
Chapter 4
Stratifications, Equisingularity
and Triangulation

David Trotman

Abstract This text is based on 3 lectures given in Cuernavaca in June 2018
about stratifications of real and complex analytic varieties and subanalytic and
definable sets. The first lecture contained an introduction to Whitney stratifications,
Kuo-Verdier stratifications and Mostowski’s Lipschitz stratifications. The second
lecture concerned equisingularity along strata of a regular stratification for the
different regularity conditions: Whitney, Kuo-Verdier, and Lipschitz, including
thus the Thom-Mather first isotopy theorem and its variants. (Equisingularity
means continuity along each stratum of the local geometry at the points of the
closures of the adjacent strata.) A short discussion follows of equisingularity for
complex analytic sets including Zariski’s problem about topological invariance
of the multiplicity of complex hypersurfaces and its bilipschitz counterparts. In
the real subanalytic (or definable) case we mention that equimultiplicity along a
stratum translates as continuity of the density at points on the stratum, and quote
the relevant results of Comte and Valette generalising Hironaka’s 1969 theorem that
complex analytic Whitney stratifications are equimultiple along strata. The third
lecture provided further evidence of the tameness of Whitney stratified sets and of
Thom maps, by describing triangulation theorems in the different categories, and
including definable and Lipschitz versions. While on the subject of Thom maps we
indicate examples of their use in complex equisingularity theory and in the definition
of Bekka’s (c)-regularity. Some very new results are described as well as old ones.
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4.1 Stratifications

Consider some singular spaces which are real algebraic varieties.

(i) Let V be the curve {y2 = x2 + x3}. Then V has a double point singularity at
the origin in R

2 (Fig. 4.1).
(ii) Let V be the curve {y2 = x3}. Here V has a cusp singularity at the origin in

R
2.

(iii) Let V be the surface {z2 = x2 + y2} in R
3. This is a cone with an isolated

singularity at the origin.
(iv) Let V be the variety {z(x2 + (y + z)2) = 0} in R

3. This is the union of a plane
P and a transverse line � (Fig. 4.2).

In each of these four examples the singular set of the variety V is a point.
However in Example (iv) the regular part of V is not equidimensional—both 1 and 2
occur as local dimensions. In the other examples the regular part is equidimensional.

Now we give an example of a surface whose singular set is a line.

(v) Let V be {y2 = t2x2 − x3} in R
3. Then the singular set of V is the line < Ot >

(Fig. 4.3).

Fig. 4.1 y2 = x2 + x3

Fig. 4.2
z(x2 + (y + z)2) = 0

Fig. 4.3 y2 = t2x2 − x3
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4.1.1 Whitney’s Conditions (a) and (b)

We will “stratify” our singular spaces X (closed subsets of some R
n) by expressing

them as a union of smooth manifolds defined by means of a filtration by closed
subsets:

X = Xd ⊇ Xd−1 ⊇ · · · ⊇ X1 ⊇ X0 ⊇ X−1 = ∅

where each difference Xj − Xj−1 is either a smooth manifold of dimension j , or is
empty. Each connected component of Xj − Xj−1 is called a stratum of dimension
j .

In Example (iv) the natural filtration can be either

V ⊃ � ⊃ {0} ⊃ ∅

or

V ⊃ � ⊃ ∅ = ∅.

Because the intersection point 0 is different from other points on the line � we
like to take the first filtration. The natural 1-dimensional stratum is thus � \ {0}.
Also, in Example (v) the natural 1-dimensional strata are the two components of
< Ot > \{0}, because 0 is a different point. The local topology of V at points of
the t-axis changes as we pass through t = 0.

Question How can we formalise this difference?

Whitney ( §19 in [Whi65a]; §8 in [Whi65b]) defined two regularity conditions
(a) and (b).

Let X,Y be two strata (disjoint smooth submanifolds of Rn) and let y0 ∈ Y ∩
X \ X. Then condition (a) holds for (X, Y ) at y0 if given any sequence of points
xi ∈ X tending to y0, such that the tangent spaces TxiX tend to τ in the appropriate
grassmannian, then T0Y ⊆ τ

If we stratify Example (iv) without removing the point 0 from the line �, then
Whitney’s condition (a) fails to hold for the pair of strata (P − {0}, �) at 0 ∈ �,
where P is the plane {z = 0}.

Look now at Example (v) (the Whitney cusp). We can stratify V by the filtration

V ⊃< Ot >⊃ ∅

and then Whitney’s condition (a) holds for (V \ < Ot >,< Ot >) at all points.
So we need to impose more regularity so that the point {0} becomes a stratum: the
local topology of slices {t = constant} ∩ V changes at t = 0.
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We say that condition (b) holds for (X, Y ) at y0 ∈ Y ∩ (X − X) if given
sequences xi ∈ X and yi ∈ Y both tending to y0, such that TxiX tends to τ and
yixi/||yixi || tends to λ, then λ ∈ τ .

Look at Example (v). A sequence on V ∩ {y = 0} = {x(t2 + x) = 0}, i.e.
x = −t2, has λ = (1 : 0 : 0) and τ = (1, 0, 0)⊥ (the (t, y)-plane), so that λ /∈ τ ,
and condition (b) fails to hold.

Definition 4.1.1 A locally finite stratification of a closed set Z ⊆ R
n is called

a Whitney stratification if every adjacent pair of strata satisfy condition (b) of
Whitney.

Lemma 4.1.2 Condition (b) implies condition (a).

The proof is an exercise.

Theorem 4.1.3 (Theorem 2.B.1 in [Tho69], Corollary 10.5 in [Mat12]) A Whit-
ney stratification automatically satisfies the frontier condition, i.e., whenever a
stratum Y intersects the closure of a stratum X, then Y is contained in the closure
of X.

Remark 4.1.4 In Example (iv) the stratification

V ⊃ � ⊃ ∅

does not satisfy the frontier condition. In Example (v), stratifying by

V ⊃< Ot >

there are 4 strata of dimension 2 (recall that the strata are the connected components
of V 2 \ V 1).

Let X1 = {V ∩ {x ≤ 0} ∩ {y ≤ 0}}, X2 = {V ∩ {x ≤ 0} ∩ {y ≥ 0}}, X3 =
{V ∩{t ≤ 0}∩ {x ≥ 0}} and X4 = {V ∩{t ≥ 0}∩ {x ≥ 0}}. These are the 4 strata of
our stratification (Fig. 4.4) We see that Y ∩ X3 �= ∅, but that Y is not a subset of X3,
and similarly for X4, so that the frontier condition fails for (X3, Y ) and for (X4, Y ).

Fig. 4.4 The strata of V

O

X1

X2

X3

X4
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However the frontier condition holds for the pairs of adjacent strata (X1, Y ) and
(X2, Y ).

Theorem 4.1.5 ([Whi65a], Theorem 19.2) Every analytic variety V (real or
complex) admits a Whitney stratification.

In fact this is also true for more general sets: for semialgebraic sets (Łojasiewicz
[Loj65], Thom [Tho65], Wall [Wal75], Kaloshin [Kal05]), more generally for
subanalytic sets (Hironaka [Hir73], Hardt [Har75], Verdier [Ver76], Denkowska,
Wachta and Stasica [DWS85]), and even more generally for definable sets in o-
minimal structures (Loi [Loi98], van den Dries and Miller [vdDM96], Nguyen,
Trivedi and Trotman [NTT14], and Halupczok [Hal14a, Hal14b]).

One says a regularity condition is generic if every variety (or semialgebraic
set, etc.) admits a stratification such that every pair of adjacent strata satisfy the
regularity condition.

So Whitney’s condition (a) and Whitney’s condition (b) are generic.
[The term “generic” arises as follows. To prove existence of a regular stratifica-

tion one proves that for an adjacent pair of strata (X, Y ),

{y ∈ Y ⊂ X − X|(X, Y ) is regular at y}

is generic in Y in the Baire sense of containing a countable intersection of open
dense subsets, so that its complement can be added to a closed set lower in the
filtration than Y .]

Theorem 4.1.6 Both (a) and (b) are C1 invariants, i.e. given an (a)-regular (resp.
(b)-regular) stratification of Z ⊂ R

n and a C1 diffeomorphism φ : Rn −→ R
n then

φ(Z) inherits an (a)-regular (resp. (b)-regular) stratification.

The previous result follows at once from the following characterizations of (a)

and (b).
Let φ : (U,U ∩ Y, y) −→ (Rn,Rm × 0n−m, 0) be a C1 chart for Y as a

submanifold of Rn. Let πφ = φ−1◦πm◦φ : U −→ U ∩Y where πm : Rn −→ R
m×

0n−m is projection onto the first m coordinates, and let ρφ = ρm ◦φ : U −→ [0,∞)

where ρm : Rn −→ [0,∞) is defined by ρm(x1, . . . , xn) = �n
i=m+1x

2
i .

First we characterize (a)-regularity.

Theorem 4.1.7 (Theorem A in [Tro79]) A pair of adjacent strata (X, Y ) is (a)-
regular at y ∈ Y ⇐⇒ for every C1 foliation F transverse to Y at y, there is a
neighbourhood of y in which F is transverse to X ⇐⇒ for every C1 chart (U, φ)

for Y at y, there exists a neighbourhood V of y, V ⊂ U , such that the retraction
πφ|V ∩X is a submersion.

Next we characterize (b)-regularity.

Theorem 4.1.8 (Theorem B in [Tro79]) A pair of adjacent strata (X, Y ) is (b)-
regular at y ∈ Y ⇐⇒ for every C1 chart (U, φ) for Y at y, there is a neighbourhood
V of y, V ⊂ U , such that (πφ, ρφ)|V ∩X is a submersion.



92 D. Trotman

4.1.2 The Kuo-Verdier Condition (w)

A natural idea is to seek stronger generic regularity conditions. Now Whitney’s
condition (a) says that

dist(TxX, Ty0Y ) −→ 0 as x → y0.

We can quantify this convergence in the stronger Kuo-Verdier condition [Ver76]

(w) dist(TxX, Ty0Y ) = O(‖x − πY (x)‖) = O(dist(x, Y ))

i.e., there exists C > 0, and a neighborhood U of y0 in R
n such that

dist(TxX, Ty0Y ) ≤ C‖x − πY (x)‖ ∀x ∈ U ∩ X.

Here πY denotes a C1 submersive retraction from a tubular neighbourhood of Y

onto Y .

Theorem 4.1.9 Condition (w) is generic, i.e. (w)-regular stratifications exist in the
various classes of sets.

See Verdier (Théorème 2.2 in [Ver76]), Denkowska and Wachta [DW87] or
Łojasiewicz, Stasica and Wachta [LSW86] in the subanalytic case, and Tà Lê Loi
[Loi98] for definable sets.

In Brodersen and Trotman ([BT79], Proposition 2) it was shown that condition
(w) can be characterized by lifting of vector fields. Precisely, (w) holds for (X, Y )

at y0 ∈ Y if and only if every vector field vY on Y extends in a neighborhood U of
y0 to a vector field vX on X which is rugose: ∃C > 0 such that

∀x ∈ U ∩ X,∀y ∈ U ∩ Y, ||vX(x) − vY (y)|| ≤ C||x − y||.

Remark 4.1.10 The stratified vector field on X ∪Y is weakly Lipschitz. For it to be
Lipschitz one would need to impose the condition that

∀x ∈ U ∩ X,∀x ′ ∈ U ∩ X, ||vX(x) − vX(x ′)|| ≤ C||x − x ′||.

Theorem 4.1.11

(1) For semi algebraic sets (also for subanalytic sets, and for definable sets in o-
minimal structures), (w) implies (b).

(2) For complex analytic stratifications, (w) ⇐⇒ (b).

For (1) in the subanalytic case see Kuo [Kuo71] or Verdier (Théorème 1.5 in
[Ver76]). The definable case is due to Loi [Loi98]. (2) is due to Teissier (Théorème
1.2 in Chapter V of [Tei82]).
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Example

(vi) Let V = {y4 = t4x+x3} ⊂ R
3, and stratify by V ⊃< Ot >⊃ ∅. This satisfies

(b) but not (w). In fact V is a C1 submanifold of R3, as proved in my thesis
(Example 7.1 in [Tro77]). This shows that (w) is not a C1 invariant.

One can check easily that condition (w) is a C2 invariant. In fact it is a C1+ε

invariant where the ε refers to a Hölder property of the first derivative. This fact is
useful in proofs that (w) is a generic condition.

4.1.3 Mostowski’s Lipschitz Stratifications

Mostowski [Mos85] introduced in 1985 a very strong regularity condition for com-
plex analytic varieties and proved genericity. Then Parusiński successively proved
genericity of Mostowski’s Lipschitz condition for real analytic varieties [Par88b],
for semi-analytic sets [Par88a] and finally for subanalytic sets [Par94]. Recently, N.
Nguyen and Valette [NV16] proved genericity of Mostowski’s Lipschitz condition
for definable sets in polynomially bounded o-minimal structures.

Mostowski’s original condition is rather technical and takes long to write down,
so we will give an equivalent version due to Parusiński (Proposition 1.5 of [Par88a]).

Definition 4.1.12 A stratification � of a set Z defined by

Z = Zd ⊃ Zd−1 ⊃ · · · ⊃ Z0 ⊃ Z−1 = ∅

is said to be a Lipschitz stratification (or satisfy condition (L)) if there exists a
constant K > 0 such that for every subset W ⊂ Z such that

Zj−1 ⊆ W ⊆ Zj

for some j = �, . . . , d where � is the lowest dimension of a stratum of Z, each
Lipschitz �-compatible vector field on W with Lipschitz constant L which is
bounded on W ∩ Z� by a constant C > 0, can be extended to a Lipschitz �-
compatible vector field on Z with Lipschitz constant K(L + C).

Proposition 4.1.13 Every Lipschitz stratification satisfies condition (w).

This proposition is actually an immediate consequence of Mostowki’s original
definition [Mos85].

In fact, so far the Lipschitz condition is the strongest generic regularity condition
on stratifications of definable sets.
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4.1.4 Applications of Whitney (a)-regularity

We have been describing successively stronger regularity conditions. So, why
should one study the rather weak Whitney (a)-regular stratifications? One reason is
because in singularity theory and dynamical systems (in classification problems and
in the study of stability) one often uses that transversality to a Whitney stratification
is an open condition. And in fact one can show the following equivalence, which
gives another characterisation of (a)-regularity and hence another proof that (a) is
a C1 invariant.

Theorem 4.1.14 (Theorem 1.1 in [Tro77, Tro79]) Given a stratification � of a
closed subset Z of a smooth manifold M , � is Whitney (a)-regular ⇔ {f : N −→
M|f is transverse to �} is an open set of C1(N,M) in the strong C1 topology, for
all C1 manifolds N .

Recently, Trivedi gave holomorphic versions of this theorem for Stein manifolds
N,M [Tri13].

Another application of Whitney (a)-regularity is the following.

Theorem 4.1.15 (Kuo, Li, and Trotman [KTL89]) Given a stratum X of an (a)-
regular stratification of a subset Z of Rn, then for all x ∈ X and for every pair of
Lipschitz transversals M1,M2 to X at x (a Lipschitz transversal is defined to be the
graph of a Lipschitz map NxX → TxX), there is a homeomorphism

(M1, Z ∩ M1, x) −→ (M2, Z ∩ M2, x).

These results justify the study and verification of (a)-regularity.

4.2 Equisingularity

We have seen in the examples how Whitney (b)-regularity allows us to distinguish
points where the local topology changes. This is in fact a general property.

4.2.1 Topological Equisingularity

Theorem 4.2.1 (Thom-Mather: Théorème 2.B.1 in [Tho69] and Proposi-
tion 11.1 in [Mat12]) A Whitney (b)-regular stratification (of a closed subset
Z of a manifold M) is locally topologically trivial along each stratum.

This means more precisely that for every point x in a stratum X there is a
neighbourhood U of x in M , a stratified set L, and a stratified homeomorphism

h : (U,U ∩ Z,U ∩ Z, x) −→ (U ∩ X) × (Rk, cL, 
)
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such that p1 ◦ h = πX, where cL denotes the cone on L with vertex 
.
The proof of this theorem, known as the Thom-Mather first isotopy theorem, is

by integration of a continuous stratified controlled vector field v on Z: for each
stratum X, there is a lift of vX to a vector field vY on neighbouring strata Y such
that πX
vY = πX and ρX
vY = 0 (these two conditions state that vY is a lift of vX

and that vY is tangent to the level hypersurfaces of ρY ).
In particular the isotopy theorem states that the local topological type of Z at

points of a stratum X is locally constant, hence constant, as X is connected.

Remark 4.2.2 That the lifted stratified vector field vX ∪ vY in the Thom-Mather
isotopy theorem can be chosen to be continuous was first independently proved by
Shiota (Lemma I.1.5 in [Shi97]) and du Plessis [dP99]. A much stronger statement
was recently proved as part of Whitney’s fibering conjecture (Conjecture 9.2 in
[Whi65b]). From the statement of the Thom-Mather theorem one can see that h

defines a foliation by leaves h−1(p) for p ∈ cL, each diffeomorphic to U ∩ X. In
the complex holomorphic case Whitney conjectured that the leaves be holomorphic
and that their tangents vary continuously as we take the limit for points on a stratum
Y tending to an adjacent stratum X. This was proved by Parusiński and Paunescu
(Theorem 7.6 in [PP17]) in the real and complex algebraic and analytic cases, using
a hypothesis of a stratification which is Zariski equisingular (in a generic sense),
stronger than (w)-regularity. In 2018 Parusiński has announced that this generic
Zariski equisingularity implies the Lipschitz regularity of Mostowski for families of
hypersurfaces in C

3.
With the hypothesis of (b)-regularity (in fact with the even weaker (c)-regularity

defined in Lecture III), Whitney’s fibering conjecture was proved in the smooth case
in 2017 by Murolo, du Plessis and Trotman (Theorem 7 in [MdPT17]): the leaves
of {h−1(p)}p∈cL form a C0,1 foliation.

We saw above that a Kuo-Verdier (w)-regular stratification admits locally rugose
vector fields tangent to strata. These may be integrated to provide a local rugose
trivialization.

Theorem 4.2.3 (Verdier: Théorème 4.14 in [Ver76]) Every (w)-regular stratifi-
cation is locally rugosely trivial along strata.

This is to say that a homeomorphism defining a trivialization (almost) as in the
Thom-Mather theorem can be chosen to be rugose. This requires two clarifications.
Firstly the homeomorphism of the Thom-Mather theorem is in fact already rugose
because it is controlled—h can be chosen to respect the level hyper surfaces of the
control function ρX . Secondly in Verdier’s theorem [Ver76] the homeomorphism is
not in general with the product of U ∩X and a cone, but rather with a normal slice—
see the counterexample using the topologist’s sine curve below (Example 4.2.10).

Because of the definition we gave above of a Lipschitz stratification (of
Mostowski) it is no surprise that there is also a local trivialization theorem for
Lipschitz stratifications.
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Theorem 4.2.4 (Mostowski [Mos85], Parusiński (Theorem 1.6 in [Par94]))
Every Lipschitz stratification is locally bilipschitz trivial along strata.

Corollary 4.2.5 Every semialgebraic/subanalytic/definable subset of Rn admits a
locally bilipschitz trivial stratification.

Remark 4.2.6 Here “definable” must be taken in a polynomially bounded o-
minimal structure: this means that every definable function f : Rn −→ R satisfies
|f (x)| ≤ C||x||k, for some C > 0 and some positive integer k, in a neighbourhood
of infinity (i.e. outside some compact set K ⊂ R

n).

Example 4.2.7 (Parusiński) Let X(t) be < Ox > ∪{(x, xt , t)|x > 0} ⊂ R
3. Then

the Lipschitz types of the X(t) are all distinct for t > 1. Hence there is no locally
bilipschitz trivial stratification of

⋃
X(t), thus no Lipschitz stratification.

This example is definable in any o-minimal structure which is not polynomially
bounded (xt = exp(tlogx)). Recall the theorem of C. Miller.

Theorem 4.2.8 (Miller [Mil94]) An o-minimal structure is not polynomially
bounded if and only if the exponential function is definable in the structure.

Remark 4.2.9 When working outside of the class of definable sets, in the local
triviality theorems for (w)-regular and Lipschitz stratifications we must replace cL

by a normal slice F (not necessarily a cone), as shown by the following example.

Example 4.2.10 Let Z = {y = sin(1/x), x �= 0} ⊂ R
2, the topologist’s sine curve.

If Y = (−1, 1) × 0 and X = Z − Y , with (−1, 0) and (1, 0) the 0-strata, then
we obtain a (w)-regular stratification and a Lipschitz stratification, but not a (b)-
regular stratification. The stratification is locally topologically trivial indeed locally
bilipschitz trivial along Y but is not locally topologically conical. It is clear that Z is
not definable in an o-minimal structure because the x-axis intersects Z in an infinite
number of connected components.

Although local bilipschitz triviality is in general strictly weaker than the Lips-
chitz property of Mostowski, there exist (w)-regular stratified sets which are not
locally bilipschitz trivial.

Example 4.2.11 (Koike) Let Z = {y2 = t2x2 − x3, x ≤ 0}. This is obtained by
removing the “upper half” of the Whitney cusp V = {y2 = t2x2 − x3} (Fig. 4.5).

Because the slices t = constant vary between half of a double point, with a
nonzero angle between the two branches, and a cusp, with zero angle between the 2

Fig. 4.5 Example 4.2.11 O
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branches, one sees easily that these two types of slices are not bilipschitz equivalent.
However the following calculation shows that (w)-regularity holds.

d(< 0t >, TpX) = || < (0, 0, 1),
gradpF

||gradpF || ||

= 2|tx2|
√

(3x2 − 2xt2)2 + 4y2 + 4t2x4

≤ 2|tx2|
2y

≤ |x| ≤
√

x2 + y2 = ||p − π(p)||.

Thus (w) holds.

4.2.2 Some Complex Equisingularity and Real Analogues

We have seen that (b)-regularity implies the constance of the local topological type
of a stratified set along each stratum. For families of complex plane curves defined
by

F : C2 × C −→ C, 0

(F−1(0), 0 × C) is (b)-regular if and only if the local topological type of F−1
t (0)

is constant as t varies, where (z, t) are the coordinates of C
2 × C. However

this equivalence does not extend to higher dimensions as shown by the following
celebrated example.

Example 4.2.12 (Briançon and Speder [BS75]) Let F(x, y, z, t) = x3 + txy3 +
y4z + z9. Then (F−1(0), 0 × C) is not (b)-regular at (0, 0, 0, 0), but the local
topological type at (0, 0, 0, t) of F

)−1
t (0) is constant.

The theory of equisingularity aims at comparing different notions of regularity
on stratifications, in particular of analytic varieties (where much work has been done
in particular by Zariski, Teissier, and Gaffney).

A basic invariant in algebraic geometry is the multiplicity m0(V ) at a point 0 of
a variety V in C

n. An informal definition of m0(V ) is the number of points near 0 in
P ∩ V for a generic plane P of dimension equal to the codimension of V , passing
near 0.

A relation with stratifications is given by a theorem of Hironaka.

Theorem 4.2.13 (Hironaka 1969 (Corollary 6.2 in [Hir69])) Given a complex
analytic Whitney (b)-regular stratification of a complex analytic variety V , the
multiplicity of V at points of V is constant on strata.
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Thus (b) implies equimultiplicity.
The proof is by integration of a vector field, and works for subanalytic sets, inter-

preted as (b) implying normal pseudo flatness (this is equivalent to equimultiplicity
in the complex case), as shown in a paper of mine with Orro (Proposition 5.2 in
[OT02]). (One defines the normal cone of a stratified set along a stratum X by taking
limits on X of orthogonal secant vectors from Y to the set and then normal pseudo
flatness means that the associated projection of the normal cone to X is open.)

4.2.2.1 Zariski’s Problem

In 1971, Zariski stated the following problem (Question A in [Zar71]): Given
analytic functions f, g : Cn+1, 0 −→ C, 0 and a germ at 0 of a homeomorphism h

of Cn+1 sending f −1(0) onto g−1(0), does m0(f
−1(0)) = m0(g

−1(0))?
As this school concerns the Lipschitz geometry of singularities I will mention

some results about Zariski’s problem when the homeomorphism h is assumed to be
bilipschitz.

Theorem 4.2.14 (Fernandes and Sampaio [FS16]) Zariski’s problem has a posi-
tive answer if n = 2 and h is bilipschitz.

Theorem 4.2.15 (Risler and Trotman [RT97]) Zariski’s problem has a positive
answer if h is bilipschitz and f = g ◦ h, for all n.

In 2018 it was announced by Birbrair, Fernandes, Sampaio, and Verbitsky
[BFSV18] that for the non hypersurface case there are infinitely many counterex-
amples to the bilipschitz invariance of the multiplicity with the dimension of the
varieties being at least 3.

For normal complex surfaces (possibly embedded in higher dimensions), Neu-
mann and Pichon [NP12] have proved that the multiplicity is an outer bilipschitz
invariant.

Theorem 4.2.16 (Comte [Com98]) Zariski’s problem has a positive answer for
complex analytic germs if h is bilipschitz with Lipschitz constants (of h and h−1)
sufficiently close to 1.

More precisely if X1 and X2 are complex analytic germs of dimension d in C
n

and there exist constants C > 0, C′ > 0 such that

(1/C′)||x − y|| ≤ ||h(x) − h(y)|| ≤ C||x − y||

for all x, y near 0 in X1 for a bilipschitz homeomorphism h : X1, 0 −→ X2, 0 and

1 ≤ CC′ ≤ (1 + 1

M
)

1
2d

where M = max(m0(X1),m0(X2)), then m0(X1) = m0(X2).
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The proof uses a characterization of the multiplicity as the density, originally due
to Lelong [Lel57].

Definition 4.2.17 The density of a set X at p ∈ X is defined as the limit as r

tends to 0 of the volume of the intersection of X with the ball of radius r centred
at p divided by the volume of the intersection of a plane through p of the same
dimension as X with the ball of radius r centred at p.

Corollary 4.2.18 (Comte [Com98]) In a bilipschitz trivial family of complex
analytic germs (defined by a Lipschitz isotopy) the multiplicity is constant.

While on the topic of equimultiplicity and stratifications one should mention the
important characterization due to Teissier.

Theorem 4.2.19 (Teissier: Théorème 1.2 in Chapter V of [Tei82]) A complex
analytic stratification of a complex analytic variety is Whitney (b)-regular ⇐⇒ the
multiplicities of the local polar varieties are constant on strata.

Here the local polar varieties at a point of the variety are the closures of the
critical sets of the restrictions to strata, whose closure contains the point, of locally
defined projections to general linear subspaces of dimensions lying between two
and the dimension of the variety (see section 3.2 in [FT]).

There are real analogues of these complex results involving what are known
as Lipschitz-Killing invariants on strata of a definable stratification, due to Comte
and Merle [CM08] and Nguyen and Valette [NV18]. These generalize another real
analogue of Hironaka’s theorem stated above, due to Comte (who proved in 2000
the partial result (Théorème 0.4 of [Com00]) of continuity of the density along strata
of a (w)-regular subanalytic stratification) and G. Valette.

Theorem 4.2.20 (Valette [Val08]) The density is a Lipschitz function along strata
of a (w)-regular subanalytic stratification, and a continuous function along strata
of a (b)-regular subanalytic stratification.

Part of the proof of Teissier’s Theorem 4.2.19 above involves studying how equi-
singularity is preserved after taking generic plane sections of different dimensions.
Precisely, let Y ⊂ X − X.

Definition 4.2.21 Consider a plane P ⊃ Y , then (X ∩ P, Y ) is a stratified pair. If
E is an equisingularity condition, such as (b) or (w), etc., then one says that the
pair (X, Y ) is E
-regular at 0 ∈ Y if for all k, 0 ≤ k ≤ n − m there exists an open
dense set of planes P of codimension k such that P is transverse to X near 0 and
(X ∩ P, Y ) is E-regular at 0.

If we abbreviate local topological triviality by (T .T .) then Teissier proved in
the complex case that (b) implies (T .T .
), a strengthening of the Thom-Mather
theorem, while the converse, that (T .T .
) implies (b), was proved by Lê and Teissier
(see Théorème 5.3.1 in [LT83]). This is thus a converse to Teissier’s strengthened
Thom-Mather theorem. Next we give some results concerning the 
 condition in the
subanalytic case.
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Theorem 4.2.22 For subanalytic stratifications, (w) implies (w
), the Lipschitz
property (L) implies (L
) and, when Y has dimension 1, (b) implies (b
).

The first and third implications are proved by Navarro and Trotman (Theo-
rem 3.14 in [NAT81]), and the second implication is proved by Juniati, Trotman
and Valette (Corollary 2.9 in [JTV03]). It is unknown if (b) implies (b
) when the
dimension of Y is greater than 1 for subanalytic stratifications, but in the complex
case this follows from the implication that (w) implies (w
) since (b) and (w)

are equivalent (Teissier: Théorème 1.2 in Chapter V of [Tei82]). Probably the
implications in the previous theorem are valid for definable sets in polynomially
bounded o-minimal structures. A counterexample to the third implication in the non
polynomially bounded case is given in a paper by myself and Valette (in section 4
of [TV17]). Another such example is given in a paper by myself and L. Wilson
[TW06].

Example 4.2.23 (Trotman and Wilson [TW06]) Let f (x, z) = z − z log(x+
√

x2+z2)
log z

,

z > 0. Then let Sf be the closure of the graph of f in R
3. Then (Sf − < Ox >

,< 0x >) is (b)-regular, but (b
) fails. Also (w) fails to hold, and normal pseudo
flatness fails.

Example 4.2.24 (Trotman and Valette (section 4 in [TV17])) Let

g(x, z) = zx2+1 = exp((x2 + 1) log z), z > 0.

Let Sg be the closure of the graph of g in R
3 (Fig. 4.6). Then (Sg− < 0x >,<

0x >) is (b)-regular, but (b
) fails. Also normal pseudo flatness and (w) fail to hold.

Consider the convex hull Kg of Sg and the half-plane {y = 0, z > 0}. The
density of Kg is not continuous along 0x at 0. This is a counterexample to a
possible generalization of the Comte-Valette theorem 2.20 [Com00, Val08] to non
polynomially bounded o-minimal structures. Note too that the bilipschitz type of
Kg varies continuously along 0x.

Fig. 4.6 Example 4.2.24

x

y

z

O
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These two examples provide examples of definable sets in any non polynomially
bounded o-minimal structure, because in such a structure the exponential function
and its logarithm inverse are definable by Miller’s dichotomy [Mil94] stated above.

These examples prevent definable extensions to the following theorem.

Theorem 4.2.25 (Pawłucki (Theorem 1.1 in [Paw85])) Let X,Y be (locally)
connected subanalytic strata in R

n, Y ⊂ X − X, such that dimX = dimY + 1.
Then (X, Y ) is (b)-regular ⇐⇒ X ∪ Y is a C1 manifold-with-boundary.

One implication is just the C1 invariance of (b). The other is more delicate.
In 2017 with Valette (Corollary 3.11 in [TV17]) I proved that Pawłucki’s

characterization is valid for definable sets in polynomially bounded o-minimal
structures.

The two examples above show this fails in non polynomially bounded o-minimal
structures.

4.3 Triangulation of Stratified Sets and Maps

While stratifications can be thought of as a more efficient alternative to triangu-
lations, as there are less strata in a stratification into manifolds than simplexes of
maximal dimension in a triangulation, it remains the case that triangulations of sets
(and maps) are useful for calculating homology and cohomology. In this section we
present results concerning sets and maps, rather incomplete, but which may serve
as an introduction to the theory.

4.3.1 Triangulation of Sets

Theorem 4.3.1 (Hironaka [Hir75]) Every semialgebraic set S is triangulable:
there exists a polyhedron K and a semialgebraic homeomorphism φ : K −→ S.
Moreover given a finite family {Sj }j=1,...,m of semialgebraic subsets of S, we can
choose K = {σi}I=1,...,p (the simplexes) and φ such that each Sj is the union of
some of the φ(σo

i ).

The proof applies also to the case of subanalytic sets.

Corollary 4.3.2 A Whitney stratified semialgebraic set S admits a triangulation
such that every stratum is a union of (images of) open simplexes.

There are similar results in the smooth category.

Theorem 4.3.3 (Goresky [Gor78]) Every Whitney stratified set is triangulable,
such that strata are unions of open simplexes.
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Conjecture 4.3.4 (Thom) Every Whitney stratified set admits a Whitney triangu-
lation, i.e. a triangulation such that the refined stratification defined by the open
simplexes is itself (b)-regular.

As a partial answer to Thom’s conjecture we have the following result of Shiota
in the semialgebraic case.

Theorem 4.3.5 (Shiota [Shi05]) Every semialgebraic set S admits a semialgebraic
Whitney triangulation , i.e. the open simplexes φ(σo

i ) form the strata of a Whitney
stratification, and this may be chosen to be compatible with a finite set of
semialgebraic subsets of S.

Shiota’s theorem was improved and extended by Malgorzata Czapla in her thesis.

Theorem 4.3.6 (Czapla [Cza12]) Every definable set S admits a definable C2

(w)-regular triangulation, compatible with a finite number of definable subsets of
S. Moreover the triangulation φ : |K| −→ S is a locally Lipschitz mapping.

So Czapla improves on Shiota’s theorem in two ways: (w)-regularity and
definability. The main tool of Czapla is a bilipschitz triviality theorem of Valette
for definable families, itself an improvement of a celebrated theorem of Hardt.

A continuous semialgebraic mapping p : A −→ R
k where A ⊂ R

n is
semialgebraic, is said to be semialgebraically trivial over a semialgebraic subset
B ⊂ R

k if there is a semialgebraic set F and a semialgebraic homeomorphism
h : p−1(B) −→ B × F such that p1 ◦ h = p. Then h is called a semialgebraic
trivialization of p over B. We say h is compatible with C ⊂ A if there exists a
semialgebraic set G ⊂ F such that h(C ∩ p−1(B)) = B × G.

Theorem 4.3.7 (Hardt’s Semialgebraic Triviality [Har80]) Let A ⊂ R
n be a

semialgebraic set and p : A −→ R
k a continuous semialgebraic mapping. Then

there is a finite semialgebraic partition of R
k into B1, . . . , Bm such that p is

semi algebraically trivial over each Bi . Moreover if C1, . . . , Cq are semialgebraic
subsets of A we can assure that each trivialization

hi : p−1(Bi) −→ Bi × Fi

is compatible with all Cj .

In particular if b, b′ ∈ Bi , then p−1(b) and p−1(b′) are semialgebraically
homeomorphic. One can take Fi = p−1(bi), bi ∈ Bi and set hi(x) = (x, bi) for all
x ∈ p−1(bi).

There is a definable version of Hardt’s triviality theorem too, given by Coste
in his Pisa notes on semialgebraic geometry [Cos00]. We now consider a further
improvement, a definable bilipschitz triviality theorem due to G. Valette [Val05a].
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Fix a polynomially bounded o-minimal structure over R (take semialgebraic sets
if preferred). Let A ⊂ R

n×R
p be a definable set, considered as a family of definable

subsets of Rn parametrized by R
p. For U ⊂ R

p, let

AU = {q = (x, t) ∈ R
n × R

p|q ∈ A, t ∈ U}

and for t ∈ R
p, letAt = {x ∈ R

n|q = (x, t) ∈ A}, the fibre of A at t .

Definition 4.3.8 A is said to be definably bilipschitz trivial along U ⊆ R
p

if there exists t0 ∈ U and a definable homeomorphism h : At0 × U −→ AU

mapping (x, t) to h(x, t) = (ht (x), t) together with a definable continuous function
C : U −→ R such that for all x, x ′ ∈ At0 and all t ∈ U ,

|ht (x) − ht (x
′)| ≤ C(t)|x − x ′|

and for all x, x ′ ∈ At , and all t ∈ U ,

|h−1
t (x) − h−1

t (x ′)| ≤ C(t)|x − x ′|.

Theorem 4.3.9 (Valette [Val05a, Val05b]) Let A be a definable subset of Rn ×
R

p in some polynomially bounded structure over R. Then there exists a definable
partition of Rp such that the family A is definably bilipschitz trivial along each
element of the partition.

Notes The Mostowski-Parusiński condition (L) of section 1.3 together with the
definable existence theorem of Nguyen and Valette [NV16] gives a local bilipschitz
trivialization h. Here we have definability of h as well. There is also better control
of the Lipschitz constants of the bilipschitz trivialization here.

As in the case of Hardt’s theorem for topological types we can deduce from
Valette’s theorem bounds on the number of Lipschitz types of sets given as zeros of
polynomials of bounded degree.

To prove his theorem, Valette proves a preparation theorem, and uses ultrafilters
as in Coste’s account of the definable Hardt triviality theorem (cf. Coste’s Pisa notes
on o-minimal geometry [Cos00]).

4.3.2 Thom Maps and the (af ) Condition

We will describe a class of stratified maps which are triangulable.

Definition 4.3.10 Let Z be a closed subset of Rn (or Cn) with a stratification �.
Let f : Rn −→ R

p be a C1 map. Then � is said to satisfy (af ) if each f |X, for
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X a stratum of �, is of constant rank (depending on X), and for sequences xi ∈ X

tending to y in a stratum Y of �,

limxi→yTxi (f
−1(f (xi))) ⊇ Ty(f

−1(f (y))).

When further,

dist(Tx(f
−1(f (x))), Ty(f

−1(f (y))) ≤ C||x − πY (x)||

for some C > 0 and x in a neighbourhood U of y in R
n (or Cn), we say that �

satisfies the (wf ) condition.

Theorem 4.3.11 (Loi [Loi98]) For polynomially bounded o-minimal structures,
every definable function f : Rn −→ R admits a stratification such that (wf ) holds.

For (af ) this is true in any o-minimal structure. In the complex case the result is
due to Henry, Merle, and Sabbah [HMS84].

Definition 4.3.12 Let f : R
n −→ R

m be a C1 map. If there exist Whitney
stratifications � of Z ⊂ R

n ⊂ R
m such that f maps each stratum X of � to a

stratum X′ of �′, such that f |X is a submersion onto X′, � satisfies (af ), and each
f |X is proper, then one says that f is a Thom map .

Thom maps have nice properties.

Theorem 4.3.13 (Shiota [Shi00]) If Z,W are respectively closed subsets of Rn

and R
m and f : Z −→ W is a proper C∞ Thom map, then f is triangulable, i.e.

there exist polyhedra P,Q and homeomorphisms φ : Z −→ P , ψ : W −→ Q

such that ψ ◦ f ◦ φ−1 : P −→ Q is piecewise linear.

For non-proper maps there is still a theorem.

Theorem 4.3.14 (Shiota [Shi10]) Nonproper semialgebraic C1 Thom maps
between closed semialgebraic subsets are triangulable , i.e. there exist finite
simplicial complexes K,L and semialgebraic (resp. definable) C0 embeddings
φ : Z −→ |K|, ψ : W −→ |L| such that φ(Z) and ψ(W) are unions of open
simplexes of K,L and ψ ◦ f ◦ φ−1 : φ(Z) −→ ψ(W) can be extended to a
simplicial map K −→ L.

When the target space is of dimension > 1, the transform of the map by suitable
blowing-ups of the target space becomes (af ) stratifiable (see Sabbah [Sab83]) and
locally triangulable (see Teissier [Tei89]). Note that maps not satisfying (af ) may
not be triangulable. For example the blowup of a point in R

2 does not satisfy (af )

and is not triangulable. Any 2-simplex attached to the exceptional fibre (a projective
line) is mapped to a 1-simplex by linearity. One sees that (af ) fails because outside
the origin the fibres of points are just points and the limit of a point cannot contain
a line as the tangent space of the exceptional fibre. Thom [Tho69] called maps
satisfying (af ) maps “sans éclatement”, i.e. without blowing-up, so that this
example is in some sense a paradigm.
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Analogous to the characterization of (a)-regularity by the openness of the set of
maps transverse to a stratification, we have a similar result for (af )-maps.

Theorem 4.3.15 (Trivedi-Trotman [TT14]) Let N,P be C1 manifolds. Let f :
N −→ P be a C1 map of constant rank on the strata of a stratification � of a
closed subset Z of N . Let F denote the foliations of strata X of � induced by the
fibers of f |X. The following are equivalent:

(1) � is (af )-regular;
(2) for any C1 manifold M , {g ∈ C1(M,N) : g is transverse to F} is open in the

strong C1 topology;
(3) {g ∈ C1(N,N) : g is transverse to F} is open in the strong C1 topology.

The (af ) condition has a particular role in equisingularity of families of complex
hypersurfaces.

Let F = C
n+1×C,O×C −→ C, 0 ba an analytic function such that the singular

locus of F−1(0) is 0 × C. Let Ft (z) = F(z, t).

Theorem 4.3.16 (Lê and Saito [LS73], Teissier (Remarque 3.10 in [Tei73])) .
The following conditions are equivalent:

(1) μ(Ft ) is constant as t varies,
(2) (af ) holds for the stratification (F−1(0) − 0 × C, 0 × C),

(3) lim(z,t)→(0,0
|∂F/∂t |
|gradF | = 0.

Corollary 4.3.17 If F(z, t) = g(z) + th(z) has μ(Ft ) constant, then Ft is
equimultiple along 0 × C.

This simple consequence of the previous theorem should be linked to a striking
result of Parusiński.

Theorem 4.3.18 (Parusiński [Par99]) With the same hypotheses as in the previous
corollary, the topological type of F−1

t (0) is constant as t varies.

This in turn should make us think again of an important general result.

Theorem 4.3.19 (Lê-Ramanujam [LR76]) If n �= 2 and μ(Ft) is constant, then
the topological type of F−1

t (0) is constant.

Question What happens when n = 2?

Remark 4.3.20 There are at least 3 different definitions of (bf )-regularity, due to
Thom (in section IIIB of [Tho69]), Henry-Merle (Definition 9.1.1 of [HM87]),
and Nakai (see §1 of [Nak00]). Their properties have not been studied beyond the
original papers so far as I know. And no work has been done on a possible (Lf ).
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4.3.2.1 (c)-regularity

The notion of Thom map has been used by Karim Bekka to define a new regularity
condition called (c).

Definition 4.3.21 One says that a stratification � of a closed set Z in a manifold
M is (c)-regular if for each stratum X of � there is a neighbourhood UX of X in
M and a C1 function ρX : UX −→ [0, 1) such that X = ρ−1

X (0) and ρX is a Thom
map for �.

One shows fairly easily that (b) �⇒ (c) �⇒ (a). Note that UX is a
neighbourhood of the whole of X and not just of a point of X.

Moreover, by a careful analysis of the proof of the Thom-Mather isotopy
theorem, Bekka showed:

Theorem 4.3.22 (Bekka (see §3 in [Bek91])) Every (c)-regular stratification is
locally topologically trivial along strata (and conical).

Thus, as for Whitney (b)-regular stratified sets (Z,�), for every point x in
a stratum X there is a neighbourhood U of x in M , a stratified set L and a
homeomorphism

h : (U,U ∩ Z,U ∩ X) −→ (U ∩ X) × (Rk, cL, 
)

given by h(z) = (πX(z), ρX(z), θ(z)) where cL is the cone on L with vertex 
. As
for (b)-regularity, fix the values of ρX and θ , then {z|ρX(z) = ρ, θ(z) = θ} is a leaf
diffeomorphic to U ∩ X.

Theorem 4.3.23 (Murolo-du Plessis-Trotman (Theorem 7 in [MdPT17]))
Given a (c)-regular stratified set we can choose h such that the tangent spaces
to the leaves vary continuously on U , in particular as points tend to X.

Again we may fix just θ . Then {z|θ(z) = θ} is a wing, a C0 manifold with
boundary U ∩ X and smooth interior. Then one can choose h so that the tangent
spaces to the wings vary continuously and each wing is itself (c)-regular (Theorem 8
in [MdPT17]).

Question What can one say in the semialgebraic or subanalytic cases? Note that
the Parusiński-Paunescu theorem (Theorem 7.6 of [PP17] ) is only for the algebraic
and analytic cases.
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