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Abstract. Convexity, as a global and learning-free shape descriptor,
has been widely applied to shape classification, retrieval and decomposi-
tion. Unlike its extensively addressed 2D counterpart, 3D shape convexity
measurement attracting insufficient attention has yet to be studied. In
this paper, we put forward a new volume-based convexity measure for 3D
shapes, which builds on a conventional volume-based convexity measure
but excels it by resolving its problems. By turning the convexity measure-
ment into a problem of influence evaluation through Distance-weighted
Volume Integration, the new convexity measure can resolve the major
problems of the existing ones and accelerate the overall computational
time.

Keywords: Shape analysis · Convexity measurement · 3D shape
retrieval

1 Introduction

Shape analysis has been playing a fundamental role in computer graphics, com-
puter vision and pattern recognition. In shape analysis, research on how to quan-
tify a shape with holistic descriptors such as convexity [5,6,8,19], circularity [15],
concavity [17], ellipticity [1], rectilinearity [9], rectangularity [18] and symmetry
[4,14] has been booming, because these descriptors can offer a global and efficient
way for applications where shape representation is required. Among these holis-
tic descriptors convexity has been most commonly used in shape decomposition
[2,10,11], classification [6,12], and retrieval [5,6,8], etc.. In general a planar shape
s(s ⊂ R2) is regarded as convex if and only if the whole line segment between
two arbitrary points in s belongs to s. When it comes to three-dimensional(3D)
shapes, this definition can readily be generalised as: A 3D shape S(S ⊂ R3)
is said to be convex if and only if all points on the line segment between two
arbitrary points in S belong to S. Generally speaking, every convexity measure
have to meet four desirable conditions:
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1. The value of the convexity measure is a real number between (0,1].
2. The measured convexity value of a given shape equals 1 if and only if this

shape is convex.
3. There are shapes whose measured convexity is arbitrary close to 0.
4. The value of the convexity measure should remain invariant under similarity

transformation of the shape.

Next, we will review some state-of-the-art convexity measures for 3D shapes
and analyse their pros and cons. Note that all the 3D shapes mentioned in this
paper are topologically closed.

Definition 1. For a given 3D shape S with CH(S) denoting its convex hull, its
convexity is measured as

C1 (S) =
V olume (S)

V olume (CH (S))
(1)

C1, a volume-based measure, cannot distinguish two shapes with the same
ratio of shape to convex hull volumes, as shown in Fig. 3 (a) and (b).

To resolve the above problem, Lian et al. [8] proposed a projection-based
convexity measure for 3D shapes, which was generalised from a 2D projection-
based convexity measure reported by Zunic et al. [19].

Definition 2. For a given 3D shape S, its convexity is measured as

C2 (S) = min
α,β,γ∈[0,2π]

Pview (S, α, β, γ)
Pface (S, α, β, γ)

(2)

where Pface is the summed area of surface mesh faces of a 3D shape pro-
jected onto the three orthogonal planes, Y OZ, ZOX and XOY , with Pface =
Pfacex +Pfacey +Pfacez, while Pview is the summed area of shape silhouette
images projected onto six faces of its bounding box parallel to the orthogonal
planes, with Pview = 2(Pviewx + Pviewy + Pviewz). Pview (S, α, β, γ) and
Pface (S, α, β, γ) are Pview and Pface of S after rotating α, β and γ with
respect to x, y and z axes, respectively. Figure 1 illustrates examples of Pface
and Pview. It is noticeable that there exists an inequality Pface ≥ Pview for
any 3D shape and that they are equal only if a 3D shape is convex. There-
fore, convexity is measured as a minimum value sought by rotating the shape at
variant angles.

Since the calculation of C2 is a nonlinear optimisation problem that tradi-
tional methods cannot deal with, a genetic algorithm is used to help seek the
minimum value of C2. However, the genetic algorithm is computationally expen-
sive and requires a plethora of iterations to reach an optimum. To avoid the heavy
calculation of C2, Li et al. proposed a heuristic convexity measure for 3D shape,
which is still projection-based but computes the summed area ratio of projected
shape silhouette images and surface mesh faces only once, just along principal
directions of the shape, followed by a correction process based on shape slicing
[5] rather than optimizing the ratio with the genetic algorithm in iterations.
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Fig. 1. Projections of a triangular face and a whole shape on the coordinate planes.

Definition 3. For a given 3D shape S, its convexity is measured as

C3 (S) = Cor

(
Pview (S · R)
Pface (S · R)

)
(3)

where R represents the rotation matrix of the initial estimation achieved by prin-
cipal component analysis (PCA) and Cor (·) indicates the subsequently applied
correction process. Compared to C2, C3 can accelarate the overall computation
by some an order of magnitude.

During the correction process of C3, Li et al. sliced the 3D shape into a
sequence of cross sections in equal interval along the principal directions of the
shape, then 2D convexity measurement of the cross sections was performed in
order to offset the precision loss introduced by the initial estimation of PCA.
However, C3 may introduce some error during the correction process.

In order to resolve the above problems of the existing convexity measures, in
this paper we present a new volume-based convexity measure, which builds on
the original volume-based C1 but excels it by resolving its extant problems. The
basic idea behind the new convexity is generalised from its 2D counterpart [6].

2 Our Volume-Based Convexity Measure

Fig. 2. We can regard both of Shape (a) and (b), with the left and middle columes
being their solid and wireframe views, as collapsed from their convex hulls (in the
right colume) towards the geometric centres of the convex hulls, with the black arrows
implying the collapsing directions.

Our new convexity measure is generalised from a 2D area-based measure [6]
and shares the similar philosophy that any nonconvex 3D shape, no matter with
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protrusions (Fig. 2(b)) or dents (Fig. 2(a)), is formed by its convex hull collapsing
towards the geometric centre of the convex hull. We assume that the convexity
of an arbitrary 3D shape is associated with the total influence of dents collapsed
from the shape convex hull, and consider that dent attributes, such as position
and volume with respect to the shape convex hull, directly determine the dent
influence.

Fig. 3. The position and volume of dents determine the convexity calculation of 3D
shapes. There are four cubes with dents in different positions and volumes. The corre-
sponding convexity values computed by variant measures are listed beneath the shapes.

Some intuitional examples are given in Fig. 3, where four cubes have dents
in different positions and volumes. For example, the dents of Shape (a) and
(b) are identical in volume but different in position, and Shape (a) is visually
more concave than Shape (b) as the dent of Shape (a) is centrally positioned.
This distinction cannot be sensed by C1 and C3. C2 considers that Shape (a) is
even more convex than Shape (b) which is, however, not the case. Moreover, the
dents of both Shape (a) and (c) are centrally positioned but different in volume,
while dents of Shape (a) and (d) are the same in volume but different in position.
Therefore, the new convexity measure should be able to distinguish all the above
differences.

In light of the above analysis the new convexity measure should be defined by
taking account of dent position and volume with respect to the shape convex hull.
Note that dents here not only mean dents contained in the 3D shape but dents
collapsed from the shape convex hull. This semantic nuance can be articulated
by Fig. 2, where the former dents can be exemplified by (a) while the latter dents
involve both (a) and (b).

To associate our convexity measure with dent position and volume, we con-
sider that the convex hull of a given 3D shape S is made up of infinitely small
cubes, and assign each small cube a weight associated with the Euclidean dis-
tance from the cube to the geometric centre of the convex hull in order to evaluate
the influence of the cube on the convexity measurement. The closer a cube to
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the geometric centre of the convex hull, the more it influences the calculation of
convexity. If the dent volume is symbolised as D(D ⊂ R3), the influence of D
on the convexity measurement of S can be calculated by

∫∫∫
D

W (r)dv, where
W (r) represents a weight function. Likewise, the total influence of the convex
hull of S can be formulated as

∫∫∫
CH(S)

W (r)dv, and thus the influence of the
3D shape on the convexity measurement can be expressed as

∫∫∫
S

W (r)dv =
∫∫∫

CH(S)

W (r)dv −
∫∫∫

D

W (r)dv (4)

Definition 4. For a given 3D shape S, its convexity is measured as

Cα (S) =

∫∫∫
S

W (r)dv∫∫∫
CH(S)

W (r)dv
(5)

and
W (r) = 1 − α

r

rmax
=

rmax − α · r

rmax
(6)

where α, 0 ≤ α ≤ 1, represents an influence factor of the weight function; r
denotes the Euclidean distance variable between small cubes and the geometric
centre of the convex hull of S; rmax represents the maximum r.

Equations (5) and (6) define our notion of Distance-weighted Volume Inte-
gration. When r = rmax, W (r) reaches its minimum 1 − α; when r = 0, W (r)
has a maximum 1. This distance-weighted strategy emphasises the influence of
dents close to the geometric centre of the convex hull and downplays the impact
of dents distant from the geometric centre. Moreover, by adjusting α we can
control the influence of different attributes. For example, if we want to empha-
sise the contribution of dent position, we can increase α to lower the influence of
distant cubes. If we want to emphasise the contribution of dent volume, we can
degrade the weight influence of each cube by decreasing the value of α. When we
decrease α to 0, every cube will have an identical weight, and the new measure
will degenerate into the traditional volume-based convexity measure C1, only
related to dent volume.

(a) The 3D model (b) Its silhouette

Fig. 4. A hollow cube model. l1 and l2 indicate the outer and inner edge lengths of the
cube, respectively.
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3 Proof of the New Measure

In this section, we verify that the new convexity satisfies the four necessary
conditions stated in Sect. 1.

Proof. For a given 3D shape S, assume that it has m dents denoted as
D1,D2 · · · Dm ⊂ R3. The corresponding influences of dents D1,D2, · · · ,Dm can
be calculated by

∫∫∫
D1

W (r)dv,
∫∫∫

D2
W (r)dv, · · · ,

∫∫∫
Dm

W (r)dv, respectively.
Thus, Cα(S) can be rewritten as

Cα(S) =

∫∫∫
S

W (r)dv∫∫∫
S

W (r)dv +
m∑

i=1

∫∫∫
Di

W (r)dv
. (7)

It is easy to show that 0 < Cα(S) < 1. If there is no dent, that is
m∑

i=1

∫∫∫
Di

W (r)dv = 0, then Cα(S) = 1. This means that S coincides with its

convex hull. To this end, S is convex.
To prove Condition 3 we construct a hollow cube, as shown in Fig. 4. When

we keep increasing l2 making it infinitely close to l1, we have

lim
l2→l1

Cα (S) = 0 (8)

Under translation and rotation of a 3D shape, since the relevant distance
between each small cube and the geometric centre of the convex hull remains the
same, and the volume of the 3D shape and its convex hull also keeps unchanged,
the convexity measured by Cα remains the same.

Taking the geometric centre of the convex hull as the origin to establish the
coordinate system, we assume that S is scaled by a coefficient k. The convexity
of the scaled shape is written as

Cα(S′) =

∫∫∫
S′ (1 − α · r′/r′

max)dx′dy′dz′∫∫∫
CH(S′)(1 − α · r′/r′

max)dx′dy′dz′

=

∫∫∫
S

(1 − α · kr/krmax)k3dxdydz∫∫∫
CH(S)

(1 − α · kr/krmax)k3dxdydz

= Cα(S),

(9)

where the prime symbol indicates those corresponding parameters after scaling.
Hence Condition 4 of Theorem 1 is proved.

4 Algorithm Implementation

To implement Cα we need a discrete version of Definition 4 for calculation. A
straightforward thought similar to its 2D counterpart [6] is to replace the integral
symbols by summations and the infinitely small cubes by voxels. Thus we can
rewrite Cα into its discrete form as
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Cα =
NS − α

NS∑

j=1
rj

rmax

NCH − α

NCH∑

k=1
rk

rmax

(10)

where NS and NCH represent the numbers of voxels in S and CH(S), respec-
tively.

Fig. 5. A 3 ∗ 3 ∗ 3 illustration of the 3D Distance Dictionary.

Fig. 6. 3D shapes measured in different 3D grid sizes.

Prior to convexity measurement we need to voxelise the measured 3D shape
and its convex hull. We first find the minimum bounding box of the shape convex
hull with all the faces of the bounding box perpendicular to the x, y and z axes,
and tessellate the minimum bounding box into a 3D grid of n1∗n2∗n3(n1, n2, n3 ∈
Z+) voxels. Then the calculation of shape convexity is carried out in terms
of evaluation of the influence of each voxel in the shape convex hull within
the n1 ∗ n2 ∗ n3 volume grid. We observe that all the 3D shapes can share
the same volume grid, and the distances and weights of their voxels will be
calculated repeatedly under the same grid during convexity measurement. Hence
instead of calculating voxel distances for every 3D shape, we compute them only
once by constructing an N ∗ N ∗ N(N,nm ∈ Z+ with N >= 2nm and nm =
max(n1, n2, n3)) Distance Dictionary to pre-store all the Euclidean distances
from the voxels to the grid centre of the Distance Dictionary. When computing
the convexity of a specific 3D shape, we just need to align the geometric centre
of its convex hull to the grid centre of the Distance Dictionary, scale the 3D grid
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of the shape convex hull to fit the 3D Distance Dictionary in voxel, and then
look up Euclidean distances of the corresponding voxels of the 3D shape and its
convex hull in the Distance Dictionary.

The 3D Distance Dictionary is an N ∗ N ∗ N tensor, elements of which store
values of the Euclidean distances from the voxels of the dictionary to its grid
centre. Figure 5 illustrates a 3 ∗ 3 ∗ 3 example of such a 3D Distance Dictionary.
However, the value of the 3D Distance Dictionary N must be larger than two
times nm, and thus the resolution of 3D grid of the minimum bounding box for
3D shapes influenes the convexity measurement. General speaking, the larger the
grid resolution, the more accurate the measured convexity, but the more time
the computation consumes. In order to choose an appropriate resolution for the
3D minimum bounding box grid, we compare the performances when in turn
setting nm = 80, 100, 150, 250, 500. As shown in Fig. 6, convexities measured
with different grid resolutions for the same 3D shape are not much different.
Therefore, for the sake of computational simplicity, the value of nm in the rest
of this paper is set to 80. Note that in this paper without specification α is set
to 1 by default, and the computer configuration is specified in Sect. 5.3. The
pseudocode of the new measure is shown in Algorithm 1.

Algorithm 1. Cα (S)

Input: A 3D shape S; an influence factor α, and a predefined N ∗ N ∗ N 3D
Distance Dictionary;

Output: Convexity value Cα.
1: Compute the convex hull of S, CH(S);
2: find the minimum bounding box of CH(S) with all six faces perpendicular

to the x, y, z axes;
3: voxelise the minimum bounding box with an n1 ∗ n2 ∗ n3 3D grid;
4: NCH ← the number of voxels in CH(S);
5: NS ← the number of voxels in S;
6: map both S and CH(S) to the predefined 3D Distance Dictionary with the

geometric centre of CH(S) aligned to the grid centre of the 3D Distance
Dictionary and the 3D grid of CH(S) scaled to fit the dictionary in voxel;

7: look up Euclidean distances r[NCH ] for CH(S) in the 3D Distance Dictio-
nary with the longest one marked as rmax;
// Compute the sum of Euclidean distances, εS , for S

8: for j = 1 to NS do
εS+ = r[j];

9: end for
// Compute the sum of Euclidean distances, εCH , for CH(S)

10: for k = 1 to NCH do
εCH+ = r[k];

11: end for
12: return Cα =

NS−α
εS

rmax

NCH−α
εCH
rmax

.
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5 Experimental Results

5.1 Quantitative Evaluation

Fig. 7. The quantitative convexity measurement of ten 3D shapes.

We carry out the convexity measurement to ten 3D shapes shown in Fig.
7, with eight of them picked from two commonly used 3D shape databases, the
McGill Articulated 3D Shape Benchmark [16] and Princeton Benchmark [3], and
the other two, the 1st and 6th, being two synthetic 3D shapes. These shapes are
ordered in Cα. It can be seen that for those shapes whose dents embrace the
geometric centre of the shape convex hull, such as the 1st, 2nd, 3rd and 6th,
their convexity values evaluated by Cα are lower than those by C1. It can also
be noticed from the results of Fig. 7 that the convexities measured by C2 are
relatively larger with all the values greater than 0.5, which cannot reflect the
reality. As C3 is a heuristic method that comes with a correction process at the
end, C3 more or less introduces some error into the convexity estimated. For
example, the convexity of the sphere measured by C3 in Fig. 7 is only 0.9744,
while the results of C1, C2 and Cα on the sphere are either 1 or very close to 1.

5.2 3D Shape Retrieval

Fig. 8. Samples of the 10 categories
of watertight shapes for 3D shape
retrieval.

Fig. 9. Canonical forms of the shapes.
The first row shows the original
non-rigid models, while the second
row shows their feature-preserved 3D
canonical forms.
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We also apply C1, C2, C3 and Cα to non-rigid 3D shape retrieval on the
McGill articulated 3D shape benchmark [16], which consists of 10 categories
of 255 watertight shapes. Some classified samples are shown in Fig. 8. In this
dateset shapes in the same categories such as the glasses and hand gestures
shown in Fig. 9 may appear in quite different poses but have similar canonical
forms. For this reason we apply a method introduced in [7] to construct the
feature-preserved canonical forms of the 3D shapes. We compute convexities of
the 3D shapes by C1, C2, C3 and Cα and employ the L1 norm to calculate the
dissimilarity between two signatures. The retrieval performance is evaluated by
four quantitative measures (NN, 1-Tier, 2-Tier, DCG) [13]. The results in Fig. 10
show that C3 achieves the best retrieval rates as a solo convexity measure. Note
that the smaller the value of α, the higher the retrieval rate. This is because
with α increasing, the distribution of the values of Cα for the same category
is broadening, making the retrieval less precise. Representing 3D shapes by a
solo convexity measure may result in relatively poor retrieval rates. In order
to improve the accuracy of retrieval, we employ a shape descriptor, called CS
(Convexity Statistics) [6], by taking advantage of our new convexity measure by
setting α to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. We collect the 11
convexities of every 3D shape as a set and calculate the mean, variance, skewness
and kurtosis of each set to construct the four-dimensional shape descriptor CS.
As can be seen from Fig. 10, the CS outperforms the competitors in all the
retrieval measures.

Fig. 10. Retrieval performance of the convexity measures on the McGill dataset.

5.3 Computational Efficiency

In this section we compare computational efficiencies of three convexity mea-
sures, as shown in Fig. 11, where some typical shapes are ordered in vertex num-

Fig. 11. Comparison of time consumptions.
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ber. C2 is computationally expensive due to the adopted genetic algorithm with
50 individuals and 200 evolution generations [8], especially when the number of
vertices in the shape is large. C3 also needs to capture silhouette images from
the frame buffer and the convexity measurement of 2D slides also takes time.
The whole experiment is carried out with a laptop configured with Intel Core
i5 CPU and 6G RAM. Note that C2 and C3 are computed using Visual Studio
2010 because the codes for calculating silhouette images from the frame buffer
were written in C++. Even though Cα is coded and computed using MATLAB,
which is normally considered slower than C++, Cα with the Distance Dictionary
still accelerates the overall computational time by several orders of magnitude.

6 Limitations

Although Cα can overcome the shortcoming of C1, Cα shares the same problem
with C1, as it is derived from C1. If 3D shapes with a long and narrow dent inside
or outside, the volume-based convexity measures Cα and C1 will get unreasonable
values. The grid resolution is artificially set, which is decided by nm. If the dent
is infinitesimally small, say smaller than a voxel, it may be missed out.

7 Conclusions

In this paper we proposed a new convexity measure based on Distance-weighted
Volume Integration by turning the convexity measurement into a problem of
influence evaluation. To facilitate the computation of the new convexity measure
for 3D shapes we also introduced the use of a pre-calculated Distance Dictionary
so as to avoid the repeated calculation of voxel distances for every 3D shape. The
experimental results demonstrated the advantage of the new convexity measure,
and the new convexity measure performed several orders of magnitude faster
than those competitors. In respect of its application to 3D shape retrieval, we
construct a variety of convexity measures by varying the value of α and form a
new multi-dimensional shape descriptor with these different convexity measures.
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