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Abstract We address a demand forecast problem posed by Nors, a Portuguese
group working in the automotive sector and transport solutions. The aim is to
define a procedure that efficiently forecasts the references demand and to obtain
an optimized procedure for their ordering methodology. Nors works with several
suppliers, resulting in a portfolio of hundreds of thousands of different parts number.
Each supplier has its own lead-time and order periodicity. On an annual basis,
and for each supplier, the yearly budget for purchases is agreed in order to define
possible quantity discounts and the profitability of the business. Sales distribution
is highly scattered, as there are high, medium and low rotation sales values for
different references. Since the number of references and their total value is very
high, the stock value and operational costs are non-negligible factors concerning the
company costs. Nors goal is to reduce these costs while maintaining a high service
level. In this paper, we implement a mixed methodology for the forecasting problem,
present an alternative for the safety stock value, and discuss an optimization model
to decide which and how many parts number should be ordered in each period.
Finally, we present a set of computational and real implementation results, obtained
with Nors data regarding two suppliers.
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1 Introduction and Problem Characteristics

It is widely recognized that the spare parts area is often the most profitable part
of a corporation [13], especially when working at the repair, maintenance and
aftersales business. In aftersales, the usage of appropriate forecasting methods
reduces safety stocks, decreases several costs related with the stock level without
penalizing the level of service and is one of the management key challenges [12].
In the aftermarket automotive sector this is even more critical for the wholesalers,
as several aspects add complexity layers to the demand forecast and subsequent
inventory management. Namely, the huge number of spare parts with heterogeneous
sales patterns, the risk of stock obsolescence for some parts of the portfolio as well
as the importance given by the costumers to the vehicle which lead them to have very
small comprehension with long waiting times [1, 2, 4]. Despite the published work
about this matter by many authors, there is a considerable gap between research and
practice, as stated in [4] or [1]. In [11] it is presented a survey about the application
of spare parts management methods at a national level, based on the work done by
Rodrigues and Sirova in the Czech Republic. In this paper we address the practical
implementation, in a Portuguese company, of a stock management process designed
to meet the company constrains w.r.t. hardware and data availability, as well as to
deliver accurate outputs and reliable Key Performance Indicators (KPI).

During this work, it was possible to observe very distinct sales behaviour across
the references that compose the company portfolio. There are references with
sporadic demand, in the sense that they are consumed in certain moments, followed
by long and variable intervals with no demand, as well as there are references that
are sold in high quantities for a long continuous period of time. In Fig. 1, it is
presented the sales history for a given sub-family of 460 references (y-axis), across

Fig. 1 Scatter of sales for a set of spare-parts references, during a 9-month period
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a period of 9months (x-axis). Each marker placed on (x, y) represents, at least, one
sale of the y reference at time x.

Several facts may explain this behaviour. On the one hand, it is well known that
the aftermarket spare parts sales for a given car model is, among other factors,
correlated with its age. It is known that, some years after the model is launched
there is an increase on the number of spare parts sold, followed by an equilibrium
phase, and a subsequent decay on the end of the car’s expected life [8, 9]. However,
those trends depend also on many other factors as, for instance, the number of
sold vehicles from that particular model, the number of years since the model was
released, the expected life for each vehicle component. On the other hand, the same
spare part may be applied in different car models, which may have distinct beginning
and ending production periods, and a single car reference may have several different
aftermarket suppliers. Finally, there are many additional factors that are related
with the spare parts demands to a given company, as the mileage and the type
of utilization of each car or the marketshare the company owns which is, in fact,
time and reference dependent. All of these make very difficult for a wholesaler to
accurately evaluate the parameters needed to deploy such a model.

Due to all the previous stated reasons, in the next section we present a model
that uses several computationally cheap forecasting methods aiming at: being
suitable for the different rotation type of references that compose the company
portfolio; reacting quickly to market changes, and at maintaining the computational
complexity at reasonable levels regarding its implementation on a company with
regular hardware resources. Table 1 indicates the notation used in this paper,
regarding the methods described in the next section, where, in its final subsections
we present the results of their application to real databases and discuss these
intermediate results. This will be the support to set the background regarding the

Table 1 Notation for the forecasting methods

Parameter Notation Method

dt Real demand for period t All methods

X̂t Demand forecast for period t All methods

Ŝt Demand forecast for period t , given that the
demand is positive

CR, SBA e TSB

K̂t Forecast for period t , for the consecutive
number of months with positive demand

CR e SBA

kt Number of months since the last positive
demand, for period t

CR e SBA

p̂t Probability forecast, for period t , of having
positive demand

TSB

pt Binary variable, indicating positive demand
for period t

TSB

at Series level for period t SAGA

bt Series trend for period t SAGA

α, β Smoothing constants (0 ≤ α, β ≤ 1) ES, CR, SBA, TSB, SAGA
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optimization model that is presented on Sect. 3. Finally, we discuss the overall
results on Sect. 4.

2 An Adjustable Model for Forecasting Spare Parts Demand

Several methods for the forecast of multi rotation references are presented in the
literature [2, 6, 12]. Syntetos and Boylan [2] present a comprehensive review on
forecasting spare parts demand, and the work of Romeijnders et al. in [12] is a very
good survey on the subject this paper deals with, as it was based on the work done by
the authors for Fokker Services, a company which deals with spare parts for aviation
industry that has very similarities with the automotive business. Kennedy et al. [6]
present also an overview on spare parts management that may be important for the
second part of this paper.

2.1 Multirotation Reference Forecasting Methods

This section presents a brief review of methods for demand prediction, based on the
description made by Romeijnders et al. in [12].

2.1.1 Zero Forecast

Zero Forecast method (ZF) forecasts the demand in the following period as 0 [12],
that is:

X̂t+1 = 0 (1)

2.1.2 Moving Averages

The method of moving averages (MA) is one of the most famous methods for time
series [7]. The demand on the next period is taken as the demand average of the
previous N periods, eventually with respect to some weights 0 ≤ ωi ≤ 1, where∑N

i=1 ωi = 1. Unless stated otherwise, we use as default ωi = 1
N
:

X̂t+1 =
N∑

i=1

ωidt−N+i (2)

It is important to notice that Nors company already used MA to forecast the next
period demand, with N = 6. We will denote this as MA(6) in further analysis.
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Additionally, we used 12months MA, with a combination for ωi that gives more
importance to the last three periods, a little less to the remaining of the last semester,
and a small one to the first trimester. This will be stated hereafter as K-Method.

2.1.3 Naive Forecast

The so-called Naive Method (NF) is a particular case of the moving averages with
N=1, as it sets the value of demand during the last period as the forecast for the
following period [12].

X̂t+1 = dt (3)

2.1.4 Exponential Smoothing

The Exponential Smoothing method (ES) is robust and is very well known as it fits
itself rapidly to changes in the demand. Unlike MA, this method uses decreasing
exponential combinations of past observations, to estimate future demands [3, 12].
In fact, it uses the forecast on the last period, adjusted by the prediction error dt −X̂t ,
through the expression:

X̂t+1 = (1 − α)X̂t + αdt (4)

2.1.5 Croston Method

In the original paper [5], Croston showed that the ES and MA methods didn’t fit
to series with intermittent demands. He proposed to update the quantity Ŝt+1 and
the searching interval K̂t+1 separately. The ES model is used to estimate those
components in the periods of positive demand. The Croston forecast (CR) for the
search quantity in period t is

Ŝt+1 =
{

Ŝt , dt = 0
(1 − α)Ŝt + αdt , dt > 0

(5)

and the forecast for the number of periods with positive demand may be calculated
through

K̂t+1 =
{

K̂t , dt = 0
(1 − β)K̂t + βkt , dt > 0

(6)
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The forecast suggested by Croston method is obtained through:

X̂t+1 = Ŝt+1

K̂t+1
(7)

2.1.6 SBA: Syntetos–Boylan Method

Syntetos and Boylan [14] presented in 2001 an update to the Croston method, the
Syntetos–Boylan method (SBA). To avoid some bias, they proposed to include the
factor 1 − α

2 in the Croston method, getting the following expression:

X̂t+1 =
(
1 − α

2

) Ŝt+1

K̂t+1
(8)

where Ŝt+1 and K̂t+1 are evaluated using the expressions (5) and (6).

2.1.7 Teunter Method

Teunter method (TSB) [15] is an alternative to Croston method that updates the
positive search probability, instead of updating the forecast for the periods with
positive demand like the CR and TSB methods. The demand forecast for period t is
achieved through:

Ŝt+1 =
{

Ŝt , dt = 0
(1 − α)Ŝt + αdt , dt > 0

(9)

and the probability to have positive search is given by:

p̂t+1 = (1 − β)p̂t + βpt (10)

As so, the forecast given by the Teunter method may be calculated by:

X̂t+1 = p̂t+1Ŝt+1 (11)

2.1.8 SAGA or Holt Method

The SAGA method, also known as Holt method, is suitable for series with linear
trend. It uses the exponential smoothing technique to estimate the level a and the
growing trend b [3]. This model uses the following update expressions:

at = αdt + (1 − α)(at−1 + bt−1), (12)
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and

bt = β(at − at−1) + (1 − β)bt−1 (13)

The forecast for the next period is obtained through:

X̂t+1 = at + bt (14)

2.1.9 Poisson Method

Under certain well specified conditions, the Poisson distribution is used to count
events that occur randomly in a given interval of time. This distribution can be used
to get a forecast, as an alternative to methods based on time series [10]. This was
adapted to this problem, using as rare event the quantity sold in a given period of
time. As so, defining Xi as the random variable that represents the number of pieces
sold for a given reference i on the time interval �, and supposing that Xi ∼ Po(λ)

with λ = E(Xi) ≈ 1
n

∑n
j=1 dij where

∑n
j=1 dij represents the total number of

reference i articles sold in n periods �, the forecast, X̂i , for Poisson model (PO) is
obtained solving the equation

P(Xi < X̂i) = 1 − α (15)

where α represents the desired confidence level.
Beside the methods described, many other could be inserted on this model.

Indeed, several other methods were considered to be included in this work but,
those failed to meet one of the requirements asked by the company: that its imple-
mentation should deliver results in reasonable time using the existing hardware.
The Neural Networks approach and time series methods (like ARMA, ARIMA or
SARIMA) didn’t improve significantly our results in the several tests where this
model was used and/or increased considerably the overall running-time to values
that were not compatible with the company’s available time to process the orders.

2.2 The Mixed Model: MM

The approach implemented in Nors was based on selecting, in each order period,
the best method for each reference. With that purpose, we built a metric that uses
recent periods to decide which method does fit better the present sales series and
use it in the forthcoming forecasting period. More precisely, it receives the demand
history for a given reference, and estimates which is the most suitable method for
that series. This was done through the following error function (by default, the test
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period uses N = 18months)

Errort = 0.6
�N/2�∑

i=1

(dt−i − X̂t−i )
2 + 0.4

N∑

i=�N/2�+1

(dt−i − X̂t−i )
2 (16)

where �.� represents the floor function.
The methods MA, ES, CR, SBA, TSB e SAGA are parametric, implying that

their use depends on the values assigned to each of their parameters. We made this
using a brute-force parametrization test and selecting for the forecast of the next
unknown period the combination that minimizes the Mean Squared Error (MSE)
for the selected m test periods:

MSEt = 1

m

m∑

i=1

(dt−i − X̂t−i )
2 (17)

2.2.1 The Dynamic Safety Stock Approach

The methods described in the last subsection deliver the forecasted demand for the
next period. Apart from this, another important quantity to determinate is the Safety
Stock (SS). As stated in [16] this quantity may be understood as an extra stock,
important to prevent eventual consumptions above the predicted demand on the
following period. In order to determine the real quantities to be ordered for the
next period, Nors used a safety margin based on Economic Order Quantity (EOQ)
expression

EOQt = OPt − Q(0)t + X̂t+1 × ε (18)

where OPt is the order point, ε is a parameter given as function of both reference
cost and next period forecast for each reference and Q(0)t represents the existing
stock for the given reference at the time of placing the order (units). Those ε-values,
that were pre-defined by the company commercial department, are presented in
Table 2.

Table 2 Number of extra weeks to order, as function of reference’s cost and demand forecast

Next period demand forecast

A B C D E F G

Price ≥ 50 [10;50[ [5;10[ [2;5[ [1;2[ [0.5;1[ [0,0.5[

1 [0;1[ 3 4 4 4 3 2 1

2 [1; 10[ 2 2 3 4 3 2 1

3 [10; 50[ 1 1 2 2 2 1 1

4 [50; 300[ 1 1 1 2 2 1 1

5 ≥ 300 1 1 1 1 1 1 1
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Taking advantage of the data obtained from the tests made previously when
selecting the best method, and given that the main reason for the safety stock is
to cover the instances where the method underestimates the demand for the next
period, we calculate the safety stock quantity in a different way. In fact, to evaluate
the SS, we only use the periods in the past where the real demand was above the
forecast

Errormedt = 1

#At

∑

i∈At

(dt−i − X̂t−i ), At =
{
i = 1, · · · , n : dt−i > X̂t−i

}
(19)

This value is upscaled by a risk factor,

SSt = q1−α′/2 × Errormedt (20)

where q represents the 1 − α′/2 quantile of a suitable distribution for the errors
series. The risk factor parametrization is intended to be settled using the company’s
technical knowledge (e.g., taking into account each reference critical importance).

As usual, the order point is defined as OPt = X̂t × LT + SSt × LT , where the
Lead-Time (LT) is measured in the same temporal scale as the forecast X̂t .

2.3 Computational Results with Real Data

The previous model was implemented and applied with two real datasets, DS12016
and DS22016, consisting of 1172 and 4032 references, respectively, belonging
to two suppliers for which this methodology has been tested and applied. The
following results represent the comparison of the model within the year of 2016
(52weeks) against the older model implemented in Nors that was based only in the
MA(6). For this work, we also had access to the previous 30months history of sales
w.r.t. these references. The lead-time for this supplier is 28 days, and the orders were
launched weekly, starting in January 4, and ending in December 26.

It should be noticed that although there are some references without sales (145
and 1010 for each dataset, respectively) for the whole year of 2016, we kept them
in the datasets in order to reproduce real-world conditions in these tests, as it is
impossible to know in advance if a reference will or not be sold in a given year.
Those were only deleted when evaluating the relative errors. For the same reason,
we also include the returned items in 2016, from 2015 sales. As so, the quantity sold
per reference may be negative.

In Tables 3 and 4, the descriptive measures to characterize the datasets reinforces
the idea of great amplitude of sales distribution per reference, introduced in the
beginning of this paper, as high, medium and low rotation products coexist in the
same family of products. This factor may be one of the main factors that leads to the
values presented on the last line of this table, representing the number of different
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Table 3 Descriptive statistics regarding the application of MM in DS12016

Parameter Min First Q Median Mean Third Q Max Std CV

Sold qty per ref. −6 1 5 23.8 17 1071 71.0 3.0

Forecasted qty per ref. 0 1.2 4.9 22.8 17.1 997.6 67.4 3.0

Av. nr. of days between sales 1.5 20.4 61.2 96.9 122.3 ≥365 104.8 1.1

Nr. of different methods/ref: 1 2 4 3.7 5 9 2 0.55

Table 4 Descriptive statistics regarding the application of MM in DS22016

Parameter Min First Q Median Mean Third Q Max Std CV

Sold qty per ref. −23 0 2 20.4 5 12,092 287.3 14.1

Forecasted qty per ref. 0 0.27 1.4 19.8 5.2 11,231.6 276.9 14.0

Av. nr. of days between sales 1.3 52.4 122.3 164.4 ≥365 ≥365 129.2 0.8

Nr. of different methods/ref: 1 2 3 3.3 5 9 1.8 0.6

Table 5 Impact by method in DS12016 and DS22016

DS12016 DS22016

Parameter

Global
impact (%)

Max. best
method
(wk)

Ref
w/most
usage (%)

Global
impact (%)

Max. best
method
(wk)

Ref
w/most
usage (%)

ZF 40.7 52 42.7 51.5 52 58.1

NF 1.3 10 0 1.0 5 0

Poisson 0.0 2 0 0.0 5 0

MA(6) 0.7 15 0 0.5 13 0

ES 0.4 6 0 0.2 4 0

MA 21.1 42 20.9 16.7 35 16.6

SAGA 1.5 10 0 1.0 3 0

CR 0.8 9 0 0.7 8 0

SBO 1.1 13 0 0.8 12 0

TSB 0.2 5 0 0.2 8 0

K 31.7 45 36.4 27.5 31 25.3

methods per reference used to forecast at least one period in 2016, which seems to
justify by itself, the idea presented in Sect. 2.2.

As so, proposing a single method for each reference is not a good choice. On
average, each reference had its best prediction using between 3 and 4 different
methods across the whole year. With respect to the performance of each method,
Table 5 and Fig. 2 present the main idea although some comments should be made
with that respect.

First, all the methods are used somewhere across the year and, as the computation
time is acceptable for the company, there is no reason why any of them should be
removed. Second, the K-method clearly overperforms the MA method which was
the choice prior to this new implementation on Nors. Finally, the high frequency of
ZF may be explained by its usage in references that have very scattered sales, as also
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Fig. 2 Method’s histogram regarding the number of times a method was selected as best, for each
reference across the whole 52weeks history

Table 6 Descriptive statistics for errors concerning the application of MM to both datasets

Dataset Parameter Min First Q Median Mean Third Q Max Std CV

DS1 Real errors −75 −1 0 −1.0 0 18 5.4 5.4

DS1 Relative errors (%) −100 −13.0 0 −4.3 0 300 33.1 7.7

DS2 Real errors −860 −1 0 −0.6 0 277 16.3 26.2

DS2 Relative errors (%) −500 −8.0 0 −5.6 0 414 35.2 6.3

to references that have no sales at all. Nevertheless, it is impossible to know that in
advance, and as such the decision to eliminate a given reference from the portfolio
is a management decision, far beyond the scope of this work. We also highlight
the fact that if a reference is predicted by means of ZF, that doesn’t mean that the
final ordered quantity will be 0, as the corresponding safety stock quantity may be
positive.

For all these reasons, the MM mixed model is an upgrade to Nors prior state, as
Table 6 clearly shows. The plots from Fig. 3 also allow to visualize the quality of
predictions obtained by the model for both datasets.

2.4 Financial Results

As usual, the main quality indicators of the forecasting model in this industry
are related with the service level and sales volume. In Table 7 we present those
parameters obtained from simulating MM applied to both datasets against the
simulation of old methodology, where we settled q

1− α′
2

= 2, in Eq. (20).

Table 7 Financial details for new (MM) and old (MA(6)) methodology for both datasets

Dataset Method Service level Sales volume Initial stock Final stock

DS12016 MA(6) 94.0% 264,152 e 68,112e 35,471e

DS12016 MM 95.0% 267,240e 68,112e 38,999e

DS22016 MA(6) 93.6% 1,027,987e 556,806e 260,897e

DS22016 MM 95.1% 1,052,687e 556,806e 286,083e
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Fig. 3 Real errors applying MM to DS12016 (a) and DS22016 (b)

Given that it is common knowledge in this industry that increasing the service
level towards values above 90% is very expensive, as well as that the presented
sales volume is measured in cost price (in particular, the increase in sales has a
higher return than the one stated in Table 7’s third column) the previous results
are good outputs of this model from a financial point of view. Is also important
to notice that in the past, the reliability of the prediction model wasn’t accurate
enough, as they didn’t used the SS notion, but only the safety margin given by the
ABC procedure in Table 2. We made the simulations with the SS approach for all
the methodology. If not, the service levels for MA(6) would drop to levels below
85%. In the past, to tackle that problem, the product managers increased the sales
prediction by some factor related with their experience. Obviously, this had several
negative aspects such as: depending on each manager experience and making the
company’s performance very vulnerable to changes in the staff. Also, the effect



Order and Stock Costs Optimization in an Automotive Spare Parts Wholesaler 157
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Fig. 4 Evolution of stock value from Jan 2015 till Aug 2016 (top) and some important indicators
from the previous year till the year after this model was implemented (bottom)

of trying to protect the company against out-of-stock episodes led it to reinforce
manually the safety margins. In the end, the effects of applying this methodology
to the whole set of the company’s products in late 2014, led to the global results
presented on Fig. 4.

3 MORS: A Lightweight Model for the Supplier Order
Processing System

Due to the success of the MM approach explained in the previous section, it was
decided to develop a new mathematical model to optimize the order processing
system. One of the reasons to develop this optimization model—denoted as MORS
in the forthcoming references—was related with the fact that often, product
managers decide to place orders of considerable amount when the demand forecasts
don’t indicate so. Sometimes, this behaviour aims to accomplish contracts and to
get some discounts agreed with the supplier when negotiating the rappel in the
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Fig. 5 Theoretical (black) vs Real Stock (grey) in DS12016 family

beginning of the year. This leads to several stock unbalances across the year, with
low levels of stock during some parts of the year, that are compensated with big
amounts of stock in the end of the year in order to reach the agreed amounts to
accomplish the contracts or to reach some level of discount. An example may be
seen in Fig. 5, where the daily stock value for the MM model (black) is plotted
against the real stock (grey).

Table 8 presents the notation used for the optimization model regarding a supplier
of a set comprising N references (i = 1, . . . , N ), supposed to be ordered in a
periodic T-days scheme (t = 1, . . . , T ).

As those thresholds are known in the beginning of the year, our idea is to
distribute the buying quantities all across the year, introducing the variable total
budget (T B) and/or minimum budget to be spent (tb) as a parameter on the
optimization model. This quantity is intended to be defined and evaluated across
the year by the buyer manager, allowing him to decide the minimum (and/or
maximum) amount to be spent in each order, as defined in constrains (30, 31). In our
implementation, we distributed that value uniformly across the year, but this may be
easily adapted to other types of requirements. It is also important to notice that, in
grounds of a considerable loss in sales w.r.t. the goods supplied by a given supplier
or some changes in the contract, the existence of this variable allows for a quick
change/adaption to the buying strategy at any time of the process.

It is also natural for the manager to decide whether to restrain the number of days
for which, in regular conditions, the system is allowed to maintain stock. Denoting
this quantity by T maxi , the inequality (32) guarantees this possibility.

Obviously, non-feasibility of the model may be a strong indicator that the
management decisions on T B and T max may be incoherent. This may become
an additional advantage of the model, as it may alert the managers to the existence
of strategies that may be simultaneously unfeasible.
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Table 8 Notation for the optimization model

Parameter Description

Sets

S Set of all references from the given supplier

SM Set of the mandatory references to be ordered at the present time from the
supplier

SA Set of the admissible references, that is, the ones that may optionally be
included in the present time order to the supplier

S′ = {SM

⋃
SA} Set of the references allowed to be ordered in the present time from a given

supplier

Decision variables

xij (binary decision variable) reference i is ordered for a period of j × P days

Quantities

Qi(0) Existing stock for reference i at the time of placing the order (units)

D̂i = X̂t

t
Expected daily demand for reference i (units/day)

Oi Reference i quantity already ordered but not delivered at the present time

Ri The maximum inventory level for the i-th product (units)

SSi Reference i safety stock (units)

OPi Order point for reference i (units)

Ii (t) The expected inventory level for the i-th product at day t (units)

Costs and incomes

MC Maximum inventory monetary value allowed for the existing stock w.r.t.
the supplier (e)

T B Total available budget for the supplier (e/year)

tb Minimum budget to be spent with the supplier (e/year)

IR Interest rate

pci Reference i purchasing cost (e)

hci Reference i holding cost per day (e/day)

f ci Reference i fixed ordering cost (e)

vci Reference i variable ordering cost (e/piece)

Time quantities

P Supplier order periodicity (days)

LT Supplier Lead-Time (days)

T maxi Maximum number of days allowed to hold stock

Tfi Expected time-period needed to sold out all the reference i inventory
(days)

Volumes

wva Maximum warehouse volume available for the whole stock from the
supplier (m3)

vi Reference i volume (m3)

Other parameters

SLi Reference i service level
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Another side effect of this model, is the minimization of distinct buys per
reference, as decreasing the number of different references purchased in each order
pulls an additional positive effect at the warehouse level. Indeed, handling and put-
away timings are important drawbacks within the warehouse management. The
effect of a economy of scale, using deeper and narrower orders, may have an
important impact on the global efficiency results. We noticed, prior to this model
application, that there were a non-negligible number of occurrences where products,
although at the warehouse, were not available to be sold as their status was “in
conference” leading to worst performances at the level-of-service KPI.

Regarding the number of days in stock, we also added a constraint (33) to assure
that, if the forecast model is accurate, the order will provide enough pieces of each
reference to prevent that no stockout takes place before receiving the order placed
in the next period.

From the implementation point of view, we ran a pre-processing analysis on the
references list, splitting the references set in three different subsets. The mandatory
subset, SM , which comprises the references that must be ordered, as their stock
is forecasted to end before the arrival of the next order. The admissible subset,
SA, comprehends all the references that don’t belong to SM , but whose stock is
forecasted not to last more than a threshold τ ≥ P + LT number of days, where
P stands for the supplier order periodicity. These references, may or not be ordered
within the current order (28, 29). All the references that don’t belong to SM ∪SA, are
discarded from the optimization model, and we will denote the resulting list as S′. In
the scope of this real-world implementation, this fact may have important effects, as
the number of different references by supplier may reach several thousands resulting
in a significant reduction in the number of variables, which impacts the resources
(memory/time) needed to run the model. We also restricted the maximum number
of days for which the reference stock may be ordered to T max. We only allow our
model to order the quantity of a given reference needed for multiples of the order
periodicity. This option allow us to transform the integer decision variables for this
type of problem Qi ∈ N, for i ∈ S′, that represent the reference i replenishment
quantity, into the set of binary variables xij ∈ {0, 1} ,∀i ∈ S′, indicating the number
of days j × P, j = 0, 1, . . . , �T max.

P
� in which each reference i may be ordered.

This transformation allow us to determine the replenishment quantity, using the
identity

Qi =
� T max.

P
�∑

j=0

jxij D̂i, ∀i ∈ S′ (21)

where D̂i represents the expected daily demand for reference i. The warehouse
space availability when receiving the order may also be added to the model through
the inequality (34).



Order and Stock Costs Optimization in an Automotive Spare Parts Wholesaler 161

As our goal is to minimize the handling, storing and interest costs, the following
components should be included in the objective function:

• The financial costs,1 associated to purchase the references needed to fulfil the
demand throughout a given period. Defining the reference i purchasing cost (pci)
and the interest rate (IR), this may be represented as a function of the number of
days (n) we decide to place the order,

f1(n) =
n∑

j=1

pci D̂i ((1 + IR/360)j − 1)

= pci D̂i (1 + IR/360)
1 − (1 + IR/360)n

1 − (1 + IR/360)
− (pci D̂i)n

= pci D̂i ((1 + IR/360)
(1 + IR/360)n − 1

IR/360
− n)

(22)

• The fixed cost f ci associated with the administrative process of placing the order,

f2(n) = f ci (23)

• The cost associated with the handling and put-way processes, when the goods
arrive at the warehouse, where vci represents the variable cost per unit ordered,

f3(n) = n vci D̂i (24)

• Storage costs, which include warehouse rent and stock insurance, where hci

represents the reference i unitary holding cost per day (e/day)

f4(n) =
n∑

j=1

hci D̂i (1 + IR/360)j

= hci D̂i (1 + IR/360)
1 − (1 + IR/360)n

1 − (1 + IR/360)

= hci D̂i (1 + IR/360)
(1 + IR/360)n − 1

IR/360

(25)

In order to make the comparison between different strategies simpler, a normaliza-
tion is made with respect to the number of days for which a order is placed. As a
consequence, the cost function with respect to a given reference i in the order placed

1We focused only on the interest value, as we don’t consider the obsolescence rate.
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to fulfil the needs for an n-days period, is defined by the following function:

Ci(n) =hciD̂i(1 + IR/360)((1 + IR/360)n) − 1

n IR/360
+

+ pci D̂i ((1 + IR/360)
(1 + IR/360)n − 1

n IR/360
− 1)+

+ vciD̂i + f ci

n
(e/day)

(26)

where, w.r.t. the solution for the optimization model, the parcel vciD̂i may be
dropped.

The plot of Ci(n) for a given set of references is presented in Fig. 6, showing that
for each reference there are very distinct optimal order periods.

Given the previous considerations, the optimization model may be written as:

min
∑

i∈S′

� T max.
P

�∑

j=0

Ci(jP )xij (27)

s.t.

� T max.
P

�∑

j=0

xij = 1, ∀i ∈ SM (28)

� T max.
P

�∑

j=0

xij ≤ 1, ∀i ∈ SA (29)

∑

i∈S′
pciQi ≥ tb

365
P

(30)

∑

i∈S′
pciQi ≤ T B

365
P

(31)

Qi(0) + Oi + Qi − LT ∗ D̂i − SSi ≤ T maxi ∗ D̂i, ∀i ∈ S′ (32)
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Fig. 6 Cost per day, for a given set of references, if the order is settled to cover the demand for
the next x days

Qi(0) + Oi + Qi − LT ∗ D̂i ≥ (LT + P) ∗ (D̂i + SSi

P
), ∀i ∈ S′ (33)

∑

i∈S′
vi(Qi + Ii(LT )) ≤ wva (34)

xij ∈ {0, 1} (35)

4 Computational Study and Implementation Results

This optimization model was implemented using Matlab R2016b with the optimiza-
tion toolbox. For both the DS12016 and DS22017 datasets, real sales and predictions
given by the model described on Sect. 2.2 and respective results were compared with
the existing rules for the Nors group (denoted as MM), as well as with the real order
placed to the supplier. As in the previous section, we added the MA(6) method in
order to be possible to check additional quality and financial indicators.

For the DS12016, we made 52 orders, resulting in a mean processing time of
20 s per order in a virtual machine with OSWindows 10, 8Gb RAM and a processor
2.8GHz Intel Core i7. With the same hardware the solution for DS22016 dataset
was exported, on average, after 46 s of computation time. Those times include the
data importation and the solution exportation to an Excel worksheet, which is then
imported by Nors native’s ERP. We settled the total budget (T B) to the real amount
bought by Nors in 2016 with each of the suppliers, and the order periodicity to 7
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Fig. 7 DS12016: Comparative performance of three methods vs real data, using 2× Safety Stock
and Tmax = 364 days

days. We didn’t set the tb parameter in (30), as was our purpose to demonstrate that
the budget for DS12016 was clearly excessive even when Tmax = 364, and that
was not an issue regarding the other dataset. The maximum order value per week
was defined as TB/52 although it may be settled in other ways (e.g. the remaining
yearly budget divided by the number of remaining weeks till the end of the year).
The maximum number of days to hold stock was defined in 364 days or 126 days
(two different simulations) for DS12016, because the annual budget to this supplier
was clearly excessive (Fig. 5). For DS22016 that value was settled to 94 days, as
the yearly budget was much tighter w.r.t. the company needs. Both suppliers had
an expected lead time of 28 days. For the MM and MA(6) the number of weeks
for which the reference is ordered is one month plus the value indicated by EOQ
(Table 2), and all the simulations used Z

1− α′
2

= 2 in (20).

In terms of daily stock, the overall behavior of the method is presented in Figs. 7,
8, and 9, with the following legend abbreviations:

• Real—Real stock on the company.
• MORS—Stock behaviour using MORS optimization process.
• MM—Stock behaviour using the MM model cf. Sect. 2.2.
• MA(6)—Stock behaviour using Nors original forecast model.
• S.L.—Service level (%).
• M.D.S.—Mean Daily Stock (e).
• #R.B.—Total of references unique buy’s.

Analysing Table 9, where the main KPIs for the whole set of simulations are
presented, some interesting facts are highlighted. The total amount really bought by
Nors w.r.t. the DS12016 dataset is clearly excessive for the defined maximum period
to hold stock. At the same time, the comparison between the MORS optimized
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Fig. 8 DS12016: Comparative performance of three methods vs real data, using 2× Safety Stock
and Tmax = 126 days

Fig. 9 DS22016: Comparative performance of three methods vs real data, using 2× Safety Stock
and Tmax = 91 days

model and the MM model, both based on the same forecasting model, clearly gives
much better service-levels to our model. Also, the number of orders of different
references made all over the year, reduces by a factor of 0.32 (0.54 for DS22016)
when compared with the MMmodel. The purchase patterns of the models presented
in Fig. 10, clearly emphasizes advantages at the warehouse level. The same pattern is
found when looking at the mean percentage of times that the references are ordered
in the whole year: 2.2 (per reference) for MORS versus 7.0 for the MM method,
which emphasizes that impact, as it represents a very significant reduction on the
number of different references that must be manipulated in the warehouse over the
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Fig. 10 DS12016: Purchases pattern for three methods with Tmax = 364 days

year. These values are 1.6 and 2.9 for DS22016, resulting in 54% of reduction on
the optimized model.

It is also important to notice that our model’s Objective Function (27), had a
global cost reduction factor between 0.5 (DS12016) and 0.71 (DS22016), which
reflects very important savings within the logistics costs. The absolute values are not
presented because of confidentiality related aspects. A final remark should be made
w.r.t. the stock and/or purchases amounts as we just had access to the existing stock
for those families in a weekly base (the day where the order was placed), as well
as the orders placed in December 2015, that should had been delivered in January
2016. As so, some minor inconsistencies in this section may occur, regarding service
levels in the first 28 (Lead-time) days of January or real stock levels. Nevertheless,
independently of the goods being delivered in the beginning of 2017 due to lead
time, we accounted for all the orders placed during 2016 in the financial results
summary presented in Table 9. Concerning the lost sales KPI (Figs. 11 and 12),
we evaluated these values based on the real sales recorded by the company. This
happened because Nors didn’t keep the record of lost sales in the system, and, as so
it was impossible to evaluate that KPI accurately afterwards. The lost sales value is
reduced in more than 50%, although based on different levels of purchases as the
MM model doesn’t take into account the available budget.

Figure 13 presents the order periodicity for the whole set of references, where
a significant heterogeneity may be seen, resulting of minimizing order’s cost
according to the optimization model.
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Table 9 Results main
indicators for DS12016 and
DS22016

Parameter DS1 2016 DS2 2016

# References 1166 4032

Total budget (e) 333,283 e 1,051,848

Periodicity 7 7

Min. days stock 7 7

Max. days stock 126/364 91

Real M.D.S.(e) 70,261 416,299

MORS M.D.S. (e) 67,869/71,030 488,188

M.M. M.D.S (e) 39,594 357,751

MORS S.L. (%) 98.7/98.6 97.5

M.M. S.L. (%) 95.1/95.1 95.1

MORS # unique buys 2641/2439 6265

M.M. # unique buys 8206 11,514

Reduction in # buys (%) 32/30 54

Reduction in O.F. (%) 50/56 71

Initial stock (e) 68,112 556,806

Real final stock (e) 119,450 461,057

MORS final stock (e) 75,340/78,991 479,628

M.M. final stock (e) 38,999 286,084

MORS lost sales (e) 4028/4226 38,946

M.M. lost sales (e) 14,706 94,910

MORS purchase vol. (e) 293,308/297,131 1,040,644

M.M. purchase vol. (e) 243,061 776,754

Fig. 11 DS12016: Lost Sales Monetary Value for three methods with Tmax = 364 days
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Fig. 12 DS22016: Lost Sales Monetary Value for three methods
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Fig. 13 DS12016: Histogram of relative frequencies vs orders periodicity. Only ordered refer-
ences were considered



Order and Stock Costs Optimization in an Automotive Spare Parts Wholesaler 169

Fig. 14 DS12016: Buying amounts per order with Tmax = 364 days

It is important to notice that although the MORS mean daily stock may increase
as a direct consequence of the values used for Tmax , the volume of buys is kept below
the maximum allowed (that is, the real volume for 2016). Also, when compared with
MM and with the original Nors model, the amount per order is made much more
uniform across the year, as it may be seen in Fig. 14.

5 Conclusions

In this work we modelled, developed, and implemented a new methodology in
Nors group for the spare parts forecasting, improving the accuracy in predictions.
This was tested with two different suppliers with distinct orders of magnitude
regarding their budget. Afterwards, those forecasts were used as input on a new
optimization model to decrease the financial costs of the ongoing orders. The
proposed methodology had two different outcomes when tested in those two distinct
suppliers for the 2016 year. On the one hand, and regarding the forecasting accuracy,
it increased the service level for more than 1% in both suppliers. On the other hand,
applying the MORS optimization model with the same budget that the company
used in 2016 for those suppliers, we found that: the service level increased in the
range of 2.4–3.6%; the number of different reference purchases along the whole year
was reduced between 30% and 54% which has a strong impact on the warehouse
management and the stock level was kept smooth across the whole year. Finally,
the objective function of the optimization model, that is, the indirect costs of the
purchases (handling, interests, and warehouse renting) were reduced by a factor of
between 0.5 and 0.71. As expected, the mean daily stock value was increased, but the
costs of that raise were already contemplated in the objective function definition. All
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of these were achieved in a model that is fully parametrizable by the management
regarding factors like the maximum period to hold stock or the total budget amount,
making it flexible to encompass any further changes in the management policy of
the group. Despite the considerable gains achieved with this implementation, the
model is being updated on the forecasting methods described on Sect. 2. In fact,
the group is now using several other information available and new techniques of
artificial intelligence, in order to obtain better forecasts for the references demands.

Acknowledgments The authors would like to thank the Nors Group management for all its
support in the scientific release of this work. The authors would also like to thank the several
LABMI members whose valuable comments helped to improve the results of this implementation.

References

1. Bacchetti, A., Saccani, N.: Spare parts classification and demand forecasting for stock control:
Investigating the gap between research and practice. Omega 40(6), 722–737 (2012)

2. Boylan, J.E., Syntetos, A.A.: Spare parts management: a review of forecasting research and
extensions. IMA J. Manag. Math. 21, 227–237 (2010)

3. Caiado, J.: Métodos de Previsão em Gestão. Edições Sílabo, Lisboa (2011)
4. Cohen, M.A., Agrawal, N., Agrawal, V.: Winning in the aftermarket. In: Harvard Business

Review. https://hbr.org/2006/05/winning-in-the-aftermarket. Visited on 12 Feb 2017
5. Croston, J.D.: Forecasting and stock control for intermittent demands. Oper. Res. Q. 23, 289–

303 (1972)
6. Kennedy, W.J., Patterson, J.W., Fredendall, L.D.: An overview of recent literature on spare

parts inventories. Int. J. Prod. Econ. 72, 201–215 (2002)
7. Makridakis, S.G., Wheelwright S.C.: Forecasting Methods for Management. Wiley, London

(1989)
8. Masoud, V., Manbir, S.: Application of game theory on inventory level decision making. Int. J.

Bus. Econ. Res. 3(6), 211–219 (2014). https://doi.org/10.11648/j.ijber.20140306.12
9. Matsumoto, M., Ikeda, A.: Examination of demand forecasting by time series analysis for auto

parts remanufacturing. J. Remanuf. 5(1), 1–20 (2015)
10. Neves, G., Diallo, M., Lustosa, L.: Initial electronic spare parts sock and consumption

forecasting. Investig. Oper. 28, 45–58 (2008)
11. Rodrigues, M., Sirova, E.: Application of spare parts management methods in the companies

in the Czech Republic. ACC J. 23, 136–145 (2017)
12. Romeijnders, W., Teunter, R., Jaarsveld W.: A two-step method for forecasting spare parts

demand using information on component repairs. Eur. J. Oper. Res., 220, 386–393 (2012)
13. Suomala, P., Sievänen,M., Paranko, J.: The effects of customization on spare part business: a

case study in the metal industry. Int. J. Prod. Econ. 79(1), 57–66 (2002)
%bibitemSyntetosBoylan

14. Syntetos, A.A., Boylan, J.E.: On the bias of intermittent demand estimates. Int. J. Prod. Econ.
71, 457–466 (2001)

15. Teunter, R.H., Syntetos, A.A., Zied Babai, M.: Intermitent demand: linking forecasting to
inventory obsolescence. Eur. J. Oper. Res. 214, 606–615 (2011)

16. Zermati, P.: A Gestão de Stocks. Editorial Presença, Lisboa (2000)

https://hbr.org/2006/05/winning-in-the-aftermarket
https://doi.org/10.11648/j.ijber.20140306.12

	Order and Stock Costs Optimization in an Automotive Spare Parts Wholesaler
	1 Introduction and Problem Characteristics
	2 An Adjustable Model for Forecasting Spare Parts Demand
	2.1 Multirotation Reference Forecasting Methods
	2.1.1 Zero Forecast
	2.1.2 Moving Averages
	2.1.3 Naive Forecast
	2.1.4 Exponential Smoothing
	2.1.5 Croston Method
	2.1.6 SBA: Syntetos–Boylan Method
	2.1.7 Teunter Method
	2.1.8 SAGA or Holt Method
	2.1.9 Poisson Method

	2.2 The Mixed Model: MM
	2.2.1 The Dynamic Safety Stock Approach

	2.3 Computational Results with Real Data
	2.4 Financial Results

	3 MORS: A Lightweight Model for the Supplier Order Processing System
	4 Computational Study and Implementation Results
	5 Conclusions
	References


