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Abstract The target of the investigation is to efficiently organize the scheduling
of the rubber components manufacturing of a vehicle tire production plant. A
mathematical formulation followed by a computational code have to be found in
order to optimize the assignment of the tasks to the machines. The complexity of the
problem lies in the large number of different components to be considered together
with the limitations in the compatibility between some machines and components.
In addition, the production flow depends on several sequentially ordered sets of
products, that comprise from grinding the raw material until manufacturing the final
product ready to be assembled. Occasionally, urgent incoming demand of products
can cause a sudden change in the factory environment that needs a fast answer. In
this scenario, operations research tools and optimization models become crucial for
calculating at any given moment a feasible solution that reaches the new constraints.
A linear discrete formulation is suitable to deal with the problem. The results of the
simulations clearly improving manufacturing productivity and competitiveness.

1 Introduction

A tire factory is an infrastructure where complex processes take place. In this
environment, the optimization techniques can be very useful when efficiently
planning of sequences of jobs or task chains has to be planned. Many examples
of investigations about process optimization in companies in the sector of tire
manufacturing can be found, for example in references [10, 12] and [21].

A car tire is built of several different rubber layers. Each layer will provide
different property to the tire, indeed, resistance, flexibility or adhesion. Each one
of these layers is the product of the processing of a sequence of tasks. Each task
consists in the mixture of a rubber compound with a particular pigment in big
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rubber mixing machine to become a new compound. It means that before starting the
processing of a compound, certain quantity of the preceding one has to be available
in stock. The last compound of a sequence is called “final stage compound”. Strips
of determinate size of each of the final compounds are cut in order to assemble
progressively the tire.

In the processing of a sequence of tasks each compound is associated with a
different stage that requires a particular manufacturing process. Depending on the
design of a machine in the factory, it may be multi-functional having the capability
for processing a variety of compounds. The problem of the optimal assignment of
tasks to machines was analyzed in references [6, 20] and [26], where conditions
imposed by the skills were considered. The work-flow process considering the
interactions between compounds and compatible machines can be represented by
a directed graph. There the compounds are the nodes and the machines available
to process a compound represent the directed edges or arcs of the graph. Several
examples of the use of graphs to schematize the flow of an industrial process can be
found in the literature [1, 22] and [3].

The sequences of products or task chains considered for the scheduling can
be complete, or incomplete as a result of inventory replenishment operations or
due to rearranging previously aborted productions. The graph of Fig. 1 shows
several product chains, one complete, {R1,O12, . . . , O15}, another incomplete,
{O43, . . . , O45}, and two chains sharing the same raw material, {R2,O22, . . . , O24},
and, {R2,O32, . . . , O35}.

Eventually, one or more compounds can compete for a common raw material, but
we will consider this option here only in the second stage. It means that different
chains could share the same original raw material obtained from the initial grind
process. This situation has been illustrated in Fig. 1, where the original compound
R2 is the common raw material for compounds O22 and O32. For example, before
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Fig. 1 The graph represents an example of the process flow for some sequences of rubber
compounds, represented by nodes, ranging from the initial raw material Ri to the rest of
intermediate stages Oij as far as the final compound Oili . Several machines Mk , represented
by arcs, are available to process a compound Oij by mixing the previous one Oij−1 with the
corresponding pigments
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allowing the production of compound O22 at determinate moment the scheduling
has to take into account the stock of compound R2, the previous production of the
this compound and consumption made by the competitors.

The aim of this work is to build a model suitable to obtain efficient scheduling for
the job processing in the mixing machines, minimizing in some sense the idle time
of the machines. This challenge can be categorized in the classical job shop problem,
introduced initially in Ref. [19] and widely analyzed in the literature, [5, 8, 9, 14, 24]
and [28]. In general, the problem of finding optimal scheduling for manufacturing
in different industrial sectors has been studied in detail in the last decades by several
authors, see [15, 16] and [13]. The analysis of the computational performance of the
different formulations and algorithms designed to deal with the job shop problem
has been a source for several papers as [2] and [11].

In the problems about optimal scheduling different criteria for optimization
can be established. One of the most common is to minimize the makespan, that
measures the time interval between starting and ending the whole set of jobs. This
measurement can be calculated by each machine or on a global scale. In the first
case, the optimization is equivalent to the minimization of the sum of gaps or the idle
time of the machines. Other criteria can make us of a penalty weights proportional
to the tardiness related to the deadline compliance, see, for example Ref. [31].

In this work we use an linear integer programming formulation together with a
branch and bound algorithm. This formulation have been used previously in several
papers as [7] and [25].

Traditionally it has been observed a computational impracticability of finding
global optima or even feasible solutions of many job shop scheduling for large scale
problems. Unfortunately, in practice, this case is very usual. With the aim of going
beyond this obstacle, recently, heuristic techniques based on genetic algorithms and
tabu search have been developed to find computationally efficient feasible solutions
in this field. Some hints in this direction can be found in the papers [4, 18, 27–29]
and [26].

This investigation has been developed in the frame of a collaboration with a large
tire manufacturing company. The aim of the project was to design an automatic
and fast method to calculate feasible scheduling for the machines repeatedly. In
practice a scheduling will cover one working day, but because of frequent incidents,
maintenance service or incoming urgent orders, during the day successive run of the
method have to be made. In that circumstances a quick response proposing feasible
scheduling that considers the previous incomplete manufacturing is of fundamental
importance.

In Sect. 2 we will describe the manufacturing circumstances that determine the
parameters of the model. In Sect. 3 we will present the mathematical formulation
related to this particular job shop problem, the variables, the constraints and the
objective function. In Sect. 4 a simulation will be shown. Some possible applications
and conclusions are discussed in the last section.
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2 The Job Shop Problem Conditioned by the Environment

Here we present a job shop environment with a catalog of i = 1, . . . , I jobs. Each
job is and ordered set of tasks, Oi = {Oij }lij=1, where li is the length of the ith job
or task chain. A task consists on processing a compound Oij together with certain
pigment giving rise to the next compound of the job, Oij+1. Usually the job i has a
deadline pi which would not have to be exceeded.

We consider {Mk}Kk=1 machines available to process the jobs. The time interval
when the machine k is active is [Sk,Ek], which is included in the global time
frame [1, T ] of the simulation. Each machine k is only compatible with a set of
compounds, defined as Φk. Equivalently, the compound Oij can be processed only
by set of machines �ij. When Oij ∈ �k we shall say that the machine Mk and
the compound Oij are compatible. An example about the compatibility between
machines and compounds is shown in Table 1. There, the suitability of a machine
k for processing a compound Oij is expressed by 1 and the unsuitability by 0. The
information expressed in this table is equivalent to the graph of Fig. 1.

The basic ideas of the scheme is that a machine cannot process more than one
task at the same time and the flow conditions have to be guaranteed every time. The
second condition means that a taskOij cannot start until enough quantity of previous
compound Oij−1 is available in the system. The inventory of the compound Oij−1
at any time depends on the initial stock plus the quantity produced earlier than the
order for processing Oij minus the quantity consumed by the competitors of Oij by
the same raw material Oij−1.

In the model we will consider the possibility of overlapping in time the
manufacturing of two consecutive compounds belonging to the same job, Oij−1
and Oij , when different machines are assigned to each of them. The processing of

Table 1 Matrix of suitability
(1) or unsuitability (0) for a
machine Mk to produce
compound Oij

M1 M2 M3 M4 M5 M6 M7

O12 1 0 0 0 1 0 1

O13 1 0 1 0 0 0 1

O14 0 1 0 0 0 1 0

O15 0 1 0 1 0 1 0

O22 1 0 0 0 1 0 1

O23 1 0 1 0 1 0 1

O24 0 1 0 0 0 1 0

O32 1 0 0 0 1 0 1

O32 1 0 0 0 1 0 1

O33 1 0 1 0 0 0 1

O34 0 1 0 0 0 1 0

O35 0 1 0 1 0 1 0

O44 0 1 0 0 0 1 0

O45 0 1 0 1 0 1 0
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Oij may start as soon as the 30% of the previous compound Oij−1 has been already
made.

The time length taken by the machine Mk to process the task Oij is measured by
an integer number of time units dijk ∈ N, according with the discretization of the
time frame. The components dijk are stored in the array D.

The manufacturing of certain compounds Oij in a machine Mk may produce
some impurity which could cause damages in certain compounds Oi′j ′ processed
immediately after in the same machine Mk . In those cases it would be convenient
to proceed with a brief cleaning process of hiji′j ′ time length, in between both
manufacturing, in order to avoid eventually damages.

The use of products in stock and the possibility of ordering jobs for inventory
replenishment purposes are considered in the mathematical model. The stock of
compound Oij is denoted as Sij . The compounds eventually available in stock
can be introduced in the task flow. In the same way, when the inventory of a very
demanded compound Oij is below a security level, then the incomplete task chain
{Oi1, . . . , Oij } which leads to this critical compound can be ordered. This type of
sequences dedicated to inventory replenishment often are scheduled in order to fill
the idle time of the machines. When an interruption of the machines causes the stop
of the processing of some jobs, the compounds manufactured up to that moment
become part of the stock.

Let define FJij the end time of the Oij . Therefore, the end time of the job i will
be FJi = FJili . At the same time, let define FMk the end time of the last task in
the scheduling assigned to machine Mk . Then, since the time is discretized in this
mathematical model, Mk machine will be free to process new tasks from FMk + 1
moment. It means that a new scheduling could be developed for a new set of jobs
taking Sk = FMk + 1 as he new activation time of any Mk machine. The new
scheduling may join the previous one in order to have a long scheduling. We can’t
guarantee the global optimality of this long scheduling, but it might be very practical
in order to evaluate the possibility of manufacturing the jobs in time.

3 Mathematical Formulation of the Problem

In the last decades several algorithms have been developed for attacking a wide
variety of problems encompassed under the frame of the job shop scheduling. Big
scale problems demand heuristic algorithms for searching feasible solutions under
an optimization criterion. In the case under examination all the constraints and
criterion for optimization can be represented by linear equations. At the same time
the number of tasks and machines and the time frame are not too large. In this
framework the time frame [0, L] is discretized into t = 1, . . . , T disjoint sub-
intervals which have the same length �t , thus the sub-interval t = 1 covers the
time frame [0,�t], the sub-interval t = 2 covers the time frame [�, 2�t] and so on
as far as t = T .
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Under this considerations, the problem can be dealt by a linear integer formula-
tion based on binary variables related to decision-making process. This formulation
is suitable for using a modular integer programming techniques [30].

Nevertheless, in case a long time scheduling calculation is necessary, the problem
can split out into separate time intervals, proceeding independently with the
calculation of each optima and finally joining chronologically the collection of sub-
scheduling. Although the joining together of all the partial sub-scheduling doesn’t
give the global optimum, it can give a useful feasible solution.

3.1 Variables Model

First we define the integer binary variables used to make the decisions about
choosing a machine for processing a task in a particular time interval. Particularly
we choose the variables Xijkt ∈ {0, 1}, where Xijkt = 1 if Oij compound starts
being processed by machine Mk at time t and Xijkt = 0 otherwise. The ranges of
the sub-indexes of variables Xijkt are i = 1, . . . , I , j = 1, . . . , li , k = 1, . . . , K
and t = 1, . . . , T .

3.2 Constraints

A set of linear constraints have been designed in order to guarantee the fulfillment of
the conditions imposed by the particular industrial environment considered here.

(1) Each compound of final stage type has to be processed once and only once by
any one of the machines available to do it.

This set of constraint together with the conditions imposed by the flow of
supply chain, Eq. (2), will guarantee the manufacturing of all the necessary
products for fulfilling the demand. Thereby, the products out of stock, which
belong to any demanded task chain has to be processed. For each one of these
final tasks,Oili , i = 1, . . . , I , all the possible starting point have to be explored
along the time frame, 1 ≤ t ≤ T − dijk + 1.

∑

k∈Λili

rik∑

t=Sk

Xilikt = 1, ∀i = 1, . . . , I. (1)

where {rik = minpi, Ek−dijk+1} is the last moment for starting the compound
Oili and fulfilling the deadline of the sequence as well as timetable availability
of the machine k.

The number of this type of constraints is not more than I .
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(2) Each machine only can process one task at the same time.
This set of constraint is repeated for each task Oij ∈ Φk compatible with the

machine k while this is in service and available to deal with the task, Sk ≤ t ≤
Ek − dijk + 1. If the task Oij starts being processed by the machine k at time
t , then none of the other task compatible, Oi′j ′ ∈ �k, could be processed by
machine Mk until Oij ends at t ′ = t + dijk . In this set of constraint only tasks
compatible with machine Mk are involved.

∑

Oi′j ′ ∈ �k,

Oi′j ′ �= Oij

t+dijk+hiji′j ′−1∑

t ′=t

Xi′j ′kt ′ +
t+dijk−1∑

t ′=t+1

Xijkt ′ ≤ L(1 − Xijkt ),

∀k = 1, . . . , K, ∀Oij ∈ �k, ∀Sk ≤ t ≤ Ek − dijk + 1. (2)

where L is a constant large enough, L > maxk |�k| · maxi,j,k |dijk|. Here | · |
represents the cardinal of a set. This set of constraint is repeated for each time
step while the machine Mk is in service, Sk ≤ t ≤ Ek , therefore the number of
constraints of this type is around (Ek − Sk) × ∑

k |�k|.
(3) The jobs have to be finished within a set time or deadline.

Once a deadline pi has defined for some jobs, each of them will be finished
not later than this time,

∑

k∈�ili

Ek∑

t=Sk

tXilikt ≤ pi, ∀i = 1, . . . , I. (3)

This constraint may induce the infeasibility of the problem in case of
wrong estimation of the number of jobs the deadlines and the power of the
machines. However, sometimes these constraints are substitute by a penalty on
the objective function according to the tardiness or delay in jobs finishing.

The number of this type of constraints is not more than I .
(4) The management of the supply chain has to be guaranteed.

Because of the discretization in time and the binary variables suggested, the
formulation of this job shop problem can be significantly simplified. The most
complex constraint corresponds to the supply flow. Before accomplishing a task
the existence in stock of certain quantity of the previous compound has to be
guaranteed. At this point the compound to be processed Oij , the previous one
Oij−1 and occasionally the competitors will be involved. The competitors of
the compound Oij are other compounds of second stage which also use Oij−1
as raw material. The set of competitors associated to compound Oij will be
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identified as Cij.

∑

k∈�ij

Xijkt ≤ Sij−1 +
∑

k′∈�ij−1

t−dij−1k∑

t ′=1

Xij−1k′

−
∑

Oi′j ′ ∈Cij

∑

k′′∈�i′j′

t∑

t ′′=1

Xi′j ′k′′ ,

∀i = 1, . . . , I, j = 1, . . . , li , ∀t = 1, . . . , T − min
k∈�ij

dijk + 1. (4)

In summary, the sum of the raw material stored at the beginning of the
simulation Sij−1 plus the raw material produced along the simulation, but
earlier than the starting of Oij minus the raw material consumed by the
competitors Oi′j ′ ∈ Cij will not be less than the quantity of Oij which will
start being processed.

The number of this type of constraints is around I ×ml ×T , where ml is the
average of the number of compounds included in one job.

3.3 Objective Function

The simulations implemented here have been oriented to schedule an efficient
sequential assignment of jobs to machines. The efficiency of the performance can be
defined and measure in different ways. In our first option we have given priority to
minimize the global idle time of the set of machines. Thereby, to find the minimum
of the sum of idle time or gaps in the machines is equivalent to find the minimum of
the sum of starting time of each of the jobs. It is straightforward to set out a linear
objective function representing this measurement,

f1(X) =
I∑

i=1

li∑

j=1

∑

k∈�ij

rik∑

t=1

tXijkt . (5)

where rik = min{pi, Ek − dijk + 1} as in Eq. (1). However, in case of choosing the
global ending time of the group of jobs as minimization criterion, then, an integer
variable E has to be defined by an additional group of constraints. E cannot be less
than each of the ending times of the jobs assigned to any machine,

E ≥
∑

k∈�ili

Ek−dili k
+1∑

t=Sk

(t + dilik − 1)Xilikt , i = 1, . . . , I. (6)
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In this case, the objective function to be minimized can be represented by the
following brief expression,

f2(X) = E. (7)

In the literature a wide variety of suggestions for the objective function can be
found, depending on the magnitudes to be under control. For example an objective
function could be addressed to the tardiness accumulated by the jobs. The tardiness
Ni of the job i is defined as the positive part of the time exceeding the deadline,
Ni = |FJili −pi |+. It means that Ni is greater than 0 only when FJili −pi > 0 and
0 otherwise Ni = 0. This quantity is nonlinear but anyway it can be introduce in
the linear scheme by a simple set of constraints. Other works as [31] have explored
multiobjective formulations for the job shop scheduling problem. But in practice
the balance between the different contributions on the objective function is very
subjective and increases significantly the computation cost.

4 A Sample Case for Scheduling

Several simulations for making a schedule with the assignments of machines to jobs
have been implemented. The objective is to verify and measure the efficiency of the
mathematical model. The approach has been developed using C++ programming
language and two different optimization tools or solvers. On the one hand, the
very well known CPLEX [17] commercial software has been used. On the other
hand, COIN libraries [23], one of the most powerful open codes for optimization,
has been used. The implementation of these computing tools has the advantage of
grouping the variables in one dimensional array Z, vanishing the unused variables.
The definition of the variables is correlative from X111S1 to XIlI KE1K

, but only for
the compatible compounds Oij and Machines Mk . It means that we do not consider
all the variables associated to the pairs (Oij ,Mk) with a 0 value in a matrix similar
to the one shown in Table 1 in the particular problem to be solved.

One could think on considering all the possible variables, including the corre-
sponding to incompatible pairs (Oij ,Mk), and the complete time frame [1, T ] in
order to write the constraints (1)–(4) in an straight forward manner. The code would
have to incorporate a new constraint which would force the sum of all the unused
variables to be zero. The disadvantage of this formulation lies with the unnecessary
growth of the dimension of the problem. It may result in the eventually collapse of
the solver due to the size of the problem and the dimensions of the arrays involved.
In order to fit the dimension of the model to the real indispensable set of variables
and constraints, it is preferable to use only the variables associate to compatible
states. The strategy of setting a one dimension array of correlative list of variables
is computationally efficient but makes difficult the reading of the constraints. A
strategy to make the formulation more comprehensive involve creating a translation
function that links each index set (i, j, k, t) corresponding to (Oij ,Mk, t) to a
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particular index of the array Z. This procedure makes much more comprehensive
the implementation of the constraints in a recursive way taking advantage of the
symmetry of the problem. However, modern interfaces implemented in languages as
Python incorporates the possibility of working with sets of elements, which makes
the code very similar to the classical mathematical formulation of the constraints.

In this work several simulations managing different number of jobs, from 4 to
6, have been performed. Each job is made of 3–5 compounds. The performance
obtained by the commercial CPLEX solver is always leading the one obtained by
COIN solver. The latter one has the limit of 80 × 106 on the number of elements
of the matrix, indeed variables multiplied by constraints. It means that orders larger
that six jobs considered to be scheduled in 15 h will not be feasible for COIN, while
CPLEX can tackle larger problems.

The schedule obtained by COIN solver for each machine on a group of 7, which
are installed in a tire factory, is shown in Table 2. Six jobs have been considered,
each one made of 5, 4, 5, 3, 4 and 5 rubber compounds respectively. In total, there are
26 tasks to be assigned to 7 multipurpose machines, M1, M2,. . .,M7. The average
number of machines compatible with each compound are 2.5 and the reciprocal
average number of compounds compatible to be processed by each machine is
9.3. The scheduling obtained by CPLEX commercially licensed solver under the
same environment is shown in Table 3. A time limit of 300 s has been applied
to the computation in both cases. We are well aware that the scheduling obtained
doesn’t reach the absolute optimum, but the branch and bound algorithm here takes

Table 2 A scheduling for 7 machines and 6 product chains over 90 time intervals performed
by COIN solver after 2min of running branch and bound algorithm. Each column indicates the
sequence of compounds and starting times assigned to a machine, including gaps or idle time and
technical stops

M1 M2 M3 M4 M5 M6 M7

gap = 10 gap = 42 gap = 14 gap = 30 gap = 18 gap = 5 O31

t = 1

O33 stop = 12 O34 O22 O35 O32 O61

t = 11 t = 15 t = 31 t = 19 t = 6 t = 14

O62 O43 gap = 5 gap = 32 gap = 12 gap = 8 O21

t = 20 t = 55 t = 26

O41 gap = 4 O64 O53 O24 O63 O51

t = 31 t = 29 t = 76 t = 45 t = 26 t = 39

gap = 18 O15 O23 O65 O42 O11

t = 69 t = 40 t = 58 t = 38 t = 52

O13 gap = 1 gap = 15 gap = 8

t = 60

O52 O54 O14 O12

t = 71 t = 81 t = 65 t = 56

End time t1 = 83 t2 = 92 t3 = 75 t4 = 88 t5 = 71 t6 = 67 t7 = 63

Sum of gaps g1 = 28 g2 = 47 g3 = 34 g4 = 62 g5 = 30 g6 = 21 g7 = 0
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Table 3 A scheduling for 7 machines and 6 product chains over 90 time intervals performed by
CPLEX solver after 2min of running branch and bound algorithm. Each column indicates the
sequence of compounds and starting times assigned to a machine, including gaps or idle time and
technical stops

M1 M2 M3 M4 M5 M6 M7

O41 gap = 8 gap = 4 gap = 63 gap = 19 gap = 5 O61

t = 0 t = 1

O63 O43 O42 O34 O65 O62 O11

t = 11 t = 9 t = 5 t = 64 t = 20 t = 6 t = 14

O13 gap = 11 gap = 1 gap = 28 gap = 6 gap = 2 O21

t = 22 t = 26

gap = 2 O15 O64 O24 O12 O51

t = 32 t = 16 t = 40 t = 19 t = 39

O23 stop = 12 gap = 2 O54 gap = 2 O31

t = 35 t = 54 t = 52

gap = 10 gap = 16 O14 O22

t = 27 t = 31

O32 O35 gap = 11 gap = 1

t = 56 t = 71

O53 O52

t = 48 t = 44

gap = 2

O33

t = 60

End time t1 = 66 t2 = 80 t3 = 69 t4 = 76 t5 = 67 t6 = 54 t7 = 63

Accumulated gaps g1 = 12 g2 = 35 g3 = 18 g4 = 63 g5 = 25 g6 = 10 g7 = 0

unacceptable long time to converge. In such conditions an acceptable as well as
fast solution is better than a slow solution, even though it is close from the global
optimum. Only in simulations developed for two jobs by COIN and for four jobs by
CPLEX the global optimum was found before 500 s of computing time.

Within the industrial context analyzed in this study case, a reasonable measure
to compare the output given by COIN and by CPLEX is the gaps or idle time
accumulated by the seven machines and the latest of the end times of the schedules.
In one hand, the idle time accumulated by seven machines in the scheduling
calculated by COIN solver is

∑7
i=1 gi = 222 and the last of the end times t2 = 92.

On the other hand, the idle time accumulated by seven machines in the scheduling
calculated by CPLEX solver is

∑7
i=1 gi = 163 and the last of the end times t2 = 80.

The greater performance of the results given by CPLEX solver can be very clearly
observed.

In many simulations we have observed that CPLEX solver takes advantage of the
possibility of overlapping consecutive compounds of the same job very efficiently
when early feasible solutions are calculated. This phenomenon can be observed in



126 C. Gorria and M. Lezaun
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Fig. 2 A comparison of a scheduling of six sequences of jobs, A, B, C, D, E and F, assigned to
seven machines, M1,. . ., M7, and computed independently by COIN solver and by CPLEX solver.
The j th job of each sequence is labeled by “j” digit. The range of the discretized time frame is
t = 1, 2, . . . , 95. Grey cells correspond to idle time periods of the machines

the staggered manner of the manufacturing of some jobs in the graphical scheduling
shown in Fig. 2.

Comparison between CPLEX solver performance and COIN solver performance
have been made for sets of 4, 6 and 8 jobs and different time limits applied to
computation, indeed, from 50 to 600 s. Repeatedly the performance shown by
CPLEX commercially licensed solver is significantly better than the one given by
COIN free software. Anyway the difference in the performance between two solvers
is bigger as shorter is the time limit of the simulation. However, when the time
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limit applied to the simulation increases, then the performance of the scheduling
calculated by two solvers approach. It means that the algorithms to find a the initial
feasible solution and the strategies to apply branch and bound cutting plane is more
efficient in the case of CPLEX, but in so far as simulation is prolonged, solutions
given by COIN improve significantly and also can be considered as a good option
for practical scheduling.

5 Conclusions

A tire manufacturer manages a long catalog of rubber layers because each type
of vehicle needs tires conforming to particular specifications. A rubber compound
ready for assembling is made of an ordered sequence of compounds. The man-
ufacturing of those compounds is a very suitable process to be optimized by
operations research techniques, because of the flow conditions and the multipurpose
character of the machines. Companies dedicated to producing tires very often need
to update the scheduling that determinate the tasks to be accomplished by the
machines. The incidents arising in the machines and the management of new urgent
incoming orders are frequently the reason for this. In the case of recalculation of
the scheduling, the promptness for giving an optimal solution for a small set of
sequences of compounds, for example 4, is more useful than a large scheduling
that needs a long computing time. In this scenario the use of discrete integer linear
programming formulation for modeling the requirements of the scheduling in terms
of constraints and objective function is simple and efficient.

Several types of simulations characteristic of each one of the case studies have
been performed in this work. In our experiments, commercial solvers running
on a personal computer can deal with groups of 4 jobs integrated by around 25
compounds, while free solvers can deal with groups of 3 jobs integrated by around
15 compounds. In both cases the computing time doesn’t exceeds 4min and the
outputs give rise to the scheduling fitting the global minimum of the idle time
of the machines. Long-scale production scheduling can be elaborated by joining
consecutive partial scheduling made for subgroups of jobs. A strategy consisting
of dividing the problem and joining partial schedules doesn’t guarantee the global
optimum, but anyway it lead to practical and fast feasible solution. The partner
company has recognized that the response time for recalculating the schedule when
the conditions suddenly change, has been reduced around four times. The results of
this work show the successfully contribution of the operations research tools in the
improvement of the profits quality of existing industrial processes.

As future research, other real elements concerning the manufacturing dynamics
of the company can be considered. For example the case of machines blocked for
performing pre-programmed tasks or the case of programmed maintenance stop of
some machine into the time frame of the simulation. Those new considerations
as well as the possibility of planning simulations for larger groups of around
10 jobs makes the problem more complex. In that scenario integer programming
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formulation is insufficient for giving rise to successful solutions and mixed integer
programming could be more suitable for dealing with the problem.
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