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Abstract Development of efficient strategies for the rational design of materials
involved in the production and storage of renewable energy is essential for accel-
erating the transition to a low-carbon economy. To contribute to this goal, we
propose a novel workflow for the assessment and optimization of battery materials.
The approach effectively combines quantum and atomistic modelling/simulations,
enhanced by efficient sampling, Bayesian parameterization, and experimental infor-
mation. It is implemented to study prospective materials for lithium and sodium
batteries.

1 Introduction

Nearly 30 years ago Sony Co. launched the first commercial lithium-ion battery
(LIB) and changed the world [25]. LIBs powered the revolution in portable
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electronics, allowing the transformation of mobile phones into general purpose
computers within a decade. Moreover, governments around the globe have gained
awareness of the role greenhouse gases play in climate change, leading to incentives
for the development of renewable energy technologies (solar, wind, etc.) and electric
vehicles (EVs). For all of these technologies to be effectively implemented, energy
storage systems are key enablers. As an example, the European Commission has
set the target of achieving emission-free urban passenger transportation by 2050
(i.e. abandoning the use of conventionally fuelled cars in cities) and emission-free
urban freight transportation by 2030 [15]. Consequently, research and development
on LIBs have exploded (in the span of 7 years, researchers around the globe have
added at least 119188 new publications on batteries from 2010 to 2017 [54]). A
recognition of the current importance of the field comes from the 2019 Nobel Prize
in Chemistry, awarded to John Goodenough, M. Stanley Whittingham and Akira
Yoshino for the invention of the rechargeable LIB.

While the bulk of battery research is directed towards LIBs, it is important to
consider that lithium is not regarded as an abundant element (the relative abundance
of lithium in the Earth’s crust is only 20 parts per million). Moreover, lithium
resources are greatly concentrated in South America, which means that regional
politics can have an outsized effect on its price. The second-smallest alkali metal,
sodium, constitutes 1% of the earth’s crust and is a strong candidate to substitute
lithium in rechargeable batteries [78]. For this reason, sodium-ion batteries (NIBs)
are one of the most widely investigated alternatives to LIBs, and commercial units
are being produced already for systems with low energy density (e.g. e-bikes,
e-scooters) [11]. For most applications, though, LIBs are yet to find a credible
contender.

While advances in materials and battery design have been impressive, the
fundamental purpose of battery research has remained unchanged over the years: to
decrease the weight and volume of the battery, increase its durability (i.e. the number
of charge/discharge cycles of the battery) and minimize its cost while maintaining
safety. Achieving these objectives requires an interdisciplinary approach involving
material scientists, chemists, physicists, and a growing army of applied mathemati-
cians and computer scientists. Indeed, increasing computing power, and improving
the algorithms for quantum, atomistic and continuous simulations are making the
feedback loop between the chemistry lab and the laptop screen a practical reality.
Still, the complex multiscale nature of LIBs and NIBs, involving solid state ionics,
interface science, polymer physics and engineering, means that plenty of open
problems remain to be satisfactorily tackled.

From a mathematical and computational perspective, the goals stated above often
translate into answering the following questions: (i) is it possible to accurately
and efficiently estimate the electronic and/or ionic conductivities of the materials
involved, based on prior knowledge of their atomistic structure?; (ii) can the chem-
ical composition be optimized to enhance desirable features such as conductivity,
cyclability or energy density?; (iii) can the structure and transport properties of the
interface between different components be predicted from models of the individual
phases?; and (iv) how can all this information be integrated into the macroscopic
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model of a realistic battery? Our research program in the recent years has attempted
to contribute to answering these questions.

One of the critical challenges involving the atomistic simulation of battery
materials is the slow diffusion of charge carriers at room temperature. To tackle this
issue, we have developed enhanced sampling methods and multi-stage integration
schemes that are suitable for solid-state systems including polarizable atoms,
allowing us to simulate the ionic transport in materials for LIBs and NIBs at
realistic operating conditions [2, 6, 30, 32, 61]. In order to produce experimentally
meaningful results, an accurate model of the interatomic interactions (a force field)
must be first developed or adapted. For the specific case of polarizable systems, the
development of a force field can be quite challenging and the resulting model might
not be accurate or lead to instability at certain chemical compositions of interest.
We have overcome this shortcomings by introducing composition dependant force
fields, adjusted with respect to accurate quantum mechanical simulations and/or
experimental data [18, 19, 34]. Also, we provided a simple solution to deal with the
additional degrees of freedom posed by the core-shell polarizability model [18].

One promising way to reduce the costs associated with experimental synthesis
and characterization of new materials is in-silico material discovery and opti-
mization. Despite considerable progress and the seemingly unstoppable growth
of computing power, novel techniques to perform this task that can efficiently
incorporate experimental information are still needed [38, 57]. On this front, we
have designed Bayesian inference algorithms coupled with multi-stage integrators
that will combine incoming data from atomistic simulations and information from
experiments to produce the distribution of compositions that is most likely to
maximize the expectation of a desired set of macroscopic properties [6, 60].

The article summarizes these contributions and demonstrates some key examples
involving state-of-the-art LIB and NIB components. In Sect. 2, we offer a short
but necessary summary of the key fundamental aspects of rechargeable batteries.
In Sect. 3, we provide a brief introduction to traditional atomistic simulation
methods and present our enhanced sampling techniques for molecular simulation
and computational statistics [60], along with the in-house advanced adaptive
integration schemes for Hamiltonian dynamics [6]. In Sect. 4, we discuss the
development of force fields for polarizable and non-polarizable materials. Sect. 5
presents our published applications of the discussed algorithms for modelling of
sodium intercalation cathodes for NIBs and solid electrolyte garnets for LIBs
[18, 19, 32, 41]. Finally, Sect. 6 provides concluding remarks and some future
research directions. Specifically, we discuss the incorporation of the in-house
Bayesian parameterization technique Mix & Match Hamiltonian Monte Carlo
(MMHMC) [60] into the proposed framework for Bayesian materials screening
and comment on the multiscale simulation of composite materials using the novel
version of our Generalized Shadow Hamiltonian Monte Carlo (GSHMC) [2] that is
specially adapted for sampling of coarse-grained systems (meso-GSHMC) [3].
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2 Fundamental Aspects of LIBs and NIBs

We provide a summary of the key fundamental properties of the rechargeable
batteries essential for this study.

2.1 Structure and Chemistry of Electrochemical Cells

The basic building blocks of any battery are the electrochemical cells (Fig. 1), in
which charge carriers move from the anode (negative electrode) to the cathode
(positive electrode) during the discharge. In LIBs, the carrier consists of positively
charged lithium ions (Li+) and the process is reversible: when an external voltage
above the cell potential is applied, Li+ is transferred from the cathode to the
anode, charging the cell once again. The cathode and the anode are separated
by the electrolyte containing dissociated lithium salts. In most commercial LIBs,
electrolytes are comprised of organic liquid salts confined within a porous separator
membrane, which avoids direct contact between the electrodes. When a lithium
atom leaves the anode during the discharge, an electron is released to the outer
circuit and performs electrical work. During the charge, electrons are injected
into the anode from the external source, driving the release of Li+ from the

Fig. 1 Simplified structure of the electrochemical cell in a LIB. Each LIB consists of the anode
(negative electrode) and the cathode (positive electrode) separated by the electrolyte containing
dissociated lithium salts, which enables transfer of lithium ions between the two electrodes
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cathode. Hence, it is clear that the electrolyte must be electronically insulating while
constituting a good medium for the diffusion of Li+. In NIBs, the charge carriers
are sodium ions (Na+).

Currently, cathode materials are made of electrochemically active metal oxide
particles (such as XCoO2 and XFePO4, with X = Li for LIBs or X = Na for
NIBs), an inert binder “gluing” them together and some electronically conductive
coating (typically carbon). The key feature of the active particles is their ability to
accept and release Li+ ions (lithiation/delithiation) with minimal changes to their
crystal structure, through a process which Whittingham called the intercalation
mechanism [76]. Anodes are most commonly made of graphite, because the
lithiation/delithiation reaction is quite reversible without altering the mechanical and
electrical properties of the material. On the first charge of the battery, a passivation
layer, the so-called solid electrolyte interphase (SEI), forms from the decomposition
of the electrolyte on the anode surface. This layer is of crucial importance for the
battery operation in terms of safety, as it prevents the carbon from reacting with the
electrolyte and helps avoiding graphite exfoliation [37, 54].

Important efforts have been made to replace liquid electrolytes with solids, due to
the safety problems associated with the flammability of the organic salts that com-
prise them. Another driver is the impossibility to use metallic lithium (Li0) as the
anode along with liquid electrolytes, because the fast and disorder electrodeposition
of Li+ leads to the formation of Li0 filaments (dendrites) that can penetrate the
separator and connect both electrodes, producing a short-circuit. Since Li0 anodes
have a much higher energy density, their safe and efficient incorporation could
greatly reduce battery volume/weight. Several solid and semi-solid electrolytes have
been developed in recent years, including crystalline materials, polymers, gels,
and composites mixing these three families [80]. Still, none has yet achieved the
combination of ionic conductivity, thermal, mechanical and chemical stability and
low cost necessary for widespread adoption.

While there are many factors influencing battery performance, we will focus on
the one of particular importance: ionic conductivity.

2.2 Ionic Conduction in Battery Materials

The rate of X+ ion transfer between the electrodes is a multiscale variable
depending on (i) the ionic diffusivity within the active electrode particle; (ii) the
grain boundary resistance between adjacent electrode particles; (iii) the rate of
interfacial exchange between electrode and electrolyte; (iv) the ionic diffusivity
within the electrolyte and, for solid electrolytes, the grain boundary resistance
between adjacent electrolyte particles; and (iv) the ionic diffusivity within the
SEI (Fig. 2). It is still possible to subdivide these resistances further, as electrode
particles may be agglomerated through a binder and contain some coating particles
to enhance the electronic properties (see Fig. 2).
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Fig. 2 The several scales of ionic conduction in an electrochemical cell for LIBs. Cathode, anode
and electrolyte (a solid one in the sketch) are composed of active particle agglomerates, presenting
grain boundary resistances at the particle/particle interfaces. Often, these particles are glued by
a polymeric binder and may be coated to enhance electronic conduction. These micro/meso
structures (∼10−6–10−5 m) are generally isotropic. Within single active particle crystals, structural
anisotropy can create preferential diffusion paths for Li+. In addition, only particular sites are
capable of accepting Li+ ions, which means that intracrystalline Li+ motion occurs in discrete
jumps between those sites. Individual jumps occur at the atomistic scale (∼10−10–10−9 m) and
long range conduction happens over many such jumps (∼10−8–10−7 m). However, subatomic
scale phenomena such as oxygen polarization (∼10−12 m) can strongly influence the energy
barriers associated with the jumps

2.2.1 Ionic Conduction in Cathodes

Within the active particles of the cathode, insertion of an X+ leads to the reduction
(acceptance of an electron) by the transition metal (M) (e.g. in LiFePO4, iron is
reduced from Fe3+ to Fe2+). Clearly, the ease with which electrons can reach and
reduce M and the ease with which X+ can travel from the surface to the bulk of the
particle are of paramount importance. The latter is captured by the ionic conductivity
tensor (σX), which is defined as

J = σXE,

where J is the electric current density transported by the charge carrier and E
the electric field. Most active cathode particles, however, are orthotropic at the
nanoscale (∼10−9 m) and only the diagonal components of σX are needed. In
addition, because cathodes are made of randomly oriented collections of active
particles, mesoscopic ionic conduction is isotropic and the conductivity tensor at
this scale reduces to a simple scalar σX,meso.

Most experimental measurements are microscopic (∼10−6 m). Moreover, elec-
tron movement and reduction of M is comparatively fast compared to ionic diffu-
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sion, which means that the cathode conductivity reported in the literature normally
corresponds to σX,meso [10]. There are, nonetheless, single crystal measurement
methods capable of capturing conductivity anisotropy [7]. In most atomistic studies
(ours included), it is assumed that intraparticle diffusion dominates over interparticle
diffusion, and σX,meso is simply estimated as σ ∗

X,meso = 1
3 tr(σX) [18, 19, 30, 70, 75].

This is not entirely correct, as grain boundary and other interfacial resistances can
be quite significant and neglecting them leads to overestimated conductivities. In
general terms, if the atomistically estimated conductivity is within an order of
magnitude above the experimental values, the estimation is considered good enough.
Extending atomistic methods to the mesoscale simulation of cathodes (coarse-
graining) will provide powerful means for examining the impact of large-scale
interfacial effects.

The self-diffusion coefficient for X+ in an orthotropic crystal is a diagonal tensor
DX whose i-th entry is given by

〈�2ri(t)〉 = 2DX,i t, t >> tc, (1)

where 〈�2ri(t)〉 is the mean square displacement of the ions in the i-th direction
after time t , and tc is a characteristic diffusion time (for the cathode, it corresponds
to the average interval between consecutive ionic jumps). DX,i is related to σX,i

through the corrected Nernst-Einstein equation:

σX,i = cX(QXF)2
DX,i

HrkBT
, (2)

where cX is the charge carrier concentration, QX is its ionic charge, F is the
Faraday’s constant, kB is the Boltzmann’s constant, T is the temperature andHr ≤ 1
is the Haven’s ratio. Hr corresponds to the ratio of the charge carrier collective
diffusivity to the self-diffusivity; it is unity in the small concentration limit. Above
that, ionic displacements are correlated due to long-range Coulomb interactions and
this correction is required [56].

2.2.2 Ionic Conduction in Electrolytes

In most electrolytes, positive ions (cations) move isotropically in all directions.
However, in liquid and polymer electrolytes, X+ usually originates from the
dissociation of a salt, which means that negative counterions (anions) are also
present (e.g. standard Li salt LiPF6 dissociates into Li+ and PF−

6 ). Since the mobility
of anions and cations is different (the anion is always much heavier), the diffusivity
of both species must be considered in the calculation of the conductivity:

σi = ctotF
2Q2+D+,i + Q2−D−,i

HrkBT
, (3)
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where ctot is the total ionic concentration, Qv is the ionic charge of species v and
Dv,i its self-diffusivity in the i-th direction. v = + for the cation and v = − for
the anion. Using atomistic simulations, it is straightforward to estimate the terms
in equations (2) and (3) [20]. While for single ionic carriers it is often a reasonable
approximation to take Hr = 1, this almost always leads to large errors for dissolved
salts, because of the strong tendency cations and anions have to cluster and behave in
a collective fashion. Finally, in crystalline solid electrolytes such as Li7La3Zr2O12,
X+ moves through a partially unoccupied lattice embedded within a crystalline
framework [19, 41]. In these systems, ionic conduction occurs through discrete
jumps between X sites. However, because the lattice contains vacancies, diffusion is
somewhat more fluid than it is in typical cathode particles (there, diffusion requires
the prior formation of a defect in order to produce a vacant site to which X+ can
jump to). Since no counterions are present in crystalline solid electrolytes, Eq. (2)
can be used to obtain the ionic conductivity.

2.2.3 Ionic Conduction in Anodes

Since we have not tackled yet the study of conduction in graphite anodes, we will not
discuss it in detail. Suffice it to say that ion intercalation in graphitic anodes involves
ion absorption and diffusion through the SEI, and the occurrence of phase transitions
within the ordered graphite structure. As a consequence, it is rather complex and
multiscale in nature. A recent review on advances in the modelling of anodes can be
found in [58].

3 Sampling in Atomistic Simulation

Molecular dynamics (MD) and Metropolis Monte Carlo (MC) are traditional sam-
pling techniques broadly used for solid-state atomistic simulation [39]. Recently,
we have proposed the class of enhanced sampling methods [4] which combine the
advantages of bothMD andMC offering improved sampling efficiency and accuracy
vital for the success of a molecular simulation. The methods utilize the modified
Hamiltonians for sampling enhancement and hence the name of the class—Modified
Hamiltonian Monte Carlo (MHMC). In this section, we briefly review the molecular
dynamics and Monte Carlo approaches and discuss the main features of MHMC as
well as the benefits of employing them in the study of battery materials.

3.1 Molecular Dynamics

Molecular Dynamics (MD) is a computer simulation approach in which the
evolution in time of a group of interacting atoms is followed by integrating the
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Newtonian equations of motion. In general, MD is not trying to generate physically
accurate trajectories: this is often an impossible task. Instead, quantities of interest
are statistical averages computed during the sampling of phase space.

Let us denote the positions of a system of n particles as r ∈ R
d , where d = 3n,

and the velocities as v ∈ R
d and assume that the system is conservative, i.e. a

potential energy function U exists such that

F(r) = −∇rU(r), (4)

where F are the forces. The function U is also called a force field and it contains
the contribution to the potential energy from all interatomic interactions. Then,
for the classical n-body problem in MD-simulations, Newton’s second law can be
expressed as

dr
dt

= v, M
dv
dt

= F(r), (5)

where M ∈ R
d×d is the (symmetric positive definite) mass matrix.

The Hamiltonian formulation of Newtonian mechanics (5) reads

dr
dt

= ∂H

∂p
= M−1p,

dp
dt

= −∂H

∂r
= −∇rU(r). (6)

Here p = M ṙ,1 p ∈ R
d is the linear momenta and the Hamiltonian or energy

functional is defined as

H(r,p) = 1

2
pT M−1p + U(r), (7)

where the super index T denotes the transpose vector. The equations in (6) are
the Hamilton equations of motion. By introducing the 2d × 2d matrix J =[
0d×d −Id×d

Id×d 0d×d

]
, (6) can be rewritten as (cf. [65])

d

dt

[
r
p

]
= J−1∇H(r,p), (8)

where

∇H(r,p) =
[
∂H

∂r
,
∂H

∂p

]T

.

1For simplicity, we use here the dot-notation for the derivatives in time.
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The space defined by the vectors (r,p) satisfying Eq. (8) is called the phase
space. Under suitable conditions, there is a unique exact solution at a time t for
every initial point (r(0),p(0)), and, for any time t , a flow map φt can be defined as

(r(t),p(t)) = φt (r(0),p(0)). (9)

Hamiltonian flows have a number of important properties, including (cf. [65]):

1. Symplecticity: For all t , a flow map φt is symplectic if, at each point (r,p) in
phase space,

φ′
t (r,p)T Jφ′

t (r,p) = J,

where φ′
t (r,p) is the 2d × 2d Jacobian matrix of φt . An important consequence

of symplecticity is phase volume preservation (oriented volume): If A represents
a region in phase space, then the volume of φt (A) is invariant in t .

2. Time reversibility: The Hamiltonian system described by Eqs. (7)–(9) is time
reversible; i.e., for all t , φ−1

t = φ−t .
There are another two characteristics that do not apply generically to all

Hamiltonian flows. However, they have been empirically observed in the flows
arising from many systems in MD simulations (cf. [52]):

3. Ergodicity: In statistical physics, ergodicity is defined to be the property that for
any observable �, the time averages of � eventually converge to the average of
� over the phase space. More precisely, for a probability measure π preserved
under the Hamiltonian flow, ergodicity implies that

lim
T →∞

1

T

T∑
t=0

�(φt (r,p)) = lim
T →∞

1

T

∫ T

0
�(r,p)dπ(r,p). (10)

This is very useful for simulations, as it allows approximating the spatial averages
by means of time-averages available through MD.

4. Sensitive dependence on initial conditions (SDIC): In high-dimensional
Hamiltonian systems, there are arbitrarily close points (r′,p′) to (r(0),p(0)),
such that the positive orbit starting at (r′,p′) eventually diverges from the one
starting at (r(0),p(0)). As a consequence, MD trajectories cannot be computed
for long periods of time in a classical sense (that is, point-to-point matching
between exact value and computed value), because even the unavoidable round-
off error will naturally be magnified, thus potentially rendering computed values
that are far from the actual values.

SDIC and ergodicity are two phenomena playing complementary roles in
computing long-term trajectories of MD flow-maps: while SDIC prevents the
computation of accurate trajectories, ergodicity allows the extraction of statistical
information from the same computations. From a numerical standpoint, if a
discretization φL�t of the flow map φt (where L�t is a trajectory length and
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�t is a time step) is symplectic, then averages of an observable � calculated
along orbits of φL�t will converge to the desired spatial average as the time step
�t tends to 0. Efficient and simple integrators providing symplecticity and time
reversibility are available, the most popular of which are the Störmer-Verlet method
and its extensions (leapfrog, velocity Verlet, etc.). Nonetheless, MD still suffers
from several drawbacks:

(i) As stated in Eq. (10), making use of ergodicity (if it exists) requires sufficiently
long trajectories. In systems with large energy barriers such as the ones
between adjacent sites in cathode materials, meaningful trajectories may need
to be hundreds of nanoseconds long (∼10−7 s) to sample atomic jumps.
Because time steps need to be small (typically ∼10−15 s), the number of steps
required can be as high as L ∼ 108. For a tens-of-thousands atoms system this
can be very demanding, even with robust computing architectures.

(ii) Because MD only allows for slow exploration of configurational space through
a sequence of many small steps, systematic discretization errors can be
significant.

(iii) In the absence of external forces, the flow defined by (9) is energy preserving:
the dynamics occurs on a surface in R

2d for which H is constant. The
probability density arising from this condition is the so-called microcanoni-
cal ensemble. However, most practical applications occur either at constant
number of particles, N, temperature, T, and volume V (the canonical or NVT
ensemble) or at given N , T and pressure, P (the isothermal-isobaric or NPT
ensemble). In the latter two ensembles, the Hamiltonian must be modified
by adding additional degrees of freedom, which are coupled to the particle
velocities (thermostatting) and simulation domain dimensions (barostatting),
increasing computational cost and introducing additional sources of error.

One significant advantage of MD is the ability to capture dynamical properties,
such as the diffusion coefficients in Eqs. (2) and (3). In addition, even though the
true evolution of the system may not be captured, qualitative information regarding
the underlying mechanisms of the physical processes can still be extracted.

3.2 Monte Carlo Simulations

While MD tries to estimate the value of the integral on the r.h.s. of Eq. (10) using
a deterministic scheme, Monte Carlo (MC) simulations attempt to approximate the
value of such integral using a stochastic approach. For simplicity, we will refer only
to the canonical ensemble, for which the probability density distribution is

π(r,p) ∝ exp(−βH(r,p)), (11)

where β = (kBT )−1 is the thermodynamic beta. The position and momenta
contributions to the Hamiltonian in Eq. (7) are separable. Moreover, the momenta



80 M. R. Bonilla et al.

part can be analytically integrated, which means that only the target distribution

π(r) ∝ exp(−βU(r)), (12)

needs to be sampled using the Metropolis-Hastings Markov chain MC algorithm
[42]:

• The current configuration in the chain r is randomly perturbed to generate a
trial atomic configuration r′. A typical perturbation might be a single-particle
displacement: randomly pick an atom and displace its position by a small amount.

• Accept the proposal configuration to become rnew with probability

α = min

{
1,

π(r′)
π(r)

}
= min

{
1, exp[−β(U(r′) − U(r))]} .

Otherwise, dismiss r′ and set rnew to r.
• Repeat the two steps until the number of configurations reaches N .

Following this procedure, due to the law of the large numbers, the average of an
observable � can be estimated as

〈�〉 = lim
N→∞

1

N

N∑
i=1

�(ri ),

where {ri} is the set of accepted configurations.
Metropolis MC has a number of advantages with respect to MD. Thus, MC does

not have an equivalent of a time step error, its sampling is exact with only statistical
errors involved. The method is flexible in the choice of sequences of steps which
potentially can lead to rapid exploration of configurational space. However, it also
has a number of important drawbacks: for systems with large numbers of degrees
of freedom, such as biomolecules, it may become impractical due to the difficulties
in specifying a physically meaningful move leading to high acceptance rates. In
addition, the method does not provide dynamical information, which means that
quantities such as diffusivities or conductivities (Eqs. (1)–(3)) cannot be estimated.

3.3 Modified Hamiltonian Monte Carlo Methods

Our choice of simulation techniques for the effective study of ion transport in bulk
and nanostructured materials is based on four requirements critical for the success
of the project. Such methods should (i) sample efficiently multidimensional space;
(ii) reproduce dynamical properties of a simulated system; (iii) be able to detect rare
events; and (iv) be easily extended to simulations on meso-scales.
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The Modified Hamiltonian Monte Carlo (MHMC) methods were originally
developed for atomistic simulations of complex systems [1, 2, 45, 68] and then
adapted for multiscale [31] and mesoscale simulations [3]. They proved to be
successful in the study of rare events in complex biological processes [3, 4, 31, 74]
though never have been applied to solid-state chemistry until recently when we
proposed using them for the simulation of battery materials [18, 19, 32, 41].

MHMC are importance sampling Hybrid Monte Carlo (HMC) methods [28] that
achieve higher efficiency than MC, HMC or MD by sampling with respect to a
modified Hamiltonian. Such methods are especially appropriate when exploring
high-dimensional configurational spaces, helping in finding energy global minima
and simulating rare events such as slow chemical reactions or phase transitions.
Furthermore, the MHMC methods originated from the generalized hybrid Monte
Carlo (GHMC) [44, 49] can keep the dynamic information throughout the sampling
process similar to stochastic Langevin and Brownian dynamics simulations.

In general, to simulate the properties of physical systems, one collects samples
with respect to a target distribution such as π(r) in (12). For that purpose,
HMC methods are a suitable choice as a sampling technique. Given a separable
Hamiltonian (7), HMC generates samples of configurations from the augmented
canonical distribution (11). Then, marginalizing momenta variables out, one can
obtain the samples with respect to the target distribution π(r) in (12).

Instead of sampling from the canonical distribution (11), MHMC methods
sample from an importance canonical density

π̃(r,p) ∝ exp
(
−βH̃ [k](r,p)

)
, (13)

where H̃ [k] is the kth order truncation of the modified Hamiltonian which is pre-
served exactly by a symplectic integrator [65]. For certain H2,H3, . . ., a modified
Hamiltonian reads as

H̃ = H + �tH2 + �t2H3 + . . . ,

where �t is an integration time step. For an integrator of order m, H̃ = H +
O(�tm), so that H2, . . . , Hm vanish. Thus, for k > m,

H̃ [k] = H + �tmHm+1 + · · · + �tk−1Hk. (14)

According to [6, 14], for a system of D particles, the expectation of the increments
of H and H̃ [k] in an integration leg satisfy

E[�H ] = O
(
D�t2m

)
, (15)
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and

E

[
�H̃ [k]] = O

(
D�t2k

)
(16)

respectively.
Let us now describe the algorithm of a generic MHMC method. Given a sample

(r,p) from the distribution π̃ , the next configuration (rnew,pnew) is obtained as
follows:

• Set up the new momentum p∗ by applying a momentum refreshment procedure
that preserves the importance density π̃ (13).

• Generate a proposal configuration (r′,p′) by simulating the Hamiltonian dynam-
ics (6) with the Hamiltonian H in (7) and the initial condition (r,p∗) using a
symplectic and time-reversible numerical integrator 
 (cf. [65]).

• Accept the proposal configuration (r′,p′) to become (rnew,pnew) with probabil-
ity

α = min

{
1,

π̃(r′,p′)
π̃(r,p∗)

}
.

Otherwise, reject the proposal and perform a momentum flip, i.e. (rnew,pnew) =
(r,−p∗).

The reader should notice that

π̃(r′,p′)
π̃(r,p∗)

= exp
(
−β

(
H̃ [k](r′,p′) − H̃ [k](r,p∗)

))
= exp

(
−β�H̃ [k]). (17)

For comparison, in the Hybrid Monte Carlo algorithm, the corresponding ratio is
given by

π(r′,p′)
π(r,p)

= exp (−β�H). (18)

Therefore, since k > m, one can see from (15)–(18) that MHMC methods may
provide higher acceptance rates than regular HMC methods. The fewer rejections
has a positive impact not only on the sampling efficiency but also on the accuracy
of dynamics since less momentum flips occur [2, 5]. Moreover, for very big
systems, where performance of HMC degrades dramatically, MHMC algorithms
may counterbalance the error introduced by the size D and maintain a high
acceptance rate by choosing a bigger truncation order k without increasing the order
of the integrator m [6].

Since in MHMC methods the samples are generated with respect to the impor-
tance density (13), the computation of averages of any observable � with respect
to the canonical distribution (11) requires a reweighting. Given N samples of the
observable �i , i = 1, 2, . . . , N along a trajectory (ri ,pi ) drawn from (13), the
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average of � with respect to (11) is calculated as

〈�〉π =
∑N

i=1 ωi�i∑N
i=1 ωi

, (19)

where the importance weights are computed as

ωi = exp
(
−β

(
H(ri ,pi ) − H̃ [k](ri ,pi )

))
∀i = 1, 2, . . . , N.

A big variability among weights would mean that the canonical density π in (11)
and the importance density π̃ in (13) are not close. This would lead to errors in the
averages, as many samples would not contribute significantly to the computation
in (19). Such a situation is well controlled, however, in the MHMC methods
through the appropriate choice of an integration step and an order of a modified
Hamiltonian (cf. (14)). This makes samples of (13) an efficient means towards
computing expectations with respect to (11).

The various algorithms in theMHMC class of methods may differ in the elements
described above: refreshing the momenta, simulating the Hamiltonian dynamics or
computing the modified Hamiltonians.

For our purposes here, the Generalized Shadow Hybrid Monte Carlo (GSHMC)
method [2] is of special interest. As its predecessor the Targeted Shadowing
Hybrid Monte Carlo (TSHMC) method [1], GSHMC takes advantage of a partial
momentum update based on the ideas of Horowitz [44], which helps preserving
partially dynamics and enhancing sampling efficiency:

pr= cosϕ p + sinϕ u,

ur= − sinϕ p + cosϕ u,
(20)

where ϕ ∈ (0, π/2] is a parameter and u a random noise drawn from N (0, β−1M).
The proposed refreshed momentum pr is accepted, i.e. p∗ = pr , with the probability

αp = min

{
1,

Ĥ (r,pr ,ur )

Ĥ (r,p,u)

}
, (21)

where

Ĥ (r,p,u) = H̃ [k](r,p) + 1

2
uT M−1u.

In the case of rejection, we set p∗ = p.
GSHMCwas originally introduced for atomistic simulations in canonical ensem-

bles [2, 30, 74] and then adapted to simulations in isobaric-isothermal ensembles
[35].
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Different extensions of GSHMC aiming at specific applications appeared
recently. For meso-scale simulations, the meso-GSHMC method [3] was proposed.
In coarse-grained mesoscopic models, the fluctuation-dissipation contributions
should mimic the impact of non-resolved finer details of an atomistic model on the
coarse grained length and time scales while maintaining the system at a desired
temperature. For this purpose, the stochastic thermostat called Dissipative Particle
Dynamics (DPD) [33] is used. The meso-GSHMC puts DPD in the GSHMC
framework by introducing a DPD-type momentum update step which conserves
total linear and angular momenta. Unlike original DPD, meso-GSHMC samples
exactly from the canonical distribution (11) while dealing with the fluctuation-
dissipation terms.

For multiscale simulations, a naturally possessed weak stochasticity of GSHMC
can be combined with the modified impulse multi-time-stepping (MTS) molecular
dynamics and the modified Hamiltonians specially derived for modified MTS
integrators. The resulting MTS-GSHMC method [31] demonstrates the improved
stability of theMTS integrators and superior sampling performance over multi-time-
stepping molecular and Langevin dynamics.

More recently, the MHMC method for solid-state atomistic simulations called
Randomized Shell Mass GSHMC (RSM-GSHMC) has been proposed [32]. In this
algorithm, a mass randomization is implemented as part of the momentum update
step in order to reduce the negative effect of a shell mass within a dynamical
shell model on the kinetics of a simulated system. Before updating the momenta,
a fraction of the atomic mass is redistributed between the core and the shell,
maintaining the total mass constant. Apart from the study where the methodology
was introduced [32], it has been also used in [18].

All variants of GSHMC described above posses the strongest features of GSHMC
such as the enhanced sampling, ability to reproduce dynamical properties of
simulated systems and rigorous temperature control. As demonstrated in the studies
cited above (see also [6] and references therein) for different problems, the use of
GSHMC methods resulted in a systematic improvement of the sampling efficiency
and accuracy with respect to those observed with conventional sampling techniques,
such as MD, MC, HMC or Langevin dynamics.

While GSHMC methods were designed for applications in the field of molecular
simulation, the Mix & Match Hamiltonian Monte Carlo (MMHMC) [60] method
has been recently proposed for Bayesian inference problems. In simple terms,
MMHMC is an adaptation of GSHMC to computational statistics. It proved to
be successful in the simulation of popular statistical models such as multivariate
Gaussian, Bayesian Logistic Regression and Stochastic volatility [60].

Two possible strategies for enhancing performance of MHMC methods are (i) a
suitable choice of the method-specific parameters; and (ii) an optimization of con-
servation properties of numerical integrators used for simulating the Hamiltonian
dynamics. The latter is explored in the following section.
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3.4 Modified Adaptive Integration Approach

In this study, we limit ourselves to separable Hamiltonians, such as the one in (7),
meaning that the Hamiltonian can be written as a sum H ≡ A + B of two partial
functions

A(r,p) = 1

2
pT M−1p, B(r,p) = U(r),

which correspond to the kinetic and potential energies, respectively. Thus, the
Hamilton equations of motion (6) can be rewritten as

dr
dt

= ∇pA(r,p) = M−1p,
dp
dt

= −∇rB(r,p) = −∇rU(r).

These equations can be integrated analytically and their solution flows at a time t

are given by (cf. (9))

(r(t),p(t)) = φA
t (r(0),p(0)) = (r(0) + tM−1p(0),p(0)), (22)

and

(r(t),p(t)) = φB
t (r(0),p(0)) = (r(0),p(0) − t∇rU(r(0)). (23)

These solution flows of the partial systems, for a time t , associate the exact solution
value (r(t),p(t)) with each initial condition (r(0),p(0)).

A splitting integrator can be constructed as a palindromic composition of the
solutions flows (22) and (23) of the partial systems (cf. [16]). Here, we limit our
attention to the one-parameter family of two-stage2 splitting integrators studied in
detail in previous works [6, 17, 36]. The map that advances the solution over one
step �t is

ψ�t = φB
b�t ◦ φA

�t/2 ◦ φB
(1−2b)�t ◦ φA

�t/2 ◦ φB
b�t , (24)

where b ∈ (0, 1/4] is the parameter that fully characterizes a two-stage integrator.
Then, for a time τ = L�t with L ∈ N, one can also define the transformation 
τ

as the composition


τ = ψ�t ◦ · · · ◦ ψ�t︸ ︷︷ ︸
L times

.

2The stage notation first suggested by Blanes et al. [17] indicates the number of force evaluations
performed per step.
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The integrators in (24) are symplectic because they are a composition of Hamil-
tonian flows [65]. Moreover, they are also time-reversible due to the palindromic
structure of (24) [17].

The optimal choice of a parameter b in (24) has been thoroughly investigated
for the HMC [36] and MHMC methods [6, 61]. The suggested criteria for such
“optimality” is the maximization of acceptance rates in HMC or MHMC due to the
conservation properties of a chosen integrator.

For MHMC, the focus is on those two-stage integration schemes ψ that provide
the lowest expected error �H̃ [k] in modified Hamiltonians with respect to a
modified density (13). Here,

�H̃ [k] = H̃ [k](
τ (r,p∗)) − H̃ [k](r,p∗), (25)

for a given time τ = L�t . Thus, the acceptance criterion in (17) is integrator-
dependent.

In contrast to the well established practice in molecular simulation to use the
same integrator, usually Verlet/leapfrog, for a broad range of the simulated systems,
in [6], it has been proposed to construct a system specific two-stage integrator prior
to an MHMC simulation. The Modified Adaptive Integration Approach (MAIA),
which realises this idea, adapts the parameter b to a given simulated system and
a chosen by a user value of step size �t in such a way that the expected value of

(25), E
[
�H̃ [k]

]
, is minimal. Based on the detailed analysis of the one-dimensional

harmonic oscillator, the MAIA approach provides the upper bound ρ(h, b) of

E

[
�H̃ [k]

]
,3 where h is a dimensionless step size related to �t by

h = √
3ω̃�t.

Here,
√
3 is a safety factor used to avoid nonlinear resonances (cf. [6, 36, 67]) and

ω̃ is the fastest angular frequency of the two-body interactions. Then, the value of b

is found as the one that minimizes

max
0<h<h̃

ρ(h, b),

where h̃ is the dimensionless time step associated to a user defined �t .
One should note that, for a realistic physical model consisting of D harmonic

oscillators, (0, h̃) is the shortest interval that contains all hi = √
3ωi�t , where ωi

are the D frequencies in the problem.
It has to be stated that MAIA is a never-fail strategy, meaning that it guarantees,

by construction, that the numerical stability is not lost. For the biggest allowed
integration step sizes, the parameter b in (24) becomes 1/4, which means that the

3The expression for ρ(h, b) as well as the details of its derivation can be found in [6].
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integrator of choice is the two-stage version of the classic velocity Verlet. This
integration scheme is known as the integrator with the largest stability interval
among two-stage integrators, namely (0, 4).

The extended MAIA (e-MAIA) [6] is capable of keeping the momenta accep-
tance rate (21) at the user-desired level for any given problem through the intelligent
choice of the parameter ϕ in the momentum update (20).

Both MAIA and e-MAIA proved their efficiency in simulations of complex
molecular systems in Materials Science, Biology and Chemistry [6, 18, 19, 32, 41].

3.5 Software Implementation

The GSHMC methods for molecular simulation, i.e. GSHMC, meso-GSHMC,
RSM-GSHMC, described in Sect. 3.3 have been implemented in the in-house
software package MultiHMC-GROMACS [30, 35, 36] which is built on top of
the popular suite of programs for molecular dynamics simulations GROMACS
[12, 43]. GROMACS supports state-of-the-art molecular simulation algorithms and
is well known for its computational efficiency and parallel scaling properties. These
features are carefully maintained in MultiHMC-GROMACS.

Two-stage integrators (24) are implemented in MultiHMC-GROMACS as a
concatenation of velocity Verlet steps4 [36]. The implementation is general enough
to allow the use of all members of the family (24), including the adaptive integration
schemes MAIA and e-MAIA (Sect. 3.4). The analysis required for the MAIA and
e-MAIA methods is done within the GROMACS preprocessing module [6]. Thus,
no computational overheads are introduced. Once the integrator parameter b and the
angle ϕ (in the e-MAIA case) are obtained, they are passed to the running module
prior to a simulation.

The package offers the efficient implementation of various formulations of
modified Hamiltonians derived for the range of GSHMC methods and numerical
integrators. In addition to the GSHMC methods, the HMC samplers have been
included in MultiHMC-GROMACS as particular cases of GSHMC [36]. The user
can select any GSHMC or HMC method from the code simply by predetermining
appropriate parameters in the modified GROMACS input file. The same applies to
numerical integrators.

A detailed description of the MultiHMC-GROMACS package may be found in
[6, 30, 32, 35, 36].

The Mix & Match Hamiltonian Monte Carlo (Sect. 3.3), proposed for applica-
tions in computational statistics, is implemented in the in-house software package
HaiCS [60]. The package is designed for statistical sampling of high dimensional,
complex distributions and parameter estimation in different models by means of

4The main idea is that, for every b, an integration step ψ�t can be rewritten as ψ�t =(
φB

b�t ◦ φA
�t/2 ◦ φB

(1−2b)�t/2

)
◦

(
φB

(1−2b)�t/2 ◦ φA
�t/2 ◦ φB

b�t

)
.
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Bayesian inference using HMC-based methods. The code benefits from the efficient
implementation of modified Hamiltonians, multi-stage splitting integrators [61],
performance analysis tools compatible with CODA toolkit [59] and provides a
user-friendly interface for implementing alternative HMC-type samplers, splitting
integrators and statistical models.

Both MultiHMC-GROMACS and HaiCS are written in C and targeted to
computers running UNIX certified operating systems.

4 Force Fields

As briefly introduced in Sect. 3.1, a force field is a mathematical expression
describing the dependence of the energy of a system on the positions of its particles.
It is fully defined by a functional form of the interatomic potential energy, U (r), and
a set of parameters. There are several force fields in use addressed to particular
families of materials (e.g. AMBER, for proteins and DNA [27] or CHARMM
for polymers [24]). However, it is clear that for many specific materials and
applications, custom force fields must be developed. Force field development has
three fundamental requirements:

• an appropriate functional form for the interaction potentials,
• a training data set of structural, mechanical and/or thermodynamic properties

(e.g. experimental, computed, etc.) to fit the model, and
• an optimization strategy to perform the fitting.

Ideally, a force field must be simple enough to be evaluated quickly, but
sufficiently detailed to reproduce the properties of interest. Below, we elaborate
on each of these requirements, with particular focus on those interactions that are
typical to intercalation in cathodes and solid electrolyte materials. Hence, metallic
systems are not included in this discussion.

4.1 Functional Form of the Interaction Potentials

Let us denote a position of atom i in an n-particle system as ri , and the Euclidean
distance between atoms i and j as rij . The general expression for most force fields
has the form:

U(r1, . . . , rn) = Unon-bonded(r1, . . . , rn) + Ubonded(r1, . . . , rn).

Contributions to Ubonded(r1, . . . , rn) come from groups of chemically linked
atoms (sharing electrons), and are typically divided into two-body bond-stretching
potentials, three-body angular-bending potentials, and four-body dihedral potentials
(Fig. 3a). For instance, the form of Ubonded in the popular OPLS [48] and AMBER
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Fig. 3 (a) Typical bonded interactions: bonding (Ubond), angular (Uangle), proper dihedral (Uproper)
and improper dihedral (Uimproper) interactions. Ubonded = Ubond + Uangle + Uproper + Uimproper. (b)
Core-shell model of polarizability: the polarizable ion of mass m and charge Q is represented as a
core (c) and a shell (s) with opposite charges Qc and Qs , respectively, interacting through a bond
potential Ucs (usually harmonic, Ucs = kcsrcs ). The mass of the ion is concentrated in the core
(m = mc), to allow for instantaneous thermalization of the shell. In practice, however, it is better
to choose a small shell mass (ms > 0,ms << mc) to boost computational efficiency

[27] force fields is:

Ubonded(r1, . . . , rn) =
nbonds∑
b=1

kb(rij − r0,b)
2
i,j∈b +

nangles∑
a=1

ka(θijk − θ0,a)
2
i,j,k∈a

+
ndihedrals∑

d=1

3∑
m=1

kd,m

2
(1 + cosmφijkl)i,j,k,l∈d ,
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where angle θijk = θ(ri , rj , rk) (analogously for proper dihedral φijkl), and {r0,b},
{θ0,a}, {ka}, {kb} and {kd,m} are positive force field parameters. There are no
improper dihedrals in the original version of these force fields, but later updates
have included them.

Polarizability is the ability for some atoms to form instantaneous dipoles. In
many cases, its effect can be strong enough to significantly influence thermody-
namic and transport properties [75, 79]. One of the simplest way to incorporate
polarizability into the force field is the core–shell model suggested by Dick and
Overhauser [26], in which a central core of a charge Qc and a shell of a charge Qs ,
with QsQc < 0, are introduced in such a way that the sum of these charges Qc +Qs

equals the ion charge Q (Fig. 3b). The core and shell are coupled together in a unit
via a bond potential (usually harmonic), which allows the shell to move with respect
to the core, thus simulating a dielectric polarization. In the original proposal by Dick
and Overhauser, the core mass mc was equal to the mass of the ion, m (i.e. the shell
mass ms was zero), in order to enable instant thermalization of the shell. Mitchell
[55] showed that taking a sufficiently small value for ms allowed simulating the
core-shell system using conventional MD, as the thermal contribution from the shell
was insignificant. This is called the cs-adiabatic scheme (cs-adi), which we have
employed in our previous work [18]. The force field parameters for the harmonic
cs-adi model, Ucs = kcsr

2
cs , are the spring constant kcs , Qs and ms .

The non-bonded interactions present in a typical force field are pairwise
Coulomb, UCoul, and van der Waals, UvdW, interactions

Unon-bonded = UCoul + UvdW,

acting over all atom pairs (i,j ). In general, however, contributions from pairs already
interacting through bonded potentials are totally or partially excluded.UCoul is given
by

UCoul = 1

4πε

n∑
i,j=1

QiQj

rij
, (26)

where ε is the vacuum permittivity and Qi the charge of atom i. Qi is a force field
parameter, but in solid state systems its value is often taken as eZi , where e is the
electron charge and Zi the oxidation state of atom i. UvdW can take many possible
forms, the simplest non-trivial of which is the hard-sphere potential. For battery
materials, two types of vdW potentials are particularly common: the Lennard-Jones
(LJ)-type potentials, ULJ (for liquid and polymeric electrolytes) and the softer Born
potential UBorn (for crystalline materials) [40]. The LJ potentials between i and j

atoms is given by

ULJ,ij = Aij

rn
ij

− Bij

rm
ij

,
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where Aij > 0 and Bij > 0 are force field parameters. Powers (n, m) typically
assume the values (9,6) or (12,6), but can also be taken as adjustable parameters.
UBorn,ij , on the other hand, is a softer potential, allowing for greater interatomic
overlap:

UBorn,ij = Aij exp

(
− rij

ρij

)
− Cij

r6ij

+ Dij

r8ij

, (27)

where Aij , ρij , Cij and Dij are positive force field parameters. UvdW can, of course,
be written as a combination of several types of potentials: e.g. when modelling
polymer/garnet composite solid electrolytes, the LJ potentials can be employed to
model the interactions in the polymer phase, while the Born potential can be used
to model interactions within the garnet. In any scenario, UvdW = 1

2

∑n
i,j=1 UvdW,ij .

4.2 Training Dataset

It is important to note that force fields partition the total electronic energy into well
defined atom-atom contributions, such as Coulomb, polarization, dispersion, etc.
However, it is impossible to fully separate the intricate electronic effects this way.
The proper choice of a functional form of a force field and a set of data used to
parameterize it (the training dataset, TD) usually makes it possible to generate a
force field that is valid at least for specific problems and within the chemical and
environmental constraints from the TD.

The TD typically comprises data obtained either from ab initio or semi-empirical
quantum mechanical (QM) calculations, or from experimental measurements such
as neutron, X-ray and electron diffraction, NMR, Raman spectroscopy, etc. Nat-
urally, experiments can only probe a limited set of properties and their reliability
depends on the quality of the experimental setup and the examined sample. The
synthesis of many battery materials is by no means an exact science, and structural
defects and impurities can be significant. That is why, it is expected that TDs from
extensive QM calculations lead to more generally applicable force fields compared
to those from experimental data. However, QM calculations still contain plenty
of approximations, and a QM-based force field is of little or no use if it cannot
reproduce experimental values or trends. In many cases, force fields trained through
QM-based TDs are further fine-tuned with respect to experimental measurements.

4.3 Optimization Strategy to Perform the Fitting

The optimization strategy refers to the technique through which the set of optimal
parameters is determined. When using an experimental TD, the general idea is to
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find the set of force field parameters γ1, . . . , γM that minimizes the scoring function

f (γ1, . . . , γM) =
L∑

i=1

‖ ωi(〈�〉sim,i − �0
i ) ‖, (28)

where �0
i is the ith reference observation in the TD, 〈�〉sim,i its atomistically

simulated value with the trial force field, L the total number of observations, ωi

is the weight given to observation i and ‖ · ‖ a suitable norm.
In exploiting a QM-based TD, the scoring function has a rather different form.

While experimental TD’s are invariably composed of average properties (e.g. unit
cell sizes, Young’s moduli, etc.) that result from a configurational average in a
particular ensemble (even the fastest neutron scattering measurement results from
averaging over an infinite number of configurations), QM-based TDs are normally
composed of instantaneous snapshots of the equilibrated system. Hence, one can
set up the particles in the exact positions provided by the snapshots, and then find
the values of γ1, . . . , γM that achieve, for example, the total energy closest to the
QM energy for each snapshot. This in fact is what most studies have done. A much
more effective strategy is to additionally adjust {γk} to multidimensional variables
such as forces and stresses, which are also available from QM calculations. This
is precisely what the so-called force-matching algorithm (FMA) does and what we
employ in our study. For a training dataset consisting of L configurations, a suitable
FMA scoring function is given by [22]

f (γ1, . . . , γM) =
L∑

l=1

⎡
⎣3ωe(el − e0l )2 + 1

2
ωs

6∑
p=1

(sp,l − s0p,l)
2 +

3nl∑
i=1

(fi,l − f 0
i,l )

2

⎤
⎦ ,

(29)

where nl is the number of particles in configuration l. {el}, {sp,l , p = 1, . . . , 6}
and {fi,l , i = 1, . . . , 3nl} are the energies, stresses and forces obtained with the trial
force field, respectively. The superindex 0 denotes the reference values from the TD.
ωe and ωs are user-defined weights to balance the amount of available information
for each quantity. Such a scoring function has been proposed and implemented in
the open software potfit, developed by Brommer et al. [22, 23]. We have adjusted
this function to parametrization of a broader range of models by incorporating in it
core-shell polarizable potentials and angular terms [18, 32].

The scoring functions (28) and (29) can be highly multidimensional and non
convex. Occasionally, some of the force field parameters can be reliably set to
known values from similar force fields, simplifying the problem and allowing
the use of local optimization strategies [19]. In most cases, however, stochastic
global optimization techniques, such as simulated annealing, are necessary to avoid
local minima. This, of course, comes with the hurdle of finding suitable adjustable
parameters for the algorithm itself.
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5 Applications

Below, we summarize the highlights of recent work performed in our group
on the atomistic simulation of battery materials for LIBS and NIBS, using the
numerical schemes described above. Specifically, we focus on cathode material
olivine NaFePO4 for NIBs, and solid electrolyte material Li7La3Zr2O12 for LIBs.

5.1 Na Diffusion in Cathode Material Olivine NaFePO4
for NIBS

Olivine LiFePO4 is likely the most studied commercial cathode for LIBs [73]. It
provides high stability, rate capability, and sustained high voltage throughout the
discharge cycle. In principle, one could expect NaFePO4 to inherit these properties
from its isostructural lithium counterpart, making it a suitable cathode for NIBs. The
first fundamental studies revealed that the intercalation mechanisms (see Sect. 2.1)
of Li+ and Na+ in FePO4 are, however, significantly different [81]. While LixFePO4
(0 ≤ x ≤ 1) is stable at all values of x, NaxFePO4 is only stable at discrete Na+
contents: x ∈ {0.0, 0.66, 0.83, 1.0} [66]. This means that during the discharge,
the structure of NaxFePO4 evolves through combinations of these stable, highly
organized phases (Fig. 4), adding another level of complexity to the study of Na+
intercalation as compared to that of Li+. This issue is particularly relevant when
studying dynamic properties such as Na+ mobility using simulations, requiring
large supercells and long simulation times to account for possible sodium orderings.
These requirements make the use of first-principles methods, such as density
functional theory (DFT), prohibitive in terms of computational cost. We addressed
this computational challenge using atomistic simulations. Two key elements are
required for this task: an accurate force field and an efficient sampling technique.

Whiteside et al. [75] developed a force field for the structural simulation of
NaFePO4, incorporating the polarizability of the oxygen atoms through the core-
shell model. We will denote such force field asWhiteside-ff from here on. However,
removal of one Na+ ion leads to the oxidation of one iron (i.e. iron goes from Fe2+
to Fe3+), which means that NaxFePO4, with x < 1, contains a combination of
both Fe2+ and Fe3+ (Fig. 4b). Whiteside-ff does not consider the presence of Fe3+
and, as a consequence, is not suitable for a general study of charge transport in
NaxFePO4. To overcome this issue, we developed a new force field for this system,
the NaxFePO4-ff, using accurate DFT calculations at the stable Na+ contents.
The force field employs the cs-adi model described in Sect. 4.1 to incorporate
polarizability in oxygen and iron atoms.

For configurational sampling of the system, conventional MD (see Sect. 3.1) has
two key disadvantages. On the one hand, it requires many simulation steps for
the estimation of the room temperature diffusivities. On the other hand, the cs-
adi version of the core-shell polarizability model allows only for small time steps,
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Fig. 4 (a) The convex-hull (blue line) of NaxFePO4. At any x, all possible system structures will
have an energy of formation above the convex hull. As a consequence, the most stable structure for
a given x will be a segregated mixture of the structures corresponding to the closest vertices in the
convex-hull. These vertices are located at x = 0.0, 0.66, 0.83, and 1.0 [66]. For instance, a mol of
Na0.3FePO4 will comprise 0.45 moles of Na0.66FePO4 and 0.55 moles of FePO4. b Left: Structure
of Na0.66FePO4: O2− in green, P5+ in purple, Fe2+ in blue and Fe3+ in red. Na+ is coordinated
by six O2− atoms (yellow octahedra). The curved trajectory followed by Na+ along one of the
channels in the main diffusion direction, y, is depicted as the solid orange line. Na+ vacancies and
Fe3+ ions follow a highly organized banded arrangement (similarly for x = 0.83). Right-top: close
up showing the characteristic Na+ jumping distance. Right-bottom: Cross section of a diffusion
channel along y. The channels along x and z are much narrower, which means that jumps in these
directions are rare. (Adapted with permission from [18]. Copyright (2018) American Chemical
Society)
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increasing the computation time even further. In sight of this, we selected instead
the in-house RSM-GSHMC technique as our simulation tool [32] (see Sect. 3.3),
which simultaneously provides enhanced sampling while incorporating a scheme to
minimize the computational impact of the small shell mass.

5.1.1 Force Field Development

Derivation

Ionic polarizability plays an important role in the dynamics of NaxFePO4. Similarly
to Whiteside-ff [75], we divided the Fe2+ and O2− ions into polarizable core-shell
units. Hereafter, Osh and Fesh will refer to the O2− and Fe2+ shells, respectively.
For the bonded interactions, we considered only the angular potential between the
covalently linked O-P-O ions in PO4 tetrahedra, following

Ubonded = Uangle = ka

na∑
i=1

1

2
(θk − θ0)

2,

where na is the number of angles, and ka and θ0 are force field parameters. Non-
bonded interactions were represented by a sum of the Coulomb (26) and Born (27)
potentials. Only interactions between X - O2−

sh pairs were considered in the Born
contribution (X = Fe2+sh , Fe

3+, Na+, P5+, O2−
sh ). The cores of Fe2+ and O2− only

interacted electrostatically. The TD (see Sect. 4.2) comprised 58 olivine NaxFePO4
configurations consisting of (a) 11 quantum mechanically optimized structures at
0 K, ranging from 72 to 84 atoms, and (b) 58 equilibrated snapshots taken out
of ab initio MD trajectories of an ideal NaFePO4 crystal at 500 and 1000 K. All
TD configurations were computed with the plane wave DFT code VASP [50].
As an optimization strategy, we used the force-matching algorithm described in
Sect. 4.3 with the scoring function (29) and the adaptive simulated annealing scheme
implemented in the in-house extended version of the open source software potfit
[18, 22, 23].

Since the core-shell unit is simply a construct to introduce polarizability within
an empirical force field, the ab initio dataset does not provide information on how
to specify the core and shell coordinates. For the core, a sensible solution consists
in setting its position to that of the actual ion, because the core carries most of the
core-shell unit mass. For the shell, its position should be selected in such a way that
the total force on it is zero. We proposed a consistent approach to treat the shells
positions, which have usually been randomly chosen in previous works [18]. We fix
the spring constant and charge distribution for all core-shell units prior to starting
the parameter estimation. Then, given that dispersion interactions in a core-shell
unit l are assigned to a shell only, the total force on a core l, Fl,core, becomes

Fl,core = Felect
l,core + kl(rl,shell − rl,core),
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Fig. 5 Correct positioning of the shell within a core-shell unit. If the charges and the spring
constant k are set, the fact that dispersive forces do not act on the core uniquely determines the
exact position of the shell

where Felect
l,core is the electrostatic force on a core l, and rl,core and rl,shell are the

respective core and shell positions. Since the force on a shell must in principle be
zero, Fl,core should correspond to the force on the lth ion Fl,ion, estimated from DFT.
Thus, the shells must be allocated such that

rl,shell − rl,core + (Fl,ion − Felec
l,core)/kl = 0, for l = 1, . . . , L. (30)

Felec
l,core depends only on the charge distribution and atom positions. Hence, expres-

sion (30) represents a system of 3L force field-independent equations and 3L
unknown variables for the shells coordinates. In this work, the charge distribution
and spring constants were taken from [75]. The equations in (30) were solved by
a simple fixed-point iteration scheme. The schematic of the method is presented in
Fig. 5.

Validation

The validation involved a comparison of experimental data outside the TD with
the results obtained through atomistic simulations incorporating the proposed force
field. To simulate the present system we chose the RSM-GSHMC simulation
method, which helped to reduce potential negative effects on the kinetic properties
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Fig. 6 Force field validation. All simulated values in this figure were obtained by combining
NaxFePO4-ff or Whiteside-ff with the RSM-GSHMC technique. In Whiteside-ff, the parameters
involving Fe3+ were taken to be the same as those for Fe2+. (a) Relative error ×100 for the unit
cell parameters (a, b, c) with respect to experimental measurements at room temperature [66]. (b)
Relative volume divergence with respect to experimental results at room temperature. (c) Radial
distribution functions for phosphorous atoms in a Na0.58FePO4 system after 10 ps at 300 K. The
dashed line corresponds to the initial positions, which is the same for both force fields

of the system caused by the use of the cs-adi model. We further combined RSM-
GSHMC with the MAIA integrator (Sect. 3.4) to achieve the highest possible
integration accuracy when using two-stage splitting methods, including Verlet.

The final set of parameters of NaxFePO4-ff can be found in [18]. Figure 6
compares the accuracy of NaxFePO4-ff and Whiteside-ff. Figure 6a depicts the
relative error ×100 for the unit cell parameters (a, b, c) with respect to experimental
measurements at room temperature [66]. In the absence of Na+ (x = 0), Whiteside-
ff leads to numerical instability and values cannot be extracted. For x = 0.66
and x = 0.83 both force fields display comparable levels of accuracy, and at
x = 1.0, NaxFePO4-ff is clearly better. When comparing the volume divergence
at room temperature, Fig. 6b shows that NaxFePO4-ff is clearly superior. The



98 M. R. Bonilla et al.

DFT data are calculated at 0 K and thus, its divergence is high. However, it is
clear that NaxFePO4-ff follows the same trend as the DFT values. Finally, Fig. 6c
presents the radial distribution functions between phosphorous atoms, gP−P (r),
in the Na0.58FePO4 system after 10 ps at 300 K. The dashed line corresponds to
the initial configurations, which are the same for both force fields. After 10 ps of
simulation, there is a distortion in the position of the peaks for Whiteside-ff with
respect to the initial gP−P (r), evidencing the additional repulsion between oxygens
of adjacent tetrahedrals when a Na+ ion is removed. This is an anomalous effect not
observed with NaxFePO4-ff due to the reoptimized parameters. Such an anomaly
leads to errors in the diffusivities when using Whiteside-ff.

5.1.2 MD vs. RSM-GSHMC

Figure 7a presents the MSD for Na+ at 700 K in the main diffusion direction,
y, obtained from both traditional MD and RSM-GSHMC. Convergence to the
equilibrium slope that provides the diffusion coefficient through Eq. (1) is reached
nearly 2 ns quicker through RSM-GSHMC, demonstrating its ability to sample the
configurational space more efficiently than MD. The noise in the MSD curves in
Fig. 7 is at least partially due to the fact that a fraction of the Na+ atoms do not
perform any jump or jumps only once. While the situation could be improved by
extending the simulations, the cs-adi model severely limits the simulation time-step,
and further increasing the simulation time comes with a significant increase in the
computation time.

Figure 7b shows the three-dimensional diffusion coefficients of Na+, D =
1
3 (Dx + Dy + Dz), for a range of temperatures using RSM-GSHMC with both
force fields. We also plot results for similar simulations using standard MD with
NaxFePO4-ff. Comparison of the three curves suggests that not only does the force
field affects the diffusion coefficients but the sampling efficiency of the chosen
sampler also does. Indeed, at higher temperatures the computed diffusions using
MD and RSM-GSHMC combined with the same force field (for equal simulation
times) diverge visibly. This is a consequence of the higher sampling efficiency of
GSHMC methods [2]. For longer simulation times, both methods are expected to
converge [32].

5.1.3 Mechanism of Na+ Diffusion

Because RSM-GSHMC does a good job in preserving dynamical information, it
allows an atom-eye perspective of the physics behind the diffusion dynamics of
Na+ in NaxFePO4. We confirmed that the main transport mechanism involves single
Na-ion hops through the one-dimensional channels along the y axis (the [010]
crystallographic direction). Furthermore, we identified the novel Na-ion diffusion
dynamics involving the formation and annihilation of Na+/Fe2+ antisite defects
(the exchange of positions between Na+ and Fe2+ ions), which effectively facilitate
the migration of Na-ions between adjacent y-oriented channels (see Fig. 8 for a
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Fig. 7 (a) MSD at 700 K in the main diffusion direction, y, using both traditional MD and RSM-
GSHMC combined with NaxFePO4-ff. Convergence to the equilibrium slope is reached faster
through RSM-GSHMC. (b) Three-dimensional diffusion coefficient as a function of temperature
(legends indicate force field and sampler combinations) (Adapted with permission from [18].
Copyright (2018) American Chemical Society)
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Fig. 8 Two-dimensional trajectory at 700 K. At this temperature, the coordination polyhedra are
slightly distorted. The red octahedra are Fe3+O6 units, the blue octahedra are Fe2+O6 units, and the
tetrahedrals correspond to (PO4)−3 units. The green, pink, cyan and orange atoms are tagged Na+
ions; the remaining Na+ ions are colored in yellow. The numbers in the figure specify the order
in which atomic jumps occurred. (a) Initial, defect-free configuration. The double arrow shows
the diametrically opposed Fe3+ ions around an extrinsic vacancy. (b) Antisite-like defect. A Fe2+
atom (encircled in red in (a) and (b) moves to the adjacent extrinsic vacancy (jump 1), allowing
the green Na+ to jump to the empty Fe2+ site (jump 2). (c) Since the central diffusion channel is
blocked, the green Na+ transfers to an adjacent channel (jump 6), leading to the cascade of jumps
7–10. (d) After the defect in the Fe2+ site is removed (jump 13), one-dimensional diffusion is
reestablished. Notice that Na+ diffuses through the extrinsic vacancies in single, long curvilinear
jumps (4, 9, and 15) (Adapted with permission from [18]. Copyright (2018) American Chemical
Society)
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detailed explanation). Na+/Fe2+ antisite defects were expected to block y channels
and, therefore, hinder Na-ion mobility in the bulk material. In contrast, our results
revealed that such defects can indeed favor Na-ion exchange between parallel y
channels. This result is in general agreement with simulations of two-dimensional
diffusion in LiFePO4 [69]: occasional jumps of charge carriers in the y axis can
overcome (at a cost of reduced diffusivity) the damaging effect of antisite defects.

5.2 Li+ Diffusion in Cubic Ga/Al Substituted Li7La3Zr2O12
(LLZO) Solid Electrolyte

LLZO garnet is a strong solid electrolyte contender for all-solid-state LIBs, which
can in principle eliminate the safety problems associated with current liquid
electrolyte-based batteries [9, 62]. LLZO garnets can crystallize in at least two
different crystal structures, a poorly Li-ion conductive tetragonal structure (t-phase)
and a significantly more conductive cubic one (c-phase) (Fig. 9). The c-phase
structure contains partially occupied Li-sites (at any given instant they may or may
not contain a Li+) and is unstable at room temperature, but can be stabilized by
substitution of, for instance, Li+ by Al3+ and Ga3+ ions [64]. Despite having
the same formal charge, gallium substitution is found to lead to higher room
temperature conductivities (∼10−3 S/cm) than aluminium substitution [13, 62, 63]
(∼10−4 S/cm). However, the origin and degree of this phenomenon is yet to be fully
understood.

We tackled this question using atomistic simulations, performed with traditional
MD and our in-house GSHMC simulation method (Sect. 3.3). For this study, the

Fig. 9 Crystal structures of garnet-type LLZO. (a) c-phase. Li atoms are represented by partially
filled spheres, indicating partial occupancy. (b) t-phase, containing an ordered distribution of fully
occupied Li-sites (Li+ ions are shown in green). La dodecahedra and Zr octahedra are shown in
blue and yellow, respectively. The red spheres correspond to oxygen atoms. (Reproduced with
permission from [19]. Copyright (2019) Elsevier)
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chosen force field was based on that from Jalem et al. [47], but further adjusted
with respect to experimental structural data reported in [63]. Details on the fitting
procedure can be found in [41]. Below, we will use the notation GayAlx-LLZO to
denote Li7−3(x+y)GayAlxLa3Zr2O12.

5.2.1 MD vs. GSHMC

To compare the sampling efficiency of MD and GSHMCmethods for the simulation
of the substituted LLZO systems, we calculated the integrated autocorrelation
functions (IACF ) of the potential energy U

IACFU =
K ′∑
l=0

ACF(l), (31)

where ACF(l), l = 0, . . . , K ≤ K ′ is the standard autocorrelation function for the
time series Uk of K samples, k = 1, . . . , K . Lower values of IACF indicate a more
efficient sampling, since it estimates the time required, on average, to generate an
uncorrelated sample. In Fig. 10, we present the values of IACFU

MD/IACFU
GSHMC

for Ga0Al0.10-LLZO and Ga0Al0.12-LLZO in the t-phase and Ga0Al0.20-LLZO and
Ga0Al0.25-LLZO in the c-phase at room temperature in the NVT ensemble. GSHMC
simulations exhibit a sampling performance up to 25 times better than MD for the
tested systems in the t-phase. In contrast, for the c-phase the performance of both
methods are comparable, because the intersite energy barriers are relatively low.
Based on this analysis, we have used GSHMC for simulations of the t-phase [41],
as well as for simulations of the c-phase below room temperature, where the intersite

Fig. 10 Relative IACFU

with respect to GSHMC at T
= 298 K achieved when
calculating the potential
energy during the
equilibration stage with the
MD method. (Reproduced
with permission from [19].
Copyright (2019) Elsevier)
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barriers are much more significant [19]. Otherwise, we chose to use the conventional
MD approach in order to minimize the efforts required for tuning of the GSHMC
parameters.

5.2.2 Simulation Results

Length and Time Scales of Li+ Diffusion in Cubic LLZO

A simple way to understand the Li+ lattice in the c-phase is to consider it as a
three-dimensional diffusion network, in which each node is connected to its closest
four neighboring nodes through one intermediate site. Those intermediate sites are
coordinated by six oxygen atoms, and thus are called Octahedral Li-sites, Oh. The
nodes, in turn, are coordinated by four oxygen atoms, and thus are called tetrahedral
sites, Td. Hence, a typical Li+ diffusion path involves a succession of jumps of the
form Oh → Td → Oh → Td → . . .. In Fig. 11, we provide an atom’s eye view of
Li-ion transport by considering a complete trajectory of a selected Li+ ion across
simulations at different temperatures and total time lengths.

Li-ion transport is isotropic. At 313 K, the selected Li+ crosses frequently
different Td and Oh sites in a relatively short lapse of time (80 ns). In addition,
we notice that a Li+ ion can visit the same Td site several times. This is revealed
by the presence of branches centered in the nodal Td sites along the diffusive path
as shown in the inset of Fig. 11. When the temperature is decreased to 253 K, the
distance covered by the Li+ ion in 80 ns decreases. In fact, even after 200 ns the
number of Td and Oh sites visited has decreased considerably in comparison with
the simulation at 313 K, resulting as well in a lower number of branches along the
diffusive path. Finally, at 193 K we see that diffusion is severely hindered, with the
Li+ ion barely visiting more than one Td site in less than 80 ns.

Variation of Li+ Conductivity with Ga/Al in Cubic LLZO

Figure 12 depicts the variation of the ionic conductivity σLi (calculated through
(2)) with the inverse of temperature for Ga0.2−xAlx-LLZO and x = 0.0, 0.1 and
0.2. It is clear that for a constant concentration of substituents, increasing the ratio
of Ga3+ to Al3+ has a positive effect on the conductivity. However, as temperature
increases, the difference between Ga3+ and Al3+ vanishes, in agreement with recent
experimental work [63]. This observation was explained on the grounds that a Ga3+
content above 0.15 leads to a phase change, in which shortcuts to the typical Oh →
Td → Oh → . . . diffusion path appear. However, if this was the only explanation,
the curves would not display the observed temperature dependance.

Through a detailed analysis of the radial distribution functions (see [41] for
details) we were able to determine that the local environment around Ga3+ and Al3+
cations disrupts active diffusion paths. Hence, regions within the crystal volume that
do not contribute to Li-ion conduction arise. Figure 13 depicts volume density maps
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Fig. 11 Simulated trajectories of an individual Li+ ion (orange) in the Ga0.2Al0.0-LLZO system
at different temperatures. From top to bottom the temperature decreases, whereas from left to
right the simulation time increases. Li, Zr, O and Ga ions are depicted in green, yellow, red and
blue, respectively (La ions are not shown for simplicity) (Reproduced with permission from [41].
Copyright (2019) American Chemical Society)

of mobile Li+ ions at 233 K in Ga0.2Al0.0-LLZO and Ga0.0Al0.2-LLZO, showing
a depletion of active diffusion paths around Ga3+ and Al3+. However, because
of the particular parameters of the Al3+–O2− interaction potential, the disruptive
effect of Al3+ is more pronounced. As temperature increases, Li+ ions acquire
enough thermal energy to overcome the barriers surrounding Ga3+ and Al3+ ions,
eliminating the difference in performance between both cations.
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Fig. 12 Calculated Li-ion conductivity as a function of inverse temperature for Ga0.2−xAlx (
x = 0.0, 0.1, 0.2). Filled data points refer to simulation data. Experimental values, represented
by empty symbols, were taken from Ref. [63]. Notice that the simulated data overestimate the
experimental values, because the boundary resistances discussed in Sect. 2.2.1 cannot be easily
incorporated. Those resistances are particularly high in Ga0.0Al0.2-LLZO, which has a powdery
macrostructure. However, the trends in the simulated and experimental curves are clearly consistent

Variation of Conductivity in the Experimental Data for Ga0.0Alx-LLZO

There is significant variability in the literature regarding the conductivity of
Gal0Alx-LLZO. Given the recently reported gradients in Al content within a single
sample [72], one potential scenario is that Al-rich regions crystallize in the c-phase,
while the Al-poor regions form the t-phase. The second potential scenario is that
thermodynamic equilibrium can be established between the two phases at the same
x. To the best of our knowledge, neither scenario can be categorically dismissed.
Presuming that thermodynamic equilibrium exists between the c- and t-phases at
some Al contents, we can estimate the proportion of each phase through an adequate
mixing model. Assuming that both phases mix randomly and homogeneously at the
microscopic scale (∼10−6 m), Bruggeman’s effective medium model [51] predicts
that

νc

σc − σm

σc + 2σm

+ νt

σt − σm

σt + 2σm

= 0, (32)

where νi is phase volume fraction, σi is conductivity and i = {c, t,m} denotes the
cubic, tetragonal, and mixed phases, respectively. By equating the c-phase volume
fraction νc to the experimental values, it is possible to determine the theoretical
conductivity of the mixed c- and t-phases using (32). Considering the experimental
works by Botros et al. [21] and Tsai et al. [71], who report weight percentages
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Fig. 13 Density volume maps at 233 K for all Li+ ions in Ga0.0Al0.2-LLZO (a), and only those
Li+ ions jumping at least one Td site-Td site length after 190 ns (>4 Å) in Ga0.2Al0.0-LLZO
(b) and Ga0.0Al0.2-LLZO (c). Al3+ and Ga3+ ions are represented by magenta and blue spheres,
respectively. (a) Can be interpreted as the total available volume for Li-ion diffusion, while (b) and
(c) correspond to the active volume where diffusion is actually occurring. Clearly, active diffusion
paths avoid the vicinity of Al3+ and Ga3+ (see insets to the right of (b) and (c) but the disruption
of diffusion paths in Ga0.0Al0.2-LLZO is much more severe (Reproduced with permission from
[41]. Copyright (2019) American Chemical Society)
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Fig. 14 Experimental and simulated Li-ion conductivities, σLi, of Alx -LLZO for x =
[0.0, 0.10, 0.12, 0.15, 0.17, 0.20, 0.25] at room temperature. Cyan circles correspond to exper-
imental data taken from several experimental studies (the complete list of references can be
found in the caption of Fig. 8 in [19]). Empty and dotted circles correspond to the experimental
conductivities from Botros et al. [21] and Tsai et al. [71], respectively, who provide the percentages
of c- and t-phases present in their samples. Filled squares (triangles) correspond to σLi for c-phase
(t-phase) obtained in this work. Red filled and dotted circles correspond to the conductivities
obtained by combining Bruggeman’s model in (32) with the simulated σLi to represent the
coexistence of t- and c-phases at the proportions reported in Botros et al. [21] and Tsai et al.
[71] (Reproduced with permission from [19]. Copyright (2019) Elsevier)

for mixed cubic/tetragonal samples, we estimated the corresponding mixed phase
conductivities by using conductivities simulated over the range of Al content. The
predictions are shown in Fig. 14 as red circles, while the measurements from [21]
and [71] are highlighted through the empty circles. Our predictions are in good
agreement with the conductivities provided by [21] and [71], reproducing the
experimental results better than either of the pure phases at all Al contents. Thus,
we provide a sound basis for the analysis of phase coexistence in substituted LLZO
and similar polycrystalline solid electrolyte materials.

6 Conclusions

In this work, we present a brief review of the work performed in our team towards
multiscale modelling and simulation of advanced battery materials. We have
attempted to make the current material self-contained, and thus we have included
sections on the basic science and engineering aspects of LIBs and NIBs (Sect. 2), as
well as a short discussion of conventional simulation methods (Sects. 3.1 and 3.2)
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and force field development (Sect. 4). These sections can be selectively avoided by
experienced practitioners.

We focus on the family of Modified Hamiltonian Monte Carlo (MHMC) methods
recently introduced for atomistic simulations of complex systems [1, 2, 4, 32, 45, 68]
and later adapted to multiscale [31] and mesoscale simulations [3]. In particular, we
have found members of this family, the Generalized Shadow Hybrid Monte Carlo
(GSHMC) method [2] and its latest extension Randomized Shell Mass GSHMC
(RSM-GSHMC) [32], to be powerful tools for unveiling the structural, thermo-
dynamic and transport properties of solid state battery materials. As application
examples, we present our recent results in the modelling of ionic conduction in
NaFePO4 cathode material for NIBs and LLZO solid electrolyte material for LIBs
[18, 19, 32, 41]. Future work will focus on two key areas: probabilistic screening of
advanced energy materials and multiscale simulation of composite materials.

Probabilistic Screening of Advanced Energy Materials
There is a considerable activity in the field of materials discovery using high-
throughput computing combined with statistical screening approaches. However,
incorporating macroscopic materials properties of practical importance, such as
ionic conductivity, tensile moduli or phase transition temperatures into a materials
design scheme in an efficient way remains a standing challenge.

Bayesian parameterization provides a principled way of combining prior infor-
mation with data, within a solid decision theoretical framework. Past information
and experimental data can readily be accounted for and form a prior distribution for
future analysis. Moreover, when new observations become available, the previous
posterior distribution can be used as a prior. More importantly, it provides inter-
pretable answers from an experimental standpoint, such as “the optimal compound
has a probability of 0.95 of falling in a 95% credible interval”.

Our in-house Bayesian parameterization technique, the Mix & Match Hybrid
Monte Carlo (MMHMC) method [60], will be at the core of a novel framework
that will combine incoming data from atomistic simulations and information from
experiments, in order to provide the distribution of compositions that is most likely
to maximize the expectation of a desired set of macroscopic properties (Fig. 15).

Multiscale Simulation of Composite Materials
In Sect. 2, we have briefly mentioned that one strategy to develop novel battery
components with properties that no individual material has, is through the combi-
nation of several types of materials into segregated multiphase components called
composites. Often, one of the phases is organic (e.g. a polymer) that provides
mechanical flexibility, while the other is composed by inorganic particles (e.g.
ionic crystals) providing good conductivity. The atomistic simulation of diffu-
sional exchange between the various phases in composite materials is a relatively
new subject. Despite the difficulty to experimentally examine the interface (and
hence validate computational studies), simulations can provide very useful insights
regarding the main barriers to particle exchange, and how the chemistry and
environmental conditions affect them. Moreover, with advanced sampling methods
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Fig. 15 One cycle in the proposed probabilistic materials screening approach. The number of
iterations, N, the cycle is repeated, is set a priori by the user. The algorithms highlighted in bold
were developed in our group and are discussed in the body of this manuscript

such as GSHMC combined with splitting integrators, it is feasible to test many
realizations of the polymer/crystal interface and systematically study the impact
of contact defects. However, simulating an entire inorganic particle surrounded by
polymer remains a great computational challenge that has been attempted only with
very small nanoparticles. We are working on the coarse-grained simulation of such
a system using our in-house simulation technique meso-GSHMC [3]. The transport
coefficients and selectivities obtained this way can be incorporated in continuous or
effective medium approaches, providing a multiscale modelling framework for the
modelling of composite materials.
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