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Abstract This work is devoted to the topological analysis of multi-physical net-
works stemming from automated modeling processes in system simulation software.
A special focus is on the methodical treatment of multi-physical networks, which
can be utilized to develop robust and user-friendly simulation tools. In the multi-
physical case, the already available topological criteria of different physics have
to be merged and reinterpreted. A general receipt for their analysis is described in
terms of a representative example, a fluid-solid network which is thermally coupled.
The theoretical results are put in context to a practical realization in a simulation
software in terms of modeling and coupling concepts, which help to improve the
useability of system simulation software for software application engineers.

1 Introduction and Industrial Background

The importance of system simulation in automotive industry has grown significantly
during the past two decades and will grow further. Reasons are the improved power
of computer systems and the applied software but also the increasing complexity
of multi-physical systems to be modeled. Typical investigation topics related for
instance to a hybrid vehicle incorporate mechanical, electrical, fluid dynamical and
even chemical domains within one system. Therefore both, the simulation of each
separated domain, but also of overall models combining a subset or even all domains
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is of importance. As a consequence the applied software needs to be based on robust
algorithms, which itself requires a structured mathematical and computer scientific
basis framework. Based on this framework the according modeling equations and
their implementation are build up on.

In this work we consider the analysis of multi-physical dynamical systems
stemming from automated modeling processes in system simulation software.
In this context, the term multi-physical is used to describe models which are a
combination of different physical characteristic equations. For example for fluid
and gas flows, those are Navier-Stokes or Euler equations, in electric those are
Maxwell’s equations, in translation or rotational mechanics those are Newton’s laws
of motion and for solid masses those are heat equations. The different equations are
coupled by applying conservation laws on various levels. In system simulation the
detailed analysis of the interaction between vehicle dynamics, transient combustion
or electric engine performance and the corresponding thermal management systems
is of special interest in order to calculate the complete energy and temperature
distribution across the entire vehicle. In this work this kind of coupling is referred
to as thermal coupling.

Today’s system modeling software typically offers a wide range of basic physical
components from several domains (e.g. fluid flow, electric networks, gas flow, heat
flow), which can be assembled to customized physical networks simply by drag and
drop. The governing equations are derived by representing the network as a linear
graph whose edges and nodes correspond to the basic physical components (e.g.
pipes, pumps, heat exchangers). Combining the connection structure of the graph
with the physical equations of the components, the physical network is modeled
as a differential algebraic equation (DAE). Typically those DAEs are of higher
index. Hence in order to allow a stable numerical integration, the DAEs need to
be reformulated to an index reduced (differential-index (d-index) 1 or strangeness-
index (s-index) 0), representation, cf. [15]. Using algebraic graph and DAE theory,
the solvability of the mathematical model as well as its index can be analyzed and
translated as conditions on the network structure and properties of its elements.
Hence topology based index analysis emerges as a suitable tool for the investigation
of DAEs stemming from automatic generated system models in system simulations
tools, since it combines the scientific disciplines of Analysis for DAEs [8] and
Graph Theory [10]. Due to the seamless integration of the network structure in
the simulation process, properties of the DAE can be directly reinterpreted on
the network structure, allowing for an illustrative modeling paradigm. So far this
methodology has been successfully used in various physical domains, including
electric circuits [17], gas networks [13] and fluid networks [4–6]. The developed
methodology focuses on the analysis of one specific physics. The challenges in the
development of future topology based methods, do not lie in the analysis of the
individual physical networks (electric, gas or fluid networks), but in the assessment
of the multi-physical network as a whole (see e.g. [2]). Coupling different physics
may lead to a change in the topological criteria of the individual subsystems.

The vice verse question arises, if an automated assembled multi-physical model
has to be partitioned into several submodels. This use case is of importance if



Topological Index Analysis for Multi-Physical Systems 173

multi-rate methods (see e.g. [3]) are applied to speed up numerical integration by
taking advantage of different time constants of the individual physics. It is not
straightforward to decompose a d-index 1 DAE into several DAEs of d-index 1
and guarantee existence and uniqueness of solutions at the same time. In terms of
usability the decomposition has to conserve the model structure and consequently
the solution. Especially in the constellation of automated generated DAEs the
derivation of topological criteria for an appropriate decomposition seems to be
promising. Since those decompositions typically cross multi-physical boarders, the
topological criteria have to be multi-physical as well.

The structure of the work is the following. In Sect. 2 we formulate a multi-
physical network model consisting of a fluid network and a solid network. Section 3
is devoted to the development of an automated partitioning algorithm of the coupled
system. For this purpose the global network is divided into its individual physical
parts, i.e. into a solid, cf. Sect. 3.1, and a fluid part, cf. Sect. 3.2. For each individual
domain the corresponding DAE is stated in input-output form by introducing valid
coupling variables (inputs and outputs). For both solvability and index results are
provided. In Sect. 3.3 valid coupling conditions are formulated and the coupled
system is analyzed with respect to solvability and index constraints. Sections 4
and 5 describe the possible application of the developed theory in commercial
system simulation software. While Sect. 4 is devoted to the design of the simulation
software in terms of the topological representation of a physical model and the
transient solution of the model, Sect. 5 focuses on solver design in terms of transient
multi-rate calculations. Section 6 provides an overview of the addressed issues.
Therein another major focus is put on the description of open topics and further
research requirements.

2 A Multi-Physical Model for Fluid Networks Coupled to
Solid Networks

As an example we consider a simple thermal network model, which is an extension
of the network model analyzed in [5]. After formulating the full coupled model,
consisting of a fluid network and a solid network, we demonstrate, that the combined
model obtains a domain specific topological criteria.

We consider a multi-physical network N

N = {P i, Pu,De, Vj, Lj,Re,Ht,Hs, Sw,Lw, T b} , (1)

that is composed of pipes P i, pumps Pu, demands De, volume junctions Vj ,
lumped junctions Lj and reservoirs Re, which are filled with an incompressible
fluid and heat transfers Ht , heat sources Hs, solid walls Sw, lumped walls Lw and
temperature boundaries T b. The network is represented by a directed linear graph
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G = {V,E}, where the set of vertices V and edges E are defined as

V = {Vj,Lj,Re, Sw,Lw, T b} ,

E = {P i, Pu,De,Ht,Hs} .

The network N is assumed to satisfy the following assumptions on its connection
structure.

Assumption 1 (Network Assumption) Let N be a network as defined in (1).

1. The network is connected.
2. Two junctions are connected at most by one pipe or one pump.
3. Each pipe, pump and demand has an assigned direction.
4. Every junction is adjacent to at most one demand branch or heat source.
5. Every reservoir is connected at most to one pipe or pump.
6. Two walls are connected at most by one heat transfers.
7. Each heat transfer and heat source has an assigned direction.
8. Every wall is adjacent to at most one heat source.
9. Every temperature boundary is adjacent to at most one heat transfer.

10. A pair of a wall and a junction is connected at most by one heat transfer.

Assumption 1 guarantees, that the network graph G is simple, oriented and
connected. An example for N is displayed in Fig. 1.

The connection structure of the network N is described by the incidence matrix
AN = (aij ), which is defined as, cp. e.g. [7, 10, 16],

aij =

⎧
⎪⎪⎨

⎪⎪⎩

1, if the edge j leaves the vertex i,

−1, if the edge j enters the vertex i,

0, else.

This incidence matrix can be further partitioned into blocks considering its involved
types of edges E ∈ E as well its involved types of vertices V ∈ V. The
corresponding incidence matrices are given by AV,E ∈ {−1, 0, 1}nV ×nE , where nV

and nE denote the number of elements of the relevant type. Using Assumption 1
and sorting the rows and columns of AN according to the different element types,

Fig. 1 Example of a graph G
of a multi-physical network
N
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the incidence matrix can be representation in the following form:

AN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AVj,P i AVj,Pu AVj,De AVj,Ht AVj,Hs

ALj,P i ALj,Pu ALj,De ALj,Ht ALj,Hs

ARe,P i ARe,Pu 0 0 0
0 0 0 ASw,Ht ASw,Hs

0 0 0 ALw,Ht ALw,Hs

0 0 0 AT b,Ht 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

Beside the connection structure, each network element is equipped with a charac-
teristic equation, cf. [5, 6], describing the mass flow qE and/or the enthalpy flow
HE on edge elements E ∈ E and the pressure pV and/or the temperature TV

on vertex elements V ∈ V. Applying mass and energy conservation laws, the
dynamic of the coupled multi-physical network N is described by the DAE: Find
(qT

P i, q
T
Pu, p

T
Vj , p

T
Lj ,H

T
P i,H

T
Pu, T

T
Vj , T

T
Lj ,H

T
Ht , T

T
Sw, T T

Lw)T , such that

dqP i

dt
= c1,P i

(
AT

Vj,P ipVj + AT
Lj,P ipLj + AT

Re,P ipRe

)

+ c2,P idiag (|qP i |) qP i + c3,P i

fPu(qPu) = AT
Vj,PupVj + AT

Lj,PupLj + AT
Re,PupRe

0 = AVj,P iqP i + AVj,PuqPu + AVj,DeqDe

0 = ALj,P iqP i + ALj,PuqPu + ALj,DeqDe

mVj cp,Vj

dTVj

dt
= AVj,P iHP i + AVj,PuHPu + AVj,DeHDe

+ AVj,HtHHt + AVj,HsHHs

0 = ALj,P iHP i + ALj,PuHPu + ALj,DeHDe

+ ALj,HtHHt + ALj,HsHHs

HPi = BVj (qP i)TVj + BLj (qP i)TLj + BRe(qP i)TRe

HPu = BVj (qPu)TVj + BLj (qPu)TLj + BRe(qPu)TRe

mSwcp,Sw

dTSw

dt
= ASw,HtHHt + ASw,HsHHs

0 = ALw,HtHHt + ALw,HsHHs

HHt = cHt

(
AT

Sw,HtTSw + AT
Lw,HtTLw

+ AT
Vj,HtTVj + AT

Lj,HtTLj + AT
T b,HtTT b

)

(3)

for given boundary conditions qDe = q̄De, HDe = H̄De, HHs = H̄Hs pRe = p̄Re,
hRe = h̄Re, TT b = T̄T b, positive definite diagonal coefficient matrices c1,P i , c2,P i ,
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c3,P i , cp,Vj , cp,Sw, cHt , positive definite diagonal mass matrices mVj , mSw, the
pump characteristic fPu and the enthalpy function B� (� ∈ {Vj,Lj,Re}) as defined
in [6].

Under the additional Assumption 2 (cf. [6]), the unique solvability of the DAE (3)
can be characterized in Theorem 1.

Assumption 2 (Network Solvability) Let N be a network as defined in (1).

• N contains no cycles of pumps.
• N contains no paths of pumps between two reservoirs.
• For each junction, the mass flow does not vanish, i.e.

∑ |qi | > 0 for all qi

adjacent to the junction.

Theorem 1 Let N be a network given by (1), meeting the requirements of Assump-
tions 1 and 2 with positive definite coefficient matrices mSw, cp,Sw and cHtS . Let
nRe > 0, where nRe denotes the number of reservoirs Re in the network. Then, the
following statements hold.

1. The DAE (3) is regular and has strangeness index μ = 1 (d-index 2).
2. The DAE (3) is uniquely solvable for every feasible initial condition condition

fulfilling (3) at t = t0 and the solution is continuous differentiable.

Proof In [6] it is shown, that a network consisting only of fluid elements NF =
{Vj,Lj,Re, P i, Pu,De} yields a uniquely solvable system of DAEs with strange-
ness index 1. Theorem 2 requires a fixed temperature in order to obtain existence and
uniqueness of the solution. Since the fixed temperature is provided by the condition
nRe > 0 in the network N , the unique solvability follows for the DAE (3). In [6],
it is shown that the mass flow related part qE (E ∈ E) and pV (V ∈ V) causes the
strangeness index 1 condition, while under Assumption 2, the energy flow related
part HE (E ∈ E), and TV (V ∈ V) obtains a strangeness index 0 condition. Since
the extension to the thermal elements NS = {Sw,Lw, T b,Ht,Hs} only effects
the energy part due to Assumption 1, and the thermal elements obtain analogous
strangeness index 0 conditions (cf. Theorem 2), the proof of [6] can be easily
extended to the network N . Hence, the result follows as a natural extension from
[6] with the results obtained in the proof of Theorem 2. ��

Theorem 1 guarantees existence and uniqueness of solutions for the coupled
multi-physical system. Following [6] an index reduced surrogate model can be
deduced, which has strangeness index μ = 0 (d-index 1). The surrogate model can
be assembled based on the network information only without the need for further
algebraic manipulations. Due to strangeness index μ = 0 the surrogate model is
suited to be solved with a standard time integration scheme. Having a look at the
multi-physical characteristic of the problem it is notable, that the topological criteria
only depends on elements in the fluid network NF and not on elements of NS .
Indeed the original cause of this criteria and its effects on further manipulations in
multi-physical context is investigated in the next section.
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3 Topology Based Automatic Decomposition of
Multi-Physical Networks

In this section the coupled model is decomposed into submodels according to their
physical nature. The subsystems are stated in an input-output form, which structure
is motivated by standardized approaches like [1, 14] or their software representation
in form of a Functional Mock-up Unit [11]. For this purpose, the coupling variables
u for the input to the system and y for the output of the system are introduced
to enable the exchange of information between the domains. We demonstrate, that
the choice of the decomposition has an effect on the solvability of the individual
subsystems. Restoring the unique solvability of the individual domains is critical, if
individual solvers (standard time integration schemes) are applied, e.g., in a multi-
rate or co-simulation procedure, see, e.g., [2, 3]. Furthermore feasible coupling
conditions emerge from the analysis as topological criteria based on the input-output
structure. Using the derived coupling conditions, a system of coupled DAEs can be
stated, which obtains the same solution as the original DAE (3).

3.1 A Solid Network

We consider a solid network

NS = {
HtS,Hs, Sw,Lw, T b,HsS, T bS

}
, (4)

that is composed of heat transfers HtS , heat sources Hs, solid walls Sw, lumped
walls Lw, temperature boundaries T bS , heat source inputs HsS and temperature
boundary inputs T bS . The input elements HsS and T bS are introduced to enable
generic couplings between different physical domains. Their corresponding vari-
ables are denoted by uHsS

and uT bS
and serve as inputs from other domains.

Furthermore output variables are introduced where each variable corresponds to
an input variable. Temperatures of solid walls ySw and lumped walls yLw as well
as heat transfer elements yHtS are exposed and provide their information for other
domains. The selection of the possible coupling outputs is shown in Eqs. (5d)–(5f).
The basic network assumptions of Assumption 1 carry over to the solid network
NS as well. The connectivity of the in- and outputs within the thermal network is
described with the corresponding incidence matrices, denoted byASw,HsS

, ALw,HsS

and AT bS,HtS
, which are natural extensions of the incidence matrix (2).

The DAE for the network NS in input-output form is given by: For given
continuous inputs (uT

HsS
, uT

T bS
)T , find the temperatures (T T

Sw, T T
Lw)T , the heat fluxes

(HT
HtS

)T and the outputs (yT
Sw, yT

Lw, yT
HtS

)T , such that

mSwcp,Sw

dTSw

dt
= ASw,HtS HHtS + ASw,HsHHs + ASw,HsS

uHsS
(5a)
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0 = ALw,HtS HHtS + ALw,HsHHs + ALw,HsS
uHsS

(5b)

HHtS = cHtS

(
AT

Sw,HtS
TSw + AT

Lw,HtS
TLw

+ AT
T b,HtS

TT b + AT

T bS,HtS
uT bS

)
(5c)

ySw = |(AT

Sw,HsS
+ AT bS,HtS

AT
Sw,HtS

)|TSw (5d)

yLw = |(AT

Lw,HsS
+ AT bS,HtS

AT
Lw,HtS

)|TLw (5e)

yHtS = AT bS,HtS
HHtS , (5f)

for given boundary conditions HHs = H̄Hs and TT b = T̄T b and given diagonal
positive definite coefficient matrices mSw, cp,Sw and cHtS . For practical reasons,
the sign of the outputs is controlled via the absolute value of a matrix B = (bij ),
defined via |B| := (|bij |). The unique solvability of the network DAE (5) can be
characterized via the graph and the input network characteristic.

Theorem 2 Let NS be a network given by (4) fulfilling Assumption 1 with positive
definite coefficient matrices mSw, cp,Sw and cHtS . Let nSw +nT b +nT bS

> 0, where
nSw denotes the number of solid walls Sw, nT b denotes the number of temperature
boundaries T b, and nT bS

denotes the number of temperature boundary inputs T bS .
Then, the following statements hold:

1. The DAE (5) is regular and has strangeness index μ = 0 (d-index 1).
2. The DAE (5) is uniquely solvable for every feasible initial condition fulfilling (5)

at t = t0 and the solution is continuous differentiable.
3. The outputs ySw and yLw are continuous differentiable.

Proof

1. To show regularity and strangeness index μ = 0, it is sufficient to transform the
DAE (5) to its explicit form. This concerns just the lumped wall characteristic
(5b), since all other equations are already given in their explicit representation.
First we substitute HHtS in the lumped wall equation (5b) by the right hand side
of the heat transfer characteristic (5c). The equation reads as

0 = ALw,HtS cHtS A
T
Lw,HtS

TLw + cHtS

(
AT

Sw,HtS
TSw + AT

T b,HtS
TT b

+ AT

T bS,HtS
uT bS

) + ALw,HsHHs + ALw,HsS
uHsS

.

This system needs to be solved according to TLw, which results in the solvability
condition that ALw,HtS cHtS A

T
Lw,HtS

needs to be regular. Due to the assumption
that cHtS is positive definite, it is possible to apply a Cholesky decomposition
cHtS = GGT with a regular matrix G. Hence,

ALw,HtS cHtS A
T
Lw,HtS

= (ALw,HtS G)(ALw,HtS G)T .
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According to the assumption nSw + nT b + nT bS
> 0, ALw,HtS is a reduced

incidence matrix, cf. [9, p. 141], implying rank(ALw,HtS ) = nLw. Combining
the results yields

rank(ALw,HtS cHtS A
T
Lw,HtS

) = rank(ALw,HtS G) = rank(ALw,HtS ) = nLw.

2. Since the DAE (5) has been transformed to an explicit formulation, the unique-
ness and solvability is covered by the theory of ordinary differential equations,
i.e. the Picard-Lindelöf theorem.

3. Since ySw and yLw are linear combinations of continuous differentiable func-
tions, it holds that ySw and yLw are continuous differentiable as well.

��
Theorem 2 has the consequence, that the topological conditions in order to

guarantee existence and uniqueness of a solution for the solid subsystem (5) does
not only depend on the actual network structureNS , but also on the chosen partition
via the exposed variables (uT

HsS
, uT

T bS
)T and (yT

Sw, yT
Lw, yT

HtS
)T . Indeed, the unique

solvability can either be controlled via the coupling variable uT bS
, (i.e. nT bS

> 0)
or via the network configuration nSw + nT b > 0. In the following this specific
restriction of the coupling variables has to be considered for a proper model
partitioning.

3.2 A Fluid Network

We consider a fluid network

NF = {
P i, Pu,De, Vj, Lj,Re,HtF ,HsF , T bF

}
(6)

that is composed of pipes P i, pumps Pu, demands De, volume junctions Vj ,
lumped junctions Lj , reservoirs Re, heat transfers HtF , heat source inputs HsF and
temperature boundary inputs T bF . As in the solid network special input elements
HsF and T bF are introduced with their corresponding variables uHsF

and uT bF
. In

addition the output variables of solid walls, lumped walls and heat transfer elements
are given by ySw, yLw and yHtF . The basic network assumptions of Assumption 1
carry over to the fluid network NF as well. The connectivity in the network is
described with the corresponding incidence matrices, denoted by AVj,HsF

, ALj,HsF

and AT bF ,HtF
, which are formulated equivalently to the solid network as a natural

extension of the incidence matrix (2).
For given continuous inputs (uT

HsF
, uT

T bF
)T , find the pressures (pT

Lj , p
T
Vj )

T

the mass flows (qT
P i, q

T
Pu)

T , the heat fluxes (HT
HtF

,HT
Pu,H

T
P i)

T , the temperatures
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(T T
Vj , T

T
Lj )

T and the outputs (yT
Vj , y

T
Lj , y

T
HtF

)T , such that

dqP i

dt
= c1,P i

(
AT

Jc,P ipJc + AT
Re,P ipRe

)

+ c2,P idiag (|qP i |) qP i + c3,P i

fPu(qPu) = AT
Jc,PupJc + AT

Re,PupRe

0 = AJc,P iqP i + AJc,PuqPu + AJc,DeqDe

mVj cp,Vj

dTVj

dt
= AVj,P iHP i + AVj,PuHPu + AVj,DeHDe

+ AVj,HtF HHtF + AVj,HsF
uHsF

0 = ALj,P iHP i + ALj,PuHPu + ALj,DeHDe

+ ALj,HtF HHtF + ALj,HsF
uHsF

HPi = BJc(qP i)TVj + BJc(qP i)TLj + BJc(qP i)TRe

HPu = BJc(qPu)TVj + BJc(qPu)TLj + BJc(qPu)TRe

HHtF = cHtF

(
AT

Vj,HtF
TVj + AT

Lj,HtF
TLj + AT

T bF ,HtF
uT bF

)

yVj = |(AT

Vj,HsF
+ AT bF ,HtF

AT
Vj,HtF

)|TVj

yLj = |(AT

Lj,HsF
+ AT bF ,HtF

AT
Lj,HtF

)|TLj

yHtF = AT bF ,HtF
HHtF

(7)

for given boundary conditions qDe = q̄De, HDe = H̄De pRe = p̄Re and TRe = T̄Re.
Following [5], the solvability of the network DAE (7) can be characterized via the
graph structure.

Theorem 3 Let NF be a network given by (6) which fulfills Assumptions 1 and 2.
Let nRe > 0. Then, the following statements hold:

1. The DAE (7) is regular and has strangeness index μ = 1 (d-index 2).
2. The DAE (7) is uniquely solvable for every feasible initial condition fulfilling (7)

at t = t0 and the solution is continuous differentiable.
3. The outputs yVj and yLj are continuous differentiable.

Proof See [5]. ��
Theorem 3 shows, that in the fluid network, the choice of the partition with respect
to the exposed variables (uT

HsF
, uT

T bF
)T and (yT

Vj , y
T
Lj , y

T
HtF

)T does not enter the

solvability or index condition. This has the consequence, that regarding unique
solvability, the coupling conditions can be chosen arbitrary within the specified
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input and output relations. Furthermore the condition nRe > 0 is not only crucial
for the coupled problem (cf. Theorem 1), but already for the fluid problem. In the
following this additional degree of freedom in the coupling variables is utilized for
a proper model partitioning.

3.3 The Coupled Network

We consider a coupled network NC

NC = {NF ,NS} , (8)

consisting of a single fluid network NF and a single solid network NS . In general
Assumption 1 does not imply, that the subnetworks NF and NS are connected. In
this work, we assume that both are connected, i.e., the network NC consist of one
non-empty connected subnetwork NF and one non-empty connected subnetwork
NS . Each element NF and NS exposes inports (uHsS

, uT bS
, uHsF

, uT bF
) and

outports (ySw, yLw, yHtS , yVj , yLj , yHtF ) according to the definition in (5) and (7).
The connection structure of NC is assumed to satisfy the following assumptions.

Assumption 3 (Network Coupling Assumption) Let NC be a network as defined
in (8).

1. Elements of type HsS are connected to elements of type HtF .
2. Elements of type HsF are connected to elements of type HtS .
3. Elements of type T bS are connected to elements of type Vj or Lj .
4. Elements of type T bF are connected to elements of type Sw or Lw.

An example for NC is displayed in Fig. 2. Using Assumption 3 and sorting the
inports and outports with respect to their types, we obtain a matrix representation

⎡

⎢
⎢
⎢
⎣

uHsS

uT bS

uHsF

uT bF

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 0 0 0 0 CHsS,HtF

0 0 0 CT bS,Vj CT bS,Lj 0

0 0 CHsF ,HtS
0 0 0

CT bF ,Sw CT bF ,Lw 0 0 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ySw

yLw

yHtS

yVj

yLj

yHtF

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(9)

Therefore the coupling of the networks is linear.
Using (5) and (7) as well as the coupling condition (9), the coupled problem

can be stated: Find the fluid states (qT
P i, q

T
Pu, p

T
Vj , p

T
Lj ,H

T
P i,H

T
Pu, T

T
Vj , T

T
Lj ,H

T
HtF

),

the solid states (HT
HtS

, T T
Sw, T T

Lw)T , the inputs (uT

HsS
, uT

T bS
, uT

HsF
, uT

T bF
)T , and the
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Fig. 2 Example of a graph of a coupled multi-physical network

outputs (yT
Sw, yT

Lw, yT
HtS

, yT
Vj , y

T
Lj , y

T
HtF

)T ,such that

dqP i

dt
= c1,P i

(
AT

Jc,P ipJc + AT
Re,P ipRe

)

+ c2,P idiag (|qP i |) qP i + c3,P i

fPu(qPu) = AT
Jc,PupJc + AT

Re,PupRe

0 = AJc,P iqP i + AJc,PuqPu + AJc,DeqDe

mVj cp,Vj

dTVj

dt
= AVj,P iHP i + AVj,PuHPu + AVj,DeHDe

+ AVj,HtF HHtF + AVj,HsF
uHsF

0 = ALj,P iHP i + ALj,PuHPu + ALj,DeHDe

+ ALj,HtF HHtF + ALj,HsF
uHsF

HPi = BJc(qP i)TVj + BJc(qP i)TLj + BJc(qP i)TRe

HPu = BJc(qPu)TVj + BJc(qPu)TLj + BJc(qPu)TRe

HHtF = cHtF

(
AT

Vj,HtF
TVj + AT

Lj,HtF
TLj + AT

T bF ,HtF
uT bF

)

yVj = |(AT

Vj,HsF
+ AT bF ,HtF

AT
Vj,HtF

)|TVj

yLj = |(AT

Lj,HsF
+ AT bF ,HtF

AT
Lj,HtF

)|TLj

yHtF = (
AT bF ,HtF

+ AT

Lj,HsF
AT

Lj,HtF

+ AT

Vj,HsF
AT

Vj,HtF

)
HHtF

(10)
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mSwcp,Sw

dTSw

dt
= ASw,HtS HHtS + ASw,HsHHs + ASw,HsS

uHsS

0 = ALw,HtS HHtS + ALw,HsHHs + ALw,HsS
uHsS

HHtS = cHtS

(
AT

Sw,HtS
TSw + AT

Lw,HtS
TLw

+ AT
T b,HtS

TT b + AT

T bS ,HtS
uT bS

)

ySw = |(AT

Sw,HsS
+ AT bS,HtS

AT
Sw,HtS

)|TSw

yLw = |(AT

Lw,HsS
+ AT bS,HtS

AT
Lw,HtS

)|TLw

yHtS = AT bS,HtS
HHtS

uHsF
= CHsF ,HtS yHtS

uT bF
= CT bF ,SwySw + CT bF ,LwyLw

uHsS
= CHsS,HtF yHtF

uT bS
= CT bS,Vj yVj + CT bS,Lj yLj

for given boundary and initial conditions.
The main result summarizes, that not only the fully coupled problem (10) is

uniquely solvable, but also the decomposed problems are unique solvable with
respect to the chosen decomposition and the DAE index results are conserved for
the decoupled problems.

Corollary 1 Let NC be a network as given in (8) with NF fulfilling Assumptions 1
and 2 as well as NS satisfying Assumption 1 with positive definite coefficient
matrices mSw, cp,Sw and cHtS . Furthermore let nRe > 0, nT bS

> 0 and NC meet
the network coupling assumption, i.e. Assumption 3. Then,

1. The coupled DAE (10) is regular and has strangeness index μ = 1 (d-index 2).
2. The coupled DAE (10) is uniquely solvable for feasible initial condition fulfilling

(10) at t = t0 and the solution is continuous differentiable.
3. The coupled DAE (10) and the original DAE (3) have the same solution.

4 Application in the Software Design for Multi-Physical
System Calculations

System simulation software is typically designed in a way, that the topological
representation of a physical model is separated from the transient solution procedure
of the model. Considering feasible network DAEs, existence and uniqueness results
are already of importance in the topological representation of the model, in order to
restrict the set of feasible network models to valid ones. In order to achieve this and
limit the full degree of freedom it is convenient to introduce modeling paradigms.
Modeling paradigms, determine how a real physical process can be built up in
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a network-technological way and therefore represent the topological criteria, that
have been developed in Sect. 3. Consequently modeling paradigms are an additional
extension of the basic network assumption in Assumption 1 and they support the
topological representation in a way, that the setup of invalid model topologies is
prevented in advance.

On the other hand, coupling paradigms indicate how an existing overall network
can systematically be separated into its physical parts without changing the actual
model and gaining additional results for the individual physical parts. Therefore
coupling paradigms can be used for an automated decomposition of multi-physical
networks. Furthermore, they guarantee a stable and robust simulation of the physical
model. From a practical point of view it is desirable, that coupling paradigms don’t
modify modeling paradigms.

In the following we state certain modeling paradigms and coupling paradigms.

4.1 Modeling Paradigms

In the following two different model paradigms are formulated. The specific choice
of the modeling paradigm has a certain effect on the modeling restrictions in the
topological representation of the physical model on the one hand and the complexity
of the solution procedure on the other hand.

Modeling paradigm 1 If a heat transfer is adjacent to a wall and a junction, then
the wall is a solid wall and the junction is a volume or a lumped junction.

Following Modeling paradigm 1, the mass of the solid wall is always taken into
account in the solid network. This consideration has a direct consequence on the
solvability of the subsystems. Thus in coupled solid systems there is always at
least one solid wall, i.e. nSw > 0. The assumptions of Theorem 2 are fulfilled and
therefore the solid subsystem is uniquely solvable. Since the fluid part only depends
on the requirements of the overall network, no special solvability criteria need to be
checked during partitioning. This approach guarantees always a valid decomposition
for the solution procedure, without taking any coupling considerations into account.

Modeling paradigm 2 If a heat transfer is adjacent to a wall and a junction, then
the wall is a lumped wall and the junction is a lumped or a volume junction.

Using Modeling paradigm 2 the existence of a mass is not guaranteed in the
solid network. Hence additional constraints imposed on the network structure may
arise. In this case, an according coupling is required in order to guarantee a stable
decomposition.
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4.2 Coupling Paradigms

In this part we state three different coupling paradigms and describe the conse-
quence of their application to the resulting coupled problem.

Coupling paradigm 1 If a heat transfer is adjacent to a wall and a junction, then
the heat transfer is considered in the solid network.

A partitioning according to Coupling paradigm 1 means that the solid system
is fed by the fluid network by means of the temperature of the junction, i.e.
uT bS

= (yT
Vj , y

T
Lj )

T . On the other hand, the solid domain provides the heat flow of
the heat transfer as input, i.e. uHsF

= yHtF . This approach is beneficial regarding
the solvability of the decomposed subsystems. As nT bS

> 0 for each coupled solid
system, the assumptions of Corollary 1 are fulfilled. No further topological checks
are necessary for the decomposed physical domains. The splitting of the global
network given in Fig. 1 with respect to this partitioning strategy is shown in Fig. 3.

Coupling paradigm 2 If a heat transfer is adjacent to a wall and a junction, then
the heat transfer is considered in the fluid network.

In contrast, when dividing according to Coupling paradigm 2, the heat exchange
between the two domains is taken into account in the fluid network. Unfortunately
following this coupling paradigm the solid model might not be solvable on its own.
An example is shown in Fig. 4 where no reference temperature is given in the solid
part.

Coupling paradigm 3 If a heat transfer is adjacent to a wall and a junction, then
the heat transfer is considered in both networks.

Following the coupling strategy of Coupling paradigm 3 is special contrary to the
first two possibilities. The heat transfer is solved in both domains, i.e. HtS = HtF ,
and the temperatures of the attached nodes are passed as outputs to the other
domain, cf. Fig. 5. Although additional computational effort is necessary it might be

Fig. 3 Decoupled version of network N from Fig. 1 using coupling paradigm 1
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Fig. 4 Decoupled version of network N from Fig. 1 using coupling paradigm 2

Fig. 5 Decoupled version of network N from Fig. 1 using coupling paradigm 3

beneficial. If we consider the networks as state transfer patterns, we can interpret the
nodes as energy storage whereas the edges as energy flows. In the first two strategies,
an energy transfer and an energy state between the circuits has to be handled.
In order to allow energy-conserving simulations, the flows must be considered
differently to storage. Thus, this approach could be preferred throughout.

Summarized, the coupling paradigms have different effects on the solvability of
the solid system. In addition to the basic solvability, attention must also be paid to
their effects on the numerical stability and energy conservation in the overall system.

5 Application to Co-simulation in Multi-Physical System
Calculations

Under specific conditions we obtain solvable partitions of equation systems which
can clearly be assigned to a specific domain, fluid and solid. Due to their dif-
ferent physical significance and stiffness, these systems therefore require various
integration schemes, in particular various step sizes. Since all domains have their
predefined input and output variables, all physical subsystems can be parametrized
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with their own solver settings and form co-simulation components. A crucial point is
now handling the interaction of all physical domains and their in- and outputs. First,
there exists a broad variety of strategies for exchanging the data. In literature there is
a fundamental distinction between event driven or asynchronous and synchronous
communication, cf. [3, 12]. Furthermore, it has to be decided whether the overall
system should be solved iteratively, i.e. implicit co-simulation, or whether each
component should only be evaluated once per time step, i.e. explicit co-simulation.
For both constellations, Gauss-Seidel-type or Jacobi-type approaches are possible.
Regardless of which strategy is applied, an inter- or extrapolation of the coupling
variables is necessary.

State-of-the-art modeling and simulation packages such as AVL CRUISE™M,1

provide implemented software solutions for co-simulation following different goals.
For instance AVL CRUISE™M is adapted to the needs of automotive system
simulation based on physical networks.

As an example we consider a BEV (battery electric vehicle) with cooling system
as given in Fig. 6. The central part of this model is an electrical network (in orange)
responsible for the propulsion and is therefore coupled to a mechanical network
(in green). On the other hand the electrical part is coupled to two fluid network,
which act as cooling circuits. An oil circuit is used for cooling the electric machine
and a water circuit is used for cooling the battery pack and the inverter. In total the
model forms a multi-physical network with about 500 network elements. Due to the
physical nature of the network elements, the full multi-physical network consists of
multiple simply-connected networks of various types. There is one electric network,
three mechanic networks, two fluid networks, fourteen gas networks and eight
solid networks, which are coupled via thermal or mechanical coupling conditions.
Additionally several control components communicate within the multi-physical
network via databusses.

The results provided in Sect. 3 can be applied, for example, in the battery pack,
cf. Fig. 7. Solid networks (in red) are coupled to a fluid network (in blue) via
heat transfer connections. The fluid-solid networks comply with the assumptions
of Assumption 1 and Modeling paradigm 1. The solvability of the solid networks is
guaranteed and any coupling paradigm out of Coupling paradigm 1–3 can be chosen.
In the case, that the fluid-solid network complies with Modeling paradigm 2, the
solvability of the solid network can be achieved by choosing an appropriate coupling
procedure, i.e. Coupling paradigm 1. Again the solvability of the solid network is
guaranteed, since now nT bS

> 0. The main result, that any valid network N can be
partitioned into fluid and solid networks, where the solvability of the subnetworks
is covered by the developed theory, is summarized in Corollary 2.

Corollary 2 (Feasible Decomposition) Let N be a network given by (1) fulfilling
Assumption 1. Let nRe > 0, then there exists a decomposition {NF ,Ns} and a
coupling strategy as defined in (9), such that Corollary 1 is applicable.

1https://www.avl.com/de/cruise-m.

https://www.avl.com/de/cruise-m
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Fig. 6 Schematic representation of a BEV with cooling system

Corollary 2 implies, that in any case the solvability is guaranteed for both, the
coupled multi-physical network DAE and the partitioned solid and fluid network
DAEs. No further restrictions on the topology or modifications of the topology
for the global model are required. Since Corollary 1 provides the corresponding
solvability results, either a single-rate solver can be applied to the coupled DAE or
individual (implicit or explicit) time integration schemes can be applied to the solid
and fluid DAEs in order to set up a multi-rate co-simulation.

This motivates the following procedure in order to establish feasible single-rate
and multi-rate models:

•> Multi-Physical Topological Analysis Receipt

1. Analyze the fluid-solid network and determine the actual modeling paradigms.
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Fig. 7 Battery pack model of the BEV with cooling system from Fig. 6

2. Based on the detected modeling paradigms, choose suitable coupling paradigms.

In order to analyze the solvability of the entire model, the theory must be
extended to couplings containing additionally electrical, mechanical and gas net-
works.

6 Conclusion and Outlook

Extending existing topology based methods to multi-physical networks seems to be
a promising technique for the analysis of multi-physical systems stemming from
automated generated DAEs from system simulation software. The main steps for
the analysis of coupled problems have been described in terms of a fluid-solid
coupled network. The selection of an appropriate coupling paradigm provides both
the solvability of the coupled system and that of the subparts. Hence, both, single-
rate and multi-rate approaches are well defined, if the entire network is solvable.
Indeed, the thermal coupling of different physical networks is a crucial task in
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system simulation in order to calculate and optimize the energy distribution within
an entire vehicle. Consequently the presented analysis for the fluid-solid coupling
has to be extended to electric-solid, gas-solid and mechanic-solid couplings. While
the gas-solid coupling is similar to the presented fluid-solid coupling in terms
of coupling conditions, the electric-solid and mechanic-solid couplings are more
challenging. In those constellations, the coupling is done via material properties
(e.g. resistance, capacitance), where additional DAE index problems may arise.
Tackling a complete thermal coupled multi-physical system model via topological
methods requires further research.
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