a)), consider the matrix

A =
[

0 1
1 0

]

.

Note ‖A‖1,1 = 2. For any decomposition A = B − C with B,C ∈ S2+, we have

B =
[

a b

b c

]

, C =
[

a e

e c

]

with a, c ≥ 0 and b − e = 1. Then

γ0(A) ≥ γ+(B)+ γ+(C) ≥ γ (B)+ γ (C) = 2a + 2|b| + 2|1− b| + 2c ≥ 4|b| + 4|1− b| ≥ 4,
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thanks to ac ≥ b2 and ac ≥ e2. On the other hand,

A = 1

2

[

1
1

]

[

1 1
]− 1

2

[

1
−1

]

[

1 −1
]

which certifies γ0(A) = 4. The proof is now complete. ��
We have now established that γ0, γ = ‖ · ‖1,1 are equivalent norms on Sn. In

addition, we proved in Proposition 2.6 that γ (A) = ‖A‖1,1 ≤ γ+(A) for A ∈ Sn+.
A natural question that arises is whether a converse estimate holds. More precisely,
the rest of the chapter will be devoted to investigating the following questions.

Question 2.1 Fix n ≥ 2.

(1) Does there exist a constant C > 0, independent of n such that for all A ∈ Sn+,
we have

γ+(A) ≤ C · ‖A‖1,1.

(2) For a given A ∈ Sn+, give an algorithm to find {h1, h2, .., hM } such that A =
∑M
k=1 hkh

∗
k with

γ+(A) =
M
∑

k=1

‖hk‖2
1.

We begin by justifying why the second question makes sense. In particular, we
prove that γ+(A) is achieved for a certain decomposition.

Theorem 2.9 Given T ∈ Sn+,

γ+(T ) = inf
T=∑

k≥1
gkg
∗
k

∑

k≥1

‖gk‖2
1 = min

T=
n2+1
∑

k=1
gkg
∗
k

n2+1
∑

k=1

‖gk‖2
1

for some {gk}n2+1
k=1 ⊂ C

n.

Proof Let T ∈ Sn+(C),

γ+(T ) = inf
T=∑

k≥1
gkg
∗
k

∑

k≥1

‖gk‖2
1.

Assume T �= 0, then γ+(T ) > 0. Let T̃ = T
γ+(T ) ,
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T̃ = 1

γ+(T )
∑

k≥1

gkg
∗
k =

∑

k≥1

‖gk‖2
1

γ+(T )
·
(

gk

‖gk‖1

)

·
(

gk

‖gk‖1

)∗
=

∑

k≥1

wk · eke∗k ,

where wk = ‖gk‖2
1

γ+(T ) and ek = gk
‖gk‖1

. Hence
∑

k≥1
wk = 1

γ+(T )
∑

k≥1
‖gk‖2

1 = 1 and

‖ek‖1 = 1. Therefore γ+(T̃ ) = 1. It follows that T̃ ∈ �.
By Minkowski-Carathéodory Theorem 2.3

T̃ =
n2+1
∑

k=1

wk · eke∗k , wk ≥ 0,
n2+1
∑

k=1

wk = 1.

Therefore

γ+(T ) = min
n2+1
∑

k=1
gkg
∗
k

n2+1
∑

k=1

‖gk‖2
1.

��
The next question one could ask is how to find an optimal decomposition for

A ∈ Sn+ that achieves the value γ+(A). The following technical tool will be useful
in addressing this question, at least for small size matrices.

Theorem 2.10 Suppose that A ∈ Sn+(C) and y ∈ C
n. Then A − yy∗ ∈ Sn+(C) if

and only if there exists x ∈ C
n such that y = Ax and 〈Ax, x〉 ≤ 1. When equality

holds, then A− yy∗ will have rank one less than that of A.

Proof The case y = 0 is trivial, so we can assume without loss of generality that
y �= 0.

Suppose there exists a vector y such that y = Ax and 〈Ax, x〉 ≤ 1. For any
vector z and observe that |〈Ax, z〉|2 ≤ 〈Ax, x〉〈Az, z〉. Consequently,

〈(A− yy∗)z, z〉 = 〈Az, z〉 − |〈Ax, z〉|2 ≥ 〈Az, z〉 − 〈Ax, x〉〈Az, z〉 = 〈Az, z〉(1− 〈Ax, x〉) ≥ 0.

When 〈Ax, x〉 = 1, we 〈(A − yy∗)x, x〉 = 〈Ax, x〉 − |〈y, x〉|2 = 〈Ax, x〉 −
|〈Ax, x〉|2 = 0. It follows that x ∈ N (A−yy∗). Combining the fact that x /∈ N (A),
we have rank(A− yy∗) < rank(A).

For the converse, suppose that A − yy∗ is positive semidefinite, where y ∈ C
n.

Write y = Ax + z where x ∈ C
n and Az = 0. It follows that

〈(A− yy∗)z, z〉 = −|〈y, z〉|2 ≤ 0

with equality only if 0 = 〈z, y〉 = 〈z,Ax + z〉 = 〈z, z〉 which implies z = 0. In
addition,



Optimal �1 Rank One Matrix Decomposition 31

〈(A− yy∗)x, x〉 = 〈Ax, x〉 − 〈Ax, x〉2 ≥ 0

implies 〈Ax, x〉 ≤ 1. ��
The following result follows from Theorem 2.10

Corollary 2.11 For any A ∈ Sn+(C), we have

γ+(A) = min〈Ax,x〉≤1,x �=0
γ+(A− Axx∗A)+ ‖Ax‖2

1

≤ min〈Ax,x〉=1
γ+(A− Axx∗A)+ ‖Ax‖2

1.

Proof Let A ∈ Sn+ and 0 �= x ∈ C
n such that 〈Ax, x〉 ≤ 1. Then by Theorem 2.10

and Proposition 2.5(a), we see that

γ+(A) ≤ min〈Ax,x〉≤1,x �=0
γ+(A− Axx∗A)+ ‖Ax‖2

1

On the other hand, let A = ∑N
k=1 uku

∗
k be an optimal decomposition, that is

γ+(A) = ∑N
k=1 ‖uk‖2

1. Since A − Axx∗A ∈ Sn+, we can write A − Axx∗A =
∑n
k=1 vkv

∗
k . Hence, A =∑n

k=1 vkv
∗
k + Axx∗A, and by the optimality, we see that

γ+(A− Axx∗A)+ ‖Ax‖2
1 ≤

∑

k=1

‖vk‖2
1 + ‖Ax‖2

1 ≤ γ+(A)

��
We recall that � = co (X ∪ {0}) where X = {xx∗ : x ∈ C

n ‖x‖1 = 1}. We now
give a characterization of � in terms of γ+ that is equivalent to the one proved in
Lemma 2.2.

Lemma 2.12 Using the notations of Lemma 2.2, the following result holds. � =
{T ∈ Sn+(C) : γ+(T ) ≤ 1}.
Proof Let T ∈ {T ∈ Sn+(C) : γ+(T ) ≤ 1}. Then

T =
n2+1
∑

k=1

gkg
∗
k =

n2+1
∑

k=1

wkXkX
∗
k ,

where wk = ‖gk‖2
1 and Xk = gk

‖gk‖1
. Therefore γ+(T ) =

n2+1
∑

k=1
wk ≤ 1. Hence

T =
n2+1
∑

k=1

wkXkX
∗
k + (1− γ+(T )) · 0 ∈ �.
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Conversely, let T ∈ �. Then T =∑

k

wkXkX
∗
k , wk ≥ 0, and

∑

k

wk ≤ 1. Hence

γ+(T ) ≤
∑

k

wk · γ+(XkX∗k ) =
∑

k

wk ≤ 1.
��

In fact, γ+ can be identified with the following gauge-like function ϕ� :
Sn+(C)→ R defined as follows:

ϕ�(T ) = inf{t > 0 : T ∈ t�}.

Let τT = {t > 0 : T ∈ t�}. Then τT is nonempty, since T
γ+(T ) ∈ � ⊂ � ⇒

T ∈ γ+(T )� ⇒ γ+(T ) ∈ τT . Therefore ϕ�(T ) ≤ γ+(T ). In fact, the following
stronger result holds.

Lemma 2.13 For each T ∈ Sn+, we have ϕ�(T ) = γ+(T )
Proof We need to prove γ+(T ) ≤ ϕ�(T ). If t ∈ τT , then T

t
∈ �,

T

t
=
n2+1
∑

k=1

wkxkx
∗
k , w1, .., wn2+1 ≥ 0,

n2+1
∑

k=1

wk ≤ 1, ‖xk‖1 = 1,∀k.

T =
n2+1
∑

k=1

twkxkx
∗
k =

n2+1
∑

k=1

gkg
∗
k ,

where gk = √twkxk.Now γ+(T ) ≤
n2+1
∑

k=1
twk = t

n2+1
∑

k=1
wk ≤ t ⇒ γ+(T ) ≤ ϕ�(T ).

��
Remark It follows that ϕ� is also positively homogeneous and sub-additive, hence
convex. However, we point out that ϕ� is not a Minkowski gauge function since �
does not include a neighborhood of 0.

We close this section with a discussion of some regularity properties of γ+.

Theorem 2.14 Fix δ > 0. Let Cδ = {T ∈ Sn+ : T ≥ δI, tr(T ) ≤ 1}, then γ+ :
Cδ → R is Lipschitz continuous on Cδ with Lipschitz constant (n/δ)+ n3/2.

Proof We show that ∀ T1, T2 ∈ Cδ ,

|γ+(T1)− γ+(T2)| ≤
(n

δ
+ n2

)

‖T1 − T2‖.

Define

T̃ = T2 + δ

‖T2 − T1‖ (T2 − T1).
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Then

λmin(T̃ ) ≥ λmin(T2)−
∥

∥

∥

∥

δ

‖T2 − T1‖ (T2 − T1)

∥

∥

∥

∥

= λmin(T2)− δ ≥ 0.

Consequently, T̃ ∈ Sn+.
Now

T2 = δ

δ + ‖T2 − T1‖T1 + ‖T2 − T1‖
δ + ‖T2 − T1‖ T̃ .

The convexity of γ+ yields

γ+(T2) ≤ δ

δ + ‖T2 − T1‖γ+(T1)+ ‖T2 − T1‖
δ + ‖T2 − T1‖γ+(T̃ ),

which implies

γ+(T2)− γ+(T1) ≤
‖T2 − T1‖

(

γ+(T̃ )− γ+(T1)
)

δ + ‖T2 − T1‖ . (5)

We have

γ+(T̃ ) ≤ n·tr(T̃ ) = n·
[

tr(T2)+ δ · tr
(

T2 − T1

‖T2 − T1‖
)]

≤ n·tr(T2)+δn3/2. (6)

γ+(T1) ≥ ‖T1‖1,1 =
∑

i,j

|(T1)i,j | ≥ tr(T1) ≥ nδ. (7)

Using Equations (6) and (7), we get

γ+(T̃ )− γ+(T1) ≤ n · tr(T2)+ δn3/2 − nδ ≤ n · tr(T2)+ δn3/2. (8)

Now

γ+(T2)−γ+(T1) ≤ ‖T2−T1‖
δ

(

γ+(T̃ )−γ+(T1)
)

≤ ‖T2−T1‖
[n

δ
· tr(T2)+n3/2

]

⇒ γ+(T2)− γ+(T1)

‖T2 − T1‖ ≤ n
δ
· tr(T2)+ n3/2. (9)

Similarly

γ+(T1)− γ+(T2)

‖T1 − T2‖ ≤ n
δ
· tr(T1)+ n3/2. (10)
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Therefore

|γ+(T1)− γ+(T2)|
‖T1 − T2‖ ≤ n

δ
·max (tr(T1), tr(T2))+ n3/2 ≤ n

δ
+ n3/2. (11)

��
In fact, we can prove a stronger result if we restrict to Sn++.

Corollary 2.15 γ+ : Sn++(C) → R is continuous. Further, let T ∈ Sn++(C) and
δ = 1

2λmin(T ) > 0. Then for every S ∈ Sn++(C) with ‖T − S‖ ≤ δ,

|γ+(T )− γ+(S)|
‖T − S‖ ≤ n

δ
· tr(T )+ 2n3/2.

Proof Let T ∈ Sn++(C) and δ = 1
2λmin(T ) > 0. For any S ∈ Sn++(C) with ‖T −

S‖ ≤ δ, and every x ∈ C
n, we have that

〈Sx, x〉 = 〈(S − T )x, x〉 + 〈T x, x〉 ≥ (−δ + λmin(T ))‖x‖2 = δ‖x‖2.

Using this (11) becomes

|γ+(T )− γ+(S)|
‖T − S‖ ≤ n

δ
·max (tr(T ), tr(S))+ n3/2.

However, tr(S) ≤ tr(T )+√nδ. Therefore,

|γ+(T )− γ+(S)|
‖T − S‖ ≤ n

δ
· tr(T )+ 2n3/2.

��

3 Finding Optimal Rank One Decomposition for Some
Special Classes of Matrices

In this section we consider several classes of matrices in Sn+ for which the answer to
Question 2.1 is affirmative.

3.1 Diagonally Dominant Matrices

Recall that a matrix A ∈ Sn+(C) is said to be diagonally dominant if Aii ≥
∑n
j=1 |Aij | for each i = 1, 2, . . . , n. If the inequality is strict for each i, we say
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that the matrix is strictly diagonally dominant. The following result can be proved
for any diagonally dominant matrix in Sn+.

Theorem 3.1 LetA ∈ Sn+ be a diagonally dominant matrix. Then γ (A) = γ0(A) =
γ+(A).

Proof Let ei = (0, . . . , 0, 1, 0, . . . , 0) and uij (x) = (0, . . . ,√x, . . . ,√x, . . . , 0).
Given a diagonally dominant matrix A, we consider the following decomposition of
A ([2])

A =
∑

i<j

uij (Aij )uij (Aij )
∗ +

∑

i

(Aii −
∑

j∈{1,...,n}\{i}
|Aij |)eie∗i .

It follows that

γ+(A) ≤
∑

i<j

4|Aij | +
∑

i

(Aii −
∑

j∈{1,...,n}\{i}
|Aij |)

=
∑

i<j

4|Aij | +
∑

i

Aii −
∑

i

∑

j∈{1,...,n}\{i}
|Aij |

=
∑

i<j

4|Aij | +
∑

i

Aii −
∑

i<j

2|Aij |

= ‖A‖1,1.

��
The case of diagonally dominant matrices is a particular case of the following

more general decomposition result:

Theorem 3.2 Assume A ∈ Sn+ admits a decomposition

A =
∑

1≤i<j≤n
uiju

∗
ij +

n
∑

i=1

viv
∗
i (12)

where each ui,j has non-zero entries at most on positions i and j and each vi has
non-zero entries at most on position i. Then γ+(A) = ‖A‖1,1.

Proof The hypothesis implies

uij =
[

0 · · · 0 cij ;i 0 · · · 0 cij ;j 0 · · · 0
]T

and

vi =
[

0 · · · 0 di 0 · · · 0
]T
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where cij ;i is on position i, cij ;j is on position j , and di is on position i. Without loss
of generality, we can assume di ∈ R and cij ;i , cij ;j ∈ C. We write A = (aij )ni,j=1
where for 1 ≤ i < j ≤ n, aij = cij ;icij ;j , whereas for 1 ≤ i ≤ n,

aii = d2
i +

i−1
∑

j=1

|cji;i |2 +
n

∑

j=i+1

|cij ;i |2.

These imply

∑

1≤i<j≤n
‖uij‖2

1 +
n

∑

i=1

‖vi‖2
1 =

∑

1≤i<j≤n

(|uij ;i | + |uij ;j |
)2 +

n
∑

i=1

d2
i =

∑

1≤i,j≤n
|ai,j | = ‖A‖1,1.

Now the proof is complete. ��

3.2 The Cases for Matrices in Sn
+(C) for n ∈ {2, 3}

Proposition 3.3 Suppose that A ∈ S2+, then

γ+(A) = ‖A‖1,1.

Proof If A = uu∗ is a rank 1 matrix in S2+, the proof is straightforward. Suppose

A ∈ S2+ is rank 2.A =
[

a c

c̄ b

]

with ab−|c|2 > 0. Using the Lagrange decomposition

[10], we can write

A =
[√
a
c̄√
a

]

[√
a c√

a

]

+
[

0
√

b − |c|2
a

]

[

0
√

b − |c|2
a

]

The result then follows. ��
For certain 3 × 3 matrices, the Lagrange decomposition [10] is optimal. In

particular, we have the following result.

Proposition 3.4 Let A ∈ S3+ be of rank 2 or 3. If

A =
⎡

⎣

a b c

b d e

c e f

⎤

⎦
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then

γ+(A) ≤ ‖A‖1,1 + 2(|ae−bc|+|b||c|−a|e|)
a

.

In particular, if |ae − bc| + |b||c| = a|e|, then γ+(A) = ‖A‖1,1 and the Lagrange
decomposition (which in this case is the LDL factorization) is optimal.

Proof We first assume that A has rank 3. In this case, A must be positive definite
and adf �= 0. Indeed, if one of the diagonal term, say f = 0, then using the fact
that A ∈ S3+ would imply that df − |e|2 = −|e|2 > 0 which is impossible.

Let

u1 = 1√
a
Aδ1 =

⎡

⎢

⎣

√
a
b√
a
c√
a

⎤

⎥

⎦
,

where {δi}3i=1 is the standard ONB for C3. By Theorem 2.10, the matrix A− u1u
∗
1.

In fact, in this case, this is a rank 2 matrix given by

A− u1u
∗
1 =

⎡

⎢

⎣

0 0 0

0 d − |b|2
a

e − bc
a

0 e − cb
a
f − |c|2

a

⎤

⎥

⎦

Let

u2 = 1
√

d−|b|
2

a

(A− u1u
∗
1)δ2 =

⎡

⎢

⎢

⎢

⎢

⎣

0
√

d − |b|2
a

e− cb
a

√

d−|b|
2

a

⎤

⎥

⎥

⎥

⎥

⎦

.

It follows that A− u1u
∗
1 − u2u

∗
2 = u3u

∗
3 where

u3 =
⎡

⎢

⎣

0
0

√

detA
ad−|b|2

⎤

⎥

⎦
.

Consequently, the Lagrange decomposition of A is A = u1u
∗
1 + u2u

∗
2 + u3u

∗
3

which implies that

γ+(A) ≤
3

∑

k=1

‖uk‖2
1 = ‖A‖1,1 + 2(|ae−bc|+|b||c|−a|e|)

a
.
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Now suppose that the rank of A is 2. In this case, it is possible for adf = 0.
However, only one of the diagonal element can be 0. So assume that f = 0, then
we also get that e = c = 0. In this case

A

⎡

⎣

a b 0
b d 0
0 0 0

⎤

⎦

which reduces to Proposition 3.3. Thus, we may assume without loss of generality
that adf �= 0. In this case, we can proceed as above. However, because the rank of
the matrix A is now 2, we see that A = u1u

∗
1 + u2u

∗
2 and

γ+(A) ≤ ‖u1‖2
1 + ‖u2‖2

1 = ‖A‖1,1 + 2(|ae−bc|+|b||c|−a|e|)
a

.

��
Remark

(1) If one of the off diagonal elements b, or c is 0, then Proposition 3.4 shows that
the Lagrange decomposition is optimal for γ+(A).

(2) Suppose n = 4 and let V = 1√
14

⎡

⎢

⎢

⎣

1 0
0 1
1 −1
1 1

⎤

⎥

⎥

⎦

, and consider

A = VV T = 1
14

⎡

⎢

⎢

⎣

1 0 1 1
0 1 −1 1
1 −1 2 0
1 1 0 2

⎤

⎥

⎥

⎦

Then A has rank 2, and the ‖A‖1,1 = 1. However, γ+(A) �= γ (A).

4 Numerics

Here we inspect upper bounds of γ+(A)/‖A‖1,1 for A an N x N matrix with
simulated data. We randomly generate symmetric positive definite matrices and
compute upper bounds on γ+(A)/‖A‖1,1 with different decompositions of A. The
first step is generating Gaussian distributed realizations in a matrix size N by N.
Then by multiplying by its transpose, the result is symmetric positive semidefinite,
denotedA. Let AN denote a collection of 30 independent realizations of this random
matrix.
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We consider two factorizations of the matrix A: the LDL and the Eigen matrix
decomposition. Specifically:

LDL : A =
N
∑

k=1

vkv
∗
k

with vk vectors that have the top k − 1 entries 0, and

Eigen : A =
N
∑

k=1

gkg
∗
k

where {g1, . . . , gn} are the eigenvectors, each scaled by the corresponding eigen-
value’s square-root. For each decomposition, denote:

JLDL(A) =
N
∑

k=1

‖vk‖2
1 and JEigen(A) =

N
∑

k=1

‖gk‖2
1

Let FLDL and FEigen denote the worst upper bounds over the N realization
ensemble:

FLDL(N) = max
A∈AN

JLDL(A)

‖A‖1,1

FEigen(N) = max
A∈AN

JEigen(A)

‖A‖1,1

We plot these worst upper bounds after 30 realizations for various N in Figure 1.
In the same figure, we plot the analytic approximations of these two curves

using a square root functions and a logarithmic function. The square root function
was scaled as c

√
N to closely fit the Eigen decomposition bound, FEigen(N).

Numerically we obtained c = 4/5.
From these plots, we notice a clearly strictly increasing trend. Furthermore,

the LDL factorization produces a smaller (tighter) upper bound than the Eigen
decomposition. On the other hand, as we show in Theorem 2.9, any optimal
decomposition may take N2 + 1 vectors. By limiting the number of vector to N ,
one should not expect to achieve the optimal bound γ+(A) with any decomposition.
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Decomposition performance via sampling random matrices

0 5000 10000 15000
size of sqare matrix A; N
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100
Fldl (N) : ldl decomposition

Feigen (N) : eigen decomposition

4/5*sqrt(N)
log(N)

Fig. 1 For each size N , 30 random matrices are sampled and decomposed in different ways. The
worst upper bound of γ+(A) is plotted for various N . Reference curves are also plotted to indicate
trend
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An Arithmetical Function Related to
Báez-Duarte’s Criterion for the Riemann
Hypothesis

Michel Balazard

To the memory of my friend, Luis Báez-Duarte.

Abstract In this mainly expository article, we revisit some formal aspects of
Báez-Duarte’s criterion for the Riemann hypothesis. In particular, starting from
Weingartner’s formulation of the criterion, we define an arithmetical function ν,
which is equal to the Möbius function if and only if the Riemann hypothesis is true.
We record the basic properties of the Dirichlet series of ν and state a few questions.

1 The Spaces D and D0

We will denote by N (resp. N∗) the set of non-negative (resp. positive) integers, by
H the Hilbert space L2(0,∞; t−2dt), with inner product

〈f, g〉 =
∫ ∞

0
f (t)g(t)

dt

t2
,

and by Vect(F ) the set of finite linear combinations of elements of a family F of
elements of H .

For k ∈ N
∗, we define

ek(t) = {t/k} (t > 0),

where {u} = u − �u� denotes the fractional part of the real number u and �u� its
integer part. The functions ek belong to H , as do the functions χ and κ defined by

χ(t) = [t ≥ 1] ; κ(t) = t[0 < t < 1]
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(here, and in the following, we use Iverson’s notation: [P ] = 1 if the assertion P is
true, [P ] = 0 if it is false).

Let D be the closed subspace of functions f ∈ H of the type

f (t) = λt + ϕ(t), (1)

where ϕ is constant on each interval [j, j + 1[, j ∈ N (for j = 0, the constant must
be 0). The functions ek belong to D.

LetD0 be the subspace ofD defined by taking λ = 0 in (1), that is, the subspace
of functions ϕ ∈ H which are constant on each interval [j, j + 1[, j ∈ N. The
functions χ and ek − e1/k belong to D0.

A Hilbertian basis for D0 is given by the family of step functions εk defined by

εk(t) =
√

k(k + 1) · [k ≤ t < k + 1] (k ∈ N
∗, t > 0).

The mapping h �→ (

h(j)
)

j≥1 is a Hilbert space isomorphism of D0 onto the
sequence space h of complex sequences (xj )j≥1 such that

∑

j≥1

|xj |2
j (j + 1)

<∞·

Observe that, for f ∈ D, written as (1), one has

λ = 〈f, κ〉 (2)

f = λe1 + h, where h ∈ D0. (3)

Thus, the subspace D is the (non-orthogonal) direct sum of Vect(e1) and D0.
In formula (2), the function κ could be replaced by its orthogonal projection κ ′

on D. The definition of the families (ψn) of Proposition 2 and (gn) of Proposition 4
could be modified accordingly. We compute κ ′ in the appendix.

To every function in D, one can associate certain arithmetical functions.
Let f ∈ D, with λ and h as in (2), (3). We first define the arithmetical function

u(n) = u(n; f ) = −λ+ h(n)− h(n− 1) (n ∈ N
∗). (4)

With this definition, we see that the function ϕ of (1) is given by

ϕ(t) = −λt + f (t) = −λt + λ{t} + h(t) =
∑

n≤t
u(n).

Thus, f (t) is the remainder term in the approximation of the sum function ϕ(t)
of the arithmetical function u by the linear function −λt . The fact that f belongs
to H implies, and is stronger than, the asymptotic relation f (t) = o(t).
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For f ∈ D, we will also consider the arithmetical function w = μ ∗ u, where μ
denotes the Möbius function:

w(n) = w(n; f ) =
∑

d|n
μ(n/d)u(d; f ) (n ∈ N

∗).

For instance,

u(n;χ) = [n = 1] ; w(n;χ) = μ(n) (n ∈ N
∗).

The arithmetical functions u andw depend linearly on f and the correspondences
are one-to-one.

Proposition 1 For f ∈ D,

f = 0⇔ u = 0⇔ w = 0.

Proof The second equivalence follows from w = u ∗ μ and u = w ∗ 1 (Möbius
inversion). It remains to prove that u = 0 ⇒ f = 0. By (4), u = 0 implies
h(n) = λn for all n, hence λ = 0 since h ∈ D0, and h = 0. ��

Since u = w ∗ 1, one has

f (t) = λt +
∑

n≤t
u(n) = λt +

∑

n≥1

w(n)�t/n�.

In Proposition 7, we will prove the identity

∑

n≥1

w(n)

n
= −λ, (5)

so that, for every f in D and every t > 0, one has

f (t) = −
∑

n≥1

w(n)en(t). (6)

Of course, it does not mean that the series
∑

n≥1w(n; f )en converges in H (in
fact, it diverges if f = χ , cf. [1], Theorem 2.2, p. 6), but, if it does, its sum is −f .

2 Vasyunin’s Biorthogonal System

In Theorem 7 of his paper [7], Vasyunin defined a family (fk)k≥2, which, together
with the family (ek − e1/k)k≥2, yields a biorthogonal system in D0, which means
that
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〈ej − e1/j, fk〉 = [j = k] (j ≥ 2, k ≥ 2). (7)

We will recall Vasyunin’s construction, which can be thought of as a Hilbert
space formulation of Möbius inversion, and add several comments.

2.1 The Sequence (ϕk)

First one defines, for k ∈ N
∗, a step function ϕk ∈ D0 by

ϕk(t) = k(k − 1)[k − 1 ≤ t < k] − k(k + 1)[k ≤ t < k + 1]

(Vasyunin’s ϕk have the opposite sign, according to his definition for ek). Thus

ϕk =
√

k(k − 1) · εk−1 −
√

k(k + 1) · εk (k ∈ N
∗),

with ε0 = 0 by convention. One sees that the family (ϕk)k≥1 is total in D0.
One checks that

〈h, ϕk〉 = h(k − 1)− h(k) (k ∈ N
∗), (8)

for h ∈ D0 with constant value h(k) on [k, k + 1[ (h(0) = 0). In particular,

〈ej − e1/j, ϕk〉 = [j | k] − 1/j (j ≥ 1, k ≥ 1).

Using the family (ϕk), one can write the values u(n; f ), for f ∈ D, as scalar
products.

Proposition 2 For f ∈ D, with λ and h as in (2) and (3), one has

u(n; f ) = 〈f,ψn〉,

where

ψn = (〈e1, ϕn〉 − 1)κ − ϕn (n ∈ N
∗).

In particular, f �→ u(n; f ) is a continuous linear form on D, for every n ∈ N
∗.

Proof By (2), (4) and (8), one has

u(n; f ) = −〈f, κ〉 − 〈h, ϕn〉
= −〈f, κ〉 − 〈f − 〈f, κ〉e1, ϕn〉
= −〈f, κ〉 − 〈f, ϕn〉 + 〈e1, ϕn〉〈f, κ〉
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= 〈f,ψn〉 (n ∈ N
∗). ��

We compute the scalar product 〈e1, ϕn〉 in the appendix.
The next proposition describes the behavior of the series

∑

k ϕk/k.

Proposition 3 The series

∑

k≥1

ϕk

k

is weakly convergent in D0, with weak sum −χ .
Proof The partial sum

∑

k≤K

ϕk

k

is the step function with values

0 on (0, 1) and (K + 1,∞)
−1 on (1,K)

−(K + 1) on (K,K + 1)

This partial sum is thus equal to −χ on every fixed bounded segment of (0,∞),
if K is large enough, and the norm of this partial sum in H is the constant

√
2. The

result follows. ��

2.2 The Sequence (fk)

Vasyunin defined

fk =
∑

d|k
μ(k/d)ϕd (k ∈ N

∗).

Equivalently,

ϕk =
∑

d|k
fd (k ∈ N

∗),

by Möbius inversion; this implies that the family (fk)k≥1 is also total in D0.
A slightly more general form of (7), namely,
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〈ej − e1/j, fk〉 = [j = k] − [k = 1]/j (j, k ∈ N
∗), (9)

is proved by means of the identity

∑

j |d|k
μ(k/d) = [j = k].

Using the family (fk), one can write the values w(n; f ), for f ∈ D, as scalar
products.

Proposition 4 For f ∈ D, with λ and h as in (2) and (3), one has

w(n; f ) = 〈f, gn〉,

where

gn = (〈e1, fn〉 − [n = 1])κ − fn (n ∈ N
∗).

In particular, f �→ w(n; f ) is a continuous linear form on D, for every n ∈ N
∗.

Proof By Proposition 2, one has

w(n; f ) =
∑

d|n
μ(n/d)u(d; f )

= 〈f,
∑

d|n
μ(n/d)ψd〉 (n ∈ N

∗).

Now,

∑

d|n
μ(n/d)ψd =

∑

d|n
μ(n/d)

(

(〈e1, ϕd〉 − 1)κ − ϕd
)

= (〈e1, fn〉 − [n = 1])κ − fn. ��

We compute the scalar product 〈e1, fn〉 in the appendix.
In order to study the series

∑

k fk/k, we will need the following auxiliary
proposition.

Proposition 5 Let

f (x) =
∑

k≤x
η(k) (x > 0),

where η is a complex arithmetical function such that η(k) = O(1/k), for k ≥ 1.
Then, for every fixed α > 1,
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∑

k≥1

∣

∣f (x/k)− f (x/(k + 1)
)∣

∣

α = O(1) (x > 0).

Proof The series is in fact a finite sum, as

f (x/k) = f (x/(k + 1)
) = 0 (k > x).

We will use the estimate

f (y)− f (x) 
∑

x<k≤y

1

k
 1

x
+ ln(y/x) (y > x ≥ 1).

Thus,

f (x/k)− f (x/(k + 1)
) k

x
+ 1

k
 1

k
(k ≤ √x),

and

∑

k≤√x

∣

∣f (x/k)− f (x/(k + 1)
)∣

∣

α  
∑

k≥1

1

kα
 1 (x > 0).

If k >
√
x, then

x

k
− x

k + 1
< 1,

so that the interval ]x/(k + 1), x/k] contains at most one integer, say n, and, if n
exists, one has k = �x/n� and

f (x/k)− f (x/(k + 1)
) = η(n) 1

n
·

Hence

∑

k>
√
x

∣

∣f (x/k)− f (x/(k + 1)
)∣

∣

α  
∑

n≥1

1

nα
 1 (x > 0).

The result follows. ��
Proposition 6 The series

∑

k≥1

fk

k

is weakly convergent in D0 (hence in H ), with weak sum 0.
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Proof Let K ∈ N
∗. One has

SK =
∑

k≤K

fk

k
=

∑

d≤K

m(K/d)

d
ϕd,

where

m(x) =
∑

n≤x

μ(n)

n
(x > 0).

Hence,

SK =
∑

d≤K

m(K/d)

d

(
√

d(d − 1) · εd−1 −
√

d(d + 1) · εd
)

=
∑

d≤K−1

(m
(

K/(d + 1)
)

d + 1
− m(K/d)

d

)
√

d(d + 1) · εd −
√

1+ 1/K · εK

For every fixed d ∈ N
∗, the fact that 〈SK, εd〉 tends to 0 when K tends to infinity

follows from this formula and the classical result of von Mangoldt, asserting that
m(x) tends to 0 when x tends to infinity.

It remains to show that ‖SK‖ is bounded. One has

‖SK‖2 =
∑

d≤K−1

d(d + 1)
(m(K/d)

d
− m

(

K/(d + 1)
)

d + 1

)2 + 1+ 1/K

≤ 2
∑

d≤K−1

d(d + 1)
(m(K/d)−m(

K/(d + 1)
)

d

)2

+ 2
∑

d≤K−1

d(d + 1)
(m

(

K/(d + 1)
)

d(d + 1)

)2 + 1+ 1/K

 1+
∑

d≤K−1

(

m(K/d)−m(

K/(d + 1)
)

)2

The boundedness of ‖SK‖ then follows from Proposition 5. ��
We are now able to prove (5).

Proposition 7 Let f ∈ D, with λ and h as in (2), (3). The series

∑

n≥1

w(n; f )
n

is convergent and has sum −λ.
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Proof Putting βN =∑

n≤N fn/n for N ∈ N
∗, one has

∑

n≤N

gn

n
=

∑

n≤N

(〈e1, fn〉 − [n = 1])κ − fn
n

= (〈e1, βN 〉 − 1
)

κ − βN,

which tends weakly to −κ , as N tends to infinity, by Proposition 6.
Hence,

∑

n≤N

w(n; f )
n

=
∑

n≤N

〈f, gn〉
n

= 〈f,
∑

n≤N
gn/n〉 → −〈f, κ〉 = −λ (N →∞). ��

3 Dirichlet Series

For f ∈ D we define

F(s) =
∑

n≥1

u(n; f )
ns

,

and we will say that F is the Dirichlet series of f .
We will denote by σ the real part of the complex variable s. The following

proposition summarizes the basic facts about the correspondence between elements
f of D and their Dirichlet series F . We keep the notations of (2) and (3).

Proposition 8 For f ∈ D, the Dirichlet series F(s) is absolutely convergent in the
half-plane σ > 3/2 and convergent in the half-plane σ > 1. It has a meromorphic
continuation to the half-plane σ > 1/2 (we will denote it also by F(s)), with a
unique pole in s = 1, simple and with residue −λ. In the strip 1/2 < σ < 1, one
has

F(s)/s =
∫ ∞

0
f (t)t−s−1dt. (10)

If f ∈ D0, that is λ = 0, there is no pole at s = 1, and the Mellin transform (10)
represents the analytic continuation of F(s)/s to the half-plane σ > 1/2. Moreover,
the Dirichlet series F(s) converges on the line σ = 1.

Proof If h = 0 in (3), the arithmetical function u is the constant−λ, and F = −λζ .
In this case, the assertion about (10) follows from (2.1.5), p. 14 of [6].

If λ = 0, then f = h ∈ D0 and u(n) = h(n)− h(n− 1) by (4). Therefore,
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∑

n≥1

|u(n)|
nσ

≤ 2
∑

n≥1

|h(n)|
nσ

≤ 2
(
∑

n≥1

|h(n)|2
n2

)1/2(∑

n≥1

1

n2σ−2

)1/2

≤ 2
√

2 ζ(2σ − 2)1/2‖h‖ <∞,

if σ > 3/2, where we used Cauchy’s inequality for sums.
The convergence of the series F(1) follows from the formula u(n) = −〈h, ϕn〉

and Proposition 3. It implies the convergence of F(s) in the half-plane σ > 1.
Using the Bunyakovsky-Schwarz inequality for integrals, and the fact that h = 0

on (0, 1), one sees that the integral (10) now converges absolutely and uniformly in
every half-plane σ ≥ 1/2+ ε (with ε > 0), thus defining a holomorphic function
in the half-plane σ > 1/2. It is the analytic continuation of F(s)/s since one has,
for σ > 3/2,

∫ ∞

0
h(t)t−s−1dt = 1

s

∑

n≥1

h(n)
(

n−s − (n+ 1)−s
)

= 1

s

∑

n≥1

h(n)− h(n− 1)

ns
= F(s)

s
·

Finally, the convergence of the Dirichlet series F(s) on the line σ = 1 follows
from the convergence at s = 1 and the holomorphy of F on the line, by a theorem
of Marcel Riesz (cf. [5], Satz I, p. 350).

One combines the two cases, h = 0 and λ = 0, to obtain the statement of the
proposition. ��

The Dirichlet series F(s) of functions in D0 are precisely those which converge
in some half-plane and have an analytic continuation to σ > 1/2 such that F(s)/s
belongs to the Hardy space H 2 of this last half-plane. As we will not use this fact in
the present paper, we omit its proof.

We now investigate the Dirichlet series

F(s)

ζ(s)
=

∑

n≥1

w(n; f )
ns

·

Proposition 9 Let f ∈ D, and let F(s) be the Dirichlet series of f . The Dirichlet
series F(s)/ζ(s) is absolutely convergent if σ > 3/2 and convergent if σ ≥ 1.

Proof The Dirichlet series F(s) converges for σ > 1, and converges absolutely
for σ > 3/2 (Proposition 8). The Dirichlet series 1/ζ(s) converges absolutely
for σ > 1. The Dirichlet product F(s)/ζ(s) thus converges absolutely for σ > 3/2
and converges for σ > 1.
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If s = 1, the series is convergent by Proposition 7. Since the function F(s)/ζ(s)
is holomorphic in the closed half-plane σ ≥ 1, Riesz’ convergence theorem applies
again to ensure convergence on the line σ = 1. ��

4 Báez-Duarte’s Criterion for the Riemann Hypothesis

We now define

B = Vect(en, n ∈ N
∗) ; B0 = Vect(en − e1/n, n ∈ N

∗, n ≥ 2).

Since en ∈ D and en − e1/n ∈ D0 for all n ∈ N
∗, one sees that

B ⊂ D ; B0 ⊂ D0 ; B0 = B ∩D0.

The subspace B is the (non-orthogonal) direct sum of Vect(e1) and B0.
We will consider the orthogonal projection χ̃ (resp. χ̃0) of χ on B (resp. B0). In

2003, Báez-Duarte gave the following criterion for the Riemann hypothesis.

Proposition 10 The following seven assertions are equivalent.

(i) B = D ; (i)0 B0 = D0

(ii) χ ∈ B ; (ii)0 χ ∈ B0

(iii) χ̃ = χ ; (iii)0 χ̃0 = χ
(iv) the Riemann hypothesis is true.

In fact, Báez-Duarte’s paper [2] contains the proof of the equivalence of (ii)
and (iv); the other equivalences are mere variations. The statements (i)0, (ii)0,
and (iii)0 allow one to work in the sequence space h instead of the function spaceH ;
see [3] for an exposition in this setting.

The main property of Dirichlet series of elements of B is given in the following
proposition.

Proposition 11 If f ∈ B, the Dirichlet series F(s)/ζ(s) has a holomorphic
continuation to the half-plane σ > 1/2.

Proof Write f = λe1 + h, with λ ∈ R and h ∈ D0. If h = 0, one has F = − λζ ,
and the result is true.

Now suppose λ = 0. The function h is the limit in H of finite linear
combinations, say hj (j ≥ 1), of the ek − e1/k (k ≥ 2), when j → ∞. The
Dirichlet series of ek − e1/k is

(k−1 − k−s)ζ(s),
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so that the result is true for each hj . It remains to see what happens when one passes
to the limit.

By the relation between the Dirichlet series of hj and the Mellin transform of hj ,
one sees that the Mellin transform of hj must vanish at each zero ρ of ζ in the half-
plane σ > 1/2, with a multiplicity no less than the corresponding multiplicity of ρ
as a zero of ζ . Thus

∫ ∞

1
hj (t)t

−ρ−1 lnk t dt = 0 (11)

for every zero ρ of the Riemann zeta function, such that !ρ > 1/2, and for every
non-negative integer k smaller than the multiplicity of ρ as a zero of ζ . When j →
∞, one gets (11) with hj replaced by h, which proves the result for h.

One combines the two cases, h = 0 and λ = 0, to obtain the statement of the
proposition. ��

5 The ν Function

5.1 Weingartner’s Form of Báez-Duarte’s Criterion

For N ∈ N
∗, we will consider the orthogonal projections of χ on Vect(e1, . . . , eN )

and on Vect(e2 − e1/2, . . . , eN − e1/N) :

χN =
N
∑

k=1

c(k,N)ek (12)

χ0,N =
N
∑

k=2

c0(k,N)(ek − e1/k), (13)

thus defining the coefficients c(k,N) and c0(k,N). In [8], Weingartner gave a
formulation of Báez-Duarte’s criterion in terms of the coefficients c0(k,N) of (13).
The same can be done with the c(k,N) of (12). First, we state a basic property of
these coefficients.

Proposition 12 For every k ∈ N
∗, the coefficients c(k,N) in (12) and c0(k,N)

in (13) (here, with k ≥ 2) converge when N tends to infinity.

Proof With the notations of Section 4,

χ̃ = lim
N→∞χN

χ̃0 = lim
N→∞χ0,N ,
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where the limits are taken in H .
Using the identity (6), we observe that, for every N ∈ N

∗,

c(k,N) = −w(k;χN) (k ≥ 1)

c0(k,N) = −w(k;χ0,N ) (k ≥ 2),

Therefore, Proposition 4 yields, for every k,

c(k,N)→−w(k; χ̃ ) (N →∞)
c0(k,N)→−w(k; χ̃0) (N →∞). ��

Definition 1 The arithmetical functions ν and ν0 are defined by

ν(n) = w(n; χ̃ )
ν0(n) = w(n; χ̃0).

Note that

ν0(1) = lim
N→∞

∑

2≤k≤N

c0(k,N)

k
= −

∑

k≥2

ν0(k)

k
,

by Proposition 7.
We can now state Báez-Duarte’s criterion in Weingartner’s formulation.

Proposition 13 The following assertions are equivalent.

(i) ν = μ
(ii) ν0 = μ on N

∗ \ {1}
(iii) the Riemann hypothesis is true.

Proof By Báez-Duarte’s criterion, (iii) is equivalent to χ = χ̃ . By Proposition 1,
this is equivalent to w(n;χ) = w(n; χ̃ ) for all n ≥ 1, that is, μ = ν.

Similarly, (iii) implies μ = ν0. Conversely, if μ(n) = ν0(n) for all n ≥ 2, then
one has w(n;χ − χ̃0) = 0 for n ≥ 2, which means that χ − χ̃0 is a scalar multiple
of e1. This implies χ = χ̃0 since χ and χ̃0 belong to D0. ��

5.2 The Dirichlet Series
∑

n ν(n)n−s

Since ν(n) = w(n; χ̃ ), the following proposition is a corollary of Propositions 9
and 11.
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Proposition 14 The Dirichlet series

∑

n≥1

ν(n)

ns

is absolutely convergent for σ > 3/2, convergent for σ ≥ 1, and has a holomorphic
continuation to the half-plane σ > 1/2.

6 Questions

Here are three questions related to the preceding exposition.

Question 1 Is it true that χ̃ = χ̃0?

Question 2 Let f ∈ D such that the Dirichlet series F(s)/ζ(s) has a holomorphic
continuation to the half-plane σ > 1/2. Is it true that f ∈ B ?

A positive answer would be a discrete analogue of Bercovici’s and Foias’
Corollary 2.2, p. 63 of [4].

Question 3 Is the Dirichlet series

∑

n≥1

ν(n)

ns

convergent in the half-plane σ > 1/2?

Another open problem is to obtain any quantitative estimate beyond the tautolo-
gies ‖χ̃ − χ̃N‖ = o(1) and ‖χ̃0 − χ̃0,N‖ = o(1) (N →∞).

Appendix: Some Computations

Scalar Products

1. One has

〈e1, εk〉 =
√

k(k + 1)
∫ k+1

k

(t − k)dt
t2
= √

k(k + 1)
(

ln(1+ 1/k)− 1/(k + 1)
)

.

(14)
2. For k ∈ N

∗, one has

〈e1, ϕk〉 =
∫ k

k−1
k(k − 1)(t − k + 1)

dt

t2
−

∫ k+1

k

k(k + 1)(t − k)dt
t2
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= 2k2 ln k − k(k − 1) ln(k − 1)− k(k + 1) ln(k + 1)+ 1

= −ω(1/k),

where

ω(z) = z−2((1− z) ln(1− z)+ (1+ z) ln(1+ z))− 1

=
∑

j≥1

z2j

(j + 1)(2j + 1)
(|z| ≤ 1).

3. For n ∈ N
∗, one has

〈e1, fn〉 =
∑

k|n
μ(n/k)〈e1, ϕk〉 = −

∑

k|n
μ(n/k)ω(1/k)

= −
∑

j≥1

∑

k|n μ(n/k)k−2j

(j + 1)(2j + 1)
= −

∑

j≥1

n−2j ∏
p|n(1− p2j )

(j + 1)(2j + 1)
·

In particular,

sup
n∈N∗
|〈e1, fn〉| =

∑

j≥1

1

(j + 1)(2j + 1)
= ln 4− 1.

Projections

By (14), the orthogonal projection e′1 of e1 on D0 is

e′1 =
∑

k≥1

〈e1, εk〉εk =
∑

k≥1

√

k(k + 1)
(

ln(1+ 1/k)− 1/(k + 1)
)

εk.

Since e′1(k) has limit 1/2 when k tends to infinity, one sees that e1 − e′1
“interpolates” between the fractional part (on [0, 1[ ) and the first Bernoulli function
(at infinity). One has the Hilbertian decomposition

D = D0 ⊕ Vect(e1 − e′1).

Since κ ⊥D0 and 〈κ, e1〉 = 1, the orthogonal projection of κ on D is

κ ′ = e1 − e′1
‖e1 − e′1‖2

·
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Large Sets Avoiding Rough Patterns

Jacob Denson, Malabika Pramanik, and Joshua Zahl

Abstract The pattern avoidance problem seeks to construct a set X ⊂ Rd with
large dimension that avoids a prescribed pattern. Examples of such patterns include
three-term arithmetic progressions (solutions to x1 − 2x2 + x3 = 0), geometric
structures such as simplices, or more general patterns of the form f (x1, . . . , xn) =
0. Previous work on the subject has considered patterns described by polynomials
or by functions f satisfying certain regularity conditions. We consider the case of
“rough” patterns, not prescribed by functional zeros.

There are several problems that fit into the framework of rough pattern avoidance.
As a first application, if Y ⊂ Rd is a set with Minkowski dimension α, we construct
a set X with Hausdorff dimension d − α such that X + X is disjoint from Y . As a
second application, if C is a Lipschitz curve with Lipschitz constant less than one,
we construct a set X ⊂ C of dimension 1/2 that does not contain the vertices of an
isosceles triangle.

A major question in modern geometric measure theory is whether sufficiently large
sets are forced to contain copies of certain patterns. Intuitively, one expects the
answer to be yes, and many results in the literature support this intuition. For
example, the Lebesgue density theorem implies that a set of positive Lebesgue
measure contains an affine copy of every finite set. Similarly, any set X ⊂ R2

with Hausdorff dimension exceeding one must contain three collinear points. On the
other hand, there is a distinct genre of results that challenges this intuition. Keleti
[1] constructs a full-dimensional set X ⊂ R that avoids all solutions of the equation
x2−x1 = x4−x3 with x1 < x2 ≤ x3 < x4 and which consequently does not contain
any nontrivial arithmetic progression. Given any triangle, Falconer [2] constructs a
full-dimensional planar set that does not contain any similar copy of the vertex set
of the triangle. Maga [3] provides a set X ⊂ R2 of full Hausdorff dimension such
that no four points in X form the vertices of a parallelogram. The pattern avoidance
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problem (informally stated) asks: for a given pattern, how large can the dimension
of a set X ⊂ Rd be before it is forced to contain a copy of this pattern?

One way to formalize the notion of a pattern is as follows. If d ≥ 1 and n ≥ 2
are integers, we define a pattern to be a set Z ⊂ Rdn. We say that a set X ⊂ Rd

avoids the pattern Z if for every n-tuple of distinct points x1, . . . , xn ∈ X, we have
(x1, . . . , xn) �∈ Z. For example, a setX ⊂ R2 does not contain three collinear points
if and only if it avoids the pattern

Z = {(x1, x2, x3) ∈ R6 : |(x1 − x2) ∧ (x1 − x3)| = 0}.

Similarly, a set X ⊂ R2 avoids the pattern

Z = {(x1, x2, x3, x4) ∈ R8 : x1 + x4 = x2 + x3}

if and only if no four points in X form the vertices of a (possibly degenerate)
parallelogram.

A number of recent articles have established pattern avoidance results for
increasingly general patterns. In [4], Máthé constructs a set X ⊂ Rd that avoids
a pattern specified by a countable union of algebraic varieties of controlled degree.
In [5], Fraser and the second author consider the pattern avoidance problem for
countable unions of C1 manifolds. In this paper, we consider the pattern avoidance
problem for an even more general class of “rough” patterns Z ⊂ Rdn, which are the
countable union of sets with controlled lower Minkowski dimension.

Theorem 1 Let α ≥ d, and let Z ⊂ Rdn be a countable union of compact sets,
each with lower Minkowski dimension at most α. Then there exists a compact set
X ⊂ [0, 1]d with Hausdorff dimension at least (nd−α)/(n−1) such that whenever
x1, . . . , xn ∈ X are distinct, we have (x1, . . . , xn) �∈ Z.
Remarks

1. When α < d, the pattern avoidance problem is trivial, since X = [0, 1]d −
π(Z) is full dimensional and solves the pattern avoidance problem, where
π(x1, . . . , xn) = x1 is a projection map from Rdn to Rd . We will therefore
assume that α ≥ d in our proof of the theorem. Note that obtaining a full
dimensional avoiding set in the case α = d, however, is still interesting.

2. Theorem 1 is trivial when α = dn, since we can set X = ∅. We will therefore
assume that α < dn in our proof of the theorem.

3. When Z is a countable union of smooth manifolds in Rnd of co-dimension m,
we have α = nd − m. In this case Theorem 1 yields a set in Rd with Hausdorff
dimension at least (nd − α)/(n − 1) = m/(n − 1). This recovers Theorem 1.1
and 1.2 from [5], making Theorem 1 a generalization of these results.

4. Since Theorem 1 does not require any regularity assumptions on the set Z, it
can be applied in contexts that cannot be addressed using previous methods.
Two such applications, new to the best of our knowledge, have been recorded
in Section 5; see Theorems 2 and 3 there.
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The setX in Theorem 1 is obtained by constructing a sequence of approximations
to X, each of which avoids the pattern Z at different scales. For a sequence of
lengths lk ↘ 0, we construct a nested family of compact sets {Xk}, where Xk is a
union of closed cubes of sidelength lk that avoids Z at scales close to lk . The set
X = ⋂

Xk avoids Z at all scales. While this proof strategy is not new, our method
for constructing the sets {Xk} has several innovations that simplify the analysis of
the resulting set X = ⋂

Xk . In particular, through a probabilistic selection process,
we are able to avoid the complicated queuing techniques used in [1] and [5], which
required storage of data from each step of the iterated construction, to be retrieved
at a much later stage of the construction process.

At the same time, our construction continues to share certain features with
[5]. For example, between each pair of scales lk−1 and lk , we carefully select an
intermediate scale rk . The set Xk ⊂ Xk−1 avoids Z at scale lk , and it is “evenly
distributed” at scale rk; the set Xk is a union of cubes of length lk whose midpoints
resemble (a large subset of) generalized arithmetic progression of step size rk . The
details of a single step of this construction are described in Section 2. In Section 3,
we explain how the length scales lk and rk for X are chosen and prove its avoidance
property. In Section 4, we analyze the size of X and show that it satisfies the
conclusions of Theorem 1.

1 Frequently Used Notation and Terminology

1. A dyadic length is a number l of the form 2−k for some non-negative integer k.
2. Given a length l > 0, we let Bdl denote the set of all closed cubes in Rd with

sidelength l and corners on the lattice (l · Z)d , i.e.,

Bdl = {[a1, a1 + l] × · · · × [ad, ad + l] : ak ∈ l · Z}.

3. A set E ⊂ Rd is l discretized if it is a union of cubes in Bdl . For any set E ⊂ Rd ,
and any length l > 0, we let

E(l) =
⋃

{I ∈ Bdl : I ∩ E �= ∅}.

Then E(l) is the smallest l discretized set with E ⊂ E(l)◦. Here and throughout
the paper A◦ will denote the interior of the set A. Given an l discretized set E,
we let

Bdl (E) = {I ∈ Bdl : I ⊂ E}.

Then E =⋃

Bdl (E).
4. The lower Minkowski dimension of a bounded set Z ⊂ Rd is defined as
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dimM(Z) = lim inf
l→0

log
[

#Bdl (Z(l))
]

log[1/l] .

5. If α ≥ 0 and δ > 0, we define the dyadic Hausdorff content of a set E ⊂ Rd as

Hαδ (E) = inf

{ ∞
∑

k=1

lαk : E ⊂
∞
⋃

k=1

Ik

}

,

where the infinum is taken over all families of cubes {Ik} such that for each k,
there exists a dyadic length lk ≤ δ such that Ik ∈ Bdlk . The α-dimensional dyadic

Hausdorff measure Hα on Rd is Hα(E) = limδ→0H
α
δ (E), and the Hausdorff

dimension of a set E is dimH(E) = inf{α ≥ 0 : Hα(E) = 0}.
6. Given K ∈ Bdnl , we can decompose K as K1 × · · · × Kn for unique cubes
K1, . . . , Kn ∈ Bdl . We say K is strongly non-diagonal if the cubes K1, . . . , Kn
are distinct. Strongly non-diagonal cubes will play an important role in Section 2,
when we solve a discrete version of Theorem 1.

7. Adopting the terminology of [6], we say a collection of sets {Uk} is a strong
cover of a set E if E ⊂ lim supUk , which means every element of E is contained
in infinitely many of the sets Uk . This idea will be useful in Section 3.

8. A Frostman measure of dimension α is a non-zero compactly supported probabil-
ity measure μ on Rd such that for every dyadic cube I of sidelength l, μ(I) � lα .
Note that a measure μ satisfies this inequality for every dyadic cube I if and only
if it satisfies a similar inequality, possibly with a different implicit constant, for
all cubes I . Frostman’s lemma says that

dimH(E) = sup

{

α :
there is a Frostman measure of
dimension α supported on E

}

.

2 Avoidance at Discrete Scales

In this section we describe a method for avoiding Z at a single scale. We apply
this technique in Section 3 at many scales to construct a set X avoiding Z at all
scales. This single scale avoidance technique is the core building block of our
construction, and the efficiency with which we can avoid Z at a single scale has
direct consequences on the Hausdorff dimension of the setX obtained in Theorem 1.

At a single scale, we solve a discretized version of the problem, where all sets are
unions of cubes at two dyadic lengths l > s. In this discrete setting, Z is replaced
by a discretized version of itself, namely, a union of cubes in Bdns denoted by G.
Given a set E, which is a union of cubes in Bdl , our goal is to construct a set F ⊂ E
that is a union of cubes in Bds , such that Fn is disjoint from strongly non-diagonal
cubes (see Definition 6) in Bdns (G). Using the setup mentioned at the end of the
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introduction, we will later choose l = lk , s = lk+1, and E = Xk . The set Xk+1 will
be defined as the set F constructed.

In order to ensure the final set X obtained in Theorem 1 has large Hausdorff
dimension regardless of the rapid decay of scales used in the construction of X,
it is crucial that F is uniformly distributed at intermediate scales between l and
s. We achieve this by decomposing E into sub-cubes in Bdr for some intermediate
scale r ∈ [s, l] and distributing F as evenly among these intermediate sub-cubes as
possible. We achieve this by assuming a mild regularity condition on the number of
cubes in G; see equation (2.1).

Lemma 1 Fix two distinct dyadic lengths l and s, with l > 4ds. Let E ⊆ [0, 1]d be
a nonempty and l discretized set, and let G ⊂ Rdn be a nonempty s discretized set
such that

(l/s)d ≤ #Bdns (G) ≤
(l/s)dn

(4d)d(n−1)
. (2.1)

Then there exists a dyadic length r ∈ [4ds, l] of size

r ∼d
(

l−dsdn#Bdns (G)
) 1
d(n−1)

, (2.2)

and an s discretized set F ⊂ E satisfying the following four properties:

1. Disjointness: The cubes in Bdns (F ) are disjoint from one another.
2. Avoidance: For any n distinct cubes J1, . . . , Jn ∈ Bds (F ), J1×· · ·×Jn �∈ Bds (G).
3. Non-concentration: For any I ∈ Bdr (E), #(Bds (F ∩ I )) ≤ 1.
4. Large Size: For every I ∈ Bdl (E), #(Bds (F ∩ I )) ≥ #(Bdr (E ∩ I ))/2.
Remark Property 2 says that F avoids strongly non-diagonal cubes in Bdns (G).
Properties 3 and 4 together imply that for every I ∈ Bdl (E), at least half of the
cubes in Bdr (I ) contribute a single sub-cube of sidelength s to F ; the rest contribute
none. One of the many consequences of Property 4 is that every sidelength l cube in
E contains a sidelength s cube in F ; in other words, no sidelength l cube in E “dies
out.”

Proof Let r be the smallest dyadic length at least as large as R, where

R = (4d)(l−dsdn#Bdns (G)
) 1
d(n−1) . (2.3)

This choice of r satisfies (2.2). The inequalities in (2.1) ensure that r ∈ [4ds, l];
more precisely, the left inequality in (2.1) implies R is bounded from below by 4ds,
and the right inequality implies R is bounded from above by l. The minimality of r
ensures 4ds ≤ r ≤ l.

For each I ∈ Bdr (E), pick JI uniformly at random from JI = {J ∈ Bds (I ) : J ⊂
I ◦}; these choices are independent as I ranges over the elements of Bdr (E). Since
two distinct dyadic cubes I and I ′ in Bdr (E) have disjoint interiors, we have that
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JI ∩ JI ′ = ∅. Define

U =
⋃

{

JI : I ∈ Bdr (E)
}

,

and

K(U) = {K ∈ Bdns (G) : K ∈ Un,K strongly non-diagonal}.

Note that the sets U and K(U) are random, in the sense that they depend on the
random variables {JI }. Define

F(U) = U −
⋃

{π(K) : K ∈ K(U)} =
⋃

{

Bds (U)− {π(K) : K ∈ K(U)}
}

,

(2.4)
where π : Rdn → Rd is the projection map (x1, . . . , xn) �→ x1, for xi ∈ Rd .
We will verify that F = F(U) always obeys the first three properties claimed in
Lemma 1 and satisfies Property 4 with non-zero probability.

Our construction ensures that U is s discretized and that the cubes of Bds (U)
are disjoint from one another. Since F(U) ⊂ U , it follows that F(U) satisfies
Property 1.

Given any strongly non-diagonal cube K = J1 × · · · × Jn ∈ Bdns (G), either
K �∈ Bdns (Un) or K ∈ Bdns (Un). If the former occurs then K �∈ Bdns (F (U)n) since
F(U) ⊂ U , so Bdns (F (U)n) ⊂ Bdns (Un). If the latter occurs then K ∈ K(U), and
since π(K) = J1, J1 �∈ Bds (F (U)). In either case, K �∈ Bdns (F (U)n), so F(U)
satisfies Property 2.

By construction, U contains at most one sub-cube J ∈ Bdns for each I ∈ Bdnl (E).
Since F(U) ⊂ U , F(U) satisfies Property 3.

It remains to verify that with non-zero probability, the set F(U) satisfies
Property 4. For each cube J ∈ Bds (E), there is a unique “parent” cube I ∈ Bdr (E)
such that J ⊂ I . Since each (d−1)-dimensional face of I intersects (r/s)d−1 cubes
in Bds (I ), and I has 2d faces, the relation r ≥ 4ds implies

#(JI ) ≥ (r/s)d − 2d(r/s)d−1 = (r/s)d [1− 2d(s/r)] ≥ (1/2) · (r/s)d . (2.5)

Since JI is chosen uniformly at random from JI , (2.5) shows

P(J ⊂ U) = P(JI = J ) ≤ 2(s/r)d .

The cubes {JI } are chosen independently, so if J1, . . . , Jn are distinct cubes in
Bds (E), then either the cubes J1, . . . , Jn have distinct parents, in which case we
apply the independence of JI to conclude that P(J1, . . . , Jn ⊂ U) ≤ 2n(s/r)dn. If
the cubes J1, . . . , Jn do not have distinct parents, Property 3 implies P(J1, . . . , Jn ⊂
U) = 0. In either case, we conclude that

P(J1, . . . , Jn ⊂ U) ≤ 2n(s/r)dn. (2.6)
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Let K = J1 × · · · × Jn be a strongly non-diagonal cube in Bdns (G). We deduce
from (2.6) that

P(K ⊂ Un) = P(J1, . . . , Jn ⊂ U) ≤ 2n(s/r)dn. (2.7)

By (2.7) and the linearity of expectation,

E(#K(U)) =
∑

K∈Bdns (G)
P(K ⊂ Un) ≤ #Bdns (G) · 2n(s/r)dn ≤ (1/2) · (l/r)d .

The last inequality can be deduced from (2.3) and the condition r ≥ 4ds. In
particular, there exists at least one (non-random) set U0 such that

#K(U0) ≤ E(#K(U)) ≤ (1/2) · (l/r)d . (2.8)

In other words, F(U0) ⊂ U0 is obtained by removing at most (1/2) · (l/r)d cubes in
Bds from U0. For each I ∈ Bdl (E), we know that #Bds (I ∩U0) = (l/r)d . Combining
this with (2.8), we arrive at the estimate

#Bds (I ∩ F(U0)) = Bds (I ∩ U0)− #{π(K) : K ∈ K(U0), π(K) ∈ U0}
≥ Bds (I ∩ U0)− #(K(U0))

≥ (l/r)d − (1/2) · (l/r)d ≥ (1/2) · (l/r)d .

In other words, F(U0) satisfies Property 4.
The set F(U) satisfies Properties 1, 2, and 3 regardless of which values are

assumed by the random variables {JI }. Furthermore, there is at least one set U0
such that F(U0) satisfies Property 4. Setting F = F(U0) completes the proof. ��
Remarks

1. While Lemma 1 uses probabilistic arguments, the conclusion of the lemma is not
a probabilistic statement. In particular, one can find a suitable F constructively
by checking every possible choice of U (there are finitely many) to find one
particular choice U0 which satisfies (2.8) and then defining F by (2.4). Thus the
set we obtain in Theorem 1 exists by purely constructive means.

2. At this point, it is possible to motivate the numerology behind the dimension
bound dim(X) ≥ (dn − α)/(n − 1) from Theorem 1, albeit in the context of
Minkowski dimension. We will pause to do so here before returning to the proof
of Theorem 1. For simplicity, let α > d, and suppose that Z ⊂ Rdn satisfies

#Bdns (Z(s)) ∼ s−α for every s ∈ (0, 1]. (2.9)

Let l = 1 and E = [0, 1]d , and let s > 0 be a small parameter. If s
is chosen sufficiently small compared to d, n, and α, then (2.1) is satisfied
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with G = ⋃

Bdns (Z(s)). We can then apply Lemma 1 to find a dyadic scale
r ∼ s(dn−α)/d(n−1) and a set F that avoids the strongly non-diagonal cubes
of Bdns (Z(s)). The set F is a union of approximately r−d ∼ s−(dn−α)/(n−1)

cubes of sidelength s. Thus informally, the set F resembles a set with Minkowski
dimension α when viewed at scale s.

The set X constructed in Theorem 1 will be obtained by applying Lemma 1
iteratively at many scales. At each of these scales, X will resemble a set of
Minkowski dimension (dn − α)/(n − 1). A careful analysis of the construction
(performed in Section 4) shows that X actually has Hausdorff dimension at least
(dn− α)/(n− 1).

3. Lemma 1 is the core method in our avoidance technique. The remaining argument
is fairly modular. If, for a special case of Z, one can improve the result of
Lemma 1 so that r is chosen on the order of sβ/d , then the remaining parts of our
paper can be applied near verbatim to yield a set X with Hausdorff dimension β,
as in Theorem 1.

3 Fractal Discretization

In this section, we construct the set X from Theorem 1 by applying Lemma 1 at
many scales. Let us start by fixing a strong cover Z that we will work with in the
sequel.

Lemma 2 Let Z ⊂ Rdn be a countable union of bounded sets with Minkowski
dimension at most α, and let εk ↘ 0 with 2εk < dn− α for all k. Then there exists
a sequence of dyadic lengths {lk} and a sequence of sets {Zk}, such that

1. Strong Cover: The interiors {Z◦k } of the sets {Zk} form a strong cover of Z.
2. Discreteness: For all k ≥ 0, Zk is an lk discretized subset of Rdn.
3. Sparsity: For all k ≥ 0, l−dk ≤ #Bdnlk (Zk) ≤ l

−α−εk
k .

4. Rapid Decay: For all k > 1,

l
dn−α−εk
k ≤ (1/4d)d(n−1) · ldnk−1, (3.1)

l
εk
k ≤ l2dk−1. (3.2)

Proof By hypothesis, there exists a sequence of sets {Yi} so that Z ⊂ ⋃∞
i=1 Yi and

dimM(Yi) ≤ α for each index i. Without loss of generality, we may assume that for
each length l,

#Bndl (Yi(l)) ≥ l−d . (3.3)

If (3.3) fails to be satisfied for some set Yi , we consider the d dimensional
hyperplane
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H = {(x1, . . . , x1) : x1 ∈ [0, 1]d}.

and replace Yi with Yi ∪ H . Let {ik} be a sequence of integers that repeats each
integer infinitely often.

The lengths {lk} and sets {Zk} are defined inductively. As a base case, set l0 = 1
and Z0 = [0, 1]nd . Suppose that the lengths l0, . . . , lk−1 have been chosen. Since
dimM(Yik ) ≤ α, and εk > 0, Definition 4 implies that there exist arbitrarily small
dyadic lengths l that satisfy

#Bdnl (Yik (l)) ≤ l−α−εk . (3.4)

In particular, we can choose a dyadic length l = lk small enough to satisfy (3.1),
(3.2), and (3.4). With this choice of lk , Property 4 is satisfied. Define Zk = Yik (lk).
This choice of Zk clearly satisfies Property 2, and Property 3 is implied by (3.3)
and (3.4).

It remains to verify that the sets {Z◦k } strongly cover Z. Fix a point z ∈ Z. Then
there exists an index i such that z ∈ Yi , and there is a subsequence k1, k2, . . . such
that ikj = i for each j . But then z ∈ Yi ⊂ Z◦ikj , so z is contained in each of the sets

Z◦ikj , and thus z ∈ lim supZ◦i . ��
To construct X, we consider a nested, decreasing family of compact sets {Xk},

where each Xk is an lk discretized subset of Rd . We then set X = ⋂

Xk . Then X
is a nonempty compact set. The goal is to choose Xk such that Xnk does not contain
any strongly non diagonal cubes in Zk .

Lemma 3 Let {lk} be a sequence of positive numbers converging to zero, and let
Z ⊂ Rdn. Let {Zk} be a sequence of sets, with each Zk an lk discretized subset of
Rdn, such that the interiors {Z◦k } strongly cover Z. For each index k, let Xk be an lk
discretized subset of Rd . Suppose that for each k, Bdnlk (X

n
k ) ∩ Bdnlk (Zk) contains no

strongly non diagonal cubes. If X = ⋂

Xk , then for any distinct x1, . . . , xn ∈ X,
we have (x1, . . . , xn) �∈ Z.
Proof Let z ∈ Z be a point with distinct coordinates z1, . . . , zn. Define

� = {(w1, . . . , wn) ∈ Rdn : there exists i �= j such that wi = wj }.

Then d(�, z) > 0, where d is the Hausdorff distance between � and z. Since {Z◦k }
strongly covers Z, there is a subsequence {km} such that z ∈ Z◦km for every indexm.
Since lk converges to 0 and thus lkm converges to 0, if m is sufficiently large, then√
dn · lkm < d(�, z). Note that

√
dn · lkm is the diameter of a cube in Bdnlkm . For

such a choice of m, any cube I ∈ Bdlkm which contains z is strongly non-diagonal.
Furthermore, z ∈ Z◦km . Since Xkm and Zkm share no cube which contains z, this
implies z �∈ Xkm . In particular, this means z �∈ Xn. ��

All that remains is to apply the discrete lemma to choose the sets Xk .
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Lemma 4 Given a sequence of dyadic length scales {lk} obeying, (3.1), (3.2),
and (3.4) as above, there exists a sequence of sets {Xk} and a sequence of dyadic
intermediate scales {rk} with lk ≤ rk ≤ lk−1 for each k ≥ 1, such that each set Xk
is an lk discretized subset of [0, 1]d and such that Bdnlk (X

d
k ) ∩ Bdnlk (Zk) contains no

strongly non diagonal cubes. Furthermore, for each index k ≥ 1, we have

rk � l(dn−α−εk)/d(n−1)
k , (3.5)

#Bdlk (Xk ∩ I ) ≥ (1/2) · (lk−1/rk)
d for each I ∈ Bdlk−1

(Xk−1), (3.6)

#Bdlk (Xk ∩ I ) ≤ 1 for each I ∈ Bdrk (Xk−1). (3.7)

Proof We constructXk by induction, using Lemma 1 at each step. SetX0 = [0, 1]d .
Next, suppose that the sets X0, . . . , Xk−1 have been defined. Our goal is to apply
Lemma 1 to E = Xk−1 andG = Zk with l = lk−1 and s = lk . This will be possible
once we verify the hypothesis (2.1), which in this case takes the form

(lk−1/lk)
d ≤ #Bdnlk (Zk) ≤ (1/4d)d(n−1) · (lk−1/lk)

dn. (3.8)

The right-hand side follows from Property 3 of Lemma 2 and (3.1). On the other
hand, Property 3 of Lemma 2 and the fact that lk−1 ≤ 1 implies that

(lk−1/lk)
d ≤ l−dk ≤ #Bdnlk (Zk),

establishing the left inequality in (3.8). Applying Lemma 1 as described above now
produces a dyadic length

r ∼d
(

l−dk−1l
dn
k #Bdnlk (Zk)

) 1
d(n−1) (3.9)

and an lk discretized set F ⊂ Xk−1. The set F satisfies Properties 2, 3, and 4 from
the statement of Lemma 1. Define rk = r and Xk = F . The estimate (3.5) on rk
follows from (3.9) using the known bounds (3.2) and (3.4):

rk �
(

l−dk−1l
dn−α−0.5εk
k

) 1
d(n−1) = (

l−dk−1l
0.5εk
k l

dn−α−εk
k

) 1
d(n−1)

= (

l−2d
k−1 l

εk
k

) 1
2d(n−1) l

dn−α−εk
d(n−1)
k � l

dn−α−εk
d(n−1)
k .

The requirements (3.6) and (3.7) follow from Properties 3 and 4 of Lemma 1,
respectively. ��

Now we have defined the sets {Xk}, we set X =⋂

Xk . Since Xk avoids strongly
non-diagonal cubes in Zk , Lemma 3 implies that if x1, . . . , xn ∈ X are distinct, then
(x1, . . . , xn) �∈ Z. To finish the proof of Theorem 1, we must show that dimH(X) ≥
(dn− α)/(n− 1). This will be done in the next section.
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4 Dimension Bounds

To complete the proof of Theorem 1, we must show that dimH(X) ≥ (dn−α)/(n−
1). In view of Item 8 in Section 1, this will follow from the existence of a Frostman
measure of appropriate dimension supported on X.

We start by recursively defining a positive function w : ⋃∞k=0 Bdlk (Xk)→ [0, 1],
following the well-known mass distribution principle. Set w([0, 1]d) = 1. Suppose
now that w(I) has been defined for all cubes I ∈ Bdlk−1

(Xk−1). Let I ∈ Bdlk (Xk).
Consider the unique “parent cube” I ∗ ∈ Bdlk−1

(Xk−1) for which I ⊂ I ∗. Define

w(I) = w(I ∗)
#Bdlk (Xk ∩ I ∗)

. (4.1)

In other words, the mass w(I ∗) of I ∗ is divided equally among its descendants. The
construction ensures that for every I ∗ ∈ Bdlk−1

(Xk−1), #Bdlk (Xk ∩ I ∗) > 0, i.e., I ∗
has a non-zero number of descendants; hence no mass is allowed to escape. Observe
that for each index k ≥ 1, if I ∗ ∈ Bdlk−1

(Xk−1),

∑

I∈Bdlk (I∗∩Xk)
w(I) = w(I ∗) �= 0. (4.2)

In particular, for each index k we have

∑

I∈Bdlk (Xk)
w(I) = 1.

Let B denote the collection of all dyadic cubes in Bdlk (Xk) for all k ≥ 0.
We now apply a standard procedure due to Caratheodory, modelled after the

approach in [7, Theorem 4.2], to obtain a Borel measure μ supported on X. For
any k ≥ 1 and any set E ⊂ Rd , we define an exterior measure

μk(E) = inf
{
∞
∑

i=1

w(Ii) : E ∩X ⊂
∞
⋃

i=1

Ii, Ii ∈
∞
⋃

j=k
Bdlj (Xj )

}

= inf
{
∞
∑

i=1

w(Ii) : E ∩X ⊂
∞
⋃

i=1

Ii, diam(Ii) ≤ lk, Ii ∈ B
}

.

Then μk(E) is monotone in k for each set E. We set μ(E) = limk→∞ μk(E). It
follows from [7, Theorem 4.2] that μ is Borel measure supported on X. Property 1
of Lemma 1 implies Blk (Xk) is a family of disjoint closed cubes for each k. In
particular, this means that I ∩ X is relatively open in X for each I ∈ B. Since X is
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a compact set, this means that for any I ∈ B, μk(I ∩ X) is equal to the infinum of
∑N
i=1w(Ii) for covers of I ∩ X by finitely many sets I1, . . . , IN . Combined with

the relation (4.2), this gives that μk′(I ) = w(I) for all I ∈ Bdlk and all k′ ≥ k.

In particular, μk(Rd) = μk([0, 1]d) = 1 for all k ≥ 1; hence μ is a probability
measure.

To complete the proof of Theorem 1, we will show that μ is a Frostman measure
of dimension (dn− α)/(n− 1)− ε for every ε > 0.

Lemma 5 For each k ≥ 1, if I ∈ Bdlk ,

μ(I) � l
dn−α
n−1 −ηk
k , where ηk = n+ 1

2(n− 1)
· εk ↘ 0 as k→∞.

Proof Let I ∈ Bdlk and let I ∗ ∈ Bdlk−1
be the parent cube of I . If μ(I) > 0, then

I ⊂ Xk , and combining (4.1), (3.6), and (3.5) with the fact that μ(I ∗) ≤ 1, we
obtain

μ(I) = μ(I ∗)
#Bdlk (Xk ∩ I ∗)

≤ 2

(

rk

lk−1

)d

�
l

dn−α−εk
n−1

k

ldk−1

≤ l
dn−α
n−1 −ηk
k

(

l
εk/2
k

ldk−1

)

≤ l
dn−α
n−1 −ηk
k .

��
Corollary 1 For each k ≥ 1 and each I ∈ Bdrk , μ(I) � (rk/ lk−1)

d l
dn−α
n−1 −ηk−1

k−1 .

Proof We begin by noting that Bdrk (I (rk)) � 1. If we combine this with (3.7), we
find that

#(Bdlk (I (rk) ∩Xk)) � 1. (4.3)

For each I ∈ Bdlk (I (rk) ∩ Xk), let I ∗ ∈ Bdlk−1
denote the parent cube of I . Working

as in Lemma 5, but using its conclusion combined with (4.1) and (3.6), we find

μ(I) = μ(I ∗)
#Bdlk (Xk ∩ I ∗)

� (rk/ lk−1)
d l

dn−α
n−1 −ηk
k−1 . ��

Lemma 5 and Corollary 1 allow us to control the behavior of μ at all scales.

Lemma 6 For every α ∈ [d, dn), and for each ε > 0, there is a constant Cε so that
for all dyadic lengths l ∈ (0, 1] and all I ∈ Bdl , we have

μ(I) ≤ Cεl dn−αn−1 −ε . (4.4)

Proof Fix ε > 0. Since ηk ↘ 0 as k → ∞, there is a constant Cε so that l−ηkk ≤
Cεl
−ε
k for each k ≥ 1. For instance, if εk is decreasing, we could choose Cε = l−ηk0k0

,
where k0 is the largest integer for which ηk0 ≥ ε. Next, let k be the (unique) index



Large Sets Avoiding Rough Patterns 71

so that lk+1 ≤ l < lk . We will split the proof of (4.4) into two cases, depending on
the position of l within [lk+1, lk].

Case 1: If rk+1 ≤ l ≤ lk , we can cover I by (l/rk+1)
d cubes in Bdrk+1

. A union
bound combined with Corollary 1 gives

μ(I) � (l/rk+1)
d(rk+1/lk)

d l
dn−α
n−1 −ηk
k

= (l/ lk)d l
dn−α
n−1 −ηk
k

= l dn−αn−1 (l/ lk)
α−d
n−1 l

−ηk
k

≤ l dn−αn−1 −ηk

≤ Cεl dn−αn−1 −ε .

(4.5)

The penultimate inequality is a consequence of our assumption α ≥ d.
Case 2: If lk+1 ≤ l ≤ rk+1, we can cover I by a single cube in Bdrk+1

. By (3.7),

each cube in Bdrk+1
contains at most one cube I0 ∈ Bdlk+1

(Xk+1), so by Lemma 5,

μ(I) ≤ μ(I0) � l
dn−α
n−1 −ηk+1

k+1 ≤ Cεl
dn−α
n−1 −ε
k+1 ≤ Cεl dn−αn−1 −ε . ��

Applying Frostman’s lemma to Lemma 6 gives dimH(X) ≥ dn−α
n−1 − ε for every

ε > 0, which concludes the proof of Theorem 1.

5 Applications

As discussed in the introduction, Theorem 1 generalizes Theorems 1.1 and 1.2 from
[5]. In this section, we present two applications of Theorem 1 in settings where
previous methods do not yield any results.

5.1 Sum-Sets Avoiding Specified Sets

Theorem 2 Let Y ⊂ Rd be a countable union of sets of Minkowski dimension at
most β < d. Then there exists a setX ⊂ Rd with Hausdorff dimension at least d−β
such that X +X is disjoint from Y .

Proof Define Z = Z1 ∪ Z2, where

Z1 = {(x, y) : x + y ∈ Y } and Z2 = {(x, y) : y ∈ Y/2}.
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Since Y is a countable union of sets of Minkowski dimension at most β, Z is a
countable union of sets with lower Minkowski dimension at most d + β. Applying
Theorem 1 with n = 2 and α = d + β produces a set X ⊂ Rd with Hausdorff
dimension 2d − (d + β) = d − β such that (x, y) �∈ Z for all x, y ∈ X with x �= y.
We claim that X +X is disjoint from Y . To see this, first suppose x, y ∈ X, x �= y.
Since X avoids Z1, we conclude that x + y �∈ Y . Suppose now that x = y ∈ X.
Since X avoids Z2, we deduce that X ∩ (Y/2) = ∅, and thus for any x ∈ X,
x + x = 2x �∈ Y . This completes the proof. ��

5.2 Subsets of Lipschitz Curves Avoiding Isosceles Triangles

In [5], Fraser and the second author prove that there exists a set S ⊂ [0, 1] with
dimension log3 2 such that for any simple C2 curve γ : [0, 1] → Rn with bounded
non-vanishing curvature, γ (S) does not contain the vertices of an isosceles triangle.
Our method enables us to obtain a result that works for Lipschitz curves with small
Lipschitz constants. The dimensional bound that we provide is slightly worse than
[5] (1/2 instead of log3 2), and the set we obtain only works for a single Lipschitz
curve, not for many curves simultaneously.

Theorem 3 Let f : [0, 1] → Rn−1 be Lipschitz with

‖f ‖Lip := sup
{|f (x)− f (y)|/|x − y| : x, y ∈ [0, 1], x �= y} < 1.

Then there is a set X ⊂ [0, 1] of Hausdorff dimension 1/2 so that the set
{(t, f (t)) : t ∈ X} does not contain the vertices of an isosceles triangle.

Corollary 2 Let f : [0, 1] → Rn−1 be C1. Then there is a set X ⊂ [0, 1] of
Hausdorff dimension 1/2 so that the set {(t, f (t)) : t ∈ X} does not contain the
vertices of an isosceles triangle.

Proof of Corollary 2 The graph of any C1 function can be locally expressed, after
possibly a translation and rotation, as the graph of a Lipschitz function with small
Lipschitz constant. In particular, there exists an interval I ⊂ [0, 1] of positive length
so that the graph of f restricted to I , after being suitably translated and rotated, is
the graph of a Lipschitz function g : [0, 1] → Rn−1 with Lipschitz constant at most
1/2. Since isosceles triangles remain invariant under translations and rotations, the
corollary is a consequence of Theorem 3. ��
Proof of Theorem 3 Set

Z =
{

(x1, x2, x3) ∈ [0, 1]3 :
The three points pj = (xj , f (xj )), 1 ≤ j ≤ 3

form the vertices of an isosceles triangle

}

.

(5.1)
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In the next lemma, we show Z has lower Minkowski dimension at most two. By
Theorem 1, there is a set X ⊂ [0, 1] of Hausdorff dimension 1/2 so that for each
distinct x1, x2, x3 ∈ X, we have (x1, x2, x3) �∈ Z. This is precisely the statement
that for each x1, x2, x3 ∈ X, the points (x1, f (x1)), (x2, f (x2)), and (x3, f (x3)) do
not form the vertices of an isosceles triangle. ��
Lemma 7 Let f : [0, 1] → Rn−1 be Lipschitz with ‖f ‖Lip < 1. Then the set Z
given by (5.1) has Minkowski dimension at most two.

Proof First, notice that three points p1, p2, p3 ∈ Rn form an isosceles triangle,
with p3 as the apex, if and only if p3 ∈ Hp1,p2 , where

Hp1,p2 =
{

x ∈ Rn :

(

x − p1 + p2

2

)

· (p2 − p1) = 0

}

. (5.2)

To prove Z has Minkowski dimension at most two, it suffices to show that the set

W =
{

x ∈ [0, 1]3 : p3 = (x3, f (x3)) ∈ Hp1,p2

}

has upper Minkowski dimension at most 2. This is because Z is the union of three
copies of W , obtained by permuting coordinates. To bound the upper Minkowski
dimension ofW , we prove the estimate

#
(

B3
δ (W(δ))

) ≤ Cδ−2 log(1/δ) for all dyadic 0 < δ < 1, (5.3)

where C is a constant independent of δ.
Fix 0 < δ < 1. Note that

#
(

B3
δ (W)

) =
1/δ
∑

k=0

∑

I1,I2∈B1
δ [0,1]

d(I1,I2)=kδ

#B3
δ(W(δ) ∩ I1 × I2 × [0, 1]). (5.4)

Our next task is to bound each of the summands in (5.4). Let I1, I2 ∈ B1
δ [0, 1], and

let k = δ−1d(I1, I2). Let x1 be the midpoint of I1, and x2 the midpoint of I2. Let
(y1, y2, y3) ∈ W ∩ I1 × I2 × [0, 1]. Then it follows from (5.2) that

(

y3 − y1 + y2

2

)

· (y2 − y1)+
(

f (y3)− f (y2)+ f (y1)

2

)

· (f (y2)− f (y1)) = 0.

We know |x1 − y1|, |x2 − y2| ≤ δ/2, so

∣

∣

∣

∣

(

y3 − y1 + y2

2

)

(y2 − y1)−
(

y3 − x1 + x2

2

)

(x2 − x1)

∣

∣

∣

∣
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≤ |y1 − x1| + |y2 − x2|
2

|y2 − y1| +
(

|y1 − x1| + |y2 − x2|
)

∣

∣

∣

∣

y3 − x1 + x2

2

∣

∣

∣

∣

(5.5)

≤ (δ/2) · 1+ δ · 1 ≤ 3δ/2.

Conversely, we know |f (x1)−f (y1)|, |f (x2)−f (y2)| ≤ δ/2 because ‖f ‖Lip < 1,
and a similar calculation yields

∣

∣

∣

(

f (y3)− f (y1)+ f (y2)

2

)

· (f (y2)− f (y1))

−
(

f (y3)− f (x1)+ f (x2)

2

)

· (f (x2)− f (x1))

∣

∣

∣ ≤ 3δ/2.

(5.6)

Putting (5.5) and (5.6) together, we conclude that

∣

∣

∣

∣

(

y3 − x1 + x2

2

)

(x2 − x1)+
(

f (y3)− f (x2)+ f (x1)

2

)

· (f (x2)− f (x1))

∣

∣

∣

∣

≤ 3δ.

(5.7)
Since |(x2 − x1, f (x2) − f (x1))| ≥ |x2 − x1| ≥ kδ, we can interpret (5.7) as
saying the point (y3, f (y3)) is contained in a 3/k thickening of the hyperplane
H(x1,f (x1)),(x2,f (x2)). Given another value y′ ∈ W ∩ I1 ∩ I2 ∩ [0, 1], it satisfies a
variant of the inequality (5.7), and we can subtract the difference between the two
inequalities to conclude

∣

∣

(

y3 − y′3
)

(x2 − x1)+ (f (y3)− f (y′3)) · (f (x2)− f (x1))
∣

∣ ≤ 6δ. (5.8)

The triangle difference inequality applied with (5.8) implies

(f (y3)− f (y′3)) · (f (x2)− f (x1)) ≥ |y3 − y′3||x2 − x1| − 6δ

= (k + 1)δ · |y3 − y′3| − 6δ.
(5.9)

Conversely,

(f (y3)− f (y′3)) · (f (x2)− f (x1)) ≤ ‖f ‖2
Lip|y3 − y′3||x2 − x1|

= ‖f ‖2
Lip · (k + 1)δ · |y3 − y′3|.

(5.10)

Combining (5.9) and (5.10) and rearranging, we see that

|y3 − y′3| ≤
6

(k + 1)(1− ‖f ‖2
Lip)

� 1

k + 1
, (5.11)
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where the implicit constant depends only on ‖f ‖Lip (and blows up as ‖f ‖Lip
approaches 1). We conclude that

#B3
δ(W(δ) ∩ I1 × I2 × [0, 1]) �

δ−1

k + 1
, (5.12)

which holds uniformly over any value of k and δ.
We are now ready to bound the sum from (5.4). Note that for each value of k,

there are at most 2/δ pairs (I1, I2)with d(I1, I2) = kδ. Indeed, there are 1/δ choices
for I1 and then at most two choices for I2. Equation (5.12) shows

#B3
δ(W(δ))

=
1/δ
∑

k=0

∑

I1,I2∈B1
δ [0,1]

d(I1,I2)=kδ

#B3
δ(W(δ) ∩ I1 × I2 × [0, 1]) � δ−2

1/δ
∑

k=0

1

k + 1
� δ−2 log(1/δ).

In the above inequalities, the implicit constants depend on ‖f ‖Lip, but they are
independent of δ. This establishes (5.3) and completes the proof. ��
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PDE Methods in Random Matrix Theory

Brian C. Hall

Abstract This article begins with a brief review of random matrix theory, followed
by a discussion of how the large-N limit of random matrix models can be realized
using operator algebras. I then explain the notion of “Brown measure,” which play
the role of the eigenvalue distribution for operators in an operator algebra.

I then show how methods of partial differential equations can be used to compute
Brown measures. I consider in detail the case of the circular law and then discuss
more briefly the case of the free multiplicative Brownian motion, which was worked
out recently by the author with Driver and Kemp.

1 Random Matrices

Random matrix theory consists of choosing anN×N matrix at random and looking
at natural properties of that matrix, notably its eigenvalues. Typically, interesting
results are obtained only for large random matrices, that is, in the limit as N tends
to infinity. The subject began with the work of Wigner [43], who was studying
energy levels in large atomic nuclei. The subject took on new life with the discovery
that the eigenvalues of certain types of large random matrices resemble the energy
levels of quantum chaotic systems—that is, quantum mechanical systems for which
the underlying classical system is chaotic. (See, e.g., [20] or [39].) There is also a
fascinating conjectural agreement, due to Montgomery [35], between the statistical
behavior of zeros of the Riemann zeta function and the eigenvalues of random
matrices. See also [30] or [6].

We will review briefly some standard results in the subject, which may be found
in textbooks such as those by Tao [40] or Mehta [33].
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1.1 The Gaussian Unitary Ensemble

The first example of a random matrix is the Gaussian unitary ensemble (GUE)
introduced by Wigner [43]. LetHN denote the real vector space ofN×N Hermitian
matrices, that is, those with X∗ = X, where X∗ is the conjugate transpose of X.We
then consider a Gaussian measure on HN given by

dNe
−N trace(X2)/2 dX, X ∈ HN, (1)

where dX denotes the Lebesgue measure on HN and where dN is a normalizing
constant. If XN is a random matrix having this measure as its distribution, then the
diagonal entries are normally distributed real random variables with mean zero and
variance 1/N. The off-diagonal entries are normally distributed complex random
variables, again with mean zero and variance 1/N. Finally, the entries are as
independent as possible given that they are constrained to be Hermitian, meaning
that the entries on and above the diagonal are independent (and then the entries
below the diagonal are determined by those above the diagonal). The factor of N
in the exponent in (1) is responsible for making the variance of the entries of order
1/N. This scaling of the variances, in turn, guarantees that the eigenvalues of the
random matrix XN do not blow up as N tends to infinity.

In order to state the first main result of random matrix theory, we introduce the
following notation.

Definition 1 For any N × N matrix X, the empirical eigenvalue distribution of
X is the probability measure on C given by

1

N

N
∑

j=1

λj ,

where {λ1, . . . , λN } are the eigenvalues ofX, listed with their algebraic multiplicity.

We now state Wigner’s semicircle law.

Theorem 2 Let XN be a sequence of independently chosen N × N random
matrices, each chosen according to the probability distribution in (1). Then as
N → ∞, the empirical eigenvalue distribution of XN converges almost surely
in the weak topology to Wigner’s semicircle law, namely, the measure supported on
[−2, 2] and given there by

1

2π

√

4− x2 dx, −2 ≤ x ≤ 2. (2)

Figure 1 shows a simulation of the Gaussian unitary ensemble for N = 2,000,
plotted against the semicircular density in (2). One notable aspect of Theorem 2
is that the limiting eigenvalue distribution (i.e., the semicircular measure in (2))
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Fig. 1 A histogram of the
eigenvalues of a GUE random
variable with N = 2,000,
plotted against a semicircular
density

−2 −1 0 1 2

is nonrandom. That is to say, we are choosing a matrix at random, so that its
eigenvalues are random, but in the large-N limit, the randomness in the bulk
eigenvalue distribution disappears—it is always semicircular. Thus, if we were to
select another GUE matrix with N = 2,000 and plot its eigenvalues, the histogram
would (with high probability) look very much like the one in Figure 1.

It is important to note, however, that if one zooms in with a magnifying glass so
that one can see the individual eigenvalues of a large GUE matrix, the randomness
in the eigenvalues will persist. The behavior of these individual eigenvalues is of
considerable interest, because they are supposed to resemble the energy levels of
a “quantum chaotic system” (i.e., a quantum mechanical system whose classical
counterpart is chaotic). Nevertheless, in this article, I will deal only with the bulk
properties of the eigenvalues.

1.2 The Ginibre Ensemble

We now discuss the non-Hermitian counterpart to the Gaussian unitary ensemble,
known as the Ginibre ensemble [15].We letMN(C) denote the space of all N ×N
matrices, not necessarily Hermitian. We then make a measure on MN(C) using a
formula similar to the Hermitian case:

fN e
−N trace(Z∗Z) dZ, Z ∈ MN(C), (3)

where dZ denotes the Lebesgue measure on HN and where fN is a normalizing
constant. In this case, the eigenvalues need not be real, and they follow the circular
law.

Theorem 3 Let ZN be a sequence of independently chosen N × N random
matrices, each chosen according to the probability distribution in (3). Then as
N → ∞, the empirical eigenvalue distribution of ZN converges almost surely in
the weak topology to the uniform measure on the unit disk.
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Fig. 2 A plot of the
eigenvalues of a Ginibre
matrix with N = 2,000
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Figure 2 shows the eigenvalues of a random matrix chosen from the Ginibre
ensemble with N = 2,000. As in the GUE case, the bulk eigenvalue distribution
becomes deterministic in the large-N limit. As in the GUE case, one can also
zoom in with a magnifying glass on the eigenvalues of a Ginibre matrix until the
individual eigenvalues become visible, and the local behavior of these eigenvalues
is an interesting problem—which will not be discussed in this article.

1.3 The Ginibre Brownian Motion

In this article, I will discuss a certain approach to analyzing the behavior of the
eigenvalues in the Ginibre ensemble. The main purpose of this analysis is not so
much to obtain the circular law, which can be proved by various other methods. The
main purpose is rather to develop tools that can be used to study a more complex
random matrix model in the group of invertible N × N matrices. The Ginibre case
then represents a useful prototype for this more complicated problem.

It is then useful to introduce a time parameter into the description of the
Ginibre ensemble, which we can do by studying the Ginibre Brownian motion.
Specifically, in any finite-dimensional real inner product space V , there is a natural
notion of Brownian motion. The Ginibre Brownian motion is obtained by taking V
to be MN(C), viewed as a real vector space of dimension 2N2, and using the (real)
inner product 〈·, ·〉N given by

〈X, Y 〉N := N Re(trace(X∗Y )).
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We let CNt denote this Brownian motion, assumed to start at the origin.
At any one fixed time, the distribution of CNt is just the same as

√
tZN, where

ZN is distributed as the Ginibre ensemble. The joint distribution of the process CNt
for various values of t is determined by the following property: For any collection
of times 0 = t0 < t1 < t2 < · · · < tk, the “increments”

CNt1 − CNt0 , CNt2 − CNt1 , . . . , CNtk − CNtk−1
(4)

are independent and distributed as
√
tj − tj−1Z

N.

2 Large-N Limits in Random Matrix Theory

Results in random matrix theory are typically expressed by first computing some
quantity (e.g., the empirical eigenvalue distribution) associated to anN×N random
matrix and then letting N tend to infinity. It is nevertheless interesting to ask
whether there is some sort of limiting object that captures the large-N limit of
the entire random matrix model. In this section, we discuss one common approach
constructing such a limiting object.

2.1 Limit in ∗-Distribution

Suppose we have a matrix-valued random variable X, not necessarily normal. Then
we can then speak about the ∗-moments of X, which are expressions like

E

{

1

N
trace(X2(X∗)3X4X∗)

}

.

Generally, suppose p(a, b) is a polynomial in two noncommuting variables, that
is, a linear combination of words involving products of a’s and b’s in all possible
orders. We may then consider

E

{

1

N
trace[p(X,X∗)]

}

.

If, as usual, we have a family XN of N ×N random matrices, we may consider the
limits of such ∗-moments (if the limits exist):

lim
N→∞E

{

1

N
trace[p(XN, (XN)∗)]

}

. (5)
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2.2 Tracial von Neumann Algebras

Our goal is now to find some sort of limiting object that can encode all of the
limits in (5). Specifically, we will try to find the following objects: (1) an operator
algebra A, (2) a “trace” τ : A→ C, and (3) an element x of A, such that for each
polynomial p in two noncommuting variables, we have

lim
N→∞E

{

1

N
trace[p(XN, (XN)∗)]

}

= τ [p(x, x∗)]. (6)

We now explain in more detail what these objects should be. First, we generally
take A to be a von Neumann algebra, that is, an algebra of operators that contains the
identity, is closed under taking adjoints, and is closed under taking weak operator
limits. Second, the “trace” τ is not actually computed by taking the trace of elements
of A, which are typically not of trace class. Rather, τ is a linear functional that has
properties similar to the properties of the normalized trace 1

N
trace(·) for matrices.

Specifically, we require the following properties:

• τ(1) = 1, where on the left-hand side, 1 denotes the identity operator,
• τ(a∗a) ≥ 0 with equality only if a = 0, and
• τ(ab) = τ(ba), and
• τ should be continuous with respect to the weak-∗ topology on A.
Last, x is a single element of A.

We will refer to the pair (A, τ ) as a tracial von Neumann algebra. We will
not discuss here the methods used for actually constructing interesting examples
of tracial von Neumann algebras. Instead, we will simply accept as a known result
that certain random matrix models admit large-N limits as operators in a tracial
von Neumann algebra. (The interested reader may consult the work of Biane and
Speicher [5], who use a Fock space construction to find tracial von Neumann
algebras of the sort we will be using in this article.)

Let me emphasize that although XN is a matrix-valued random variable, x is not
an operator-valued random variable. Rather, x is a single operator in the operator
algebra A. This situation reflects a typical property of random matrix models, which
we have already seen an example of in Sections 1.1 and 1.2, that certain random
quantities become nonrandom in the large-N limit. In the present context, it is often
the case that we have a stronger statement than (6), as follows: If we sample the
XN ’s independently for different N ’s, then with probability one, we will have

lim
N→∞

1

N
trace[p(XN, (XN)∗)] = τ [p(x, x∗)].

That is to say, in many cases, the random quantity 1
N

trace[p(XN, (XN)∗)] con-
verges almost surely to the single, deterministic number τ [p(x, x∗)] as N tends to
infinity.
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2.3 Free Independence

In random matrix theory, it is often convenient to construct random matrices as
sums or products of other random matrices, which are frequently assumed to be
independent of one another. The appropriate notion of independence in the large-
N limit—that is, in a tracial von Neumann algebra—is the notion of “freeness” or
“free independence.” This concept was introduced by Voiculescu [41, 42] and has
become a powerful tool in random matrix theory. (See also the monographs [36] by
Nica and Speicher and [34] by Mingo and Speicher.) Given an element a in a tracial
von Neumann algebra (A, τ ) and a polynomial p, we may form the element p(a).
We also let ṗ(a) denote the corresponding “centered” element, given by

ṗ(a) = p(a)− τ(p(a))

We then say that elements a1, . . . , ak are freely independent (or, more con-
cisely, free) if the following condition holds. Let j1, . . . , jn be any sequence of
indices taken from {1, . . . , k}, with the property that jl is distinct from jl+1. Let
pj1 , . . . , pjn be any sequence pj1 , . . . , pjn of polynomials. Then we should have

τ(ṗj1(aj1)ṗj2(aj2) · · · ṗjn(ajn)) = 0.

Thus, for example, if a and b are freely independent, then

τ [(a2 − τ(a2))(b2 − τ(b2))(a − τ(a))] = 0.

The concept of freeness allows us, in principle, to disentangle traces of arbitrary
words in freely independent elements, thereby reducing the computation to the
traces of powers of individual elements. As an example, let us do a few computations
with two freely independent elements a and b. We form the corresponding centered
elements a − τ(a) and b − τ(b) and start applying the definition:

0 = τ [(a − τ(a))(b − τ(b))]
= τ [ab] − τ [τ(a)b] − τ [aτ(b)] + τ [τ(a)τ (b)]
= τ [ab] − τ(a)τ (b)− τ(a)τ (b)+ τ(a)τ (b)
= τ [ab] − τ(a)τ (b),

where we have used that scalars can be pulled outside the trace and that τ(1) = 1.
We conclude, then, that

τ(ab) = τ(a)τ (b).

A similar computation shows that τ(a2b) = τ(a2)τ (b) and that τ(ab2) =
τ(a)τ (b2).
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The first really interesting case comes when we compute τ(abab).We start with

0 = τ [(a − τ(a))(b − τ(b))(a − τ(a))(b − τ(b))]

and expand out the right-hand side as τ(abab) plus a sum of fifteen terms, all of
which reduce to previously computed quantities. Sparing the reader the details of
this computation, we find that

τ(abab) = τ(a2)τ (b)2 + τ(a)2τ(b2)− τ(a)2τ(b)2.

Although the notion of free independence will not explicitly be used in the rest
of this article, it is certainly a key concept that is always lurking in the background.

2.4 The Circular Brownian Motion

IfZN is a Ginibre random matrix (Section 1.2), then the ∗-moments ofZN converge
to those of a “circular element” c in a certain tracial von Neumann algebra (A, τ ).
The ∗-moments of c can be computed in an efficient combinatorial way (e.g.,
Example 11.23 in [36]). We have, for example, τ(c∗c) = 1 and τ(ck) = 0 for
all positive integers k.

More generally, we can realize the large-N limit of the entire Ginibre Brownian
motion CNt , for all t > 0, as a family of elements ct in a tracial von Neumann
algebra (A, τ ). In the limit, the ordinary independence conditions for the increments
of CNt (Section 1.3) is replaced by the free independence of the increments of ct .
That is, for all 0 = t0 < t1 < · · · < tk, the elements

ct1 − ct0 , ct2 − ct1 , . . . , ctk − ctk−1

are freely independent, in the sense described in the previous subsection. For any
t > 0, the ∗-distribution of ct is the same as the ∗-distribution of

√
tc1.

3 Brown Measure

3.1 The Goal

Recall that if A is an N × N matrix with eigenvalues λ1, . . . , λN , the empirical
eigenvalue distribution μA of A is the probability measure on C assigning mass
1/N to each eigenvalue:
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μA = 1

N

N
∑

j=1

δλj .

Goal 4 Given an arbitrary element x in a tracial von Neumann algebra (A, τ ),
construct a probability measure μx on C analogous to the empirical eigenvalue
distribution of a matrix.

If x ∈ A is normal, then there is a standard way to construct such a measure.
The spectral theorem allows us to construct a projection-valued measure γx [23,
Section 10.3] associated to x. For each Borel setE, the projection γx(E)will, again,
belong to the von Neumann algebra A, and we may therefore define

μx(E) = τ [γx(E)]. (7)

We refer to μx as the distribution of x (relative to the trace τ ). If x is not normal,
we need a different construction—but one that we hope will agree with the above
construction in the normal case.

3.2 A Motivating Computation

If A is an N ×N matrix, define a function s : C→ R ∪ {−∞} by

s(λ) = log(|det(A− λ)|2/N ),

where the logarithm takes the value −∞ when det(A − λ) = 0. Note that s is
computed from the characteristic polynomial det(A−λ) of A.We can compute s in
terms of its eigenvalues λ1, . . . , λN (taken with their algebraic multiplicity) as

s(λ) = 2

N

N
∑

j=1

log
∣

∣λ− λj
∣

∣ . (8)

See Figure 3 for a plot of (the negative of) s(λ).
We then recall that the function log |λ| is a multiple of the Green’s function for

the Laplacian on the plane, meaning that the function is harmonic away from the
origin and that

� log |λ| = 2πδ0(λ),

where δ0 is a δ-measure at the origin. Thus, if we take the Laplacian of s(λ), with
an appropriate normalizing factor, we get the following nice result.
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Fig. 3 A plot of the function
−s(λ) for a matrix with five
eigenvalues. The function is
harmonic except at the
singularities

Proposition 5 The Laplacian, in the distribution sense, of the function s(λ) in (8)
satisfies

1

4π
�s(λ) = 1

N

N
∑

j=1

δλj (λ),

where δλj is a δ-measure at λj . That is to say, 1
4π �s is the empirical eigenvalue

distribution of A (Definition 1).

Recall that if B is a strictly positive self-adjoint matrix, then we can take
the logarithm of B, which is the self-adjoint matrix obtained by keeping the
eigenvectors of B fixed and taking the logarithm of the eigenvalues.

Proposition 6 The function s in (8) can also be computed as

s(λ) = 1

N
trace[log((A− λ)∗(A− λ))] (9)

or as

s(λ) = lim
ε→0+

1

N
trace[log((A− λ)∗(A− λ)+ ε)]. (10)

Here the logarithm is the self-adjoint logarithm of a positive self-adjoint matrix.

Note that in (9), the logarithm is undefined when λ is an eigenvalue of A. In (10),
inserting ε > 0 guarantees that the logarithm is well defined for all λ, but a
singularity of s(λ) at each eigenvalue still arises in the limit as ε approaches zero.

Proof An elementary result [24, Theorem 2.12] says that for any matrixX,we have
det(eX) = etrace(X). If P is a strictly positive matrix, we may apply this result with
X = logP (so that eX = P ) to get

det(P ) = etrace(X)
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or

trace(logP) = log[detP ].

Let us now apply this identity with P = (A − λ)∗(A − λ), whenever λ is not an
eigenvalue of A, to obtain

1

N
trace[log((A− λ)∗(A− λ))] = 1

N
log[det((A− λ)∗(A− λ))]

= 1

N
log[det(A− λ)∗ det(A− λ)]

= log(|det(A− λ)|2/N ),

where this last expression is the definition of s(λ).
Continuity of the matrix logarithm then establishes (10). ��

3.3 Definition and Basic Properties

To define the Brown measure of a general element x in a tracial von Neumann
algebra (A, τ ), we use the obvious generalization of (10). We refer to Brown’s
original paper [7] along with Chapter 11 of [34] for general references on the
material in this section.

Theorem 7 Let (A, τ ) be a tracial von Neumann algebra and let x be an arbitrary
element of A. Define

S(λ, ε) = τ [log((x − λ)∗(x − λ)+ ε)] (11)

for all λ ∈ C and ε > 0. Then

s(λ) := lim
ε→0+

S(λ, ε) (12)

exists as an almost-everywhere-defined subharmonic function. Furthermore, the
quantity

1

4π
�s, (13)

where the Laplacian is computed in the distribution sense, is represented by a
probability measure on the plane. We call this measure the Brown measure of x
and denote it by μx.
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The Brown measure of x is supported on the spectrum σ(x) of x and has the
property that

∫

σ(x)

λk dμx(λ) = τ(xk) (14)

for all non-negative integers k.

See the original article [7] or Chapter 11 of the monograph [34] of Mingo and
Speicher. We also note that the quantity s(λ) is the logarithm of the Fuglede–
Kadison determinant of x − λ; see [13, 14]. It is important to emphasize that,
in general, the moment condition (14) does not uniquely determine the measure
μx. After all, σ(x) is an arbitrary nonempty compact subset of C, which could, for
example, be a closed disk. To uniquely determine the measure, we would need to
know the value of

∫

σ(x)
λkλ̄l dμx(λ) for all non-negative integers k and l. There is

not, however, any simple way to compute the value of
∫

σ(x)
λkλ̄l dμx(λ) in terms

of the operator x. In particular, unless x is normal, this integral need not be equal to
τ [xk(x∗)l]. Thus, to compute the Brown measure of a general operator x ∈ A, we
actually have to work with the rather complicated definition in (11), (12), and (13).

We note two important special cases.

• Suppose A is the space of all N × N matrices and τ is the normalized trace,
τ [x] = 1

N
trace(x). Then the Brown measure of any x ∈ A is simply the

empirical eigenvalue distribution of x, which puts mass 1/N at each eigenvalue
of x.

• If x is normal, then the Brown measure μx of x agrees with the measure defined
in (7) using the spectral theorem.

3.4 Brown Measure in Random Matrix Theory

Suppose one has a family of N × N random matrix models XN and one wishes to
determine the large-N limit of the empirical eigenvalue distribution of XN. (Recall
Definition 1.) One may naturally use the following three-step process.

Step 1. Construct a large-N limit of XN as an operator x in a tracial von
Neumann algebra (A, τ ).

Step 2. Determine the Brown measure μx of x.
Step 3. Prove that the empirical eigenvalue distribution of XN converges almost

surely to μx as N tends to infinity.
It is important to emphasize that Step 3 in this process is not automatic. Indeed,

this can be a difficult technical problem. Nevertheless, this article is concerned with
exclusively with Step 2 in the process (in situations where Step 1 has been carried
out). For Step 3, the main tool is the Hermitization method developed in Girko’s
pioneering paper [16] and further refined by Bai [1]. (Although neither of these
authors explicitly uses the terminology of Brown measure, the idea is lurking there.)
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There exist certain pathological examples where the limiting eigenvalue distribu-
tion does not coincide with the Brown measure. In light of a result of Śniady [38], we
can say that such examples are associated with spectral instability, that is, matrices
where a small change in the matrix produces a large change in the eigenvalues.
Śniady shows that if we add to XN a small amount of random Gaussian noise,
then eigenvalues distribution of the perturbed matrices will converge to the Brown
measure of the limiting object. (See also the papers [19] and [12], which obtain
similar results by very different methods.) Thus, if the original random matrices
XN are somehow “stable,” adding this noise should not change the eigenvalues of
XN by much, and the eigenvalues of the original and perturbed matrices should be
almost the same. In such a case, we should get convergence of the eigenvalues of
XN to the Brown measure of the limiting object.

The canonical example in which instability occurs is the case in which XN =
nilN, the deterministic N × N matrix having 1s just above the diagonal and 0s
elsewhere. Then of course nilN is nilpotent, so all of its eigenvalues are zero. We
note however that both nil∗NnilN and nilNnil∗N are diagonal matrices whose diagonal
entries have N − 1 values of 1 and only a single value of 0. Thus, when N is
large, nilN is “almost unitary,” in the sense that nil∗NnilN and nilNnil∗N are close
to the identity. Furthermore, for any positive integer k, we have that nilkN is again
nilpotent, so that trace[nilkN ] = 0. Using these observations, it is not hard to show
that the limiting object is a “Haar unitary,” that is, a unitary element u of a tracial
von Neumann algebra satisfying τ(uk) = 0 for all positive integers k. The Brown
measure of a Haar unitary is the uniform probability measure on the unit circle,
while of course the eigenvalue distributionXN is entirely concentrated at the origin.

In Figure 4 we see that even under a quite small perturbation (adding 10−6 times
a Ginibre matrix), the spectrum of the nilpotent matrixXN changes quite a lot. After
the perturbation, the spectrum clearly resembles a uniform distribution over the unit
circle. In Figure 5, by contrast, we see that even under a much larger perturbation
(adding 10−1 times a Ginibre matrix), the spectrum of a GUE matrix changes only
slightly. (Note the vertical scale in Figure 5.)

3.5 The Case of the Circular Brownian Motion

We now record the Brown measure of the circular Brownian motion.

Proposition 8 For any t > 0, the Brown measure of ct is the uniform probability
measure on the disk of radius

√
t centered at the origin.

Now, as we noted in Section 2.4, the ∗-distribution of the circular Brownian
motion at any time t > 0 is the same as the ∗-distribution of

√
tc1. Thus, the

proposition will follow if we know that the Brown measure of a circular element
c is the uniform probability measure on the unit disk. This result, in turn, is well
known; see, for example, Section 11.6.3 of [34].
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Fig. 4 Spectra of the nilpotent matrix nilN (left) and of nilN + ε(Ginibre) with ε = 10−5 (right),
with N = 2,000
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Fig. 5 Spectrum of a GUE matrix X (left) and X + ε(Ginibre) with ε = 10−1 (right), with
N = 2,000

4 PDE for the Circular Law

In this article, I present a different proof of Proposition 8 using the PDE method
developed in [10]. The significance of this method is not so much that it gives
another computation of the Brown measure of a circular element. Rather, it is a
helpful warm-up case on the path to tackling the much more complicated problem
in [10], namely, the computation of the Brown measure of the free multiplicative
Brownian motion. In this section and the two that follow, I will show how the PDE
method applies in the case of the circular Brownian motion. Then in the last section,
I will describe the case of the free multiplicative Brownian motion.

The reader may also consult the recent preprint [29], which extends the results
of [10] to case of the free multiplicative Brownian motion with arbitrary unitary
initial distribution. Section 3 of this paper also analyzes the case of the free
circular Brownian motion (with an arbitrary Hermitian initial distribution) using
PDE methods.
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We let ct be the circular Brownian motion (Section 2.4). Then, following the
construction of the Brown measure in Theorem 7, we define, for each λ ∈ C, a
function Sλ given by

Sλ(t, ε) = τ [log((ct − λ)∗(ct − λ)+ ε)] (15)

for all t > 0 and ε > 0. The Brown measure of ct will then be obtained by letting
ε tend to zero, taking the Laplacian with respect to λ, and dividing by 4π. Our first
main result is that, for each λ, Sλ(t, ε) satisfies a PDE in t and ε.

Theorem 9 For each λ ∈ C, the function Sλ satisfies the first-order, nonlinear
differential equation

∂Sλ

∂t
= ε

(

∂Sλ

∂ε

)2

(16)

subject to the initial condition

Sλ(0, ε) = log(|λ|2 + ε).

We now see the motivation for making λ a parameter rather than a variable for S:
since λ does not appear in the PDE (16), we can think of solving the same equation
for each different value of λ, with the dependence on λ entering only through the
initial conditions.

On the other hand, we see that the regularization parameter ε plays a crucial role
here as one of the variables in our PDE. Of course, we are ultimately interested
in letting ε tend to zero, but since derivatives with respect to ε appear, we cannot
merely set ε = 0 in the PDE.

Of course, the reader will point out that, formally, setting ε = 0 in (16) gives
∂Sλ(t, 0)/∂t = 0, because of the leading factor of ε on the right-hand side. This
conclusion, however, is not actually correct, because ∂Sλ/∂ε can blow up as ε
approaches zero. Actually, it will turn out that Sλ(t, 0) is independent of t when
|λ| > √t, but not in general.

4.1 The Finite-N Equation

In this subsection, we give a heuristic argument for the PDE in Theorem 9. Although
the argument is not rigorous as written, it should help explain what is going on. In
particular, the computations that follow should make it clear why the PDE is only
valid after taking the large-N limit.
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4.1.1 The Result

We introduce a finite-N analog of the function Sλ in Theorem 9 and compute its time
derivative. Let CNt denote the Ginibre Brownian motion introduced in Section 1.3.

Proposition 10 For each N, let

Sλ,N (t, ε) = E{tr[log((CNt − λ)∗(CNt − λ)+ ε)]}.

Then we have the following results.

(1) The time derivative of Sλ,N may be computed as

∂Sλ,N

∂t
= εE{(tr[((CNt − λ)∗(CNt − λ)+ ε)−1])2}. (17)

(2) We also have

∂

∂ε
tr[log((CNt −λ)∗(Ct −λ)+ε)] = tr[((CNt −λ)∗(CNt −λ)+ε)−1]. (18)

(3) Therefore, if we set

T λ,N = tr[((CNt − λ)∗(CNt − λ)+ ε)−1],

we may rewrite the formula for ∂Sλ,N/∂t as

∂Sλ,N

∂t
= ε

(

∂Sλ,N

∂ε

)2

+ Cov, (19)

where Cov is a “covariance term” given by

Cov = E{(T λ,N )2} − (E{T λ,N })2.

The key point to observe here is that in the formula (17) for ∂Sλ,N/∂t , we have
the expectation value of the square of a trace. On the other hand, if we computed
(∂Sλ,N/∂ε)2 by taking the expectation value of both sides of (18) and squaring, we
would have the square of the expectation value of a trace. Thus, there is no PDE for
Sλ,N—we get an unavoidable covariance term on the right-hand side of (19).

On the other hand, the Ginibre Brownian motion CNt exhibits a concentration
phenomenon for large N. Specifically, let us consider a family {YN } of random
variables of the form

YN = tr[word in CNt and (CNt )
∗].
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(Thus, e.g., we might have YN = tr[CNt (CNt )∗CNt (CNt )∗].) Then it is known that
(1) the large-N limit of E{YN } exists, and (2) the variance of YN goes to zero. That
is to say, when N is large, YN will be, with high probability, close to its expectation
value. It then follows that E{(YN)2} will be close to (E{YN })2. (This concentration
phenomenon was established by Voiculescu in [42] for the analogous case of the
“GUE Brownian motion.” The case of the Ginibre Brownian motion is similar.)

Now, although the quantity

((CNt − λ)∗(CNt − λ)+ ε)−1

is not a word in CNt and (CNt )
∗, it is expressible—at least for large ε—as a power

series in such words. It is therefore reasonable to expect—this is not a proof!—that
the variance of XN will go to zero as N goes to infinity and the covariance term
in (19) will vanish in the limit.

4.1.2 Setting Up the Computation

We viewMN(C) as a real vector space of dimension 2N2 and we use the following
real-valued inner product 〈·, ·〉N :

〈X, Y 〉N = N Re(trace(X∗Y )). (20)

The distribution of CNt is the Gaussian measure of variance t/2 with respect to this
inner product

dγt (C) = dte−〈C,C〉/t dC,

where dt is a normalization constant and dC is the Lebesgue measure on MN(C).
This measure is a heat kernel measure. If we let Et denote the expectation value
with respect to γt , then we have, for any “nice” function,

d

dt
Et {f } = 1

4
Et {�f }, (21)

where � is the Laplacian onMN(C) with respect to the inner product (20).
To compute more explicitly, we choose an orthonormal basis for MN(C) over

R consisting of X1, . . . , XN2 and Y1, . . . , YN2 , where X1, . . . , XN2 are skew-
Hermitian and where Yj = iXj . We then introduce the directional derivatives X̃j
and Ỹj defined by

(X̃j f )(a) = d

ds
f (a + sXj )

∣

∣

∣

∣

s=0
; (Ỹj f )(Z) = d

ds
f (a + sYj )

∣

∣

∣

∣

s=0
.

Then the Laplacian � is given by
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� =
N2
∑

j=1

(

(X̃j )
2 + (Ỹj )2

)

.

We also introduce the corresponding complex derivatives, Zj and Z̄j given by

Zj = 1

2
(X̃j − iỸj );

Z̄j = 1

2
(X̃j + iỸj ),

which give

1

4
� =

N2
∑

j=1

Z̄jZj .

We now let C denote a matrix-valued variable ranging over MN(C). We may
easily compute the following basic identities:

Zj (C) = Xj ; Zj (C
∗) = 0;

Z̄j (C) = 0; Z̄j (C
∗) = −Xj . (22)

(Keep in mind that Xj is skew-Hermitian.) We will also need the following
elementary but crucial identity

N2
∑

j=1

XjAXj = −tr(A), (23)

where tr(·) is the normalized trace, given by

tr(A) = 1

N
trace(A).

See, for example, Proposition 3.1 in [9]. When applied to function involving a
normalized trace, this will produce second trace.

Finally, we need the following formulas for differentiating matrix-valued func-
tions of a real variable:

d

ds
A(s)−1 = −A(s)−1 dA

ds
A(s)−1 (24)

d

ds
tr[logA(s)] = tr

[

A(s)−1 dA

ds

]

. (25)
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The first of these is standard and can be proved by differentiating the identity
A(s)A(s)−1 = I. The second identity is Lemma 1.1 in [7]; it is important to
emphasize that this second identity does not hold as written without the trace. One
may derive (25) by using an integral formula for the derivative of the logarithm
without the trace (see, e.g., Equation (11.10) in [27]) and then using the cyclic
invariance of the trace, at which point the integral can be computed explicitly.

4.1.3 Proof of Proposition 10

We continue to let Et denote the expectation value with respect to the measure γt ,
which is the distribution at time t of the Ginibre Brownian motion CNt , so that

Sλ,N (t, ε) = Et {tr[log((C − λ)∗(C − λ)+ ε)]},

where the variable C ranges over MN(C). We apply the derivative Zj using (25)
and (22), giving

ZjS
λ,N (t, ε) = Et {tr[((C − λ)∗(C − λ)+ ε)−1(C − λ)∗Xj ]}.

We then apply the derivative Z̄j using (24) and (22), giving

Z̄jZjS
λ,N (t, ε) = −Et {tr[((C − λ)∗(C − λ)+ ε)−1X2

j ]}
+Et {tr[((C − λ)∗(C − λ)+ε)−1Xj(C−λ)((C−λ)∗(C−λ)+ε)−1(C − λ)∗Xj ]}.

We now sum on j and apply the identity (23). After applying the heat equation (21)
with � =∑

j Z̄jZj , we obtain

d

dt
Sλ,N (t, ε)

=
∑

j

Z̄jZjS
λ,N (t, ε)

= Et {tr[((C − λ)∗(C − λ)+ ε)−1]} − Et {tr[((C − λ)∗(C − λ)+ ε)−1]×
tr[(C − λ)∗(C − λ)((C − λ)∗(C − λ)+ ε)−1]}. (26)

But then

(C − λ)∗(C − λ)((C − λ)∗(C − λ)+ ε)−1

= ((C − λ)∗(C − λ)+ ε − ε)((C − λ)∗(C − λ)+ ε)−1

= 1− ε((C − λ)∗(C − λ)+ ε)−1.
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Thus, there is a cancellation between the two terms on the right-hand side of (26),
giving

∂Sλ,N

∂t
= εEt {(tr[((C − λ)∗(C − λ)+ ε)−1])2},

as claimed in Point 1 of the proposition.
Meanwhile, we may use again the identity (25) to compute

∂

∂ε
tr[log((CNt − λ)∗(Ct − λ)+ ε)]

to verify Point 2 3 then follows by simple algebra.

4.2 A Derivation Using Free Stochastic Calculus

4.2.1 Ordinary Stochastic Calculus

In this section, I will describe briefly how the PDE in Theorem 9 can be derived
rigorously, using the tools of free stochastic calculus. We begin by recalling a little
bit of ordinary stochastic calculus, for the ordinary, real-valued Brownian motion.
To avoid notational conflicts, we will let εt denote Brownian motion in the real line.
This is a random continuous path satisfying the properties proposed by Einstein in
1905, namely, that for any 0 = t0 < t1 < · · · < tk, the increments

xt1 − xt0 , xt2 − xt1 , . . . , xtk − xtk−1

should be independent normal random variables with mean zero and variance tj −
tj−1. At a rigorous level, Brownian motion is described by the Wiener measure on
the space of continuous paths.

It is a famous result that, with probability one, the path xt is nowhere differen-
tiable. This property has not, however, deterred people from developing a theory of
“stochastic calculus” in which one can take the “differential” of xt , denoted dxt .
(Since xt is not differentiable, we should not attempt to rewrite this differential as
dxt
dt
dt.) There is then a theory of “stochastic integrals,” in which one can compute,

for example, integrals of the form

∫ b

a

f (xt ) dxt ,

where f is some smooth function.
A key difference between ordinary and stochastic integration is that (dxt )2 is not

negligible compared to dt. To understand this assertion, recall that the increments



PDE Methods in Random Matrix Theory 97

of Brownian motion have variance tj − tj−1—and therefore standard deviation√
tj − tj−1. This means that in a short time interval�t, the Brownian motion travels

distance roughly �t. Thus, if �xt = xt+�t − xt , we may say that (�xt )2 ≈ �t.
Thus, if f is a smooth function, we may use a Taylor expansion to claim that

f (xt+�t ) ≈ f (xt )+ f ′(xt )�xt + 1

2
f ′′(xt )(�xt )2

≈ f (xt )+ f ′(xt )�xt + 1

2
f ′′(xt )�t.

We may express the preceding discussion in the heuristically by saying

(dxt )
2 = dt.

Rigorously, this line of reasoning lies behind the famous Itô formula, which says
that

df (xt ) = f ′(xt ) dxt + 1

2
f ′′(xt ) dt.

The formula means, more precisely, that (after integration)

f (xb)− f (xa) =
∫ b

a

f ′(xt ) dxt + 1

2

∫ b

a

f ′′(xt ) dt,

where the first integral on the right-hand side is a stochastic integral and the second
is an ordinary Riemann integral.

If we take, for example, f (x) = x2/2, then we find that

1

2
(x2
b − x2

a) =
∫ b

a

xt dxt + 1

2
(b − a)

so that

∫ b

a

xt dxt = 1

2
(x2
b − x2

a)−
1

2
(b − a).

This formula differs from what we would get if xt were smooth by the b − a term
on the right-hand side.

4.2.2 Free Stochastic Calculus

We now turn to the case of the circular Brownian motion ct . Since ct is a limit of
ordinary Brownian motion in the space of N × N matrices, we expect that (dct )2
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will be non-negligible compared to dt. The rules are as follows; see [31, Lemma 2.5,
Lemma 4.3]. Suppose gt and ht are processes “adapted to ct ,” meaning that gt and
ht belong to the von Neumann algebra generated by the operators cs with 0 < s < t.
Then we have

dct gt dc
∗
t = dc∗t gt dct = τ(gt ) dt (27)

dct gt dct = dc∗t gt dc∗t = 0 (28)

τ(gt dct ht ) = τ(gt dc∗t ht ) = 0. (29)

In addition, we have the following Itô product rule: if a1
t , . . . , a

n
t are processes

adapted to ct , then

d(a1
t · · · ant ) =

n
∑

j=1

(a1
t · · · aj−1

t ) da
j
t (a

j+1
t · · · ant ) (30)

+
∑

1≤j<k≤n
(a1
t · · · aj−1

t ) da
j
t (a

j+1
t · · · ak−1

t ) dakt (a
k+1
t · · · ant ).

(31)

Finally, the differential “d” can be moved inside the trace τ.
Suppose, for example, we wish to compute dτ [c∗t ct ]. We start by applying the

product rule in (30) and (31). But by (29), there will be no contribution from the
first line (30) in the product rule. We then use the second line (31) of the product
rule together with (27) to obtain

dτ [c∗t ct ] = τ [dc∗t dct ] = τ(1) dt = dt.

Thus,

d

dt
τ [c∗t ct ] = 1.

Since, also, c0 = 0, we find that τ [c∗t ct ] = t.

4.2.3 The Proof

In the proof that follows, the Itô formula (27) plays the same role as the identity (23)
plays in the heuristic argument in Section 4.1. We begin with a lemma whose proof
is an exercise in using the rules of free stochastic calculus.

Lemma 11 For each λ ∈ C, let us use the notation

ct,λ := ct − λ.
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Then for each positive integer n, we have

d

dt
τ [(c∗t,λct,λ)n] = n

n−1
∑

l=0

τ [(c∗t,λct,λ)j ]τ [(ct,λc∗t,λ)n−j−1]

Proof We first note that dct,λ = dct and dc∗t,λ = dc∗t , since λ is a constant. We
then compute dτ [(c∗t,λct,λ)n] by moving the d inside the trace and then applying the
product rule in (30) and (31). By (29), the terms arising from (30) will not contribute.
Furthermore, by (28), the only terms from (31) that contribute are those where one
d goes on a factor of ct,λ and one goes on a factor of c∗t,λ.

By choosing all possible factors of ct,λ and all possible factors of c∗t,λ, we get n2

terms. In each term, after putting the d inside the trace, we can cyclically permute the
factors until, say, the dct,λ factor is at the end. There are then only n distinct terms
that occur, each of which occurs n times. By (27), each distinct term is computed as

τ [(c∗t,λct,λ)j dc∗t ct,λ(c∗t,λct,λ)n−j−2c∗t,λ dct ]
= τ [ct,λ(c∗t,λct,λ)n−j−2c∗t,λ]τ [(c∗t,λct,λ)j ] dt
= τ [(c∗t,λct,λ)j ]τ [ct c∗t (ct,λc∗t,λ)n−j−1] dt.

Since each distinct term occurs n times, we obtain

dτ [(c∗t,λct,λ)n] = n
n−1
∑

j=0

τ [(c∗t,λct,λ)j ]τ [(ct,λc∗t,λ)n−j−1] dt,

which is equivalent to the claimed formula. ��
We are now ready to give a rigorous argument for the PDE.

Proof of Theorem 9 We continue to use the notation ct,λ := ct − λ. We first
compute, using the operator version of (25), that

∂S

∂ε
= ∂

∂ε
τ [log(c∗t,λct,λ + ε)]

= τ [(c∗t,λct,λ + ε)−1]. (32)

We note that the definition of S in (15) actually makes sense for all ε ∈ C with
Re(ε) > 0, using the standard branch of the logarithm function. We note that for
|ε| > |z| , we have

1

z+ ε =
1

ε
(

1− (− z
ε

))
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= 1

ε

[

1− z
ε
+ z

2

ε2
− z

3

ε3
+ · · ·

]

. (33)

Integrating with respect to z gives

log(z+ ε) = log ε +
∞
∑

n=1

(−1)n−1

n

(z

ε

)n

.

Thus, for |ε| > ∥

∥c∗t ct
∥

∥ , we have

τ [log(c∗t,λct,λ + ε)] = log ε +
∞
∑

n=1

(−1)n−1

nεn
τ [(c∗t,λct,λ)n]. (34)

Assume for the moment that it is permissible to differentiate (34) term by term
with respect to t. Then by Lemma 11, we have

∂S

∂t
=
∞
∑

n=1

(−1)n−1

εn

n−1
∑

j=0

τ [(c∗t,λct,λ)j ]τ [(ct,λc∗t,λ)n−j−1]. (35)

Now, by [5, Proposition 3.2.3], the map t �→ ct is continuous in the operator
norm topology; in particular, ‖ct‖ is a locally bounded function of t. From this
observation, it is easy to see that the right-hand side of (35) converges locally
uniformly in t. Thus, a standard result about interchange of limit and derivative
(e.g., Theorem 7.17 in [37]) shows that the term-by-term differentiation is valid.

Now, in (35), we let k = j and l = n− j − 1, so that n = k + l + 1. Then k and
l go from 0 to∞, and we get

∂S

∂t
= ε

(

1

ε

∞
∑

k=0

(−1)k

εk
τ [(c∗t,λct,λ)k]

)(

1

ε

∞
∑

l=0

(−1)l

εl
τ [(ct,λc∗t,λ)l]

)

.

(We may check that the power of ε in the denominator is k + l + 1 = n and that
the power of −1 is k + l = n − 1.) Thus, moving the sums inside the traces and
using (33), we obtain that

∂S

∂t
= ε(τ [(c∗t,λct,λ + ε)−1])2, (36)

which reduces to the claimed PDE for S, by (32).
We have now established the claimed formula for ∂S/∂t for ε in the right

half-plane, provided |ε| is sufficiently large, depending on t and λ. Since, also,
S(0, λ, ε) = log(|λ− 1|2 + ε), we have, for sufficiently large |ε| ,
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S(t, λ, ε) = log(|λ− 1|2 + ε)+
∫ t

0
ετ [(c∗s,λcs,λ + ε)−1]τ [(cs,λc∗s,λ + ε)−1] ds.

(37)
We now claim that both sides of (37) are well-defined, holomorphic functions of
ε, for ε in the right half-plane. This claim is easily established from the standard
power-series representation of the inverse:

(A+ ε + h)−1 = (A+ ε)−1(1+ h(A+ ε)−1)−1

= (A+ ε)−1
∞
∑

n=0

(−1)nhn(A+ ε)−n,

and a similar power-series representation of the logarithm. Thus, (37) actually holds
for all ε in the right half-plane. Differentiating with respect to t then establishes the
desired formula (36) for dS/dt for all ε in the right half-plane. ��

5 Solving the Equation

5.1 The Hamilton–Jacobi Method

The PDE (16) in Theorem 9 is a first-order, nonlinear equation of Hamilton–
Jacobi type. “Hamilton–Jacobi type” means that the right-hand side of the equation
involves only ε and ∂S/∂ε, and not S itself. The reader may consult Section 3.3 of
the book [11] of Evans for general information about equations of this type. In this
subsection, we describe the general version of this method. In the remainder of this
section, we will then apply the general method to the PDE (16).

The Hamilton–Jacobi method for analyzing solutions to equations of this type is
a generalization of the method of characteristics. In the method of characteristics,
one finds certain special curves along which the solution is constant. For a general
equation of Hamilton–Jacobi type, the method of characteristics is not applicable.
Nevertheless, we may hope to find certain special curves along which the solution
varies in a simple way, allowing us to compute the solution along these curves in a
more-or-less explicit way.

We now explain the representation formula for solutions of equations of
Hamilton–Jacobi type. A self-contained proof of the following result is given
as the proof of Proposition 6.3 in [10].

Proposition 12 Fix a function H(x,p) defined for x in an open set U ⊂ R
n and p

in Rn. Consider a smooth function S(t, x) on [0,∞)× U satisfying

∂S

∂t
= −H(x,∇xS) (38)
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for x ∈ U and t > 0. Now suppose (x(t),p(t)) is curve in U × R
n satisfying

Hamilton’s equations:

dxj

dt
= ∂H

∂pj
(x(t),p(t)); dpj

dt
= − ∂H

∂xj
(x(t),p(t))

with initial conditions

x(0) = x0; p(0) = p0 := (∇xS)(0, x0). (39)

Then we have

S(t, x(t)) = S(0, x0)−H(x0,p0) t +
∫ t

0
p(s) · dx

ds
ds (40)

and

(∇xS)(t, x(t)) = p(t). (41)

We emphasize that we are not using the Hamilton–Jacobi formula to construct a
solution to the equation (38); rather, we are using the method to analyze a solution
that is assumed ahead of time to exist. Suppose we want to use the method to
compute (as explicitly as possible), the value of S(t, x) for some fixed x. We then
need to try to choose the initial position x0 in (39)—which determines the initial
momentum p0 = (∇xS)(0, x0)—so that x(t) = x. We then use (40) to get an in-
principle formula for S(t, x(t)) = S(t, x).

5.2 Solving the Equations

The equation for Sλ in Theorem 9 is of Hamilton–Jacobi form with n = 1, with
Hamiltonian given by

H(ε, p) = −εp2. (42)

Since Sλ(t, ε) is only defined for ε > 0, we take open set U in Proposition 12 to be
(0,∞). That is to say, the Hamilton–Jacobi formula (40) is only valid if the curve
ε(s) remains positive for 0 ≤ s ≤ t.

Hamilton’s equations for this Hamiltonian then take the explicit form

dε

dt
= ∂H
∂p
= −2εp (43)

dp

dt
= −∂H

∂ε
= p2. (44)
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Following the general method, we take an arbitrary initial position ε0, with the initial
momentum p0 given by

p0 = ∂

∂ε
log(|λ|2 + ε)

∣

∣

∣

∣

ε=ε0

= 1

|λ|2 + ε0
. (45)

Theorem 13 For any ε0 > 0, the solution (ε(t), p(t)) to (43) and (44) with initial
momentum p0 = 1/(|λ|2 + ε0) exists for 0 ≤ t < |λ|2 + ε0. On this time interval,
we have

ε(t) = ε0

(

1− t

|λ|2 + ε0

)2

. (46)

The general Hamilton–Jacobi formula (40) then takes the form

Sλ

(

t, ε0

(

1− t

|λ|2 + ε0

)2
)

= log(|λ|2 + ε0)− ε0t

(|λ|2 + ε0)2
, 0 ≤ t < |λ|2 + ε0. (47)

Proof Since the equation (44) for dp/dt does not involve ε(t), we may easily solve
it for p(t) as

p(t) = p0

1− p0t
.

We may then plug the formula for p(t) into the equation (43) for dε/dt, giving

dε

dt
= −2ε

p0

1− p0t

so that

1

ε
dε = −2

p0

1− p0t
dt.

Thus,

log ε = 2 log(p0t − 1)+ c1

so that
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ε = c2(1− p0t)
2.

Plugging in t = 0 gives c2 = ε0. Recalling the expression (45) for p0 gives the
claimed formula for ε(t).

Assuming ε0 > 0, the solution to the system (43)–(44) continues to exist with
ε(t) > 0 until p(t) blows up, which occurs at time t = 1/p0 = |λ|2 + ε0.

Finally, we work out the general Hamilton–Jacobi formula (40) in the case at
hand. We note from (42) and (43) that p(s) dε

ds
= −2ε(s)p(s)2 = 2H(s). Since the

Hamiltonian is always a conserved quantity in Hamilton’s equations, we find that

p(s)
dε

ds
= 2H(0) = −2ε0p

2
0.

Thus, (40) reduces to

Sλ(t, ε(t)) = S(0, ε0)+H(0)t
= log(|λ|2 + ε0)− ε0p

2
0t.

Using the formula (45) for p0 gives the claimed formula (47). ��

6 Letting ε Tend to Zero

Recall that the Brown measure is obtained by first evaluating

st (λ) := lim
ε→0+

Sλ(t, 0)

and then taking 1/(4π) times the Laplacian (in the distribution sense) of st (λ). We
record the result here and will derive it in the remainder of this section.

Theorem 14 We have

st (λ) =
{

log(|λ|2) |λ| ≥ √t
log t − 1+ |λ|2

t
|λ| < √t . (48)

The Brown measure is then absolutely continuous with respect to the Lebesgue
measure, with densityWt(λ) given by

Wt(λ) =
{

0 |λ| ≥ √t
1
πt
|λ| < √t . (49)

That is to say, the Brown measure is the uniform probability measure on the disk
of radius

√
t centered at the origin. The functions st (λ) and Wt(λ) are plotted for
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Fig. 6 Plot of st (λ) := Sλ(t, 0+) (left) and 1
4π �st (λ) (right) for t = 1

t = 1 in Figure 6. On the left-hand side of the figure, the dashed line indicates the
boundary of the unit disk.

6.1 Letting ε Tend to Zero: Outside the Disk

Our goal is to compute st (λ) := limε→0+ S
λ(t, ε). Thus, in the Hamilton–Jacobi

formalism, we want to try to choose ε0 so that the quantity

ε(t) = ε0

(

1− t

|λ|2 + ε0

)2

(50)

will be very close to zero. Since there is a factor of ε0 on the right-hand side of the
above formula, an obvious strategy is to take ε0 itself very close to zero. There is,
however, a potential difficulty with this strategy: If ε0 is small, the lifetime of the
solution may be smaller than the time t we are interested in. To see when the strategy
works, we take the formula for the lifetime of the solution—namely, |λ|2+ ε0—and
take the limit as ε0 tends to zero.

Definition 15 For each λ ∈ C, we define T (λ) to be the lifetime of solutions to the
system (43)–(44), in the limit as ε0 approaches zero. Thus, explicitly,

T (λ) = lim
ε0→0+

(|λ|2 + ε0)

= |λ|2 .

Thus, if the time t we are interested in is larger than T (λ) = |λ|2 , our simple
strategy of taking ε0 ≈ 0 will not work. After all, if t > T (λ) and ε0 ≈ 0, then
the lifetime of the path is less than t and the Hamilton–Jacobi formula (47) is not
applicable. On the other hand, if the time t we are interested in is at most T (λ) =
|λ|2 , the simple strategy does work. Figure 7 illustrates the situation.
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Fig. 7 If ε0 is small and
positive, ε(s) will remain
small and positive up to time
t , provided that
t ≤ T (λ) = |λ|2

t T( )= 2

e0

Conclusion 16 The simple strategy of letting ε0 approach zero works precisely
when t ≤ T (λ) = |λ|2 . Equivalently, the simple strategy works when |λ| ≥ √t,
that is, when λ is outside the open disk of radius

√
t centered at the origin.

In the case that λ is outside the disk, we may then simply let ε0 approach zero in
the Hamilton–Jacobi formula, giving the following result.

Proposition 17 Suppose |λ| ≥ √t, that is, λ is outside the open disk of radius
√
t

centered at 0. Then we may let ε0 tend to zero in the Hamilton–Jacobi formula (47)
to obtain

lim
ε→0+

Sλ(t, ε) = lim
ε0→0

(

log(|λ|2 + ε0)− ε0t

(|λ|2 + ε0)2

)

= log(|λ|2). (51)

Since the right-hand side of (51) is harmonic, we conclude that

�st (λ) = 0, |λ| > √t .

That is to say, the Brown measure of ct is zero outside the disk of radius
√
t centered

at 0.

6.2 Letting ε Tend to Zero: Inside the Disk

We now turn to the case in which the time t we are interested in is greater than
the small-ε0 lifetime T (λ) of the solutions to (43)–(44). This case corresponds to
t > T (λ)2 = |λ|2 , that is, |λ| < √t . We still want to choose ε0 so that ε(t) will
approach zero, but we cannot let ε0 tend to zero, or else the lifetime of the solution
will be less than t. Instead, we allow the second factor in the formula (46) for ε(t)
to approach zero. To make this factor approach zero, we make |λ|2 + ε0 approach
t, that is, ε0 should approach t − |λ|2 . Note that since we are now assuming that
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Fig. 8 If |λ| < √t and we let
ε0 approach t − |λ|2 from
above, ε(s) will remain
positive until time t , and ε(t)
will approach zero

T( )= 2 t

t- 2

e0

|λ| < √t, the quantity t − |λ|2 is positive. This strategy is illustrated in Figure 8:
When ε0 = t − |λ|2 , we obtain ε(t) = 0, and if ε0 approaches t − |λ|2 from above,
the value of ε(t) approaches 0 from above.

Proposition 18 Suppose |λ| ≤ √t, that is, λ is inside the closed disk of radius
√
t

centered at 0. Then in the Hamilton–Jacobi formula (47), we may let ε0 approach
t − |λ|2 from above, and we get

lim
ε→0+

Sλ(t, ε) = log t − 1+ |λ|
2

t
, |λ| ≤ √t .

For |λ| < √t , we may then compute

1

4π
�st (λ) = 1

πt
.

Thus, inside the disk of radius
√
t, the Brown measure has a constant density of

1/(πt).

Proof We use the Hamilton–Jacobi formula (47). Since the lifetime of our solution
is |λ|2 + ε0, if we let ε0 approach t − |λ|2 from above, the lifetime will always be
at least t. In this limit, the formula (46) for ε(t) approaches zero from above. Thus,
we may take the limit ε0 → (t − |λ|2)+ in (47) to obtain

lim
ε→0+

Sλ(t, ε) = lim
ε0→(t−|λ|2)+

[

log(|λ|2 + ε0)− ε0t

(|λ|2 + ε0)2

]

= log t − (t − |λ|
2)t

t2
,

which simplifies to the claimed formula. ��
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6.3 On the Boundary

Note that if |λ|2 = t, both approaches are valid—and the two values of st (λ) :=
limε→0+ S

λ(t, ε) agree, with a common value of log t = log |λ|2 . Furthermore, the
radial derivatives of st (λ) agree on the boundary: 2/r on the outside and 2r/t on
the inside, which have a common value of 2/

√
t at r = √t . Of course, the angular

derivatives of st (λ) are identically zero, inside, outside, and on the boundary.
Since the first derivatives of st are continuous up to the boundary, we may take

the distributional Laplacian by taking the ordinary Laplacian inside the disk and
outside the disk and ignoring the boundary. (See the proof of Proposition 7.13 in
[10].) Thus, we may compute the Laplacian of the two formulas in (48) to obtain
the formula (49) for the Brown measure of ct .

7 The Case of the Free Multiplicative Brownian Motion

7.1 Additive and Multiplicative Models

The standard GUE and Ginibre ensembles are given by Gaussian measures on
the relevant space of matrices (Hermitian matrices for GUE and all matrices for
the Ginibre ensemble). In light of the central limit theorem, these ensembles can
be approximated by adding together large numbers of small, independent random
matrices. We may therefore refer to these Gaussian ensembles as “additive” models.

It is natural to consider also “multiplicative” random matrix models, which can
be approximated by multiplying together large numbers of independent matrices
that are “small” in the multiplicative sense, that is, close to the identity. Specifically,
if Zadd is a random matrix with a Gaussian distribution, we will consider a
multiplicative version Zmult

t , where the distribution of Zmult
t may be approximated

as

Zmult
t ∼

k
∏

j=1

(

I + i
√

t

k
Zadd
j − t

k
Itô

)

, k large. (52)

Here t is a positive parameter, the Zadd
j s are independent copies of Zadd, and “Itô”

is an Itô correction term. This correction term is a fixed multiple of the identity,
independent of t and k. (In the next paragraph, we will identify the Itô term in the
main cases of interest.) Since the factors in (52) are independent and identically
distributed, the order of the factors does not affect the distribution of the product.

The two main cases we will consider are those in whichZ is distributed according
to the Gaussian unitary ensemble or the Ginibre ensemble. In the case that Z is
distributed according to the Gaussian unitary ensemble, the Itô term is Itô = 1

2I. In
this case, the resulting multiplicative model may be described as Brownian motion
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in the unitary group U(N), which we write as UNt . The Itô correction is essential in
this case to ensure that Zmult

t actually lives in the unitary group. In the case that Z is
distributed according to the Ginibre ensemble, the Itô term is zero. In this case, the
resulting multiplicative model may be described as Brownian motion in the general
linear group GL(N;C), which we write as BNt .

7.2 The Free Unitary and Free Multiplicative Brownian
Motions

The large-N limits of the Brownian motions UNt and BNt were constructed by Biane
[3]. The limits are the free unitary Brownian motion and the free multiplicative
Brownian motion, respectively, which we write as ut and bt . The qualifier
“free” indicates that the increments of these Brownian motions—computed in the
multiplicative sense as u−1

s ut or b−1
s bt—are freely independent in the sense of

Section 2.3. In the case of bt , the convergence of BNt to bt was conjectured by
Biane [3] and proved by Kemp [31]. In both cases, we take the limiting object to be
an element of a tracial von Neumann algebra (A, τ ).

Since ut is unitary, we do not need to use the machinery of Brown measure,
but can rather use the spectral theorem as in (7) to compute the distribution of ut ,
denoted νt . We emphasize that νt is, in fact, the Brown measure of ut , but it easier
to describe νt using the spectral theorem than to use the general Brown measure
construction. The measure νt is a probability measure on the unit circle describing
the large-N limit of Brownian motion in the unitary group U(N). Biane computed
the measure νt in [3] and established the following support result.

Theorem 19 For t < 4, the measure νt is supported on a proper subset of the unit
circle:

supp(νt ) =
{

eiθ
∣

∣

∣ |θ | ≤ 1

2

√

t (4− t)+ cos−1
(

1− t
2

)}

, t < 4.

By contrast, for all t ≥ 4, the closed support of νt is the whole unit circle.

In the physics literature, the change in behavior of the support of νt at t = 4
is called a topological phase transition, indicating that the topology of supp(νt )
changes from a closed interval to a circle.

The remainder of this article is devoted to recent results of the author with Driver
and Kemp regarding the Brown measure of the free multiplicative Brownian motion
bt .We expect that the Brown measure of bt will be the limiting empirical eigenvalue
distribution of the Brownian motionBNt in the general linear group GL(N;C). Now,
when t is small, we may take k = 1 in (52), so that (since the Itô correction is zero
in this case)
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Fig. 9 The eigenvalues of
BNt with t = 0.1 and
N = 2.000
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BNt ∼ I + i
√

t

k
Z, t small.

Thus, when t is small and N is large, the eigenvalues of BNt resemble a scaled and
shifted version of the circular law. Specifically, the eigenvalue distribution should
resemble a uniform distribution on the disk of radius

√
t centered at 1.

Figure 9 shows the eigenvalues of BNt with t = 0.1 and N = 2,000. The
eigenvalue distribution bears a clear resemblance to the just-described picture, with√
t = √0.1 ≈ 0.316. Nevertheless, we can already see some deviation from

the small-t picture: The region into which the eigenvalues are clustering looks
like a disk, but not quite centered at 1, while the distribution within the region is
slightly higher at the left-hand side of the region than the right. Figures 10 and 11,
meanwhile, show the eigenvalue distribution of BNt for several larger values of
t. The region into which the eigenvalues cluster becomes more complicated as
t increases, and the distribution of eigenvalues in the region becomes less and
less uniform. We expect that the Brown measure of the limiting object bt will be
supported on the domain into which the eigenvalues are clustering.

7.3 The Domains �t

We now describe certain domains  t in the plane, as introduced by Biane in [4,
pp. 273–274]. It will turn out that the Brown measure of bt is supported on  t . We
use here a new the description of  t, as given in Section 4 of [10]. For all nonzero
λ ∈ C, we define
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Fig. 10 Eigenvalues of BNt for t = 2 (left) and t = 3.9 (right), with N = 2,000
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Fig. 11 Eigenvalues of BNt for t = 4 (left) and t = 4.1 (right), with N = 2,000

T (λ) = |λ− 1|2 log(|λ|2)
|λ|2 − 1

. (53)

If |λ|2 = 1, we interpret log(|λ|2)/(|λ|2 − 1) as having the value 1 when |λ|2 = 1,
in accordance with the limit

lim
r→1

log r

r − 1
= 1.

See Figure 12 for a plot of this function.
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Fig. 12 A plot of the
function T (λ). The function
has a minimum at λ = 1, a
saddle point at λ = −1, and a
singularity at λ = 0

We then define the domains  t as follows.

Definition 20 For each t > 0, we define

 t = {λ ∈ C| T (λ) < t} .

Several examples of these domains were plotted already in Figures 9, 10, and 11.
The domain  t is simply connected for t ≤ 4 and doubly connected for t > 4. The
change in behavior at t = 4 occurs because T has a saddle point at λ = −1 and
because T (−1) = 4. We note that a change in the topology of the region occurs at
t = 4, which is the same value of t at which the topology of the support of Biane’s
measure changes (Theorem 19).

7.4 The Support of the Brown Measure of bt

As we have noted, the domains  t were introduced by Biane in [4]. Two sub-
sequent works in the physics literature, the article [18] by Gudowska-Nowak,
Janik, Jurkiewicz, and Nowak and the article [32] by Lohmayer, Neuberger, and
Wettig then argued, using nonrigorous methods, that the eigenvalues of BNt should
concentrate into  t for large N. The first rigorous result in this direction was
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obtained by the author with Kemp [26]; we prove that the Brown measure of bt
is supported on the closure of  t .

Now, we have already noted that  t is simply connected for t ≤ 4 but
doubly connected for t > 4. Thus, the support of the Brown measure of the
free multiplicative Brownian motion undergoes a “topological phase transition” at
precisely the same value of the time parameter as the distribution of the free unitary
Brownian motion (Theorem 19).

The methods of [26] explain this apparent coincidence, using the “free Hall
transform” Gt of Biane [4]. Biane constructed this transform using methods of
free probability as an infinite-dimensional analog of the Segal–Bargmann transform
for U(N), which was developed by the author in [21]. More specifically, Biane’s
definition Gt draws on the stochastic interpretation of the transform in [21] given by
Gross and Malliavin [17]. Biane conjectured (with an outline of a proof) that Gt is
actually the large-N limit of the transform in [21]. This conjecture was then verified
by in independent works of Cébron [8] and the author with Driver and Kemp [9].
(See also the expository article [25].)

Recall from Section 7.2 that the distribution of the free unitary Brownian motion
is Biane’s measure νt on the unit circle, the support of which is described in
Theorem 19. A key ingredient in [26] is the function ft given by

ft (λ) = λe t2 1+λ
1−λ . (54)

This function maps the complement of the closure of  t conformally to the
complement of the support of Biane’s measure:

ft : C \ t → C \ supp(νt ). (55)

(This map ft will also play a role in the results of Section 7.5; see Theorem 23.)
The key computation in [26] is that for λ outside  t, we have

G−1
t

(

1

z− λ
)

= ft (λ)
λ

1

u− ft (λ) , λ /∈  t . (56)

See Theorem 6.8 in [26]. Properties of the free Hall transform then imply that for
λ outside  t, the operator bt − λ has an inverse. Indeed, the noncommutative L2

norm of (bt−λ)−1 equals to the norm inL2(S1, νt ) of the function on the right-hand
side of (56). This norm, in turn, is finite because ft (λ) is outside the support of νt
whenever λ is outside  t . The existence of an inverse to bt − λ then shows that λ
must be outside the support of μbt .

An interesting aspect of the paper [26] is that we not only compute the support
of μbt but also that we connect it to the support of Biane’s measure νt , using the
transform Gt and the conformal map ft .
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We note, however, that none of the papers [18, 32], or [26] says anything about
the distribution ofμbt within t ; they are only concerned with identifying the region
 t . The actual computation of μbt (not just its support) was done in [10].

7.5 The Brown Measure of bt

We now describe the main results of [10]. Many of these results have been extended
by Ho and Zhong [29] to the case of the free multiplicative Brownian motion with
an arbitrary unitary initial distribution.

The first key result in [10] is the following formula for the Brown measure of bt
(Theorem 2.2 of [10]).

Theorem 21 For each t > 0, the Brown measure μbt is zero outside the closure of
the region  t . In the region  t, the Brown measure has a densityWt with respect to
Lebesgue measure. This density has the following special form in polar coordinates:

Wt(r, θ) = 1

r2wt(θ), reiθ ∈  t,

for some positive continuous function wt . The function wt is determined entirely by
the geometry of the domain and is given as

wt(θ) = 1

4π

(

2

t
+ ∂

∂θ

2rt (θ) sin θ

rt (θ)2 + 1− 2rt (θ) cos θ

)

,

where rt (θ) is the “outer radius” of the region  t at angle θ.

See Figure 13 for the definition of rt (θ), Figure 14 for plots of the functionwt(θ),
and Figure 15 for a plot ofWt. The simple explicit dependence ofWt on r is a major
surprise of our analysis. See Corollary 22 for a notable consequence of the form of
Wt.

Using implicit differentiation, it is possible to compute drt (θ)/dθ explicitly as a
function of rt (θ). This computation yields the following formula forwt,which does
not involve differentiation:

wt(θ) = 1

2πt
ω(rt (θ), θ),

where

ω(r, θ) = 1+ h(r)α(r) cos θ + β(r)
β(r) cos θ + α(r) , (57)

and
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Fig. 13 The quantity rt (θ) is
the larger of the two radii at
which the ray of angle θ
intersects the boundary of  t
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Fig. 14 Plots of wt(θ) for t = 2, 3.5, 4, and 7

h(r) = r log(r2)

r2 − 1
; α(r) = r2 + 1− 2rh(r); β(r) = (r2 + 1)h(r)− 2r.

See Proposition 2.3 in [10].
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Fig. 15 Plot of the densityWt for t = 1

Fig. 16 The density Wt (left) and a histogram of the eigenvalues of BNt (right), for t = 1 and
N = 2,000

We expect that the Brown measure of bt will coincide with the limiting empirical
eigenvalue distribution of the Brownian motion BNt in GL(N;C). This expectation
is supported by simulations; see Figure 16.

We note that the Brown measure (inside  t ) can also be written as

dμbt =
1

r2wt(θ) r dr dθ

= wt(θ) 1

r
dr dθ

= wt(θ) d log r dθ.

Since the complex logarithm is given by log(reiθ ) = log r + iθ, we obtain the
following consequence of Theorem 21.
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Fig. 17 The eigenvalues of BNt for t = 4.1 and N = 2,000 (left) and the logarithms thereof
(right). The density of points on the right-hand side of the figure is approximately constant in the
horizontal direction

Corollary 22 The push-forward of the Brown measure μbt under the complex
logarithm has density that is constant in the horizontal direction and given by wt in
the vertical direction.

In light of this corollary, we expect that for large N, the logarithms of the
eigenvalues of BNt should be approximately uniformly distributed in the horizontal
direction. This expectation is confirmed by simulations, as in Figure 17.

We conclude this section by describing a remarkable connection between the
Brown measure μbt and the distribution νt of the free unitary Brownian motion.
Recall the holomorphic function ft in (54) and (55). This map takes the boundary
of  t to the unit circle. We may then define a map

!t :  t → S1

by requiring (a) that !t should agree with ft on the boundary of  t and (b)
that !t should be constant along each radial segment inside  t, as in Figure 18.
(This specification makes sense because ft has the same value at the two boundary
points on each radial segment.) We then have the following result, which may be
summarized by saying that the distribution νt of free unitary Brownian motion is a
“shadow” of the Brown measure of bt .

Theorem 23 The push-forward of the Brown measure of bt under the map !t is
Biane’s measure νt on S1. Indeed, the Brown measure of bt is the unique measure
μ on  t with the following two properties: (1) the push-forward of μ by !t is νt ,
and (2) μ is absolutely continuous with respect to Lebesgue measure with a density
W having the form
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Fig. 18 The map !t maps  t to the unit circle by mapping each radial segment in  t to a single
point in S1

Fig. 19 The eigenvalues of
BNt , mapped to the unit circle
by !t , plotted against the
density of Biane’s measure
νt . Shown for t = 2 and
N = 2,000

- -
2 0 2

W(r, θ) = 1

r2
g(θ)

in polar coordinates, for some continuous function g.

This result is Proposition 2.6 in [10]. Figure 19 shows the eigenvalues for BNt
after applying the map !t, plotted against the density of Biane’s measure νt . We
emphasize that we have computed the eigenvalues of the Brownian BNt motion in
GL(N;C) (in the two-dimensional region  t ) and then mapped these points to the
unit circle. The resulting histogram, however, looks precisely like a histogram of the
eigenvalues of the Brownian motion in U(N).
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7.6 The PDE and Its Solution

We conclude this article by briefly outlining the methods used to obtain the results
in the previous subsection.

7.6.1 The PDE

Following the definition of the Brown measure in Theorem 7, we consider the
function

S(t, λ, ε) := τ [log((bt − λ)∗(bt − λ)+ ε)]. (58)

We then record the following result [10, Theorem 2.8].

Theorem 24 The function S in (58) satisfies the following PDE:

∂S

∂t
= ε ∂S

∂ε

(

1+ (|λ|2 − ε)∂S
∂ε
− a ∂S

∂a
− b∂S

∂b

)

, λ = a + ib, (59)

with the initial condition

S(0, λ, ε) = log(|λ− 1|2 + ε). (60)

Recall that in the case of the circular Brownian motion (the PDE in Theorem 9),
the complex number λ enters only into the initial condition and not into the PDE
itself. By contrast, the right-hand side of the PDE (59) involves differentiation with
respect to the real and imaginary parts of λ.

On the other hand, the PDE (59) is again of Hamilton–Jacobi type. Thus, follow-
ing the general Hamilton–Jacobi method in Section 5.1, we define a Hamiltonian
function H from (the negative of) the right-hand side of (59), replacing each
derivative of S by a corresponding momentum variable:

H(a, b, ε, pa, pb, pε) = −εpε(1+ (a2 + b2)pε − εpε − apa − bpb). (61)

We then consider Hamilton’s equations for this Hamiltonian:

da

dt
= ∂H

∂pa
; db

dt
= ∂H

∂pb
; dε

dt
= ∂H
∂pε
;

dpa

dt
= −∂H

∂a
; dpb

dt
= −∂H

∂b
; dpε

dt
= −∂H

∂ε
. (62)

Then, after a bit of simplification, the general Hamilton–Jacobi formula in (40) then
takes the form
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S(t, λ(t), ε(t)) = log(|λ0 − 1|2 + ε0)− ε0t

(|λ0 − 1|2 + ε0)2

+ log |λ(t)| − log |λ0| . (63)

(See Theorem 6.2 in [10].)
The analysis in [10] then proceeds along broadly similar lines to those in

Sections 5 and 6. The main structural difference is that because λ is now a variable in
the PDE, the ODE’s in (62) now involve both x and λ and the associated momenta.
(That is to say, the vector x in Proposition 12 is equal to (λ, ε) ∈ C × R ∼= R

3.)
The first key result is that the system of ODE’s associated to (59) can be solved
explicitly; see Section 6.3 of [10]. Solving the ODE’s gives an implicit formula for
the solution to (59) with the initial conditions (60).

We then evaluate the solution in the limit as ε tends to zero. We follow the
strategy in Section 6. Given a time t and a complex number λ, we attempt to choose
initial conditions ε0 and λ0 so that ε(t) will be very close to zero and λ(t) will equal
λ. (Recall that the initial momenta in the system of ODE’s are determined by the
positions by (39).)

7.6.2 Outside the Domain

As in the case of the circular Brownian motion, we use different approaches for λ
outside  t and for λ in  t . For λ outside  t, we allow the initial condition ε0 in the
ODE’s to approach zero. As it turns out, when ε0 is small and positive, ε(t) remains
small and positive for as long as the solution to the system exists. Furthermore, when
ε0 is small and positive, λ(t) is approximately constant. Thus, our strategy will be
to take ε0 ≈ 0 and λ0 ≈ λ.

A key result is the following.

Proposition 25 In the limit as ε0 tends to zero, the lifetime of the solution
to (62) with initial conditions λ0 and ε0—and initial moment determined by (39)—
approaches T (λ0), where T is the same function (53) that enters into the definition
of the domain  t .

This result is Proposition 6.13 in [10]. Thus, the strategy in the previous
paragraph will work—meaning that the solution continues to exist up to time
t—provided that T (λ0) ≈ T (λ) is greater than t. The condition for success of
the strategy is, therefore, T (λ) > t. In light of the characterization of  t in
Definition 20, we make have the following conclusion.

Conclusion 26 The simple strategy of taking ε0 ≈ 0 and λ0 ≈ λ is successful
precisely if T (λ) > t or, equivalently, if λ is outside  t .

When this strategy works, we obtain a simple expression for limε→0+ S(t, λ, ε),
by letting ε0 approach zero and λ0 approach λ in (63). Since λ(t) approaches λ in
this limit [10, Proposition 6.11], we find that
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Fig. 20 For each λ in  t,
there exists ε0 > 0 and
λ0 ∈  t such that with these
initial conditions, we have
ε(t) = 0 and λ(t) = λ

lim
ε→0+

S(t, λ, ε) = log(|λ− 1|2), λ /∈  t . (64)

This function is harmonic (except at λ = 1, which is always in the domain  t ), so
we conclude that the Brown measure of bt is zero outside  t . See Section 7.2 in
[10] for more details.

7.6.3 Inside the Domain

For λ inside  t, the simple approach in the previous subsection does not work,
because when λ is outside  t and ε0 is small, the solutions to the ODE’s (62) will
cease to exist prior to time t (Proposition 25). Instead, we must prove a “surjectivity”
result: For each t > 0 and λ ∈  t, there exist—in principle—λ0 ∈ C and ε0 > 0
giving λ(t) = λ and ε(t) = 0. See Figure 20. Actually the proof shows that λ0 again
belongs to the domain  t ; see Section 6.5 in [10].

We then make use of the second Hamilton–Jacobi formula (41), which allows us
to compute the derivatives of S directly, without having to attempt to differentiate
the formula (63) for S. Working in logarithmic polar coordinates, ρ = log |λ| and
θ = arg λ, we find an amazingly simple expression for the quantity

∂st

∂ρ
= lim
ε→0+

∂S

∂ρ
(t, λ, ε),

inside  t, namely,

∂st

∂ρ
= 2ρ

t
+ 1, λ ∈  t . (65)

(See Corollary 7.6 in [10].) This result is obtained using a certain constant of motion
of the system of ODE’s, namely, the quantity

" = εpε + 1

2
(apa + bpb)

in [10, Proposition 6.5].
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If we evaluate this constant of motion at a time t when ε(t) = 0, the εpε term
vanishes. But if ε(t) = 0, the second Hamilton–Jacobi formula (41) tells us that

(

a
∂S

∂a
+ b∂S

∂b

)

(t, λ(t), 0) = a(t)pa(t)+ b(t)pb(t).

Furthermore, a ∂S
∂a
+ b ∂S

∂b
is just ∂S/∂ρ, computed in rectangular coordinates. A

bit of algebraic manipulation yields an explicit formula for a ∂S
∂a
+ b ∂S

∂b
, as in [10,

Theorem 6.7], explaining the formula (65). To complete the proof (65), it still
remains to address certain regularity issues of S(t, λ, ε) near ε > 0, as in Section 7.3
of [10].

Once (65) is established, we note that the formula for ∂st/∂ρ in (65) is
independent of θ. It follows that

∂

∂ρ

∂st

∂θ
= ∂

∂θ

∂st

∂ρ
= 0,

that is, that ∂st /∂θ is independent of ρ inside  t . Writing the Laplacian in
logarithmic polar coordinates, we then find that

�st (λ) = 1

r2

(

∂2st

∂ρ2 +
∂2st

∂θ2

)

= 1

r2

(

2

t
+ ∂

∂θ

(

∂st

∂θ

))

, λ ∈  t, (66)

where 2/t term in the expression comes from differentiating (65) with respect to ρ.
Since ∂st/∂θ is independent of ρ, we can understand the structure of the formula in
Theorem 21.

The last step in the proof of Theorem 21 is to compute ∂st/∂θ. Since ∂st/∂θ is
independent of ρ—or, equivalently, independent of r = |λ|—inside  t, the value
of ∂st/∂θ at a point λ in  t is the same as its value as we approach the boundary of
 t along the radial segment through λ.We show that ∂st/∂θ is continuous over the
whole complex plane, even at the boundary of  t . (See Section 7.4 of [10].) Thus,
on the boundary of  t, the function ∂st/∂θ will agree with the angular derivative of
log(|λ− 1|2), namely

∂

∂θ
log(|λ− 1|2) = 2 Im λ

|λ− 1|2

= 2r sin θ

r2 + 1− 2r cos θ
. (67)

Thus, to compute ∂st/∂θ at a point λ in  t, we simply evaluate (67) at either of
the two points where the radial segment through λ intersects ∂ t . (We get the same
value at either point.)
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One such boundary point is the point with argument θ = arg λ and radius rt (θ),
as in Figure 13. Thus, inside  t, we have

∂st

∂θ
= 2rt (θ) sin θ

rt (θ)2 + 1− 2rt (θ) cos θ
.

Plugging this expression into (66) gives the claimed formula in Theorem 21.
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Structure and Optimisation in
Computational Harmonic Analysis: On
Key Aspects in Sparse Regularisation

Anders C. Hansen and Bogdan Roman

Abstract Computational harmonic analysis has a rich history spanning more than
half a century, where the last decade has been strongly influenced by sparse
regularisation and compressed sensing. The theory has matured over the last years,
and it has become apparent that the success of compressed sensing in fields like
magnetic resonance imaging (MRI), and imaging in general, is due to specific
structures beyond just sparsity. Indeed, structured sampling and the structure of
images represented in X-lets, for example, sparsity in levels, are key ingredients.
The field relies on the crucial assumption that one can easily compute minimisers of
convex optimisation problem. This assumption is false in general. One can typically
easily compute the objective function of convex optimisation problems, but not
minimisers. However, due to the specific features in compressed sensing, one can
actually compute the desired minimisers fast and reliably to sufficient precision. In
short, as we demonstrate here: the success of sparse regularisation and compressed
sensing is due to specific key structures that allow for a beneficial interaction
between harmonic analysis and optimisation.

1 Introduction

Compressed sensing (CS) and sparse regularisation [1–4] concern the recovery of
an object (e.g. a signal or image) from an incomplete set of linear measurements. In
a discrete setting, this can be formulated as the linear system

y = Ax,

where y ∈ C
m is the vector of measurements, x ∈ C

N is the object to recover
and A ∈ C

m×N is the so-called measurement matrix. In practice, the number
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of measurements m is often substantially smaller than the dimension N , making
the recovery of x from y generally impossible. To overcome this, compressed
sensing leverages two key properties: first, sparsity of the vector x, and second, the
incoherence of the measurement vectors (rows of the matrix A). The first property
asserts that x should have at most s ≤ m significant components, with the remainder
being small. The second property asserts that the rows of A should be (in a sense
that can be rigorously defined) spread out, rather than concentrated around a small
number of entries [5]. Taking noise into account, we can say that y = Ax + e.
Recovering x from y can be achieved by a number of recovery approaches, including
�1 minimisation of basis pursuit, where one seeks

x ∈ argmin
z
‖z‖1 subject to ‖Az− y‖ ≤ η, η ≥ 0, (1)

where ‖e‖2 ≤ η. The key to this is the assumed structure of x. We say that x
is s-sparse if it has at most s non-zero entries, regardless of their locations. The
CS literature now contains a wealth of results giving sufficient and/or necessary
conditions for recovering an s-sparse vector from y by solving either (1) or other
appropriate algorithms.

The key observation, in the context of this paper, is that there is a mismatch
between the sparsity model and the class of recovered signals for many applications
such as magnetic resonance imaging (MRI), computerised tomography (CT),
electron microscopy (EM), fluorescence microscopy (FM), radio interferometry
(RI) and others. Specifically, one does not actually recover all sparse vectors, but
only a small subset of sparse vectors which in fact possess far more structure than
sparsity alone. It is possible to observe this phenomenon through the so-called flip
test [6, 7], which we shall detail Sect. 2.2.

This observation gives rise to the aforementioned question about what kind of
structured signals does CS actually recover, which in turn can be approached from
two linked perspectives:

(a) Given a sampling mechanism, does one recover an arbitrary sparse signal?
(b) If not, what kind of sparsity structure does one recover?

Question (b) is highly non-trivial. The typical approach is to conjecture a structured
sparsity model and then ask:

(c) Given a sampling mechanism and a structured sparsity model, does one recover
an arbitrary signal in this class?

We designed a numerical test, a generalised flip test, that allows one to investigate
questions (a) and (c) above.

In addition, in many applications of CS such as those listed above, the sampling
mechanism is itself not just random, but also highly structured [6–13], and so it is
perhaps not too surprising that one recovers only signals with a particular structure.
This raises a second fundamental question: if there was complete freedom to design
the sampling operator (this is impossible or restricted in many applications, e.g.
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MRI, but we ask this as a basic question), should one use incoherent sampling, e.g.
sub-Gaussian random matrices, which can recover any s-sparse signal, or should one
choose or design a sampling operator and/or strategy that recovers only structured
sparse signals, such as natural images? In other words,

Does structured sampling outperform incoherent sampling?

Section 3 endeavours to answer this question both numerically and mathematically,
and the answer is: yes, provided the signal is structured.

Given that compressed sensing is based on the assumption that (1) can be
solved accurately and efficiently, it is legitimate to ask whether this is actually
possible. Indeed, convex optimisation is a very well-established field; however, it
is mostly concerned about computing the objective function in such optimisation
problems. Compressed sensing and sparse recovery are based on computing the
actual minimisers. Thus, we ask the following:

Do there exist algorithms that can compute minimisers to general problems of the
form (1)? If not, how come compressed sensing works well in practical imaging
problem?

These questions will be discussed in Sect. 4 and onwards.

2 What Is the Correct Model?

In the classic CS theory, the restricted isometry property (RIP) [3, 4] has been widely
used and allows to obtain various recovery guarantees. The RIP states that, given any
s-sparse vector x ∈ C

N and a matrix A ∈ C
m×N , then A has the RIP with constant

δs if for every submatrix As ∈ C
m×s of A we have

(1− δs) ‖x‖2
2 ≤ ‖Asx‖2

2 ≤ (1+ δs) ‖x‖2
2,

which can be understood as saying that any submatrix of A acting on s-sparse
vectors will behave close to an isometry, preserving vector norms (energy), up to
a given constant. The smaller the constant δs , the more isometric the submatrix.
This powerful condition, while allowing to obtain theoretical recovery guarantees
for a number of matrix classes (e.g. sub-Gaussian), makes no further assumptions
regarding the structure of x besides being s-sparse. For example, the location
(indices) of the s non-zero vector entries is not important.

A slightly weaker property is the robust nullspace property (rNSP) of order s
[4, 14], which is implied by the RIP. We say that a matrix A ∈ C

m×N satisfies the
�2 rNSP if there is a ρ ∈ (0, 1) and a τ > 0 such that

‖vS‖2 ≤ ρ√
s
‖vSc‖1 + τ‖Av‖2,
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for all sets S ⊂ {1, . . . , N} with |S| ≤ s (where | · | denotes set cardinality) and
vectors v ∈ C

N . The notation vS means that the coefficients of v on Sc are set
to zero and the coefficients on S are kept as is. A key CS result is the following
recovery guarantee:

Theorem 1 (rNSP implies stable and robust recovery) Suppose that A ∈ C
m×N

has the rNSP of order s with constants 0 < ρ < 1 and τ > 0. Let x ∈ C
N and

y = Ax + e ∈ C
m, where ‖e‖�2 ≤ η for some η ≥ 0. Then any minimiser x̂ ∈ C

N

of (1) satisfies

‖x̂ − x‖�1 ≤ C1σs(x)�1 + C2
√
sη,

and

‖x̂ − x‖�2 ≤ C3
σs(x)�1√

s
+ C4η,

where the constants C1, C2, C3, C4 depend on ρ and τ only, and σs(y)1 =
minz∈Σs ‖y − z‖1,, where Σs denotes the set of all s-sparse vectors.

The above theorem is a mainstay in CS theory. Thus, in view of question (1.a) above,
a reasonable question that we will address below is whether the rNSP, the RIP and
the standard sparsity model are satisfied in the many areas where CS can be used.

In many practical applications, CS is performed using various types of sensing
matrices. A popular choice is to couple the matrix A with a sparsifying matrix W ,
such as a wavelet transform. This is commonly performed because most natural
signals, such as a brain image in MRI, are not sparse themselves, but are sparse in
some appropriate basis like wavelets. In practice, A is often a random matrix, with
entries drawn independently from the same distribution (e.g. a random Gaussian
matrix), or obtained by randomly selecting (undersampling) m rows from a known
N × N matrix, indexed by a (random) subset Ω ⊆ {1, . . . , N} called the sampling
pattern or sampling map. In this case, we have A = PΩΨ where PΩ is the is
the diagonal projection matrix with |PΩ | = m and j th entry 1 if j ∈ Ω and
0 otherwise. Here Ψ is called the raw sampling operator, as it models the actual
sampling device which acquires samples (A would be the undersampling operator
taking the measurements y = Ax = PΩΨx), and we call W the sparsifying
operator, as it renders the signal x sparse, i.e. Wx is s-sparse, and not x. In this
context, (1) becomes

x ∈ argmin
z
‖z‖1 subject to ‖y − PΩUz‖ ≤ η, η ≥ 0, (2)

The resulting operator U = ΨW ∗ will have the RIP if A = PΩΨ is universal –
we say that a random matrixA ∈ C

m×N is universal if for any isometryW ∈ C
N×N ,

the matrix AW has the RIP with high probability. However, in practice, Ψ may be
imposed, like the Fourier operator is imposed in MRI, and so A may have a very
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weak RIP (i.e. very large δs) or may not possess the RIP. We call such operators
structured operators because they tend to reveal specific features of s-sparse vectors,
as opposed to matrices that possess the RIP. One particular such feature that is worth
investigating and which helps in answering questions (1.a) and (1.c) is whether such
matrices are sensitive to further structure in the input vector x. A first question would
be: is the location of the s non-zero entries important?

We designed a simple test for this paradigm, which we termed flip test [6]. In
brief, we flip (reverse the order of) the wavelet coefficients of x, hence preserving its
sparsity but changing its structure. Any permutation sufficiently far from the identity
could in fact be used. We then perform the same CS experiment as for the original
x, and finally reverse the permutation of the wavelet coefficients. If the original
reconstruction and the flipped reconstruction have (visibly) different reconstruction
qualities, then it means that the position of the coefficients is important, and that the
operator U = AW ∗ does not possess the RIP, or that the RIP and sparsity alone do
not explain the recovery for this class of operators and signals.
The flip test. Let x ∈ C

N be a vector, and U ∈ C
N×N a sensing matrix. We sample

according to some pattern Ω ⊆ {1, . . . , N} with |Ω| = m and solve (1) for x, i.e.
min ‖z‖1 s.t PΩUz = PΩUx to obtain a reconstruction z = α. Now we flip x to
obtain a vector x′ with reverse entries, x′i = xN−i , i = 1, . . . , N and solve (2) for
x′ using the same U and Ω , i.e. min ‖z‖1 s.t. PΩUz = PΩUx′. Assuming z to be
a solution, then by flipping z, we obtain a second reconstruction α′ of the original
vector x, where α′i = zN−i . Assume Ω is a sampling pattern for recovering x using
α. If sparsity alone dictates the reconstruction quality, then α′ must yield thef:flip-
test-univ same reconstruction quality (since x′ has the same sparsity as x, being
merely a permutation of x).

Let us first perform the flip test for a universal operator, such as a Bernoulli
matrix B. A Bernoulli matrix has random Bernoulli numbers as its entries, and is
a sub-Gaussian matrix, hence it has the RIP and is also universal, i.e. BW also
has the RIP for any isometry W . As described earlier, let us choose W to be the
wavelet basis which renders most natural signals sparse. Given U = BW ∗ has the
RIP, we expect the two reconstructions to have the same quality, and indeed this
is the case, as illustrated in Fig. 1. This is yet another confirmation that a matrix
possessing the RIP is not sensitive to changes in the sparsity structure of x. We note
that it is possible to obtain universal-like operators deterministically, for example, by
randomly permuting columns of known matrices such as Fourier or Hadamard [15,
16], Kronecker products of random matrix stencils [17], or even fully orthogonal
matrices such as the Sum-To-One (STOne) matrix [18]; these yield an operator that
behaves similar to a random matrix in the CS context but allows for fast transforms.

Let us now perform the flip test for structured operators that are commonly used
in practice, all of which are highly nonuniversal. These include the Fourier operator,
the Hadamard operator, the Radon operator and others. Here we use U = PΩΨW ∗.
The results are shown in Fig. 2. It is clear that the reconstruction from original
wavelet coefficients and the one from flipped wavelet coefficients are strikingly
different for the same operator U . This shows that the RIP does not explain the
reconstructions seen in practice (left column of Fig. 2). Furthermore, it suggests that
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Fig. 1 The flip test for a universal operator. Recovery from original versus flipped wavelet
coefficients for a 256× 256 image. The sampling matrix is a Bernoulli matrix B ∈ {0, 1}9831×2562

(15% subsampling). The sparsity matrix W ∈ R
2562×2562

is Daubechies-4. Left: Original image.
Middle: Recovery from original wavelet coefficients. Right: Recovery from flipped wavelet
coefficients

the class of signals that these operators recover must in fact be much reduced, as
posed in questions (1.a) and (1.c).

One remark which we expand later on is that using universal operators in
practice, even when presented with the option, is in fact undesirable in most cases.
The reason is that they offer inferior reconstruction performance compared to
structured operators. However, we note that this doesn’t hold when the signal has
unknown properties, specifically when we don’t know of a representation that can
render it sparse (luckily, most signals encountered in practice do offer such prior
knowledge).

2.1 Generalised Flip Test

We now generalise the flip test to allow for any sparsity model, any signal class,
any sampling operator and any recovery algorithm. The original flip test presented
earlier is then just a special case. The purpose behind designing such a test is to
allow probing some of the properties chosen for (or imposed by) the problem, e.g.
whether the sparsity model chosen is too crude. To exemplify its applicability, we
apply it to three existing sparsity models when considering Fourier and Hadamard
measurements and X-lets as the sparsity representation: the classic sparsity model
[1, 2], the weighted sparsity model [19] and the sparsity in levels model [6].

The generalised flip test is as follows:

(i) Signal model. Decide on the type of signals of interest in, e.g. 1D piecewise
smooth functions, 2D images, smooth functions, etc. Create a discrete vector
x coming from the discretisation of this desired signal model.

(ii) Sparse transform. Choose a sparsifying transform W such that Wx is
sufficiently sparse. See more details in step (vi).
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Fig. 2 Flip tests for structured operators. Recovery from original versus flipped wavelet coef-
ficients for various images of sizes 256 × 256 and 512 × 512. The percentage shown is the
subsampled fraction of coefficients, i.e. |PΩ |/N . The sparsity matrix W is Daubechies-4. Left:
Recovery from original wavelet coefficients. Middle: Recovery from flipped wavelet coefficients.
Right: The subsampling map PΩ
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(iii) Measurements and sampling strategy. Choose a measurement operator A ∈
C
m×N e.g. Fourier, Hadamard, Gaussian, etc. For orthogonal operators, such

as Fourier, Hadamard, DCT and others, also specify the subsampling strategy
for selecting them rows, e.g. uniform random, power law [9], half-half [2, 20],
multilevel [6, 7], etc.

(iv) Recovery algorithm. Choose a recovery algorithm Δ : Cm → C
N . For

example, �1 minimisation, i.e. solving minz∈CN ||z||1 s.t. AW−1z = Ax.
(v) Sparsity structure model. Choose the model of the sparsity structure to be

tested, for example, the classic sparsity model [1–4], weighted sparsity [19],
sparsity in levels [6, 7] or another structured model.

(vi) The test. Perform the following experiment:

• Generate a signal x0 from the model in (i) and obtain Wx0 using the
sparsifying transform from (ii), and then threshold Wx0 so that it is
perfectly sparse (see next step for how to determine the threshold level).
If the sparsity model from (v) does not depend on the magnitudes of the
entries inWx0 (e.g. models such as sparsity, weighted sparsity and sparsity
in levels), then set all the non-zero entries in Wx0 to a positive constant α,
i.e. obtain an x so that (Wx)i = α for all i ∈ supp(Wx0). This is to make
all non-zeros equally important in order to avoid small coefficients giving
false positives in the next step.

• Perform a reconstruction with measurements Ax using the sampling oper-
ator from (iii) and the recovery algorithm from (iv). If x is not recovered
exactly (within a low tolerance), then decrease the thresholding level for
Wx0 in the above step to obtain a sparser x and repeat until x is recovered
exactly.

• Create several new signals x1, x2, . . . such that Wxj are in the same
structured sparsity class from (iv) as Wx is. Specifically, ensure that all
vectors Wx and Wxj give the same value under the sparsity measure
defined in the model from (iv), with non-zero entries set to some positive
α if the sparsity model does not involve magnitudes. For example, for the
classic sparsity model, all Wxj must have the same number of non-zero
entries as Wx and magnitudes equal to some positive α; for the weighted
sparsity model, all Wxj must have the same weighted �0 norm and non-
zero entries set to some positive α; etc.

• Obtain a recovery for each xj using the same operator A and algorithm
Δ. Ensure the recovery is consistent by averaging over several trials if A
entails any kind of randomisation.

(vii) Interpreting test results. First, if any of the recovery tests failed, then the
structured sparsity model chosen in (v) is not appropriate for the signal model,
sparse transform, measurements and recovery algorithm chosen in (i)–(iv),
respectively, and the conjectured model can be ruled out. Second, if the
recovery of sufficiently many and different xj is successful, this suggests that
the structured sparsity model could be correct – though this is never a complete
validation of the model.
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We shall now test two sparsity models for structured 1D and 2D signals using
structured operators. Figures 3 and 4 show the signals x0, Wx0, Wx (thresholded)
and their reconstructions via �1 minimisation of (1), which is the recovery approach
we shall use. Throughout all examples, η = 0 in (1).

2.2 The Classic Sparsity Model and X-Lets

The classic sparsity model is the first CS model [1–4] and states that the loca-
tion of the non-zero entries of Wx is not important, only the sparsity measure
s = | supp(Wx)| is important. In this model, operators that satisfy the RIP with
appropriate constant can recover all s-sparse vectors when using �1 minimisation.
The flip test for this model is the original flip test introduced in [6]. Specifically, we
take A to be the Fourier operator, W to be any discrete wavelet transform and x to
be a natural image, and the new signal xj is generated so that Wxj is the flipped
version of Wx, i.e. (Wxj )k = (Wx)N−k+1, thus being in the same sparsity model
as the sparsity measure is preserved since | supp(Wx)| = | supp(Wxj )| = s.

Figures 5 and 6 show a generalised flip test for this model. The marked
differences between the two recoveries demonstrate that the classic sparsity model
and RIP are not appropriate for this class of operators and signals. Simply put, one
does not recover all s-sparse vectors, and the location of the non-zero entries inWx
is actually important when dealing with structured operators and structured signals.
The same conclusion was reached when we repeated this experiment for a large
number of various natural images and combinations of Fourier, Hadamard and DCT
measurements (see [6, 7]).

2.3 The Sparsity in Levels Model and X-Lets

Another structured sparsity model is sparsity in levels [6, 7]. It is motivated by the
fact that any X-lets have a particular level structure according to their scales. As
seen below, this model defines a vector {sk} of local sparsities and level boundaries
{Mk} in order to capture sparsity in a more refined manner. As such, it is expected
to contain a smaller class of signals. This model also has its own RIP and robust
nullspace variant.

Definition 1 (Sparsity in levels) Let y ∈ C
N . For r ∈ N let M = (M1, . . . ,Mr) ∈

N
r and s = (s1, . . . , sr ) ∈ N

r , with sk ≤ Mk−Mk−1, k = 1, . . . , r , whereM0 = 0.
We say that y is (s,M)-sparse if, for each k = 1, . . . , r , we have |Δk| ≤ sk , where

Δk := supp(y) ∩ {Mk−1 + 1, . . . ,Mk}.
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Wx (top) and its �1 recovery (bottom)

Fig. 3 Piecewise smooth 1D signal x0 and recovery into Haar wavelets fromm = 1000 Hadamard
samples taken using a half-half scheme (firstm/2 samples taken fully from the lower ordered rows
and the other m/2 uniformly at random from the remaining rows), which is known to be a good
all-round strategy [2, 20]. HereWx was thresholded to s = 150 Haar coefficients
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Fig. 5 Flip test for the classic sparsity model with piecewise smooth 1D signals. Wxj (top) and
its �1 recovery (bottom). All test elements, except xj , are identical to those used in Fig. 3

We write Σs,M for the set of (s,M)-sparse vectors and define the best (s,M)-term
approximation as

σs,M(y)1 = min
z∈Σs,M

‖y − z‖1.

Moreover, we say that ∪rk=1Δk is an (s,M)-sparse set of integers.

Definition 2 (RIP in levels) Given an r-level sparsity pattern (s,M), where Mr =
N , we say that the matrix U ∈ C

m×N satisfies the RIP in levels (RIPL) with RIPL
constant δs,M ≥ 0 if for all y ∈ Σs,M, we have

(1− δs,M)‖y‖2
2 ≤ ‖Uy‖2

2 ≤ (1+ δs,M)‖y‖2
2.

Just as the classical definition of the RIP can be extended to RIP in levels, the
robust nullspace property has a an extension called the robust nullspace property in
levels. As in the classical case, the RIP in levels is a stronger assumption.

Definition 3 (Robust nullspace property in levels) A matrix U ∈ C
m×n satisfies

the �2 robust nullspace property in levels of order (s,M) if there is a ρ ∈ (0, 1) and
a τ > 0 such that

‖vS‖2 ≤ ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 (3)
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for all (s,M) -sparse sets S and vectors v ∈ C
n.

Similar to the classical RIP concepts, the RIP in levels and robust NSP in levels
imply recovery of all (s,M) sparse vectors [21, 22] (see also [23]). However, we
need the concept of the ratio constant of a sparsity pattern (s,M), which we denote
by ηs,M, is given by ηs,M := maxi,j si/sj . If the sparsity pattern (s,M) has r levels
and there is a j ∈ {1, 2, . . . , r} for which sj = 0, then we write ηs,M = ∞.

Theorem 2 (�2 rNSP of order (s,M) recovery theorem) Suppose that a matrix
A ∈ C

m×n satisfies the �2 robust nullspace property of order (s,M) with constants
ρ ∈ (0, 1) and τ > 0. Let x ∈ C

n and y ∈ C
m satisfy ‖Ax − y‖2 < η. Then any

minimiser x̃ of the �1 minimisation problem (1) satisfy

‖x̃ − x‖1 ≤ C1σs,M(x)1 + C2η
√
s̃ (4)

‖x̃ − x‖2 ≤ σs,M(x)1√
s̃

(

C3 + C4 4
√
rηs,M

)+ 2η
(

C5 + C6 4
√
rηs,M

)

(5)

where s̃ = s1+ . . .+ sr , r is the number of levels and the constants Cj only depend
on ρ and τ .

We shall test this model in the same manner, with an interest towards structured
operators and structured signals. Let the sparsity transform W be a wavelet
transform and let the level boundaries M correspond to the wavelet scale boundaries.
For this model, the flipped signals Wxj must have the same (s,M) sparsity as Wx,
i.e. the local sparsities and the level boundaries must be preserved. In other words,
we can move coefficients within wavelet levels, but not across levels.

Figures 7 and 8 show results of the flip test. We ran the same test for various
other structured signals and structured operators, and the results were consistent,
e.g. Fig. 9 shows the result of 1000 different signals. As suggested by the results,
sparsity in levels seems to be a class that is actually recovered. As previously stated
though, the flip test cannot guarantee that this is true for the entire class, since the
flip test cannot entirely prove a model correct (unless it tests all signals in the class,
which is infeasible).

3 Does Structured Sampling Outperform Incoherent
Sampling?

Being interested in structured signals, and having discussed sparsity models, we turn
our attention to problems where one has the freedom to design the sampling mech-
anism, such as the single-pixel camera [24], lensless camera [25] or fluorescence
microscopy [7, 20], which can implement either incoherent matrices (e.g. random
sub-Gaussian, expanders, etc.) or structured matrices (e.g. Hadamard or DCT).
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Fig. 7 Flip test for the sparsity in levels model with piecewise smooth 1D signals.Wxj (top) and
its �1 recovery (bottom). All test components, except xj , are identical to those used in Fig. 3

Can we outperform incoherent sampling? At first that appears to be difficult as
one typically needs m � s log(N) samples to recover all s-sparse vectors from
incoherent measurements. This bound is optimal for recovering sparse vectors, so it
seems hard to believe that one can do better. However, the context changes when
we restrict the class of s-sparse signals to signals that have substantially more
structure, such as natural images. As shown empirically and discussed in [7], when
dealing with such signals, using a variable density sampling procedure and either
Fourier or Hadamard measurements, one can substantially outperform sampling
with incoherent matrices whenever the sparsifying transform consists of wavelets,
X-lets or total variation. In fact, [7] showed that using standard �1 recovery and
structured sampling, one can substantially outperform incoherent sampling even
when structured recovery algorithms are used, i.e. algorithms that exploit signal
structure during the recovery phase, such as model-based CS [26], TurboAMP [27],
Bayesian CS [28], etc.

Here we provide a theoretical justification for this phenomenon, followed by
numerical results. We commence by defining the sampling scheme.

Definition 4 (Multilevel random sampling) Let r ∈ N, N = (N1, . . . , Nr) ∈ N
r

with 1 ≤ N1 < . . . < Nr , m = (m1, . . . , mr) ∈ N
r , with mk ≤ Nk − Nk−1,

k = 1, . . . , r , and suppose that Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k =
1, . . . , r, are chosen uniformly at random, where N0 = 0. We refer to the set Ω =
ΩN,m = Ω1 ∪ . . . ∪Ωr as an (N,m)-multilevel sampling scheme.

First, we define the discrete Fourier transform Udft. Let x = {x(t)}N−1
t=0 ∈ C

N

be a signal and the Fourier transform of x be Fx(ω) = N−1/2 ∑N
t=1 x(t)e

2π iωt/N ,
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Fig. 9 Histogram showing recovery of 1000 different xj randomised signals that have the same
(s,M) sparsity as the original signal x. Top: 1D signal x from Fig. 3. Bottom: 2D signal x from
Fig. 4. All test elements, except xj , are identical to those used in Figs. 3 and 4, respectively

with ω ∈ R, and then write F ∈ C
N×N for the corresponding matrix, so that

Fx = {Fx(ω)}N/2ω=−N/2+1. We then let Udft be the row permuted version of F
where frequencies are reordered according to the bijection θ : Z → N defined by
θ(0) = 1, θ(1) = 2, θ(−1) = 3, etc.

Theorem 3 (Fourier to Haar) Let ε ∈ (0, e−1] and U = UdftV
−1
dwt ∈ C

N×N,
where Vdwt denotes the discrete Haar transform. Let x ∈ C

N . Suppose that
Ω = ΩN,m is a multilevel sampling scheme and (s,M) is a multilevel sparsity
structure as described above where M = N correspond to levels defined by the
wavelet scales (where potentially several scales could be combined into one level).
Moreover, suppose that s1 = M1 and s1 ≤ s2. If

m1 = M1, mj �

⎛

⎝sj +
r

∑

l=2,l �=j
2−

|j−l|
2 sl

⎞

⎠ log(ε−1) log(N), j = 2, . . . , r,

(6)
then any minimiser z of (1) with A = PΩU satisfies

‖z− x‖ ≤ C
(

δ
√
D(1+ E√s)+ σs,M(x)

)

, (7)
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with probability exceeding 1−sε, where s = s1+ . . .+sr , C is a universal constant,

D = 1 +
√

log2(6ε−1)
log2(4EN

√
s)

and E = maxj=1,...,r {(Nj − Nj−1)/mj }. In particular, the

total number of measurements m = M1 +m2 + . . .+mr satisfies

m ≥ M1 +G (s2 + . . .+ sr ) log(ε−1) log(N), (8)

where G is a universal constant.

3.1 Exploiting Structure During the Sampling Procedure:
Discussion and Comparison

The universality of many random matrices is a reason of their popularity in CS
literature. As mentioned earlier, a random matrix A ∈ C

m×N is universal if for
any isometry W ∈ C

N×N , the matrix AW has the RIP with high probability. This
allows the usage of sparsifying transforms such as wavelets to render signals sparse,
coupled with a random (fat) matrix to sample the signal, which would then allow
the usage of the classic CS theory to obtain performance guarantees.

These operators are agnostic to the signal structure and tend to spread out
the signal information in each sample, i.e. tend to make every sample carry the
same amount of information about the signal. This is good when there is no prior
information about the signal, as one does not need to care which samples to take, but
only how many samples to take, but what if the signal does possess further structure?

Typical signals in practice exhibit far more structure than sparsity alone. For
starters, natural signals tend to possess asymptotic structures in their wavelet
representation. Using a universal operator to sample these signals cannot exploit
this structure during the sampling procedure. However, it is possible to leverage
this structure during the reconstruction procedure. This is what we call structured
recovery algorithms, which include model-based CS [26], Bayesian CS [28],
TurboAMP [27] and others. These aim to exploit an assumed structure of the
signal during the reconstruction procedure, after the signal has been sampled. These
algorithms typically exploit the connected structure of the wavelet coefficients,
known as the connected tree, a dependency model between the wavelet coefficients
of most real-world signals, which is a stronger assumption than asymptotic sparsity
(see also Note 2). A typical drawback of such algorithms is that they generally
also assume a prior probability distribution of the information within the samples
(performance may suffer if the signal or the sampling operator gives a different
distribution). Another drawback is that they may assume a specific class of sparsity
bases, e.g. wavelets (replacing the sparsifying operator can yield poor results).

A sampling strategy that leverages the asymptotic sparsity behaviour is variable
density sampling. This is applied to sample rows from structured sampling operators
in a more systematic fashion, in an attempt to extract more relevant information
from the signal during the sampling stage. In what follows, we use a variant of
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Original (256×256)Original (256×256) Gauss – �1(19.9%)Gauss – �1(19.9%) Noiselet – �1(19.9%)Noiselet – �1(19.9%)

Fig. 10 12.5% subsampling at 256 × 256 (8192 samples). Unstructured (incoherent) sampling
using random Gaussian measurements, as well as noiselets, with unstructured recovery (standard
�1). The sparsifying operator was Daubechies-4 wavelets. The percentages shown are the relative
�2 errors with respect to the original image

variable density sampling which we called multilevel sampling in Definition 4 [6,
7]. In short, the sampling space is split into r adjacent levels, with boundaries not
necessarily matching the incoherence levels, where each level samples a fixed but
decreasing fraction of samples pk [7]. This ensures that there is non-zero sampling
in all sampling levels, which is important. In essence, we want to make it easier
for the reconstruction algorithm to approach the original signal, by sampling more
relevant information about the signal to begin with (see also Note 1). This sampling
structure allowed to obtain the theoretical recovery guarantees in [6] and to explain
the success of variable density seen previously in practice.

In Figs. 10, 11, 12, 13 and 14, we perform a series of reconstructions with
both unstructured (universal) and structured sampling, as well as unstructured
and structured recovery. A key takeaway is that exploiting structure during the
sampling procedure allows more headroom during reconstruction, and thus better
performance is expected whenever the signal has an asymptotic sparsity structure
in wavelets (luckily, the majority of real-world images possess this property).
Essentially, it allows the reconstruction to better highlight the important wavelet
coefficients.

Figure 10 shows the typical performance when sampling with a universal random
matrix and reconstructed with classic �1 minimisation. For natural images, this is
bound to be of very poor performance. Speed or storage is not really an issue, as one
can obtain statistics similar to sub-Gaussian random matrices in the limit by using
deterministic matrices with specific properties (e.g. noiselets, permuted Fourier,
etc.). Figure 11 exemplifies performance of some structured algorithms that exploit
the connected wavelet tree when the signal is sampled using a random matrix. It
is interesting to observe that not all such algorithms achieve a better reconstruction
than standard �1 reconstruction. There are several reasons for this, e.g. the samples
distribution happens to be less well aligned with the algorithm’s prior, the sampling
amount is too low for the algorithm to perform, etc.
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Original (256×256)Original (256×256) Gauss – Model-based (21.1%)Gauss – Model-based (21.1%) Gauss – BCS (15.5%)Gauss – BCS (15.5%)

Gauss – e-AM (14.9%)Gauss – e-AM (14.9%) Gauss – TurboAMP (20.9%)Gauss – TurboAMP (20.9%)

Fig. 11 12.5% subsampling at 256 × 256 (8192 samples). Unstructured (incoherent) sampling
with random Gaussian matrices and structured recovery (algorithms that exploit the wavelet tree
structure during reconstruction). The sparsifying operator in all cases was Daubechies-4 wavelets.
The percentages shown are the relative �2 errors with respect to the original image

Figure 12 shows that even a partly structured sampling procedure can offer
visible gains over unstructured sampling. Here we undersample rows from the
discrete cosine transform (DCT), making sure that all the low ordered (low
frequency) rows are included – this is based on the sensible assumption that for
natural images, much of the signal’s energy is concentrated in those rows.

In Fig. 13, we use fully structured sampling, where the rows of the DCT matrix
are sampled using variable density sampling (multilevel sampling). The results are
visibly superior, for reasons described above. It also shows that using a simple and
general reconstruction algorithm (standard �1 minimisation) allows us to use any
different types of sparsifying operators: we show results using wavelets, dual-tree
wavelets [29], curvelets [30] and shearlets [31]. These all share the property that the
coefficients of the signal representation have an asymptotic sparsity structure; hence,
using variable density sampling works efficiently for all of them. In this context,
the holy grail question is: what is the optimum sampling map? In other words,
which m rows of the DCT matrix should one sample to maximise reconstruction
quality. Sadly, although the matrices are fully known in advance, the signal is not.
The optimum sampling map depends on the sparsity structure of Wx, i.e. of the
signal representation within the sparsity basis – see also Note 1.

Figure 14 illustrates that simply pairing structured recovery algorithms that
exploit the wavelet connected tree with a structured sampling operator can fail.
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Original (256×256)Original (256×256)

DCT two-level sampling mapDCT two-level sampling map DCT two-level – �1(14.9%)DCT two-level – �1(14.9%)

DCT+Noiselet sampling mapDCT+Noiselet sampling map DCT+Noiselet – �1(13.2%)DCT+Noiselet – �1(13.2%)

Fig. 12 12.5% subsampling at 256× 256 (8192 samples). Partly structured sampling using DCT
with unstructured recovery. The DCT+ noiselet sampling takes part of the samples using the DCT
matrix, while the rest are taken using noiselet (this is close to sub-Gaussian in the limit). The
sparsifying operator in all cases was Daubechies-4 wavelets. The percentages shown are the relative
�2 errors with respect to the original image
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Original (256×256)Original (256×256) DCT multilevel (ML) mapDCT multilevel (ML) map

DCT ML to db4 – �1(12.3%)DCT ML to db4 – �1(12.3%) DCT ML to Curvelets – �1(11.0%)DCT ML to Curvelets – �1(11.0%)

DCT ML to DTWCT – �1(10.9%)DCT ML to DTWCT – �1(10.9%) DCT ML to Shearlets – �1(10.9%)DCT ML to Shearlets – �1(10.9%)

Fig. 13 12.5% subsampling at 256× 256 (8192 samples). Fully structured sampling (DCT multi-
level) and unstructured recovery (standard �1) with different sparsifying operators (Daubechies-4
wavelets, curvelets, dual-tree complex wavelets, shearlets, TV). These show that properly exploit-
ing sparsity structure during the sampling procedure via a fully structured sampling operator is key,
and using standard �1 recovery is sufficient for a visibly superior reconstruction quality compared
to unstructured (incoherent) sampling or partly structured sampling seen in Figs. 10, 11 and 12,
respectively. The percentages shown are the relative �2 errors with respect to the original image
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Original (256×256)Original (256×256) DCT multilevel (ML) mapDCT multilevel (ML) map

DCT ML – Model-based (59.3%)DCT ML – Model-based (59.3%) DCT ML – TurboAMP (100%)DCT ML – TurboAMP (100%)

DCT ML – e-AM (30.57%)DCT ML – e-AM (30.57%) DCT ML – BCS (47.0%)DCT ML – BCS (47.0%)

Fig. 14 12.5% subsampling at 256 × 256 (8192 samples). Fully structured sampling (DCT
multilevel) and structured recovery algorithms. The failure of these algorithms to recover the
image is due to the fact that they assume the sampling operator to be incoherent, such as sub-
Gaussian, which in this case it is not (it is a structured DCT operator). This example shows that
blindly combining structured sampling operators with structured recovery algorithms can in fact
break down rather than improve the result. The sparsifying operator in all cases was Daubechies-4
wavelets. The percentages shown are the relative �2 errors with respect to the original image
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In all the cases shown, these algorithms expect measurements to be taken using
an incoherent operator, such as a random matrix, whereas the undersampled DCT
gives a very different measurements distribution, and thus the algorithms fail to
converge to the most important wavelet coefficients. It is theoretically possible to
successfully couple such a structured sampling operator with a structured recovery
algorithm, which is the subject of further research.

Note 1: Optimal sampling. Sampling using a structured operator like Fourier,
DCT or Hadamard does not mean that one should seek to maximise the sampled
signal energy. That would be the classic compression case and is a common
misconception in practice when it comes to CS. In CS, this is in fact not optimal. For
example, if we sample with a Fourier matrix F and we are restricted to maximumm
samples, then choosing PΩ such that ||PΩFx|| is maximised (or some other vector
norm) does not in fact give the best CS reconstruction when we recover in, say, a
wavelet basis. This is because the wavelet (sparsity) structure is different than that
of Fourier, and the CS reconstruction algorithm leverages the sparsity of the wavelet
representation, not that of the Fourier representation. The takeaway message is that,
even if we could sample the ‘best’ Fourier samples (which, in practice, we cannot),
we should not aim to do that.

Note 2: Asymptotic sparsity vs. wavelet tree. We note that there are fundamental
differences between the asymptotic sparsity model we presented and the connected
tree of wavelet coefficients. The latter assumes that wavelet coefficients live on a
connected tree, a known phenomenon of wavelet signal representation stemming
from the ‘persistence across scales’ phenomenon [32], where large wavelet coef-
ficients have large child coefficients. The asymptotic sparsity model is a much
more general and relaxed model, which makes no assumption about dependencies
between wavelet coefficients. It only assumes different local sparsities sk in a level-
based structure, though the levels need not be dyadic or correspond to the wavelet
levels.

4 From Linear to Non-linear: New Computational
Challenges

In the previous sections, we have discussed how sparse regularisation and com-
pressed sensing have become mainstays in modern computational harmonic analysis
and how structure is the key to make this approach work. However, sparse
regularisation has also, through the optimisation problems that have to be solved,
incorporated non-linear techniques as new standard tools in signal and image
processing. This means that there are computational challenges that are very
different from more traditional problems using linear techniques. In particular,
classical computational hurdles in harmonic analysis have been related to creating
fast transforms such as fast Fourier transforms, wavelet transforms or in general X-
lets transforms. However, non-linear techniques mean different numerical problems,



Structure in Computational Harmonic Analysis 149

and so far we have only treated these non-linear problems as computational
tasks that can be computed by a ‘black box’ providing a minimiser to a convex
optimisation problem. In the following sections, we will discuss the following:

(i) One cannot treat the optimisation problems needed in sparse regularisation
as “black box” problems that can be solved by standard software packages.
Indeed, as the goal is to compute minimisers and not the objective function,
it is easy to make standard packages in, for example, MATLAB, fail and not
even produce one correct digit, even if the input is well-conditioned.

(ii) The failure of standard algorithms and software packages (documented in
Sect. 4.1.4) on simple well-conditioned problems can be explained by theorems
from the foundations of computational mathematics such as Theorems 4
and 6 in Sect. 6. These theorems reveal several intricate phenomena suggesting
how the success of computing minimisers of problems occurring in sparse
regularisation is a delicate matter.

(iii) The success of computing minimisers used in sparse regularisation cannot be
described by standard optimisation theory. The success can only be guaranteed
under very specific conditions found in sparse regularisation, and this is
linked to Smale’s ninth problem (from the list of mathematical problems
for the twenty-first century) [33] and its extensions [34]. Moreover, the
specific conditions are exactly those established through the structure in sparse
regularisation described in the previous sections.

The results presented are based on recent developments in the theory of the
solvability complexity index (SCI) hierarchy [34–38], and the proofs can be found
in [34].

4.1 Key Problems in Modern Computational Harmonic
Analysis

The key assumption in order to apply, for example, compressed sensing successfully
in practice is that one can easily compute minimisers to the basis pursuit (BP)
problem:

x ∈ argmin
z
‖z‖1 subject to ‖Az− y‖ ≤ η, η ≥ 0, (9)

where A ∈ C
m×N and y ∈ C

m. Note that in the real case, the BP problem (9) can
be recasted into a linear program when η = 0, in particular, the problem of finding

z ∈ argmin
x
〈x, c〉 such that Ax = y, x ≥ 0, (10)
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when given the input A ∈ R
m×N, c ∈ R

N and y ∈ R
m. Other popular and related

optimisation problems are unconstrained Lasso (UL)

x ∈ argmin
z
‖Az− y‖2

2 + λ‖z‖1, λ > 0, (11)

and constrained Lasso (CL)

x ∈ argmin
z
‖Az− y‖2 subject to ‖z‖1 ≤ τ, τ > 0. (12)

The three problems above are quite similar in the way that they may share
minimisers for different values of δ, λ and τ . However, they are not equivalent
as computational problems. Indeed, BP may not always have a solution, whereas
both UL and CL always will. But although they are not equivalent as computational
problems one may often, in practice, approximate BP by solving either UL or CL
trying to estimate the values λ and τ to get close to solutions of BP.

Note that constrained Lasso and unconstrained Lasso are also key problems in
statistical estimation and imaging and are therefore of interest beyond, for example,
compressed sensing. The problems above may have multivalued solutions in certain
cases. Whenever this occurs, the computational problem is to compute any of these
solutions. We will throughout the paper use the notation

Ξ : Ω →M , (13)

where, for an input ι ∈ Ω , Ξ(ι) represents the set of all solutions of any of the
problems above. Moreover, Ω is the domain of the function, and M denotes the
metric space where the appropriate metric will be specified. Typically, this is RN or
C
N equipped with the ‖ · ‖2 norm; however, any norm will suffice.

4.1.1 Computing Minimisers: Not the Objective Function

It is tempting to treat the optimisation problems above as already solved, meaning
that the rich classical literature [39–45] in optimisation will cover these convex
problems, and hence the task is reduced to finding ones favourite numerical
solver. Here is where we have to be careful. Note that classical optimisation is
traditionally concerned with computing the objective function. Indeed, in many
classical problems in operational research that have provided much motivation for
convex optimisation, the objective function typically has a physical meaning. For
example, one may be interested in minimising time or energy consumption in order
to optimise a certain procedure. Thus, most of the classical optimisation theory is
devoted to finding

f (x∗) = min{f (x) : x ∈X },
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where f : Rn → R is some convex function, X ⊂ R
n is some convex set and

x∗ ⊂ X is a minimiser. Numerically, one wants to compute, for any ε > 0, a
xε ∈X such that

f (xε)− f (x∗) ≤ ε.

Note, however, that xε may have very little to do with any minimiser x∗. In
particular, f (xε)− f (x∗) ≤ ε does not mean that ‖xε − x∗‖ ≤ ε.

The objective of computing the objective function changes sharply with the
introduction of new methods in the 1990s and early 2000s in mathematics of
information, in particular in statistical estimation, image processing, compressed
sensing and machine learning. In these areas, where convex optimisation is used, one
almost exclusively focuses on the minimisers, and not the objective function. As an
example, we may consider the developments in the previous sections and realise that
in compressed sensing, the objective function is typically the �1 norm of the wavelet
coefficients of an image. This is a quantity that is rather uninteresting; moreover,
its physical meaning is hard to interpret in any meaningful way. In fact, when
doing computation in compressed sensing and sparse regularisation, one rarely ever
concern oneself with the objective function. It is the minimiser that is the focus, and
this changes also the computational challenges.

Warning! Computing a minimiser x ∈ C
N of any of the problems above is much

more difficult than computing the minimum value f (x∗) ∈ R+. The key is that one
will rarely work with exact numerical representations of numbers, and this fact has
consequences when it comes to computing minimisers. Moreover, as we will see,
this issue is much more subtle than just stability analysis.

The key is to understand how to deal with inexact input, and to motivate this, we
use two simple examples from linear programming and linear systems. Note that, as
mentioned above, BP can be recast as a linear program in the real case. Thus, linear
programs go hand in hand with one of the key optimisation problems of compressed
sensing.

4.1.2 Question on Existence of Algorithms in Optimisation

The change of focus from the objective function to the minimisers, as discussed
above, leaves the following fundamental question that does not have an obvious
answer in the standard optimisation literature.

Q1 Given any of the following problems: linear programming (LP), basis pursuit
(BP), unconstrained Lasso (UL) and constrained Lasso (CL), does there exist
an algorithm such that for any K ∈ N and any input with real (or complex)
numbers, the algorithm can produce a minimiser that has at least K correct
digits?

Remark 1 (Real (or complex) input) The reader may ask why this is not known in
the optimisation literature. In particular, how does this relate to the well-established
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statement: LP is in P? This statement is only true for rational inputs with L digits,
and the ‘in P’ statement means that there is a polynomial time algorithm (polynomial
in the number of variables n and L) for the problem. The key here is that we require
the algorithm to work not just with rational inputs, but other (computable) real
numbers such as

√
2, e2/5πi , etc. These numbers can never be represented exactly;

however, they can be approximated arbitrarily well. Thus, to produce K correct
digits in the solution, the algorithm can use as many correct digits L in its input as
it wants (it may even choose L adaptively). However, it must guarantee K correct
digits in its output (see also Sect. 4.2.1).

4.1.3 Computing with Inexact Input

Computing with exact numbers is a luxury that is rarely enjoyed in scientific
computing. There is a variety of reasons for this. The most obvious reason is that
numbers like

√
2, e2πi/5 or cos(3) can never be computed exactly, and we have

to resort to an approximate decimal representation. What is important is that such
cases happen in compressed sensing all the time. In particular, we use the discrete
Fourier transform, the discrete cosine transform, discrete wavelet transforms and
random Gaussian matrices on a daily basis. All of these contain irrational numbers.
However, the numerical representation can be arbitrarily close to the number it
approximates.

Another reason for inexact representation is that most of the popular program-
ming languages used for numerical calculations such as MATLAB, C++, Python,
Fortran, etc. are based on floating point arithmetic. This means that even rational
numbers may be represented inexactly. For example, 1/3 is represented as a base-
2 approximation to 1/3. The number of decimals is dependent on the machine
epsilon εmach, which in IEEE standard double precision is 2−52 ≈ 2.22 × 10−16.
However, many modern programming languages (MATLAB, Mathematica, etc.)
allow variable precision that, depending on computer memory, can be arbitrarily
small. To be able to analyse the computations, the issue of inexact input must
be taken into account. Indeed, the following quote from the list of mathematical
problems for the twenty-first century illustrates the problem in a very accurate way:

But real number computations and algorithms which work only in exact
arithmetic can offer only limited understanding. Models which process
approximate inputs and which permit round-off computations are called
for.

— S. Smale (from the list of mathematical problems for the twenty-first
century [33])

Smale’s argument highlights the traditional dichotomy between the discrete and
continuous. Problems with finite input are pervasive in practical computing. How-
ever, the world of scientific computing is not finite. Given the widespread encounter
of approximated real numbers in operators and transforms used in practice, a key
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question we can ask is, therefore, how does this impact the computation of the key
problems we want to compute?

4.1.4 Can We Compute Minimisers of Linear Programs? A Simple Test

We will consider MATLAB’s standard solver for LP, namely, linprog. However,
there are many other commercial packages for solving LPs and other convex
optimisation problems. They will all suffer from the same issues as we present
below.

Example 1 (MATLAB’s linprog for linear programming) The linprog com-
mand offers three different solvers: ‘dual-simplex’ (default), interior-point-legacy’
and ‘interior-point’. It returns a minimiser of the linear program

z ∈ argmin
x
〈x, c〉 such that Ax = y, x ≥ 0, (14)

when given the input A ∈ R
m×N, c ∈ R

N and y ∈ R
m. Note that regardless of the

solver, the linprog command has an EXIT FLAG parameter that determines if
MATLAB can certify the computed solution as correct. This parameter can take the
following values:

1 linprog converged to a solution X.
0 Maximum number of iterations reached.

-2 No feasible point found.
-3 Problem is unbounded.
-4 NaN value encountered during execution

of algorithm.
-5 Both primal and dual problems are infeasible.
-7 Magnitude of search direction became too

small; no further progress can be made.
The problem is ill-posed or badly conditioned.

In the following example, we provide an intriguing test of the performance of
linprog.

Example 2 (Testing MATLAB’s linprog (edition R2019a)) Let

A = [1, 1− x], x > 0, c = [1, 1], y = 1,

where we observe that the exact solution is given by exact_soln = [1, 0]T for all
x > 0. We test all three of the built-in solvers: ‘dual-simplex’, interior-point-legacy’
and ‘interior-point’ in this order. The following snippet tests both linprog and the
EXIT FLAG:

c = [1,1]; y = 1; exact_soln = [1;0];
for k = 1:10
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x = 10^(-k); A = [1,1-x];
[computed_soln, FVAL, EXIT FLAG] =
linprog(c,[],[],A,y,[0,0],[100,100], options);
error(k) = norm(computed_soln-exact_soln);
flag(k) = EXIT FLAG;

end

The options parameter in linprog allows for choosing the solvers ‘dual-
simplex’, ‘interior-point-legacy’ and ‘interior-point’. The other parameters in
options are the default settings, and the results are as follows:

’dual-simplex’

error = 0 0 0 0 0 0 0 1.4 1.4 1.4

flag = 1 1 1 1 1 1 1 1 1 1
---
’interior-point-legacy’

error = 8.7e-11 1.2e-12 3.0e-07 8.7e-12 6.7e-6
7.0e-7 7.1e-7 0.2 0.6 0.7

flag = 1 1 1 1 1 1 1 1 1 1
---
’interior-point’

error = 2.0e-9 1.8e-7 3.2e-07 3.4e-07 3.5e-4
0.7 0.7 1.4 1.4 1.4

flag = 1 1 1 1 1 1 1 1 1 1

The experiment reveals two important issues:

• (Failure of the algorithm) Modern commercial software fails when attempting to
produce minimisers of very basic problems and struggles to produce even one
correct digit despite running double precision.

• (Failure of the exit flag) The software fails to recognise an incorrect output and
wrongly certifies it as correct even though the first digit is incorrect.

There are several reasons why this experiment is of interest. First, it raises basic
questions on why this can happen, and we will address those later on. Second,
it is clear that we have given MATLAB a ‘bad’ problem, but why is this a bad
problem? Moreover, the fact that there might be ‘bad’ problems is well known in
numerical analysis in general, most notably when solving linear systems. Indeed,
this is the case and is typically connected to condition numbers. In view of the
failure linprog, it is tempting to see if MATLAB can spot a ‘bad’ problem in the
context of solving a linear system.
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Example 3 (Linear systems) In this case, we will also give MATLAB a ‘bad’
problem, an ill-conditioned matrix that is. In particular, we let

A =
(

1 0
0 2 · 10−16

)

, y = (1, 1)T .

The result of the MATLAB computation is as follows:

computed_soln = A\y
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.0000e-16.

computed_soln = [1; 5.0000e15]

Note that MATLAB does discover that this is an ill-conditioned problem and indeed
warns that the result may be inaccurate. This is in stark contrast to the linear
programming case where it not only produces wrong results but also certifies them
as correct.

Examples 2 and 3 raise several fundamental questions about computing min-
imisers of basic convex optimisation problems. The most immediate questions are
as follows:

(1) Is the problem of failure specific to the solvers provided by MATLAB, or is this
a global problem for any algorithm?

(2) How can one trust any ‘black box’ algorithm providing minimisers for com-
pressed sensing and sparse regularisation problems?

(3) Why did we get a warning about a potential inaccurate result in the case of a
linear system, but not for linear programming?

(4) Why did MATLAB certify the nonsensical solution as correct in the case of
linear programming?

(5) Can the issue be resolved by using standard notions of condition numbers in
optimisation?

It turns out that the answers to these questions are rather deep and one has to
utilise the theory from the foundations of computational mathematics to provide the
analysis. The rest of this paper is devoted to answering these questions; however,
we will provide some short answers and remarks here.

Remark 2 (Is the problem of failure specific to the MATLAB solvers?) The short
answer is no. Failure will happen for any algorithm. In particular, we have the
somewhat paradoxical result that there does not exist any algorithm that can
compute minimisers of linear programs or any of the problems in (9), (10), (11)
and (12) given inputs of irrational numbers. In the case of linear programming,
one can compute minimisers if the input is rational; however, the fact that almost
all modern programming languages (such as MATLAB) rely on floating point
arithmetic means that in practice most algorithms will fail on certain examples even
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when given rational inputs (just as in Example 2). This will be explained in Sect. 6,
where Example 4 provides the main result.

Remark 3 (Can one trust standard algorithms for compressed sensing?) Despite
the rather paradoxical result mentioned in Remark 2, one can compute solutions
to compressed sensing problems reliably and fast. However, there is a striking
phenomenon that must be handled with care. Indeed, there are standard compressed
sensing problems for which no algorithm can produce arbitrary accuracy even when
allowed arbitrary precision. In fact, there are problems for which no algorithm can
produce five-digit accuracy; however, there exists an algorithm that can produce
four-digit accuracy fast (in O(n3.5) time, where n is the total number of variables).
This is discussed in Example 8. In imaging problems, however, four-digit accuracy
is sufficient as the human eye cannot distinguish differences in pixel values in the
fourth digit.

Remark 4 (Why can MATLAB produce a warning for linear systems?) One can
always compute the solution to a linear system to arbitrary accuracy as long as one
knows that the matrix is invertible and one can utilise arbitrary high precision. An
example of an algorithm that could do this would roughly be as follows. One first
estimates the condition number. Then based on that, decide the precision needed for
solving the linear system. This is in some sense what MATLAB is doing, except it
does not try to refine the precision, but rather gives a warning when the condition
number is too big.

Remark 5 (Why does MATLAB certify a wrong solution as correct?) Contrary to the
linear system case, it is impossible to compute a correct exit flag for an algorithm
trying to solve linear programs with irrational inputs. In fact, it is strictly harder
to compute an exit flag of an algorithm than computing a minimiser of a linear
program. Thus, the EXIT FLAG parameter in linprog is impossible to compute.
As described in Example 6, this is universal and has nothing to do with the particular
implementation in MATLAB.

Remark 6 (Can the issue be resolved by using standard notions of condition?) The
short answer is no. There are four standard condition numbers in optimisation: (1)
the standard condition number of a matrix, (2) the condition number of the solution
map (as a non-linear mapping), (3) the feasibility primary condition numbers and
(4) the condition number capturing the distance to inputs that would provide several
minimisers. As we will see in Example 4, there are examples of classes of inputs
where we have finite and known condition numbers, yet there does not exist any
algorithm that can compute minimisers. However, as we will see in Example 8,
there are cases where the condition numbers may be infinite, yet one can find
algorithms that can compute minimisers to arbitrary accuracy with runtime bounded
by p(n,K), where p is a polynomial, n is the total number of variables andK is the
number of correct digits in the computed solution.
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4.2 The Reason Behind the Failure: Computing with Inexact
Input

The root to all the issues about failure of algorithms, as discussed in the previous
sections, is the fact that we compute on a daily basis with inexact input. A key
question is, therefore, how does this impact the computation of the key problems
we want to compute? To illustrate this question, it is convenient to take a look at the
standard complexity theory.

4.2.1 Standard Complexity Theory: LP is in P, Right?

Standard complexity theory shows that linear programming (LP) is in P (the set of
computable problems that can be computed in polynomial time given a deterministic
Turing machine). This is one of the most celebrated positive results in complexity
theory of optimisation, and when the result was announced, it reached the front
page of The New York Times [46]. Moreover, the standard estimate is that there exist
algorithms, for example Karmarkar’s algorithm, that can compute a minimiser of a
LP with maximum runtime bounded by

O(n3.5L2 · logL · log logL), (15)

where n denotes the number of variables and L is the number of bits or digits
required in the representation of the inputs.

However, what if the input matrix A contains rows from the discrete cosine
transform? What does the estimate (15) tell us? In order to answer these questions,
we need a reformulation so that we can ask a mathematically precise question.
Indeed, we may ask:

(i) Suppose that the input matrix A ∈ N
m×N in the LP in (10) contains the rows

of the discrete cosine transform. Suppose also that the inputs y ∈ R
m and

c ∈ R
N have rational coefficients with, say, five digits. Given K ∈ N, can one

compute a minimiser to the LP with the runtime bounded by p(n,K), where
p is a polynomial, n is the total number of variables and K is the number of
correct digits in the computed solution?

(ii) Is it obvious that there exists an algorithm that can compute K correct digits?
(iii) If such an algorithm exists, what should L (the number of correct digits in

the approximation of the irrational numbers in the matrix A) be, given that we
want K correct digits in the output?

To answer these questions, we first note that we cannot use Karmarkar’s
algorithm (or any of the known polynomial time algorithms) and (15) directly.
Indeed, L = ∞ because we have irrational inputs, and thus (15) does not become
very helpful. However, if we want K correct digits, maybe we could set L = K and
then apply the above algorithm.
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As we will see in Sect. 6, the situation is much more complex. One cannot simply
set L = K and use standard algorithms. In fact, regarding answering Question (i),
it turns out that the standard complexity for finite size inputs can say very little.
Moreover, not only is it impossible to find an algorithm that can compute K digits
with runtime bounded by a polynomial p(n,K), but also it is impossible to find an
algorithm that can compute K digits even when K = 1. Thus, we end up with the
following rather paradoxical result: computing a minimiser of LP is in P when given
rational inputs with L digits; however, it is impossible to compute K correct digits
if the input is irrational, such as for the discrete cosine transform.

It should be noted that asking the questions above in relation to the discrete cosine
transform is deliberate from an applications point of view. Indeed, discrete cosine
and Fourier transforms are used on a daily basis in a wide range of applications
from signal processing, via medical imaging, to astronomy. Thus, given that sparse
regularisation can be used in all these areas, the examples motivating the questions
are far from contrived; they occur daily.

5 Existence of Algorithms and Condition Numbers

As Example 2 suggests and the discussion in the previous sections has alluded to,
there does not exist algorithm that can compute minimisers of some of the basic key
optimisation problems when given inputs such as the discrete Fourier transform.
However, we must make such a statement precise. In order to ask the question does
there exist an algorithm that can compute an approximate solution to the problem,
one must define what an algorithm is. Moreover, when asking about the existence
of an algorithm, this is typically done in connection with condition. In particular,
in scientific computing, one traditionally considers well-conditioned problems and
ill-conditioned problems. And, typically, ill-conditioned problems could be hard
to compute. Thus, it is reasonable to ask about existence of algorithms for well-
conditioned problems.

5.1 The Basic Model: What Is an Algorithm?

There are two main models of computation that formally define an algorithm. The
first is the Turing model where the basic concept of an algorithm is a Turing machine
[47]. A Turing machine only works with integers and hence only with rational
numbers, a feature that makes it very different compared to the BSS-machine
[48]. Indeed, the second approach is the Blum-Shub-Smale (BSS) model where an
algorithm is defined as a BSS-machine that allows for arbitrary real numbers. Since
the two models of computation are not equivalent, one must be careful when making
a statement of the form: ‘there does not exist an algorithm’.
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In order to be able to make universal statements, we will use a theoretical
framework that is based on the solvability complexity index (SCI) hierarchy [34–38]
that encompasses any model of computation. However, we mention in passing that
both the Turing and the BSS model do suffer from the same issue when computing
minimisers of optimisation problems, where the matrix is, for example, the discrete
Fourier transform. Indeed, in either model, the function

x �→ ex x ∈ Q (Turing model), x ∈ R (BSS model)

can only be computed up to a finite, yet arbitrary, small precision. Thus, both models
will have to deal with an approximate input.

Hence, following Smale’s demand for an extended model, suppose now that the
algorithm (Turing or Blum-Shub-Smale (BSS) machine) that should solve any of
the problems in (9), (10), (11), and (12) is equipped with an oracle that can produce
the input to any precision ε̂. Moreover, the oracle computes the input in polynomial
time in | log(ε̂)| (this is a common assumption; see, e.g. Lovász [49, p. 36]). One
may think of this model in the following way. We are given a domain Ω ⊂ C

n of
inputs; however, for ι ∈ Ω , the algorithm cannot access ι but rather ι̃ such that, for
any k ∈ N, ι̃(k) ∈ C

n and ‖ι̃(k)− ι‖∞ ≤ 2−k . In particular, the algorithm can access
ι̃(k) for any k, and the time cost of accessing ι̃(k) is polynomial in k. The key is that
the algorithm must work with any such approximate representation ι̃.

5.2 Questions on Existence of Algorithms for Compressed
Sensing

Suppose now that the algorithm (Turing or Blum-Shub-Smale machine) that should
solve LP is equipped with an oracle that can produce the input to any precision ε̂
and the oracle computes the input polynomially in | log(ε̂)| as described in Sect. 5.1.
The natural question would be:

Question 1 (Is the problem in P?) Given any ε > 0, does there exist an algorithm
that has a uniform bound on the runtime T (ε) such that

T (ε) ≤ P(n,K),

where P is a polynomial, K = | log(ε)| is the number of correct digits in the
computed solution and n is the number of variables in the input?

The model, where one measures the computational cost in the number of
variables n and the error (the number of correct digitsK), is indeed well established
(see Blum, Cucker, Shub and Smale [50, p. 29], Grötschel, Lovász and Schrijver
[46, p. 34] and Valiant [51, p. 131]). However, before one can address Question 1,
one needs to answer the following questions:
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Question 2 (Existence of algorithms: deterministic or randomised) Consider any
of the problems in (9), (10), (11), (12), where the input may be given with some
inaccuracy controlled by ε̂ > 0.

(i) Does there exist an algorithm that can compute an approximate solution, such
that, for an arbitrary ε > 0, the output will be no further than ε away from
a true solution? The algorithm can choose ε̂ to be as small as desired (as a
function of ε and the input) to produce the output.

(ii) Does there exist an algorithm that has a uniform bound on the runtime T (ε)
(depending on an arbitrary ε > 0) for all inputs in its domain when the output
is at least ε-accurate?

When considering randomised algorithms, we can ask questions (i)–(iii) as well,
where the only difference is that we require that the algorithm produces an output
that is at least ε-accurate with probability p > 1/2.

A problem, for which the answer to Question 2 (i) is negative, is referred to
by Turing as non-computable. Note that, clearly, (i) implies no on (ii) and yes on
(ii) implies yes on (i). The immediate reaction from an expert in computational
mathematics will be that Questions 1 and 2 must be related to condition. Indeed,
there is a well-established literature on condition of computational problems.

5.2.1 Condition Numbers in Optimisation

Condition numbers help in understanding the behaviour of mappings under pertur-
bations and are crucial for the analysis of performance of algorithms and complexity
theory. We want to highlight the pioneering work (mentioned in order of publication
dates) by Renegar [52, 53], Blum, Cucker, Shub and Smale [50] and Burgisser and
Cucker [54] where their recent book gives a thorough up-to-date account of the field.
See also [55]. We recall the basic definitions here. The classical condition number
of a matrix A is given by

Cond(A) = ‖A‖‖A−1‖. (16)

For different types of condition numbers related to a mapping Ξ : Ω ⊂ C
n →

C
m, we need to establish what types of perturbations we are interested in. For

example, if Ω denotes the set of diagonal matrices, we may not be interested in
perturbations in the off-diagonal elements as they will always be zero. In particular,
we may only be interested in perturbations in the coordinates that are varying in
the set Ω . Thus, given Ω ⊂ C

n, we define the active coordinates of Ω to be
A (Ω) = {j | ∃ x, y ∈ Ω, xj �= yj }.Moreover, for ν > 0, we define

Ω̃ν = {x | ∃ y ∈ Ω such that ‖x − y‖∞ ≤ ν, xA c = yA c }
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In other words, Ω̃ν is the set of ν-perturbations along the nonconstant coordinates
of elements in Ω . We can now recall some of the classical condition numbers from
the literature [54].

(1) Condition of a mapping: Let Ξ : Ω ⊂ C
n → C

m be a linear or non-linear
mapping, and suppose that Ξ is also defined on Ω̃ν for some ν > 0. Then,

Cond(Ξ) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ω̃ν
0<‖z‖≤ε

{

dist(Ξ(x + z),Ξ(x))
‖z‖

}

, (17)

where we allow for multivalued functions by defining

dist(Ξ(x),Ξ(z)) = min
x̃∈Ξ(x),z̃∈Ξ(z)

‖x̃ − z̃‖.

(2) Distance to infeasibility – the feasibility primal condition number: If Ξ

denotes the solution map to any of the problems in (9), (10), (11), and (12)
with domain Ω , we define, for (A, y) ∈ Ω

ρ(A, y)

= sup
{

δ | ‖Â‖, ‖ŷ‖ ≤ δ, (A+ Â, y + ŷ) ∈ Ω̃1 ⇒ (A+ Â, y + ŷ)
are feasible inputs

}

,

and this yields the feasibility primal (FP) condition number

CFP(A, y) := ‖A‖ ∨ ‖y‖
ρ(A, y)

, (18)

where we use the standard ∨,∧ max/min notation.
(3) Distance to solution with several minimisers – the RCC condition number:
If Ξ denotes the solution map to any of the problems in (9), (10), (11), and (12)
with domain Ω then we define, for (A, y) ∈ Ω ,

'(A, y) = sup
{

δ : ‖Â‖, ‖ŷ‖ ≤ δ, (A+ Â, y + ŷ) ∈ Ω̃1

⇒ (A+ Â, y + ŷ) yields at most one solution
}

,

and this yields the RCC condition number

CRCC(A, y) := ‖A‖2 ∨ ‖y‖2

'(A, y)
. (19)

The above condition numbers are the standard ones used in optimisation. A
potential surprise is that they do not give any insight in the existence of algorithms
for the key computational problems such as linear programming, basis pursuit or
Lasso. We will discuss the details in Sect. 6.1.1.
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6 Paradoxical Results in Optimisation

The following theorems may come as a surprise and provide answers to Questions 1
and 2 and insight into the rather intricate phenomenon of existence and non-
existence of algorithms. The result can be summed up as follows. There is an
infinite classification theory of problems according to the accuracy for which one
can compute a solution. This is a phenomenon that is not covered by standard
complexity and computability theory. In particular, complexity theory strictly
considers only computable problems; however, as the next theorem demonstrates,
paradoxically, there is a complexity theory for non-computable problems.

6.1 Determining the Boundaries of Computation: Why Things
Work and Fail

The following examples help in shedding light on why algorithms may fail com-
pletely on getting a particular accuracy (as suggested in the example in Sect. 4.1.4);
however, some algorithms may be able to get some accuracy fast. For specific
examples in application such as compressed sensing and sparse regularisation, see
Example 8. The following example is a short summary of some of the results in [34].
The statements are made deliberately non-technical in order to be reader friendly.

Example 4 (Determining the boundaries of optimisation) LetΞ denote the solution
map (as in (13)) to any of the problems (9), (10), (11), and (12), and let K > 2 be
an integer. There exists a class Ω of inputs for Ξ so that we have the following:

(i) No algorithm, even randomised, can produce K correct digits for all inputs in
Ω (with probability greater than p > 1/2 in the randomised case).

(ii) There does exist an algorithm that will provide K − 1 correct digits for all
inputs inΩ . However, any algorithm will need an arbitrarily long time to reach
K − 1 correct digits. In particular, there is an Ω ′ ⊂ Ω , with inputs of fixed
dimensions m,N , such that for any T > 0 and any algorithm Γ , there exists
an input ι ∈ Ω ′ such that either Γ (ι) does not approximate Ξ(ι) with K − 1
correct digits or the runtime of Γ on ι is greater than T . Moreover, for any
randomised algorithm Γ ran and p = (0, 1/2) there exists an input ι ∈ Ω ′ such
that

P
(

Γ ran(ι) does not approximate Ξ(ι) with K − 1 correct digits

or the runtime of Γ on ι is > T
)

> p.

(iii) The problem of producing K − 2 correct digits for inputs in Ω is in P (can be
solved in polynomial time in n, the number of variables).
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(iv) If one only considers (i)–(iii), Ω can be chosen with any fixed dimensions
m < N with N ≥ 4. Moreover, if one only considers (i), thenK can be chosen
to be one.

The statements above are true even when we require the input to be well-conditioned
and bounded from above and below, in particular, for any input ι = (y,A) ∈ Ω
(ι = (y, c, A) in the case of LP), we have Cond(AA∗), CFP(ι), Cond(Ξ) ≤ c1,
c2 ≤ ‖ι‖ ≤ c1 for some constants c1, c2,> 0.

There is traditionally a sharp divide in foundations between problems that are
computable, according to Turing’s definition, and those that are not. Moreover,
complexity theory is normally only considered for problems that are computable.
Turing’s definition of computability means that one can compute an approximation
to any accuracy. Although this is a natural definition, it deems many key problems
non-computable despite that they are computed on a daily basis. The key is that
these problems are computed to a sufficient precision needed. Arbitrary precision,
which as discussed in Example 4 may be impossible, is typically not needed.

Example 5 (High precision is not needed in imaging sciences) Take any black and
white (the example is similar for colour images) image at any resolution where the
pixel values are in [0, 1]. Zoom in to any pixel of the image, and perturb the value
of the pixel with the number 10−4. Compared visually with the original pixel, will
you see a difference? The answer will simply be no.

The above example illustrates the delicate issue of Turing’s definition of com-
putability. Indeed, if the human eye cannot distinguish between images with
perturbations in the fourth digit, it may seem like a worthless effort to compute
images with six correct digits. One may argue that what is important is that
the accuracy needed in the particular application is important and that Turing’s
definition should be extended. For example, one could define the concept of K-
computability (in the desired metric), if one can compute K correct digits, and
∞-computability would be the same as Turing’s current concept of computability.
The key is that the traditional definition of computability does not capture vast areas
of problems in computational science that are non-computable, yet form the basis
of many everyday computations in modern data science.

Remark 7 (Linear programming vs. linear systems) Note that, in contrast, the
answer to Question 2 (i) is yes for solving linear systems Ax = y even when
the only information available is that A is invertible. In particular, if we let Ξ1
denote the solution map for linear systems, the problem may become arbitrarily
unstable (Cond(Ξ1) = ∞), yet for linear systems, the answer to Question 2 (i)
is yes. However, if we let Ξ2 denote the solution map for linear programming, as
discussed in Example 4, the answer to Question 2 (i) is no for linear programming,
and one cannot even get one correct digit, even when Cond(Ξ2) ≤ 2, and the norm
of the input is bounded.
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6.1.1 Surprises on Condition in Optimisation

Condition numbers have been crucial in numerical analysis since the dawn of the
field; however, it is equally crucial in foundations of computation and complexity
theory. Indeed, the standard wisdom is that well-conditioned problems should be
easy to compute, whereas ill-conditioned problems may be troublesome. Neverthe-
less, Example 4 demonstrates a rather different scenario. Combined with Theorem 8
on the extended Smale’s ninth problem and compressed sensing, we end up with the
following take-home message:

• (Bounded condition numbers, yet no algorithm exists) All the condition
numbers such as the classical condition number of a matrix (16), the condition
number of the solution map (17) and the feasibility primal condition number (18)
may be bounded with known bounds in addition to known bounds on the input,
yet there are cases where one cannot find an algorithm that will produce even one
correct digit.

• (Infinite RCC condition number, yet there do exist algorithms) The RCC
condition number can be ∞, yet there exist algorithms that can compute the
problem to any precision. Moreover, for most problems in compressed sensing,
the RCC condition number is ∞. In particular, problems including Bernoulli
and subsampled Hadamard matrices always have infinite RCC condition number.
However, many of these problems are even in P.

Thus, the classical notions of condition are not that helpful when answering
questions on the existence of algorithms. For example, requiring that the RCC
condition number should be finite may guarantee the existence of algorithms in
certain cases; however, such an assumption would exclude whole fields such as
compressed sensing and sparse regularisation. Hence, a new concept of condition
numbers is needed in optimisation in order to capture the delicate issues of existence
and non-existence of accurate algorithms.

6.1.2 Why the EXIT FLAG Cannot Be Computed

Example 4 provides a justification for the first part of the experiment in Sect. 4.1.4.
However, the next example explains why MATLAB could not compute a correct exit
flag in its linprog routine. The following example is written with a deliberately
reader friendly jargon; for precise statements, see [34].

Example 6 (Impossibility of computing the exit flag) LetΞ denote the solution map
(as in (13)) to any of the problems (9), (10), (11), and (12), and let K ∈ N. For any
fixed dimensions m < N with N ≥ 4, there exists a class of inputs Ω for Ξ such
that if Γ ′ is an algorithm, for the computational problem of approximating Ξ with
K correct digits, we have the following:
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(i) No algorithm, even randomised with access to an exact solution oracle, can
compute the exit flag of Γ ′ (with probability greater than p > 1/2 in the
randomised case).

(ii) The problem of computing the exit flag of Γ ′ is strictly harder than computing
a K correct digit approximation to Ξ , the original problem.

(iii) For linear programming and basis pursuit, however, there exists a class of
inputs Ω+ �= Ω such that no algorithm, even randomised with non-zero
probability of not halting, can compute the exit flag of Γ ′ (with probability
greater than p > 1/2 in the randomised case), yet one can compute the exit
flag with a deterministic algorithm with access to an exact solution oracle.

Statements (i) and (ii) are true even when we require the input to be well-conditioned
and bounded, in particular, for any input ι = (y,A) ∈ Ω (ι = (y, c, A) in the case
of LP), we have Cond(AA∗), CFP(ι), Cond(Ξ) ≤ c, ‖ι‖ ≤ c for some constant
c > 0.

6.2 A Practical Consequence: How Do You Set Halting
Criteria?

Examples 4 and 6 conclude that we cannot design algorithms and software that
can compute minimisers of arbitrary linear programs, basis pursuit problems or
constrained/unconstrained Lasso when working with inexact input due to irrational
numbers or floating point arithmetic. Moreover, one cannot detect if an algorithm
produces the wrong answer. Hence, a pertinent question to the reader is therefore:

How does one set the halting criterion in ones code, and how does one
guarantee an accurate computation?

We have just seen in Sect. 4.1.4 how a popular tool such as MATLAB fails on
basic LPs, and Examples 4 and 6 demonstrate that this is not a particular problem
for MATLAB, but rather a universal phenomenon. As an overwhelming amount
of problems in computational harmonic analysis, signal processing, imaging and
modern data science is based around computing minimisers of the problems covered
by Examples 4 and 6, how do we make sure that examples used in scientific
publishing and indeed in practical issues are computed accurately? Moreover, how
can we separate between methodological and algorithmic errors?

6.2.1 Methodological vs. Algorithmic Error

In order to show how Examples 4 and 6 imply a rather delicate issue regarding how
to determine the difference between methodological and algorithmic errors, we will
begin with an example.
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Example 7 Suppose we run two synthetic experiments modelling MRI, where we
use the same sampling pattern, i.e. the output of the data from the sampling is
the same for both experiments. More precisely, the sampling data is given by
y = PΩUdfx, where Udf ∈ C

m×N denotes the discrete Fourier transform, x ∈ C
N

is a vectorised version of a medical image and PΩ is the same in both experiments.
However, we use two different reconstruction techniques. In experiment (1), we
compute

x1 = V −1
dw x, x ∈ argmin

z∈CN
‖z‖1 subject to ‖PΩUdfV

−1
dw z− y‖ ≤ δ, (20)

where V −1
dw denotes the discrete wavelet transform (DB4), whereas in experiment

(2), we compute

x2 ∈ argmin
z∈CN

‖z‖TV subject to ‖PΩUdfz− y‖ ≤ δ. (21)

Note that these two approaches represent two different methods for reconstruc-
tion. The goal is now to compare the results and deduce which method, at least on
one image, will give the best image quality most suited for radiologists to provide
accurate diagnostics.

Note that this is not a contrived example, but an issue that is a daily encounter
when methods are compared in scientific publications. And here lies the problem.
In order to test the methods, we will have to compute minimisers to the above
problems (20) and (21) for which Examples 4 and 6 demonstrate the impossibility
of controlling the error in general. Thus, we end up with the key question regarding
methodological and algorithmic errors:

How can one deduce that method (1) is better than method (2) (or the other
way), if we cannot control the algorithmic error that is introduced when we
compute an approximation to the minimisers?

In particular, without any control of the error, the exercise of plotting two images
produced with the two methods in order to deduce a winner is rather pointless. Note
that the human eye has problems distinguishing colour differences at pixel level
given a difference in the fourth digit (base 10). Thus, for the purpose of looking at
images, then four-digit accuracy in the l∞ norm is sufficient. But how can we secure
four-digit accuracy? The following halting criterion may seem familiar:

halt = no
while halt = no
Tweak with the parameters in the code until the image looks better

if you think the image looks good enough then
halt = yes

endif
end
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l1: SPGL1 (Halt. Par. 1) l1: SPGL1 (Halt. Par. 2)

TV: NESTA (Halt. Par. 1) TV: NESTA (Halt. Par. 2)

Fig. 15 Four reconstructions using standard packages with different halting criteria for solv-
ing (20) and (21)

Or in order to demonstrate that one’s method is better than a competitor’s method:

halt = no
while halt = no
Tweak with the parameters in the code until the image looks better

if you think the image looks better than the competitor’s then
halt = yes

endif
end

Indeed, the reason why such halting criterion may be the only choice is suggested
in Example 4. Moreover, Example 6 demonstrates that it is impossible to compute
an exit flag in order to verify if the computation is correct.

To illustrate the issue, we have displayed different approximations to minimisers
of (20) and (21) using standard algorithms with different halting parameters in
Fig. 15. As is evident from Fig. 15, the results vary greatly and make it very hard
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to deduce which of these figures actually represent a reasonable approximation to
the minimiser one seeks.

6.2.2 Computations in Compressed Sensing: Why Things Often Work in
Practice

In view of Example 4, it is legitimate to ask if the standard assumptions in
compressed sensing will imply the existence of fast algorithms for the optimisation
problems solved in practice. In particular, let K ∈ N ∪ {∞} and consider

[z]K, z ∈ argmin
x
‖x‖1 subject to ‖Ax − y‖2 ≤ η, η ≥ 0, (22)

where the jth coordinate of [z]K is given by

([z]K)j = �10Kzj�10−K.

In particular, for K ∈ N, the problem is to compute a solution that has K correct
digits in the ‖ · ‖∞ norm. The following then becomes a key question:

Is the BP problem (22) in P when A satisfies the robust nullspace property of
order s with parameters ρ and τ , and where y = Ax where x is s-sparse?

As we will see below, this is a rather intricate issue.

Example 8 (Existence of algorithms in compressed sensing) Fix real constants ρ ∈
(1/3, 1), τ > 14, bA > 6, and by > 2. Let Ω be the collection of all inputs
(A, y) ∈ R

m×N × R
m (with any dimensions m,N ) where ‖A‖2 ≤ bA, ‖y‖2 ≤ by ,

A satisfies the robust nullspace property (as in Sect. 2) of order s for any s ∈ N with
parameters ρ, τ , and where y = Ax for any x that is s-sparse.

(i) There exists a constant C > 0 independent of ρ, τ, bA, and by such that if
we define Ω ′ ⊂ Ω to be the collection of (A, y) ∈ R

m×N × R
m, where A

satisfies the robust nullspace property of any order s ∈ N with any dimensions
N ≥ 10s and m ≥ Cs log(eN/s), then we have the following. For η ∈ (0, 1]
and

K ≥ ⌈∣

∣log10 (η/2)
∣

∣

⌉

,

there does not exist any algorithm (even randomised) that can compute the
BP problem (22) for all inputs in Ω ′ (with probability greater than p > 1/2
in the randomised case). The statement is true even if one restricts to well-
conditioned and bounded inputs such that ‖A‖2 ≤ c, Cond(AA∗) ≤ c and
‖y‖2 ≤ c, for some constant c > 0.
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(iii) There exist an algorithm and a polynomial P : R2 → R, such that for η ∈
[0, 1] and K ∈ N satisfying

K ≤
⌊∣

∣

∣

∣

log10

(

2(3+ ρ)τη
1− ρ ∧ 1

)∣

∣

∣

∣

⌋

, (23)

the algorithm can compute the BP problem (22) for all inputs in Ω where the
runtime is bounded by P(m+N,K). In particular, for δ ∈ (0, 1] and for fixed
K satisfying (23), the BP problem (22) is in P, meaning solvable in polynomial
time in m + N . Moreover, for δ = 0, the BP problem (22) is in P, meaning
solvable in polynomial time in m+N and K .

(iv) For sufficiently large m,N ∈ N, there exist inputs ι = (A, y) ∈ Ω such that A
is a subsampled Hadamard matrix or Bernoulli matrix and

CRCC(ι) = ∞.

In particular, given (iii) with K satisfying (23) and (iv), there exist inputs inΩ
with infinite RCC condition number, yet the problem (22) is in P.

The impossibility results in (i) and (ii) and the ‘in P’ statements in (iii) are valid in
both Turing and BSS models.

Example 8 may be viewed as the practical cousin of Example 4. Indeed,
Example 8 demonstrates the facets of Example 4 in actual applications. However,
it is important to emphasise that while Examples 8 and 4 explain why things fail,
they also explain why things often work in practice. In fact Example 8 (iii) and (iv)
explain the success of compressed sensing in practice despite the paradoxical results
of Example 8 (i) and (ii). The key is that, although one may not be able to get five
digits, say, of accuracy in certain cases, for sufficiently small values of η, one may
be able to get four digits, and that can be done quickly. Moreover, as discussed in
Example 5, four digits of accuracy is more than enough for any application involving
imaging.

6.3 Connections to Other Work in Optimisation

Note that to establish (iii) in Example 8, one needs to link approximations of the
objective function of BP to approximations of the set of minimisers when A ∈
R
m×N satisfies the robust nullspace property. This link was first considered by Ben-

Tal & Nemirovski in [56, Sec. 1.3.1].
The reader may recognise that there are results in optimisation that are based

on inexact inputs, often referred to as ‘robust optimisation’. The comprehensive
book by A. Ben-Tal, L. El Ghaoui and A. Nemirovski [57] presents an excellent
overview of this field. However, classical robust optimisation is mostly concerned
with computing the objective function rather than the minimisers, as is the main
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issue in many aspects of mathematics of information. Moreover, the phenomena
we discuss in Examples 4, 6, and 8 will typically only happen for the problem of
computing minimisers. In some sense, the results presented here can be viewed as a
robust optimisation theory for computing minimisers.

Also, the reader may consult [58, 59] that discuss computations of optimisation
problems in compressed sensing; however, these results are not about the extended
model with inexact input suggested by Smale.
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Reflections on a Theorem of Boas and
Pollard

Christopher Heil

Abstract Inspired by an elegant theorem of Boas and Pollard (and related results by
Kazarian, Price, Talalyan, Zink, and others), we discuss multiplicative completion
of redundant systems in Hilbert and Banach function spaces.

1 Introduction

From the point of view of a harmonic analyst, the most important orthonormal
basis is the trigonometric system {e2πinx}n∈N in L2(T), where T = [0, 1]. Since
this system is basis, it becomes incomplete if we remove any elements. In a short
but attractive paper published in 1948, Boas and Pollard [6] proved that if we
remove finitely many elements from the trigonometric system, thereby leaving
an incomplete set, then we can restore completeness by a simple multiplication.
Specifically, if F is any finite subset of Z, then there exists a bounded function m
such that {e2πinxm(x)}n/∈F is complete in L2(T); in fact, Boas and Pollard proved
that this holds for any orthonormal basis for L2(T). There are a number of very
surprising equivalent reformulations and interesting related results. We will mention
a few of these below (see Sect. 5), but refer to the important paper by Kazarian and
Zink [21] and the references contained therein for full details.

Completeness is a fairly weak condition; in many situations, we would like to
know if we have a Schauder basis or other basis-like properties, such as being a
frame. Kazarian has shown that if finitely many elements are removed from the
trigonometric system, then the resulting set {e2πinx}n/∈F cannot be a Schauder basis
for Lp(μ), where μ is a bounded Radon measure [18, 19], and in [20] he studied
systems {e2πinx}n/∈F in Lp(μ) where F is a finite sequence of consecutive integers.
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In this expository note, we will review and discuss several examples related to
these issues and derive a generalization of results in the spirit of Boas and Pollard
for frames and other redundant systems.

2 Preliminaries

We let T = [0, 1], and consider functions on T to be extended 1-periodically to the
real line. The inner product on L2(T) is

〈f, g〉 =
∫ 1

0
f (x) g(x) dx.

We use standard notations for frames, Riesz and Schauder bases, and related
concepts, as found in texts such as [10, 11, 14], or [29]. We outline below some
particular terminology and facts that we will need.

If X is a Banach space, then we let X∗ denote its dual space. The action of a
functional μ ∈ X∗ on an element f ∈ X will be written 〈f,μ〉.

Let {fi}i∈N be a sequence in a Banach space X. We say that {fi}i∈N is complete
if its finite linear span is dense in X. It is minimal if there exists a sequence

{

˜fi
}

i∈N
in X∗ that is biorthogonal to {fi}i∈N, i.e., 〈fi, ˜fj 〉 = δij for i, j ∈ N. Equivalently,
{fi}i∈N is minimal if fj /∈ span{fi}i �=j for each j ∈ N. A sequence that is both
minimal and complete is called exact. In this case, the biorthogonal sequence is
unique.

The sequence {fi}i∈N is a Schauder basis for X if for each f ∈ X there exist
unique scalars ci such that f = ∑∞

i=1 cifi, with convergence in the norm of X.
Every Schauder basis is exact, and the biorthogonal sequence {˜fi}i∈N is a Schauder
basis for its closed span in X∗ (if X is reflexive, then the biorthogonal sequence is
a Schauder basis for X∗). We have f =∑∞

i=1 〈f, ˜fi 〉 fi for all f ∈ X. A Schauder
basis is called an unconditional basis if this series converges unconditionally for
every f ∈ X.

We say that a Schauder basis {fi}i∈N is bounded if 0 < inf ‖fi‖ ≤ sup ‖fi‖ <∞.
In this case, 0 < inf ‖˜fi‖ ≤ sup ‖˜fi‖ <∞.

A Riesz basis is the image of an orthonormal basis for a Hilbert space H under
a continuously invertible linear mapping of H onto itself. Every Riesz basis is a
bounded unconditional basis for H, and conversely.

We say {fi}i∈N is a frame for a Hilbert spaceH if there exist constantsA, B > 0,
called frame bounds, such that

A ‖f ‖2 ≤
∞
∑

i=1

|〈f, fi〉|2 ≤ B ‖f ‖2, for all f ∈ H. (1)
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All Riesz bases are frames, but not conversely. A frame sequence is a sequence
{fi}i∈N that is a frame for its closed span in H.

If {fi}i∈N satisfies at least the second inequality in (1), then we say that {fi}i∈N
is a Bessel sequence or that it possesses an upper frame bound, and we call B a
Bessel bound. Likewise if at least the first inequality in (1) is satisfied, then we say
that {fi}i∈N possesses a lower frame bound.

If {fi}i∈N is Bessel, then the analysis operator Cf = {〈f, fi〉}i∈N is a bounded
mapping C : H → �2. If {fi}i∈N is a frame, then the frame operator Sf = C∗Cf =
∑〈f, fi〉 fi is a bounded, positive definite, invertible map of H onto itself. Every
frame {fi}i∈N has a canonical dual frame {˜fi}i∈N given by ˜fi = S−1fi where S is
the frame operator. We have

f =
∞
∑

i=1

〈f, ˜fi 〉 fi =
∞
∑

i=1

〈f, fi〉 ˜fi, for all f ∈ H. (2)

Furthermore, the series in (2) converges unconditionally for every f (so any
countable index set can be used to index a frame). In general, for a frame, the
coefficients in (2) need not be unique. In fact, uniqueness holds for every f if and
only if {fi}i∈N is a Riesz basis.

3 Examples

Consider the lattice system of weighted exponentials

Eg = {e2πinxg(x)}n∈Z,

where g is a function in L2(T). The basis and frame properties of this system
in L2(T) are summarized in the following theorem. Part (c) of this theorem
is a consequence of the classical theory developed by Hunt, Muckenhoupt, and
Wheeden, e.g., see [17]. For the proof of part (e), see Benedetto and Li [4]. The
proofs of the other parts of the theorem are straightforward, e.g., see [14]. In this
result, we let Zg denote the zero set of g:

Zg = {x ∈ T : g(x) = 0}.

Technically, Zg is only defined up to sets of measure zero, i.e., if we choose a
different representative of g, then we may get a different set Zg, but the symmetric
difference between any two such sets will have measure zero.

Theorem 1 If g ∈ L2(T), then the following statements hold:

(a) Eg is complete in L2(T) if and only if g �= 0 a.e.
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(b) Eg is minimal in L2(T) if and only if 1/g ∈ L2(T). Moreover, in this case, it is
exact and the biorthogonal system is Eg̃ where g̃(x) = 1/g(x).

(c) With respect to the ordering Z = {0,−1, 1,−2, 2, . . . },Eg is a Schauder basis
for L2(T) if and only if |g|2 belongs to the Muckenhoupt weight class A2(T).

(d) Eg is a Bessel sequence in L2(T) if and only if g ∈ L∞[0, 1]. Moreover, in this
case, |g(x)|2 ≤ B a.e. where B is a Bessel bound.

(e) Eg is a frame sequence in L2(T) if and only if there exist A, B > 0 such that
A ≤ |g(x)|2 ≤ B for a.e. x /∈ Zg. In this case, the closed span of Eg is

Hg = {f ∈ L2(T) : f = 0 a.e. on Zg},

and A, B are frame bounds for Eg as a frame for Hg.
(f) Eg is an unconditional basis for L2(T) if and only if there exist A, B > 0 such

that A ≤ |g(x)|2 ≤ B for a.e. x, and in this case, it is a Riesz basis for L2(T).

(g) Eg is an orthonormal basis for L2(T) if and only if |g(x)| = 1 for a.e. x.

If we remove a single element from the trigonometric system, say the constant
function 1 (corresponding to the index n = 0), then we are left with an incomplete
system. The next example shows what happens if we multiply the remaining ele-
ments by the function x (parts of this example are adapted from our paper [28] with
Yoon, which, among other results, studies systems of the form {xNe2πinx}n∈Z\F
where F is finite). In this result, we consider series with respect to the ordering
Z \ {0} = {1,−1, 2,−2, . . . },
Theorem 2

(a) {x e2πinx}n �=0 is exact in L2(T), and its biorthogonal sequence is

{̃en}n �=0 =
{

e2πinx − 1

x

}

n �=0
.

(b) The biorthogonal system is exact in L2(T), but it is not bounded above in norm.
(c) {x e2πinx}n �=0 is not a Schauder basis for L2(T).

(d) If the series f (x) =∑

n �=0 cn x e
2πinx converges in L2(T) for some scalars cn,

then cn = 〈f, ẽn〉 for every n �= 0, and cn→ 0 as n→±∞.
(e) There are no scalars cn such that the constant function can be written as

1 =
∑

n �=0

cn x e
2πinx

with convergence of the series in the norm of L2(T).

Proof

(a) The biorthogonality follows directly. To show completeness, suppose that f ∈
L2(T) satisfies 〈f (x), x e2πinx〉 = 0 for every n �= 0. Then the function xf (x),
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which belongs to L2(T), is orthogonal to e2πinx for every n �= 0. Therefore,
xf (x) = c a.e. where c is a constant. If c �= 0, then f (x) = c/x /∈ L2(T),

which is a contradiction. Therefore, c = 0, so f = 0 a.e. and {x e2πinx}n �=0 is
complete.

(b) Suppose that h ∈ L2(T) satisfies 〈h, ẽn〉 = 0 for n �= 0. For convenience of
notation, let

ẽ0(x) = e
−2πi0·x − 1

x
= 0.

Then 〈h, ẽn〉 = 0 for all n ∈ Z. Since ẽn is a bounded function, we have
g(x) = h(x) e2πix−1

x
∈ L2(T). Yet for every m ∈ Z,

〈g, em〉 =
∫ 1

0
g(x) e−2πimx dx =

∫ 1

0
h(x)

e−2πi(m−1)x − 1+ 1− e−2πimx

x
dx

= 〈h, ẽm−1〉 − 〈h, ẽm〉 = 0,

so g = 0 a.e., and therefore h = 0 a.e. Hence, {̃en}n �=0 is complete in L2(T).

A direct computation shows that

‖̃en‖2
2 =

∫ 1

0
|̃en(x)|2 dx = 4πn

∫ πn

0

sin2 u

u2 du <∞,

so we do have ẽn ∈ L2(T). But
∫ πn

0
sin2 u
u
du → π

2 as n → ∞, so {̃en}n �=0 is
not bounded above in norm.

(c) We have ‖x e2πinx‖2 = 3−1/2 for every n, so {x e2πinx}n �=0 is bounded above
and below in norm. If it was a Schauder basis, then its biorthogonal system
would also be bounded above and below in norm (e.g., see [14, Sec. 5.6]).
Part (b) shows that this is not the case, so {x e2πinx}n �=0 cannot be a Schauder
basis for L2(T).

(d) For simplicity of notation, let fn(x) = x e2πinx. If the series f = ∑

n �=0 cnfn
converges, then cn = 〈f, ẽn〉 follows from biorthogonality. Let sn denote the
nth partial sum of the series. Then

s2n = c1f1 + c−1f−1 + · · · + cnfn + c−nf−n
and

s2n−1 = c1f1 + c−1f−1 + · · · + cnfn.

Since sn→ f, it follows that

‖s2n − s2n−1‖2 ≤ ‖s2n − f ‖2 + ‖f − s2n−1‖2 → 0 as n→∞.
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But

s2n − s2n−1 = c−nf−n = 〈f, ẽ−n〉 f−n,

so

‖s2n − s2n−1‖2 = |〈f, ẽ−n〉| ‖f−n‖2 = 3−1/2 |〈f, ẽ−n〉| = 3−1/2 |c−n|.

Therefore, c−n → 0 as n → ∞. A similar argument shows that cn → 0 as
n→∞.

(e) Assume that 1 =∑

n �=0 cnfn, and let sn denote the nth partial sum of this series.
Applying part (d) to f = 1, we have cn = 〈1, ẽn〉 and cn → 0 as n → ±∞.
However,

|c−n| = |〈1, ẽ−n〉| =
∣

∣

∣

∣

∫ 1

0

e2πinx − 1

x
dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ 1

0

cos 2πnx − 1

x
dx + i

∫ 1

0

sin 2πnx

x
dx

∣

∣

∣

∣

≥
∣

∣

∣

∣

∫ 1

0

sin 2πnx

x
dx

∣

∣

∣

∣

→ π

2
as n→∞.

But this contradicts the fact that c−n→ 0 as n→∞. ��
Boas and Pollard proved (among other examples) that if we remove infinitely

many elements from the trigonometric system, then we may not be able to
restore completeness by multiplying the remaining elements by some function. For
inclusiveness, we present their argument. We need the following elementary lemma
(functions in L2(T) are considered to be extended 1-periodically to the entire real
line):

Lemma 1 Let N be a positive integer. If f ∈ L2(T) is 1/N-periodic, then we have
〈f (x), e2πinx〉 = 0 for all n ∈ Z such that N does not divide n.

Theorem 3 ([6]) If S ⊆ Z contains an arithmetic progression, then the orthonor-
mal sequence {e2πinx}n∈Z\S cannot be completed in L2(T) by multiplication by a
square-integrable function.

Proof Without loss of generality, assume S = {nN}n∈Z for some N ∈ N. Fix any
m ∈ L2(T). If m is zero on a set of positive measure, then {m(x) e2πinx}n/∈S is
incomplete, so assume m �= 0 a.e. Then there exists a set E1 ⊆ (0, 1/N) on which
|m| is bounded above and below, and then a set E2 ⊆ E1 + 1/N on which |m| is
bounded above and below, and so forth. Define

F = EN ∪ (EN − 1
N
) ∪ · · · ∪ (EN − N−1

N
).

Then F + 1/N = F (mod 1). Moreover, F ⊆ EN ∪ · · · ∪E1, so |m| is bounded
above and below on F. Therefore,
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f (x) =
{

1/m(x), x ∈ F,
0, x /∈ F,

is a nonzero element of L2(T). Further, f m = χF is 1/N -periodic, so we apply
Lemma 1 and conclude that that 〈f (x),m(x)e2πinx〉 = 〈f m(x), e2πinx〉 = 0 for
all n /∈ S. Therefore, {m(x)e2πinx}n/∈S is incomplete. ��

4 Boas and Pollard Revisited

We make a few observations that (modestly) extend the multiplicative completion
result of Boas and Pollard. Specifically, they proved that if {fn}n∈N is an orthonor-
mal basis for L2(T) and F is a finite subset of Z, then there exists a function
m ∈ L∞(T) such that {mfn}n∈Z\F is complete in L2(T).

Observe that if we replace L2(T) with an arbitrary space L2(μ), then the
analogous result can fail. For example, if {δn}n∈N denotes the standard basis for
�2, then there is no sequence x such that {x δn}n>1 is complete, where x δn denotes
the componentwise product of the two sequences.

Recall that a measure μ on a measurable space (X, ) is nonatomic if for every
measurable set A satisfying μ(A) > 0 there exists a measurable set B ⊆ A such
that μ(B) > 0. In this case, it follows that there are infinitely many sets A = A1 ⊇
A2 ⊇ · · · such that

μ(A) = μ(A1) > μ(A2) > · · · > 0.

Taking Bk = Ak \ Ak+1, we obtain disjoint measurable sets, all with positive
measures, such that A = ∪Bk.
Lemma 2 Assume that μ is a nonatomic measure on a measure space (X, ). If
1 ≤ p < ∞ and f ∈ Lp(μ) is not the zero function in Lp(μ), then there exists a
function m ∈ L∞(μ) such that m(x) �= 0 at every point and f/m /∈ Lp(μ).
Proof Since f is not the zero function, there is some positive number R such
that E = {|f | < R} has positive measure. Since μ is nonatomic, there exists a
measurable A ⊆ E such that 0 < μ(A) < μ(E). Write A = ∪Bk disjointly where
each Bk is measurable and has positive measure. Define

m(x) =
{

μ(Bk)
1/p |f (x)|, x ∈ Bk,

1, otherwise.

Then for x ∈ Bk , we have |m(x)| ≤ Rμ(Bk)1/p ≤ Rμ(A)1/p, so m ∈ L∞(μ).
Note that f/m is defined a.e., and
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∫

X

∣

∣

∣

∣

f (x)

m(x)

∣

∣

∣

∣

p

dμ(x) ≥
∑

k∈N

∫

Bk

∣

∣

∣

∣

f (x)

m(x)

∣

∣

∣

∣

p

dμ(x)=
∑

k∈N

∫

Bk

1

μ(Bk)
dμ(x)=

∑

k∈N
1=∞,

so f/m /∈ Lp(μ). ��
Adapting the techniques of [6], we will prove that a Boas–Pollard-type result

holds whenever we are in a situation similar to the one given in the conclusion of
Lemma 2. First, we need the following lemma. Here, if (X, ,μ) is a measure
space, then we say that a Banach space A of measurable functions on X is solid if
given g ∈ A and a measurable function f such that |f | ≤ |g| a.e., we have f ∈ A
and ‖f ‖A ≤ ‖g‖A (compare [25]).

Lemma 3 Let (X, ,μ) be a measure space, and let A be a solid Banach space
of measurable complex-valued functions on X. Assume that for any measurable set
E ⊆ X there exists a measurable function ψ on X such that {ψ �= 0} ⊆ E and
ψ /∈ A . Then, given any f1, . . . , fN ∈ A , there exists a function g ∈ L∞(μ) such
that

(a) g(x) �= 0 for all x ∈ X, and
(b) f/g /∈ A for every f ∈ span{f1, . . . , fN } \ {0}.
Proof Without loss of generality, we assume fn �= 0 for all n. We proceed by
induction.

Base step. Set N = 1, and let f = cf1, where c �= 0. Since f is not the zero
function, there is some positive integer n such that E = { 1

n
< |f | < n} has positive

measure. By hypothesis, there exists a function ψ /∈ A such that {ψ �= 0} ⊆ E. Let
ϕ(x) = max{|ψ(x)|, 1}, and set g = 1/ϕ. Since 1 ≤ ϕ(x) < ∞ at all points, we
have 0 < g ≤ 1.Moreover, if x ∈ E, then

|f (x)|
|g(x)| ≥

ϕ(x)

n
≥ |ψ(x)|

n
.

This also holds for x /∈ E since {ψ �= 0} ⊆ E. Since ψ /∈ A and A is solid, it
follows that f/g /∈ A .

Inductive step. Assume that the conclusions of the lemma hold for some N ≥ 1,
and let f1, . . . , fN+1 ∈ A be fixed. Then, by hypothesis, there exists a function
g ∈ L∞(μ), nonzero at every point, such that

SN =
{

f ∈ span{f1, . . . , fN } \ {0} : f/g ∈ A
} = ∅.

Define

SN+1 =
{

f ∈ span{f1, . . . , fN+1} \ {0} : f/g ∈ A
}

.

If SN+1 = ∅, then the proof is complete, so assume F = ∑N+1
n=1 cnfn ∈ SN+1.

Note that cN+1 �= 0, for otherwise F ∈ SN = ∅. Assume also that G =
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∑N+1
n=1 bnfn ∈ SN+1; then bN+1 �= 0 for the same reason. Clearly,

H = 1

cN+1
F − 1

bN+1
G ∈ span{f1, . . . , fN }.

Moreover, H/g ∈ A as both F/g and G/g are in A . Since SN = ∅, it follows
that H = 0. Thus, G is a multiple of F, so SN ⊆ {cF : c �= 0}. Now, F �= 0 since
F ∈ SN+1. Therefore, there is some ε > 0 and some E ⊆ X with positive measure
such that |F(x)| ≥ ε for x ∈ E. By hypothesis, there exists a function ψ /∈ A
with {ψ �= 0} ⊆ E. Set ϕ(x) = max{|ψ(x)|, 1/|g(x)|} and define h = 1/ϕ. Then
h ≤ |g| so h ∈ L∞(μ).Moreover, if x ∈ E, then |F(x)/h(x)| ≥ ε ϕ(x) ≥ ε |ψ(x)|.
This also holds for x /∈ E since {ψ �= 0} ⊆ E. As ψ /∈ A and A is solid, it follows
that F/h /∈ A .

Finally, to finish the proof, assume that f ∈ span{f1, . . . , fN+1} \ {0} is given.
If f/h ∈ A , then f/g ∈ A since h ≤ |g|. Therefore, f ∈ SN+1, so f = cF for
some c �= 0. However, F/h /∈ A , a contradiction. Therefore, f/h /∈ A . ��
Theorem 4 Let (X, ,μ) be a measure space, and let B be a solid Banach space
B of measurable complex-valued functions on X. Assume that B∗ is also a solid
Banach function space onX that satisfies the hypotheses of Lemma 3. Given S ⊆ B,
define

S⊥ = {g ∈ B∗ : 〈f, g〉 = 0 for all f ∈ S}.

Suppose that {fn}n∈N ⊆ B and g1, . . . , gN ∈ B∗ satisfy

{fn}⊥ ⊆ span{g1, . . . , gN }.

Then there exists a function m ∈ L∞(μ) with m(x) �= 0 for every x such that
{mfn}n>N is complete in B.

Proof By Lemma 3, there exists a function m ∈ L∞(μ) that is nonzero at every
point such that

g ∈ span{g1, . . . , gN } \ {0} /⇒ g/m /∈ B∗. (3)

Assume that h ∈ B∗ satisfies 〈mfn, h〉 = 0 for all n > N. Since m ∈ L∞(μ)
we have hm ∈ B∗. Since 〈fn, hm〉 = 0 for all n, we also have hm ∈ {fn}⊥ ⊆
span{g1, . . . , gN }. If hm �= 0 then h = (hm)/m /∈ B∗, which is a contradiction.
Therefore, hm = 0, so h = 0 a.e. sincem is everywhere nonzero. Hence, {mfn}n>N
is complete in B. ��
Example 1
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(a) Assume that {fn} ⊆ B and {gn} ⊆ B∗ satisfy g = ∑〈g, fn〉 gn for g ∈
B∗ (not necessarily uniquely; such a system is called a quasibasis for B). Fix
N > 0. If g ∈ {fn}⊥n>N , then g =∑N

n=1〈g, fn〉 gn ∈ span{g1, . . . , gN }.
(b) If {fn}n∈N is a Schauder basis for B and B is reflexive, then there exists a dual

basis {gn}n∈N ⊆ B∗, i.e., g =∑〈g, fn〉 gn, uniquely, for all g ∈ B∗ (e.g., see
[14] for details). Therefore, by part (a) and Theorem 4, given any N > 0, there
exists a function m ∈ L∞(μ) such that {mfn}n>N is complete in B.

(c) If {gn}n∈N is a frame for B = L2(μ) and {fn}n∈N is its dual frame, then g =
∑〈g, fn〉 gn for all g ∈ L2(μ). Therefore, by part (a) and Theorem 4, given any
N > 0, there exists a function m ∈ L∞(μ) such that {mfn}n>N is complete in
L2(μ).

(d) Let X be a finite set and let μ be a counting measure on X. Given ∅ �= E ⊆ X
and any finite function ψ on X with {ψ �= 0} ⊆ E,

‖ψ‖pLp(μ) =
∑

t∈E
|ψ(t)|p <∞,

since X is finite. Thus, A = Lp(μ) does not satisfy the hypotheses of
Lemma 3.

5 Related Results

As we mentioned in the introduction, there are many surprising results related to
Boas–Pollard-type phenomena. We list just a few of these, but refer to the references
for additional results, including those by Kazarian, Price, Talalyan, and Zink.

Given a sequence {fn}n∈N ⊆ L2(μ), where (X,μ) is a finite separable measure
space with μ(μ) = 1, Talalyan proved that the following statements are equivalent
(see [27]):

(a) Given ε > 0 there exists Sε ⊆ X such that μ(Sε) > 1 − ε and {fn χSε } is
complete in L2(Sε).

(b) For every function f on X which is finite a.e. and every ε > 0, there exists
Sε ⊆ X and g ∈ span{fn} such that μ(Sε) > 1− ε and |f − g| < ε on Sε.

Price and Zink proved that (a) and (b) are also equivalent to the following,
seemingly unrelated, Boas–Pollard-type property (see [22, 23]):

(c) There exists a bounded, nonnegative function m such that {mfn} is complete in
L2(μ).

In [7–9] Byrnes and Newman consider a problem similar to the one addressed by
Boas and Pollard. Instead of deleting elements from a sequence and then multiplying
the remaining elements by a function, they retain all elements of the sequence
and multiply only a portion of the sequence by a function. In particular, they
show in [9] that if {fn}n∈Z is an orthonormal basis for L2(T) and S ⊆ Z, then
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{fn}n∈S ∪ {mfn}n/∈S is complete in L2(T) if and only if there exists an α ∈ C such
that Re(αm) ≥ 0 a.e. and either Im(αm) > 0 a.e. or Im(αm) < 0 a.e. on the zero
set of Re(αm).

Finally, we remark that the basis and frame properties of “irregular” systems
of weighted exponentials E (g,Λ) = {e2πiλxg(x)}λ∈Λ, where Λ is an arbitrary
countable sequence in R, are also very interesting (and usually difficult). For
background and references on this subject, we refer to [16]. Similarly difficult are
the cases of “irregular” Gabor systems {e2πiβxg(x−α)}(α,β)∈Γ and wavelet systems
{a1/2ψ(ax − b)}(a,b)∈Γ in L2(R). Typically, in each of these cases, necessary
conditions for the system to be a frame can be formulated in terms of the Beurling
densities of the index set. For example, weighted exponentials and Gabor systems
both exhibit a Nyquist density cutoff density [1–3, 12, 13, 24], whereas the situation
for wavelet systems is much more subtle [5, 15, 26].
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The Andoni–Krauthgamer–Razenshteyn
Characterization of Sketchable Norms
Fails for Sketchable Metrics

Subhash Khot and Assaf Naor

Abstract Andoni, Krauthgamer, and Razenshteyn (AKR) proved (STOC 2015)
that a finite-dimensional normed space (X, ‖·‖X) admits aO(1) sketching algorithm
(namely, with O(1) sketch size and O(1) approximation) if and only if for every
ε ∈ (0, 1), there exist α � 1 and an embedding f : X→ �1−ε such that ‖x−y‖X �
‖f (x) − f (y)‖1−ε � α‖x − y‖X for all x, y ∈ X. The “if part” of this theorem
follows from a sketching algorithm of Indyk (FOCS 2000). The contribution of
AKR is therefore to demonstrate that the mere availability of a sketching algorithm
implies the existence of the aforementioned geometric realization. Indyk’s algorithm
shows that the “if part” of the AKR characterization holds true for any metric space
whatsoever, i.e., the existence of an embedding as above implies sketchability even
when X is not a normed space. Due to this, a natural question that AKR posed was
whether the assumption that the underlying space is a normed space is needed for
their characterization of sketchability. We resolve this question by proving that for
arbitrarily large n ∈ N, there is an n-point metric space (M(n), dM(n)) which is
O(1)-sketchable yet for every ε ∈ (0, 1

2 ), if α(n) � 1 and fn : M(n) → �1−ε
are such that dM(n)(x, y) � ‖fn(x) − fn(y)‖1−ε � α(n)dM(n)(x, y) for all
x, y ∈ M(n), then necessarily limn→∞ α(n) = ∞.
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1 Introduction

We shall start by recalling the notion of sketchability; it is implicit in the seminal
work [2] of Alon, Matias, and Szegedy, though the formal definition that is
described below was put forth by Saks and Sun [42]. This is a crucial and well-
studied algorithmic primitive for analyzing massive data sets, with several powerful
applications; surveying them here would be needlessly repetitive, so we refer instead
to, e.g., [4, 20] and the references therein.

Given a set X, a function K : X × X → R is called a nonnegative kernel if
K(x, y) � 0 and K(x, y) = K(y, x) for every x, y ∈ X. In what follows, we will
be mainly interested in the geometric setting when the kernel K = dX is in fact a
metric on X, but even for that purpose, we will also need to consider nonnegative
kernels that are not metrics.

Fix D � 1 and s ∈ N. Say that a nonnegative kernel K : X × X → [0,∞) is
(s,D)-sketchable if for every r > 0 there is a mapping R = Rr : {0, 1}s×{0, 1}s →
{0, 1} and a probability distribution over mappings Sk = Skr : X → {0, 1}s such
that

inf x,y∈X
K(x,y)�r

Prob
[

R
(

Sk(x),Sk(y)
) = 0

]

� 3
5 and

inf x,y∈X
K(x,y)>Dr

Prob
[

R
(

Sk(x),Sk(y)
) = 1

]

� 3
5 . (1)

The value 3
5 in (1) can be replaced throughout by any constant that is strictly bigger

than 1
2 ; we chose to fix an arbitrary value here in order to avoid the need for the

notation to indicate dependence on a further parameter. A kernel (or, more formally,
a family of kernels) is said to be sketchable if it is (s,D)-sketchable for some s =
O(1) and D = O(1).

The way to interpret the above definition is to think of Sk as a randomized
method to assign one of the 2s labels {0, 1}s to each point in X and to think of R as
a reconstruction algorithm that takes as input two such labels in {0, 1}s and outputs
either 0 or 1, which stand for “small” or “large,” respectively. The meaning of (1)
becomes that for every pair x, y ∈ X, if one applies the reconstruction algorithm
to the random labels Sk(x) and Sk(y), then with substantially high probability, its
output is consistent with the value of the kernelK(x, y) at scale r and approximation
D, namely, the algorithm declares “small” if K(x, y) is at most r , and it declares
“large” if K(x, y) is greater than Dr .

Suppose that α, β, θ > 0 and thatK : X×X→ [0,∞) and L : Y×Y → [0,∞)
are nonnegative kernels on the sets X and Y , respectively. Suppose also that there is
f : Y → X such that αL(x, y)θ � K(f (x), f (y)) � βL(x, y)θ for all x, y ∈ Y . It
follows formally from this assumption and the above definition that if K is (s,D)-
sketchable for some s ∈ N andD � 1, thenL is (s, (βD/α)1/θ )-sketchable. Such an
“embedding approach” to deduce sketchability is used frequently in the literature.
As an example of its many consequences, since �2 is sketchable by the works of
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Indyk and Motwani [21] and Kushilevitz, Ostrovsky, and Rabani [30], so is any
metric space of negative type, where we recall that a metric space (X, d) is said
to be of negative type (see, e.g., [16]) if the metric space (X, ρ) with ρ = √d is
isometric to a subset of �2.

1.1 The Andoni–Krauthgamer–Razenshteyn Characterization
of Sketchable Norms

The following theorem from [4] is a remarkable result of Andoni, Krauthgamer, and
Razenshteyn (AKR) that characterizes those norms that are sketchable1 in terms of
their geometric embeddability into a classical kernel (which is not a metric).

Theorem 1 (AKR characterization of sketchability) Fix s ∈ N and D � 1. A
finite-dimensional normed space (X, ‖ · ‖X) is (s,D)-sketchable if and only if for
any ε ∈ (0, 1), there exists α = α(s,D, ε) > 0 and an embedding f : X → �1−ε
such that

∀ x, y ∈ X, ‖x − y‖X � ‖f (x)− f (y)‖1−ε � α‖x − y‖X.

Thus, a finite-dimensional normed space is sketchable if and only if it can be
realized as a subset of a the classical sequence space �1−ε so that the kernel
‖ · ‖1−ε reproduces faithfully (namely, up to factor α) all the pairwise distances
in X. See [4, Theorem 1.2] for an explicit dependence in Theorem 1 of α(s,D, ε)
on the parameters s,D, ε.

Lp space notation In Theorem 1 and below, we use the following standard notation
for Lp spaces. If p ∈ (0,∞) and (�,μ) is a measure space, then Lp(μ) is
the set of (equivalence classes up to measure 0 of) measurable functions ϕ :
� → R with

∫

�
|ϕ(ω)|p dμ(ω) < ∞. When μ is the counting measure on N,

write Lp(μ) = �p. When μ is the counting measure on {1, . . . , n} for some
n ∈ N, write Lp(μ) = �np. When μ is the Lebesgue measure on [0, 1], write
Lp(μ) = Lp. When the underlying measure is clear from the context (e.g., counting
measure or Lebesgue measure), one sometimes writes Lp(μ) = Lp(�). The Lp(μ)
(quasi)norm is defined by setting ‖ϕ‖pp =

∫

�
|ϕ(ω)|p dμ(ω) for ϕ ∈ Lp(μ). While

if p � 1, then (ϕ, ψ) �→ ‖ϕ − ψ‖p is a metric on Lp(μ), if p = 1 − ε for
some ε ∈ (0, 1), then ‖ · ‖1−ε is not a metric; if L1−ε(μ) is infinite dimensional,
then ‖ · ‖1−ε is not even equivalent to a metric in the sense that there do not exist

1In [4], the conclusion of Theorem 1 is proven under a formally weaker assumption, namely, it uses
a less stringent notion of sketchability which allows for the random sketches of the points x, y ∈ X
to be different from each other and for the reconstruction algorithm to depend on the underlying
randomness that was used to produce those sketches. Since our main result, namely, Theorem 2, is
an impossibility statement, it becomes only stronger if we use the simpler and stronger notion of
sketchability that we stated above.
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any c, C ∈ (0,∞) and a metric d : L1−ε(μ) × L1−ε(μ) → [0,∞) such that
cd(ϕ,ψ) � ‖ϕ − ψ‖1−ε � Cd(ϕ,ψ) for all ϕ,ψ ∈ L1−ε(μ); see, e.g., [24]. But,
‖ · ‖1−ε is a nonnegative kernel on L1−ε(μ), and there is a canonical metric d1−ε on
L1−ε(μ), which is given by

∀ϕ,ψ ∈ L1−ε(μ), d1−ε(ϕ, ψ)
def= ‖ϕ−ψ‖1−ε

1−ε =
∫

�

|ϕ(ω)−ψ(ω)|1−ε dμ(ω).

(2)
See the books [33, 34] and [24] for much more on the structure for Lp(μ) spaces
when p � 1 and 0 < p < 1, respectively.

1.1.1 Beyond Norms?

Fix ε ∈ (0, 1). The sketchability of the nonnegative kernel on �1−ε that is given by
‖ϕ − ψ‖1−ε for ϕ,ψ ∈ �1−ε was proved by Indyk [20] (formally, using the above
terminology, it is sketchable provided ε is bounded away from 1; when ε→ 1+ the
space s = s(ε) of Indyk’s algorithm becomes unbounded); alternatively, one could
combine the sketchability of �2 that was established in [21, 30] with the embedding
of [10], through the above embedding approach (the proof in [20] is different, and
it has further useful algorithmic features that we will not discuss here).

Thus, any metric space (M, dM) for which there exist α ∈ [1,∞) and an
embedding f : M → �1−ε that satisfies

∀ x, y ∈ M, dM(x, y) � ‖f (x)− f (y)‖1−ε � αdM(x, y) (3)

is sketchable with sketch size Oε(1) and approximation O(α). Therefore, the “if
part” of Theorem 1 holds for any metric space whatsoever, not only for norms.
The “only if” part of Theorem 1, namely, showing that the mere availability of a
sketching algorithm for a normed space implies that it can be realized faithfully as a
subset of �1−ε, is the main result of [4]. This major achievement demonstrates that a
fundamental algorithmic primitive coincides with a geometric/analytic property that
has been studied long before sketchability was introduced (other phenomena of this
nature were discovered in the literature, but they are rare). The underlying reason
for Theorem 1 is deep, as the proof in [4] relies on a combination of major results
from the literature on functional analysis and communication complexity.

A natural question that Theorem 1 leaves open is whether one could obtain the
same result for ε = 0, namely, for embeddings into �1. As discussed in [4], this
is equivalent to an old question [31] of Kwapień; a positive result in this direction
(for a certain class of norms) is derived in [4] using classical partial progress of
Kalton [23] on Kwapień’s problem, but fully answering this long-standing question
seems difficult (and it may very well have a negative answer).

Another natural question that Theorem 1 leaves open is whether its assumption
that the underlying metric space is a norm is needed. Given that the “if part” of
Theorem 1 holds for any metric space, this amounts to understanding whether
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a sketchable metric space (M, dM) admits for every ε ∈ (0, 1) an embedding
f : M → �1−ε that satisfies (3). This was a central open question of [4]. Theorem 2
resolves this question. It should be noted that the authors of [4] formulated their
question while hinting that they suspect that the answer is negative, namely,
in [4, page 893], they wrote: we are not aware of any counter-example to the
generalization of Theorem 1.2 to general metrics (Theorem 1.2 in [4] corresponds
to Theorem 1 here). One could therefore view Theorem 2 as a confirmation of a
prediction of [4].

Theorem 2 (failure of the AKR characterization for general metrics) For
arbitrarily large n ∈ N, there exists an n-point metric space (M(n), dM(n)) which
is

(

O(1),O(1)
)

-sketchable, yet for every ε ∈ (

0, 1
2

)

and α � 1, if there were a
mapping f : M(n) → �1−ε that satisfies dM(n)(x, y) � ‖f (x) − f (y)‖1−ε �
αdM(n)(x, y) for all x, y ∈ M(n), then necessarily

α � (log log n)
1−2ε

2(1−ε) . (4)

Asymptotic notation In addition to the usual “O(·), o(·),�(·),0(·)” notation, it
will be convenient to use throughout this article (as we already did in (4)) the
following (also standard) asymptotic notation. Given two quantities Q,Q′ > 0,
the notationsQ � Q′ andQ′ � Qmean thatQ � CQ′ for some universal constant
C > 0. The notationQ 0 Q′ stands for (Q � Q′)∧ (Q′ � Q). If we need to allow
for dependence on parameters, we indicate this by subscripts. For example, in the
presence of auxiliary objects (e.g., numbers or spaces) φ,Z, the notationQ �φ,Z Q′
means thatQ � C(φ,Z)Q′, where C(φ,Z) > 0 is allowed to depend only on φ,Z;
similarly for the notationsQ �φ,Z Q′ andQ 0φ,Z Q′.

We will see that the metric spaces {(M(n), dM(n))}∞n=1 of Theorem 2 are of
negative type, so by the above discussion, their sketchability follows from the
sketchability of Hilbert space [21, 30]. In fact, these metric spaces are (subsets
of) the metric spaces of negative type that were considered by Devanur, Khot,
Saket, and Vishnoi in [15] as integrality gap examples for the Goemans–Linial
semidefinite relaxation of the Sparsest Cut problem with uniform demands. Hence,
our contribution is the geometric aspect of Theorem 2, namely, demonstrating the
non-embeddability into �1−ε, rather than its algorithmic component (sketchability).
This is a special case of the more general geometric phenomenon of Theorem 7,
which is our main result. It amounts to strengthening our work [26] which
investigated the �1 non-embeddability of quotients of metric spaces using Fourier-
analytic techniques. Here, we derive the (formally stronger) non-embeddability
into �1 of snowflakes of such quotients (the relevant terminology is recalled in
Section 1.2). It suffices to mention at this juncture (with further discussion in
Section 1.2.4 below) that on a conceptual level, the strategy of [26] (as well as
that of [15, 29]) for proving non-embeddability using the classical theorem [22]
of Kahn, Kalai, and Linial (KKL) on influences of variables does not imply the
required �1 non-embeddability of snowflakes of quotients. Instead, we revisit the
use of Bourgain’s noise sensitivity theorem [8], which was applied for other (non-
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embeddability) purposes in [26, 27], but subsequent work [15, 29] realized that
one could use the much simpler KKL theorem in those contexts (even yielding
quantitative improvements). Thus, prior to the present work, it seemed that, after
all, Bourgain’s theorem does not have a decisive use in metric embedding theory,
but here we see that in fact it has a qualitative advantage over the KKL theorem in
some geometric applications.

The present work also shows that the Khot–Vishnoi approach [27] to the Sparsest
Cut integrality gap has a further qualitative advantage (beyond its relevance to
the case of uniform demands) over the use of the Heisenberg group for this
purpose [32], which yields a better [13] (essentially sharp [39]) lower bound. Indeed,
the Heisenberg group is a O(1)-doubling metric space (see, e.g., [18]), and by
Assouad’s embedding theorem [6], any such space admits for any ε ∈ (0, 1)
an embedding into �1−ε which satisfies (3) with α �ε 1 (for the connection to
Assouad’s theorem, which may not be apparent at this point, see Fact 6 below).
Thus, despite its quantitative superiority as an integrality gap example for Sparsest
Cut with general demands, the Heisenberg group cannot yield Theorem 2, while the
Khot–Vishnoi spaces do (strictly speaking, we work here with a simpler different
construction than that of [27], but an inspection of the ensuing proof reveals that
one could have also used the metric spaces of [27] to answer the question of [4]).

Question 3 The obvious question that is left open by Theorem 2 is to understand
what happens when ε ∈ [ 1

2 , 1
)

. While we established a marked qualitative gap vis-à-
vis sketchability between the behaviors of general normed spaces and general metric
spaces, the possibility remains that there exists some ε0 ∈

[ 1
2 , 1

)

such that any
sketchable metric space (M, dM) admits an embedding into �1−ε0 that satisfies (3)
with α = O(1); perhaps one could even take ε0 = 1

2 here. This possibility is of
course tantalizing, as it would be a complete characterization of sketchable metric
spaces that is nevertheless qualitatively different from its counterpart for general
normed spaces. At present, there is insufficient evidence to speculate that this is so,
and it seems more likely that other counterexamples could yield a statement that is
analogous to Theorem 2 also in the range ε ∈ [ 1

2 , 1
)

, though a new idea would be
needed for that.

Question 4 Even in the range ε ∈ (

0, 1
2

)

of Theorem 2, it would be interesting
to determine if one could improve (4) to α � (log n)c(ε) for some c(ε) > 0 (see
Remark 5 for a technical enhancement that yields an asymptotic improvement of (4)
but does not achieve such a bound). For the corresponding question when ε = 0,
namely, embeddings into �1, it follows from [39] that one could improve (4) to
α �
√

log n. However, the example that exhibits this stronger lower bound for ε = 0
is a doubling metric space, and hence by Assouad’s theorem [6] for every ε > 0,
it does admit an embedding into �1−ε that satisfies (4) with α �ε 1. Note that
by [5, 38] we see that if an n-point metric space (M, dM) is sketchable for the
reason that for some θ ∈ (0, 1] the metric space (M, dθM) is bi-Lipschitz to a subset

of �2, then (3) holds for ε = 0 and α � (log n)
1
2+o(1). It would be worthwhile to

determine if this upper bound on α (for ε = 0) holds for any sketchable metric
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space whatsoever, i.e., not only for those whose sketchability is due to the fact that
some power of the metric is Hilbertian. It seems plausible that the latter question is
accessible using available methods.

Remark 5 The lower bound (4) can be improved by incorporating the “enhanced
short code argument” of Kane and Meka [25] (which is in essence a derandomiza-
tion step) into the ensuing reasoning. This yields a more complicated construction
for which (4) can be improved to α � exp

(

c(1−2ε)
√

log log n
)

for some universal
constant c > 0. Because it becomes a significantly more intricate case-specific
argument that does not pertain to the more general geometric phenomenon that we
study in Theorem 7, the details of this quantitative enhancement of Theorem 2 are
omitted.

1.2 Metric Embeddings

The distortion of a metric space (U, dU ) in a metric space (V , dV ) is a numerical
invariant that is denoted c(V ,dV )(U, dU ) and defined to be the infimum over those
α ∈ [1,∞] for which there exist an embedding f : U → V and a scaling factor
λ ∈ (0,∞) such that λdU(x, y) � dV

(

f (x), f (y)
)

� αλdU(x, y) for all distinct
x, y ∈ U . Given p � 1, the infimum of c(V ,dV )(U, dU ) over all possible2 Lp(μ)

spaces (V , dV ) is denoted cp(U, dU ).

1.2.1 Snowflakes

Because for every ε ∈ (0, 1) the quasi-norm ‖ · ‖1−ε does not induce a metric
on �1−ε, the embedding requirement (3) does not fit into the above standard
metric embedding framework. However, as we explain in Fact 6, it is possible
to situate (3) within this framework (even without mentioning �1−ε at all) by
considering embeddings of the (1 − ε)-snowflake of a finite metric space into �1.
Recall the commonly used terminology (see, e.g., [14]) that the (1 − ε)-snowflake
of a metric space (M, dM) is the metric space (M, d1−ε

M ).

2When (U, dU ) is a finite metric space, it suffices to consider embeddings into �p rather than a
generalLp(μ) space, as follows via a straightforward approximation by simple functions. We warn
that this is not so for general (infinite) separable metric spaces, in which case one must consider
embeddings into Lp; by [12, Corollary 1.5] there is even a doubling subset of L1 that does not
admit a bi-Lipschitz embedding into �1.
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Fact 6 Let (M, dM) be a finite3 metric space and fix ε ∈ (0, 1). The quantity

c1(M, d
1−ε
M )

1
1−ε is equal to the infimum over those α � 1 for which there exists

an embedding f : M → �1−ε that satisfies (3).

Proof Suppose that f : M → �1−ε satisfies (3). Then, recalling the notation (2)
for the metric d1−ε on �1−ε, we have dM(x, y)1−ε � d1−ε(f (x), f (y)) �
α1−εdM(x, y)1−ε for all x, y ∈ M . It follows from general principles [10, 43]
that the metric space (�1−ε, d1−ε) admits an isometric embedding into an L1(μ)

space (an explicit formula for such an embedding into L1(R
2) can be found in [35,

Remark 5.10]). Hence, c1(M, d
1−ε
M ) � α1−ε. Conversely, there is an explicit

embedding (see equation (2) in [36]) T : �1 → L1−ε(N× R) which is an isometry
when one takes the metric d1−ε on L1−ε(N × R). Hence, if β > c1(M, d

1−ε
M ),

then take an embedding g : M → �1 such that dM(x, y)1−ε � ‖g(x) − g(y)‖1 �
βdM(x, y)

1−ε for all x, y ∈ M and consider the embedding T ◦g which satisfies (3)
with α = β1/(1−ε), except that the target space is L1−ε(N × R) rather than �1−ε.
By an approximation by simple functions, we obtain the desired embedding into
�1−ε. ��

Standard examples of metric spaces (M, dM) such that c1(M, d
1−ε
M ) is large for

any ε ∈ (0, 1) areO(1)-expanders [19], namely,M is the vertex set of a largeO(1)-
regular graph such that the second-largest eigenvalue λ2 of its adjacency matrix
satisfies 1/(1− λ2) = O(1), and dM is the associated shortest-path metric; see [17]
for this snowflake non-embeddability statement (even coarse non-embeddability)
and [37, Lemma 48] for the best-known distortion bound here. However, it is known
that no expander is O(1)-sketchable, due to the unpublished manuscript [3], so this
natural route (in light of Fact 6) toward a potential resolution of the aforementioned
question of [4] cannot work.

1.2.2 Quotients

Suppose that G is a group that acts on a metric space (X, dX) by isometries. The
quotient space X/G = {Gx}x∈X of all the orbits of G can be equipped with the
following quotient metric dX/G : (X/G)× (X/G)→ [0,∞):

∀ x, y ∈ X, dX/G(Gx,Gy)
def= inf

(u,v)∈(Gx)×(Gy) dX(u, v) = inf
g∈G dX(gx, y).

(5)
See [11, Section 5.19] for more on this basic construction (in particular, for a
verification that (5) indeed gives a metric).

3The only reason for the finiteness assumption here (the present article deals only with finite metric
space) is to ensure that the embedding is into �1−ε rather than a more general L1−ε(μ) space. For
embeddings of finite-dimensional normed spaces, i.e., the setting of [4], a similar reduction to
embeddings into �1−ε is possible using tools from [1, 7, 40].
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Given k ∈ N, we will consider the Hamming cube to be the vector space Fk2 over
the field of two elements F2, equipped with the Hamming metric d

F
k
2
: Fk2 × F

k
2 →

N ∪ {0} that is given by

∀ x=(x1, . . . , xk), y=(y1, . . . , yk)∈Fk2, d
F
k
2
(x, y)=|{j ∈ {1, . . . , k} : xj �= yj }|.

Below, Fk2 will always be assumed to be equipped with the metric d
F
k
2
. The standard

basis of Fk2 is denoted e1, . . . , ek .
IfG is a group acting on F

k
2 by isometries, and if it isn’t too large, say, |G| � 2k/2,

then all but an exponentially small fraction of the pairs (x, y) ∈ F
k
2 × F

k
2 satisfy

d
F
k
2
(Gx,Gy) � k. Specifically, there is a universal constant η > 0 such that

|G| � 2
k
2 /⇒

∣

∣

∣

{

(x, y) ∈ F
k
2 × F

k
2 : dFk2/G(x, y) � ηk

}∣

∣

∣ � 2
5
3 k. (6)

A simple counting argument which verifies (6) appears in the proof of [26,
Lemma 3.2].

The symmetric group Sk acts isometrically on F
k
2 by permuting the coordinates,

namely, for each permutation g of {1, . . . , k} and x ∈ F
k
2, we write gx =

(xg−1(1), xg−1(2), . . . , xg−1(k)). A subgroup G � Sk of Sk therefore acts by

isometries on F
k
2; below we will only consider quotients of the form (Fk2/G, dFK2 /G

)

whenG is a transitive subgroup of Sk (namely, for any i, j ∈ {1, . . . , k}, there exists
a permutation g ∈ G such that g(i) = j ).

1.2.3 �1 Non-embeddability of Snowflakes of (Subsets of) Hypercube
Quotients

In [26] we studied the �1 embeddability of quotients of F
k
2. In particular, [26,

Corollary 3] states that if G is a transitive subgroup of Sk with |G| � 2k/2, then

c1
(

F
k
2/G, dFk2/G

)

� log k. (7)

In Remark 4 of [26], we (implicitly) asked about the sketchability of Fk2/G, by
inquiring whether its (1/2)-snowflake embeds into a Hilbert space withO(1) distor-
tion, as a possible alternative approach for obtaining integrality gaps (quantitatively
stronger than what was known at the time) for the Goemans–Linial semidefinite
relaxation of the Sparsest Cut problem. This hope was realized in [15] for the special
case when G = 〈Sk〉 � Sk is the cyclic group that is generated by the cyclic shift
Sk = (1, 2, . . . , k) ∈ Sk . Specifically, it follows from [15] that there exists a large
subset M ⊆ F

k
2, namely, |Fk2 �M| � 2k/k2, and a metric ρ on M/〈Sk〉 satisfying

ρ(O,O′) 0 d
F
k
2/〈Sk〉(O,O

′) for all pairs of orbits O,O′ ∈ M/〈Sk〉, and such that

the metric space (M/〈Sk〉,√ρ) embeds isometrically into �2. Strictly speaking, a
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stronger statement than this was obtained in [15] for a larger metric space (namely,
for the quotient of Fk2×Fk2 by the group 〈Sk〉×〈Sk〉), but here it suffices to consider
the above smaller metric space which inherits the stated properties.

Recalling Fact 6, this discussion leads naturally, as a strategy toward proving
Theorem 2, to investigating whether a lower bound as (7) holds for the (1 − ε)-
snowflake of the hypercube quotient Fk2/G rather than that quotient itself. We will
see that the method of [26] does not yield any such lower bound that tends to∞ as
k→∞ for fixed ε > 0, but we do obtain the desired statement here, albeit with an
asymptotically weaker lower bound than the log k of (7). Note that an application
of Theorem 7 to the above subset M ⊆ F

k
2 from [15] yields Theorem 2, because of

Fact 6.

Theorem 7 (non-embeddability of snowflakes of quotients of large subsets of
the hypercube) Fix k ∈ N and ε ∈ (0, 1

2 ). Let G be a transitive subgroup of Sk
with |G| � 2k/2. Then, everyM ⊆ F

k
2 with |Fk2 �M| � 2k/

√
log k satisfies

c1

(

M/G, d1−ε
F
k
2/G

)

� (log k)
1
2−ε. (8)

It would be interesting to determine the asymptotically sharp behavior (up to
universal constant factors) in (8) forM = F

k
2, though understanding the dependence

on the transitive subgroup G � Sk may be challenging; see [9] for investigations
along these lines. Even in the special case G = 〈Sk〉, we do not know the sharp
bound and in particular how it transitions from the (log k)1/2−ε of (8) to the log k
of (7) as ε→ 0 (it could be that neither bound is tight).

1.2.4 Bourgain’s Fourier Tails Versus the Kahn–Kalai–Linial Influence of
Variables

In [26, Theorem 3.8], we applied the important theorem [22] of Kahn, Kalai, and
Linial on the influence of variables on Boolean functions to show that if G is a
transitive subgroup of Sk , then every f : F

k
2/G → �1 satisfies the following

Cheeger/Poincaré inequality:

1

4k
∑

(x,y)∈Fk2×Fk2

∥

∥f (Gx)−f (Gy)∥∥1 � 1

log k

k
∑

j=1

1

2k
∑

x∈Fk2

∥

∥f
(

G(x+ej )
)−f (Gx)∥∥1 .

(9)
Fix (ε, α) ∈ (0, 1) × [1,∞). If |G| � 2k/2 and d

F
k
2/G
(Gx,Gy)1−ε � ‖f (Gx) −

f (Gy)‖1 � αd
F
k
2/G
(Gx,Gy)1−ε for x, y ∈ F

k
2, then
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k1−ε (6)
� 1

4k
∑

(x,y)∈Fk2×Fk2
d
F
k
2/G
(Gx,Gy)1−ε � 1

4k
∑

(x,y)∈Fk2×Fk2

∥

∥f (Gx)−f (Gy)∥∥1

(9)
� 1

log k

k
∑

j=1

1

2k
∑

x∈Fk2

∥

∥f
(

G(x + ej )
)− f (Gx)∥∥1

� α

log k

k
∑

j=1

1

2k
∑

x∈Fk2
d
F
k
2/G

(

G(x + ej ),Gx
)1−ε

(5)
� α

log k

k
∑

j=1

1

2k
∑

x∈Fk2
d
F
k
2
(x + ej , x)1−ε = αk

log k
.

It follows that

c1

(

F
k
2/G, d

1−ε
F
k
2/G

)

� log k

kε
. (10)

This is how (7) was derived in [26], but the right-hand side of (10) tends to ∞ as
k→∞ only if ε = o((log log k)/ log k).

Following the above use of the KKL theorem [26], it was used elsewhere in
place of applications [26, 27] of a more substantial theorem of Bourgain [8] on
the Fourier tails of Boolean functions that are not close to juntas; notably this was
first done by Krauthgamer and Rabani [29] to obtain an asymptotically improved
analysis of the Khot–Vishnoi integrality gap [27] for Sparsest Cut. We have seen
above that the KKL-based approach does not yield Theorem 7 (though, of course,
one cannot rule out the availability of a more sophisticated application of KKL
that does), but our use of Bourgain’s theorem in the ensuing proof of Theorem 7
shows that this theorem does sometime provide qualitatively stronger geometric
information. One should note here that (8) follows from an application of a sharp
form of Bourgain’s theorem that was more recently obtained by Kindler, Kirshner,
and O’Donnell [28]; an application of Bourgain’s original formulation yields a
bound that is asymptotically weaker by a lower-order factor.

2 Proof of Theorem 7

Here we will prove Theorem 7, thereby completing the justification of Theorem 2
as well.
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2.1 Fourier-Analytic Preliminaries

We will include here some basic facts and notation related to Fourier analysis on
the hypercube F

k
2; an extensive treatment of this topic can be found in, e.g., the

monograph [41]. Fix k ∈ N. From now on, let μ = μk denote the normalized
counting measure on F

k
2. Given A ⊆ {1, . . . , k}, the Walsh function WA : Fk2 →

{−1, 1} and Fourier coefficient ϕ̂(A) ∈ R of a function ϕ : Fk2 → R are defined by

∀ x ∈ F
k
2, WA(x) = (−1)

∑n
j=1 xj and ϕ̂(A) =

∫

F
k
2

ϕ(x)WA(x) dμ(x).

The convolution ϕ ∗ ψ : Fk2 → R of two functions ϕ,ψ : Fk2 → R is defined by

∀ x ∈ F
k
2, (ϕ∗ψ)(x) =

∫

F
k
2

ϕ(y)ψ(x+y) dμ(y) =
∑

A⊆{1,...,k}
ϕ̂(A)̂ψ(A)WA(x),

where the last equality is valid because the 2k Walsh functions {WA}A⊆{1,...,k} consist
of all of the characters of the additive group F

k
2, hence forming an orthonormal basis

of L2(μ). Suppose that g ∈ GL(Fk2) is an automorphism of Fk2. If ϕ : Fk2 → R is a
g-invariant function, i.e., ϕ(gy) = ϕ(y) for all y ∈ F

k
2, then for every ψ : Fk2 → R

and x ∈ F
k
2,

(ϕ ∗ ψ)(x)=
∫

F
k
2

ϕ(y)ψ(x+y) dμ(y)=
∫

F
k
2

ϕ(gy)ψ(x+y) dμ(y)

=
∫

F
k
2

ϕ(z)ψ
(

x+g−1z
)

dμ(z)=
∫

F
k
2

ϕ(z)ψ
(

g−1(gx+z)) dμ(z)=s
(

ϕ∗(ψ◦g−1)
)

(gx).

In particular, under the above invariance assumption, we have the identity

‖ϕ ∗ ψ‖L2(μ) =
∥

∥

∥ϕ ∗ (ψ ◦ g−1)
∥

∥

∥

L2(μ)
. (11)

Given p ∈ [0, 1], let ϑp : 2F
k
2×Fk2 → [0, 1] be the probability measure that is

defined by setting for each (x, y) ∈ F
k
2 × F

k
2,

ϑp(x, y)
def= p

d
F
k
2
(x,y)

(1− p)
k−d

F
k
2
(x,y)

2k
= 1

4k

k
∏

j=1

(

1+ (1− 2p)(−1)xj+yj
)

= 1

4k
∑

A⊆{1,...,k}
(1− 2p)|A|WA(x + y). (12)
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In other words, ϑp(x, y) is equal to the probability that the ordered pair (x, y) is
the outcome of the following randomized selection procedure: The first element
x ∈ F

k
2 is chosen uniformly at random, and the second element y ∈ F

k
2 is obtained

by changing the sign of each entry of x independently with probability p. Note in
passing that both marginals of ϑp are equal to μ, i.e., ϑp(�×F

k
2) = ϑp(Fk2×�) =

μ(�) for every � ⊆ F
k
2. Also, for every � ⊆ F

k
2, we have

ϑp
(

�× (Fk2 ��)
) = 1

8

∫

F
k
2×Fk2

(

(−1)1�(x) − (−1)1�(y)
)2

dϑp(x, y)

= 1

4

(

1−
∫

F
k
2×Fk2

(−1)1�(x)(−1)1�(y) dϑp(x, y)

)

= 1

4

∑

A⊆{1,...,k}

(

1− (1− 2p)|A|
)(

̂(−1)1�(A)
)2
,

(13)

where the last equality in (13) is a direct consequence of Parseval’s identity and the
final expression in (12) for ϑp(·, ·).

For ϕ : Fk2 → R and j,m ∈ {1, . . . , k}, the level-m influence of the j th variable

on ϕ, denoted Inf�mj [ϕ], is the quantity

Inf�mj [ϕ] =
∑

A⊆{1,...,k}�{j}
|A|�m−1

ϕ̂(A ∪ {j})2 =
∥

∥

∥ϕ ∗ R�m
j

∥

∥

∥

2

L2(μ)
, (14)

where the last equality is a consequence of Parseval’s identity, using the notation

R
�m
j

def=
∑

A⊆{1,...,k}�{j}
|A|�m−1

WA∪{j}. (15)

It follows from the first equation in (14) that

k
∑

j=1

Inf�mj [ϕ] =
∑

B⊆{1,...,k}
|B|�m

|B|ϕ̂(B)2 � m
∑

B⊆{1,...,k}
B �=∅

ϕ̂(B)2

= m
(∫

F
k
2

ϕ2 dμ− ϕ̂(∅)2
)

= mVarμ[ϕ], (16)

where Varμ[·] denotes the variance with respect to the probability measure μ. By
considering the symmetric group Sk as a subgroup of GL(Fk2), where the action is

permutation of coordinates, an inspection of definition (15) reveals that R�m
j ◦ g =
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R
�m
gj for g ∈ Sk and j,m ∈ {1, . . . , k}. By (11) and the second equality in (14), if

ϕ : Fk2 → R is g-invariant, then

∀ j,m ∈ {1, . . . , k}, Inf�mj [ϕ] = Inf�m
g−1j
[ϕ].

A combination of this observation with (16) yields the following statement, which
we record for ease of later reference:

Fact 8 Fix k ∈ N. Let G be a subgroup of Sk that acts transitively on the
coordinates {1, . . . , k}. Suppose that ϕ : Fk2 → R is a G-invariant function, i.e.,
f (gx) = f (x) for every g ∈ G and x ∈ F

n
2 . Then, for every m ∈ {1, . . . , k}, we

have

max
j∈{1,...,k} Inf

�m
j [ϕ] �

m

k
Varμ[ϕ].

Throughout what follows, given a subgroup G � Sk , we denote by πG : Fk2 →
F
k
2/G its associated quotient mapping, i.e., πG(x) = Gx for all x ∈ F

k
2. We denote

by μ
F
k
2/G
= μ ◦ π−1

G the probability measure on F
k
2/G that is given by

∀O ∈ F
k
2/G, μ

F
k
2/G
(O) = μ(O).

In a similar vein, for every p ∈ [0, 1], the probability measure ϑp on F
k
2 × F

k
2 that

is given in (12) descends to a probability measure ϑp

F
k
2/G
= ϑp ◦ (πG × πG)−1 on

(Fk2/G)× (Fk2/G) by setting

∀O,O′ ⊆ F
k
2/G, ϑ

p

F
k
2/G
(O,O′) = ϑp(O× O′).

2.2 A Cheeger/Poincaré Inequality for Transitive Quotients

Our main technical result is the following inequality.

Lemma 9 There is a universal constant β ∈ (0, 1) with the following property. Fix
an integer k � 55 and a transitive subgroup G of Sk . Suppose that X ⊆ F

k
2/G is a

sufficiently large subset in the following sense:

μ
F
k
2/G
(X) � 1− 1√

log k
. (17)

Then there is a further subset Y ⊆ X with μ
F
k
2/G
(Y ) � 3

4μF
k
2/G
(X) such that every

function f : Y → �1 satisfies



The Andoni–Krauthgamer–Razenshteyn Characterization of Sketchable Norms. . . 199

∫∫

Y×Y
‖f (O)− f (O′)‖1 dμ

F
k
2/G
(O) dμ

F
k
2/G
(O′)

�
√

log k
∫∫

Y×Y
‖f (O)− f (O′)‖1 dϑ

1
β log k

F
n
2/G

(O,O′). (18)

Prior to proving Lemma 9, we shall assume its validity for the moment and
proceed to prove Theorem 7.

Proof of Theorem 7 assuming Lemma 9 Fix α � 1 and suppose that f : M/G→
�1 satisfies

∀ x, y ∈ M, d
F
k
2/G
(Gx,Gy)1−ε � ‖f (Gx)−f (Gy)‖1 � αd

F
k
2/G
(Gx,Gy)1−ε.

(19)
Our task is to bound α from below by the right-hand side of (8).

An application of Lemma 9 to X = M/G, which satisfies the requirement (17)
by the assumption of Theorem 7, produces a subset Y with μ(π−1

G (Y )) � 1
2 for

which (18) holds true. It follows that

∫∫

π−1
G (Y )×π−1

G (Y )

d
F
k
2/G
(Gx,Gy)1−ε dμ(x) dμ(y)

(18)∧(19)
� α

√

log k
∫∫

(Fk2/G)×(Fk2/G)
d
F
k
2/G
(O,O′)1−ε dϑ

1
β log k

F
n
2/G

(O,O′)

(5)
� α

√

log k
∫

F
k
2×Fk2

d
F
k
2
(x, y)1−ε dϑ

1
β log k (x, y)

(12)= α
√

log k
k

∑

�=0

�1−ε
(

k

�

)(

β

log k

)�(

1− β

log k

)k−�
� α

√

log k

(

βk

log k

)1−ε
.

(20)

Since |G| � 2k/2, by (6), there exists η � 1 such that, since μ(π−1
G (Y )) � 1, we

have

μ× μ
(

{

(x, y) ∈ π−1
G (Y )× π−1

G (Y ) : d
F
k
2/G
(Gx,Gy) > ηk

}

)

� μ
(

π−1
G (Y )

)2 − μ× μ
(

{

(x, y) ∈ F
k
2 × F

k
2 : dFk2/G(Gx,Gy) � ηk

}

)

�

μ
(

π−1
G (Y )

)2 − 2−
k
3 � 1.

So, the first quantity in (20) is at least a constant multiple of k1−ε, and the desired
lower bound on α follows. ��
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Proof of Lemma 9 Suppose that Z ⊆ X satisfies

1

4
�
μ
F
k
2/G
(Z)

μ
F
k
2/G
(X)

� 2

3
. (21)

Writing q = μFk/G(Z), the function (−1)
1
π
−1
G
(Z) : Fk2 → {−1, 1} is G-invariant,

and its variance is equal to 4q(1 − q) 0 1. Let β ∈ (2/ log k, 1) be a small enough
universal constant that will be determined later. Also, let C ∈ (1,∞) be a large
enough universal constant; specifically take C to be the universal constant that
appears in the statement of [28, Theorem 3.1]. If we denote m = 1β log k2, then
it follows from Fact 8 that, provided β is a sufficiently small constant, we have

max
j∈{1,...,k} Inf

�m
j

[

(−1)
1
π
−1
G
(Z)

]

� m

k
Var

[

(−1)
1
π
−1
G
(Z)

]

�
Var

[

(−1)
1
π
−1
G
(Z)

]4

Cm
.

This is precisely the assumption of [28, Theorem 3.1], from which we deduce the
following Fourier tail bound:

∑

A⊆{1,...,k}
|A|>1β log k2

(

̂

(−1)
1
π
−1
G
(Z)(A)

)2

=
∑

A⊆{1,...,k}
|A|>m

(

̂

(−1)
1
π
−1
G
(Z)(A)

)2

�
Var

[

(−1)
1
π
−1
G
(Z)

]

√
m

0 1√
β log k

. (22)

Next, by the identity (13), we have

ϑ
1

β log k

(

π−1
G (Z)× (

F
k
2 � π

−1
G (Z)

)

)

= 1

4

∑

A⊆{1,...,k}

(

1−
(

1− 2

β log k

)|A|)( ̂

(−1)
1
π
−1
G
(Z)(A)

)2

� 1

4

(

1−
(

1− 2

β log k

)1β log k2+1
)

∑

A⊆{1,...,k}
|A|>1β log k2

(

̂

(−1)
1
π
−1
G
(Z)(A)

)2 (22)
� γ√

β log k
,

(23)

for some universal constant γ ∈ (0, 1). Therefore,
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ϑ
1

β log k

(

π−1
G (Z)× (

π−1
G (X)� π−1

G (Z)
)

)

� ϑ
1

β log k

(

π−1
G (Z)× (

F
k
2 � π

−1
G (Z)

)

)

− ϑ 1
β log k

(

F
k
2 ×

(

(Fk2 � π
−1
G (X)

)

)

= ϑ 1
β log k

(

π−1
G (Z)× (

F
k
2 � π

−1
G (Z)

)

)

− μ(Fk2 � π−1
G (X)

)

(17)∧ (23)
� γ√

β log k
− 1√

log k

(21)0 1√
log k

· μFk/G(Z)

μFk/G(X)
,

(24)

where the final step of (24) holds provided 1 0 β � γ 2/4, which is our final
requirement from the universal constant β.

Observe that

ϑ
1

β log k

F
k
2/G

(X ×X) � ϑ 1
β log k

(

F
k
2 × F

k
2

)

− ϑ 1
β log k

(

(

F
k
2 � π

−1
G (X)

)× F
k
2

)

− ϑ 1
β log k

(

F
k
2 ×

(

F
k
2 � π

−1
G (X)

)

)

= 1− 2μ
(

F
k
2 � π

−1
G (X)

) = 1− 2
(

1− μ
F
k
2/G
(X)

) (17)
� 1− 2√

log k
0 1.

(25)

Hence,

ϑ

1
β log k

F
k
2/G

(

(

Z×(X�Z)
)

∪
(

(X�Z)×Z
)

)

ϑ

1
β log k

F
k
2/G

(X×X)

=
2ϑ

1
β log k

(

π−1
G (Z)×

(

π−1
G (X)�π−1

G (Z)
)

)

ϑ

1
β log k

F
k
2/G

(X×X)

(24)
� 1√

log k
· μFk/G

(Z)

μ
Fk/G

(X)
. (26)

We are now in position to apply [26, Lemma 6] with the parameters δ = 1
4 ,

α 0 1/
√

log k, and the probability measures:

σ
def=

μ
F
k
2/G

μ
F
k
2/G
(X)
: 2X → [0, 1] and τ

def=
ϑ

1
β log k

F
k
2/G

ϑ
1

β log k

F
k
2/G

(X ×X)
: 2X×X → [0, 1].

(27)
Due to (26), by the proof of [26, Lemma 6] (specifically, equation (7) in [26]), there
exists a subset Y ⊆ F

k
2/G with σ(Y ) � 3/4, i.e., μ

F
k
2/G
(Y ) � 3μ

F
k
2/G
(X)/4, such
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that every f : Y → L1 satisfies

∫∫

Y×Y
‖f (O)− f (O′)‖1 dμ

F
k
2/G
(O) dμ

F
k
2/G
(O′) (21)∧ (27)0

∫∫

Y×Y
‖f (O)− f (O′)‖1 dσ(O) dσ(O′)

�
√

log k
∫∫

Y×Y
‖f (O)− f (O′)‖1 dτ(O,O′) (25)∧ (27)0 √

log k

∫∫

Y×Y
‖f (O)− f (O′)‖1 dϑ

1
β log k

F
n
2/G

(O,O′).

��
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Degree of Convergence of Some
Operators Associated with
Hardy-Littlewood Series for Functions
of Class Lip(α, p), p > 1

Manish Kumar, Benjamin A. Landon, R. N. Mohapatra,
and Tusharakanta Pradhan

Abstract In this article, we study the degree of convergence of Euler, Borel, and
(e, c) transforms of the Fourier series of functions of class Lip(α, p), for p > 1.
When p tends to infinity, the results yield known results in the supremum norm
studied by P. Sadangi (Sadangi, Degree of Convergence of functions in the Hölder
metric, Ph.D. Thesis, Utkal University, 2006). The results of this chapter set the
stage for further generalizations in other function spaces.

Mathematics Subject Classification: 40A05, 41A10, 42A10

1 Basic Definitions and Introduction

A series is divergent if its sum diverges to infinity or oscillates finitely. Summability
methods are used to assign a sum to series which oscillates finitely. Methods used
to sum such series include Cesàro, Nörlund, Riesz, Abel, Euler, Borel, (e, c), and
Karamata means. See Hardy [11] for all definitions and related results. Also see
references [1, 4, 7–10, 13, 14, 19–21] for works related to our investigation in this
paper.
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1.1 Summation Methods

Given
∑

an with partial sum sn, let tn = psn, where p is some transform of sn. Let
c be the collection of all convergent sequences. If p : c→ c, c is the collections of
all convergent sequences of real numbers, then p is said to be conservative.
If sn→ s implies that psn→ s as n→∞, then method p is said to be regular.
The degree of convergence of a summation method to a given function f is a
measure of how fast tn converges to f . This means that we need to find λn such
that

||tn − f || = O
(

1

λn

)

, (1)

where λn → ∞ as n → ∞ and the norm is the supremum norm. A significant
application of the summation methods is to Fourier series.

1.2 Fourier Series

Let f ∈ L(0, 2π) be periodic with period 2π . C2π is the collection of all continuous
functions with period 2π . The Fourier series of f is given by

f ∼ 1

2
a0 +

∞
∑

n=1

(an cos nx + bn sin nx), (2)

where an and bn are the Fourier coefficients. The series conjugate to (2) is given by

f ∼
∞
∑

n=1

(an sin nx − bn cos nx). (3)

Zygmund [22] showed that if f ∈ C2π ∩ Lip α, 0 < α ≤ 1 and sn is the nth partial
sum of the Fourier series of f , then

||sn(f ; x)− f (x)|| = O
(

log n

nα

)

. (4)

1.3 Hardy-Littlewood Series

Let
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∞
∑

n=0

An(x) = a0

2
+
∞
∑

n=1

(an cos nx + bn sin nx). (5)

If

S2n(x) =
n−1
∑

k=0

Ak(x)+ 1

2
An(x), (6)

then the Hardy-Littlewood series (HL-series) is defined as

∞
∑

n=1

S2n(x)− f (x)
n

. (7)

Let

∞
∑

n=0

Bn(x) =
∞
∑

n=1

(an sin nx − bn cos nx). (8)

If we write

˜S2n(x) =
n−1
∑

k=1

Bk(x)+ 1

2
Bn(x), (9)

then the associated Hardy-Littlewood series is defined as

∞
∑

n=1

˜S2n(x)− ˜f (x)

n
. (10)

The convergence of the above series is addressed in a theorem due to Das et al. [5].
In this article, we shall determine the degree of convergence of certain means of the
Hardy-Littlewood series of a function f to itself in Hα,p.

2 Introduction to Some Summation Methods

In this section, we define some methods of summation that will be used throughout
the chapter. We also give the definition of Hölder continuity.
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2.1 Borel, Euler, and (e, c) Means

There are several methods of summing divergent series. We shall state several such
methods:

Borel’s exponential mean: Let
∑∞
n=0 un(x) be an infinite series with sequence

of partial sums {tn(x)}. Borel’s exponential mean Bp(t; x) of the sequence {tn(x)}
is defined by

Bp(t; x) = e−p
∞
∑

n=0

tn(x)
pn

n! , (p > 0). (11)

Euler mean: Given any sequence {tn(x)} its (E, q), q > 0, meanEqn(t; x) is defined
by

E
q
n(t; x) = (q + 1)−n

n
∑

k=0

(

n

k

)

qn−ktk(x). (12)

(e,c) mean: Let
∑∞
n=−∞ cn(x) be an infinite series with the partial sums {tn(x)}.

The (e, c), (c > 0) mean ecn(t; x) of {tn(x)} is defined by

ecn(t; x) =
√

c

πn

∞
∑

k=−∞
tn+k(x)e−

ck2
n , (13)

where it is understood that tn+k(x) = 0, when n+ k < 0.

2.2 Fourier Series and Conjugate Series in the Hölder Metric

Let C2π be the space of all 2π periodic functions defined on [0, 2π ] and let for
0 < α ≤ 1 and for all x, y

Hα = {f ∈ C2π : |f (x)− f (y)| ≤ M|x − y|α}, (14)

where M is a positive constant. The functions Hα are called Hölder continuous
functions. Then space Hα(0 < α ≤ 1) is a Banach space [16] under the norm ||.||α:

||f ||α = ||f ||c + sup
x �=y

Δαf (x, y), (f ∈ Hα), (15)

where ||f ||c denotes the sup norm of f with respect to x,
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Δαf (x, y) = |f (x)− f (y)||x − y|α , x �= y, (16)

and by convention

Δ0f (x, y) = 0.

The metric induced by the norm ||.||α on Hα is called the Hölder metric. It can be
seen that

||f ||β ≤ (2π)α−β ||f ||α, (17)

for 0 ≤ β < α ≤ 1. Thus {Hα, ||.||α} is a Banach space which decreases as α
increases, i.e.,

C2π ⊇ Hβ ⊇ Hα for 0 ≤ β < α ≤ 1. (18)

2.3 The Measure of Convergence of the Euler, Borel, and
(e, c) Means of a Series Associated with the
Hardy-Littlewood Series in the Hölder Metric

Let

g(x) = 2

π

∫ π

0+
ψx(t)

1

2
cot

(

1

2
t

)

log

(

1

2
csc

1

2
t

)

dt, (19)

where

ψx(t) = 1

2
{f (x + t)− f (x − t)} . (20)

Das, Ray, and Sadangi [6] obtained the rate of convergence of the associated Hardy-
Littlewood series (10) to g(x) in the Hölder metric.

Theorem 2.1 Let ˜Tn(x) be the nth partial sum of the Hardy-Littlewood series (7).
Let 0 ≤ β < α ≤ 1 and f ∈ Hα . Then

||˜Tn − g||β = O(1)
{

1
nα−β , α − β �= 1
log n
n

, α − β = 1.
(21)

Sadangi [18] obtained the degrees of approximation of g(x) in the Hölder metric
using the Euler, Borel, and (e, c) means of (7).
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Theorem 2.2 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα . Then

||Eqn(˜T )− g||β = O(1)
{

1
nα−β , α − β �= 1
log n
n

, α − β = 1.
(22)

Theorem 2.3 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα . Then

||Bp(˜T )− g||β = O(1)
{

1
pα−β , α − β �= 1
logp
p

, α − β = 1.
(23)

Theorem 2.4 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα . Then

||en(˜T )− g||β = O(1)
{

1
nα−β , 0 < α − β ≤ 1

2
1√
n

, 1
2 < α − β ≤ 1.

(24)

3 Definitions and Notations

Let Lp[0, 2π ] be the space of all 2π -periodic integrable functions and for all t

Hα,p :=
⎧

⎨

⎩

f ∈ Lp[0, 2π ] :
(∫ 2π

0
|f (x + t)− f (x)|pdx

)
1
p

≤ K|t |α
⎫

⎬

⎭

, (25)

where K is a positive constant. The space Hα,p(p > 1, α ≤ 0 < 1) is a Banach
space under the norm ||.||α,p :

||f ||α,p := ||f ||p + sup
t �=o
||f (y + t)− f (y)||p

|t |α . (26)

The metric induced by norm ||.||α,p onHα,p is called Hölder continuous with degree
p. It can be seen that

||f ||β,p ≤ (2π)α−β ||f ||α,p.

Since f ∈ Hα,p if and only if ||f ||α,p <∞, we have

Lp[0, 2π ] ⊇ Hβ,p ⊇ Hα,p, p > 1, 0 ≤ β < α ≤ 1. (27)

We write
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ϕx(t) = 1

2
{f (x + t)+ f (x − t)− 2f (x)}

ψx(t) = 1

2
{f (x + t)− f (x − t)}

χx(t) =
∫ π

t

ϕx(u)
1

2
cot

1

2
udu

θx(t) = − 2

π

∫ t

0
ψx(u)

1

2
cot

1

2
udu

˜f (x) = − 2

π

∫ π

0+
ψx(t)

1

2
cot

1

2
tdt (28)

g(x) = 2

π

∫ π

0+
ψx(t)

1

2
cot

(

1

2
t

)

log

(

1

2
csc

1

2
t

)

dt (29)

χx(0
+) =

∫ π

0+
ϕx(u)

1

2
cot

1

2
udu (30)

hx(t) = π

2
θx(t)− t

2
˜f (x), 0 < t ≤ π,

and defined elsewhere by periodicity with period 2π .

4 Main Results

It was Prossdorf [17] who initiated the work on the degree of approximations of
the Hα class in the Hölder metric by Fejér means of the Fourier series. Chandra [2]
obtained a generalization of Prossdorf’s work on the Nörlund mean setup. Later,
Mohapatra and Chandra [15] consider the problem by matrix means. Chandra [2, 3]
also studied the degree of approximation of functions of the Hα class in the Hölder
metric by their Fourier series using Borel’s exponential means and Euler means.
Das, Ojha, and Ray [5] have studied the degree of approximation of the integral

χx(0
+) =

∫ π

0+
ϕx(u)

1

2
cot

1

2
udu,

by the Euler, Borel, and (e,c) transforms of the HL-series in the Hölder metric. Das,
Ray, and Sadangi [6] obtained the following result on the rate of convergence of the
series (10) to the integral g(x) in the Hölder metric.
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Let

˜T (x) =
n

∑

k=1

˜S∗n(x)− ˜f (x)

n
, n ≥ 1,

and zero otherwise. LetEqn(˜T ; x),Bp(˜T ; x) and en(˜T ; x) be respectively the (E, q),
Borel, and (e, c) means of {˜Tn(x)}. We prove the following theorems:

Theorem 4.1 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα,p. Then

||Eqn(˜T )− g||β,p = O(1)
{

1
nα−β , α − β �= 1
log n
n

, α − β = 1.
(31)

Theorem 4.2 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα,p. Then

||Ep(˜T )− g||β,p = O(1)
{

1
pα−β , α − β �= 1
logp
p

, α − β = 1.
(32)

Theorem 4.3 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα,p. Then

||en(˜T )− g||β,p = O(1)
{

1
nα−β , 0 < α − β ≤ 1

2
1√
n

, 1
2 < α − β ≤ 1.

(33)

In proving these theorems, our main observation is that the kernels for Euler, Borel,
and (e,c) means have some common important characteristic even though they
appear to be different of each other. In what follows, we shall prove our theorems in
a unified manner by taking full advantage of the common properties possessed by
the kernels of Euler, Borel, and (e,c) means.

Recall the series (10). It is known from Zygmund [22] that

˜S2n = −
2

π

∫ π

0
ψx(t)

1− cos nt

2 tan 1
2 t

dt,

from which it follows that

˜S2n − ˜f (x) = 2

π

∫ π

0
ψx(t)

cos nt

2 tan 1
2 t
dt. (34)

For n ≥ 1, we have, for the odd function hx(t),
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cn = 2

π

∫ h

0
hx(t) sin ntdt

= 2

π

∫ π

0

{

π

2
θx(t)− t

2
˜f (x)

}

sin ntdt

= 1

π

[

{

t ˜f (x)− πθx(t)
} cos nt

n

]π

t=0

− 1

π

∫ π

0

{

˜f (x)+ ψx(t) cot
1

2
t

}

cos nt

n
dt

= − 2

nπ

∫ π

0
ψx(t)

cos nt

2 tan 1
2 t
dt

= −˜S2n(x)− ˜f (x)

n
. (35)

The series conjugate to h(t) = ∑∞
n=1 cn sin nt is −∑∞

n=1 cn cos nt and hence, we
have:

Proposition The series (10) is the series conjugate to the Fourier series of the odd
function hx(t) at t = 0.
In this case,

˜Tn(x) = −
n

∑

k=1

ck = − 2

π

∫ π

0
hx(t)˜Dn(t)dt, (36)

where

˜Dn(t) = −
n

∑

k=1

sin kt
cos 1

2 t − cos
(

n+ 1
2

)

t

2 sin 1
2 t

. (37)

At this stage, we may note that Das, Ojha, and Ray [5] have established the Fourier
character of the HL-series (7).

5 Notations, Lemmas, and Generalized Minkowski
Inequality

For generalized Minkowski inequality, see [12]:

Lemma 5.1 If h(y, t) is a function of two variables defined for 0 ≤ t ≤ π , 0 ≤
y ≤ 2π , then

∥

∥

∥

∥

∫

h(y, t)dt

∥

∥

∥

∥

p

≤
∫

‖h(y, t)‖p dt, p > 1.
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For the proof of this inequality, please see Hardy, Littlewood, and Pólya [12].
Throughout the section, we use the following additional notations:

G(x, y) = g(x)− g(y),
˜F(x, y) = ˜f (x)− ˜f (y),

G(t) = θx(t)− θy(t).

We need the following lemmas for proof of our theorems:

Lemma 5.2 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα , then for 0 < t ≤ π

||ψy+u(t)− ψy(t)||p = O(tα) (38)

= O(|u|α) (39)

= O(|u|βtα−β) (40)

θy+u(t) = O(tα) (41)

||G(t)||p = O(|u|βtα−β). (42)

Proof The proofs of (38) and (39) are omitted as they are immediate consequences
of the definition of ψy(t) and Hα,p. Writing

|ψy+u(t)− ψy(t)| = |ψy+u(t)− ψy(t)|1−β/α|ψy+u(t)− ψy(t)|β/α,

and using the estimates (38) and (39), we obtain (40).
As

θx(t) = − 2

π

∫ t

0
ψx(u)

1

2
cot

1

2
udu,

estimates (41) follows from the fact that ψx(u) = O(uα).
As

||G(t)||p =
∥

∥

∥

∥

∥

− 2

π

∫ t

0

ψy+u(ζ )− ψy(ζ )
2 tan 1

2 (ζ )
dζ

∥

∥

∥

∥

∥

p

,

estimates (42) follows by applying (40).

Lemma 5.3 Let f ∈ Hα,p and 0 ≤ β < α ≤ 1. Then

||G(t + h)−G(t)||p = O(h|u|βtα−β−1).
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Proof Applying the mean value theorem and (40), we obtain for some θ with 0 <
θ < 1

G(t + h)−G(t) = hG′(t + θh)

= h
[

2

π

{

ψy+u(t + θh)− ψy(t + θh)
} 1

2
cot

1

2
(t + θh)

]

||G(t + h)−G(t)||p = O(h|u|β(t + θh)α−β−1)

= O(h|u|βtα−β−1).

Lemma 5.4 Let 0 ≤ β < α ≤ 1 and let f ∈ Hα,p. Then

(i) ˜F(x, y) = O(|u|β)
(ii) G(x, y) = O(|u|β).

Proof Since

˜F(y + u, y) = ˜f (y + u)− ˜f (y) = θy+u(π)− θ(π) = G(π).

Lemma 5.4(i) follows from (42). Using (40), we have

||G(y + u, y)||p = ||g(y + u)− g(y)||p
≤ 2

π

∫ π

0
||ψy+u(ζ )− ψy(ζ )||p

∣

∣

∣

∣

1

2
cot

1

2
ζ log

1

2
csc

1

2
ζ

∣

∣

∣

∣

dζ

= O(1)|u|β
∫ π

0
ζ α−β−1 log

2π

ζ
dζ,

which ensures Lemma 5.4(ii) as the last integral is finite.

Lemma 5.5 (Das, Ojha, and Ray [5]) Suppose that A and δ are both positive
constants. Let β be any real number. Then as λ→∞,

∫ δ

π/λ

tβe−Aλt2dt = O(λ−β−1), β < −1 (43)

∫ δ

π/λ

tβe−Aλt2dt = O(1) log λ, β = −1 (44)

∫ δ

π/λ

tβe−Aλt2dt = O(1) 1

λk
, 2k − 1 < β ≤ 2k, k = 0, 1, 2, . . . (45)
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∫ δ

π/λ

tβe−Aλt2dt = O(1) 1

λβ−k
, 2k < β ≤ 2k + 1, k = 0, 1, 2, . . . . (46)

Lemma 5.6 Let c(λ, t) be defined for all λ ≥ 0 and 0 ≤ t ≤ π . Suppose that
(i) c(λ, t) ≥ 0 for all λ ≥ 0 and 0 ≤ t ≤ π .

(ii) c(λ, t) is monotonically decreasing in t over [0, π ] for each positive constant
A.

(iii) c(λ, t) = O(e−Aλt2) as λ→∞, 0 < t ≤ π for some positive constant A.
(iv) c(λ, t)− c(λ, t + h) = O(tc(λ, t)), π

λ
< t ≤ π , where h = π/λ.

Let θx(t) and G(t) be respectively defined as in Sections 3 and 5. If
f ∈ Hα,p, 0 ≤ β < α ≤ 1, then for 0 < δ ≤ π

(a)
∫ δ

π
λ

G(t)

t
c(λ, t) sin λtdt = O(1)|u|β

{

1
λα−β , α − β �= 1
log λ
λ

, α − β = 1
(47)

(b)
∫ δ

π
λ

θx(t)

t
c(λ, t) sin λtdt = O(1)|u|β

{ 1
λα

, 0 < α < 1
log λ
λ

, α = 1.
(48)

Proof (a) putting h = π/λ, we write

J =
∫ δ

h

G(t)

t
c(λ, t) sin λtdt (49)

=
(∫ δ+h

2h
+

∫ 2h

h

−
∫ δ+h

δ

)

G(h)

t
c(λ, t) sin λtdt

−
∫ δ

h

G(t + h)
t + h c(λ, t + h) sin λtdt +

∫ 2h

h

G(t)

t
c(λ, t) sin λtdt

−
∫ δ+h

δ

G(t)

t
c(λ, t) sin λtdt.

(50)

From (49) and (50), we obtain

2J =
∫ δ

h

[

G(t)

t
c(λ, t)− G(t + h)

t + h c(λ, t + h)
]

sin λtdt

+
∫ 2h

h

G(t)

t
c(λ, t) sin λtdt −

∫ δ+h

δ

G(t)

t
c(λ, t) sin λtdt

= P +Q− R. (51)
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By Minkowski’s inequality,

2||J ||p ≤ ||P ||p + ||Q||p + ||R||p,

since

P =
∫ δ

h

[

G(t)

t
c(λ, t)− G(t + h)

t + h c(λ, t + h)
]

sin λtdt

=
∫ δ

λ

G(t)−G(t + h)
t

c(λ, t) sin λtdt

+
∫ δ

h

G(t + h)
t

[c(λ, t)− c(λ, t + h)] sin λtdt

+
∫ δ

λ

G(t + h)
[

1

t
− 1

t + h
]

c(λ, t + h) sin λtdt

= P1 + P2 + P3. (52)

By Minkowski’s inequality,

||P ||p ≤ ||P1||p + ||P2||p + ||P3||p.

By using the generalized Minkowski inequality and usual method of estimation, we
have

||P1|| = O(1)|u|βh
∫ δ

h

tα−β−2dt,

= O(1)|u|β
{

hα−β , α − β �= 1
h logh−1 , α − β = 1.

(53)

where we have used Lemma 5.3 and (iii) of Lemma 5.6.

By Lemma 5.2 and the definition of c(λ, t), and using the method similar to
that used to obtain (53), we get

||P2||p = O(1)|u|β
∫ δ

h

tα−β−1tc(λ, t)dt

= O(1)|u|β
∫ δ

h

tα−βc−Aλt2dt

= O(1)|u|βhα−β, 0 ≤ β < α ≤ 1, (54)

using Lemma 5.5.
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Adopting the technique similar to those used in splitting J into P,Q, and R, we can
write

2P3 =
∫ δ

h

[

G(t + h)
(

1

t
− 1

t + h
)

c(λ, t + h)

−G(t + 2h)

(

1

t + h −
1

t + 2h

)

c(λ, t + 2h)

]

sin λtdt

+h
∫ 2h

h

G(t+h)
t (t+h) c(λ, t+h) sin λtdt −

∫ δ+h

δ

G(t + h)
t (t + h) c(λ, t + h) sin λtdt

= L+M −N. (55)

By Minkowski’s inequality,

2||P3|| ≤ ||L||p + ||M||p + ||N ||p.

We have

L =
∫ δ

h

[

G(t + h)
(

1

t
− 1

t + h
)

c(λ, t + h)

−G(t + 2h)

(

1

t + h −
1

t + 2h

)

c(λt + 2h)

]

sin λtdt

= h
∫ δ

h

G(t + h)−G(t + 2h)

t (t + h) c(λ, t + h) sin λtdt

+h
∫ δ

h

G(t + 2h)

t (t + h) [c(λ, t + h)− c(tλ, t + 2h)] sin λtdt

= h
∫ δ

h

g(t + 2h)

t + h
(

1

t
− 1

t + 2h

)

c(λ, t + 2h) sin λtdt

= L1 + L2 + L3. (56)

By Minkowski’s inequality,

||L||p ≤ ||L1||p + ||L2||p + ||L3||p.

By the generalized Minkowski inequality mentioned in Section 5, and the usual
method of estimation, we get by usual estimation technique

||L1||p ≤ |h|
∫ δ

h

||G(t + h)−G(t + 2h)||p
|t (t + h)| |c(λ, t + h) sin λt |dt
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= O(1)|u|βh2
∫ δ

h

(t + h)α−β−1

t (t + h) e−At2dt

= O(1)|u|βh2
∫ δ

h

tα−β−3dt

= O(1)|u|βhα−β, 0 ≤ β < α ≤ 1. (57)

Using Lemma 5.2 and properties of c(λ, t), we get

||L2||p ≤ |h|
∫ δ

h

||G(t + 2h)||p
|t (t + h)| |[c(λ, t + h)− c(λ, t + 2h)] sin λt |dt

= O(1)|u|βh
∫ δ

h

(t + 2h)α−β

t (t + h) (t + h)c(λ, t + h)dt

= O(1)|u|βh
∫ δ

h

tα−β−1dt

= O(1)|u|βh, 0 ≤ β < α ≤ 1, (58)

and

||L3||p ≤ |h|
∫ δ

h

||G(t + 2h)||p
|t + h|

∣

∣

∣

∣

(

1

t
− 1

t + 2h

)

c(λ, t + 2h) sin λt

∣

∣

∣

∣

dt

= O(1)|u|βh2
∫ δ

h

(t + 2h)α−β

t (t + h)(t + 2h)
e−Aλt2dt

= O(1)|u|βh2
∫ δ

h

tα−β−3dt

= O(1)|u|βhα−β, 0 ≤ β < α ≤ 1. (59)

Using Lemma 5.2 and the boundedness of c(λ, t), we get

||M||p ≤
∫ 2h

h

||G(t + h)||p
|t (t + h)| |c(λ, t + h) sin λ|dt

= O(1)|u|βh
∫ 2h

h

tα−β−2dt

= O(1)|u|β
{

hα−β , α − β �= 1
h log 2 , α − β = 1,

(60)
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and

||N ||p ≤ |h|
∫ δ+h

δ

G(t + h)
|t (t + h)| |c(λ, t + h) sin λt |dt

= O(1)|u|βh
∫ δ+h

δ

tα−β−2dt

= O(1)|u|βh, 0 ≤ β < α ≤ 1. (61)

Collecting the results from (55)–(61), we obtain

||P3||p = O(1)|u|βhα−β, 0 ≤ β < α ≤ 1. (62)

Combining the results of (52), (53), (54), and (62), we have

||P3||p = O(1)|u|β
{

hα−β , α − β �= 1
h log h−1 , α − β = 1.

(63)

By Lemma 5.2, we have, for 0 ≤ β < α ≤ 1,

||R||p ≤
∫ δ+h

δ

||G(t)||p
|t | |c(λ, t)|| sin λt |dt (64)

= O(1)|u|βe−Aλδ2

= O(1)|u|βλ−Δ, (65)

for every positive Δ, however large. Collecting the above estimates for P,Q, and
R, we obtain

J = O(1)|u|β
{

hα−β , α − β �= 1
h logh−1 , α − β = 1,

(66)

and this completes the proof (a). We omit the proof of (b) because it is similar to
that of part (a). The case where sin λt is replaced with cos λt can also be dealt with
in a similar manner.

Lemma 5.7 If f ∈ Hα,p, 0 ≤ β < α ≤ 1, then as λ→∞

(a)
∫ π/λ

0

||G(t)||p
|t | dt = O(1)|u|β

λα−β

(b)
∫ π/λ

0

||θx(t)||p
|t | dt = O(1)λ−α.

Proof The result follows from Lemma 5.2.
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Lemma 5.8 If f ∈ Hα,p, 0 ≤ β < α ≤ 1, then as λ→∞

(a)
∫ π

δ

||G(t)||p
|t | |e−Aλt2 |dt = O(1)|u|βλ−Δ

and

(b)
∫ π

δ

||θx(t)||p
|t | e−Aλt2dt = O(1)λ−Δ.

Proof By Lemma 5.2

∫ π

δ

|G(t)|
t

e−Aλt2dt = O(1)|u|β
∫ π

δ

tα−β−1e−Aλt2dt

= O(1)uβe−Aλδ2

= O(1)|u|βλ−Δ, Δ > 0.

Part (b) can be dealt with in a similar fashion.

6 Proof of Theorem 1

We will use the following additional notations for the proof of Theorem 1.

lEn (x) = Eqn(x)− g(x)
pnq(t) = (q + 1)−n(1+ q2 + 2q cos t)

n
2

θ = θ(t) = tan−1 sin t

q + cos t

P (n, t) = (q + 1)−1
n

∑

k=0

(

n

k

)

qn−k cos

(

k + 1

2

)

t, q > 0

Q(n, t) = (q + 1)−1
n

∑

k=0

(

n

k

)

qn−k sin

(

k + 1

2

)

t, q > 0

E(n) = (q + 1)−n
n

∑

k=1

(

n

k

)

qn−k
∞
∑

ν=k+1

(−1)ν−1

ν

λ = n

1+ q +
1

2
.
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We need the following lemmas:

Lemma 6.1 Let 0 < t ≤ π . Then

pnq(n) ≤ e−Ant
2

where A = 2q[π(1+ q)]−2.

Lemma 6.2 For 0 < t ≤ π ,

(i) P (n, t) = pnq(t) cos

(

nΦ + 1

2
t

)

(67)

(ii) P (n, t) = O(1) (68)

(iii) E(n) = O(n−1). (69)

Proof By simple computation, we have

P(n, t)+ iQ(n, t) = (q + 1)−1
n

∑

k=0

(

n

k

)

qn−kei
(

k+ 1
2

)

t

= (q + 1)−nei
1
2 t (q + eit )n

= pnq(t)ei
1
2 t

[

cos

(

nΦ + 1

2
t

)

+ i sin

(

nΦ + 1

2
t

)]

,

from which (ii) follows. As
∣

∣

∣cos
(

k + 1
2

)

t

∣

∣

∣ ≤ 1 and
∑n
k=0

(

n
k

)

qn−k = (1 + q)n,

estimates (iii) follows. As

∞
∑

ν=k+1

(−1)ν−1

ν
= O

(

1

k + 1

)

,

we have,

(q + 1)nE(n) =
n

∑

k=1

(

n

k

)

qn−k
∞
∑

ν=k+1

(−1)ν−1

ν

= O(1)
n

∑

k=1

(

n

k

)

qn−k 1

k + 1
. (70)

Now

n
∑

k=1

(

n

k

)

qn−k 1

k + 1
= 1

n+ 1

n+1
∑

k=2

(

n+ 1

k

)

qn+1−k
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<
1

n+ 1

n+1
∑

k=0

(

n+ 1

k

)

qn+1−k

= (q + 1)n+1

n+ 1
. (71)

Using (71) in (70), we obtain (69).

Lemma 6.3 Let λ = n
1+q + 1

2 , h = π
λ
, and 0 < t < π

4 . Then for h ≤ t < δ

pnq(t + h)− pnq(t) = O(1)tpnq(t). (72)

Proof By the mean value theorem, we have for some ζ with 0 < ζ < 1

pnq(t + h)− pnq(t) = h
[

d

dx
pnq(x)

]

= −nhpnq(t + ζh)
1+ q2 + 2q cos(1+ ζh) sin(t + ζh)

= O(1)tpnq(t).

Lemma 6.4 Let λ = n
1+q + 1

2 and 0 < δ < π
4 . Then for 0 < t < δ

cos

(

nΦ + 1

2
t

)

− cos λt = O(nt3). (73)

Proof We have

∣

∣

∣

∣

cos

(

nΦ + 1

2
t

)

− cos λt

∣

∣

∣

∣

=
∣

∣

∣

∣

2 sin
1

2

(

nΦ+1

2
t+λt

)

sin
1

2

(

λt−nΦ−1

2
t

)∣

∣

∣

∣

≤
∣

∣

∣

∣

λt − nΦ − 1

2
t

∣

∣

∣

∣

= n
∣

∣

∣

∣

Φ− t

1+q
∣

∣

∣

∣

≤
[∣

∣

∣

∣

tan−1 sin t

q+ cos t
− sin t

q+ cos t

∣

∣

∣

∣

+
∣

∣

∣

∣

sin t

q+ cos t
− t

1+q
∣

∣

∣

∣

]

= n
[

O

(

(

sin t

q+ cos t

)3
)

+O(t3)
]

= O(nt3).

Proof Proof of Theorem 1. Using (34), we have
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˜Tn(x) =
n

∑

k=1

˜S2k (x)− ˜f (x)

k

= − 2

π

∫ π

0
hx(x)˜Dx(t)dt

= − 2

π

∫ π

0

[

t

2
˜f (x)− π

2
θx(t)

]

˜Dn(t)dt

= − 1

π
˜f (x)

∫ π

0
t˜Dn(t)dt −

∫ π

0
θx(t)˜Dn(t)dt

= −˜f (x)

n
∑

k=1

cos kπ

k
−

∫ π

0
θx(t)

cos 1
2 t − cos

(

n+ 1
2

)

t

2 sin t
2

dt

= ˜f (x)

[

log 2−
∞
∑

ν=n+1

(−1)ν−1

ν

]

−
∫ π

0
θx(t)

1

2
cot

1

2
tdt

+
∫ π

0
θx(t)

cos
(

n+ 1
2

)

t

2 sin t
2

dt. (74)

Now,

∫ π

0
θx(t)

1

2
cot

1

2
tdt = − 2

π

∫ π

0

1

2
cot

1

2
tdt

(∫ t

0
ψx(u)

1

2
cot

1

2
udu

)

= − 2

π

∫ π

0
ψx(u)

1

2
cot

1

2
udu

∫ π

u

1

2
cot

1

2
tdt

= − 2

π

∫ π

0
ψx(u)

1

2
cot

1

2
u

[

log
1

2
csc

1

2
u+ log 2

]

du

= −g(x)+ ˜f (x) log 2. (75)

From (29) and (30), it follows that, for n ≥ 1,

˜Tn(x) = g(x)+
∫ π

0
θx(t)

cos
(

n+ 1
2

)

t

2 sin t
2

dt − ˜f (x)

∞
∑

ν=n+1

(−1)ν−1

ν
. (76)

Using (30) and (29), we obtain

E
q
n(˜T ; x) = (q + 1)−n

n
∑

k=0

(

n

k

)

qn−k˜Tk(x)
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= g(x)(q + 1)−n
n

∑

k=1

(

n

k

)

qn−k

+
∫ π

0

θx(t)

2 sin 1
2 t

[

(q + 1)−n
n

∑

k=1

(

n

k

)

qn−k cos

(

k + 1

2

)

t

]

dt

− ˜f (x)(q + 1)−n
n

∑

k=1

(

n

k

)

qn−k
∞
∑

ν=k+1

(−1)ν−1

ν

= g(x)
(

1−
(

q

1+ q
)n)

(77)

+
∫ π

0

θx(t)

2 sin 1
2 t

[

P(n, t)−
(

q

q + 1

)n

cos
1

2
t

]

dt − ˜f (x)E(n),

which ensures that

lEn (x) = Eqn(˜T ; x)− g(x)

= −
(

q

1+ q
)n

g(x)+
∫ π

0

θx(t)

2 sin 1
2 t
P (n, t)dt

−
∫ π

0
θx(t)

(

q

1+ q
)n 1

2
cot

1

2
tdt − ˜f (x)E(n). (78)

Hence,

lEn (y + u)− lEn (y) = −
(

q

q + 1

)n

G(y + u, y)+
∫ π

0

G(t)

2 sin t
2

P(n, t)dt

−
(

q

q + 1

)n ∫ π

0

G(t)

2 tan t
2

dt − E(n)˜F(x, y)

= −P(E)+Q(E)− R(E)+ S(E). (79)

By Minkowski’s inequality,

||lEn (y + u)− lEn (y)|| ≤ ||P(E)||p + ||Q(E)||p + ||R(E)||p + ||S(E)||p.

By Lemma 5.4,

||P(E)||p =
(

q

1+ q
)n

||G(y + u, y)||p = O(|u|β)
(

q

1+ q
)n

. (80)
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By Lemmas 5.4 and 6.2(iii),

||G(y + u, y)||p = | − ˜F(x, y)E(n)| = O(|u|βn−1). (81)

Using Lemma 5.2, we get

||G(y + u, y)||p ≤
(

q

1+ q
)n ∫ π

0

||G(t)||p
|2t tan 1

2 |
dt

= O(1)|u|β
(

q

1+ q
)n ∫ π

0
tα−β−1dt

= O(1)|u|β
(

q

1+ q
)n

. (82)

We put λ = n
1+q + 1

2 . Now for fixed δ with 0 < δ < π/4, we split the integralQ(E)
as follows:

||Q(E)||p ≤
[∫ π/λ

0
+

∫ δ

π/λ

+
∫ π

δ

] ||Q(E)||p
|2 sin 1

2 t |
|P(n, t)|dt

≤ ||I (E)||p + ||J (E)||p + ||K(E)||p, (83)

by Minkowski’s inequality, Lemmas 6.2(ii), and 5.7, we have

||I (E)||p ≤
∫ π

λ

0

||G(t)||p
|2 sin 1

2 t |
|P(n, t)|dt

= O(1)|u|β
∫ π

λ

0

|G(t)|
t

dt

= O(1)|u|β
nα−β

. (84)

By Lemmas 6.1, 6.2, and 5.8, we obtain

||K(E)||p ≤
∫ π

δ

||G(t)||p
2| sin 1

2 t |
∣

∣

∣

∣

pnq(t) cos

(

nΦ + 1

2
t

)∣

∣

∣

∣

dt

= O(1)|u|β
∫ π

δ

|G(t)|
|t | e

−Ant2dt

= O(1)|u|β
nΔ

, Δ > 0 however large. (85)
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We write

||J (E)||p ≤
∫ δ

π
λ

||G(t)||p
|2 sin 1

2 t |
|P(n, t)|dt

=
∫ δ

π
λ

||G(t)||p
(∣

∣

∣

∣

∣

1

2 sin 1
2 t
− 1

t

∣

∣

∣

∣

∣

)

|pnq(t)|
∣

∣

∣

∣

cos

(

nΦ + 1

2
t

)∣

∣

∣

∣

dt

+
∫ δ

π
λ

G(t)

t
pnq(t) cos λtdt

+
∫ δ

π
λ

G(t)

t
pnq(t)

[

cos

(

nΦ + 1

2
t

)

− cos λt

]

dt

= J1(E)+ J2(E)+ J3(E). (86)

Using Lemmas 5.2, 6.1, and 5.5 and the fact that 1
2 sin 1

2 t
− 1

t
= O(t), we obtain

||J1(E)||p ≤
∫ δ

π
λ

||G(t)||p
(∣

∣

∣

∣

∣

1

2 sin 1
2 t
− 1

t

∣

∣

∣

∣

∣

)

∣

∣

∣

∣

pnq(t) cos

(

nΦ + 1

2
t

)∣

∣

∣

∣

dt

= O(1)|u|β
∫ δ

π/λ

tα−β+1e−Ant2dt

= O(1)|u|β
∫ δ

π/λ

tα−β+1e−Ant2dt

= O(1)|u|β
n−1 . (87)

Using Lemmas 5.2, 6.1, 6.4, and 5.5, we have

||J3(E)||p ≤
∫ δ

π/λ

|G(t)|
|t | |p

n
q(t)|

∣

∣

∣

∣

cos

(

nΦ + 1

2
t

)

− cos λt

∣

∣

∣

∣

dt

= O(1)|u|βn
∫ δ

π/λ

tα−β+2e−Ant2dt

= O(1)|u|βn
∫ δ

π/λ

tα−β+2e−Ant2dt

= O(1)|u|β
nα−β

. (88)

Collecting the estimates for P(E), S(E), R(E), I (E),K(E), J1(E), and J3(E)

from (80), (81), (82), (84), (85), (87), and (88), we obtain
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||lEn (y + u)− lEn (y)||p ≤
O(1)|u|β
nα−β

+ J2(x). (89)

For λ = n
1+q + 1

2 ,

pnq(t) = p
(

λ− 1
2

)

(1+q)
q (t) = c(λ, t).

Therefore, we may write

||lEn (y + u)− lEn (y)||p ≤
∫ δ

π
λ

||lEn (y + u)− lEn (y)||p
|t | |pnq(t) cos λt |dt

=
∫ δ

π
λ

||G(t)||p
|t | |c(λ, t) cos λt |dt. (90)

Note that c(λ, t) satisfies (i),(ii),(iii), and (iv) of Lemma 5.6. Therefore,

||J2(E)||p = O(1)|u|β
{

1
λα−β , α − β �= 1
log λ
λ

, α − β = 1

= O(1)|u|β
{

1
nα−β , α − β �= 1
log n
n

, α − β = 1,
(91)

which in conjunction with (89) gives us

sup
u�=0
|ΔβlEn (y + u, y)| = sup

u�=0

||lEn (y + u)− lEn (y)||p
|u|β

= O(1)
{

1
nα−β , α − β �= 1
log n
n

, α − β = 1.
(92)

Again f ∈ Hα,p /⇒ ||θx(t)||p = O(tα) and so using Lemma 5.6(b), 5.7(b), and
5.8(b), and proceeding as above, we obtain

||lEn (.)||p = O(1)
{

1
nα

, 0 < α < 1
log n
n

, α = 1.
(93)

Combining (92) and (93), we get (34) and this completes the proof of Theorem 1.
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7 Proof of Theorem 2

We will use the following additional notations and lemmas for the proof of
Theorem 2:

lβp(x) = Bp(˜T ; x)− g(x)

Hp(t) = e−p
∞
∑

n=0

pn

n! cos

(

n+ 1

2

)

t

Gp(t) = e−p
∞
∑

n=0

pn

n! sin

(

n+ 1

2

)

t

λ = p + 1

2

B(p) = e−p
∞
∑

n=1

pn

n!
∞
∑

k=n+1

(−1)k−1

k
.

Lemma 7.1 Let 0 < δ < π/4 and let A = 2/π2. Then

(i) e−p(1−cos t) = O(e−Apt2) (94)

(ii) e−p(1−cos t) − e−p(1−cos(t+π/p)) = O(1)te−Apt2 . (95)

Lemma 7.2 For 0 < t ≤ π

(i) Hp(t) = e−p(1−cos t) cos

(

p sin t + 1

2
t

)

(96)

(ii) Hp(t) = O(1) (97)

(iii) B(p) = O
(

1

p

)

. (98)

Proof By simple computation, we have

Hp(t)+ iG(t) = e−p
∞
∑

n=0

pn

n! e
i
(

n+ 1
2

)

t

= e−pei 1
2 t
∞
∑

n=0

(peit )n

n!

= e−pei 1
2 t epe

it

= e−p(1−cos t)e
i
(

p sin t+ 1
2 t
)

,
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which ensures (ii) and (iii) follow from (i). Now,

B(p) = e−p
∞
∑

n=1

pn

n!
∞
∑

k=n+1

(−1)k−1

k

= O(1)e−p
∞
∑

n=1

pn

n!(n+ 1)

= O(1)e
−p

p

∞
∑

n=1

pn+1

(n+ 1)!

= O(1)e
−p

p
ep

= O
(

1

p

)

.

Lemma 7.3 Let λ = p + 1
2 and 0 < δ < π/4. Then for 0 < t < δ.

cos

(

p sin t + 1

2
t

)

− cos λt = O(pt3). (99)

Proof Expressing the difference cos
(

p sin t + 1
2 t
)

− cos λt as a product and

making use of the fact that sin t − t = O(t3), the estimates (99) can be established.

Proof Proof of Theorem 2. From (76), we get for n ≥ 1

˜Tn(x)− g(x)+
∫ π

0
θx(t)

cos
(

n+ 1
2 t
)

2 sin 1
2 t

dt − ˜f (x)

∞
∑

ν=n+1

(−1)ν−1

ν
. (100)

Hence, Borel’s exponential mean Bp(˜Tn; x) of {˜Tn(x)} is given by

Bp(˜Tn; x)= e−p
∞
∑

n=1

pn

n!

⎡

⎣g(x)+
∫ π

0
θx(t)

cos
(

n+ 1
2 t
)

2 sin 1
2 t

dt−˜f (x)

∞
∑

ν=n+1

(−1)ν−1

ν

⎤

⎦

= (1−e−p)g(x)+
∫ π

0

θx(t)

2 sin
(

1
2 t
)

(

Hp(t)−e−p cos

(

1

2
t

))

dt−˜f (x)B(p),

which ensure that

lβp(x) = Bp(˜T , x)− g(x)
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= e−pg(x)+
∫ π

0

θx(t)

2 sin 1
2 t
Hp(t)dt − e−p

∫ π

0

θx(t)

2 tan 1
2 t
dt−˜f (x)B(p). (101)

Therefore,

||lEn (y + u)− lEn (y)||p =
∥

∥

∥

∥

∥

e−pG(x, y)+
∫ π

0

G(t)

2 sin 1
2 t
Hp(t)dt

−e−p
∫ π

0

G(t)

2 tan 1
2 t
dt − ˜F(x, y)B(p)

∥

∥

∥

∥

∥

p

= ||P(B)+Q(B)− R(B)− S(B)||p. (102)

By Minkowski’s inequality,

||lβn (y + u)− lβn (y)||p ≤ ||P(B)||p + ||Q(B)||p + ||R(B)||p + ||S(B)||p.

Using the estimates for G(y + u, y),G(t), ˜F(x, y), and B(p) and adopting the
technique employed for deriving the estimates for P(E),R(E), and S(E) in the
proof of Theorem 1, it can be shown that

||P(B)||p = O(1)|u|βe−p, (103)

||R(B)||p = O(1)|u|βe−p, (104)

and

||S(B)||p = O(1)|u|βp−1, (105)

we put λ = p + 1
2 . Now for fixed δ with 0 < δ < π/4, we write

||Q(B)||p ≤
∥

∥

∥

∥

∥

[

∫ π
λ

0
+

∫ δ

π
λ

+
∫ π

δ

]

G(t)

2 sin 1
2 t
Hp(t)dt

∥

∥

∥

∥

∥

p

≤ ||I (B)||p + ||J (B)||p + ||K(B)||p. (106)

By Lemmas 7.2(ii), 5.7, and the generalized Minkowski inequality given in
Section 5, we have, by usual estimation technique,

||I (B)||p ≤ O(1)
∫ π

λ

0

||G(t)||p
|t | dt = O(1)|u|

β

pα−β
. (107)
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By Lemmas 7.1, 7.2(i), and 5.8, and the generalized Minkowski inequality given in
Section 5, we have, by usual estimation technique,

||K(B)||p ≤
∫ π

δ

||G(t)||p
|2 sin 1

2 t |
|e−p(1−cos t)|

∣

∣

∣

∣

cos

(

p sin t + 1

2
t

)∣

∣

∣

∣

dt

= O(1)
∫ π

δ

||G(t)||p
|t | e−Apt2dt

= O(1) |u|
β

pΔ
, Δ positive however large. (108)

We write

||J (B)||p =
∥

∥

∥

∥

∥

∫ δ

π
λ

G(t)

|2 sin 1
2 t |
e−p(1−cos t) cos

(

p sin t + 1

2
t

)

dt

∥

∥

∥

∥

∥

p

=
∥

∥

∥

∥

∥

∫ δ

π/λ

G(t)

(

1

2 sin 1
2 t
− 1

t

)

e−p(1−cos t) cos

(

p sin t + 1

2
t

)

dt

+
∫ δ

π
λ

G(t)

t
e−p(1−cos t) cos λtdt

+
∫ δ

π
λ

G(t)

t
e−p(1−cos t)

{

cos

(

p sin t + 1

2

)

− cos λt

}

dt

∥

∥

∥

∥

∥

p

≤ ||J1(B)||p + ||J2(B)||p + ||J3(B)||p, (109)

by Minkowski’s inequality. Using Lemmas 5.2, 7.2(i), 7.3, and 5.5 and proceeding
as in the proof of J1(E) and J3(E), it can be shown that

||J1(B)||p = O(1)|u|βp−1, (110)

and

||J3(B)||p = O(1)|u|β
pα−β

. (111)

Collecting the estimates for P(B), S(B), R(B), I (B),K(B), J1(B), and J3(B)

from (103), (104), (105), (107), (108), (110), and (111), we obtain
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||lβn (y + u)− lβn (y)||p ≤ ||J2(B)||p +O(1) |u|
β

pα−β
. (112)

For λ = p + 1
2

(

i.e., p = λ− 1
2

)

, the expression e−p(1−cos t) reduces to

e
−
(

λ− 1
2

)

(1−cos t) = c(λ, t).
In view of Lemma 7.1, the function c(λ, t) satisfies all the requirements of
Lemma 5.6 and hence

||J2(B)||p =
∥

∥

∥

∥

∥

∫ δ

π
λ

G(t)

t
e−p(1−cos t) cos λtdt

∥

∥

∥

∥

∥

p

=
∥

∥

∥

∥

∥

∫ δ

π
λ

G(t)

t
c(λ, t) cos λtdt

∥

∥

∥

∥

∥

p

= O(1)|u|β
{

1
pα−β , α − β �= 1
logp
p

, α − β = 1,
(113)

by the method used previously. From (112) and (113), we obtain

||lβn (y + u)− lβn (y)||p ≤ O(1)|u|β
{

1
pα−β , α − β �= 1
logp
p

, α − β = 1,

which ensures that

sup
u�=0
|Δβlβp(y + u, y)| = sup

u�=0

|lβp(y + u)− lβp(y)|
|u|β

= O(1)
{

1
pα−β , α − β �= 1
logp
p

, α − β = 1,
(114)

when f ∈ Hα,p it can be shown that

||lβn (.)|| = sup
−π≤x≤π

∣

∣

∣l
β
p(x)

∣

∣

∣ = O(1)
{

1
pα

, 0 < α < 1
logp
p

, α = 1.
(115)

From (114) and (115), we obtain (32) and this completes the proof of Theorem 2.
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8 Proof of Theorem 3

We will use the following notations and lemmas for Theorem 3:

θ(n) =
√

c

πn

∞
∑

k=−(n−1)

e
−ck2
n

Kn(t) =
√

c

πn

(

1+ 2
n−1
∑

k=1

e
−ck2
n cos kt

)

Ln(t) =
√

c

πn

∞
∑

k=1

e
−ck2
n cos

(

n+ k + 1

2

)

t

len(x) = en(˜T ; x)− g(x)

e(n) =
√

c

πn

∞
∑

k=−(n−1)

e
−ck2
n

∞
∑

ν=n+k+1

(−1)ν−1

ν

λ = n+ 1

2
, A = 1

4c
, h = π/λ.

We need the following lemmas:

Lemma 8.1 Let c > d > 0. Then

Kn(t) = e−nAt2 + ψ(n), (116)

where

ψ(n) = O(e−dn).

Lemma 8.2 For c > 0

(i) Ln(t) = O(1)e
−cn
√
n
, (117)

(ii) e(n) = O
(

n−
1
2

)

. (118)

Proof

(i) We have

Ln(t) =
√

c

πn

∞
∑

k=n
e
−ck2
n cos

(

n+ k + 1

2

)

t
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= O
(

n−
1
2

)
∞
∑

k=n
e
−ck2
n

= O
(

n−
1
2

)

∫ ∞

n

n

2cx

d

dx

(

−e
(

− cx2
n

))

dx

= O
(

n−
1
2

)

e−cn.

(ii) Clearly,

∞
∑

ν=n+k+1

(−1)ν−1

ν
= O(1) 1

n+ k + 1
, whenever n+ k + 1 > 0,

and so

√

πn

c
e(n) =

∞
∑

k=−(n−1)

e
−ck2
n

∞
∑

ν=n+k+1

(−1)ν−1

ν

= O(1)
∞
∑

k=−(n−1)

e
−ck2
n

n+ k + 1

= O(1)
⎡

⎣

1

n+ 1
+
n−1
∑

k=1

e
−ck2
n

n− k + 1
+
∞
∑

k=1

e
−ck2
n

n+ k + 1

⎤

⎦

= O(1)
[

1

n+ 1
+ S1 + S2

]

. (119)

As e− ck
2
n ≤ n/ck2, we have

S2 ≤ n
c

∞
∑

k=1

1

(n+ k + 1)k2
= O(1), (120)

lastly,

S1 =
M
∑

k=1

e
−ck2
n

n− k + 1
+

n−1
∑

k=M+1

e
−ck2
n

n− k + 1
, M =

[n

2

]

= O(1) 1

n−M + 1

M
∑

k=1

e
−ck2
n +O(1)e−c(M+1)2

n

n
∑

k=1

1

n− k + 1
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= O(1) M

n−M + 1
+O(1)e− cn4 log n

= O(1). (121)

From (119), (120), and (121), the second part of the lemma follows.

Lemma 8.3 For the functions en(t),Kn(t) and Ln(t), we have

en(t) = Kn(t) cos

(

n+ 1

2

)

t + Ln(t). (122)

Proof We have

en(t) =
√

c

πn

∞
∑

k=−(n−1)

e
−ck2
n cos

(

n+ k + 1

2

)

t

=
√

c

πn

n−1
∑

k=−(n−1)

e
−ck2
n cos

(

n+k+1

2

)

t+
√

c

πn

∞
∑

k=n
e
−ck2
n cos

(

n+k+1

2

)

t

=
√

c

πn

[

n−1
∑

k=1

e
−ck2
n

(

cos

(

n+ k + 1

2

)

t + cos

(

n− k + 1

2

)

t

)

+ cos

(

n+ 1

2

)

t

]

+ Ln(t),

which ensures that

√

πn

c
(en(t)− Ln(t)) =

n−1
∑

k=1

e
−ck2
n

(

cos

(

n+ k + 1

2

)

t + cos

(

n− k + 1

2

)

t

)

+ cos

(

n+ 1

2

)

t

= 2

[

n−1
∑

k=1

e
−ck2
n cos kt + 1

]

cos

(

n+ 1

2

)

t

=
√

πn

c
Kn(t) cos

(

n+ 1

2

)

t,

from which (122) follows.

Proof Proof of Theorem 3: Collecting the expression for ˜T from (81), we have
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en(˜T ; x) =
√

c

πn

∞
∑

−∞
e
−ck2
n ˜Tn+k(x)

=
√

c

πn

∞
∑

−n+1

e
−ck2
n

⎡

⎣g(x)+
∫ π

0
θx(t)

cos
(

n+ k + 1
2

)

t,

2 sin 1
2 t

dt

−˜f (x)

∞
∑

ν=n+k+1

(−1)ν−1

ν

]

= θ(n)g(x)+
∫ π

0

θx(t)

2 sin 1
2 t
en(t)dt − ˜f (x)e(n). (123)

Thus,

len(x) = en(˜T ; x)− g(x)

= (θ(n)− 1)g(x)+
∫ π

0

θx(t)

2 sin 1
2 t
en(t)dt − ˜f (x)e(n),

which further ensures that

||len(y + u)− len(y)||p (124)

=
∥

∥

∥

∥

(θ(n)− 1)G(x, y)+ ∫ π

0
θx(t)

2 sin 1
2 t
en(t)dt − ˜F(x, y)e(n)

∥

∥

∥

∥

p

.

Using Lemmas 8.3 and 8.1, we can rewrite (124) as follows:

||len(y + u)− len(y)||p
≤ ||(θ(n)− 1)G(y + u, y)||p +

∫ π

0

||G(t)||p
|2 sin 1

2 t |
|Kn(t)|

∣

∣

∣

∣

cos

(

n+ 1

2

)

t

∣

∣

∣

∣

dt

+
∫ π

0

||G(t)||p
|2 sin 1

2 t |
|Ln(t)|dt + |˜F(y + u, y)e(n)|

≤ ||(θ(n)− 1)G(y + u, y)||p +
∫ π

0

||G(t)||p
|2 sin 1

2 t |
e−Ant2

∣

∣

∣

∣

cos

(

n+ 1

2

)

t

∣

∣

∣

∣

dt

+
∥

∥

∥

∥

∥

∥

ψ(n)

∫ π

0
G(t)

cos
(

n+ 1
2

)

t

2 sin 1
2 t

dt

∥

∥

∥

∥

∥

∥

p

+||˜F(x, y)e(n)||p+
∫ π

0

||G(t)||p
|2 sin 1

2 t |
|Ln(t)|dt
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= ||P(e)||p + ||Q(e)||p + ||R(e)||p + ||S(e)||p + ||T (e)||p. (125)

As θ(n)− 1 = O
(

n− 1
2

)

, using Lemma 5.4(ii), we have

||P(e)||p = ||(θ(n)− 1)G(y + u, y)||p = O(1)|u|βn− 1
2 . (126)

By Lemmas 5.2 and 8.1,

||R(e)||p =
∥

∥

∥

∥

∥

∥

ψ(n)

∫ π

0
G(t)

cos
(

n+ 1
2

)

t

2 sin 1
2 t

dt

∥

∥

∥

∥

∥

∥

p

= O(1)|u|βe−dn
∫ π

0
tα−β−1dt

= O(1)|u|βe−dn. (127)

By Lemmas 5.2 and 8.2(i),

||T (e)||p ≤
∫ π

0

||T (e)||p
|2 sin 1

2 t |
|Ln(t)|dt

= O(1)|u|β e
−cn
√
n

∫ π

0
tα−β−1dt

= O(1)|u|β e
−c
√
n
. (128)

Using Lemmas 5.4(i) and 8.2(ii), we obtain

||S(e)||p = ||˜F(x, y)e(n)||p = O(1)|u|βn− 1
2 . (129)

Collecting the result from (125)–(129), we get

||len(y + u)− len(y)||p ≤ ||Q(e)||p +O(1)|u|βn−
1
2 +O(1)|u|βnβ−α. (130)

We put λ = n + 1
2 . Now for fixed δ with 0 < δ < π/4, we split the integral as

follows:

||Q(e)||p ≤
[∫ π/4

0
+

∫ δ

π/4
+

∫ π

δ

] ||G(t)||p
|2 sin 1

2 t |
∣

∣

∣e
−Ant2

∣

∣

∣

∣

∣

∣

∣

cos

(

n+ 1

2

)

t

∣

∣

∣

∣

dt

= ||I (e)||p + ||J (e)||p + ||K(e)||p. (131)
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Following the same lines of argument used in obtaining estimates for I (B) and
K(B) as in the proof of Theorem 2, it can be shown for 0 ≤ β < α ≤ 1,

||I (e)||p = O(1) |u|
β

nα−β
(132)

||K(e)||p = O(1) |u|
β

nΔ
, Δ > 0. (133)

Next, we write

||J (e)||p ≤
∫ δ

π
λ

||G(t)||p
(∣

∣

∣

∣

∣

1

2 sin 1
2 t
− 1

t

∣

∣

∣

∣

∣

)

|e−Ant2 |
∣

∣

∣

∣

cos

(

n+ 1

2

)

t

∣

∣

∣

∣

dt

+
∫ δ

π
λ

||G(t)||p
|t | e−Ant2

∣

∣

∣

∣

cos

(

n+ 1

2

)

t

∣

∣

∣

∣

dt

= ||J1(e)||p + ||J2(e)||p. (134)

Using Lemmas 5.2 and 5.5, and proceeding as in the proof of J1(E), it can be shown
that

||J1(e)||p = O(1)|u|βn−1. (135)

From (130)–(135), it follows that

||len(y + u)− len(y)||p ≤ ||J2(e)||p +O(1)|u|βn− 1
2 +O(1)|u|βnβ−α. (136)

For λ = n + 1
2 , e−Ant2 = e

−
(

λ− 1
2

)

t2 = c(λ, t). Clearly, c(λ, t) satisfies the
conditions of Lemma 5.6, and hence,

||J2(e)||p ≤
∫ δ

π
λ

||G(t)||p
|t | e

−A
(

λ− 1
2

)

t2 | cos λt |dt

=
∫ δ

π
λ

||G(t)||p
|t | |c(λ, t) cos λt |dt

= O(1)|u|β
{

1
nα−β , α − β �= 1
log n
n

, α − β = 1.
(137)

From (136) and (137), it follows that

||Δβlen(y + u, y)||p =
∥

∥

∥

∥

len(y + u)− len(y)
uβ

∥

∥

∥

∥

p
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= O(1)
{

1
nα−β , 0 < α − β ≤ 1

2
1√
n

, 1
2 ≤ α − β ≤ 1.

(138)

Again, f ∈ Hα,p /⇒ ||θx(t)||p = O(tα), and so proceeding as above, we obtain

||len(.)||p = O(1)
{

1
nα

, 0 < α ≤ 1
2

1√
n
, 1

2 ≤ α ≤ 1.
(139)

Now (33) follows from (138) and (139) and this completes the proof of Theorem 3.

9 Concluding Remarks

The findings of this paper show that if p tends to infinity, we get the corresponding
results in the supremum norm as found in Sadangi [18]. It will be interesting to see
how to extend these results for functions in Orlicz spaces and Besov spaces.
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Real Variable Methods in Harmonic
Analysis and Navier–Stokes Equations

Pierre Gilles Lemarié-Rieusset

Abstract Real variable methods in harmonic analysis were developed throughout
the works of E.M. Stein. They turn out to be a powerful tool for the study of
nonlinear PDEs. We illustrate this point by discussing various points of the modern
theory of Navier–Stokes equations.

1 Introduction

Among the seven Millennium problems proposed by the Clay Mathematics Institute,
I shall consider the question of existence and smoothness of solutions to the Navier–
Stokes equations. Let us first recall the question raised by the Clay Mathematics
Institute as it has been presented by Ch. Fefferman in his 2000 talk at the Collège
de France [34] :

Let u0 be any smooth, divergence-free vector field in the Schwartz classS (R3) Do there
exist smooth functions p(t, x), ui(t, x) = (u1(t, x), u2(t, x), u3(t, x)) on R

3× [0,∞) that
satisfy

∂tu+ (u ·∇)u = Δu−∇p,

∇ · u = 0,

u(0, .) = u0,

u, p ∈ C∞(R3 × (0,+∞))
and
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sup
t>0
‖u(t, .)‖2 ≤ ‖u0‖2?

Commenting on the Clay Millennium Prize on Navier–Stokes equations, L.
Tartar writes in 2006 [92]:

Reading the text of the conjectures to be solved for winning that particular prize leaves the
impression that the subject was not chosen by people interested in continuum mechanics,
as the selected questions have almost no physical content. /. . . ./ The problems seem to have
been chosen in the hope that they will be solved by specialists of harmonic analysis, and it
has given the occasion to some of these specialists to help others in showing the techniques
that they use, as in a recent book by Pierre Gilles LEMARIÉ-RIEUSSET1 /. . . ./.

The question I’d like to discuss here is to which extent harmonic analysis is used
or should be used to study the Clay question on Navier–Stokes equations? Or,
more generally, to discuss the Navier–Stokes equations on the whole space R

3 in
various functional settings while using tools from real-variable methods in harmonic
analysis.

The very first point is, of course, to define correctly what is called here harmonic
analysis. While classical harmonic analysis has been devoted in the nineteenth
century to the spectral analysis of the Laplace operator and of the heat equation, I
shall focus on the theory that has been developed in the second half of the twentieth
century, mainly in the works of E. M. Stein [90]. (For a short account of this
history, see the recent paper of G. B. Folland [38]). As a matter of fact, the two
Fields medalists who play influential roles on the Clay problem on Navier–Stokes
equations, namely, Ch. Fefferman and T. Tao, are both former students of E. M.
Stein. A good account of this harmonic analysis theory is to be found in the books
by Grafakos [50, 51].

The work of E. M. Stein is well illustrated by the titles of two of his books:
Singular Integrals and Differentiability Properties of Functions [89] and Harmonic
Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals [90]. A
major topic was the extension of Littlewood–Paley theory from the disc to R

n. This
is closely related to the study of Sobolev spaces and of Besov spaces, a class of
spaces he studied thoroughly in his book on singular integrals [89].

Littlewood–Paley–Stein decomposition of distributions and Besov spaces turned
to be a fundamental tool for the modern approach of the Navier–Stokes equations
and are the center of many books devoted to harmonic analysis and Navier–
Stokes equations, such as M. Cannone’s Harmonic Analysis Tools for Solving the
Incompressible Navier–Stokes Equations [14], H. Bahouri, J.Y. Chemin and R.
Danchin’s Fourier Analysis and Nonlinear Partial Differential Equations [2], or P.G.
Lemarié-Rieusset’s Recent Developments in the Navier–Stokes Problem [70].

But we shall try to show that the interaction of harmonic analysis with Navier–
Stokes equations is broader than the scope of Littlewood–Paley decomposition and
that many other ideas of E.M. Stein can be useful for future works. We shall pay
a few words on the Clay problem but as well on some points of the Navier–Stokes

1The book is the one I published in 2002 [70].
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theory in more general settings such as Kato’s mild solutions in L3 (existence and
uniqueness), or Serrin criteria for weak–strong uniqueness or regularity of Leray
weak solutions.

2 Fourier Transform

2.1 Fourier–Navier–Stokes Equations

Naturally, Fourier transform plays an important role in the study of our problem,
as it is a differential problem with constant coefficients and defined on the whole
space. If we note Fx the spatial Fourier transform

Fx(f )(t, x) =
∫

R3
f (t, x) e−ix·ξ dx,

the Navier–Stokes equations are turned into

∂tFxu(t, ξ)+
3

∑

j=1

iξjFx(uju)(t, ξ) = −ν|ξ |2Fxu(t, ξ)− iFxp(t, ξ) ξ

ξ ·Fxu(t, ξ) = 0

Fxu(0, ξ) = Fxu0(ξ) = U0(ξ).

Moreover, we have

Fx(uju)(t, ξ) = 1

(2π)3

∫

R3
Fxuj (t, η)Fxu(t, ξ − η) dη

and

|ξ |2Fxp(t, ξ) = −
3

∑

j=1

3
∑

k=1

ξj ξkFx(ujuk)(t, ξ).

This gives the following simple system on the vector Fxu = (Fxu1,Fxu2,Fxu3)

∂tFxul(t, ξ) =− |ξ |2Fxul(t, ξ)

−
3

∑

j=1

3
∑

k=1

∫

R3

iξj ξk

(2π)3|ξ |2 (ξlFxuk(t, η)−ξkFxul(t, η))Fxuj (t, ξ−η)dη.
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This is turned into an integral equation on U = Fxu :

U(t, ξ) = e−t |ξ |2U0(ξ)− B(U,U)(t, ξ)

with

B(U, V )l(t, ξ) =
∫ t

0 e
−(t−s)|ξ |2 ∑3

j=1
∑3
k=1

∫

R3
iξj ξk

(2π)3|ξ |2 (ξlUk(s, η)

−ξkUl(s, η))Vj (s, ξ − η) dη ds.

This allows very simple computations for the search of solutions. Indeed, let us
assume that U0 is controlled by a functionW 0:

|U0(ξ)| ≤ W 0(ξ)

and that W(t, ξ) is measurable, almost everywhere finite, and is a non-negative
solution of the integral inequation for every t ∈ [0, T ] and every ξ ∈ R

3

e−t |ξ |2W 0(ξ)+ B0(W,W)(t, ξ) ≤ W(t, ξ)

with

B0(W, V )(t, ξ) = 18

(2π)3

∫ t

0
e−(t−s)|ξ |2 |ξ |

∫

R3
W(s, η)V (s, ξ − η) dη ds.

Define W [0](t, ξ):=e−t |ξ |2W 0(ξ), W [n+1](t, ξ):=W [0](t, ξ)+B0(W
[n],W [n])(t, ξ)

and similarly U[0] := e−t |ξ |2U0(ξ) and U[n+1](t, ξ) := U[0](t, ξ) −
B(U[n],U[n])(t, ξ). By induction on n, we find that we have the pointwise
inequalities

• 0 ≤ W [n](t, ξ) ≤ W [n+1](t, ξ) ≤ W(t, ξ)
• |U [n](t, ξ)| ≤ W [n](t, ξ)
• |U [n+1](t, ξ)− U [n](t, ξ)| ≤ W [n+1](t, ξ)−W [n](t, ξ).
We find thatW [n] is pointwise convergent to a functionW [∞] ≤ W . By monotonous
convergence, we have

W [∞] = W [0] + B0(W
[∞],W [∞]).

Then, by dominated convergence, we find that U[n] converges to a limit U[∞] such
that

U[∞] = U[0] − B(U[∞],U[∞]).

U[∞] is then the Fourier transform of a solution to the Navier–Stokes problem with
initial value u0.
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2.2 Gevrey Analyticity

This formalism allows one to get Gevrey-type analyticity estimates. If we assume
more precisely that

|U0(ξ)| ≤ 1

2e
W 0(ξ)

, then we find that for 0 ≤ t ≤ T ,

|U[∞](t, ξ)| ≤ 1

2
√
e
e−
√
t |ξ |W [∞](1

2
t, ξ). (1)

Indeed, we write

sup
z≥0
ez−

1
2 z

2 = √e

and for 0 ≤ s ≤ t

e
√
t |ξ |e−

√
s|ξ−η|e−

√
s|η| ≤ e(

√
t−√s)|ξ | ≤ e

√
t−s|ξ |.

We define

Z[n](t, ξ) = e
√
t |ξ |U[n](t, ξ).

We have

Z[n+1] = Z[0] − B∗(Z[n],Z[n])

with, for Z = e
√
t |ξ |U,

B∗(Z,Z)l(t, ξ) = e
√
tξ |

∫ t

0
e−(t−s)|ξ |2

3
∑

j=1

3
∑

k=1

∫

R3

iξj ξk

(2π)3|ξ |2 (ξlUk(s, η)

− ξkUl(s, η))Uj (s, ξ − η) dη ds

=
∫ t

0
e−(t−s)|ξ |2

3
∑

j=1

3
∑

k=1

∫

R3
e
√
t |ξ |−√s|ξ−η|−√s|η| iξj ξk

(2π)3|ξ |2 (ξlZk(s, η)

− ξkZl(s, η))Zj (s, ξ − η) dη ds

If |Z(t, ξ)| ≤ A(t/2, ξ), we find
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|B∗(Z,Z)(t, ξ)| ≤ √e 18

(2π)3

∫ t

0
e−

1
2 (t−s)|ξ |2 |ξ |

∫

R3
A(s/2, η)A(s/2, ξ − η) dη ds

≤ 2
√
e

18

(2π)3

∫ t/2

0
e−(

t
2−σ)|ξ |2 |ξ |

∫

R3
A(σ, η)A(σ, ξ − η) dη dσ

= 2
√
eB0(A,A)(

t

2
, ξ).

By induction on n, we then find that

|Z[n](t, ξ)| ≤ 1

2
√
e
W [n]( t

2
, ξ).

Thus, we have proved the Gevrey estimate (1).

2.3 Cheap Navier–Stokes Equation

Thus far, we have introduced, as a tool for studying the Navier–Stokes problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tu+ (u ·∇)u = Δu−∇p
∇ · u = 0

u(0, .) = u0,

(2)

the study of the equation

W = W [0] + B0(W,W) (3)

or, taking the inverse Fourier transform w = F−1
x W ofW , the equation

{

∂tw = Δw + 18
√−Δ(w2)

w(0, .) = w0.
(4)

Equation (4) is known as the cheap Navier–Stokes equation. It has been introduced
in 2001 by S. Montgomery-Smith [82] as a toy model for the Navier–Stokes
equations. He gave an example of an initial value w0 in the Schwartz class (w0 ∈
S (R3)) with a non-negative Fourier transform W 0 such that the solution w blows
up in finite time.

The study of equation (3) has provided simple classes of solutions to the Navier–
Stokes equations. For instance, if Z(ξ) is a non-negative measurable function that
satisfies the following inequation
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W 0(ξ)+ 18

(2π)3|ξ |
∫

R3
Z(ξ − η)Z(η) dη ≤ Z(ξ),

we get, by induction on n, that W [n](t, ξ) ≤ Z(ξ). This means that if W 0

belongs to a lattice Banach space of functions E such that the operator (Z, V ) �→
1
|ξ | (Z ∗ V ) is bounded on E and if ‖W 0‖E is small enough, then the Navier–Stokes

equations (2) with initial value u0 with |Fxu0| ≤ W 0 has a global solution u with
sup0<t<+∞ |Fxu| ∈ E. Two simple instances can be found in the literature:

• The case where E = L2(|ξ | dξ): if Z ∈ E, it means that Z = 1
|ξ |1/2Z0 with

Z0 ∈ L2; thus Z belongs to the Lorentz space L3/2,2 (as a product of a function
in L6,∞ by a function in L2); thus Z∗Z belongs to L3,1 ⊂ L3,2 and 1

|ξ |1/2Z∗Z ∈
L2,2 = L2. Thus, we find that if the initial value u0 has a small norm in the
homogeneous Sobolev space Ḣ 1/2 = F−1

x (L2(|ξ | dξ)), then the Navier–Stokes
problem with initial value u0 has a global solution. This is the result of Fujita and
Kato [43].

• The equality

∫

1

|ξ − η|2
1

|η|2 dη = C0
1

|ξ |
allowed Le Jan and Sznitman to consider the space E defined by

Z ∈ E ⇔ Z ∈ L1
loc and |ξ |2Z ∈ L∞.

Again, they found that if the initial value u0 has a small norm in the homogeneous
Besov space Ḃ−2

PM,∞ = F−1
x ( 1

|ξ |2L
∞(dξ)), then the Navier–Stokes problem

with initial value u0 has a global solution [66].

If we look for local-in-time solutions, we must include the time variable in our
estimations. For instance, since

e−(t−s)|ξ |2 ≤ e 3
4

(

3

4

)3/2 1

(t − s)3/4
1

|ξ |3/2 ,

then, if Z(ξ) and α(t) are non-negative measurable functions that satisfy on (0, T )
the following inequation

W [0](ξ)+e 3
4

(

3

4

)3/2 18

(2π)3

∫ t

0

α(s)2

(t−s)3/4 ds
1

|ξ |1/2
∫

R3
Z(ξ−η)Z(η)dη ≤ α(t) Z(ξ),

we get, by induction on n, thatW [n](t, ξ) ≤ α(t) Z(ξ). Thus, if F is a lattice Banach
space of functions such that the operator (Z, V ) �→ 1

|ξ |1/2 (Z ∗ V ) is bounded on F

and if sup0<t<T t
1/4e−t |ξ |2W 0(ξ) ∈ F and ‖ sup0<t<T t

1/4e−t |ξ |2W 0(ξ)‖F is small
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enough, then the Navier–Stokes equations (2) with initial value u0 with |Fxu0| ≤
W 0 has a global solution u with sup0<t<T t

1/4|Fxu| ∈ F . Let us look at our two
simple instances:

• The case where E = L2(|ξ | dξ) and F = L2(|ξ |2 dξ): if Z ∈ F , it means that
Z = 1

|ξ |Z0 with Z0 ∈ L2; thus Z belongs to the Lorentz space L6/5,2 (as a

product of a function in L3,∞ by a function in L2) and V = |ξ |1/2 ∈ L3/2,2,
thus, writing

1

|ξ |1/2 |Z ∗ Z| ≤
2

|ξ | (|Z| ∗ |V |),

we get that |Z| ∗ |V | belongs to L6/5,2 ∗ L3/2,2 ⊂ L2,1 ⊂ L2,2 = L2, so that we
have 1

|ξ |1/2 (Z ∗ Z) ∈ F . Moreover, if A > 0 andW0 ∈ E, we find that for t > 0,

|t1/4e−t |ξ |2W0(ξ)| ≤ 1|ξ |≤At
1
4W0(ξ)+ 1|ξ |>A

1

|ξ |1/2W0(ξ)

so that

‖ sup
0<t<T

t1/4e−t |ξ |2W 0(ξ)‖F ≤ T 1/4A1/2‖W 0‖E + ‖1|ξ |>AW 0‖E

and

lim
T→0+

‖ sup
0<t<T

t1/4e−t |ξ |2W 0(ξ)‖F = 0.

Thus, we find that if the initial value u0 belongs to the homogeneous Sobolev
space Ḣ 1/2 = F−1

x (L2(|ξ | dξ)), then the Navier–Stokes problem with initial
value u0 has a local in time solution. This is the result of Fujita and Kato [43].
Gevrey regularity estimates for a data in the Sobolev space were first given by
Foias and Temam [37].

• The case where E = 1
|ξ |2L

∞(dξ) and F = 1
|ξ |5/2L

∞(dξ): the equality

∫

1

|ξ − η|5/2
1

|η|5/2 dη = C0
1

|ξ |2

shows that 1
|ξ |1/2 (F ∗ F) ⊂ F . Moreover, if A > 0 and W0 ∈ E, we write again

that for t > 0,

|t1/4e−t |ξ |2W0(ξ)| ≤ 1|ξ |≤At
1
4W0(ξ)+ 1|ξ |>A

1

|ξ |1/2W0(ξ)

so that
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‖ sup
0<t<T

t1/4e−t |ξ |2W 0(ξ)‖F ≤ T 1/4A1/2‖W 0‖E + ‖1|ξ |>AW 0‖E

and

lim sup
T→0+

‖ sup
0<t<T

t1/4e−t |ξ |2W 0(ξ)‖F ≤ lim sup
A→+∞

sup
|ξ |>A

|ξ |2|W0(ξ)|.

Again, we find that if the initial value u0 belongs to the homogeneous Besov
space Ḃ−2

PM,∞ and if lim supA→+∞ sup|ξ |>A |ξ |2|Fxu0(ξ)|. is small enough,
then the Navier–Stokes problem with initial value u0 has a local-in-time solution.

We have considered the basic examples of E = L2(|ξ | dξ) or E = 1
|ξ |2L

∞(dξ).
But many other examples are known. In particular, the theory has been developed
forW 0 in certain Herz spaces. Recall that the Herz space Bs

p,q [54] is defined by

W ∈ Bs
p,q ⇔ (2js‖12j≤|ξ |<2j+1W‖p)j∈Z ∈ lq .

For instance, we have L2(|ξ | dξ) = B
1/2
2,2 and 1

|ξ |2L
∞(dξ) = B2∞,∞. In 2012,

Cannone and Wu [15] have studied the Navier–Stokes problem with an initial value
u0 such that Fxu0 ∈ B−1

1,q with 1 ≤ q ≤ 2. The case q = 1 corresponds to the case

Fxu0 ∈ L1(
dξ
|ξ | ), a case studied by Lei and Lin in 2011 [67].

3 Singular Integrals

3.1 Helmholtz Decomposition

Modern history of harmonic analysis begins with the study of singular integrals,
from the work of M. Riesz on the Hilbert transform in 1924 [86] to the fundamental
paper of Calderón and Zygmund on singular integrals in 1952 [10] (and its extension
to vector-valued integrals by Benedek, Calderón, and Panzone in 1962 [5]). Basic
accounts of the theory are to be found in the first chapters of the books of Stein
[89, 90] or Grafakos [50].

The paradigm of Calderón–Zygmund convolution operators on R
d is given by

Marcinkiewicz multipliers: if K is the inverse Fourier transform of a function m(ξ)
such that, for every α ∈ N

d
0 with |α| ≤ d + 2,

sup
ξ �=0

∣

∣

∣

∣

|ξ ||α| ∂
αm

∂ξα
(ξ)

∣

∣

∣

∣

<∞,
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then convolution with K is a Calderón–Zygmund operator. The most classical
example is given by the Riesz transforms Rj , j = 1, . . . , d:

Rjf = ∂j√−Δf = F−1
x

(

iξj

|ξ |Fxf

)

.

Riesz transforms are naturally encountered when studying the Helmholtz decompo-
sition of a vector field defined on the whole space R

3. One considers a vector field
u, and we want to decompose it as a sum of a divergence-free vector field v and an
irrotational vector field w:

u = v+ w with ∇ · v and ∇ ∧ w = 0.

Basic formulas of vector analysis link the divergence and the curl of a vector u to
its Laplacian by

∇ ∧ (∇ ∧ u) = −Δu+∇(∇ · u).

In particular, we have

−Δv = ∇ ∧ (∇ ∧ v) = ∇ ∧ (∇ ∧ u)

and

−Δw = −∇(∇ · w) = −∇(∇ · u).

If u belongs to a function space E on which the Riesz transforms operate
continuously, we find a particular solution (v,w) by the formulas

v = R ∧ (R ∧ u) and w = −R(R · u)

where the vectorial Riesz transform is given as

R = 1√−Δ∇.

If E contains no other harmonic function than the null function, then this decompo-
sition u = v+ w is unique.

The operator u �→ R∧ (R∧u) is called the Leray projection operators (for E =
L2, it is the orthogonal projection of square integrable vector fields on divergence-
free square integrable vector fields) and is usually written as P. This allows to get
rid of the pressure in the Navier–Stokes equations and to rewrite the system as

u = Δu− P((u ·∇)u)
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with u(0, .) = u0 where ∇ · u0 = 0.
This way of eliminating the pressure p (or expressing it as a function of the

velocity u by the formula ∇p = R(R·(u·∇)u)) is quite general and is applied to the
study of (weak) solution u in a large variety of function spaces. The justification for
such computations has been given, for instance, by Furioli, Lemarié-Rieusset, and
Terraneo in the case of uniformly square integrable solutions (vanishing at infinity)
[45, 70] or recently by Fernandez-Dalgo and Lemarié-Rieusset in the case of locally
square integrable solutions with low increase at infinity [36].

The nature of the Leray projection operator has a deep impact on the properties of
solutions to the Navier–Stokes equations. Main features of the convolution kernel
of the operator are that the kernel is not compactly supported, meaning that the
operator is non-local and involves integration over the whole space and that it has
a slow decay at infinity (as P has a kernel homogeneous of degree −3, the kernel
decays only as |x|−3 and its derivatives as |x|−4). Writing, for a divergence-free
vector field u,

R(R · (u ·∇)u) = ∇((R ⊗R) · (u⊗ u)),

Dobrokhotov and Shafarevich [28] proved that the spatial decay at infinity of
“rapidly” decaying solutions was governed by the kernels ∂j ∂k∂lG of the operators
∂jRkRl (where G is the Green function, fundamental solution of the Laplacian
operator: G(x) = 1

4π |x| , (−Δ)G = δ). More precisely, if limx→∞ |x|4|u0(x)| = 0
(as it is the case, for instance, for the Millennium Prize problem) and if (u, p) is
a classical solution of the Navier–Stokes problem on a strip [0, T ] × R

3, then, for
0 < t < T ,

u(t, x) = −
3

∑

j=1

3
∑

l=l
dj,l(t)∇∂j ∂lG(x)+ o(|x|−4)

with dj,l(t) =
∫ t

0

∫

uj (s, x)ul(s, x) dx ds. This means that the good decay of u0

(as o(|x|−4) is instantaneously lost whenever one of the integrals
∫

u0
j u

0
l dx (with

j �= l) or
∫

(u0
j (x))

2 − (u0
l (x))

2 dx (with j �= l) is not equal to 0; in that case,

we have lim infx→+∞ |x|4|u(t, x)| > 0 for t close enough to 0. This instantaneous
spreading has been studied by Brandolese and Meyer in [8].

3.2 Lebesgue–Gevrey Estimates

A less direct application of singular integrals to the study of the Navier–Stokes
equations can be found in the treatment of Gevrey regularity of solutions in the
Lebesgue space L3(R3) that has been proposed by Lemarié-Rieusset [69, 71].
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The idea starts from the result of Kato on existence of solutions for initial data in
L3 [55]. One transforms the differential problem

∂tu = Δu− P∇ · (u⊗ u), u(0, .) = u0

into an integro-differential problem by solving

u = etΔu0 −
∫ t

0
e(t−s)ΔP∇ · (u⊗ u) ds = etΔu0 − B(u,u)

where the bilinear operator B is defined as

B(u, v)(t, .) =
∫ t

0
e(t−s)ΔP∇ · (u⊗ v) ds. (5)

By the contraction principle, if B is bounded on a Banach space ET (with operator
norm CET

) of functions defined on (0, T ) × R
3, then, for u0 small enough

(‖etΔu0‖B < 1
4CET

), one can find a solution u ∈ ET . Now, if u0 ∈ L3, we have

sup
t>0
t1/4‖etΔu0‖6 < +∞ and lim

t→0
t1/4‖etΔu0‖6 = 0. (6)

On the other hand, for every t > 0, the operator etΔP∇· is given by convolutions
with kernels etΔ∂j ∂k∂lG that are in L1 with

‖etΔ∂j ∂k∂lG‖1 ≤ C 1√
t
.

We then use the regularizing properties of the heat kernel in Lebesgue spaces: for
1 ≤ p ≤ q and for t > 0

‖etΔf ‖q ≤ Cp,q t
3
2 (

1
q
− 1
p
)‖f ‖p.

We then have

‖B(u, v)‖6 ≤
∫ t

0
‖e t−s2 Δ

(

e
t−s

2 ΔP∇ · (u⊗ v)
)

‖6 ds

≤C
∫ t

0

1

(t − s)1/4
1

(t − s)1/2
1

s1/2 ‖s1/4u(s, .)‖6‖s1/4v(s, .)‖6 ds.

It means that B is bounded on

ET = {u(t, x) / sup
0<t<T

t1/4‖etΔu0‖6 < +∞ and lim
t→0

t1/4‖etΔu0‖6 = 0}

(with an operator norm that does not depend on T ). Moreover, a solution in ET will
satisfy
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‖B(u,u)‖3 ≤
∫ t

0
‖e t−s2 Δ

(

e
t−s

2 ΔP∇ · (u⊗ u)
)

‖3 ds

≤ C
∫ t

0

1

(t − s)1/2
1

s1/2 (‖s1/4u‖6)
2 ds

so that u ∈ L∞((0, T ), L3). (As a matter of fact, one even finds that u ∈
C ([0, T ), L3)).

Now, if we want to mimic the proof of the Gevrey regularity we saw for Fourier-
Herz spaces, one must factor out in the Fourier–Navier–Stokes equations a term
e−
√
t‖ξ‖ and control the action of the factor e

√
t‖ξ‖−√s‖η‖−√‖ξ−η‖. It is not enough

to control the size of the factor, as we are dealing now with Fourier transforms
of functions in L3 or in L6 that are no longer functions but singular distributions.
The control is then given by the theory of singular integrals and more precisely
of Marcinkiewicz multipliers (as described in [89], for instance). More precisely,
we factor out in the Fourier transform a term of the form e

√
t‖ξ‖1 , where ‖ξ‖1 =

|ξ1| + |ξ2| + |ξ3|. We shall write e−
√
tD1 for the convolution operator with symbol

e−
√
t‖ξ‖1 and e

√
tD1 for the convolution operator with symbol e

√
t‖ξ‖1 . We then have

to study the equation for e
√
tD1 u = U which is given by

U = e t2Δ
(

e
t
2Δe

√
tD1

)

u0

−
∫ t

0
e
(t−s)

2 Δ
P∇ ·

(

e
(t−s)

2 Δe
√
t−sD1e(

√
t−√t−s−√s)D1

(

e
√
sD1(e−

√
sD1 U⊗ e−

√
sD1 U)

)

)

ds.

The operator e
t
2Δe

√
tD1 is a tensor product of one-dimensional convolution opera-

tors associated to Marcinkiewicz multipliers e−
t
2 ξ

2
j+
√
t |ξj |. Similarly, the operator

e(
√
t−√t−s−√s)D1 is a tensor product of one-dimensional convolution operators

associated to Marcinkiewicz multipliers e(
√
t−√t−s−√s)|ξj |. The bilinear operator

T (f, g) = e
√
sD1(e−

√
sD1f × e−

√
sD1g)

can similarly be written as a sum of tensor products of one-dimensional convolution
operators associated to Marcinkiewicz multipliers: if Sj is associated to the
multiplier 1ξj>0, Tj to the multiplier 1ξj < 0, and Zj to the multiplier e−

√
s|ξj |

and if Wj is the unbounded operator associated to the multiplier e+
√
s|ξj |, then, for

fj , gj ∈ Lp(R),

Wj(Zjfj×Zjgj )=Sjfj×Sjgj+Tjfj×Tjgj+Sj (Sjf×Z2
j Tjg)

+ Sj (Z2
j Tjf × Sjg)+Tj (Z2

j Sjf×Tjg)+Tj (Tjf×Z2
j Sjg).
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Thus, using the contraction principle, we find that, if u0 ∈ L3, we have a solution
u = e−

√
tD1 U of the Navier–Stokes equations on a small enough time interval (0, T )

such that sup0<t<T t
1/4‖U‖6 < +∞ and U ∈ L∞((0, T ), L3).

3.3 Maximal Regularity for the Heat Kernel

Another way of using singular integrals for the study of solutions to the Navier–
Stokes equations is the proof proposed by Monniaux in [81] for the uniqueness of
solutions in C ([0, T ), L3). (Local) existence of solutions in L3 (for an initial value
u0 ∈ L3) had been proved by Kato in 1984 [55], but uniqueness remained open
until 1997, when Furioli, Lemarié-Rieusset, and Terraneo [45] proved uniqueness
by using Besov spaces.

The proof by Monniaux is very simple. If u is a solution in C ([0, T ), L3) and
uK is the solution provided by Kato in C ([0, T ), L3) with the additional property
that limt→0 t

1/4‖uK‖6 = 0, then the function w = u− uK satisfies the identity

w = −B(uK,w)− B(w,uK)− B(w,w).

We shall write that w is an eigenvector of the linear transform

v �→ L(v) = −B(uK, v)− B(v,uK)− B(w, v).

We want to estimate L(v) in L3((0, S), L3), for S < T . We have

‖B(uK, v)(t, .)‖3 ≤ C
∫ t

0

1

(t − s)1/4
1√
t − s

1

s1/4 ‖v(s, .)‖3‖s1/4uK(s, .)‖6 ds

so that, since multiplication is bounded from L4,∞ ×L3 to L12/7,3 and convolution
is bounded from L12/7,3 × L4/3,∞ to L3,3 = L3,

‖B(uK, v)‖L3((0,S),L3) ≤ C‖v‖L3((0,S),L3) sup
0<s<S

s1/4‖uK(s, .)‖6.

Similarly, we have

‖B(v,uK)‖L3((0,S),L3) ≤ C‖v‖L3((0,S),L3) sup
0<s<S

s1/4‖uK(s, .)‖6.

For estimating B(w, v), we write

∂jRkRl(wkvl) = −ΔRjRkRl 1√−Δ(wkvl
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and use the inequality on Riesz potential

‖ 1√−Δ(f )‖3 ≤ ‖f ‖3/2.

Thus, we find that

1

Δ
(P∇ · (w⊗ v)) ∈ L3L3.

Maximal regularity in L3L3 for the heat kernel states that

‖
∫ t

0
e(t−s)ΔΔf ds‖L3((0,S),L3) ≤ C‖f ‖L3((0,S),L3)

where the constant C does not depend on S. Thus, we have

‖B(w, v)‖L3((0,S),L3) ≤ C‖v‖L3((0,S),L3)‖w‖L∞((0,S),L3)

By continuity of w in L3, we find that limS→+∞ ‖w‖L∞((0,S),L3) = 0. Thus, for S
small enough, L is contractive on L3((0, L3), L3). Hence, the fixed point w is equal
to 0, and u = uK on (0, S). The end of the proof follows by a bootstrap argument.

The maximal regularity property is linked to singular integrals but no longer on
R

3 but on the space R×R
3 endowed with the parabolic distance δ((t, x), (s, y)) =

√|t − s| + |x − y|2. Together, with the Lebesgue measure on X = R × R
3, δ

provides X with a structure of homogeneous space (as studied by Coifman and
Weiss) [27]. We have, for f supported in [0,+∞)× R

3,

1t>0

∫ t

0
e(t−s)ΔΔf ds =

∫∫

X

K(t − s, x − y)f (s, y) ds dy

where K is a convolution operator associated to the Fourier multiplier

m(τ, ξ) = − ξ2

ξ2 + iτ

(where we consider the Fourier transformFt,xf (τ, ξ)=
∫∫

X
f (s, y)e−i(tτ+x·ξ)dtdx).

We have

sup
α∈N3

0,β∈N0

sup
(τ,ξ) �=(0,0)

(|τ |1/2 + |ξ |)|α|+2β | ∂
α

∂ξα

∂β

∂τβ
m(τ, ξ)| < +∞.

Thus, m can be seen as a Marcinkiewicz multiplier on the parabolic space R× R
3.
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3.4 Marcinkiewicz Multipliers for Bilinear Operators

In 1978, Coifman and Meyer extended the theory of multipliers to the setting of
bilinear operators [24, 26]. They consider a smooth function σ on R

d × R
d such

that, for all α, β ∈ N
d
0 ,

sup
(ξ,η) �=(0,0)

(|ξ | + |η|)|α|+|β|
∣

∣

∣

∣

∂α

∂ξα

∂β

∂ηβ
σ(τ, ξ)

∣

∣

∣

∣

< +∞

and they define

Tσ (f, g) = 1

(2π)2d

∫∫

ei(ξ+η)·xFxf (ξ)Fxg(η) dξ dη.

T is bounded from L∞×Lp to Lp for every 1 < p < +∞. One key property is that
for fixed f ∈ L∞, g �→ T (f, g) is not a convolution operator but is a generalized
Calderón–Zygmund operator (in the sense of [25]).

This theory has been applied by Kato and Ponce to derive a useful commutator
estimate that they applied to the study of the regularity of solutions to the Navier–
Stokes equations or to the Euler equations [57].

4 The Hardy–Littlewood Maximal Function

4.1 Kato’s Mild Solutions and Maximal Functions

Our treatment of the Navier–Stokes equations through the cheap Navier–Stokes
equation was very elementary, using absolute values and convolution inequalities
in the frequency variables. C. Calderón [11] noticed that we can deal with the
equations in the space variable in an equivalently elementary way through the use of
the maximal function, another basic tool in harmonic analysis introduced by Hardy
and Littlewood in 1930 [52]. We shall write Mf for the maximal function of f :

Mf (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f (y| dy.

A basic result on maximal functions [50] is the control of convolution with radial
kernels. More precisely, if a function g admits a majorant k (|g(x)| ≤ k(x)) such
that k is integrable, radial, and radially non-increasing, then

|g ∗ f (x)| ≤ ‖k‖1Mf (x).

In order to deal with the integro-differential problem
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u = etΔu0 −
∫ t

0
e(t−s)ΔP∇ · (u⊗ u) ds = etΔu0 − B(u,u),

Calderón writes

etΔu0 = etΔ(−Δ)1/4(−Δ)−1/4u0

and

B(u, v) =
∫ t

0
e
(t−s)

2 Δ
P∇ · e (t−s)2 Δ(−Δ)1/4(−Δ)−1/4(u⊗ v) ds.

and then uses the inequalities

• |etΔf (x)| ≤ C ∫
√
t

(
√
t+|x−y|)4 |f (y)| dy

• |etΔ(−Δ)1/4f (x)| ≤ C ∫ 1
(
√
t+|x−y|)7/2 |f (y)| dy

• |etΔ(−Δ)1/4RjRk∂lf (x)| ≤ C
∫ 1
(
√
t+|x−y|)4 |f (y)| dy

• |(−Δ)−1/4(fg)(x)| ≤ C ∫ 1
|x−y|5/2 |f (y)g(y)| dy

The last inequality is just a consequence of the correspondence of fractional
integration (−Δ)−α/2 (0 < α < 3) with the Riesz potentials Iα:

(−Δ)−α/2f (x) = Iα(f )(x) = cα
∫

R3

1

|x − y|3−α f (y) dy.

With the first two inequalities, we get that

sup
t>0
|etΔu0(x)| ≤ CM|u0|(x)

and

sup
t>0
t1/4|etΔu0(x)| ≤ CMI1/2(|u0|)(x).

In particular, if u0 belongs to L3, then (as I1/2 maps L3 to L6) we have etΔu0 ∈ E

where

f ∈ E⇔ sup
t>0
f (t, x) ∈ L∞(R3) and sup

t>0
t1/4f (t, x) ∈ L6(R3).

Moreover, as L6 ∩ L3 is dense in L3, we have

lim
T→0
‖ sup

0<t<T
t1/4etΔu0‖6 = 0.
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Now if u ∈ ET and v ∈ ET where

f ∈ ET ⇔ AT (f ) = sup
0<t<T

t1/4|f (t, x)| ∈ L6,

we find (using the inequalities on etΔ(−Δ)1/4 and on etΔRjRk∂l), the inequalities
(for 0 < t < T )

|B(u, v)(t, x)| ≤ C ∫ t

0
1

(t−s)3/4
1√
s
MI1/2(AT (u)AT (v))(x) ds

≤ C′t− 1
4 MI1/2(AT (u)AT (v))(x)

and

|B(u, v)(t, x)| ≤ C
∫ t

0

1

(t − s)1/2
1√
s
MAT (u)AT (v)(x) ds ≤ C′MAT (u)AT (v)(x).

The first inequality gives that B(u, v) still belongs to ET , and thus, if T is small
enough (to grant that etΔu0 is small in ET ), we find a solution u to the Navier–
Stokes problem; the second inequality gives us a control in L3 norm for this solution
u. Thus, we recover a Kato-type solution u such that

sup
0<t<T

|u(t, .)| ∈ L3 and sup
0<t<T

t1/4|u(t, .)| ∈ L6.

The main difference with Kato’s formalism is that, now, we first take the supremum
on t before integrating in x.

When u0 is small in L3, we have an even simpler proof of existence of a mild
solution u such that supt>0 |u(t, .)| belongs to L3. This result of Calderón is based
on the fact that the bilinear operator B, which is not bounded on L∞t L3

x [84], is
actually bounded on L3

xL
∞
t . If u ∈ L3

xL
∞
t and v ∈ L3

xL
∞
t , then

|B(u, v)(t, x)| ≤C
∫ t

0

∫

R3

1

(
√
t + |x − y|)4 |u(s, y)| |v(s, y)| dy

≤C
∫

R3
sup
s>0
|u(s, y)| sup

s>0
|v(s, y)|

[∫ t

0

1

(
√
t + |x − y|)4 ds

]

dy

=C′
∫

R3

1

|x − y|2 sup
s>0
|u(s, y)| sup

s>0
|v(s, y)| dy

=C′′I1/2(sup
s>0
|u(s, y)| sup

s>0
|v(s, y)|)(x).

Thus, if M|u0| ≤ U0 and if U is a solution of the cheap equation

U = U0 + C′′I1/2(U2)
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(solution which exists if U0 is small enough in L3), then we have a solution u with
|u(t, x)| ≤ U(x).

4.2 Hardy Spaces and Molecules

We can rewrite the Hardy–Littlewood maximal function as

Mf (x) = sup
t>0
Kt ∗ |f |(x)

where

K(x) = 1

|B(0, 1)|1B(0,1)(x) and Kt(x) = 1

t3
K(
x

t
).

One can see clearly the role of scaling in this definition of the operator. Basic
features for this operator are the boundedness on Lp for 1 < p ≤ +∞

‖Mf ‖p ≈ ‖f ‖p
and the lack of control in L1 norm:

f �= 0 /⇒ ‖Mf ‖1 = +∞.

The theory of Hardy spaces developed by Fefferman and Stein [35, 90] involves
a modified maximal function: taking Φ ∈ S a radially non-increasing smooth
function, and defining Φt(x) = 1

t3
Φ(x

t
), one defines

M [Φ]
f (x) = sup

t>0
|Φt ∗ f (x)|.

From the properties that M [Φ]
f (x) ≤Mf (x) and that limt→0Φt ∗ f = f in S ′ for

every distribution f ∈ S ′(R3), one finds that we have again, for 1 < p ≤ +∞,

‖M [Φ]
f ‖p ≈ ‖f ‖p.

But, now, it turns out that there are many distributions f such that M [Φ]
f is integrable

or belongs to Lp for some p ∈ (0, 1). The Hardy space H p is defined for 0 < p <
+∞ by the property:

f ∈H p ⇔M [Φ]
f ∈ Lp.
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An important feature of Hardy spaces is their duality property with BMO or with
homogeneous Hölder spaces: the dual of H 1 can be identified with BMO and the
dual of H p(R3) for 3

4 < p < 1 can be identified with the homogeneous Hölder
space Ḃα∞,∞ with α = 3

p
− 1. This has been used by Kozono and Taniuchi [62]

to prove weak–strong uniqueness solutions when the Navier–Stokes problem with
initial value u0 ∈ L2 generates a weak Leray solution in L∞t L2

x ∩ L2
t Ḣ

1
x (with

Leray energy inequality) and a solution in L∞t L2
x ∩ L2

t Ḣ
1
x ∩ L2

t BMOx : the proof
relies on the proof by Coifman, Lions, Meyer, and Semmes [22] that for a vector
field u ∈ L2 that is divergence-free (nabla ·u) and a vector field v ∈ L2 that is curl-
free (∇ ∧ v = 0), we have u · v ∈ H 1. Thus, the usual estimate for weak–strong
uniqueness

‖v− u‖2
2 + 2

∫ t

0
‖∇ ⊗ (u− v)‖2

2 ds ≤ 2
∫ t

0

∫

R3
u · ((u− v) ·∇(u− v)) dx ds

is turned to

‖v− u‖2
2 + 2

∫ t

0
‖∇ ⊗ (v− u)‖2

2 ds ≤ C
∫ t

0
‖v− u‖2‖∇(v− u)‖2‖u‖BMO ds

which leads to a Gronwall estimate.
Another important feature of Hardy spaces is their atomic decomposition, as

described, for instance, in [27]. For 3/4 < p ≤ 1, we have that a distribution f
belongs to H p(R3) if and only if it can be written as a sum f =∑

j∈N λjaj where
∑

j∈N |λj |p < +∞ and aj is a H p atom: there exists some rj > 0 and some

xj ∈ R
3 such that aj is supported in the ball B(xj , rj ), ‖aj‖2 ≤ |B(xj , rj )|−

2
2−p ,

and
∫

aj dx = 0.
Atoms are not stable under the action of Calderón–Zygmund convolution

operators with a non-local singular kernel, because compactness of supports is
destroyed by the convolution. But if we relax the conditions on aj into, for some

rj > 0 and xj ∈ R
3, ‖aj‖2 ≤ |B(xj , rj )|−

2
2−p , ‖ |x−xj | aj‖2 ≤ rj |B(xj , rj )|−

2
2−p ,

and
∫

aj dx = 0 [aj are no longer an atom for H p, but it is called a molecule; the
situation is much better. If T is a convolution operator with a Calderón–Zygmund
kernel, then there exists a constant C > 0 such that the image 1

C
T (aj ) of a molecule

is still a molecule (associated to the same center xj and the same radius rj ).
There are very few examples of the use of Hardy molecular decompositions in

fluid mechanics. We may quote a paper of Chamorro on advection–diffusion in the
setting of a non-local diffusion and a rough drift [16]. Futioli and Terraneo [46]
studied the Cauchy problem for the Navier–Stokes equations when the Laplacian of
the initial value u0 is a H 1 molecule. Their results were extended by Brandolese in
[7].
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4.3 Wavelets

Atomic or molecular decompositions lead quite naturally to wavelets. However, the
basic atoms that generate wavelet decompositions are usually more regular than
simply Lebesgue measurable and are assumed to have some Höder regularity. In
that case, one works more in the setting of Besov spaces than of Hardy spaces.
A systematic approach of Besov space through atomic decompositions has been
proposed by many authors, including the seminal paper of Frazier and Jawerth [40].

However, the first approach of the Navier–Stokes equations with a decomposition
on wavelet bases was performed by Federbush [32] in yet another space, the Morrey
space Ṁ2,3 (see the subsection on Morrey spaces in section 5). The study by
Federbush was based on the use of divergence-free vector wavelet bases [4, 68].
Divergence-free wavelet bases were also used by Urban [94] for the numerical
approximation of the equations of fluid mechanics.

There have been many claims that wavelet analysis of turbulent signals may pro-
vide valuable insights in the actual structure of turbulent fluids [31, 41], especially
in the frame of self–similar universality laws such as studied by Frisch [42]. But
Meyer proved that the claim that wavelets were asymptotically decorrelated in the
nonlinearity of the Navier–Stokes equations was unfounded [80].

5 Function Spaces

Many function spaces of measurable or differentiable functions have close relation-
ships with harmonic analysis, and their theory was developed quite extensively in
the books of Stein: Lorentz spaces in Introduction to Fourier Analysis on Euclidean
Spaces [91], Besov spaces in Introduction to Fourier Analysis on Euclidean Spaces
[89], BMO, tent spaces, or Muckenhoupt weights in Harmonic Analysis [90]. As
a matter of fact, all those spaces are met in the modern study of Navier–Stokes
equations developed in the 1990s. More recently, use of Morrey spaces has been
developed as well by many authors (see [74] for references).

5.1 Lorentz Spaces

Sobolev spaces Wk,p of functions in Lp such that their derivatives (in the sense of
distributions) up to order k are still in Lp can be extended for 1 < p < +∞ to the
scale of spaces Hsp defined, for s ∈ R, by

f ∈ Hsp ⇔ f ∈ S ′ and F−1
x

(

(1+ |ξ |2)s/2Fxf
)

∈ Lp.
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For 1 < p < +∞ and k ∈ N0, we haveWk,p = Hkp [89]. The Sobolev embeddings

then state that for 0 ≤ s < 3
p

(and 1 < p < +∞), we have

Hsp ⊂ Lr with
1

r
= 1

p
− s

3
.

The sharp Sobolev embedding states more precisely that

Hsp ⊂ Lr,p ⊂ Lr with
1

r
= 1

p
− s

3

where Lr,p is a Lorentz space. This can be done through various methods that have
been developed by Stein; for instance:

• Let J s be the convolution with the Bessel kernel associated with the Fourier
multiplier (1 + |ξ |2)−s/2; convolution with J s maps Lp onto Hsp for 1 < p <

+∞; r-the Sobolev embeddings state that it maps Lp to Lr with r = 3p
3−sp when

0 ≤ s < 3
p

; then, picking p0 and p1 with 1 < p0 < p < p1 <
3
s
, the

Marcinkiewicz interpolation theorem (as extended by Stein and Weiss [77, 91])

gives the boundedness of J s from Lp to L
3p

3−sp ,p as an interpolation of the

boundedness of J s from Lp0 to L
3p0

3−sp0 and from Lp1 to L
3p1

3−sp1 .
• For 0 < s < 3, the kernel Ks of the convolution operator J s satisfies

|Ks(x)| ≤ C 1

|x|3−s

, and thus Ks belongs to the Lorentz space L
3

3−s ,∞. Convolution in Lorentz
spaces has been studied by O’Neil [83] following ideas of Stein. In particular,
we have Lp,q ∗ Lr,s ⊂ Lt,u with 1

t
= 1

p
+ 1

r
− 1 and 1

u
= min( 1

q
+ 1

s
, 1)

(whenever 1 < t < +∞). Applying this to Lp = Lp,p and L
3

3−s ,∞ gives the
desired embedding.

Due to their good properties of interpolation and to their simple convolution and
product laws, Lorentz spaces have turned out to be very efficient tools for providing
sharp estimates in Lebesgue norms. For instance, the Hardy inequality

∫

R3

|f |p
|x|sp dx ≤ Cs,p

∫

R3
|(−Δ)s/2f |p dx

for f ∈ Hsp, 1 < p < +∞, and 0 < s < 3/p is a direct consequence of the facts

that the kernel of (−Δ)−s/2 (i.e., the Riesz potential I s) belongs to L
3

3−s ,∞, the
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multiplier 1
|x|s belongs to L

3
s
,∞, the convolution maps Lp×L 3

3−s ,∞ to L
3p

3−sp ,p, and

the pointwise product maps L
3p

3−sp ,p × L 3
s
,∞ to Lp,p = Lp.

Besides being a useful tool for refining inequalities, Lorentz spaces occur as a
natural setting in various problems in the study of the Navier–Stokes equations,
especially in problems with critical scaling. For instance, the bilinear operator B
defined by equation (5) is bounded on L∞((0, T ), Lp) for p > 3, with a norm

‖B‖B(L∞Lp×L∞Lp �→L∞Lp) = CpT
1
2 (1− 3

p
)
.

But it is no longer bounded on L∞L3 [84]. It turns out that, however, it is bounded
on L∞L3,∞, as proved by Meyer [80].

Kozono and Nakao [59] studied time-periodic solutions for the Navier–Stokes
equations with a time-periodic forcing. They found solutions in L∞L3,∞. More
precisely, one studies the equations

∂tu = Δu− P∇ · (u⊗ u)+ P∇ · F

where the forcing tensor F is time-periodic, and one seeks for a solution u which is
still time-periodic. If we assume that F belongs to L∞L3/2,∞, then we define U0 as

U0 =
∫ t

−∞
e(t−s)ΔP∇ · F ds

, and we find that U0 belongs to L∞L3,∞. Thus, looking for time-periodic solutions
of the Navier–Stokes solutions with time-periodic tensor F is turned into the solving
of the integro-differential problem

u = U0 −
∫ t

−∞
e(t−s)ΔP∇ · (u⊗ u) ds = U0 − B∞(u,u)

where the bilinear operator B∞ is defined as

B∞(u, v)(t, .) =
∫ t

−∞
e(t−s)ΔP∇ · (u⊗ v) ds.

As B∞ is bounded on L∞L3,∞, the Banach contraction principle will give us a
solution as soon as F is small enough.

Meyer [80] applied the boundedness of B on L∞L3,∞ to another problem,
namely, uniqueness of solutions of the Navier–Stokes equations in C ([0, T ), L3).
We already discussed this problem. Let u0 ∈ L3. If u is a solution in C [0, T ), L3)

and uK is the solution provided by Kato in C [0, T ), L3)with the additional property
that limt→0 t

1/4‖uK‖6 = 0, then the function w = u− uK satisfies the identity
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w = −B(uK,w)− B(w,uK)− B(w,w).

The main idea of the proof of uniqueness initially given by Furioli, Lemarié-
Rieusset, and Terraneo [45] was to establish a contractive estimate (locally in time)
on w to prove that w is equal to 0. The difficult term is B(w,w), as B is not bounded
on L∞L3. But, as B is bounded on L∞L3,∞, it is easy to prove that for 0 < S < T ,

sup
0<t<S

‖w(t, .)‖L3,∞ ≤ C sup
0<t<S

‖w(t, .)‖L3,∞

(

sup
0<s<S

s1/4‖uK(s, .)‖6 + sup
0<s<S

‖w(t, .)‖L3,∞

)

.

By continuity of both u and uK in L3 norm, and by the embedding L3 ⊂ L3,∞, we
have limt→0 ‖w(t, .)‖L3,∞ = 0, and we find that we have a contractive estimate for
w if S is small enough. Hence, the fixed point w is equal to 0, and u = uK on (0, S).
The end of the proof follows by a bootstrap argument.

Another example where one naturally deals with Lorentz spaces is the study of
self-similar solutions. If u and p are solutions of

∂tu+ (u ·∇)u = Δu−∇p,

∇ · u = 0,

u(0, .) = u0,

then, for λ > 0, defining uλ(t, x) = λu(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx), and
u0
λ(x) = λu0(λx), we find that uλ and pλ are solutions of

∂tuλ + (uλ ·∇)uλ = Δuλ −∇pλ,

∇ · uλ = 0,

uλ(0, .) = u0
λ.

Thus, provided that u0 is homogeneous (so that u0
λ = u0), one may look for self-

similar solutions (such that uλ = u and pλ = p). However, if u0 is homogeneous
and is not equal to 0, it cannot belong to the usual spaces (Lebesgue spaces Lp or
Sobolev spaces Hs), by lack of integrability either at x = 0 or at x = ∞. But L3,∞
contains non-trivial homogenous functions, so that the problem of looking for self-
similar solutions is meaningful in the setting of this Lorentz space (this has been
done by Barraza in 1996 [3]).
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5.2 Besov Spaces

Besov spaces are usually viewed as the main tool of real variable harmonic analysis
methods for the Navier–Stokes equations [2, 14, 70]. However, the role played by
Besov spaces has various aspects.

The most obvious occurrence of Besov spaces, more related to the classical
theory of parabolic equations than to real methods in harmonic analysis, is linked to
the analysis of the heat kernel and the thermic characterization of Besov spaces. If
s < 0, then a distribution f ∈ S ′ will belong to Bsp,q (1 ≤ p, q ≤ +∞) if and only

if t s/2‖etΔf ‖q belongs to Lp((0, T ), dt
t
) (where 0 < T < +∞). If T = +∞, then

f belongs to the (realization of) homogeneous Besov space Ḃsp,q . Thus, the result
of Fabes, Jones, and Rivière [30] that B is bounded on Lp((0, T ), Lq) when T is
finite, 3 < q < +∞, and 2

p
+ 3

q
≤ 1, or when T = +∞, 3 < q < +∞, and

2
p
+ 3

q
= 1, implies that one may find a (local in time) solution u ∈ LpLq to the

Cauchy problem for the Navier–Stokes equations with initial value u0 if and only

if u0 ∈ B−
2
p

q,p ; this solution will be global if 2
p
+ 3
q
= 1 and u0 is small enough in

Ḃ
− 2
p

q,p .
Similarly, the inequality (6) we used to construct Kato solutions to the problem

with u0 ∈ L3 can be seen as the embedding L3 ⊂ Ḃ−
1
2

6,∞.
Homogeneous Besov spaces occur naturally in the study of the Navier–Stokes

equations, due to the scaling invariance of the equations. If we want to study the
initial value problem in a Banach space E of distributions that respects symmetries
of the problem, we shall ask the norm of E to be invariant under translations in R

3

(‖f (x − x0)‖E = ‖f ‖E for x0 ∈ R
3) and under dilations (λ‖f (λx)‖E = ‖f ‖E for

λ > 0). In that case, Meyer [80] remarked that we have the embedding E ⊂ Ḃ−1∞,∞, a
Besov space that plays a prominent role in the study of the Navier–Stokes equations.

The use of Besov spaces in fluid mechanics relies essentially on the dyadic
Littlewood–Paley decomposition (sometimes called the Littlewood–Paley–Stein
decomposition, as Stein is one of the first analysts to use it). This decomposition
makes easy dealing with the nonlinearity u · ∇u of the equations, by using the
paraproduct operators of Bony [6]. Seminal works on Besov spaces and fluid
mechanics appeared in the 1990s, as the paper of Chemin in 1992 [18] or the book
of Cannone in 1995 [13]; applications of the Littlewood-Paley decomposition to
the borderline cases of regularity for solutions of Euler equations were given by
Vishik in 1998–1999 [95, 96]. Chemin developed a theory of time-space Besov
spaces where the nonlinear evolution partial differential equations are treated more
efficiently after localization by means of Littlewood–Paley decomposition [2, 19]
(especially in the borderline cases of regularity).

An interesting example of the use of Besov spaces for Navier–Stokes equations
is the proof of uniqueness of solutions in C ([0, T ], L3) to the Cauchy problem for
initial value u0 ∈ L3. The first proof of such uniqueness has been given by Furioli,
Lemarié-Rieusset, and Terraneo [44, 45]. If u is a solution in C [0, T ), L3) and uK
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is the solution provided by Kato in C [0, T ), L3) with the additional property that
limt→0 t

1/4‖uK‖6 = 0, then the function w = u− uK satisfies the identity

w = −B(uK,w)− B(w,uK)− B(w,w).

The main step of the proof of uniqueness by Furioli, Lemarié-Rieusset, and Terraneo
was to establish a contractive estimate (locally in time) on w to prove that w is equal
to 0, in spite of the fact that B is not bounded on L∞L3. They remarked that w is
more regular than u and uK : u − etΔu0 and uK − etΔu0 belong to L∞Ḃ1/2

2,∞; the
contractive estimate they found is then the following one: for 0 < S < T ,

sup
0<t<S

‖w(t, .)‖
Ḃ

1/2
2,∞
≤ C sup

0<t<S
‖w(t, .)‖

Ḃ
1/2
2,∞

(

sup
0<s<S

s1/8‖uK(s, .)‖4 + sup
0<s<S

‖w(t, .)‖3

)

.

By continuity of both u and uK in L3 norm, we have limt→0 ‖w(t, .)‖L3,∞ = 0, and
we find that we have a contractive estimate for w if S is small enough. Hence, the
fixed point w is equal to 0, and u = uK on (0, S). The end of the proof follows by a
bootstrap argument.2

In some points of the study of the Navier–Stokes equations, Besov spaces appear
to be optimal. Let us quote three examples concerning the Leray solutions. We
consider a solution u ∈ L∞((0, T ), L2) ∩ L2((0, T ), Ḣ 1) of the Navier–Stokes
equations with initial value u0 ∈ L2, satisfying Leray’s energy inequality:

‖u(t, .)‖2
2 + 2

∫ t

0
‖∇ ⊗ u‖2

2 ds ≤ ‖u0‖2
2.

• Regularity: a well-known result of Serrin [88] states that if u0 belongs more
precisely toH 1, then u will remain inH 1 as long as

∫ T

0 ‖u‖pq dt < +∞with 3 <
q ≤ ∞ and 2

p
+ 3
q
= 1. The space Lq has been replaced by many larger spaces

with the same scaling properties. The largest one is Ḃ
− 3
q∞,∞. Serrin’s criterion has

been proved to hold for u ∈ LpḂσ∞,∞ for 2
p
= 1+σ and 1 ≤ p < +∞ (Kozono

and Shimada [61] for p > 2, Chen and Zhang [20] for 1 < p ≤ 2, Kozono,
Ogawa, and Taniuchi [60] for p = 1).

• Weak–strong uniqueness: a well-known result of Prodi [85] and Serrin [87] states
that if the Cauchy problem for u0 has another solution v in L∞L2 ∩L2Ḣ 1 and if
moreover v ∈ Lpt Lqx with 2

p
+ 3
q
= 1 and 3 < q ≤ +∞, then u = v. Again, this

2This was after this result that Brezis asked me to write a book on Besov estimates for Navier–
Stokes equations [70].
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has been extended by replacing Lq by many larger spaces with the same scaling
properties. Serrin’s criterion has been proved to hold for u ∈ LpXσ for 2

p
= 1+σ

and 1 < p < +∞, where Xσ = Ḃσ∞,∞ if σ > 0 (i.e., p < 2) (Chen, Miao, and
Zhang [21]), X0 = BMO (Kozono and Taniuchi [62]), and Xσ = Ṁ2,q if σ < 0
and σ = − 3

q
(see the subsection on Morrey spaces).

• Energy (in)equality: a classical result of Lions [76] states that if the Leray
solution u satisfies u ∈ L4L4, then Leray’s energy inequality for u is indeed an
equality. The assumption u ∈ L4L4 has been weakened by Duchon and Robert
[29] to u ∈ L3b

1/3
3,∞ where b1/3

3,∞ is the closure of test functions in Ḃ1/3
3,∞. (Remark

that L2Ḣ 1 ∩ L4L4 ⊂ L3b
1/3
3,∞.)

5.3 Morrey Spaces and Morrey–Campanato Spaces

When dealing with scaled estimates in spaces of measurable functions, one is
naturally driven to use Morrey spaces. The Morrey space Ṁp,q , 1 < p < +∞,
p ≤ q ≤ ∞ is defined by

f ∈ Ṁp,q ⇔ f ∈ Lploc and sup
x0∈R3,r>0

1

|B(x0, r)|
1
p
− 1
q

‖1B(x0,r)f ‖p < +∞.

Again, we define σ = − 3
q

and we find equivalently

f ∈ Ṁp,q ⇔ f ∈ Lploc and sup
x0∈R3,r>0

1

r
3
p
+σ ‖1B(x,r)f ‖p < +∞.

The restriction p ≤ q ≤ +∞ implies that we have − 3
p
≤ σ ≤ 0. Remark that if

σ < − 3
p

or σ > 0, then f = 0. Moreover, Ṁp,∞ = L∞.
Morrey–Campanato spaces are quite similar, except that we correct f with its

mean value mB(x0,r)f = 1
|B(x0,r)

∫

B(x0,r)
f dx:

f ∈M p,σ ⇔ f ∈ Lploc and sup
x0∈R3,r>0

1

r
3
p
+σ ‖1B(x0,r)f −mB(x0,r)f ‖p < +∞.

This time, σ will be in the range − 3
p
≤ σ < 1. Moreover, M p,0 = BMO and, for

0 < σ < 1, M p,σ = (the realization of) Ḃσ∞,∞ [12]. Thus, M p,σ is the dual of the
Hardy space H r for 3

4 < r ≤ 1 and σ = 3
r
− 1 [39].

If σ < 0 and if (ψε,j,k)1≤ε≤7,j∈Z,k∈Z3 is a compactly supported wavelet bases
with regularity C 3, then we find that

|〈f |ψε,j,k〉| ≤ C23j ( 1
p
− 1

2 )‖ψε‖ p
p−1
‖f ‖M p,σ 2−j (

3
p
+σ)
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and we find that
∑

ε,j,k〈f |ψε,j,k〉ψε,j,k is (*-weakly) convergent in (the realization

of) Ḃσ∞,∞. Moreover, the series
∑

ε,j,k〈f |ψε,j,k〉∇ψε,j,k converges in D ′ to ∇f .

Thus, we have a decomposition M p,σ = Ṁp,− 3
σ ⊕ R1 and an identification

Ṁp,− 3
σ =M p,σ ∩ Ḃσ∞,∞.

The first occurrence of Morrey spaces in the study of Navier–Stokes equations
was in a paper by Giga and Miyakawa [48] on self-similar solutions. Then, in
the early 1990s, there has been results on mild solutions in Morrey spaces given
by Kato [56], Taylor [93], and Federbush [32]. In 1994, Kozono and Yamazaki
[63] introduced Besov–Morrey spaces in order to give examples of singular initial
values (or of initial values with large L3 norms) leading to global mild solutions.
Cannone’s book [13] or Lemarié-Rieusset’s one [70] gave a systematic treatment of
those spaces.

The flourishing of various classes of mild solutions for the Navier–Stokes
equations that occurred in the 1990s opened the question of the largest space that
would lead, through Picard iterations, to solutions. This space is included in B−1∞,∞
but is smaller, as the regularization by the heat kernel is not sufficient to give a
meaning to the nonlinear term. This space was identified by Koch and Tataru [58]
and named bmo−1: this is the space of distributions that are a sum of a bounded
function f0 ∈ L∞ and of derivatives ∂jfj of functions fj in the bmo space of
Goldberg (a local version of BMO) [49]. The homogeneous version of this space is
BMO−1 = √−Δ(BMO). Recently, Auscher and Frey [1] gave a new proof of the
theorem of Koch and Tataru, based on the duality between the Hardy space H 1 and
BMO.

Variations on the Koch and Tataru theorem led May [78] and Xiao [97] to

consider initial values in (
√−Δ)1−σM 2,−σ = (√−Δ)1−σ Ṁ2, 3

σ . Xiao linked his
results to his theory of Q-spaces and to Carleson measures and the tent spaces of
Coifman, Meyer, and Stein [23].

Morrey spaces appear in many papers on the Navier–Stokes equations, extending
results involving Lebesgue spaces where scaling properties prevail over global
integrability. For instance, uniqueness of mild solutions in C ([0, T ], L3) proven
by Furioli, Lemarié-Rieusset, and Terraneo holds as well in C ([0, T ], ṁp,3) for
2 < p ≤ 3, where ṁp,3 is the closure of test functions in the space Ṁp,3 [45, 72].
The case of C ([0, T ], ṁ2,3) remains open. The space Ẋ1 = M (Ḣ 1 �→ L2)

of pointwise multipliers from the Sobolev space Ḣ 1(R3) to L2(R3) satisfies the
embeddings, for 2 < p ≤ 3, Ṁp,3 ⊂ Ẋ1 ⊂ Ṁ2,3 (Fefferman [33]). May [75]
proved uniqueness of solutions in C ([0, T ], ẋ1), where ẋ1 is the closure of test
functions in the space Ẋ1.

Another interesting occurrence of Morrey spaces in the study of the Navier–
Stokes equations is the extension of the criterion of weak–strong uniqueness of
Prodi [85] and Serrin [87]. The key point in the proof of the criterion is an inequality
of the type

|
∫

u · (v ·∇)v dx| ≤ C‖u‖Xσ ‖v‖1+σ
2 ‖∇ ⊗ v‖1−σ

2
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for two divergence-free vector fields u and v. For−1 ≤ σ ≤ 0, a simple approach is
to use an inequality of the type ‖u⊗v‖2 ≤ C‖u‖Xσ ‖v‖H−σ together with ‖v‖H−σ ≤
‖v‖1+σ

2 ‖∇ ⊗ v‖−σ2 . Let us write Ẋr = M (Ḣ r �→ L2) for the set of pointwise
multipliers from the Sobolev space Ḣ r (R3) to L2(R3) (for a characterization of Ẋ1,
see Maz’ya [79]); we get

|
∫

u · (v ·∇)v dx| ≤ C‖u‖Ẋr ‖v‖1−r
2 ‖∇ ⊗ v‖1+r

2

and find weak–strong uniqueness for Leray solutions of the Cauchy problem with
initial value u0 if one of those solutions belongs moreover to LpẊr (0 ≤ r < 1 and
2
p
= 1− r) or to C ([0, T ), ẋ1) (for r = 1) [70].
For 0 < r < 1, a better approach is to use an inequality of the type ‖u ⊗

v‖2 ≤ C‖u‖Xσ ‖v‖Ḃr2,1 together with ‖v‖Ḃr2,1 ≤ C‖v‖
1+r
2 ‖∇ ⊗ v‖r2. Thus, we are

interested in the space M (Ḃr2,1 �→ L2) of pointwise multipliers from the Besov

space Ḃr2,1(R
3) toL2(R3); this space turns out to be the Morrey space Ṁ2, 3

r [72, 74],

which is larger than Ẋr . Hence, we get

|
∫

u · (v ·∇)v dx| ≤ C‖u‖
Ṁ2, 3

r
‖v‖1−r

2 ‖∇ ⊗ v‖1+r
2

and find weak–strong uniqueness for Leray solutions of the Cauchy problem with

initial value u0 if one of those solutions belongs moreover to LpṀ2, 3
r (0 < r < 1

and 2
p
= 1− r).

For σ ≤ 0, one uses the fact that v is divergence free. Recall that for σ = 0,
Kozono and Taniuchi [62] wrote

|
∫

u · (v ·∇)v dx| ≤ C‖u‖BMO‖v ·∇v‖H 1 ≤ C′‖u‖BMO‖v‖2‖∇ ⊗ v‖2

and got weak–strong uniqueness for Leray solutions of the Cauchy problem with
initial value u0 if one of those solutions belongs moreover to L2 BMO.

For 0 < σ < 1, we use product laws in Sobolev spaces to estimate the (positive)
regularity of v⊗ v:

‖v⊗ v‖
Ḃ1−σ

1,1
≤ C‖v‖2

Ḣ
1−σ

2
≤ C‖v‖1+σ

2 ‖∇ ⊗ v‖1−σ
2

so that

|
∫

u ·(v ·∇)v dx| ≤ C‖∇⊗u‖
Ḃσ−1∞,∞‖v⊗v‖

Ḃ1−σ
1,1
≤ C‖u‖Ḃσ∞,∞‖v‖

1+σ
2 ‖∇⊗v‖1−σ

2 .

Thus, find weak–strong uniqueness for Leray solutions of the Cauchy problem with
initial value u0 if one of those solutions belongs moreover to LpḂσ∞,∞ (0 < σ < 1



272 P. G. Lemarié-Rieusset

and 2
p
= 1 + σ ). The limit case σ = 1 gives weak–strong uniqueness when one of

the solutions belongs moreover to L1 Lip.
For−1 < σ < 1, those results may be unified in the following way: weak–strong

uniqueness for Leray solutions of the Cauchy problem with initial value u0 if one
of those solutions belongs moreover to LpM 2,σ (−1 < σ < 1 and 2

p
= 1+ σ ).

Another point where scaling plays an important role is the theory of partial
regularity for suitable weak solutions of the Navier–Stokes solutions developed
by Caffarelli, Kohn, and Nirenberg [9]. In order to simplify the proof given by
Caffarelli, Kohn, and Nirenberg in 1982, Ladyzhenskaya and Seregin [65] used
Morrey spaces as a basic tool for elliptic or parabolic equations. A systematic and
inspiring proof wholly given ion terms of Morrey spaces has been given by Kukavica
in 2011 [64].

6 Conclusion

We have given many examples of the interaction of harmonic analysis with the
study of Navier–Stokes equations, beyond the simple use of Littlewood–Paley
decomposition. The usefulness of such tools can be nicely illustrated by the case
of the refined Gagliardo–Nirenberg inequalities of Gérard, Meyer, and Oru [47].
This inequality states that if 1 < p ≤ +∞, α > 0, and β > 0, then the control
of (
√−Δ)αf in Lp norm and of f in Ḃ−β∞,∞ gives a control of f in Lq , with

1
q
= β

α+β
1
p

:

‖f ‖q ≤ ‖(
√−Δ)αf ‖

β
α+β
p ‖f ‖

α
α+β
Ḃ
−β∞,∞

(7)

The original proof is given in terms of the Littlewood–Paley decomposition of f
and of the characterization of Lq as a Triebel–Lizorkin space Ḟ 0

p,2. But there is a
very shorter and simpler proof based on Hedberg’s inequality [53]. (More precisely
a variant of Hedberg’s inequality, where one replaces the role played by the Hardy–
Littlewood maximal function by Stein’s maximal function, in order to be able to
deal with distributions in Ḃ−β∞,∞.) More precisely, if N > α/2, one writes (for f ∈
Ḃ
−β∞,∞)

f = (−1)N

Γ (N)

∫ +∞

0
(tΔ)NetΔf

dt

t

and uses the inequalities

|(tΔ)NetΔf (x)| ≤ Ct α2 M(
√−Δ)αf (x)
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and

|(tΔ)NetΔf (x)| ≤ Ct− β2 ‖f ‖
Ḃ
−β∞,∞

to find Hedberg’s inequality

|f (x)| ≤ C
(

M(
√−Δ)αf (x)

)
β
α+β (

‖f ‖
Ḃ
−β∞,∞

) α
α+β

.

Inequality (7) is then obvious.
Hedberg’s inequality, combined with basic theory of singular integrals and maxi-

mal functions, should be a powerful tool to deal with some nonlinear PDEs, avoiding
the rigidity of the Littlewood–Paley decomposition or of wavelet decompositions
and in a way replacing it by a molecular approach (molecules in Hardy spaces
[where only size of the molecules is controlled) or in Besov spaces (where size
and regularity of the molecules are controlled]). This was the claim in [73] and
the basis for the book [74]. Indeed, a Littlewood-Paley decomposition is stable
neither through a transport equation nor under the action of a singular integral
convolution operator. On the other hand, a molecular decomposition will be stable,
since a molecule is preserved under a transport equation with Lipschitzian drift
(moving the center along the characteristic curve and deforming the profile of the
molecule but without altering too much its scale) or through the action of a singular
integral convolution operator (with roughly speaking the same center and the same
scale but with a deformation of the profile). Similarly, a wavelet decomposition is
not preserved but transformed into a vaguelette decomposition [70]. An interesting
example of what can be done with molecules is the paper by Chamorro and Menozzi
establishing regularization properties for an advection–diffusion problem with non-
local diffusion and rough drift [17]; the title of their paper is quite programmatic
for the use of real methods in harmonic analysis when studying nonlinear PDEs:
Nonlinear Singular Drifts and Fractional Operators: When Besov Meets Morrey
and Campanato.
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dynamics by reorganizing the spectral information of an electroencephalogram
(EEG) extracted from a nonlinear-type time frequency analysis tool, the syn-
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1 Introduction

Sleep is a recurring physiological dynamical activity in mammals. Since 1968, the
Rechtschaffen and Kales (R&K) criteria [1] is the gold standard when researchers
study human sleep dynamics, and this criteria was further generalized by American
Academy of Sleep Medicine (AASM) [2]. According to the AASM criteria, the
sleep dynamics is quantified by finite discrete stages, and those stages can be divided
into two broad categories, the rapid eye movement (REM) and the non-rapid eye
movement (NREM), and the NREM stage is further divided into shallow sleep
(stages N1 and N2) and deep sleep (stage N3). Based on this quantification, up
to now, we have accumulated plenty of knowledge about sleep dynamics [3], and
sleep dynamics is nowadays an active research field due to more unknowns [4].
Despite those unknowns, it has been well-known that a distortion of sleep dynamics
could lead to catastrophic outcomes. For example, REM disturbance slows down the
perceptual skill improvement [5], insufficient N2 sleep is associated with weaning
failure [6], deprivation of slow wave sleep is associated with Alzheimer’s disease
[7], etc. Moreover, several public disasters are caused by low sleep quality [8].

The polysomnography (PSG) is the gold standard of evaluating the sleep
dynamics. The PSG usually records multiple channels from a subject, ranging from
electroencephologram (EEG), electrooculogram (EOG), electrocardiogram (ECG),
electromyogram (EMG), photoplethysmogram (PPG), several respiratory signals,
etc. While each channel contains its own information about sleep, to apply the
AASM criteria [2] to study sleep dynamics, sleep experts mainly count on EEG,
EOG, and EMG. To simplify the discussion, and better explore how much sleep
dynamics is captured by EEG signals, we focus on exploring sleep dynamics via
analyzing EEG signals.

An EEG is a complicated time series. It is non-stationary in nature. A common
model to study a given EEG assumes that it is composed of diverse spectra [9],
each of which depicts a portion of the brain dynamics. Furthermore, we assume
that the brain dynamics, as a dynamical system, is supported on a low-dimensional
manifold. Based on this model, a natural question to ask is if we are able to
recover the low-dimensional manifold for the sleep dynamics study. The first step
toward answering this question is to quantify the spectral content in an EEG signal
by the time-frequency analysis. Synchrosqueezing transform (SST) [10, 11] is a
nonlinear-type time-frequency analysis technique, which allows us to combine
the phase information into the spectrogram (the squared magnitude of the short-
time Fourier transform (STFT)). Note that the phase information is ignored in the
spectrogram. A direct consequence is “sharpening” the spectra of the EEG signal
and prevents the “energy leakage” that is commonly encountered in the spectrogram
due to the uncertainty principle [12]. Specifically, the spectrogram is sharpened
by taking the phase information of STFT into account to nonlinearly deform the
spectrogram, and the blurring effect/energy leakage of the spectrogram caused by
the uncertainty principle is alleviated. We call the outcome the synchrosqueezed
EEG spectral features, which contains not only the spectrogram but also the EEG
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phase information. The synchrosqueezed EEG spectral feature is in general different
from the intrinsic sleep dynamics. This difference comes from various resources
including, for example, the distortion caused by the transform and inevitable noise
and artifact. Thus, an extra step is needed to refine/reorganize the synchrosqueezed
EEG spectral feature and define the final intrinsic features for the sleep dynamics.
We suggest to conquer the distortion by the local Mahalanobis distance (MD)
framework [13, 14]. Via local MD, we reorganize the synchrosqueezed EEG spectral
features by the diffusion-based machine learning algorithms, including diffusion
maps (DM) [15], alternating diffusion (AD) [16], and co-clustering [17], depending
on how many EEG channels we have, for this purpose. We call the resulting features,
the intrinsic sleep dynamical features. Based on the established theory, the intrinsic
sleep dynamical features recover the intrinsic geometry of sleep dynamics and hence
provides a visualization tool to explore sleep dynamics.

A direct application of discovering the geometry of sleep dynamics is an
automatic annotation system. Scoring the overnight sleep stage from the PSG
outputs by sleep experts is time-consuming [18] and error-prone [19] due to the
huge signal loading. Due to its importance for the whole healthcare system, an
accurate automatic sleep dynamics scoring system is critical in the current clinical
environment. For this automatic annotation purpose, we consider the standard
hidden Markov model (HMM) [20] to learn the sleep experts’ knowledge. Based
on the physiological knowledge, we first take the available phenotype information
of a new-arriving subject to determine “similar subjects” from the existing database.
Then, based on the intrinsic sleep dynamical features and the annotations of these
similar subjects, a prediction model for the new subject is established for the new-
arriving subject. To evaluate the performance of the proposed algorithm for the
prediction purpose, we consider the publicly available benchmark database, the
Physionet Sleep-EDF database [21]. This database contains two subsets, the SC*
and ST*. The SC* subset consists of 20 healthy subjects without any sleep-related
medication, and the ST∗ subset consists of 22 subjects who had mild difficulty
falling asleep. The overall accuracy and macro F1 achieve 82.57% and 76% in
Sleep-EDF SC∗ and 77.01% and 71.53% in Sleep-EDF ST∗, which is compatible
with the state-of-the-art results by supervised learning-based algorithms. The results
suggest the potential of the proposed algorithm for clinical applications.

The rest of this paper is organized as follows. In Section 2, we summarize the
theoretical background of SST and demonstrate how SST works in an EEG signal.
In Section 3, the local MD and the empirical intrinsic geometry framework are
summarized. In Section 4, the diffusion-based algorithm, DM, is discussed, and
its theoretical support is summarized. In Section 5, diffusion-based sensor fusion
algorithms, including AD, co-clustering, and multiview DM, as well as known
theoretical background, are provided. In Section 6, the implementation details of
the proposed algorithm for recovering the geometry of sleep dynamics, including
feature extraction algorithm for the synchrosqueezed EEG spectrum and diffusion
based feature organization and sensor fusions, are provided. The HMM for the
automatic sleep stage annotation is also summarized. In Section 7, we describe
the publicly available benchmark database, the Sleep-EDF Database [Expanded]
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from PhysioNet, and the statistics for the performance evaluation purpose. In
Section 8, the results of applying the proposed algorithm to the Sleep-EDF Database
[Expanded] are shown. The paper is closed with the discussion and conclusion in
Section 9, with a comparison with existing relevant literature in automatic sleep
stage annotation.

2 Synchrosqueezing Transform

In this subsection, we introduce the synchrosqueezed EEG spectrogram based on
the STFT-based SST [11] algorithm. The basic idea underlying SST is utilizing
the phase information in the STFT of the EEG signal to sharpen the spectrogram.
There are two benefits. First, the phase information that is commonly ignored in
the spectrogram is preserved. Second, the uncertainty principle intrinsic to the
spectrogram is alleviated and the spectrogram is sharpened, which can prevent the
“energy leakage” caused by the blurring effect inherited in the uncertainty principle
associated with the STFT [12]. These two benefits allow us a better quantification
of the EEG dynamics. The SST algorithm is composed of three steps – extract the
local dynamics of the EEG signal by the STFT, manipulate the phase information,
and sharpen the spectrogram according to the extracted phase. Below we summarize
the SST based on STFT.

Take a continuously recorded signal f , for example, an EEG in this work. In
practice, f can be as general as a tempered distribution function. Take a Schwartz
function h to be the chosen window. The STFT of f is then defined by

V
(h)
f (t, ω) =

∫ ∞

−∞
f (s)h(s − t)e−i2πω(s−t)ds, (1)

where t ∈ R is the time, and ω ∈ R is the frequency. We call |V (h)f |2 :
R × R → R

+ ∪ {0} the spectrogram. As a complex-valued function, the local
phase information of f could be approximated by ∂tV

(h)
f (t, ω). Intuitively, the phase

function records the number of oscillations, and this intuition leads us to calculate
the following reassignment rule:

Ω
(h)
f (t, ω) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4 ∂tV
(h)
f (t, ω)

2πV (h)f (t, ω)
when |V (h)f (t, ω)| �= 0;

−∞ when |V (h)f (t, ω)| = 0 ,

(2)

where 4means taking the imaginary part. The spectrogram of f is finally sharpened
by re-allocating the coefficients of the spectrogram according to the reassignment
rule [22]:
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S
(h)
f (t, ξ) :=

∫

|V (h)f (t, ω)|2 1

α
g
( |ω −Ω(h)f (t, ω)− ξ |

α

)

dω , (3)

where ξ > 0 is the frequency and g is a Schwartz function so that g(·/α)/α
converges weakly to the Dirac measure supported at 0 when α → 0. Theoretically,
α controls the resolution of the frequency axis in the SST. This seemingly
complicated transform has an intuitive interpretation. At each time t , we identify all
spectrogram entities that contain oscillatory components at frequency ξ by reading

1
α
g
( |ω−Ω(h)f (t,ω)−ξ |

α

)

and put all identified entities in the (t, ξ) slot. We call S(h)f (t, ξ)

the synchrosqueezed spectrogram.
Note that the SST defined in (3) is slightly different from that introduced in

[11] – in [11], it is the STFT that is re-allocated, but here, it is spectrogram that
is re-allocated. We choose to re-allocate the spectrogram since we do not need to
reconstruct the components in this work, and it is the sharpened energy distribution
that encodes the phase information that we are interested in. In addition to providing
a sharp and concentrated spectrogram, it has been proved in [23] that SST is
robust to different kinds of noise. This property is desirable since the EEG signal
is commonly noisy. For theoretical developments and more discussions, we refer
readers to [10, 23].

Example 1 To have a better insight of the SST algorithm, look at the follow-
ing toy example that motivates the design of SST. Take a harmonic function
f (t) = ei2πω0t , where ω0 > 0 is constant. By a direct calculation, we have
V
(h)
f (ω, t) = ei2πω0t exp(−2π2(ω − ω0)

2H 2). From (2), we know that the
instantaneous frequency of f (t) can be recovered from the phase information
of V (h)f (ω, t); that is, ω0 = 1

2π 4
(

∂
∂t

lnV (h)f (t, ω)
)

. A direct calculation leads to

ω0 = ω − Im
( 1

2πH
Sg′ (ω,t)
Sg(ω,t)

)

, which means that the spectra energy near ω is spread

from ω − Im
( 1

2πH
Sg′ (ω,t)
Sg(ω,t)

)

for any t > 0. Thus, to obtain a sharp spectrogram, we
only need to reallocate the spectrogram to the right frequency ω0.

To better appreciate the effect of the reassignment step, see Figures 1 and 2 for
a comparison of the synchrosqueezed spectrogram and the spectrogram of an EEG
signal during different sleep stages. We call the spectrogram and synchrosqueezed
spectrogram of an EEG signal EEG spectrogram and synchrosqueezed EEG spec-
trogram, respectively. In these figures, the EEG signal is superimposed as red curves
for a visual comparison. Compared with the EEG spectrogram, the synchrosqueezed
EEG spectrogram is sharper since the phase information is taken into account for
the reassignment; for example, the alpha wave from 13-th second to 21-th second of
REM that oscillates at about 10 Hz (blue arrows in the middle right plot in Figure 1)
and the spindles around 8-th, 13-th, and 17-th seconds of N2 that oscillates at about
14 Hz (blue arrows in the top right plot in Figure 2) can be clearly visualized in
the synchrosqueezed EEG spectrogram (magenta arrows in the middle left plot in
Figure 1 and magenta arrows in the top left plot in Figure 2). These oscillation
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Fig. 1 An illustration of EEG spectrogram (left) and synchrosqueezed EEG spectrogram (right)
of sleep stages Awake, REM, and N1 from Sleep-EDF SC∗ database. The EEG signals are
superimposed as red curves for visual comparison

behavior can also be found in the EEG signal (blue dashed arrows in the middle
right plot in Figure 1 and blue dashed arrows in the top right plot in Figure 2)
but harder to quantify. In the EEG spectrogram, these curves are blurred and not
easy to directly identify the variation of the time-varying frequency. Quantifying
the time-vary frequency is critical for further understanding the physiology of sleep
dynamics, and its study will be reported in the future work. Although the theta wave
(blue arrows in the bottom right plot in Figure 1) and delta wave (blue arrows in
the bottom right plot in Figure 2) in N1 and N3 stages have less regular oscillatory
pattern, the synchrosqueezed EEG spectrogram is more concentrated.

To sum up, the SST-based approach takes the phase information into account and
helps avoid energy leakage due to uncertainty principle. As a result, it prevents the
possibility of failing to sum up all the signal energy corresponding to one mode
centered in a given subband, in the case that the STFT energy leaks into another
subband.
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Fig. 2 An illustration of EEG spectrogram (left) and synchrosqueezed EEG spectrogram (right)
of sleep stages N2 and N3 from Sleep-EDF SC∗ database. The EEG signals are superimposed as
red curves for visual comparison

3 Local Mahalanobis Distance and Empirical Intrinsic
Geometry

To recover the intrinsic sleep dynamics, we need a sophisticated metric to help orga-
nize features obtained from SST. In this paper, we consider the local Mahalanobis
distance as the metric. To motive how the local Mahalanobis distance is designed
and how it is incorporated into the inter-individual prediction framework, below
we review the dynamics system model and the empirical intrinsic geometry (EIG)
model [13, 14]. Then we show how to generalize the EIG model and detail the
desired local Mahalanobis distance.

We start from recalling the EIG model as the motivation. We assume that the
point cloud, or features, denoted as {u(j)}nj=1 ⊂ R

q , comes from a diffeomorphic
deformation Φ : Rp → R

q which maps the latent intrinsic state space that hosts
the dynamical system θ (j) that describes the dynamics we have interest; that is,
u(j) = Φ(θ (j)), where p > 0 is the dimension of the inaccessible dynamical space.
We call Φ the observation transform. Furthermore, assume that the inaccessible
intrinsic state θ (j) is the value of the process θ at the j -th sampling time stamp and
θ satisfies the stochastic differential equation

dθ(t) = a(θ(t))dt + dω(t) (4)
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where a is an unknown drifting function and ω is the standard d-dim Brownian
motion. This latent space model is called EIG in [13, 14], and it has been widely
considered to designed other algorithms, like Kalman filter. Based on (4), it is shown
in [13, Section 3] that when the intrinsic distance of u(i) and u(j) is sufficiently
small, we could recover the intrinsic distance between θ (i) and θ (j) by

‖θ (i) − θ (j)‖2
Rd
= 1

2

(

u(i) − u(j)
)5[
(C(i))−1 + (C(j))−1](u(i) − u(j)

)

, (5)

where C(i) = ∇Φ(θ (i))[∇Φ(θ (i))]5 is the covariance matrix associated with the
deformed Brownian motion, up to the error termO(‖u(i)−u(j)‖4). Furthermore, it is
shown in [13, 14] that C(i) can be estimated by the covariance matrix of {u(k)}i+δk=i−δ ,
where δ is a predetermined integer. This face comes from the Ito’s formula. Note that
by the Ito’s formula, we immediately have

dut =
(

1

2
ΔΦ|θ t +∇Φ|θ t a(θ t )

)

dt +∇Φ|θt dωt . (6)

Since ( 1
2ΔΦ|θ t +∇Φ|θ t a(θ t ))dt is the drifting term, we know

Cov (dut ) = ∇Φ|θ t∇Φ|5θ t . (7)

We call ‖θ (i)−θ (j)‖Rd the local Mahalanobis distance between u(i) and u(j), which
is a generalization of Mahalanobis distance from the statistical viewpoint.

While the EIG model works well for a single subject [24], it may not be
suitable for the inter-subject sleep assessment mission in which we have interest.
Indeed, since different subjects have different sleep dynamics, and the observation
transforms are different, physiologically it is not reasonable to quantify the intrinsic
state dynamics of different subjects by a single equation like (4). Indeed, it does
not make sense from the physiological viewpoint to integrate the temporal sleep
dynamics of different subjects into one; that is, there is no temporal relationship
between epochs from different subjects. In this work, motivated by the success
of (4), we consider the following generalization of the EIG model to study the
synchrosqueezed EEG spectral features. Based on the physiological assumption that
the EEG signals of different subjects share similar spectral behavior, we assume that
the synchrosqueezed EEG spectral features from different subjects come from the
same map Ψ : Rp → R

10, which maps the inaccessible intrinsic state θ (j), where
0 < d ≤ p is the dimension of the inaccessible space hosting the state space of the
dynamics, which is assumed to be the same among subjects, to the space hosting
the synchrosqueezed EEG spectral features. We further assume that p = 10 and
Ψ is an identity from the state space to its range perturbed by a stationary random
perturbation that has mean 0 and the covariance Ip×p. To simplify the terminology,
we still call Ψ the observation transform. Note that this is the simplified EIG model
with noise in the observation considered in [25].
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Under this simplified EIG model, we can get an estimate for ‖θ (i) − θ (j)‖2
Rp

similar to (5) by modifying the proof of [13]. Denote the K-neighborhood of u(j)

by Nj for each j ∈ {1, 2, . . . , n}. Based on the assumption of Ψ , when the data is
supported on a d-dimensional smooth manifold embedded in R

p, we have

‖θ (i) − θ (j)‖2
Rp
≈ (u(i) − u(j))5Td(∇Ψ |θ (j)∇Ψ |5θ (j) )(u(i) − u(j)), (8)

where Td(∇Ψ |θ (j)∇Ψ |5θ (j) ) means the truncated pseudo-inverse of ∇Ψ |θ (j)∇Ψ |5θ (j)
defined by UΛ†

dU
5, ∇Ψ |θ (j)∇Ψ |5θ (j) = UΛU5 is the eigendecomposition, Λ†

d =
diag[�−1

1 , . . . , �−1
d , 0, . . . , 0], and Λ = diag[�1, . . . , �p] with �1 ≥ �2 ≥ . . . ≥

�p ≥ 0. Similarly, the covariance of the stationary random perturbation associated
with Ψ becomes

Γj := 1

K

∑

i∈Nj

(u(i) − u(j))(u(i) − u(j))5 (9)

= 1

K

∑

i∈Nj

∇Ψ |θ (j) (θ (i) − θ (j))(θ (i) − θ (j))5[∇Ψ |θ (j)]5

≈∇Ψ |θ (j)[∇Ψ |θ (j)]5.

Combining (8) and (9) yields

‖θ (i) − θ (j)‖2
Rd
≈ (u(i) − u(j))5Td [Γj ](u(i) − u(j)).

Therefore, following the observation in (5), we thus consider the following metric:

dLMD(u(i),u(j))2 = 1

2
(u(i) − u(j))5(Td [Γi] +Td [Γj ])(u(i) − u(j)) , (10)

which we call the local Mahalanobis distance (MD). We mention that this approach
leads to a more accurate geodesic distance estimation by a direct hard threshold
of the noisy covariance matrix to remove the influence of noise. A more general
discussion can be found in [26].

4 Diffusion Map

Graph Laplacian (GL)-based algorithms have attracted a lot of attention in the
machine learning society. DM [15] is one of those successful algorithms. To better
understand the theoretical foundation of DM, in the past decade, several works
have been done based on the differential geometry framework. The behavior of
spectral embedding under the spectral geometry is discussed in [27]. Later, based
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on the manifold model, how the GL converges to the Laplace-Beltrami operator is
studied in [28–30]. The spectral convergence of GL is studied in [31]. The spectral
convergent rate is reported in [32, 33]. In [34] the central limit theory of GL is
provided. The problem of embedding by finite eigenfunctions of Laplace-Beltrami
operator is studied in [35–37]. Below we summarize those theoretical results.

We start from recalling the DM algorithm. Given a dataset X := {xi}. Construct
a n× n affinity matrixW so that

Wij = e−d(xi , xj )2/ε, for i, j = 1, . . . , n, (11)

where d(·, ·) is the chosen metric and the bandwidth ε > 0 is chosen by the user.1

The affinity is clearly the composition of the radial basis function kernel K(t) =
e−t2/ε and the distance d(xi, xj ). In general, we can choose more general kernels
with a sufficient decay rate. To simplify the discussion, we focus on the radial basis
function kernel. Next, define a diagonal matrix D of size n× n as

D(i, i) =
n

∑

j=1

W(i, j), for i = 1, . . . , n. (12)

In general, D is called the degree matrix. With matrices W and D, define a random
walk on the point cloud X with the transition matrix given by the formula

A := D−1W . (13)

Clearly, A is diagonalizable since A is similar to the symmetric matrix
D−1/2WD−1/2. Therefore, it has a complete set of right eigenvectors φ1, φ2, · · · , φn ∈
R
n with corresponding eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ 0, where
φ1 = [1, 1, . . . , 1]5 ∈ R

n. Indeed, from the eigendecomposition D−1/2WD−1/2 =
OΛO5, whereO ∈ O(n) andΛ = diag[λ1, . . . , λn] is a n×n diagonal matrix, we
have A = UΛV 5, where U = D−1/2O and V = D1/2O. Note that λ1 > λ2 since
we assume the graph is complete, and hence connected, and λn ≥ 0 comes from the
chosen kernel and the Bochner theorem [39]. With the decomposition A = UΛV 5,
the DM is defined as

Φt : xj �→
(

λt2φ2(j), λ
t
3φ3(j), . . . , λ

t

d̂+1
φ
d̂+1(j)

) ∈ R
d̂ , (14)

where j = 1, . . . , n, t > 0 is the diffusion time chosen by the user, and d̂ is the
embedding dimension chosen by the user. Note that λ1 and φ1 are ignored in the
embedding since they are not informative. In practice, in addition to determining d̂
by a direct assignment, d̂ can be determined by a more adaptive way according to the

1According to the noise analysis in [38], when the signal-to-noise ratio is small, it is beneficial to
set the diagonal terms of the affinity matrix to 0; that is, setWii = 0.
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decay of the eigenvalue decay; for example, d̂ can be chosen to be the largest j so
that λtj > δ > 0, where δ is chosen by the user. Both can be obtained by optimizing
some quantities of interest based on the problem at hand. Clearly, Φt(xj ) consists
of the second to (d̂+1)-th coordinates of e5j UΛt , where ej is the unit n-dim vector
with the j -th entry 1. With the DM, we can define the diffusion distance (DD) with
the diffusion time t > 0 between xi and xj as

Dt(xi, xj ) = ‖Φt(xi)−Φt(xj )‖
Rd̂
. (15)

We now summarize the theory behind DM under the manifold model. Supposing
a dataset X = {xi}ni=1 ⊂ R

p is independently and identically sampled from a
random vector X : (Ω,F ,P) → R

p, where the range of X is supported on
a low-dimensional manifold M embedded in R

p. We assume that the manifold
is compact and smooth and the metric g is induced from R

p. We assume that
the induced measure on the Borel sigma algebra on M , denoted as X∗P, is
absolutely continuous with respect to the Riemannian measure dVg . Furthermore,
we assume that the function p = dX∗P

dVg
by Radon-Nikodym theorem is bounded

away from zero and is sufficiently smooth. When n → ∞, the transition matrix
A defined in (13) converges to a continuous diffusion operator defined on the
manifold when the metric in (11) is chosen to be d(xi, xj ) = ‖xi − xj‖Rp [28–
30]. Under the smooth manifold setup, the geodesic distance between two close
points can be well approximated by the Euclidean distance; see, for example,
[26, Lemma 2,Theorem 2]. If the sampling scheme is uniform, we can further
approximate the Laplace-Beltrami operator of the manifold, denoted as Δg , when
ε → 0; if the sampling scheme is non-uniform but smooth enough, by estimating
the density function, we could correct the diffusion process by the α-normalization
scheme proposed in [15] and again approximate the Laplace-Beltrami operator of
the manifold when ε → 0. The convergence happens both in the pointwise sense and
spectral sense [31–33]. In summary, we can view the eigenvectors and eigenvalues
of A−I

ε
as approximation of the eigenfunctions and eigenvalues of the Laplace-

Beltrami operator associated with the manifold.
With the Laplace-Beltrami operator, we could apply the spectral embedding

theory [27, 40] to embed the manifold (and hence the data) using the eigenfunctions
of the diffusion operator. Suppose the manifold is connected, and the l-th eigenvalue
ofΔg is −μl with the eigenfunction fl ; that is, fl = −μlfl , where μ1 = 0 < μ2 ≤
μ3, . . .. Note that since the manifold is connected, μ2 > 0, and when μl has a
non-trivial multiplicity, fl might not be unique. With a given set of eigenvalues and
eigenvectors {(μl, fl)}∞l=1, the spectral embedding is defined as [27]

φt : x �→ c(e−tμl fl(x))∞l=2 ∈ �2 , (16)

where t > 0 is the diffusion time, and c is the normalization constant depending
on t . Note that the embedding defined in (14) is a discretization of φt . Indeed, as
is shown in [31, Theorem 5.4], for t > 0, At/ε will converge to the heat kernel
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of e−tΔg in the spectral sense when n → ∞ and ε = ε(n) → 0 satisfying some
mild conditions. Therefore, λl in (14) converges to μl , and φl in (14) converges
to fl .2 We also define dt (x, y) = ‖φt (x) − φt (y)‖�2 to be the diffusion distance.
Again, (15) is a discretization of dt (x, y). This embedding allows us to reveal the
geometric and topological structure of the manifold and hence the structure of the
dataset. In particular, it is shown in [27] that φt is an almost isometric embedding
when t is small enough; in [41], it is shown that the local geodesic distance of the
manifold could be well approximated by the diffusion distance, when the diffusion
time is long enough compared with the geodesic distance. Lastly, when combined
with the finite dimensional embedding result of the spectral embedding theory of the
Laplace-Beltrami operator shown in [36, 37], we could guarantee that with finite
sampling points, when n is large enough, we can reconstruct the manifold with a
given accuracy. This is the embedding property that we expect to reorganize the
dataset.

The ability to reconstruct the underlying intrinsic structure is not the only
significant strength of DM. It has been shown in [38, 42] that DM is also robust
to noise in the following sense. Suppose the data point yi ∈ Y comes from
contaminating a clean sample xi by some noise ξi . Suppose ξi satisfies some mild
conditions, like finite variance and reasonably controlled noise level. Note that we
do not require ξi to be identical from point to point. Denote the transition matrix built
up from {yi}ni=1 asW(noisy). Under this condition, the deviation ofW(noisy) from
W is well controlled by the noise level in the norm sense. Thus, we conclude that the
eigenvectors of W with sufficiently large eigenvalues could be well reconstructed
from W(noisy). This is the robustness property we expect from DM to analyze the
noisy data.

With the embedding property and the robustness property, we can well approxi-
mate the underlying geometric structure from the noisy dataset. To show this, recall
that the clean points {xi}ni=1 are sampled from a manifold as discussed above. By
Weyl’s law [40], and the spectral convergence of DM, the eigenvalues of W0 decay
exponentially fast. Therefore, by the robustness property, the first few eigenvectors
and eigenvalues could be well reconstructed. However, the eigenvectors with small
eigenvalues will be highly contaminated. Since eigenvalues of the clean data decay
fast, those eigenvectors with small eigenvalues are not that informative from the
spectral embedding viewpoint – although DM is a nonlinear map, when d̂ is
chosen large enough, the finite dimensional embedding result guarantees that we
can reconstruct the manifold, and hence DM is an almost isometric embedding.
Therefore, we conclude that DM with the truncation scheme allows us to a well
reconstruction of the clean data up to a tolerable error. We call this property the
recovery property.

2Note that φl is a n-dim vector while fl is a smooth function defined on M . To properly state the
convergence, we need to convert φl into a continuous function defined on M . Also, when μl has
a non-trivial multiplicity, the convergence should be stated using the eigenprojection operator. We
refer these technical details to [31].
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5 Sensor Fusion by Alternating Diffusion, Co-clustering, and
Multiview DM

When we have two sensors collecting data simultaneously from the system of
interest, a common question to ask is if we can integrate information from both
sensors and achieve a better representation/feature for the system. This problem
is understood as the sensor fusion problem. In our motivating sleep dynamics
problem, while different EEG channels capture information from the same brain, the
information recorded might vary, and they might be contaminated by brain-activity
irrelevant artifacts from different sources, including noise and other sensor-specific
nuisance. These artifacts not only deteriorate the quality of the extracted features
but might also mislead the analysis result. The main purpose of sensor fusion is
distilling the brain information and removing those unwanted artifacts.

To simplify the discussion, we assume that we have two simultaneously recorded
datasets X = {xi}ni=1 and Y = {yi}ni=1 (e.g., two EEG channels); that is, xi and yi
are recorded at the same time. While in general xi and yi can be of complicated
data format, to simplify the discussion, assume X ⊂ R

dx and Y ⊂ R
dy ,

respectively. In other words, we may view xi and yi as the i-th features captured
by two sensors. A naive way to combine information from X and Y is simply
concatenating xi and yi and form a new feature of size dx + dy . However, due
to the inevitable sensor-specific artifacts or errors, such a concatenating scheme
might not be the optimal route to fuse sensors [16, 43]. We consider the recently
developed diffusion-based approaches to fuse sensor information, including AD
[16, 43] and co-clustering [17] (a special case of multiview DM [44]). In short, the
information from different sensors are “diffused” to integrate the nonlinear common
information shared between different sensors and simultaneously eliminate artifacts
or noise specific to each sensor. This is a nonlinear generalization of the well-known
canonical correlation analysis (CCA) [45]. While we focus on the diffusion-based
approaches in this work, there is a huge literature about sensor fusion, and we refer
readers to [46] for a systematic review.

5.1 Alternating Diffusion

For AD, we first form two transition matrices Ax ∈ R
n×n and Ay ∈ R

n×n from
X and Y , respectively, following the definition (13). Then, form a new transition
matrix

Axy = AxAy ∈ R
n×n . (17)

Note that Axy1 = AxAy1 = Ax1. Thus, Axy can be viewed as a transition matrix
associated with the random walk on the “joint dataset” {zi}ni=1, where zi = (xi, yi),
while the associated affinity graph is directed. In fact, if we write Ax = D−1

x Wx and
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Ay = D−1
y Wy , we have

Axy = D−1
x (WxD

−1
y Wy).

Note that WxD−1
y Wy is a non-negative matrix and is in general non-symmetric. If

we viewWxD−1
y Wy as an affinity matrix, the associated degree matrix isDx . Thus,

the affinity graph associated withWxD−1
y Wy is directed. On the other hand,Axy can

be viewed as starting a random walk on Y , jumping to X , and continuing another
random walk on X . This is the motivation of the terminology AD. Clearly, AD
depends on the order of multiplication. In [16], it is proposed that we determine the
intrinsic distance between the i-th sample pair, (xi, yi), and the j -th sample pair,
(xj , yj ), by the �2 norm of the i-th row of Axy and the j -th row of Axy . With this
intrinsic distance, it is suggested in [16] to apply another DM.

To proceed, we need the “spectral decomposition” of Axy . When Axy is
diagonalizable, we apply the spectral decomposition to get Axy = ΦxyΛxyΨ

−1
xy ,

where Φxy, Ψxy ∈ Gl(n). Then we may proceed with the alternating diffusion map
(ADM) [43] by embedding the j -th sample to an Euclidean space

Φxy,t :(xj , yj ) �→
(

λtxy,2φxy,2(j), λ
t
xy,3φxy,3(j), . . . , λ

t
xy,dxy+1φxy,dxy+1(j)

)∈Rdxy ,

where λxy,l and φxy,l is the l-th right eigenpair, and dxy is the embedding dimension
chosen by the user. The discussion of the embedding is the same as that of
DM. However, in general Axy is not diagonalizable, even if Ax and Ay are both
diagonalizable. In this case, we may consider the singular value decomposition
(SVD) of Axy and proceed with the embedding by taking the singular value and
singular vector into account [43, 47]. We mention that AD is closely related to a
nonlinear generalization of CCA, called nonlinear CCA (NCCA) [48]. In NCCA,
when the kernel is chosen to be Gaussian, the main operator of interest is the SVD
of

Cxy := AxA5y .

Unlike AD, Cxy is in general not a transition matrix. However, it is related to the
mutual information between X and Y . We refer readers with interest to [48]
for more details. Note that both Axy and Cxy are in general not diagonalizable
and depend on the order of multiplication. To remedy this drawback, in [49], a
symmetrized AD is proposed, that is,

A = AxA5y + AyA5x ∈ R
n×n.

Again, A is in general not a transition matrix. We refer readers with interest to
[49] for more details. For more discussion about AD, ADM, and NCCA, we refer
the reader with interest to [16, 43, 48]. When there are more than two channels,
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a possible generalization of the following discussion can be found in [24] or [16,
(28)].

We now summarize some theoretical analyses of AD. Consider three latent
random variables X, Y , and Z and assume that the associated joint probability
density satisfies

fX,Y,Z(x, y, z) = fX(x)fY |X(y|x)fZ|X(z|x) ,

that is, Y and Z are conditionally independent given X. The data collected from the
first sensor is modeled as

S(1) = g1(X, Y ),

and that of the second sensor is modeled as

S(2) = g2(X,Z),

where we assume g1 and g2 satisfy some regularity; for example, g1 and g2 are
both bilipschitz. In this model, X is the system we have interest to study, while
Y and Z are noises (or artifacts, nuisances) associated with the first and second
sensor, respectively. We call X the common information. When the first (resp.
second) sensor collects data from the systemX, the sensor-dependent noise Y (resp.
Z) comes into play via g1 (resp. g2). Specifically, the sample datasets {s(i)j }nj=1,
where i = 1, 2, come from mapping (xi, yi, zi) i.i.d. sampled from the latent space
(X, Y,Z) via gi ; that is, s(1)j = g1(xj , yj ) and s(2)j = g2(xj , zj ), j = 1, . . . , n. See
Figure 3 for an illustration of the model, where (Ω,F ,P) means the event space
Ω , the sigma algebra F , and the probability measure P. Note that in general, the
common information might be deformed via the observation process, g1 or g2. The
same model can be easily generalized to the case when there are multiple sensors

Following the analysis in [16], the �2 distance between the i-th row and the j -th
row of Axy serves as a good estimate of the distance on the common information
associated with the i-th and the j -th samples. We call this distance the common
metric. In other words, although two sensors are contaminated by different noises,
AD allows us a stable recovery of the common information. In [43], it is shown
that when the common information can be modeled as a Riemannian manifold,
AD recovers the Laplace-Beltrami operator of the manifold when g1 and g2 do not
deform the common information. If either g1 or g2 deform the common information,
under mild assumption about the deformation, AD leads to a “deformed” Laplace-
Beltrami operator. In other words, it says that although Axy is in general not
symmetric, its asymptotic is a self-adjoint operator. We refer readers to [43] for
technical details. The behavior of ADM can be analyzed by combining the recovery
property based on spectral geometry summarized in Section 4. More results about
symmetrized AD can be found in [49].
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(Ω,F ,P)

Nuisance of  
the 1st sensor

Nuisance of  
the 2nd sensor

Common  
information

x xx x(X, Y, Z)

g1 g2

Fig. 3 Illustration of the mathematical model for the sensor fusion algorithm, alternating diffusion

5.2 Co-clustering and Multiview DM

We now discuss the well-known co-clustering algorithm [17] based on the bipartite
graph model. Denote V1 = X = {xi}ni=1 (resp. V2 = Y = {yi}ni=1) to be the
set of n vertices representing the n feature vectors extracted from the first (resp.
second) sensor. Form a bipartite graphG = (V,E), where V consists of 2n vertices
from V1 and V2 and E is the set of edges between vertices in V1 and vertices in
V2; that is, edges only exist between V1 and V2, and there is no edge inside V1, and
there is no edge inside V2. Then, by assigning affinities on all edges, (xi, yj ) for all
i, j = 1, . . . , n, we obtain a bipartite affinity graph. The affinity is determined by
the user. Denote

M ∈ R
2n×2n

to be the affinity matrix associated with the constructed bipartite affinity graph,
where the first n columns and rows of M are associated with the first sensor, and
the last n columns and rows are associated with the second sensor.

In [17], based on M, it is argued how we can determine the corresponding clusters
in V2 based on the clusters in V1, and vice versa. More precisely, given disjoint
clusters V1,1, . . . , V1,K for vertices in V1, where K is a predetermined integer, the
clusters V2,1, . . . , V2,K for vertices in V2 can be formed by
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V2,m =
{

wj ∈ V2 :
∑

xi∈V1,m

Mi,j ≥
∑

xi∈V1,�

Mi,j for any � = 1, . . . , K
}

, (18)

where m = 1, . . . , K . The motivation beyond this assignment is intuitive – a given
recording xi from the second channel has a higher chance to belong to the j -th
cluster if it more likely belongs to the j -th cluster of the first channel than other
clusters of the first channel. Similarly, given K disjoint clusters V2,1, . . . , V2,K for
vertices in V2, the induced clusters V1,1, . . . , V1,K for vertices in V1 are determined
by

V1,m =
{

xi ∈ V1 :
∑

yj∈V2,m

Mi,j ≥
∑

yj∈V2,�

Mi,j for any � = 1, . . . , K
}

. (19)

The information extracted from the first and second sensors iteratively interacts
through (18) and (19). This approach is called the “co-clustering” algorithm. We
now summarize how the co-clustering of the vertices of a bipartite graph G =
(V ,E) is related to the traditional spectral clustering algorithm and the well-known
Cheeger’s inequality [50].3 Take the bi-clustering for the illustration purpose. Take
two disjoint sets U1 and U2 with V = U1 ∪ U2 as a set of clusters for vertices in
V . First of all, define a loss function by

N (U1,U2) := cut(U1,U2)

weight(U1)
+ cut(U1,U2)

weight(U2)
, (20)

where

cut(U1,U2) :=
∑

i∈U1,j∈U2

Mi,j , weight(U ) :=
∑

i∈U
Di,i , (21)

and D is a diagonal matrix so that Di,i = ∑2n
j=1 Mi,j . N (U1,U2) is usually

called a normalized cut. Note that Di,i represents the degree of the vertex xi ∈ V
(respectively yi−n ∈ V ) when i ≤ n (respectively i > n). The generalized partition
vector q = [qj ]j=1,...,2n ∈ R

2n×1 is defined by

qj =
⎧

⎨

⎩

+
√

weight(U2)

weight(U1)
, j ∈ U1,

−
√

weight(U1)

weight(U2)
, j ∈ U2.

(22)

It is shown in [17, Theorem 3] that

3Its multiway clustering is supported by the recently developed theory for the multiway spectral
clustering algorithm [51].
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q5(D−M)q
q5Dq

= cut(U1,U2)

weight(U1)
+ cut(U1,U2)

weight(U2)
, (23)

which implies that the problem of finding a balanced partition with small cut value
can be relaxed and cast as an eigenvalue problem as follows

min
q �=0

q5(D−M)q
q5Dq

, subject to q5D[1 1 · · · 1]5 = 0. (24)

The minimizer of (24) is the eigenvector q2 of D−1M corresponding to the
second largest eigenvalue, and the bipartition is achieved by running k-means on
{q2(i)}2ni=1 ⊂ R with k = 2. Note that the first n entries of q2 (as well as other
eigenvectors) are associated with the clustering of the first sensor and the last n
entries are associated with the clustering of the second sensor. The result is the “co-
cluster” of the two sensors.

The co-clustering algorithm is intimately related to the recently proposed sensor
fusion algorithm, multiview DM [44], particularly when there are two sensors. This
relationship is clear after we summarize the multiview DM when there are two
sensors. Form two affinity matrices Wxy := WxWy ∈ R

n×n and Wyx := WyWx ∈
R
n×n, where Wx and Wy are affinity matrices for X and Y , respectively, that are

defined as that in (11). Then, define the affinity matrix M by taking the product of
affinities of two sensors by

M =
[

0n×n Wxy
Wyx 0n×n

]

∈ R
2n×2n . (25)

Note that the (i, j)-th entry of WxWy describes how similar the information of
the i-th sample captured by the x sensor is to the information of the j -th sample
captured by the y sensor. Denote ql to be the l-th eigenvector of D−1M. By the above
discussion, we know that q2(i), · · · qd̂+1(i) provide the co-clustering information of
the i-th sample captured by the first sensor and q2(n+ i), · · · , qd̂+1(n+ i) provide
the co-clustering information of the i-th sample captured by the second sensor.
Since both channels provide information, for each i ∈ {1, . . . , n}, we consider a
concatenation of both, [q2(i) · · · qd̂+1(i) q2(n+i) · · · qd̂+1(n+i)]5, to be the new
feature of the i-th sample. This approach is the multiview DM algorithm proposed
in [44] when there are two sensors. Note that the multiview DM is more general
than simply co-clustering since it can fuse information from multiple sensors. Its
theoretical property and its relationship with other algorithms will be explored in
the future work.
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6 Proposed Algorithm to Explore Intrinsic Geometry of
Sleep Dynamics and Predict Sleep Stage

The proposed algorithm is based on the abovementioned unsupervised feature
extraction from the EEG signal. The feature extraction consists of two steps.
First, we extract spectral information from the EEG signal (indicated by Part 1 in
Figure 4). Second, we apply DM or ADM (indicated by Part 2-1 and Part 2-2 in
Figure 4) with the local Mahalanobis distance to determine the final features. We
can explore the sleep dynamics by visualizing the final features. For the sleep stage
prediction purpose, we take the well-established HMM to build up the prediction
model. Below, we detail the algorithm implementation step by step.

6.1 Step 1: Extract Synchrosqueezed EEG Spectral Feature

Take x ∈ R
n to be the digitalized EEG signal sampled uniformly every τ second

from a subject during his/her sleep, where τ is the reciprocal of the sampling rate.
For j = 1, 2, . . ., the STFT at (jτ ) seconds is directly implemented by the weighted
Fourier transform:

V(h)x (j, k) :=
j+15/τ2
∑

m=j−�5/τ�
xm

1

H
h
(m

H

)

e−i2π
k
K
m, (26)

where 1x2 means the smallest integer greater than x > 0, �x� is the largest integer
smaller than x > 0, k ∈ {0, 1, . . . , K − 1}, K ∈ N is a parameter used to adjust
the frequency resolution, h(z) is the standard Gaussian function, and H > 0 is the
bandwidth. The SST is then implemented as

Sx(j, k̂) =
∑

k∈Λ(k̂)
|V(h)x (j, k)|2 (27)

where

Λ(k̂) =
{

k ∈ {0, 1, . . . , K − 1}
∣

∣

∣ k − 4
(

K

2πH

V(Dh)x (j, k)

V(h)x (j, k)

)

∈
[

k̂ − 1

2
, k̂ + 1

2

)

}

and Dh is the derivative of h. Note that Sx(j, ·) ∈ R
K is the synchrosqueezed EEG

spectrogram at (jτ ) seconds, which can be viewed as a dynamical spectral feature
for the sleep dynamics. Note that the numerical algorithm is a direct discretization
of the continuous setup for SST in Section 2 and hence the synchrosqueezed EEG
spectrogram.
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EEG, channel 1

Synchrosqueezing transform:
Synchrosqueezed EEG spectrum
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Fig. 4 The flow chart of the proposed feature extraction steps and a visualization of the extracted
features by the diffusion map and sensor fusion are shown. The signal is from subject SC414 in
Sleep-EDF SC∗ [21], where Channel 1 is Fpz-Cz and channel 2 is Pz-Oz. In the bottom figure,
only the result of AD is shown. The ratios of the stages Awake, REM, N1, N2, and N3 are 14.8%,
21.9%, 5.7%, 47.5%, and 10.1%

Finally, we follow the common dimension reduction approach to convert the
synchrosqueezed EEG spectrogram into the features that interest us. In this work,
we follow the sleep stage scoring standard, the AASM criteria [2], and take an epoch
for the sleep stage evaluation to be 30 seconds long. Therefore, we have J := nτ/30
epochs. Consider nine frequency regions R1, . . . , R9 ⊂ R in the spectral domain,
defined as R1 = [0.5, 4] (R1 is the delta band), R2 = [4, 7] (R2 is the theta band),
R3 = [7, 12] (R3 is the alpha band), R4 = [12, 16] (R4 catches the spindle),
R5 = [16, 20],R6 = [20, 24],R7 = [24, 28],R8 = [28, 31] (R5 toR8 form the beta
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band), and R9 = [31, 49] (R9 is the gamma band). These bands are chosen due to
their well-known physiological meanings [9]. In practice we observed that suitably
dividing the beta wave frequency range and the low-gamma wave frequency range
(25 ∼ 49 Hz) into finer bands leads to higher classification accuracy, so we consider
the frequency bands {R�}�=1,...,9 in this work.

For the j -th epoch, we get a ten-dimension vector u(j) = [u(j)0 u
(j)

1 · · · u(j)9 ]
that include the total energy

u
(j)

0 = τ

30

∑

k̂:k̂/(τK)∈[0.5,49]

30j/τ
∑

ĵ=30(j−1)/τ+1

Sx
(

ĵ , k̂
)

(28)

and the band power ratios on R1, . . . , R9:

u
(j)
� =

τ

30

1

u
(j)

0

∑

k̂:k̂/(τK)∈R�

30j/τ
∑

ĵ=30(j−1)/τ+1

Sx
(

ĵ , k̂
)

, � = 1, . . . , 9. (29)

We call u(j), j = 1, . . . , J , the synchrosqueezed EEG spectral feature of the j -th
epoch.

6.2 Step 2: Convert Synchrosqueezed EEG Spectral Feature
into Intrinsic Sleep Feature

In the optimal situation, the spectral content of the sleep dynamics can be well cap-
tured by the synchrosqueezed EEG spectral features. However, the synchrosqueezed
EEG spectral features might be erroneous due to the inevitable noise, other
sensor-specific artifacts, and the information distortion caused by the observation
procedure. We then stabilize these features to better quantify the intrinsic sleep
dynamics.

Take the synchrosqueezed EEG spectral features U x := {u(j)}Jj=1, which is a
point cloud in an Euclidean space. First, from the point cloud U x , we build a graph
with U x being vertices. The affinity between the features u(i) and u(j) is defined

Wx(i, j) = exp

{

−d
2
LMD(u

(i),u(j))
ε

}

, for i, j = 1, . . . , J, i �= j, (30)

where ε > 0 is chosen by the user and dLMD(·, ·) is the local MD. The local MD is
chosen due to its scale-invariant property and stability property [14]. To calculate
the local MD, denote theK-neighborhood of u(j) by Nj for each j ∈ {1, 2, . . . , J },
whereK = [αJ ] and the ratio α is predetermined, and calculate the local covariance
matrix Γj defined in (9). Then, evaluate the local MD by (10). With the J×J affinity
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matrix Wx , the degree matrix Dx of size J × J is constructed as that in (12), and
hence the DM Φxt , where t > 0. As a result, the synchrosqueezed EEG spectral

features U x are converted into a set of new features Φxt (u
(j)) ∈ R

d̂ . We call them
the intrinsic sleep features for the EEG signal x and denoted

F x := {Φxt (u(j))}Jj=1 ⊂ R
d̂ . (31)

See Figure 4 for an example of DM when d̂ = 3. It is clear that epochs of different
sleep stages are clustered and separated, and this shows the reason we call F x the
intrinsic sleep features.

6.3 Step 3: Fuse Two Intrinsic Sleep Features to Common
Intrinsic Sleep Feature

When we have two simultaneously recorded EEG channels x and y, for each

channel, we obtain its intrinsic sleep features, denoted as F x ⊂ R
d̂x and F y ⊂ R

d̂y ,
respectively, where d̂x might be different from d̂y . Via AD, A = AxAy , we obtain
the common metric between channels x and y. Then, run DM (30) with the common
metric between the i-th epoch and the j -th epoch. Denote the first d̂ nontrivial
eigenvectors of the associated transition matrix by ψ2, . . . , ψd̂+1, where d̂ is chosen
to be 10 in this work. For the co-clustering, we choose

M =
[

0J×J WxWy

WyWx 0J×J

]

∈ R
2J×2J , (32)

whereWx andWy are affinity matrices defined in (30) and denote a diagonal matrix
D ∈ R

2J×2J so that its i-th diagonal entry is the sum of the i-th row of M. Denote
qi ∈ R

J to be the i-th left eigenvector of the transition matrix D−1M. Since for
each i, qi(l) and qi(J + l) correspond to the l-th epoch for each l ∈ {1, . . . , J }, we
could consider the 2d̃ vector, [q2(j) · · · qd̃+1(j) q2(J + j) · · · qd̃+1(J + j)], to
be another set of features associated with the sleep stage of the j -th epoch, where
j ∈ {1, . . . , J }. With AD and co-clustering, call the d̂ + 2d̃ dimensional vector

vj := [ψ2(j), . . . , ψd̂+1(j), q2(j), · · · , qd̃+1(j), q2(J + j), · · · , qd̃+1(J + j)]5
(33)

the common intrinsic sleep feature associated with the j -th epoch. Denote

F x,y := {vj }Jj=1 ⊂ R
d̂+2d̃ .

An illustration of the result of AD with d̂ = 3 is shown in Figure 4.
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6.4 Learning Step: Sleep Stage Classification by the Hidden
Markov Model

To predict sleep stage, we choose the standard and widely used algorithm HMM
for the classification purpose. HMM is particularly powerful if we want to model
a sequence of variables that changes randomly in time. Although it is standard,
to make the paper self-contained, we provide a summary of the HMM and its
numerical implementation in this section.

In general, a HMM can be viewed as a doubly embedded stochastic sequence
with a sequence that is not observable (hidden-state sequence) and can only be
observed through another stochastic sequence (observable sequence). An HMM can
be fully specified by the hidden-state space, the hidden-state transition matrix, the
observation space, the emission probability matrix, and the initial status. From the
training dataset, the HMM could be established as a prediction model for the testing
dataset. Below, we provide a summary of the HMM and its numerical details.

The hidden-state space S consists of five sleep stages: Awake, REM, N1, N2,
and N3. To simply the notation, we label Awake, REM, N1, N2, and N3 by 1, 2, 3,
4, and 5, respectively; that is, S = {1, . . . , 5}. The sleep stage on the j -th epoch
is viewed as a random variable Sj , whose realization is denoted by sj ∈ S . To
collect high-quality and reliable EEG signals, the calibration is generally carried
out. During the calibration period, the testing subject is awake. Hence, the recording
starts from an Awake epoch, which implies that S0 = 1. Assume that the time
series {S0, S1, S2, . . .} is homogeneous and the hidden-state transition matrix M :=
(mij )1≤i,j≤5 satisfies

mij = P(St+1 = j | St = i). (34)

By the homogeneous assumption, the probability of hidden-state transition on the
right-hand side of (34) can be estimated by the number of transitions from state
i to state j normalized by the number of transitions from state i, i.e., m̂ij =
#{t : st=i,st+1=j}

#{t : st=i} .

The common intrinsic sleep features F x,y = {vj }Jj=1 can be viewed as our

observation for the hidden-state sequence {sj }Jj=1. We create a codebook to quantize

{vj }Jj=1 and define the observation state space by the Linde-Buzo-Gray (LBG)
algorithm [52]. Denote the codebook as O for the observation state space, which is
represented by symbols {1, 2, . . . , |O|}, where |O| is the cardinality of O . Based on
the above vector quantization, we have an observable time series {O1,O2, . . . , OJ },
whereOj is the random variable describing the observation at the j -th epoch, which
takes a value from the codebook O . The realization of Oj is denoted as oj .

Consider the emission probability E := (ej (k))j∈S ,k∈O to quantify the prob-
ability of observing state k from the j -th hidden state, and assume the following
relationship
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ej (k) = P(Ot = k | St = j). (35)

Based on the time-homogeneous assumption, E can be estimated by the accumu-
lated number of times in hidden state j and simultaneously observing symbol k
normalized by the number of times in hidden state j ; that is, êj (k) = #{t : st=j,ot=k}

#{t : st=j} .
With the initial distribution π0, {mij } and {ej (k)}, we have

P(S0 = s0, S1 = s1, . . . , SJ = sJ ,O1 = o1, . . . , OJ = oJ )
=π0(s0)ms0s1es1(o1) . . . msJ−1sJ esJ (oJ ). (36)

Also we have the Markov property for this chain.
Given the trained HMM, that is, the estimated hidden-state transition matrix,

the estimated emission probability matrix, and the initial status, we now detail an
algorithm to estimate the sleep stages of the testing subject T := {v1, . . . , vJ },
where J is the number of epochs. By the codebook, T is vector-quantized into
{o1, . . . , oJ }. By Markov property, our goal is to find the most possible sequence
of hidden states for the testing subject i.e., a path

(

s∗1 , . . . , s∗J
)

that maximizes the
probability

P(S1 = s1, . . . , SJ = sJ ,O1 = o1, . . . , OJ = oJ ) . (37)

Here we assume that s0 = 1 (awake) and P(OJ+1 = oJ+1, SJ+1 = F) = 1 for
some F in the hidden state space and some oJ+1 in the observation state space.

Define

νt (j) = max
s1,...,st−1

P(s1, . . . , st−1, o1, . . . , ot , St = j) (38)

for t = 1, 2, . . . , J + 1, which represents the maximal probability that the HMM is
in state j at time t and o1, . . . , ot are the observations up to time t . The maximum
in (38) is taken over all probable state sequence s1, . . . , st−1. Note that when t =
J + 1,

νJ+1(F ) = max
s1,...,sJ

P (s1, . . . , sJ , o1, . . . , oJ+1, SJ+1 = F)

= max
s1,...,sJ

P (s1, . . . , sJ , o1, . . . , oJ+1) = P(s∗1 , . . . , s∗J , o1, . . . , oJ+1),

(39)

where the last equality holds for some s∗1 , . . . , s∗J ∈ S . This fact motivates us the
following algorithm to find νt (j). First of all, for t = 1, ν1(j) = P(o1, S1 = j) =
ms0j ej (o1) = m1j ej (o1), where j ∈ S . For t = 2,

ν2(j) = max
s1
P(s1, o1, o2, S2 = j)
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= max
s1
m1s1es1(o1)ms1j ej (o2) = max

s1
ν1(s1)ms1j ej (o2). (40)

Denote the maximizer of the right-hand side of (40) by V (j, 2), that is,

V (j, 2) = arg max
s1
P(S1 = s1, o1, o2, S2 = j) ∈ S .

Note that since V (j, 2) = arg max
s1
P(S1 = s1 | o1, o2, S2 = j), V (j, 2) is the most

likely state at time index 1 when the state is in j at time index 2 and when o1 and o2
are observed. In general, we have

νt+1(j) = max
st
νt (st )mst j ej (ot+1) (41)

for t = 2, . . . , J and j ∈ S . Denote the maximizer of the right-hand side of (41)
by V (j, t + 1), which can be interpreted as the best relay point connecting the
node St+1 = j with the most likely path that emits the symbols o1, . . . , ot+1. With
{V (·, t)}t=1,...,J+1, we can find the optimal path from the state F at time index J+1
iteratively as follows:

s∗J = V (F, J + 1) , s∗J−1 = V (s∗J , J ) . . . s∗2 = V (s∗3 , 3) , s∗1 = V (s∗2 , 2) .

For details, see [20].

7 Material and Statistics

To evaluate the proposed algorithm, we consider a publicly available database and
follow standard performance evaluation procedures.

7.1 Material

To evaluate the proposed algorithm, we consider the commonly considered bench-
mark database, Sleep-EDF Database [Expanded], from the public repository Phy-
sionet [21]. It contains two subsets (marked as SC∗ and ST∗). The first subset
SC∗ comes from healthy subjects without any sleep-related medication. The subset
SC∗ contains Fpz-Cz/Pz-Oz EEG signals recorded from ten males and ten females
without any sleep-related medication, and the age range is 25–34 year-olds. There
are two approximately 20-hour recordings per subject, apart from a single subject
for whom there is only a single recording. The EEG signals were recorded during
two subsequent day-night periods at the subjects’ home. The sampling rate is
100 Hz. The second subset ST∗ was obtained in a 1994 study of temazepam effects
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on the sleep of subjects with mild difficulty falling asleep. The subset ST∗ contains
Fpz-Cz/Pz-Oz EEG signals recorded from 7 males and 15 females, who had mild
difficulty falling asleep. Since this dataset is originally used for studying the effects
of temazepam, the EEG signals were recorded in the hospital for two nights, one of
which was after temazepam intake. Only their placebo nights can be downloaded
from [21]. The sampling rate is 100 Hz. For both SC∗ and ST∗ sets, each 30s epoch
of EEG data has been annotated into the classes Awake, REM, N1, N2, N3, and N4.
The epochs corresponding to movement and unknown stages were excluded, and
the epochs labeled by N4 are relabeled to N3 according to the AASM standard [2].
For more details of the database, we refer the reader to https://www.physionet.org/
physiobank/database/sleep-edfx/.

7.2 Statistics

To evaluate the performance of the automatic sleep stage annotation, we shall
distinguish two common cross-validation (CV) schemes. According to whether
the training data and the testing data come from different subjects, the literature
is divided into two groups, leave-one-subject-out and non-leave-one-subject-out
CV. When the validation set and training set are determined on the subject level,
that is, the training set and the validation set contain different subjects, we call it
the leave-one-subject-out CV (LOSOCV) scheme; otherwise we call it the non-
LOSOCV scheme. The main challenge of the LOSOCV scheme comes from the
inter-individual variability, but this scheme is close to the real-world scenario –
how to predict the sleep dynamics of a new arrival subject from a given annotated
database. On the other hand, in the non-LOSOCV scheme, the training set and the
testing set are dependent, and the performance might be overestimated. To better
evaluate the performance of the proposed automatic sleep scoring algorithm, we
choose the LOSOCV scheme. For each database, one subject is randomly chosen as
the testing set and the other subjects form the training set. For the testing subject, we
take the phenotype information to find the K̂ most similar subjects to establish the
HMM model. The impact of age on the sleep dynamics [53] and EEG signal [54, 55]
is well-known, so the EEG information from subjects with similar age will provide
more information. While the sleep dynamics is influenced by other phenotype
information, since age is the common information among databases we consider, we
determine the K̂ most similar subjects by the age. Note that this approach imitates
the real scenario – for a new-arriving subject, we can score its sleep stages by taking
the existing database with annotation into account. Also note that this LOSOCV
scheme helps prevent overfitting and fully takes the inter-individual variability into
account in constructing the prediction model.

All performance measurements used in this paper are computed through the
unnormalized confusion matrix M ∈ R

5×5. For 1 ≤ p, q ≤ 5, the entry Mpq
represents the number of expert-assigned p-class epochs, which were predicted to
the q-class. The precision (PRp), recall (REp), and F1-score (F1p) of the p-th class,

https://www.physionet.org/physiobank/database/sleep-edfx/
https://www.physionet.org/physiobank/database/sleep-edfx/
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where p = 1, . . . , 5, are computed respectively through

PRp = Mpp
∑5
q=1Mqp

, REp = Mpp
∑5
q=1Mpq

, F1p = 2PRp · REp
PRp + REp

. (42)

The overall accuracy (ACC), macro F1 score (Macro− F1), and kappa (κ) coeffi-
cient are computed respectively through

ACC =
∑5
p=1Mpp

∑5
p,q=1Mpq

, Macro− F1 = 1

5

5
∑

p=1

F1p, κ = ACC− EA

1− EA
, (43)

where EA means the expected accuracy, which is defined by

EA =
∑5
p=1

(

∑5
q=1Mpq

)

×
(

∑5
q=1Mqp

)

(

∑5
p,q=1Mpq

)2 . (44)

To evaluate if two matched samples have the same mean, we apply the one-tail
Wilcoxon signed-rank test under the null hypothesis that the difference between the
pairs follows a symmetric distribution around zero. When we compare the variance,
we apply the one-tail F-test under the null hypothesis that there is no difference
between the variances. We consider the significance level of 0.05. To handle the
multiple comparison issue, we consider the Bonferroni correction.

8 Results

We report the results of applying the proposed algorithm to the abovementioned
two databases. The parameters in the numerical implementation are listed here. τ =
1/100. For SST, we choose H = 1001 and K = 4004 in (26) and (27); that is, the
bandwidth is 1001/100 = 10.01 seconds, and we oversample the frequency domain
by a factor of 4. For the local MD, we take α = 0.1 in (30) and d = 7 in (10).
For DM, the ε in (30) is chosen to be the 5% percentile of pairwise distances, the
diffusion time is t = 1, and we choose d̂ = 10. For the co-clustering, d̃ is chosen to
be 10. No systematic parameter optimization is performed to avoid overfitting. For
the reproducibility purpose, the MATLAB code will be provided via request.
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8.1 Sleep Dynamics Visualization

We start from showing the visualization of the intrinsic sleep features and the
common intrinsic sleep features from 12 different subjects in the SC* database.
See Figure 5 for a visualization by DM. See Figure 6 for a visualization by AD
and co-clustering. Clearly, we see that Awake, REM, N2, and N3 stages are well
clustered in all plots, while N1 is less clustered and tends to mixed up with other
stages. Moreover, in AD and co-clustering, we further see a “circle” with a hole in
the middle, and the sleep stages are organized on the circle and follow the usual sleep
dynamics pattern. While the geometric organization of sleep dynamics can be easily
visualized in Figure 6, it is not easy to visualize the temporal dynamics information.
For this purpose, we show the final intrinsic features expanded in the time line in
Figure 7. Another way to visualize the dynamics is via a video that encodes the
temporal relationship among different sleep stages. See the video available in https://
www.dropbox.com/s/21e8aw7scvo5kkb/dynamics_SC31.mp4?dl=0.

Next, see Figure 8 for a visualization of AD and co-clustering of the ST*
database. While Awake, REM, N2, and N3 stages are still well clustered in all plots,
compared with the normal subjects in SC* database, the separation and the “circle”
are less clear.

Fig. 5 A visualization of the
intrinsic sleep features (from
single channel) extracted
from 12 different subjects
from the Sleep-EDF database
(SC*). The ratios of the
stages Awake, REM, N1, N2,
and N3 are 17.3%, 18.5%,
4.3%, 46.0%, and 13.9%,
respectively. Each point
corresponds to a 30-second
epoch
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https://www.dropbox.com/s/21e8aw7scvo5kkb/dynamics_SC31.mp4?dl=0
https://www.dropbox.com/s/21e8aw7scvo5kkb/dynamics_SC31.mp4?dl=0
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Fig. 6 A visualization of the
common intrinsic sleep
features (from two channels)
extracted from 12 different
subjects from the Sleep-EDF
database (SC*). From top to
bottom are ADM of Fpz-Cz
& Pz-Oz, multiview DM of
Fpz-Cz & Pz-Oz, and
multiview DM of Fpz-Cz &
Pz-Oz. In the middle subplot,
we plot
{[q2(i), q3(i), q4(i)]}Ji=1, and
in the bottom subplot, we
show {[q2(i + J ), q3(i +
J ), q4(i + J )]}Ji=1. The ratios
of the stages Awake, REM,
N1, N2, and N3 are 17.3%,
18.5%, 4.3%, 46.0%, and
13.9%, respectively. Each
point corresponds to a
30-second epoch
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8.2 Sleep Stage Prediction

Since there are long periods of wakefulness at the start and the end of recordings,
when a subject is not sleeping, [56] only includes 30 minutes of such periods just
before and after the sleep periods. To have a fair comparison, we also follow this
truncation rule. In the end, the labeled epochs are imbalanced, with 42.4% epochs
labeled N2 and only 6.6% epochs labeled N1. Authors of [56], as well as [57, 58],
handle the imbalanced data issue by setting the number of epochs per-stage per
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1 2 3 4 5 6
Time (hour)
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N2 

N1 

REM 

AWAKE

Fig. 7 A visualization of the final ten intrinsic features by ADM. The first is colored in red, and
the tenth is colored in blue. The expert’s labels are plotted on the top

recording belonging the training data (consisting of K̂ subjects) equal to the number
of epochs of the least represented stage, N1. To have a fair comparison and test the
stability of the proposed algorithm, we apply the same scheme in the following way.
We run the LOSOCV with K̂ = 9. For each subject in the testing set, we take the
nine subjects with closest age and handle the imbalanced data like that of [56].

The averaged confusion matrix of the proposed algorithm over 20 subjects is
shown in Table 1. The overall accuracy over 20 subjects is 82.49% ± 5.05%, and
the macro F1 is 75.7% ± 5.2%, with Cohen’s kappa 0.758 ± 0.07. Note that the
N1 prediction accuracy is the lowest one, with 35% accuracy compared with other
stages, and most N1 epochs are classified as REM or N2. This misclassification is
related to the scattered N1 epochs in Figure 6 that can be visually observed, and it is
the main reason to drag down the overall accuracy and macro F1. We also note that
N3 is commonly classified wrongly as N2, Awake is commonly classified wrongly
as N1, and REM is commonly classified wrongly as N2. To further examine the
performance, the resulting hypnogram of one subject is shown in Figure 9. Note
that the discrepancy between the experts’ annotations and the prediction frequently
happens when there is a “stage transition.” Note that the sleep dynamics transition
from one stage to another one often happens in the middle of one epoch. Thus, those
epochs with sleep dynamics transition contain information that is not purely for one
stage and hence harder to classify.

An ideal approach to handle the imbalanced data is collecting more data to
enhance the prediction accuracy. In the SC∗ dataset, there were long periods of
awake epochs before the start and after the end of sleep that we can use. To
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Fig. 8 A visualization of the
common intrinsic sleep
features (from two channels)
extracted from 12 different
subjects from the Sleep-EDF
database (ST*). From top to
bottom are ADM of Fpz-Cz
& Pz-Oz, first set of
multiview DM of Fpz-Cz &
Pz-Oz, and the second set of
multiview DM of Fpz-Cz &
Pz-Oz. In subplot 8.1, we plot
{[q2(i), q3(i), q4(i)]}Ji=1, and
in subplot 8.1, we show
{[q2(i + J ), q3(i +
J ), q4(i + J )]}Ji=1. The ratios
of the stages Awake, REM,
N1, N2, and N3 are 10.3%,
20.0%, 10.0%, 45.3%, and
14.3%, respectively. Each
point corresponds to a
30-second epoch
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further evaluate the algorithm, we consider longer periods of wakefulness just before
and after the sleep periods. Apart from the three recordings (sc4092e0, sc4191e0,
sc4192e0), we included 90 minutes of awake periods before and after the sleep
periods. For the sc4092e0, sc4191e0, and sc4192e0 recordings, we only included
60 minutes of awake periods just before and after the sleep periods due to the
appearance of artifacts (labeled as MOVEMENT and UNKNOWN), which were at
the start or the end of each recording. With more awake epochs, the corresponding
comparison matrix with the same is shown in Table 2. All performance indices,
including the overall accuracy, the macro F1 score, and the Cohen’s kappa, are
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Table 1 Comparison matrix obtained from 20-fold leave-one-subject-out cross-validation on Fpz-
Cz and Pz-Oz channels from the Sleep-EDF SC* database. The common intrinsic sleep feature is
used. The overall accuracy equals 82.57%, the macro F1 score equals 76.0%, and Cohen’s kappa
equals 0.763. If the classification accuracy, macro F1 score, and Cohen’s kappa are computed for
each night recording, the standard deviation of classification accuracy (resp. the macro F1 score
and Cohen’s kappa) for the 39-night recordings is 4.96% (resp. 5.15% and 0.068). We follow the
class-balanced random sampling scheme used in [56–58]

Predicted Per-class metrics
Awake REM N1 N2 N3 PR RE F1

Awake (18%) 6943 (88%) 184 (2%) 625 (8%) 156 (2%) 19 (0%) 91 88 89

REM (18%) 112 (1%) 7063 (92%) 123 (2%) 419 (5%) 0 (0%) 73 92 81

N1 (7%) 378 (13%) 907 (32%) 967 (35%) 534 (19%) 18 (1%) 45 34 39

N2 (42%) 128 (1%) 1451 (8%) 412 (2%) 14557 (82%) 1251 (7%) 90 82 86

N3 (14%) 29 (0%) 16 (0%) 3 (0%) 545 (10%) 5110 (90%) 80 90 84

Predicted Per-class Metrics
Awake REM N1 N2 N3 PR RE F1

Awake (18%) 6943 (88%) 184 (2%) 625 (8%) 156 (2%) 19 (0%) 91 88 89

REM (18%) 112 (1%) 7063 (92 %) 123 (2%) 419 (5%) 0 (0%) 73 92 81

N1 (7%) 378 (13%) 907 (32%) 967 (35%) 534 (19%) 18 (1 %) 45 34 39

N2 (42%) 128 (1%) 1451 (8%) 412 (2%) 14557 (82%) 1251 (7 %) 90 82 86

N3 (14%) 29 (0%) 16 (0%) 3 (0%) 545 (10 %) 5110 (90%) 80 90 84
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Fig. 9 The resulting hypnogram of one subject from SC*. The gray curve is the expert’s label, and
the black dots are the predicted sleep stages. The discrepancy is emphasized by the black circles

consistently higher than those from only including 30 minutes of awake periods
just before and after the sleep periods reported in Table 1. The overall accuracy over
20 subjects is 84.21%± 4.85%, and the macro F1 is 76.5%± 5.18%, with Cohen’s
kappa 0.79± 0.06. Particularly, the accuracy of N1 prediction is increased to 42%.
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Table 3 Comparison matrix obtained from 22-fold leave-one-subject-out cross-validation on Fpz-
Cz and Pz-Oz channels from the Sleep-EDF ST∗ database. The common intrinsic sleep feature is
used. The overall accuracy equals 77.01%, the macro F1 score equals 71.53%, and Cohen’s kappa
equals 0.6813. The standard deviation of classification accuracy (resp., the macro F1 score and
Cohen’s kappa) for the 22-night recordings is 6.63% (resp., 7.78% and 9.27%). We apply the class-
balanced random sampling scheme proposed in [56–58]

Predicted Per-class metrics
Awake REM N1 N2 N3 PR RE F1

Awake (11%) 2008 (88%) 40 (2%) 178 (8%) 42 (2%) 16 (0%) 72 88 79

REM (20%) 59 (1%) 3489 (85%) 238 (6%) 334 (8%) 11 (0%) 79 84 81

N1 (10%) 548 (27%) 388 (19%) 697 (34%) 409 (20%) 2 (0%) 48 34 40

N2 (45%) 155 (2%) 514 (5%) 348 (4%) 7599 (80%) 877 (9%) 84 80 82

N3 (15%) 30 (1%) 2 (0%) 5 (0%) 654 (21%) 2454 ( 79%) 73 78 75

For the ST* database, we also run the LOSOCV with K̂ = 9. The averaged
confusion matrix of the proposed algorithm over 22 subjects is shown in Table 3.
The overall accuracy is 77.8%± 5.77%, and the macro F1 is 71.5%± 7.55%, with
Cohen’s kappa 0.69 ± 0.08. In this database, there are 10% epochs labeled as N1.
Although it is slightly higher than that of SC∗ database, the prediction performance
of N1 is 34%, which is still relatively low. Also, note that the prediction performance
of N3 is lower and a significant portion of N3 is misclassified as N2.

8.3 More Comparisons for Sleep Stage Prediction

To appreciate the significance of the diffusion geometry-based sensor fusion frame-
work, we report the results without two critical setups in the proposed algorithm
– the sensor fusion and the local MD. First, we consider the case if we simply
concatenate intrinsic sleep features of two channels, instead of taking the common
intrinsic sleep features; that is, we concatenate Φxt (u

(j)) and Φyt (u
(j)) in (31)

directly to replace (33) when we train the HMM model. Second, we consider
the case if we do not use local MD to compare synchrosqueezed EEG spectral
features but the ordinary L2 distance; that is, d2(u(i),u(j)) in (30) is defined as
‖u(i) − u(j)‖R10 instead of d2

LMD(u
(i),u(j)). Third, we consider the single EEG

channel; that is, we run HMM on the intrinsic sleep features extracted from Fpz-
Cz or Pz-Oz channel.

The results of the above three combinations (confusion matrices not shown)
for the SC∗ database are shown in Figure 10. Note that the mean and standard
deviation of ACC, MF1, and Cohen’s kappa are evaluated from all subjects, which
are different from that shown in Table 1. It is clear that the averaged ACC, MF1,
and Cohen’s kappa are consistently downgraded in these three cases. In Figure 10,
we see that compared with single channel or sensor fusion without local MD,
the proposed sensor fusion of two channels consistently improves the result with
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Fig. 10 Comparison between different information fusion methods in terms of the accuracy
(ACC), macro F1-score (MF1), and Cohen’s kappa for the SC* database. To evaluate if the mean
is improved, the one-tail Wilcoxon signed-rank test is applied under the null hypothesis that the
difference between the pairs follows a symmetric distribution around zero. To evaluate if the
variance is smaller, we apply the one-tail F-test under the null hypothesis that there is no difference
between the variances. 2 (respectively 22) means statistical significance without (respectively
with) the Bonferroni connection when the mean is compared; # (respectively ##) means statistical
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(a) Comparison of accuracy. (b) Comparison of macro-F1. (c) Comparison of Cohen’s kappa
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statistical significance, for both mean and variance of ACC and MF1. Although we
can see a significant difference between the mean and variance of Cohen’s kappas
before the Bonferroni correction in these comparisons, the significance is not strong
enough to stand the Bonferroni correction. Compared with a direct concatenation
of intrinsic sleep features of two channels, we see that there is a significance
between the averaged ACCs before the Bonferroni correction, but it disappears after
the Bonferroni correction. However, we see a significant difference between the
variance of ACC and MF1. This fact reflects the essential property of the diffusion-
based unsupervised learning algorithms. Via the alternating diffusion process for
the sensor fusion, the intrinsic sleep features are “stabilized” and hence the smaller
variance. This comparison provides an empirical evidence of the usefulness of the
sensor fusion and local Mahalanobis distance in the proposed algorithm, in addition
to the established theoretical backup shown in the Online Supplementary.

We have considered LOSOCV to prevent overfitting. Here we further consider
the fivefold leave-subject-out cross-validation (CV) to further evaluate the proposed
algorithm; that is, we randomly divide all subjects into five non-overlapping groups,
and for each group as the testing group, we train the model from the left four groups.
The model is trained in the following way. For each subject in the testing set, we
take epochs of the nine (K̂ = 9) subjects with closest age from the other four groups
collected during the first night into account and balance classes by taking the epochs
from the second night. The result is reported in Table 4. We see that the result with
fivefold leave-subject-out CV is similar to the leave-one-subject-out CV.

9 Discussion and Conclusion

The unsupervised diffusion geometry-based sensor fusion framework is proposed
to capture the geometric structure of the sleep dynamics. We take the spectral
information of EEG signals as an example and test the framework on the publicly
available benchmark database. With the learning algorithm HMM, we obtain an
accurate prediction model, and the result is compatible with several state-of-the-art
algorithms based on neural network (NN). In addition to the theoretical backup of
the diffusion geometry framework provided in the online supplementary materials, a
systematical examination of step in the diffusion geometry framework is provided.
All these summarize the usefulness of the diffusion geometry framework for the
sleep dynamics study. We mention that the proposed framework is flexible to study
other physiological dynamics but not only for studying the sleep dynamics. For
example, its variation has been applied to study f-wave from subjects with atrial
fibrillation [59], intra-cranial EEG signal [60], etc.
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9.1 Physiological Explanation of the Results

Although our overall prediction accuracy is compatible with the state-of-the-art
prediction algorithm in the Sleep-EDF SC* database, like [56], we see that the
prediction accuracy of N1 is relatively low by our algorithm (F1 is 39% by our
method and 46.6% in [56]), and this low N1 accuracy downgrades the overall
accuracy. This low prediction rate of N1 is also seen in the Sleep-EDF ST* database.
This low prediction rate partially comes from the relatively small size of N1 epochs
and partially comes from the algorithm and available channels.

Based on the AASM criteria [2], to distinguish N1 and REM, we need elec-
trooculogram and electromyogram signals, which are not available in the dataset.
The EEG backgrounds of N1 and N2 are the same, and experts distinguish N1
and N2 by the K-complex or spindle, as well as the 3-minute rule. While the
synchrosqueezed EEG spectral features capture the K-complex or spindle behavior,
the 3-minute rule is not considered in the algorithm. In the proposed algorithm,
in order to handle the inter-individual variability, the temporal information among
epochs is not fully utilized when we design the intrinsic sleep feature but only
used in the HMM. How to incorporate the temporal information into the diffusion
geometry framework will be explored in the future. Furthermore, there are other
information in addition to the spectral information discussed in this paper. We do
not extensively explore all possible information but focus on the diffusion geometry
and sensor fusion framework. For example, while the vertex sharp is a common
“landmark” indicating transition from N1 to N2, we do not take it into account since
this feature is not always present and a rule-based approach is needed to include
this temporally transient feature. Another interesting reasoning that it is possible to
improve the N1 accuracy is the deep neural network (DNN) result. This suggests that
by taking experts’ labels into account, some distinguishable EEG structure of N1
that is not sensible by spectral information can be efficiently extracted by the DNN
framework proposed in [56]. In conclusion, since the proposed features depend
solely on the spectral information, we may need features of different categories to
capture this unseen N1 structure. On the other hand, it is well-known that different
EEG leads provide different information for N1. For example, the occipital lead has
a stronger alpha wave strength, compared with the central lead, when transiting from
wakefulness to N1. When there are multiple EEG leads, this lead information could
be taken into account to further improve the accuracy.

Note that beside N1, the prediction performance of N3 is also lower in the Sleep-
EDF ST* database, where the subjects take temazepam before data recording. It has
been well-known that in general, benzodiazepine hypnotics [61] reduces the low-
frequency activity and enhances spindle frequency. Since our features are mainly
based on the spectral information, a N3 epoch might look more like N2 epochs
and hence the confusion and the lower performance. This outcome emphasizes the
importance of the drug history when designing the algorithm.
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9.2 Visualization for Sleep Dynamics Exploration

In Figures 6 and 8, we show the underlying geometric structure of the sleep
dynamics captured by the proposed algorithm – the Awake, REM, N2, and N3
are well clustered, with N1 scattered around Awake, REM, and N2. Furthermore,
in Figures 6 and 8, we can even visualize a “circle.” An interesting physiological
finding from these plots is the close relationship between N3 and Awake. Note that
the same result is also shown in Figure 4. This geometric relationship indicates the
similarity between the common intrinsic sleep features of N3 and Awake stages.
This similarity comes from the well-known fact that before arousal, particularly
across the descending part of sleep cycles and in the first cycle, we can observe the
“delta-like burst” that mimics the delta wave specific for N3 stages [62, 63]. Note
that epochs from 1 subject are used to generate Figure 4 and 12 different subjects
are pooled together to generate Figures 6 and 8 and we see the same geometric
structure. This finding exemplifies our observation that this distribution is consistent
across subjects. On the other hand, due to the sleep apnea disturbance, this “circle”
is in general less obvious. This indicates the interruption of sleep dynamics by sleep
apnea and hence the frequent random transition from one sleep stage to another.
A possible direction is applying the topological data analysis tools to quantify the
existence of circle and hence a quantification of sleep apnea disturbance.

9.3 Sleep Stage Classification and Comparison with Related
Work

There have been many proposed algorithms for the sake of automatic sleep
stage scoring. Since we focus on the LOSOCV scheme and predict five different
sleep stages, here we only mention papers considering the LOSOCV scheme and
predicting five different sleep stages from single- or two- EEG channels.

In [57], the performance of the stacked sparse autoencoder was evaluated in
Sleep-EDF SC∗, and the overall accuracy was 78.9%. Instead of extracting features
based on the domain knowledge, features in [58] are automatically learned by the
convolutional neural networks (CNNs). The overall accuracies was 74.8% for the
Sleep-EDF SC∗ database. In [56], the authors proposed a deep learning model,
called DeepSleepNet, which reaches the state-of-the-art 82.0% of overall accuracy
on the Sleep-EDF SC∗ database. In [64], a similar approach based on the deep CNN
with modifications is considered and achieves a compatible result. All the above
studies focus on the single-channel EEG signal.

Compared with the state-of-the-art DNN approach [56], which is supervised
in nature, our approach is unsupervised in nature. Recall that the main difference
between the supervised learning and unsupervised learning is that the label infor-
mation is taken into account in the supervised learning approach. The success of
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DNN in many fields is well-known [65], and it is not surprising that it has a great
potential to help medical data analysis.

While DNN is in general a useful tool for the engineering purpose, it is often
criticized of working as a black box. For medical problems and datasets, when
interpretation is needed, a mathematically solid and interpretable tool would be
useful. The algorithm we proposed, on the other hand, has a clear interpretation with
solid mathematical supports. Moreover, a peculiar property of medical databases,
the “uncertainty,” deserves more discussion. Take the sleep dynamics studied in this
paper as an example. It is well-known that the inter-expert agreement rate is only
about 80% for normal subjects, not to say for subjects with sleep problems [19].
With this uncertainty, a supervised learning algorithm might learn both good and
bad labels. On the other hand, the proposed unsupervised approach is independent
of the provided labels, and the chosen spectral features all come from the EEG
signal and speak solely for the sleep dynamics but not the labels. To some extent, the
“uncertainty” issue is less critical via the unsupervised approach, since the uncertain
labels are not taken into account in the feature extraction step.

Since both supervised and unsupervised approaches have their own merits, it
is natural to seek for a way to combine both. We are exploring the possibility of
combining DNN and the proposed unsupervised techniques, and the result will be
reported in the future work.

9.4 “Self-Evolving” Artificial Intelligence System

Due to the advance of the technology and computational power, in the past decades,
a lot of effort has been devoted to establish an artificial intelligence (AI) system
for the automatic sleep stage annotation purpose. In addition to being able to
accurately score sleep stages, an ideal AI system should also be able to “self-learn”
or accumulate knowledge from the historical database. Note that despite the well-
accepted homeostasis assumption of physiological system, physiological dynamics
vary from subject to subject. Therefore, the main challenge of this self-learning
capability is handling the inter-individual variability. This challenge is actually
ubiquitous – for a new-arriving subject, how may one utilize the existing database
with the expert annotations?

This challenge is actually empirically handled in this article. Recall that for each
given subject, we take the age into account to find “similar subjects” to train the
model to automatically annotate the sleep stage of the given subject. This idea is a
special case of the general picture commonly encountered in the clinical situation.
The inter-individual variability is inevitable, and this variability is the main obstacle
toward a self-evolving system that can self-learn like a human being. Our solution
is respecting the physicians’ decision-making process and clinical experience to
build up the system – when a physician sees a subject the first time, an automatic
“classification” of this subject is established. This “decision tree” is mostly based
on the physician’s knowledge. Although it varies from physician to physician,
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the overall structure of the decision tree “should be” relatively stable, ideally.
For example, a physician will not consider any menopause-related diseases if the
patient is a five year boy. In the sleep dynamics problem studied in this article,
we take the impact of age on the sleep dynamics [53] and EEG signal [54, 55]
into account. Note that we only consider age since information provided in the
available databases is limited. In general, this approach can be understood as a
high-level filtering based on the phenotype information [66]. Another benefit of
this phenotype-based approach is its flexibility for the growing database. While it
is widely believed that the larger the database is, the more accurate model we can
establish, we should take the limited computational resource into account. By only
choosing those subjects sharing similar phenotype to establish the prediction model,
computational efficiency can be achieved.

This phenotype-based idea allows us to establish a “self-evolving” AI system
for the automatic annotation purpose. Armed with the above ideas, the system
can accumulate experience/wisdom from each new subject – after applying the
existing system with n subjects with experts’ annotations to the new subject
to alleviate the physician’s load, the physician can update/train the system by
providing his/her feedback. The updated system with n + 1 subjects is then more
“knowledgeable.” This close loop forms the self-evolving or self-learning part of
the artificial intelligence system. See Figure 11 for an illustration of the general
framework.

Most similar  
subjects

New arrival      
subject

Step 2:
Find similar subjects  
from the database

Step 3:
Subject-specific 

HMM

Clinical step

Sleep experts 
doubly check & 

Help decision making

Step 1:
Record 

Long term 
waveforms

Automatic annotation 
for the new arriving subject

DB
Self-evolving 

Second-opinion 
Medical AI system!

Mimic how physicians think

Accumulate
Knowledge

Fig. 11 An illustration of the “self-evolving” artificial intelligence system



320 G.-R. Liu et al.

To further validate and develop this proposed self-evolving system, in our future
study, we will include more health-related information and mimic physicians’
decision-making rules to determine the similarity between subjects. Moreover, we
will establish a statistical model to better quantify the decision tree and better handle
the “inter-physician” variability of their decision trees. The “reward” idea from the
reinforcement learning will also be considered.

One main clinical application of this self-evolving AI system is establishing a
more accurate sleep apnea screening. With the sleep stage information, the apnea-
hypopnea index could be calculated. For that purpose, it is a common consensus
to consider fewer channels for the patient to wear. While more channels provide
more information, they may disturb the sleep. The respiratory flow is a common
channel that people consider to screen the sleep apnea at home. In addition to
providing the sleep apnea information, it has been known that the respiratory flow
signal also contains abundant information about the sleep stage and is based on
different physiological mechanisms compared with the EEG signal [67]. In this
scenario, the proposed sensor fusion algorithm has the potential to incorporate the
information hidden in the flow signal and design a more accurate prediction system.
An exploration of this direction will be postponed to our future work.

9.5 Limitation and Future Work

Despite the strength of the proposed method, the discussion is not complete
without mentioning its limitations. While we test the algorithm on the publicly
available benchmark database and compare our results with those of state-of-the-art
algorithms, those databases are small. To draw a conclusion and confirm its clinical
applicability, a large-scale and prospective study is needed. We focus only on the
spectral information in the EEG signals. There are other features, for example, [68],
we can consider to further improve the performance. While the spectral information
is mainly determined by the nonlinear-type time-frequency representation SST for
the purpose of preventing energy leakage, there are other time-frequency analysis
tools that we can consider, for example, the scattering transform [69]. A systematic
study of other possibilities will be explored in the future work. While with two
channels our algorithm is compatible with that reported in [56] which depends on
only one channel, when we have only one channel, our algorithm does not perform
better (for Fpz-Cz, the accuracy and F1 of our algorithm are 78.5% and 67.9%,
while the accuracy and F1 reported in [56] are 82% and 76.9%. For Pz-Oz, the
accuracy and F1 of our algorithm are 79.3% and 70.3%, while the accuracy and
F1 reported in [56] are 79.8% and 73.1%). As discussed above, this limitation
comes from the poor features for N1 classification. We need to find features that can
better quantify N1 dynamics and better understand how and why the deep neural
network achieves the accuracy. Another related open problem is how to further
take the temporal information into account when we deal with the inter-individual
prediction. Note that in the current algorithm, although the temporal relationship of
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epochs is considered in the HMM model, it is not taken into account to design the
feature. The abovementioned limitations will be studied and reported in the future
work.

Although extended theoretical understandings of applied algorithms have been
established in the past decade, there are still open problems we need to explore from
the theoretical perspective. In general, we know that by taking the phase information
into account, we obtain a sharper time-frequency representation. Although we do
empirically find that the classification performance is better with the sharpened
time-frequency representation determined by SST, we should be careful that a
sharper time-frequency representation is not equivalent to the “correct” time-
frequency representation. A mathematical question to ask is when there is no
obvious oscillatory pattern in the EEG signal, like the “mixed frequency” property
of the theta wave in N1, how does SST behave, and what is the mathematical
property of the time-frequency representation determined by SST. While AD and
co-clustering look similar, they are developed under different motivations, and the
consequence and relationship are never discussed. Understanding this relationship
might allow us to further improve diffusion-based sensor fusion algorithms.
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Harmonic Functions in Slabs and
Half-Spaces

W. R. Madych

Abstract The usual solution to the Dirichlet problem for the Laplace equation
Δu = 0 in the slab R

n × (a, b), where −∞ < a < b < ∞, and the half-space
R
n×(0,∞) involves convolution of the data with a Poisson kernel. Interestingly, the

class of distributions which is convolvable with the natural Poisson kernelQ for the
slab is considerably wider than that which is convolvable with the classical Poisson
kernel P for the half-space. We investigate this curious phenomenon and observe
that arbitrary tempered distributions can be convolved withQ, resulting in functions
harmonic in the slab with no greater than polynomial growth in the interior and
distributionally bounded on hyperplanes parallel to the boundary. Conversely, we
show that all harmonic functions in the slab which enjoy no greater than polynomial
growth in the interior and are distributionally bounded on hyperplanes parallel to
the boundary can be characterized as Poisson integrals of tempered distributions.
In the case of the half-space we observe that the classical Poisson kernel can be
modified so that the result is applicable to all tempered distributions and gives rise
to harmonic functions in the half-space with the prescribed boundary values. In both
cases if the boundary data is given by polynomials then so is the resulting harmonic
function. In the appendix we record some additional properties of the kernel Q and
offer several pertinent comments and observations.
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1 Introduction

1.1 Background

Consider the Dirichlet problem associated with functions u harmonic in the domain
Ω in R

n+1.

Δu = 0 in Ω

u = f on ∂Ω.
(1)

Here Δ is the Laplace operator and ∂Ω is the boundary of Ω . The boundary values
are to be taken on in some sense appropriate to the nature of f . For instance, if f is
continuous, then the solution u should be continuous in the closure of Ω .

If Ω = R
n+1+ = R

n × (0,∞) is the upper half-space and f is a sufficiently
well-behaved function on ∂Ω = R

n × {0} = R
n, then a solution of (1) is given by

the convolution-type integral

u(x, y) =
∫

Rn

P (x − t, y)f (t)dt . (2)

Here P(x − t, y) is the classical Poisson kernel for the upper half-space defined by

P(x, y) = cn y

(|x|2 + y2)(n+1)/2
where cn = Γ ((n+ 1)/2)

π(n+1)/2
(3)

and (x, y) = (x1, . . . , xn, y) ∈ R
n × (0,∞), t = (t1, . . . , tn) ∈ R

n, and |x|2 =
x2

1 + · · · + x2
n .

If Ω = R
n × (a, b), where −∞ < a < b < ∞, is a slab in R

n+1 and the
restrictions of f to R

n × {a} and R
n × {b} are respectively the functions fa and fb

defined on R
n, then, in analogy to (2), the solution to (1) is given by

u(x, y) =
∫

Rn

Q(x − t, b − y; c)fa(t)dt +
∫

Rn

Q(x − t, y − a; c)fb(t)dt (4)

where c = b − a and for 0 ≤ y < c

Q(x, y; c) = (2π)−n
∫

Rn

sinh y|ξ |
sinh c|ξ | e

i〈x,ξ〉dξ . (5)

The pair
(

Q(x − t, b − y; c),Q(x − t, y − a; c)) may be regarded as the Poisson
kernel for the slab.

Note that for fixed (x, y) the right-hand side of (2) may be viewed as a linear
functional evaluated at f . It may also be viewed as the linear functional represented
by f evaluated at P(x − t, y) as a function of t or, what is the same thing, as f
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evaluated at a family of “test” functions parameterized by (x, y). The expression on
the right-hand side of (4) may be viewed similarly. It is this view we adopt in what
follows.

Notice that for c = b − a > 0 and (x, y) ∈ R
n × (a, b), the test functions

Q(x− t, b− y; c) andQ(x− t, y− a; c) as functions of t are in the Schwartz class
S (Rn) of infinitely differentiable rapidly decreasing functions. As a consequence,
the right-hand side of (4) can be extended in a natural way to include any pair of
tempered distributions fa and fb resulting in u(x, y) which is harmonic in the slab,
(x, y) ∈ R

n × (a, b).
On the other hand, while P(x− t, y) as a function of t is infinitely differentiable,

it is only O(|t |)−n−1 as |t | → ∞ and thus is not in the Schwartz class S (Rn).
As a consequence the class of functionals f which give rise to harmonic functions
u via (2) requires additional restrictions at infinity and cannot be extended to the
whole class of tempered distributions. Indeed, from (2) it is not immediately clear
whether arbitrary continuous functions f (x)which grow faster than |x| as |x| → ∞
can be the boundary values of functions u(x, y) harmonic in R

n × (0,∞).
This issue can be dealt with in certain cases by modifying the classical Poisson

kernel P appropriately; examples can be found in [3, 4, 14, 15, 17, 24, 32] and
elsewhere. Nevertheless the difference in behavior of the kernels P and Q is a
curious phenomenon which deserves further study. In this note we record pertinent
observations concerning these kernels and the behavior of harmonic functions in the
slab and half-space.

The theory of harmonic functions is classical and has been exhaustively studied.
There are several texts devoted to the subject including the classic [19] and the
more recent examples [4, 6]; specific studies for the half-space, the slab, and more
general unbounded domains include [3, 7, 11, 14, 15, 20, 31] and [16], respectively.
Nevertheless our observations outlined in the next subsection seem to be new.

1.2 Contents

In Section 2 we characterize harmonic functions u which enjoy representation (4) in
the slab R

n× (a, b) with tempered distributions fa and fb. In the case when fa and
fb are polynomials of degree k and m, respectively, we show that such a solution u
is a harmonic polynomial of degree no greater than 1+max{k,m}.

Section 3 is primarily devoted to providing substitute kernels for P(x− t, y) that
are suitable for use with tempered distributions f . Specifically we exhibit a family
of kernels which are convolvable with any tempered distribution f but may result
in harmonic functions with faster than polynomial growth as y →∞. As a curious
observation, we show that taking fa = f and fb = 0 in (4) and letting b →∞ do
not necessarily lead to a harmonic function in the half-space.

In the Appendix, Section 4, we provide several alternate representations and
other significant properties of the kernel Q(x, y; c). In addition, we record several
pertinent comments and observations.
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The remainder of this section is devoted to collecting further background material
that is germane to our development.

1.3 Notation

We use standard mathematical notation and terminology.
Recall that the components νj , j = 1, . . . , n, of a multi-index ν = (ν1, . . . , νn)

are all non-negative integers and its length |ν| is defined by |ν| = ν1 + · · · + νn.
For ordinary elements x in R

n, |x| denotes the usual Euclidean norm of x. Also,
xν = xν1

1 · · · xνn2 and, if Dj = ∂/∂xj , then Dν denotes the derivative of order |ν|
defined by Dν = Dν1

1 · · ·Dνnn .
The Schwartz space S = S (Rn) consists of infinitely differentiable rapidly

decreasing functions φ equipped with the semi-norms

‖φ‖M,N =
∑

|ν|≤M
sup
x∈Rn

|(1+ |x|)NDνφ(x)| .

Thus φ ∈ S (Rn) means that ‖φ‖M,N is finite for every M = 0, 1, 2, . . . and N =
0, 1, 2, . . . , and limk→∞ φk = φ in S (Rn) means that limk→∞ ‖φk − φ‖M.N = 0
for everyM and N .

Its dual S ′ = S ′(Rn) is the space of tempered distributions that consists of
continuous linear functionals on S (Rn). We use the notation 〈φ, f 〉 to denote
the evaluation of a tempered distribution f ∈ S ′(Rn) at φ ∈ S (Rn). Thus
f ∈ S ′(Rn) means that

lim
k→∞〈φk, f 〉 = 〈φ, f 〉 whenever lim

k→∞φk = φ in S (Rn),

which is equivalent to the existence ofM and N and a constant C such that

|〈φ, f 〉| ≤ C‖φ‖M,N
for all φ in S (Rn).

In the case when both φ and ψ are in S (Rn)

〈φ,ψ〉 =
∫

Rn

φ(x)ψ(x)dx .

Thus 〈φ, f 〉 may make sense even when φ fails to be in S (Rn), for example, when
both φ and f are in L2(Rn). Using the notation P(x − ·, y) to denote P(x − t, y)
as a function of t for fixed (x, y) relation (2) reduces to

u(x, y) = 〈P(x − ·, y), f 〉 .
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Δ is used to denote the Laplace operator in the (x, y) variable. Thus

Δ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

+ ∂2

∂y2 .

The Fourier transform, f → ̂f , is always taken only in the x variable, and, unless
it is meaningful in a stronger sense, it should be interpreted in the distributional
sense. Thus ̂f is well defined for every tempered distribution f via 〈̂f , φ〉 = 〈f,̂φ〉.
The corresponding frequency variable in R

n is denoted by ξ . The normalization we
use gives

̂f (ξ) =
∫

Rn

e−i〈x,ξ〉f (x)dx

whenever f is in L1(Rn).
A remarkably complete and succinct exposition of distribution theory that

includes multi-index notation, the spaces S (Rn) and S ′(Rn), and basic facts
concerning the Fourier transform can be found in [18, Chapter 1]. Other accessible
sources include [10, 27, 29], and [30] among others.

For convenience we often use notation such as f (x) or f (ξ) to denote a
distribution in the x or ξ variable, respectively, even when its values need not be
defined pointwise. As is customary, we use the symbolC to denote generic constants
whose value depends on the context.

2 Functions Harmonic in a Slab

2.1 Some Basic Formulas

One way of obtaining a representation for the solution u of

Δu(x, y) = 0 for (x, y) in R
n × (a, b)

with u(x, a) = fa(x) and u(x, b) = fb(x)
(6)

is to take the Fourier transform in the x variable. This leads to the univariate
boundary value problem parametrized by the frequency variable ξ ∈ R

n

d2

dy2 û(ξ, y)− |ξ |2û(ξ, y) = 0, a < y < b,

with û(ξ, a) = ̂fa(ξ) and û(ξ, b) = ̂fb(ξ).

(7)
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If c = b − a and

̂Q(ξ, y; c) = sinh y|ξ |
sinh c|ξ | for 0 ≤ y ≤ c

then

û(ξ, y) = ̂Q(ξ, b − y; c)̂fa(ξ)+ ̂Q(ξ, y − a; c)̂fb(ξ) (8)

is a solution of (7) for every ξ ∈ R
n and hence (8) is, formally at least, the Fourier

transform of a solution to (6).
Note that if 0 ≤ y < c, then for fixed y, the variable ̂Q(ξ, y; c), as a function of

ξ , is in the Schwartz class S (Rn). Hence its inverse Fourier transform

Q(x, y; c) = (2π)−n
∫

Rn

̂Q(ξ, y; c) ei〈x,ξ〉dξ , (9)

as a function of x, is also in S (Rn).
Next, observe that

̂Q(ξ, y; c) = sinh y|ξ |
sinh c|ξ | =

sinh y
c
|cξ |

sinh |cξ | .

The final expression in the above string implies that

Q(x, y; c) = c−nQ(x/c, y/c; 1). (10)

This allows us, when convenient, to simplify our notation to

Q(x, y) = Q(x, y; 1). (11)

In the case n = 1, it is known thatQ(x, y) can also be expressed as

Q(x, y) = 1

2

sinπy

coshπ |x| + cosπy
for (x, y) ∈ R

n × [0, 1). (12)

For example, see [28, p. 510, item 10], [13, p. 31, item (14)], [31], [30, page 208],
and [7]. For a derivation of (12) and analogous expressions for Q when n > 1, see
the Appendix, Section 4, where alternate representations ofQ can also be found.
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The inverse Fourier transform of (8) leads to the convolution-type expression

u(x, y) = 〈Q(x − ·, b − y; c), fa〉 + 〈Q(x − ·, y − a; c), fb〉 (13)

which, because Q(x − t, y; c) is in S (Rn) as a function of t for all (x, y) ∈ R
n ×

(0, c), makes sense for any pair of distributions fa and fb in S ′(Rn).
In what follows, it will sometimes be convenient to use

u(x, y) = (2π)−n〈̂Q(·, b − y; c)ei〈x,·〉, ̂fa〉 + (2π)−n〈̂Q(·, y − a; c)ei〈x,·〉, ̂fb〉
(14)

which is equivalent to (13).
To avoid tedious repetition of restrictions such as 0 < y < 1, 0 ≤ y ≤ c,

or a ≤ y ≤ b when considering the expressions such as Q(x.y), Q(x, y; c) or
Q(x, b − y; c), unless otherwise indicated, we will always automatically assume
that such restrictions are satisfied.

2.2 Properties of Q̂

The following properties of ̂Q can be verified directly:

(i) For (x, y) ∈ R
n × (0; c)

Δ
(

̂Q(ξ, y; c) ei〈x,ξ〉
)

exists and is equal to 0 in S (Rn).

That is, the limit operations which define the result of applying Δ to
̂Q(ξ, y; c) ei〈x,ξ〉 in the (x, y) variables converge in S (Rn) as a function
of ξ . In particular, this means that

Δ
〈

̂Q(·, y; c)ei〈x,·〉, f
〉

=0 for (x, y)∈Rn×(0, c) and all distributions f in S ′(Rn).

(ii) For everyM , N , and y0, with 0 < y0 < c, there is a constant C such that

‖̂Q(·, y; c) ei〈x,·〉‖M,N ≤ Cy(1+ |x|)M whenever 0 ≤ y ≤ y0.

(iii) lim
y→0

̂Q(ξ, y; c) = 0 in S (Rn). In other words, for everyM and N

lim
y→0
‖̂Q(ξ, y; c)‖M,N = 0.

(iv) For every test function φ ∈ S (Rn)

lim
y→c

̂Q(ξ, y; c) φ(ξ) = φ(ξ) in S (Rn).
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(v) For every pairM and N , there is a constant C independent of φ such that

‖̂Q(·, y; c)φ‖M,N ≤ C‖φ‖M,N for 0 ≤ y ≤ c.

2.3 Harmonic Functions of Polynomial Growth in the Slab

The following theorems provide a characterization of harmonic functions u(x, y)
that enjoy no greater than polynomial growth in the slab R

n × (a, b) as |x| tends to
∞.

Theorem 1 Suppose u(x, y) is defined by (13) with fa and fb in S ′. Then u(x, y)
is harmonic in Rn × (a, b) and satisfies the following:

(A1) For every test function φ in S

lim
y→a〈u(·, y), φ〉 = 〈fa, φ〉 and lim

y→b〈u(·, y), φ〉 = 〈fb, φ〉. (15)

(A2) There is a number N such that if y0 and y1 is any pair of numbers that satisfy
a < y0 < y1 < b and y satisfies y0 ≤ y ≤ y1, then

|u(x, y)| ≤ C(1+ |x|)N , (16)

where C is independent of x ∈ R
n.

(A3) There are constantsM , N , and C such that for every test function φ in S and
all y satisfying a < y < b

|〈u(·, y), φ〉| ≤ C‖φ‖M,N . (17)

Theorem 2 Conversely, every function u(x, y) that is harmonic in Rn× (a, b) and
satisfies properties (A2) and (A3) listed above enjoys representation (13) for some
unique pair of distributions fa and fb in S ′.

Some restrictions on the growth of u(x, y) as |x| tends to ∞ are necessary for
uniqueness. Evidence for this is provided, in the case n = 1, by the example

u(x, y) = eπx/c sin
(

π(y − a)/c)).

Proof (of Theorem 1) The fact that u is harmonic in R
n × (a, b) follows from

item 2.2(i).
To see (A1) assume fb = 0 and write

〈u(·, y), φ〉 = 〈̂Q(·, b − y; c)φ̌, ̂fa〉 →
{

〈φ̌, ̂fa〉 as y → a

0 as y → b
(18)
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where the limiting values are consequences of items 2.2 (iii) and (iv). Here φ̌ denotes
the inverse Fourier transform of φ. Using the fact that 〈φ̌, ̂f 〉 = 〈φ, f 〉 for all φ ∈ S
and all f ∈ S ′, relation (18) implies the desired result in this case.

The analogous result is valid when fa = 0, mutatis mutandis, and the general
case follows as a consequence.

To see (A2) note, there are constants C,M , and N such that

|〈φ, ̂fa〉| ≤ C‖φ‖M,N (19)

for all φ in S . With the choice φ(ξ) = ̂Q(ξ, b − y; c) ei〈x,ξ〉, item 2.2 (ii) allows
us to conclude that there is a constant C

‖φ‖M,N ≤ C(1+ |x|)M

whenever a < y0 ≤ y ≤ b. This implies the desired result when fb = 0.
A similar conclusion holds when fa = 0, mutatis mutandis. Together both cases

imply the general result.
To see (A3) compute as above using item 2.2(v). QED

Proof (of Theorem 2) It suffices to consider the case a = 0 and b = c. We do so to
avoid excessively cumbersome notation.

Let ak = c/k and bk = c − c/k, k = 3, 4, 5, . . .. Let fak (x) = u(x, ak) and
fbk (x) = u(x, bk). Then in view of (A3), we may use a weak compactness-type
argument, for example see [27, p. 68], to conclude that there is a subsequence, which
we also index with k, and distributions f0 and fc in S ′ such that

lim
k→∞〈φ, fak 〉 = 〈φ, f0〉 and lim

k→∞〈φ, fbk 〉 = 〈φ, fc〉.

Let

v(x, y) = 〈Q(x − ·, c − y; c), f0〉 + 〈Q(x − ·, y; c), fc〉 .

To see that v(x, y) = u(x, y) for all (x, y) ∈ R
n × (0, c), let

uk(x, y) = 〈Q(x − ·, bk − y; bk − ak), fak 〉 + 〈Q(x − ·, y − ak; bk − ak), fbk 〉 ,

vk(x, y) = 〈Q(x − ·, c − y; c), fak 〉 + 〈Q(x − ·, y; c), fbk 〉 ,

and, for the moment, assume that

uk(x, y) = u(x, y) for all (x, y) ∈ R
n × (ak, bk). (20)

Fix the point (x, y) ∈ R
n × (0, c), and write

u− v = u− uk + uk − vk + vk − v.
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Now for k sufficiently large, say k ≥ k1, the value of y will satisfy ak < y < bk and
in view of our assumption

u(x, y)− uk(x, y) = 0 . (21)

Next, if

φ(t) = Q(x − t, c − y; c) and ψ(t) = Q(x − t, y; c),

then both φ and ψ are in S , and, in view of the way f0 and fc were obtained, for
sufficiently large k, say k ≥ k2,

|〈φ, fak − f0〉| < ε/2 and |〈ψ, fbk − fc〉| < ε/2 .

This last pair of inequalities implies that

|vk(x, y)− v(x, y)| ≤ ε whenever k > k2. (22)

Finally, let φ and ψ be as above and let

φk(t) = Q(x − t, bk − y; bk − ak) and ψk(t) = Q(x − t, y − ak; bk − ak) .

Then in view of (17)

|〈φk − φ, fak 〉| ≤ C‖φk − φ‖M,N and |〈ψk − ψ, fbk 〉| ≤ C‖φk − φ‖M,N .

By choosing k sufficiently large, say k ≥ k3, the right-hand side of each of the last
two inequalities is less than ε/2. It follows that

|uk(x, y)− vk(x, y)| < ε whenever k ≥ k3. (23)

Hence by choosing k > max{k1, k2, k3} relations (21), (22), and (23), imply that

|u(x, y)− v(x, y)| < 2ε .

In view of the fact that ε is arbitrary, we may conclude that

u(x, y) = v(x, y) .

It remains to prove (20).
In the argument that follows, we use the fact that if the tempered distributions

fa and fb are continuous functions, then the function u(x, y) defined by (13) is
harmonic in R

n × (a.b) and continuous in its closure R
n × [a.b]. The fact that u is

harmonic, of course, follows from Theorem 1, while the fact that it’s continuous is
a consequence of Theorem 3 below.
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In view of the above announcement, the function w(x, y) = u(x, y) − uk(x, y)
is harmonic in R

n× (ak, bk), continuous in its closure Rn×[ak, bk], and identically
0 on the boundary (Rn × {ak}) ∪ (Rn × {bk}). The strategy is to show that for any
fixed point (t, y0) with t = (t1, . . . , tn) in R

n and ak ≤ y0 ≤ bk
w(t, y0) = 0. (24)

This of course implies (20).
Next, without loss of generality, assume w is real valued, and for any fixed

positive ε, let

wε(x, y) = w(x, y)+ ε
⎧

⎨

⎩

n
∏

j=1

cosh

(

π

c
√
n
(xj − tj )

)

⎫

⎬

⎭

sin
(π

c
y
)

.

Then wε is harmonic in R
n × (ak, bk) and, since 0 < ak < bk < c, positive on the

boundary (Rn × {ak}) ∪ (Rn × {bk}). Furthermore, in view of (A2) when |x − t |
is sufficiently large, say |x − t | > r , wε(x, y) is positive for all y in the range
ak ≤ y ≤ bk . The maximum principle for harmonic functions now implies that
wε ≥ 0 on all of Rn × [ak, bk]. In particular this means that w(t, y0) ≥ −ε.

The same argument with w(x, y) replaced with −w(x, y) in the definition of wε
shows that w(t, y0) ≤ ε. Since ε is arbitrary (24) follows. QED

2.4 More Properties of Q and u

Theorem 1(A1) and its proof suggest that the kernel Q(x, y; c) acts like an
approximation of the identity convolution kernel in the x variable as y → c. In
the case n = 1, this was verified in [31] by use of (12). To verify this in the general
case, it suffices to check that

lim
y→c

∫

Rn

Q(x, y; c)dx = 1 , (25)

‖Q(·, y; c‖L1(Rn) ≤ C for all y, 0 ≤ y < c, (26)

and that

lim
y→c

∫

|x|>ε
Q(x, y; c)dx = 0 for every positive ε. (27)

Items (25) and (26) follow from the fact that
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‖Q(·, y; c)‖L1(Rn) =
∫

Rn

Q(x, y; c)dx = ̂Q(0, y; c) = y
c

where the first equality is a consequence of Lemma 1 below, which implies that Q
is non-negative.

Lemma 1

Q(x, y; c) > 0 for all (x, y) ∈ R
n × (0, c).

Proof For positive σ let

̂Qσ(ξ, y; c) = ̂Q(ξ, y; c) e−σ |ξ |2 .

Then Qσ(x, y; c) as a function of (x, y) is harmonic in the slab R
n × (0, c) and, in

view of 2.2(iii) and (iv), continuous in the closure R
n × [0, c] with

Qσ(x, 0; c) = 0 and Qσ(x, c; c) = (2πσ)−n/2 e−|x|2/σ .

The maximum principle for harmonic functions allows us to conclude that

Qσ(x, y; c) > 0 for (x, y) in R
n × (0, c).

Since this is true for all positive σ , the desired result follows. QED

The validity of condition (27) is a consequence of the somewhat stronger
property Q(x, y; c) is asserted to have in the Lemma 2 below. This property will
also be useful in what follows.

Lemma 2 Suppose φ is a function in C∞(Rn) which satisfies

φ(x) =
{

0 if |x| ≤ ε0

1 if |x| ≥ ε1

for some ε0 and ε1 that satisfy 0 < ε0 < ε1 <∞. Then

lim
y→c φ(x)Q(x, y; c) = 0 in S (Rn).

Proof Since

‖(1+ |x|)NDνφ(x)Q(x, y; c)‖L∞(Rn)
≤ 1
εk0
‖(1+ |x|)N |x|kDνφ(x)Q(x, y; c)‖L∞(Rn),

it suffices to show that for each ν
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lim
y→c ‖x

μDνQ(x, y; c)‖L∞(Rn) = 0 whenever |μ| is sufficiently large. (28)

Identity (28) follows from the fact, which can be verified directly, that for every
multi-index ν

lim
y→c ‖D

μ
(

ξν ̂Q(x, y; c))‖L1(Rn) = 0 whenever |μ| is sufficiently large. (29)

For more details and a more precise variant of (29), see Lemma 10 in Section 4.
QED

Lemma 3 Suppose f is a distribution in S ′ that is continuous in a neighborhood
of a point x0 in Rn. If (x, y) ∈ R

n × (0, c), then

lim
(x,y)→(x0,c)
(x,y)∈Rn×(0,c)

〈Q(x − ·, y; c), f 〉 = f (x0) .

Proof First assume that f = 0 in a neighborhood N0 = {x : |x − x0| < ε} of x0.
For 0 < ε0 < ε1 < ε, let φ be a function in C∞(Rn) with the property that

φ(x) =
{

0 if |x − x0| < ε0

1 if |x − x0| > ε1.

Write

〈Q(x − ·, y; c), f 〉 = 〈Q(x − ·, y; c), (1− φ) f 〉 + 〈Q(x − ·, y; c), φ f 〉

and notice that

〈Q(x − ·, y; c), (1− φ) f 〉 = 0

while Lemma 2 implies that

lim
(x,y)→(x0,c)
(x,y)∈Rn×(0,c)

〈Q(x − ·, y; c), φ f 〉 = 0.

So we may conclude that

lim
(x,y)→(x0,c)
(x,y)∈Rn×(0,c)

〈Q(x − ·, y; c), f 〉 = 0.

Now, if f is merely continuous in the same neighborhood N0 of x0, then the
desired result follows by essentially the same calculation as above except for the
term involving (1− φ) f . In this case we get the conclusion
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lim
(x,y)→(x0,c)
(x,y)∈Rn×(0,c)

〈Q(x − ·, y; c), (1− φ) f 〉 = f (x0)

by the use of properties (25), (26), and (27). QED

Lemma 4 For every distribution f in S ′

lim
(x,y)→(x0,0)
(x,y)∈Rn×[0,c)

〈Q(x − ·, y; c), f 〉 = 0 .

uniformly on compact subsets of the variable x0 ∈ R
n.

Proof Since

〈Q(x − ·, y; c), f 〉 = (2π)−n〈̂Q(·, y; c)ei〈x,·〉, ̂f 〉

and

|〈̂Q(·, y; c)ei〈x,·〉, ̂f 〉| ≤ C‖̂Q(·, y; c)ei〈x,·〉‖M,N
for someM and N , the desired result is a consequence of Property 2.2(ii). QED

Lemmas 3 and 4 taken together imply the following:

Theorem 3 Suppose u(x, y) is defined by (13) with fa and fb in S ′. If fa is
continuous in a neighborhood of a point x0 in Rn, then

lim
(x,y)→(x0,a)
(x,y)∈Rn×(a,b)

u(x, y) = fa(x0) .

A similar statement involving fb is also valid.

2.5 Harmonic Polynomials

It is well-known that ifΩ = B is a solid spherical ball in R
n and f is the restriction

of a polynomial
∑

|ν|≤m xν to its boundary ∂Ω = S, the surface of the sphere,
then there is a harmonic polynomial u of degree no greater than m which solves
the Dirichlet problem (2). In other words, in R

n the restriction of any n variate
polynomial p(x) to the surface S of a sphere is equal to the restriction of a harmonic
polynomial u to S. See, for example, [30, Corollary 2.2, page 140].

If n ≥ 2, the analogue of this is not necessarily true for other regions Ω even
if the boundary is very regular, like the zero set of some n variate polynomial. For
example, if Ω = {x : 1 < |x| < 2} and p(x) = |x|2, then the harmonic function u
which is equal to p on the boundary of Ω is defined by
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u(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3 log |x|
log 2

+ 1 when n = 2

4 · 2n−2 − 1− 3(2/|x|)n−2

2n−2 − 1
when n ≥ 3.

In the case Ω is the slab R
n × (a, b) in R

n+1, we have the following:

Theorem 4 Suppose u(x, y) is defined by (13) and both fa and fb are polynomials,
fa = pa and fb = pb.

(i) Then u is a harmonic polynomial. Furthermore u is the unique harmonic
polynomial which satisfies

u(x, a) = pa(x) and u(x, b) = pb(x) .

(ii) If the degrees pa and pb are k and m, respectively, then the degree of u(x, y)
is no greater than 1+max{k,m}.

(iii) If pa and pb are both harmonic, then

u(x, y) = b − y
b − a pa(x) +

y − a
b − a pb(x) .

Proof The fact that u is a polynomial follows by a direct calculation which is
outlined below. Uniqueness follows from Theorem 2.

Suppose f is the monomial,

f (x) = pν(x) = xν .

To see the nature of 〈Q(x − ·, y; c), pν〉, note that

̂Q(ξ, y; c) = y
c

∑∞
k=0

(y|ξ |)2k
(2k+1)!

∑∞
k=0

(c|ξ |)2k
(2k+1)!

(30)

which, when |ξ | is sufficiently small, can be expressed as

̂Q(ξ, y; c) = y
c

(

1+
∞
∑

k=1

q2k(y; c)(−|ξ |2)k
)

(31)

where

q2k(y; c) =
k

∑

j=0

aj c
2j y2(k−j) (32)
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are polynomials homogeneous of degree 2k in (y, c) and, because ̂Q(ξ, c; c) = 1,
satisfy

q2k(c; c) = 0 for k = 1, 2, . . . . (33)

In particular,

q2(y, c) = c
2 − y2

3! (34)

and

q4(y; c) = c4

(3!)2 −
c4

5! −
c2y2

(3!)2 +
y4

5! .

Let

̂Qm(ξ, y; c) = y
c

⎛

⎝1+
∑

0<2k≤m
q2k(y; c)(−|ξ |2)k

⎞

⎠ ,

write

̂Q(ξ, y; c) = ̂Qm(ξ, y; c)+
{

̂Q(ξ, y; c)− ̂Qm(ξ, y; c)
}

,

and note that

{

̂Q(ξ, y; c)− ̂Qm(ξ, y; c)
}

(iDξ )
νδ(ξ) = 0 whenever m ≥ |ν|.

Hence

̂Q(ξ, y; c)(iDξ )νδ(ξ) = ̂Qm(ξ, y; c)(iDξ )νδ(ξ),

and using the fact that the inverse Fourier transform of (2π)n(−|ξ |2)k(iDξ )νδ(ξ) is
Δkxν , it follows that

〈Q(x − ·, y; c), pν〉 = y
c

⎛

⎝pν(x)+
∑

0<2k≤|ν|
q2k(y; c)Δkpν(x)

⎞

⎠ . (35)

Because Δkpν(x) = 0 for 2k > |ν|, the upper bound on the index of summation
on the right-hand side of (35) can be extended to∞ without changing the value of
the sum. Since (35) is valid for all multi-indexes ν, we may summarize the above
observations in the following lemma.
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Lemma 5 For any polynomial

p(x) =
∑

|ν|≤m
aνx

ν

on R
n, the function

u(x, y) = 〈Q(x − ·, y; c), p〉

initially defined on the slab Rn × [0, c] can be extended to all of Rn+1 as

u(x, y) = y
c

(

p(x)+
∞
∑

k=1

q2k(y; c)Δkp(x)
)

and is the unique harmonic polynomial on Rn+1 with the property that

u(x, 0) = 0 and u(x, c) = p(x) .

Here q2k(y; c) is a polynomial of degree 2k in y defined by (30), (31), and (32).

The remaining conclusions of the Theorem follow as a corollary. QED

Note that the polynomials q2k(y; c) can be defined iteratively as follows:

y q0(y; c) = y ,

and for k = 1, 2, . . .

d2

dy2 {y q2k(y; c)} = −y q2(k−1)(y; c)

with the constraints y q2k(y; c)|y=0 = y q2k(y; c)|y=c = 0.
Before closing this section, we mention that, in view of the phrase “no greater

than,” the formulation of item (ii) of the Theorem may seem somewhat unwieldy.
However, this phrase is necessary in view of the possibility that the degree of u(x, y)
may be strictly less than 1 + max{k,m}. This is conveniently illustrated by taking
pa = pb = p in item (iii) of the Theorem, which results in u(x, y) = p(x).

We also mention that there is a larger literature concerning the nature of bounded
domains Ω where the Dirichlet problem with polynomial or entire data necessarily
leads to a polynomial or entire solution. For a representative sampling, see [9, 21–
23, 25, 26].
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3 Functions Harmonic in a Half-Space

3.1 Basic Formulas

There are several ways of obtaining the classical Poisson kernel for the upper half-
space R

n × (0,∞). One way is to proceed as in Subsection 2.1. Then formally, for
any scalar θ ,

û(ξ, y) =
{

(1− θ)e−y|ξ | + θey|ξ |
}

f̂ (ξ) (36)

is the Fourier transform of a solution u to Laplace’s equation in R
n × (0,∞) with

u(x, 0) = f (x). (Note that u is in fact well defined, for example, if f̂ (ξ) is a
distribution with compact support and is sufficiently regular in a neighborhood of
the origin.)

If θ is not zero, then, in addition to issues at the origin, because of the rapid
growth of ey|ξ | as |ξ | → ∞, the above solution does not make sense for tempered
distributions f̂ in general. This and reasons related to uniqueness lead to the
standard solution

û(ξ, y) = e−y|x|f̂ (ξ) (37)

which makes sense for all f̂ in S ′ that satisfy an appropriate restriction in some
neighborhood of the origin.

For fixed positive y, the function e−y|ξ | is continuous and decays exponentially
as |ξ | → ∞, so its inverse Fourier transform

P(x, y) = (2π)−n
∫

Rn
e−y|ξ | ei〈x,ξ〉dξ .

is well defined and can be simplified to

P(x, y) = cn y

(|x|2 + y2)(n+1)/2
where cn = Γ ((n+ 1)/2)

π(n+1)/2
. (38)

For details see, for example, [29, page 61].
The inverse Fourier transform of (37) leads to the convolution-type expression

u(x, y) = 〈P(x − ·, y), f 〉 (39)

which makes sense for all (x, y) ∈ R
n × (0,∞) and all distributions f in S ′ that

satisfy a restriction on their growth at ∞. For example, (39) makes sense for all
distributions f with compact support as well as for all locally integrable f such that
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∫

Rn

|f (x)|
1+ |x|n+1 dx <∞ .

The harmonic function u in (39) may also be expressed as

u(x, y) = (2π)−n〈e−y|·|+i〈x,·〉, f̂ 〉 . (40)

The function u(x, y) is well defined via (40) for all (x, y) ∈ R
n × (0,∞) and all f̂

in S ′ that enjoy an appropriate restriction in some neighborhood of the origin. For
example, the restriction that f̂ be a measure in such a neighborhood does the job.

Characterization and behavior of harmonic functions u of the form (39) involving
various classes of data f have been exhaustively studied in the literature. For
example, see [6, Chapter 7], [29, Chapters 3 and 7], or [30, Chapter 2]. These works
deal with data f for which u is well defined via (39).

Modifications to the classical Poisson kernel (38) that can be used with continu-
ous functions f (x) that enjoy no greater than polynomial growth as |x| tends to∞
can be found in [3, 4, 14, 15, 17, 24, 32] where the rate of growth of f determines
the necessary modifications. Such kernels can also be used with more general initial
data f ; for example, various classes of measures and locally integrable functions
are treated in most of the abovementioned works. A related formula providing
an analytic function which represents an arbitrary distribution in D ′ is recorded
in [8, Section 5.9]; the resulting expression is a convergent series generated by
subtracting appropriate terms not unlike the meromorphic function with prescribed
poles generated by the Mittag-Leffler theorem [2, page 185].

Here we provide a modification of (39) which gives rise to harmonic functions u
in the half-space with any initial data f from S ′. The formula is independent of the
growth or any other specific behavior of f .

3.2 Harmonic Polynomials

A solution to the Dirichlet problem in half-space Ω = R
n × (0,∞) when f is a

polynomial can be obtained by “inspection.” Indeed, if f is the polynomial,

p(x) =
∑

|ν|≤m
aνx

ν ,

it is not difficult to see that by adding polynomial terms to p each of which contains
a factor of some positive power of y, one can construct a harmonic polynomial
u(x, y) such that u(x, 0) = p(x). A direct calculation shows that

∞
∑

k=0

(−1)k
y2k

(2k)! Δ
kp(x)
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does the job. Notice that if 2k > m, where m is the degree of p, then Δkxp(x) = 0
so the above sum has only a finite number of non-zero terms.

This polynomial adjustment is not unique since one can always add any harmonic
polynomial that vanishes on R

n × {0}.
We summarize this as follows:

Proposition 1 Suppose

p(x) =
∑

|ν|≤m
aνx

ν ,

is a polynomial on Rn.

(i) Then

u(x, y) =
∞
∑

k=0

(−1)k
y2k

(2k)! Δ
kp(x) (41)

is a harmonic polynomial of degree no greater than the degree of p such that

u(x, 0) = p(x) . (42)

(ii) Any harmonic polynomial u which satisfies (42) is not unique. If the degree of
p is greater than one, then u is not even unique in the sense of having minimal
degree.

(iii) The polynomial

v(x, y) =
∞
∑

k=0

(−1)k
y2k+1

(2k + 1)! Δ
kp(x) (43)

is a harmonic polynomial which satisfies v(x, 0) = 0.

3.3 A Modified Poisson Kernel

To obtain a replacement for P(x, y)which will permit the application of an arbitrary
tempered distribution f in the corresponding analog of (39), reconsider (36). If θ =
1/2, then the term in braces reduces to cosh y|ξ | which, as a function of ξ , is real
analytic on all of Rn. In this case, the right-hand side of (36) makes distributional
sense in every neighborhood of the origin. The difficulty is in neighborhoods of∞.
However θ need not be constant as a function of ξ .
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With this in mind, let θ(ξ) = 1
2λ(ξ) where λ(ξ) is an infinitely differentiable

compactly supported function which is identically 1 in a neighborhood of the origin.
The term in braces on the right-hand side of (36) reduces to

̂Pλ(ξ, y) = λ(ξ) cosh y|ξ | + (1− λ(ξ))e−y|ξ | . (44)

This function has the following properties that can be directly verified:

(i) For fixed y > 0, ̂Pλ(ξ, y) is in S as a function of ξ .
(ii) For fixedM , N , and positive y0, there is a constant C, independent of x and y,

such that

‖̂Pλ(·, y) e−i〈x,·〉‖M,N ≤ Ceay(1+ |x|)M for y > y0

where a > ρ = min{r : |λ(ξ)| = 0 for all ξ that satisfy |ξ | ≥ r}.
(iii) For every pair M and N , there is a constant C, independent of φ ∈ S , such

that

‖̂Pλ(·, y) φ‖M,N ≤ Ceay‖φ‖M,N .

where a is as in item (ii) directly above.
(iv) For all φ ∈ S

lim
y→0

̂Pλ(ξ, y)φ(ξ) = φ(ξ) in S .

(v) For (x, y) ∈ R
n × (0,∞), Δ̂Pλ(ξ, y)e

i〈x,ξ 〉 exists and is equal to 0 in S .
(vi) For each multi-index ν

lim
y→0+

‖Dμξ
(

ξν̂Pλ(ξ, y)
)‖L1(ξ∈Rn) = 0

for all multi-indexes μ whose length |μ| is sufficiently large.

Its inverse Fourier transform

Pλ(x, y) = (2π)−n
∫

Rn

̂Pλ(ξ, y) e
i〈x,ξ〉dξ (45)

has the following properties:

∫

Rn

Pλ(x, y)dx = 1 (46)

If 0 < y ≤ y1 <∞, then there is a constant C such that

‖Pλ(·, y)‖L1(Rn) ≤ C . (47)
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If φ is a function in C∞(Rn) which satisfies

φ(x) =
{

0 if |x| ≤ ε0

1 if |x| ≥ ε1

for some 0 < ε0 < ε1 <∞, then

lim
y→0

φ(x) Pλ(x, y) = 0 in S . (48)

These properties of the modified kernel Pλ(x, y) give rise to the following
theorem; the proofs of the various items in its statement are analogous to the proofs
of the corresponding items in the statements of Theorems 1, 3, and 4, mutatis
mutandis.

Theorem 5 Let λ be a compactly supported infinitely differentiable function on Rn

which is = 1 in a neighborhood of the origin and define Pλ via (44) and (45).
Suppose f ∈ S ′ and

u(x, y) = 〈Pλ(x − ·, y), f 〉 . (49)

Then u(x, y) is harmonic in Rn × (0,∞) and satisfies the following:

(i) For every test function φ in S

lim
y→0
〈u(·, y), φ〉 = 〈f, φ〉.

(ii) There is a number N such that if y0 and y1 is any pair of numbers that satisfy
0 < y0 < y1 <∞ and y satisfies y0 ≤ y ≤ y1, then

|u(x, y)| ≤ C(1+ |x|)N

where C is a constant independent of x.
(iii) There are constantsM , N , and C such that for every test function φ in S

|〈u(·, y), φ〉| ≤ C‖φ‖M,N
whenever 0 < y ≤ y1 <∞.

(iv) If f is continuous in a neighborhood of a point x0 in Rn, then

lim
(x,y)→(x0,0)

(x,y)∈Rn×(0,∞)
u(x, y) = f (x0) .

(v) If f is a polynomial, f = p, then u is the harmonic function described by (41).
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3.4 Remarks

(i) The harmonic function u defined by (49) depends on both f and λ. As such,
it is not uniquely determined by the boundary distribution f . For example,
if f (x) = cos x and λ(ξ) = 1 when |ξ | = 1, then the harmonic function
defined by (49) is u(x, y) = cos x cosh y. However, if λ is such that λ(ξ) =
0 when |ξ | = 1, then the harmonic function defined by (49) is u(x, y) =
cos x exp(−y).

(ii) We remind the reader that a distribution f in S ′ can have arbitrarily fast
growth as |x| → ∞. In the case n = 1, this is illustrated by the continuous
function, and also a tempered distribution, f defined by

f (x) = g(x) cosG(x) = d

dx
sinG(x)

where

G(x) = G(0)+
∫ x

0
g(t) dt

and g(t) is any continuous function on R that can have arbitrarily fast growth
as t tends to ±∞.

(iii) It is somewhat ironic to think that if f is a distribution of the sort described
by the univariate example mentioned in item (ii) above, then the harmonic
function u(x, y) is essentially well defined in terms of f and the classical
Poisson kernel via (39). Namely, if f (x) = d

dx
F (x) where F(x) is a

continuously differentiable function that is bounded, then

u(x, y) = lim
r→∞

∫ r

−r
P (x − t, y) d

dt
F (t)dt = −

∫ ∞

−∞
F(t)

d

dt
P (x − t, y)dt.

In other words, u(x, y) = ∂
∂x
v(x, y) where v(x, y) is a bounded harmonic

function on the upper half-plane R× (0,∞).
On the other hand, if f (x) = x2, which has relatively mild growth at ±∞,

then (39) makes no sense.

(iv) It is tempting to construct harmonic functions in the half-space R
n × (0,∞)

with boundary values f as limits of harmonic functions in the slabs Rn×(0, c)
as c → ∞ with boundary values f at y = 0 and 0 at y = c, respectively. In
view of the fact that for each ξ ∈ R

n

lim
c→∞

̂Q(ξ, c − y; c) = e−y|ξ |,
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this should work if f̂ is sufficiently well behaved in a neighborhood of
the origin. In general, however, such a construction will fail. This is nicely
illustrated by the case when f is a polynomial, say f (x) = |x|2. Recall that the
harmonic polynomial uc(x, y) that satisfies uc(x, 0) = p(x) and uc(x, c) = 0
is given by

uc(x, y) = c − y
c

(

p(x)+
∞
∑

k=1

q2k((c − y); c)Δkp(x)
)

and that

q2(c − y, c) = c
2 − (c − y)2

3! = 2cy − y2

3! .

See Lemma 5 and formula (34). Hence if p(x) = |x|2

uc(x, y) = c − y
c

{

|x|2 + 2cy − y2

3! 2n

}

and, if y > 0,

lim
c→∞ |uc(x, y)| = ∞ .

4 Appendix

4.1 Properties of the Kernel Q(x,y)

In this section we present several alternate expressions for Q(x, y) and its Fourier
transform ̂Q(ξ, y) and record several useful properties. Recall that these functions
are defined by

̂Q(ξ, y) = sinh y|ξ |
sinh |ξ | (50)

and

Q(x, y) = (2π)−n
∫

Rn

sinh y|ξ |
sinh |ξ | e

i〈x,ξ〉dξ. (51)

Note thatQ(x, y) is well defined for (x, y) ∈ R
n× (−1, 1) and is odd as a function

of y, namely,Q(x,−y) = −Q(x, y).
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Furthermore, in view of (10), the Poisson kernel Q(x, y; c) for the slab R
n ×

(a, b), c = b − a, is given by

Q(x, y; c) = c−nQ(x/c, y/c). (52)

Next, let P(x, y) be the Poisson kernel for the upper half-space R
n × (0,∞).

Namely,

P(x, y) = cn y

(|x|2 + y2)(n+1)/2
where cn = Γ ((n+ 1)/2)

π(n+1)/2
. (53)

In what follows, we use the fact that P(x, y) is well defined on R
n+1 \ {0}. LetX be

the discrete set consisting of points (x, y) in R
n × R = R

n+1 where x = 0 and y is
an odd integer; in other words,X = {(x, y) ∈ R

n×R : x = 0 and y = 2k+1, k =
0,±1,±2, . . .}.
Lemma 6 Q(x, y) enjoys the representation

Q(x, y) =
∞
∑

k=−∞
P(x, 2k + (1− y)) (54)

where P(x, y) is the Poisson kernel (53). In the case n ≥ 2, this series converges
absolutely for all (x, y) ∈ R

n+1 \ X. In the case n = 1, it converges in the sense
that

Q(x, y) = lim
N→∞

N−1
∑

k=−N
P (x, 2k + 1− y) .

Proof To see (54) write

sinh y|ξ |
sinh |ξ | =

ey|ξ | − e−y|ξ |
e|ξ | − e−|ξ |

= e−|ξ |{ey|ξ | − e−y|ξ |} 1

1− e−2|ξ |

= {e−(1−y)|ξ | − e−(1+y)|ξ |}
∞
∑

k=0

e−2k|ξ |

=
∞
∑

k=0

{e−(2k+1−y)|ξ | − e−(2k+1+y)|ξ |}
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or, more succinctly,

̂Q(ξ, y) =
∞
∑

k=0

{e−(2k+1−y)|ξ | − e−(2k+1+y)|ξ |}. (55)

Taking the inverse Fourier transform and using the fact that ̂P(ξ, y) = e−y|ξ | result
in

Q(x, y) =
∞
∑

k=0

{P(x, 2k + 1− y)− P(x, 2k + 1+ y)}. (56)

Since P(x, y) is odd in the y variable, write

−P(x, 2k + 1+ y) = P(x,−2k − 1− y) = P(x,−2k − 2+ 1− y),

substitute this into (56), and apply an appropriate change of summation variables to
produce the desired result (54). QED

Identity (54) can be used to obtain other useful expressions for Q(x, y). For
example:

Lemma 7 Q(x, y) also enjoys the representation

Q(x, y) = cn|x|1−n
∞
∑

k=1

(−1)k+1F(kπ |x|) sin(kπy) (57)

where

F(τ) =
∫ ∞

−∞
z sin(τz)

(1+ z2)(n+1)/2
dz.

Proof Identity (57) follows from an application of an appropriate variant of
Poisson’s summation formula to the right-hand side of (54).

More specifically, if r = |x|, z = 1− y, and f (z) = z

(z2 + 1)(n+1)/2
, then

P(x, 1− y) = cn z

(z2 + r2)(n+1)/2
= cn
rn

z/r
(

(z/r)2 + 1
)(n+1)/2

= cn
rn
f (z/r)

and

∞
∑

k=−∞
P(x, 2k + 1− y) = cn

rn

∞
∑

k=−∞
f
(

(z+ 2k)/r
)

. (58)
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The last expression is 2 periodic in the z variable. Hence

∞
∑

k=∞
f
(

(z+ 2k)/r
) =

∞
∑

k=−∞
γke

iπkz (59)

where

γk = 1

2

∫ 2

0

{ ∞
∑

k=∞
f
(

(z+ 2k)/r
)

}

e−iπkzdz

= 1

2

∫ ∞

−∞
f (z/r)e−iπkzdz = r

2

∫ ∞

−∞
f (z)e−iπkrzdz (60)

In view of (54), identities (58), (59), and (60) imply that

Q(x, y) = cn

2rn−1

∞
∑

k=−∞

{∫ ∞

−∞
f (z)e−iπkrzdz

}

eiπk(1−y).

Simplifying the last expression for Q(x, y) while using the fact that f (z) is odd
results in (57). QED

The function Q(x, y), (x, y) ∈ R
n × [0, 1) is radial in the x variable. That

is, for fixed y, we may write Q(x, y) = h(|x|) where h(r) is a rapidly decaying
infinitely differentiable function of the variable r , 0 ≤ r < ∞. The exact nature of
the function h(r), which depends on n, is the subject of the next lemma, which is
also a consequence of representation (54).

Lemma 8 Let hn(r, y) be the function of two variables (r, y) ∈ [0,∞) × (−1, 1)
such that for x ∈ R

n

hn(|x|, y) = Q(x, y), n = 1, 2, . . . .

Then

hn+2(r, y) = −1

2π r

∂

∂r
hn(r, y) . (61)

Furthermore

h1(r, y) = 1

2

sinπy

coshπr + cosπy
, (62)

h3(r, y) = 1

4

sinπy
sinhπr

r

(coshπr + cosπy)2
, (63)
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and, more generally, for k = 0, 1, 2, . . .

h2k+1(r, y) = 1

2

( −1

2π r

∂

∂r

)k sinπy

coshπr + cosπy
. (64)

Proof Let

Pn(r, y) = cn y

(r2 + y2)(n+1)/2

and observe that (61) follows from the fact that

Pn+2(r, y) = −1

2π r

∂

∂r
Pn(r, y)

and identity (54).
The fact that h1(|x|, y) is essentially the Poisson kernel for the slab in the case

n = 1 is well-known; see the remark after (12).
Identity (62) can also be verified directly by using relation (54). To see this, set

2z = 1− y and 2s = r and write

Pn(r, 2k + 1− y) = Pn(2s, 2k + 2z) = cn

2n
z+ k

(

(z+ k)2 + s2
)(n+1)/2

.

Thus, the sum in (54) in the case n = 1 can be reduced to

1

2π

∞
∑

k=−∞

z+ k
(z+ k)2 + s2 =

1

2π
lim
N→∞

N−1
∑

k=−N

z+ k
(z+ k)2 + s2 .

To simplify the last expression, note that

z

z2 + s2 =
1

2

{

1

z+ is +
1

z− is
}

and use the classical summation technique, as in, for example, [2, page 187], to
write

∞
∑

k=−∞

1

z+ is + k = π cotπ(z+ is) and
∞
∑

k=−∞

1

z− is + k = π cotπ(z− is) .

Hence
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∞
∑

k=−∞

z+ k
(z+ k)2 + s2

= π
2
{cotπ(z+ is)+ cotπ(z− is)}

= π
2

2 sin 2πz

cos 2πis − cos 2πz

= π sin 2πz

cosh 2πs − cos 2πz
.

Finally, multiply by
1

2π
, use the substitutions 1−y = 2z and r = 2s, and apply (54),

to get (62).
Identities (63) and (64) are immediate consequences of (61) and (62). QED

Note that (64) allows us to conclude that in the case when n is odd

Q(x, y) = O(|x|(1−n)/2 e−π |x|) as |x| → ∞

or, somewhat more precisely,

Q(x, y) ≤ C|x|(1−n)/2 e−π |x| sinπy when |x| ≥ ε > 0, (65)

where C may depend on n and ε but is otherwise independent of x and y.
Another way of obtaining (65), which is valid in all the cases n ≥ 2, involves

estimates on both the function F(τ) in (57) and the sum of the resulting series. The
following argument provides more details:

Proof Assume n ≥ 2 and write

F(τ) =
∫ ∞

−∞
z sin(τz)

(1+ z2)(n+1)/2
dz

= 1

1− n
∫ ∞

−∞

{

d

dz

1

(1+ z2)(n−1)/2

}

sin(τz) dz

= τ

n− 1

∫ ∞

−∞
cos(τz)

(1+ z2)(n−1)/2
dz

and note that the last expression in the above string is a multiple of the classical
Bessel potential gn−1(τ ) that, for α > 0, is defined as the inverse Fourier transform
of (1+ z2)−α , namely,

gα(τ) = 1

2π

∫ ∞

−∞
eiτz

(1+ z2)α/2
dz.

Hence
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F(τ) = 2πτ

n− 1
gn−1(τ )

and substituting this in (57) yields

Q(x, y) = 2π2cn

n− 1
|x|2−n

∞
∑

k=1

(−1)k+1k gn−1(kπ |x|) sin(kπy). (66)

The potentials gα can be expressed in terms of the special functions K(α−1)/2,
also known as modified Bessel functions of the third kind [1, p. 376, formula 9.6.25],
[5, p. 414, formula (2.8)], [12, p. 83, formula (27)]; such special functions have
known asymptotics [1, p. 378, formula 9.7.2], [5, p. 415, formula (3,6)], [12, p. 23,
formula (1)] that can be used to estimate gα , [5, p. 417, formula (4,3)].

Alternatively, one can estimate gα directly by using the representation

gα(τ) = 1

(2
√
π) Γ (α/2)

∫ ∞

0

{

exp
(− ( |τ |

2

4t
+ t))

}

t (α−1)/2 dt

t
, (67)

that is a consequence of taking the inverse Fourier transform of

(1+ z2)−α/2 = 1

Γ (α/2)

∫ ∞

0
e−(1+|z|2)t tα/2 dt

t
.

If |τ | ≥ ε > 0, an estimate of the right-hand side of (67) leads to

C0 |τ |(α−2)/2 e−|τ | ≤ gα(τ) ≤ C1 |τ |(α−2)/2 e−|τ | . (68)

where C0 and C1 are positive constants independent of τ .
Hence if |x| ≥ ε, we may use (66) and (68) to write

Q(x, y) ≤ C|x|2−n
∞
∑

k=1

k |kπx|(n−3)/2e−|kπx| sin(kπy)

≤ C|x|(1−n)/2
{ ∞
∑

k=1

k(n−1)/2e−(k−1)πε

}

e−|πx| sin(πy),

where we use the inequality | sin(kπy)| ≤ k| sin(πy)|, which can be verified by
induction. We may conclude that

Q(x, y) ≤ C|x|(1−n)/2e−|πx| sin(πy) when |x| ≥ ε > 0, (69)

where the constant C depends on n and ε but is otherwise independent of x and y.
QED
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We summarize these observations thusly:

Lemma 9 When n ≥ 2, the series expansion (57) can be re-expressed as (66).
Furthermore, Q(x, y), which is non-negative, enjoys the bound (69) for all n, n =
1, 2, 3, . . . .

Finally, for completeness, we provide a proof of item (29) in Subsection 2.4.
As a preface to what follows, we remind the reader that if ν = (ν1, . . . , νn) is a

multi-index, then |ν| = ν1 + · · · + νn. Otherwise, for elements x in R
n, |x| denotes

the Euclidean norm of x. Also, for two multi-indexes, μ ≤ ν means that μj ≤ νj
for j = 1, . . . , n; μ < ν means that μ ≤ ν and μj < νj for at least one index j .

Lemma 10 Given any multi-index ν

lim
y→1

∫

Rn

∣

∣Dμ
(

ξν ̂Q(ξ, y)
)∣

∣dξ = 0 (70)

whenever the multi-index μ satisfies |μ| ≥ |ν| + n+ 1.

Proof To get a feel for what’s involved, one may verify the relatively straightfor-
ward case n = 1 with ν = 0. To see the general case, write

∫

Rn

∣

∣Dμ
(

ξν ̂Q(ξ, y)
)∣

∣dξ = I0 + I1 (71)

where

I0 =
∫

|ξ |≤1

∣

∣Dμ
(

ξν ̂Q(ξ, y)
)∣

∣dξ and I1 =
∫

|xi|>1

∣

∣Dμ
(

ξν ̂Q(ξ, y)
)∣

∣dξ.

To estimate I0 express ̂Q as

̂Q(ξ, y) = y φ(yξ)
φ(ξ)

= y
{

φ(yξ)− φ(ξ)
φ(ξ)

+ 1

}

where

φ(ξ) = sinh |ξ |
|ξ | .

Note that, among other things, φ is infinitely differentiable on R
n and for any non-

zero multi-index β

lim
y→1

Dβ
{

φ(yξ)− φ(ξ)
φ(ξ)

+ 1

}

= lim
y→1

Dβ
{

φ(yξ)− φ(ξ)
φ(ξ)

}

= 0. (72)

If μ is such that Dμξν = 0, in particular if |μ| > |ν|, then
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Dμ
(

ξν ̂Q(ξ, y)
) = y

∑

0<β≤μ
cβD

μ−βξν Dβ
{

φ(yξ)− φ(ξ)
φ(ξ)

}

where the sum contains no terms with β = 0. Hence, in view of (72) and the
bounded convergence theorem

lim
y→1

I0 = 0 . (73)

Estimating I1 is a bit more involved. First express ̂Q as

̂Q(ξ, y) = ̂Q(ξ, y)− e(y−1)|ξ | + e(y−1)|ξ |,

note that

̂Q(ξ, y)− e(y−1)|ξ | = −e−|ξ |̂Q(ξ, 1− y),

and write

I1 ≤ I1,1 + I1,2 (74)

where

I1,1 =
∫

|ξ |>1

∣

∣Dμξν
(

e−|ξ |̂Q(ξ, 1−y))∣∣dξ and I1,2 =
∫

|ξ |>1

∣

∣Dμξνe(y−1)|ξ |∣
∣dξ.

The fact that

lim
y→1

I1,1 = 0 (75)

follows immediately from the fact that

lim
y→0

̂Q(ξ, y) = 0 in S (Rn).

To estimate I1,2, use the substitution s = 1− y to simplify notation, write

Dμ
(

ξνe−s|ξ |
) =

∑

β
β≤μ

cβ
{

Dμ−βξν
}

Dβe−s|ξ |, (76)

and notice that Dμ−βξν will be identically zero when |μ− β| > |ν| and equal to a
constant multiple of ξν−(μ−β) when ν− (μ−β) ≥ 0. Since |β| < |μ|− |ν| implies
that |μ− β| > |ν|, we may write
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∣

∣Dμ
(

ξνe−s|ξ |
)∣

∣ ≤ C
∑

β
|μ|−|ν|≤|β|≤|μ|

|ξ ||ν|−|μ|+|β|∣∣Dβe−s|ξ |∣∣. (77)

Next, note that

Dβe−s|ξ | =
|β|−1
∑

k=0

s|β|−kHk(ξ)e−s|ξ |

where Hk is homogeneous of degree −k and infinitely differentiable on R
n \ {0}

so that |Hk(ξ)| ≤ C|ξ |−k . (In the case n = 1, H0(ξ) = (sgn ξ)|β| while Hk(ξ) is
identically zero on R \ {0}. In general the exact expression for Hk depends on β.)
Hence

|ξ |p|Dβe−s|ξ || ≤ C
|β|−1
∑

k=0

s|β|−k|ξ |p−ke−s|ξ | (78)

and it follows that

∫

|ξ |>1
|ξ |p|Dβe−s|ξ ||dξ ≤ C

|β|−1
∑

k=0

Jk (79)

where

Jk = s|β|−k
∫ ∞

1
rp−k+n−1e−srdr,

which satisfies the bounds

Jk ≤ C

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s|β|−k if p + n+ 1 ≤ k,
s|β|−(p+n)

(

1+ log(1/s)
)

if k = p + n,
s|β|−(p+n) if k ≤ p + n− 1.

In view of the assumption that |μ| ≥ |ν|+1, taking p = |ν|− |μ|+ |β| implies that
|β| − (p + n) = |μ| − |ν| − n ≥ 1 and,

when 0 ≤ k ≤ |β| − 1, lim
s→0

Jk = 0. (80)

Finally, setting p = |ν| − |μ| + |β|, items (78), (79), and (80) together with (76)
and (77) imply that

lim
y→1

I1,2 = 0. (81)

Lemma 10 now follows from identities (71), (73), (74), (75), and (81). QED
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4.2 Comments and Observations

(i) In view of (52) and (69), we may conclude that the convolution

u(x, y) = 〈Q(x − ·, y; c), f 〉 (82)

is well defined and makes sense for a class of distributions that is significantly
wider than S ′(Rn). For example, (82) makes sense whenever the product

f (x) |x|(1−n)/2 e−π |x|/c

is integrable over Rn. This includes smooth functions such as

f (x) = (1+ |x|2)p/2 cosh(π |x|/c), where p < (n− 3)/2,

that are not in S ′(Rn). In the case n = 1, this phenomenon has been
considered to some extent in [31].

(ii) In this article, we characterized functions u(x, y) harmonic in the slab R
n ×

(a, b) with boundary data in the class of tempered distributions S ′(Rn). The
characterization of such harmonic functions with boundary data in Lp(Rn)
is similar to that what is known for the upper half-space; for example, see
[30, Chapter 2]. Analogous results in the cases when the boundary data are in
certain natural classes of distributions suggested by item (i) above are not so
clear.

(iii) If the functions fa(x) and fb(x) are entire, then according to a theorem in the
recently published article [20], there is a harmonic function u(x, y) on R

n+1

that satisfies u(x, a) = fa(x), u(x, b) = fb(x), and can be extended to be
harmonic on all of Rn+1. Thus statement (i) of Theorem 4 is a special case that
is a consequence of a constructive argument that is both direct and accessible.
It might be an interesting exercise to check if the general result also follows
via a similar argument.
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