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Preface

This book collects the lecture notes of the International School on Singularity
Theory and Lipschitz Geometry held in Cuernavaca (Mexico) on June 11–22, 2018.

The school consisted in 9 series of lectures, delivered by

Lev Birbrair (Universidade Federal do Ceará, Fortaleza),
José Luis Cisneros Molina (Universidad Nacional Autónoma de México),
Walter Neumann (Columbia University, New York),
Anne Pichon (Université d’Aix Marseille),
Patrick Popescu-Pampu (Université de Lille),
Maria Aparecida Soares Ruas (ICMC, São Carlos),
Jawad Snoussi (Universidad Nacional Autónoma de México),
Bernard Teissier (Institut de Mathématiques de Jussieu, Paris),
David Trotman (Université d’Aix Marseille).

The last part of the volume contains the historic pioneering 1969 work of Frédéric
Pham and Bernard Teissier “Fractions Lipschitziennes d’une algèbre analytique
complexe et saturation de Zariski” which was still unpublished until now, in an
English translation performed by Naoufal Bouchareb (Université d’Aix Marseille)
under the supervision of Teissier himself.

Lipschitz geometry of singular sets is an intensively developing subject which
started in 1969 with the work of Pham and Teissier on the Lipschitz classification
of germs of plane complex algebraic curves. Its essence is the following natural
problem. It has been known since the 1972 work of Burghelea and Verona that a
real or complex algebraic variety is topologically locally conical. On the other hand
it is in general not metrically conical: there are parts of its link with non-trivial
topology which shrink faster than linearly when approaching the special point. A
natural problem is then to build classifications of the germs up to local bi-Lipschitz
homeomorphism, and what we call Lipschitz geometry of a singular space germ is
its equivalence class in this category. There are different approaches for this problem
depending on the metric one considers on the germ. A real analytic space germ
(V , p) has actually two natural metrics induced from any embedding in R

N with
a standard Euclidean metric: the outer metric is defined by the restriction of the

v
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Euclidean distance, while the inner metric is defined by the infimum of lengths of
paths in V .

What makes Lipschitz geometry of singular sets attractive is that it gives tame
classifications, as conjectured by Siebenmann and Sullivan in 1977: the set of equiv-
alence classes of complex algebraic sets in C

N defined by polynomial equations of
bounded degree is finite. One of the most important results in Lipschitz geometry is
the proof of this statement by Mostowski using his theory of Lipschitz stratifications,
and then its extension by Parusiński to the subanalytic setting and very recently by
Nguyen and Valette to the category of definable sets in polynomially bounded o-
minimal structures. In contrast with the Lipschitz geometry of singular varieties, the
Lipschitz geometry of germs of maps has continuous moduli, as shown by Henry
and Parusiński.

This series of courses was designed to present a broad overview of the important
recent progress in this area, which led to the emergence of new ideas and started
to build bridges between Lipschitz geometry and several other major areas of
singularity theory. Among others, let us mention the surprising discovery by Birbrair
and Fernandes that complex singularities of dimension at least two are in general not
metrically conical for the inner metric. This started a series of works leading to the
complete classification of the inner Lipschitz geometry of germs of normal complex
surfaces by Birbrair, Neumann and Pichon, and building on it, to major progress in
the study of the outer metric. The ideas developed there inspired for example the
complete classification by Birbrair and Gabrielov of the germs of functions from
(R2, 0) to (R, 0) up to contact Lipschitz equivalence.

These works pioneered a deep renewal of the field. During the last decade, many
researchers in singularity theory started working in Lipschitz geometry and the field
is now at its golden age. However, a lot remains to be done; for example, building
classifications of Lipschitz geometry in larger settings such as non-isolated and
higher dimensional real and complex singularities and in the global, semi-algebraic
and o-minimal settings, or continuing the exploration of bridges between Lipschitz
geometry and other important aspects of singularity theory such as equisingularity,
resolution theory, arc spaces theory, non-Archimedean geometry, toric and tropical
geometries, etc. Beyond the interest of the topic in itself, many very recent works
already suggest that Lipschitz geometry will give new points of view on these
various aspects of singularity theory and will help to solve open problems which
are a priori not of metric nature.

The aim of the lecture notes is to introduce to Lipschitz geometry of singularities
an audience of graduate students and researchers from other fields of geometry who
may want to study in this area the multiple open questions offered by the most recent
developments. All the courses are illustrated by many examples and some of them
contain exercises.

The first three courses contain introductive lectures to basic tools in singularity
theory which are intensively used in the next six advanced courses.
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In the first basic course, José Luis Cisneros Molina gives a Geometric
Viewpoint of Milnor’s Fibration Theorem in which he presents the local conical
structure theorem of singular spaces and gives the proofs of the Milnor Fibration
Theorem, the Milnor-Lê Fibration Theorem and the equivalence of these two fibra-
tions, emphasizing the ideas of differential topology involved. He then describes the
monodromy of the Milnor fibration of a complex analytic function in two variables
with isolated singularity as a quasi-periodic diffeomorphism using a resolution of
the singularity. The notes of the course were written with the help of Haydée
Aguilar-Cabrera.

The second basic course, by Jawad Snoussi, brings the reader in A Quick Trip
into Local Singularities of Complex Curves and Surfaces which presents the
essential tools which are used in the next advanced courses on Lipschitz geometry
of complex low dimensional spaces. In particular, it gives the key notions of Puiseux
parametrizations and characteristic Puiseux exponents of a germ of plane complex
curve, which enable to understand the Lipschitz classification of complex curves
presented later. It also introduces the reader to different approaches of resolution
of complex surfaces by normalized points blow-ups and by normalized Nash
modification and to the related notions of generic hyperplane sections and generic
polar varieties, which play a key role in the Lipschitz classifications of complex
surface singularities.

In the third basic course, Walter Neumann gives a panorama on 3-Manifolds
and Links of Singularities and an overview of general 3-manifold topology, and
its implications for links of isolated complex surface singularities. In particular, he
worked out the relations between the JSJ decomposition of links of surface singu-
larities and their resolution graphs through plumbing calculus and provided many
examples of isolated complex surface singularities whose Lipschitz geometries are
explicitly described in some of the advanced courses.

The second part of the volume consists of five advanced courses on Lipschitz
geometry of singularities. Each gives its own approach and different doors to enter
in the field, but also refers to the other courses. The whole gives a rich picture of
the theory and brings the reader to the border of some of the areas which remain
unexplored.

The course of David Trotman presents the techniques of Stratifications, Equi-
singularity and Triangulations and gives an introductive overview of Whitney
stratifications, Kuo-Verdier stratifications, Mostowski’s Lipschitz stratifications and
of equisingularity along strata of a regular stratification for the different regularity
conditions. In particular, it discusses equisingularity for complex analytic sets
including Zariski’s problem about topological invariance of the multiplicity of
complex hypersurfaces and its bilipschitz counterparts. The last part provides further
evidence of the tameness of Whitney stratified sets and of Thom maps, by describing
triangulation theorems in the different categories, and including definable and
Lipschitz versions.
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The course of Maria Aparecida Soares Ruas presents some Basics on Lips-
chitz Geometry and starts with an introduction to the main tools used to study the
Lipschitz geometry of real and complex singular sets and mappings: the notions
of semi-algebraic sets and mappings, and basic notions of Lipschitz geometry. The
course then focusses on the real setting, presenting the outer Lipschitz classification
of semialgebraic curves, the inner classification of semialgebraic surfaces, the bi-
Lipschitz invariance of the tangent cone, ending with a presentation of several
results on Lipschitz geometry of function germs.

Lev Birbrair, in his course entitled Surface Singularities in R
4: First Steps

Towards Lipschitz Knot Theory presents a new approach to the classification
of real surfaces in R

4 based on the following idea. A link of such an isolated
singularity is a knot (or a link) in the 3-sphere. Then, he shows that the ambient
Lipschitz classification of surface singularities in R

4 can be interpreted as a metric
refinement of the topological classification of knots in S3. In particular, a given knot
K gives rise to infinitely many distinct ambient Lipschitz equivalence classes of
outer Lipschitz equivalent singularities in R

4 whose links are topologically ambient
equivalent to K . The lecture notes of this course were written in collaboration with
Andrei Gabrielov.

Anne Pichon gives a course on Lipschitz Geometry of Complex Singularities
in which she presents the complete classification of outer Lipschitz geometry of
complex curves from a geometric point of view. She then describes the thick-thin
decomposition of a normal complex surface singularity using resolution theory as
a key tool, and based on it, a geometric decomposition of the germ into standard
pieces, which is invariant by inner bilipschitz homeomorphisms and which leads to
the complete classification of Lipschitz geometry for the inner metric. The course
also presents some advanced results towards the classification for the outer metric.

The course of Bernard Teissier entitled The biLipschitz Geometry of Com-
plex Curves, An Algebraic Approach explores the concept of “generic plane
linear projection” of a complex analytic germ of curve in C

n. The notes of the
course were written by Arturo Giles Flores and Otoniel Nogueira da Silva under the
supervision of Bernard Teissier. The main objective is to prove that all equisingular
(topologically equivalent) germs of reduced plane curves are generic projections of
a single space curve and that the restriction of a generic projection to a curve is a
bi-Lipschitz map with the outer metric. It uses the theory of saturation introduced
in his historic joint paper with F. Pham, “Fractions Lipschitziennes d’une algèbre
analytique complexe et saturation de Zariski”, published at the end of the present
book.

Finally, the ninth and last course, by Patrick Popescu-Pampu, gives an intro-
duction to the recent theory of Ultrametrics and Surface Singularities which he
developed in a series of works with Evelia García Barroso, Pedro González Pérez
and Matteo Ruggiero. Starting with a theorem of Płoski, it shows how to construct
ultrametrics on certain sets of branches drawn on any normal surface singularity
from their mutual intersection numbers and how to interpret the associated rooted
trees in terms of the dual graphs of adapted embedded resolutions. The text begins
by recalling basic properties of intersection numbers and multiplicities on smooth
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surface singularities and the relation between ultrametrics on finite sets and rooted
trees. This theory of ultrametric aspects of intersection theory on normal surface
singularities is intimately linked with the valuative and non-Archimedean points
of view on singularity theory. It has many promising applications in Lipschitz
geometry, as already sketched in several recent works.

We would like to emphasize that this book, which gives a first panorama
of the Lipschitz geometry of singularites, is not exhaustive. For example, the
recent Lipschitz stratification in power-bounded o-minimal fields developed by
Nguyen and Valette and independently by Immanuel Halupczok and Yimu Yin is
not presented here, nor the very recent Moderately Discontinuous Homology, a
promising Lipschitz invariant constructed by Javier Fernández de Bobadilla, Sonja
Heinze, María Pe Pereira and José Edson Sampaio.

The International School on Singularity Theory and Lipschitz Geometry
attracted more than 50 participants, largely undergraduate students, PhD students
and post-docs, but also several senior researchers; we believe that this international
meeting has been rich of useful suggestions and ideas for inspiring new researches
and developments in the near future. We wish to thank all the lecturers for their
active participation and their valuable contribution. We are also deeply indebted to
the Universidad Nacional Autónoma de México and to the Instituto de Matemáticas,
Unidad Cuernavaca and in particular, the director Professor Jawad Snoussi and
his administrative assistant Elisabeth Dominguez, for their helpful support and
for the organization of such a remarkable event in Cuernavaca. We thank the
following institutions for their financial support: Consejo Nacional de Ciencia
y Tecnología (CONACYT, Mexico), Laboratoire International Solomon Lefschetz
(UMI LASOL) of the Centre National de la Recherche Scientifique (CNRS, France),
National Scientific Foundation (NSF, USA), Lipschitz geometry of singularities
(LISA) of the Agence Nationale de la Recherche (project ANR-17-CE40-0023).

Princeton, NJ, USA Walter Neumann
October 30th 2019 Anne Pichon
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Chapter 1
Geometric Viewpoint of Milnor’s
Fibration Theorem

Haydée Aguilar-Cabrera and José Luis Cisneros-Molina

Abstract The main goal of these notes is to give the proofs of Milnor Fibration
Theorem, Milnor-Lê Fibration Theorem and the equivalence of these two fibrations,
emphasizing the ideas of differential topology involved. We also describe the
monodromy of the Milnor fibration of a complex analytic function of two variables
with isolated singularity, as a quasi-periodic diffeomorphism using a resolution of
the singularity.

1.1 Introduction

These are the lecture notes of the course Milnor Fibration given at the International
School on Singularities and Lipschitz Geometry held in Cuernavaca, Mexico, from
11th to 22nd June, 2018. The main goal is to give the proofs of the existence of
the Milnor Fibration, the Milnor-Lê Fibration and their equivalence, emphasizing
the ideas of differential topology involved. We also describe the monodromy of
the Milnor fibration of a complex analytic function of two variables with isolated
singularity as a quasi-periodic diffeomorphism, using a resolution of the singularity.

The Milnor Fibration Theorem is an important result in singularity theory. It
is about the topology of the fibres of analytic functions near their critical points.
To each singular point of a complex hypersurface V = f−1(0) defined by a
holomorphic function f : Cn → C, it associates a fibre bundle

φ := f

|f | : Sε \ V −→ S
1,
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where Sε is a sphere centred at the origin of a sufficiently small radius ε > 0.
This fibration is known as the Milnor Fibration. For an overview of the origin,
generalizations and connections with other branches of mathematics of the Milnor
Fibration Theorem, we recommend to read the recent survey article by Seade
[Sea18].

These lecture notes are organized as follows. Section 1.2 gives the definitions
and main results of transversality, fibre bundles, vector fields and complex and
real gradients. In Sect. 1.3 we present the Conical Structure Theorem and define
the link of a singularity. In Sect. 1.4 we state Milnor Fibration Theorem (fibration
on the sphere) and give the original proof in [Mil68, §4] emphasizing the ideas
of differential topology involved. Then, we define the monodromy of the Milnor
Fibration. Afterwards, we prove the existence of the Milnor-Lê Fibration (fibration
on the tube) and we prove that the two fibrations are equivalent following [Mil68,
§5]. This section appeared in condensed form in [CMSS12, §2]. Sections 1.2, 1.3
and 1.4 present the content of the course given at the International School on
Singularities and Lipschitz Geometry. The organizers asked to also include the
description of the Milnor fibre in the resolution, given by Du Bois and Michel in
[DM92]. This is well explained (with nice figures) in the first author’s PhD thesis
[AC11, §1.5–1.6], so we reproduce it here in Sect. 1.5.

1.2 Preliminaries

In this section we give the definitions and results of differential topology and fibre
bundles needed for the proof of the Fibration Theorems. Instead of giving proofs of
these basic results we give references to the literature.

1.2.1 Transversality

We assume that the reader knows the basics of differential topology: the definitions
of differentiable manifolds (with and without boundary), differentiable maps and
of the differential of a differentiable map between tangent spaces. It is enough to
know these concepts for manifolds embedded in some Euclidean space R

m, see for
instance [GP74] or [Mil65].

Definition 1.2.1 Let f : M → N be a differentiable map between differentiable
manifolds. If the differential Dxf : TxM → Tf (x)N is surjective for some point
x ∈ M , we say that f is a submersion at x; a map which is a submersion at every
point ofM , is simply called a submersion. We say that a point x ∈ M is a regular
point of f if f is a submersion at x, and a point y ∈ N is a regular value of f
if every point of f−1(y) is regular. When a point or value is non-regular, we say
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it is a critical point or value. A critical point x ∈ M is isolated if there exists a
neighbourhoodU of x where x is the only critical point of f .

Theorem 1.2.2 (Preimage Theorem, [GP74, page 21]) Let f : M → N be a dif-
ferentiable map between differentiable manifolds of dimension k and l respectively
with k ≥ l. If y ∈ N is a regular value, then the set f−1(y) ⊂ M is a differentiable
manifold of dimension k − l.
Definition 1.2.3 Let M and N be differentiable manifolds and let L ⊂ N be a
submanifold of dimension k. A differentiable map f : M → N is transverse to L
(denoted by f � L) if the transversality condition

Dxf (TxM)+ Tf (x)L = Tf (x)N, (1.1)

is satisfied for every x ∈ f−1(L) ⊂ M .

Remark 1.2.4 Let f : M → N be a differentiable map and let y ∈ N be a regular
value. Consider y as a 0-dimensional submanifold of N . Then f is transverse to y.
Therefore, a map transverse to a submanifold generalizes the concept of a regular
value of a map.

Remark 1.2.5 Let M and L be submanifolds of N and let i : M → N be the
inclusion. A particular case of Definition 1.2.3 is when i � L: the submanifolds
M and L are transverse (denoted byM � L) if

TxM + TxL = TxN, (1.2)

is satisfied for every x ∈ M ∩ L.

Definition 1.2.6 Let L be a submanifold of N . The codimension of L in N ,
denoted by codimN L, is defined as codimN L = dimN − dimL.

The next result is a generalization of the Preimage Theorem using transversality.

Theorem 1.2.7 (Transversality Theorem, [GP74, page 28]) If f : M → N is
transverse to a submanifold L ⊂ N of codimension k and f−1(L) �= ∅, then
f−1(L) is a submanifold ofM of codimension k.

Corollary 1.2.8 ([GP74, page 30]) If M and L are transverse submanifolds of N ,
then M ∩ L is also a submanifold of N with codimN(M ∩ L) = codimN M +
codimN L.

There is also a version of the Transversality Theorem for manifolds with
boundary. Given a manifold with boundaryM , we denote its boundary by ∂M and
its interiorM \ ∂M by M̊ .

Theorem 1.2.9 ([GP74, page 60]) Let f : M → N be a differentiable map of a
manifold with boundary M to a manifold without boundary N . Suppose that both
f : M → N and the restriction ∂f : ∂M → N are transverse to a submanifold L
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(without boundary) of N . Then f−1(L) is a manifold with boundary ∂(f−1(L)) =
f−1(L) ∩ ∂M and codimM f−1(L) = codimN L.

1.2.2 Vector Fields and Integral Curves

Let M ⊂ R
m be a differentiable manifold. A smooth tangent vector field on M is

a smooth map v : M → R
m such that v(x) ∈ TxM for each x ∈ M .

Definition 1.2.10 Let v be a smooth vector field on M and x ∈ M . An integral
curve of v is a smooth curve p : (a, b) → M such that p′(t) = v(p(t)) for all
t ∈ (a, b). Usually we assume that the open interval (a, b) contains 0. In this case,
if p(0) = x, we say that p is an integral curve of v starting at x, and call x the
starting point of p. To show the dependence of such an integral curve on the initial
point x we write p(t) = Ht(x). An integral curve is maximal if its domain cannot
be extended to a larger interval.

Theorem 1.2.11 ([BJ82, (8.10)]) Let v be a smooth vector field onM . Let U be an
open set inM . For each x ∈ U there exists a neighbourhoodW of x inM , a number
ε > 0 and a smooth map

H : (−ε, ε)×W → U

(t, x) 
→ Ht(x)

such that for each x ∈ W the function t 
→ Ht(x) is an integral curve of v starting
at x, that is, we have H0(x) = x and d

dt
Ht (x) = v(Ht (x)). More over, it satisfies

Ht(Hs(x)) = Ht+s(x) whenever both sides of the equality are defined.

Definition 1.2.12 The map H : (−ε, ε) × W → U given in Theorem 1.2.11 is
called a local flow generated by v about the point x in the neighbourhood U . If a
local flow is defined on R×M then it is called a global flow. A vector field having
a global flow is called a complete vector field.

If v is a complete vector field, then for every t ∈ R

Ht ◦H−t = H−t ◦Ht = IdM,

so Ht : M → M is a diffeomorphism. Thus, a complete vector field gives rise to a
one-parameter group of diffeomorphisms ofM that is, to a group homomorphism

(R,+)→ Diff(M)

t 
→ Ht
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where (R,+) is the abelian group of the real numbers under addition, and Diff(M)
is the group of diffeomorphism ofM onto itself.

Theorem 1.2.13 ([BJ82, (8.10)]) Let v be smooth vector field on a compact
differentiable manifoldM . Then v is a complete vector field.

1.2.3 Fibre Bundles

Now we recall the definition of fibre bundle and state the Ehresmann Fibration
Theorem. See for instance [AMR88, §3.4 and §5.5].

Definition 1.2.14 A (smooth) fibre bundle (E, π,B, F ) consists of the follow-
ing:

1. A differentiable manifold E called total space;
2. A differentiable manifold B called base space;
3. A differentiable surjective map π : E → B which is a submersion, called the

fibre bundle projection;
4. A differentiable manifold F called the fibre;
5. There exists a collection {(Uα, ϕα)}α∈A, called trivializing cover, where
{Uα}α∈A is an open cover of B and for every α ∈ A,

ϕα : π−1(Uα)→ Uα × F

is a diffeomorphism such that π ◦ ϕ−1(x, f ) = x for every (x, f ) ∈ Uα × F ;
that is, the following diagram commutes:

π−1(Uα)

p

Uα × F

projection
Uα

Because of this property, we say that the projection π is locally trivial

Example 1.2.15 Examples of fibre bundles are the following:

• Let B and F be differentiable manifolds and consider the projection onto the
first factor π : B × F → B. It is clearly a fibre bundle which is called a product
bundle (see Fig. 1.1a).1

1Figure taken from tex.stackexchange:generate simple cylindrical shape with text in latex (tikz).
Answer by hpesoj626.

https://tex.stackexchange.com/questions/86535/generate-simple-cylindrical-shape-with-text-in-latex-tikz
https://tex.stackexchange.com/users/16839/hpesoj626
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Fig. 1.1 Fibre bundles. (a)
Product bundle. (b) Möbius
band

(a) (b)

• The Möbius band together with the projection onto the central circle is a fibre
bundle (see Fig. 1.1b).2

• Vector bundles are fibre bundles. For instance, the tangent bundle of a differen-
tiable manifoldM in R

m. Its total space is given by

TM = {(x, v) ∈ M × R
m | x ∈ M,v ∈ TxM},

and the projection π : TM → M is given by the restriction of the projection onto
the first factor.

Theorem 1.2.16 (Ehresmann Fibration for Manifolds with Boundary) Let M
be a manifold with boundary, let N be a closed manifold and f : M −→ N be a
proper surjection. If f |

M̊
: M̊ −→ N and f |∂M : ∂M −→ N are submersions, then

f is a locally trivial fibre bundle.

In Theorem 1.2.16 the boundary of M may be empty, in this case we obtain the
classical Ehresmann Fibration Theorem. Here we give the idea of the proof of the
classical case. See [AMR88, Theorem 5.5.14] or [Wol64, §2] for details of this proof
that can be generalized for manifolds with boundary.

Proof (Sketch) We need to prove that f is locally trivial. Since the statement is
local, we can replace M and N by chart domains and, in particular, we can assume
that N = R

l . In this case we have the basic vector fields ∂/∂x1, . . . , ∂/∂xl , and
we can lift them to obtain vector fields v1, . . . , vl on M , so that, for all x ∈ M we
have Dxf (vi(x)) = ∂/∂xi . Locally, the vector fields v1, . . . , vl are easy to find,
since f is a submersion there exists coordinate charts such that f has the form of a
projection f : U × V → U (see [GP74, page 20]), and one obtains the vector fields
vi on all M by glueing together the locally chosen vector fields with a partition of
unity (see [GP74, page 52]). Using the hypothesis that f is proper one can prove

2Figure taken from pgfplots.net: Example: Moebius strip. Example posted by Jake.

http://pgfplots.net/tikz/examples/moebius-strip/
https://tex.stackexchange.com/users/2552/jake


1 Geometric Viewpoint of Milnor’s Fibration Theorem 7

that the vector fields v1, . . . , vl are complete. Let H 1, . . . , H l be, respectively, the
flows generated by the vector fields v1, . . . , vl . Set F = f−1(0), let x ∈ F and
y = (y1, . . . , yl) ∈ R

l . The map ϕ : Rl × F → f−1(Rl ) defined by

ϕ(y, x) = H 1
y1
◦ · · · ◦Hl

yl
(x)

gives a local trivialization of f . �
Theorem 1.2.16 will be used to prove the Milnor-Lê Fibration Theorem (Theo-

rem 1.4.19) in Sect. 1.4.

Definition 1.2.17 Two fibre bundles (E, π,B, F ) and (E′, π ′, B, F ′) with the
same base space B are equivalent if there exists a diffeomorphism 	 : E → E′
such that the following diagram commutes

E

π

E

π

B

Note that if two fibre bundles are equivalent they have diffeomorphic fibres.

1.2.4 Complex and Real Gradients

Let v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ C
n, and consider the standard

Hermitian inner product Cn given by

〈v,w〉 =
n∑

j=1

vjwj .

The Hermitian vector space can also be thought of as an Euclidean vector space of
dimension 2n over the real numbers, defining the Euclidean inner product 〈 , 〉R to
be the real part of the Hermitian inner product. That is,

〈v,w〉R = Re〈v,w〉.

Let f : Cn −→ C be a complex analytic function and define its complex
gradient by

gradf =
(
∂f

∂z1
, · · · , ∂f

∂zn

)
.
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With this definition the chain rule for the derivative of f along a path z = p(t) has
the form

df

dt
(p(t)) =

〈
dp

dt
, grad f

〉
. (1.3)

In other words, the directional derivative of f along a vector v at the point z is equal
to the inner product 〈v, grad f (z)〉.

Consider the function log f , we have from the definition that

grad log f (z) = grad f (z)

f (z)
, (1.4)

so it is well defined where f (z) �= 0, even though log f is only locally defined as a
single valued function.

Let f : (Cn, 0) −→ (C, 0) be a complex analytic function with 0 ∈ C a critical
value and set V = f−1(0). By the Bertini-Sard Theorem [Ver76, Thm. (3.3)] there
exists an open neighbourhood U of 0 ∈ C such that f restricted to U has 0 ∈ C as
the only critical value. We still denoted f |U just by f .

Write f as

f (z) = |f (z)|eiθ(z), (1.5)

we can associate to f the real analytic functions

θ : U \ V −→ R,

and

log |f | : U \ V −→ R,

where θ is locally well-defined as a single valued function.
From (1.5) we have that these functions are related to the function log f as

follows:

log f = log |f | + iθ, (1.6)

so

θ =Im(log f ) = Re(−i log f ) and (1.7)

log |f | =Re(log f ). (1.8)
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Proposition 1.2.18 The real gradients of θ and log |f | are the vectors

gradR θ = i grad log f

and

gradR log |f | = grad log f.

Hence they are normal to the respective level hypersurfaces.

Proof Differentiating (1.6) along a curve z = p(t) we have

d log f (p(t))

dt
= d log |f (p(t))|

dt
+ i dθ(p(t))

dt
.

Using (1.7) and (1.8) we can obtain expressions for these directional derivatives
involving grad log f :

dθ(p(t))

dt
=Re

(
d(−i log f (p(t)))

dt

)

=Re

〈
dp

dt
, grad(−i log f (p(t)))

〉

=Re

〈
dp

dt
, i grad log f (p(t))

〉

=
〈
dp

dt
, i grad log f (p(t))

〉

R

(1.9)

and

d log |f (p(t))|
dt

=Re

(
d(log f (p(t)))

dt

)

=Re

〈
dp

dt
, grad log f (p(t))

〉

=
〈
dp

dt
, grad log f (p(t))

〉

R

(1.10)

Remark 1.2.19 Notice that for all a ∈ U \ V , the vectors i grad log f (z) and
grad log f (z) are orthogonal with respect to the Euclidean inner product.

Let us see how are the level hypersurfaces of θ and log |f |.
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1.2.4.1 Level Hypersurfaces of θ

Let θ0 ∈ R and let L+θ0
be the open real ray in C with angle θ0 with respect to the

positive real axis (see Fig. 1.2).
The level hypersurface of θ corresponding to the value θ0 is (see Fig. 1.3):

θ−1(θ0) = {z ∈ U \ V | θ(z) = θ0} = {z ∈ U \ V | f (z) ∈ L+θ0
} = f−1(L+θ0

).

We denote

Eθ0 = f−1(L+θ0
).

Remark 1.2.20 Since f is a submersion outside V , Eθ0 is a real submanifold of U
of real codimension 1.

Corollary 1.2.21 The vector i grad log f (z) is normal to Eθ(z) at the point z ∈
U \ V .

Proof It is consequence of Proposition 1.2.18. �

Fig. 1.2 The open ray in C

with angle θ0

0

0

Fig. 1.3 Level hypersurface
of θ and a normal vector

V

i grad log f (z)

Eθ0
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1.2.4.2 Level Hypersurfaces of log |f (z)|

Consider δ > 0, let Dδ be the disc in C of radius δ centred at 0 and let ∂Dδ be its
boundary circle. The level hypersurface of log |f | corresponding to the value log δ
is (see Fig. 1.4):

(
log |f |)−1

(log δ) ={z ∈ U \ V | log |f (z)| = log δ}
={z ∈ U \ V | |f (z)| = δ}
=f−1(∂Dδ).

We denote

N(δ) = f−1(∂Dδ) (1.11)

Remark 1.2.22 Since f is a submersion outside V , N(δ) is a real submanifold of U
of real codimension 1.

Corollary 1.2.23 The vector grad log f (z) is normal to the tube N(|f (z)|) at the
point z ∈ U \ V .

In Sect. 1.4 we will use the intersection of the tube N(δ) defined in (1.11) with a
ball Bε centred at the origin of radius ε, so we define

N(ε, δ) = Bε ∩N(δ) = Bε ∩ f−1(∂Dδ). (1.12)

We call N(ε, δ) a Milnor tube.

Fig. 1.4 Level hypersurfaces
of log |f (z)| and a normal
vector

V

grad log f (z )
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1.3 Conical Structure

Definition 1.3.1 Let f : (Cn, 0) −→ (C, 0) be a holomorphic map germ. The
zero set of f , given by V = f−1(0), is the hypersurface defined by f . The
singularities of V are the critical points of f contained in V . A point x ∈ V is
an isolated singularity if it is an isolated critical point of f .

Let f : (Cn, 0) −→ (C, 0) be a holomorphic map germ with 0 ∈ C
n an isolated

critical point, i.e., there exists a neighbourhood U of 0 ∈ C, where 0 is the only
critical point of f . As before, set V = f−1(0). Applying Theorem 1.2.2 to the
restriction of f toU\{0}we get thatV \{0} is a smooth manifold of real codimension
2.

Let Bε be a closed ball in C
n centred at 0 of radius ε > 0 and let Sε = ∂Bε .

Milnor proved [Mil68, Corollary 2.9] that for every sufficiently small ε the sphere Sε
intersects V \ {0} transversely, and by Theorem 1.2.7 the intersectionKε := V ∩ Sε
is a smooth manifold of real dimension 2n− 3 embedded in the sphere Sε. Milnor
also proved that in such a ball of sufficiently small radius ε, V has a conical structure
given by Theorem 1.3.2 below. Remember that the cone of a topological space X is
obtained fromX× [0, 1] by collapsingX×{0} to a point. We denote the cone of X
by ConeX.

Theorem 1.3.2 ([Mil68, Theorem 2.10]) For small ε > 0 the intersection of V
with Bε is homeomorphic to ConeKε . In fact, the pair (Bε, V∩Bε) is homeomorphic
to the pair (ConeSε,ConeKε).

Proof (Sketch) The flow of the outward radial vector field in Bε gives a homeomor-
phism between ConeSε and Bε as follows. Let w be the outward radial vector field
on C

n given by w(z) = z for every z ∈ C
n. It is easy to see that the integral curves

ofw are given by p(t) = tz, with t a real variable (see Definition 1.2.10). For every
z ∈ Sε the integral curve passing throughout z is determined by the initial condition
p(1) = z. One can see that the flow generated by w is given by Ht(z) = tz and that
it is defined on R× C

n, so w is complete. Thus, the restriction of the flow

H : (0, 1] × Sε → C
n

(t, z) 
→ Ht(z),

maps diffeomorphically the product (0, 1]×Sε to the punctured ball Bε \ {0}. Since
Ht(z) tends uniformly to 0 ∈ C

n as t tends to 0, this diffeomorphism extends to
a homeomorphism from ConeSε to Bε . The idea is to modify this outward radial
vector field such that on points in V \ {0} it is tangent to V \ {0}. In this way,
the integral curve through a point in V \ {0} is contained in V \ {0}, hence, the
homeomorphism given by its flow restricts to a homeomorphism between ConeKε
and V ∩ Bε. �
Definition 1.3.3 From Theorem 1.3.2 follows that for any ε′ with 0 < ε′ <
ε the pairs of manifolds (Sε′ ,Kε′) and (Sε,Kε) are homeomorphic. Hence the
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Fig. 1.5 Knots. (a) Trefoil
knot. (b) Figure 8 knot

(a) (b)

homeomorphism class of the pair (Sε,Kε) is independent of the radius of the sphere,
and we call it the embedded link of f . We also call the homeomorphism type of
Kε the abstract link of f and we denote it simply by K .

Example 1.3.4 For n = 2, the links are topological knots or links embedded in the
3-sphere Sε . They are torus or iterated torus knots or links also called cable knots
[BK86, §8.3 Theorem 12], for instance, the trefoil knot (see Fig. 1.5a) is the link of
the singularity given by x2+ y3 = 0. They cannot be hyperbolic knots, for instance
the figure-eight knot (see Fig. 1.5b) [Thu82, Corollary 2.5].

Example 1.3.5 For n = 3, the links are graph manifolds embedded in the 5-sphere
Sε [Neu81]. For instance, the link of the singularity x2+y3+z5 = 0 is the Poincaré
homology 3-sphere (see [KS77, Description 3, p. 116]). They cannot be hyperbolic
manifolds, for instance, the complement of the figure-eight knot (see [Neu19] in the
present volume).

Definition 1.3.6 Let f : (Cn, 0) −→ (C, 0) and g : (Cn, 0) −→ (C, 0) be
holomorphic map germs with an isolated critical point at 0. Let Vf = f−1(0)
and Vg = g−1(0) be, respectively, the hypersurfaces defined by f and g. We
say that f and g are R-equivalent if there is a germ of self-homeomorphism
� : (Cn, 0) → (Cn, 0) such that f = g ◦ �; if we only have that �(Vf ) = Vg
then we say that f and g have the same topological type.

By Theorem 1.3.2 if two germs f and g have the same embedded link, then
they have the same topological type. Therefore, the embedded link (Sε,Kε) and the
abstract link K are invariants of the topological type of a singularity.

1.3.1 Whitney Stratifications

For the case when 0 ∈ C
n is not an isolated critical point of f , it is possible to

endow C
n with a Whitney stratification, such that V is union of strata. For more

details on stratifications see [Tro20] on the present volume.
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A stratification of a subset X of Cn is a locally finite partition {Sα} of X into
smooth, connected submanifolds of C

n called strata which satisfy the frontier
condition, that if Sα and Sβ are strata with Sα ∩ Sβ �= ∅, then Sα ⊂ Sβ .

We say that a stratification {Sα} of X is complex analytic if all the strata are
smooth complex analytic varieties.

Now consider a triple (y, Sα, Sβ), where Sα and Sβ are strata ofX with y ∈ Sα ⊂
Sβ . We say that the triple (y, Sα, Sβ) is Whitney regular if it satisfies the Whitney
(b) condition: given

1. a sequence {xn} ⊂ Sβ converging in C
n to y ∈ Sα such that the sequence of

tangent spaces TxnSβ converges to a subspace T ⊂ C
n ; and

2. a sequence {yn} ⊂ Sα converging to y ∈ Sα such that the sequence of lines
(secants) lxiyi passing through xi and yi converges to a line l;

then one has l ⊂ T .
By convergence of tangent spaces or secants we mean convergence of the

translates to the origin of these spaces, so these are points in the corresponding
Grassmannian.

There is also a Whitney (a) condition. It will not be used in the sequel, we give
it here for completeness.

Given a sequence {xn} ⊂ Sβ converging in C
n to y ∈ Sα such that the sequence

of tangent spaces TxnSβ converges to a subspace T ⊂ C
n; then T contains the

space tangent to Sα at y.

It is an exercise to show that condition (b) implies condition (a).

Definition 1.3.7 The stratification {Sα} of X is Whitney regular (also called a
Whitney stratification) if every triple (y, Sα, Sβ) as above, is Whitney regular.

The existence of Whitney stratifications for every analytic space X was proved
by Whitney in [Whi65, Thm. 19.2] for complex varieties, and by Hironaka [Hir73]
in the general setting.

Let f : (Cn, 0) −→ (C, 0) be a holomorphic map germ with 0 ∈ C
n a non-

isolated critical point. Endow C
n with a Whitney stratification, such that V is union

of strata. Then for every sufficiently small ε the sphere Sε intersects every stratum
transversely, in this case, the link is no longer a smooth manifold but a stratified
set. However Theorem 1.3.2 is still true in this more general case (see [BV72,
Lemma 3.2]).

Example 1.3.8 Figure 1.6 shows the Whitney umbrella, given by x2−y2z = 0. The
set of singular points are the z-axis. A Whitney stratification is given as follows:
the origin is one 0-dimensional stratum, one 1-dimensional stratum is the positive
z-axis, another 1-dimensional stratum is the negative z-axis, and the rest is one 2-
dimensional stratum.
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Fig. 1.6 Whitney
stratification of the Whitney
umbrella x2 − y2z = 0

1.4 Fibration Theorems

Milnor proved his Fibration Theorem for polynomials, but his proof also works for
complex analytic functions with some minor modifications (see for instance [BV72,
Section 2]).

1.4.1 Milnor Fibration

Let f : (Cn, 0) −→ (C, 0) be a holomorphic map-germ with 0 ∈ C
n a critical point

(not necessarily isolated). As in Sect. 1.2.4, letU be a neighbourhood of 0 ∈ C
n such

that f restricted to U has 0 ∈ C as the only critical value and set V = f−1(0) ∩ U .
Let Bε be a closed ball inU centred at 0 of a sufficiently small radius ε, let Sε = ∂Bε
and let K = V ∩ Sε be the link of 0 ∈ C

n. The aim of this subsection is to prove
Milnor Fibration Theorem.

Theorem 1.4.1 (Milnor Fibration) The map

φ := f

|f | : Sε \K −→ S
1 (1.13)

is the projection of a smooth fibre bundle.

The proof consists of two main steps:

1. To prove that φ is a submersion.
2. To prove that φ is locally trivial.

Step 1
To show that φ is a submersion, Milnor characterizes its possible critical points.
Consider the map

� := f

|f | : U \ V −→ S
1. (1.14)

Lemma 1.4.2 The map � is a submersion.
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Proof � can be seen as the composition of the restriction of f to U \ V and the
projection π : C \ {0} −→ S

1 given by π(x) = x
|x| . The lemma follows since both

maps are submersions. �
Remark 1.4.3 The fibres of � are precisely the Eθ defined in Sect. 1.2.4.1. Given
eiθ ∈ S

1

�−1(eiθ ) = f−1(π−1(eiθ )) = f−1(L+θ ) = Eθ
Therefore, given z ∈ Eθ we have that kerDz� = TzEθ .

Now we can state Milnor’s characterization of the critical points of φ.

Lemma 1.4.4 ([Mil68, Lemma 4.1]) The critical points of the map φ are precisely
those points z ∈ Sε \K for which the vector i grad log f (z) is a real multiple of the
vector z.

Proof The map φ is the restriction of � to Sε \ K . Thus, a point z ∈ Sε \ K is a
critical point of φ if and only if

Tz(Sε \K) = kerDz� = TzEθ
since Sε \ K and Eθ have both real codimension 1 in C

n. But Tz(Sε \ K) = TzEθ
if and only if the normal vector to Eθ at z is a real multiple of the normal vector to
Sε \K at z. By Proposition 1.2.18 the normal vector to Eθ at z is i grad log f (z) and
the normal vector to Sε \K at z is z itself. �
Remark 1.4.5 For each line Lθ through the origin in C we can consider the set

Xθ := {z ∈ C
n | f (z) ∈ Lθ }.

Then each Xθ is a real analytic hypersurface with singular set equal to the singular
set of V . We have

Xθ \ V = Eθ ∪ Eθ+π .

The family {Xθ } is called the canonical pencil of f . We can reinterpret
Lemma 1.4.4 as

Proposition 1.4.6 The critical points of φ are the points in Sε \ K where the
elements Xθ \ V of the canonical pencil are tangent to the sphere Sε .

Using Lemma 1.4.4, to prove that φ is a submersion for every sufficiently small ε,
we only need to prove.

Lemma 1.4.7 ([Mil68, Lemma 4.2]) There exists ε0 > 0 such that for every z ∈
U \V with ‖z‖ < ε0, the two vectors z and i grad log f (z) are linearly independent
over R.
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Fig. 1.7 The sphere S‖z‖ \ V
and Eθ(z) are transverse at z

V

z

z

i grad log f (z )

Eθ0

Remark 1.4.8 Lemma 1.4.7 is equivalent to say that for every z ∈ U \ V with
‖z‖ < ε0, the manifolds S‖z‖ \ V and Eθ(z) are transverse at z, where S‖z‖ is the
sphere of radius ‖z‖. In other words in Bε0 all the spheres Sε \ V with ε ≤ ε0 and
all the Eθ are transverse (see Fig. 1.7).

To prove Lemma 1.4.7 Milnor proves a stronger statement:

Lemma 1.4.9 ([Mil68, Lemma 4.3]) There exists ε0 > 0 so that, for all z ∈ U \V
with ‖z‖ ≤ ε0, the two vectors z and i grad log f (z) are either linearly independent
over the complex numbers or else

grad log f (z) = λz

where λ is a non-zero complex number such that | argλ| < π

4
.

It is easy to see that Lemma 1.4.9 implies Lemma 1.4.7:

• If z and i grad log f (z) are linearly independent over C then they are linearly
independent over R.

• If grad log f (z) = λz and | argλ| < π

4
, then Reλ > 0 so λ cannot be a pure

imaginary number (see Fig. 1.8), then z and i grad logf (z) cannot be linearly
dependent over R.

Fig. 1.8 | arg λ| < π

4
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Milnor proved Lemma 1.4.9 using the Curve Selection Lemma ([Mil68,
Lemma 3.1]) for the case when f is a polynomial (see also [Rua20, Lemma 1.19]
in the present volume). The same proof follows using the analytic version of the
Curve Selection Lemma (see [BV72, Proposition 2.2] or [Loo84, (2.1)]), which in
turn, can be proved following Milnor’s proof with minor modifications (see [BV72,
§2]).

Curve Selection Lemma Let � ⊂ R
n be an open neighbourhood of 0, let

g1, . . . , gp : � → R be analytic maps and let A ⊂ � be an analytic set. Also
define de open set U = {x ∈ � | gi(x) > 0, i = 1, . . . , p}. If 0 ∈ A ∩ U , then there
exists a real-analytic curve p : [0, δ) → � such that p(0) = 0 and p(t) ∈ A ∩ U
for t ∈ (0, δ).
Proof (Sketch of the Proof of Lemma 1.4.9) The proof is a nice application of the
Curve Selection Lemma and it is done by contradiction: suppose that there were
points z ∈ C

n \ V arbitrarily close to the origin with

grad log f (z) = λz �= 0, (1.15)

and with |argλ| > π
4 . In other words, assume that λ lies in the open half-plane

Re
(
(1+ i)λ) < 0 or the open half-plane Re

(
(1− i)λ) < 0.

Then consider the set A of points z ∈ C
n for which the vectors gradf and z

are linearly dependent. We have that A is an analytic set. Using (1.4) is easy to see
that z ∈ C

n \ V is in A if and only if Eq. (1.15) holds for some complex number
λ(z). Let U+ (respectively U−) be the open set consisting of all z satisfying the
inequality Re

(
(1 + i)λ′(z)) < 0 (respectively Re

(
(1 − i)λ′(z)) < 0), where λ′(z)

is some real positive multiple of λ(z) defined by a real analytic function, and thus
λ(z) and λ′(z) have the same argument. The original supposition implies that there
exists points z arbitrarily close to the origin with z ∈ A∩ (U+ ∪U−). By the Curve
Selection Lemma there exists a real analytic curve p : [0, δ)→ C

n with p(0) = 0
and p(t) ∈ A∩(U+∪U−) for all t > 0. This proves Lemma 1.4.9 since the existence
of such a curve contradicts Lemma 1.4.10 below. �
Lemma 1.4.10 ([Mil68, Lemma 4.4]) Let p : [0, δ)→ C

n be a real analytic path
with p(0) = 0 such that, for each t > 0, the number f

(
p(t)

)
is non-zero and the

vector grad log f
(
p(t)

)
is a complex multiple λ(t)p(t). Then the argument of the

complex number λ(t) tends to zero as t → 0.

Proof By (1.4) we have that

grad f (p(t)) = λ(t)p(t)f (p(t)). (1.16)

Consider the Taylor expansions of p(t), f (p(t)) and grad f (p(t)) denoting their
corresponding non-zero leading coefficients by a, b and c, and their corresponding
leading exponents by α, β and γ , which are integers with α ≥ 1, β ≥ 1 and γ ≥ 0.
Substituting these Taylor expansions in (1.16) on can prove that λ(t) has a Taylor
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expansion of the form

λ(t) = λ0t
γ−α−β(1+ k1t + k2t

2 + . . . ), (1.17)

and the leading coefficients satisfy the equation

c = λ0ab̄. (1.18)

Substituting (1.18) in the power series expansion of the identity

df

dt
= 〈dp

dt
, grad f

〉
,

and comparing leading coefficients we obtain

β = α‖a‖2λ̄0,

which proves that λ0 is a positive real number. Therefore

lim
t→0

λ(t)

|λ(t)| =
λ0t

γ−α−β(1+ k1t + k2t
2 + . . . )

λ0tγ−α−β‖1+ k1t + k2t2 + . . .‖

= lim
t→0

1+ k1t + k2t
2 + . . .

‖1+ k1t + k2t2 + . . .‖ = 1.

Hence argλ(t)→ 0 as t → 0. �
Corollary 1.4.11 If ε ≤ ε0 then the map

φ := f

|f | : Sε \K −→ S
1

is a submersion.

Remark 1.4.12 By Remark 1.4.3 the fibres of� are theEθ . Since φ is the restriction
of � to Sε \K , we have that the fibres of φ are given by

Fθ := Eθ ∩ Sε.

By Remark 1.4.8 this intersection is transverse and by Corollary 1.2.8 Fθ is then a
smooth (2n− 2)-dimensional manifold.

Step 2
Since we are removing the link K from the sphere Sε in the domain of the map φ,
its fibres are not compact and therefore φ is not proper. Thus, we cannot use the
Ehresmann Fibration Theorem (Theorem 1.2.16) to prove that φ is locally trivial.
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Instead, we will construct a complete vector field and use the flow generated by it,
as we did in the proof of Ehresmann Fibration Theorem.

Proposition 1.4.13 If ε ≤ ε0 then the map

φ := f

|f | : Sε \K −→ S
1

is locally trivial.

Proof To prove that φ is locally trivial it is enough to give a complete vector field
w on Sε \K which projects underDφ to the unit vector field u tangent to S

1 given
by

u(eiθ ) = ieiθ

so w is transverse to the fibres of φ (see Fig. 1.9).
Given such a w, let p(t) be the integral curve of w. The function p(t) depends

smoothly on t and on the initial value z0 = p(0). We denote this dependency by
using the flow generated by w as in Sect. 1.2.2

p(t) = Ht(z0).

Fig. 1.9 Fibres of φ and
vector field

V

K

K

φ

1
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Then each Ht is a diffeomorphism

Ht : Sε \K → Sε \K (1.19)

which sends the fibre Fθ onto the fibre Fθ+t , that is

Ht(Fθ ) = Fθ+t . (1.20)

Let eiθ ∈ S
1 and letW be a small neighbourhood of eiθ . Then the correspondence

W × Fθ −→ φ−1(W)

(ei(θ+t ), z) 
−→ Ht(z)

for |t| < constant and z ∈ Fθ is a diffeomorphism, proving the local triviality of
φ. �

Since φ is a submersion we can take w to be a lifting of the vector field u on
S

1 to Sε \ K . The main difficulty is to guarantee that w is complete, since Sε \ K
is non-compact we need to insure that p(t) cannot tend to K as t tends to some
finite limit t0. This is equivalent to guarantee that f

(
p(t)

)
cannot tend to zero or

that log |f (p(t))| cannot tend to −∞ as t tends to a finite value t0.
One way to do this is to make log |f (p(t))| to increase or decrease “slowly” by

keeping its derivative small in absolute value (compare with [Mil68, Lemma 4.7]).
Suppose that

∣∣∣∣
d log |f (p(t))|

dt

∣∣∣∣ < 1.

Then

∣∣ log |f (p(t0))| − log |f (p(0))|∣∣ =
∣∣∣∣
∫ t0

0

d log |f (p(t))|
dt

dt

∣∣∣∣

≤
∫ t0

0

∣∣∣∣
d log |f (p(t))|

dt

∣∣∣∣ dt

<

∫ t0

0
dt = t0.

Then log |f (p(t))| cannot tend to −∞ as t tends to any finite limit t0. Hence we
need w so that

∣∣∣∣
d log |f (p(t))|

dt

∣∣∣∣ = |Re〈w(p(t)), grad log f (p(t))〉| < 1
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Also w has to project under Dφ to the unit tangent vector field u on S
1. That is,

the integral curves p(t) of w need to project under φ to the path on S
1 which winds

around the unit circle in the positive direction with unit velocity, i.e.,

θ(p(t)) = t + constant.

This is equivalent to

dθ(p(t))

dt
= Re

〈
dp(t)

dt
, i grad log f (p(t))

〉
= 1, i.e.,

dθ(p(t))

dt
= Re〈w(p(t)), i grad log f (p(t))〉 = 1.

In summary, we need a vector field w on Sε \K with the following properties:

1. Re〈w(z), z〉 = 0 (tangent to Sε).
2. |Re〈w(z), grad log f (z)〉| < 1 (complete).
3. Re〈w(z), i grad log f (z)〉 = 1 (projects onto u).

Milnor solves the problem using Lemma 1.4.9 to construct w as follows:

Lemma 1.4.14 There exists a smooth vector field w on Bε0 \ V such that for every
ε ≤ ε0 and every z ∈ Sε \ V , the vector w(z) is tangent to Sε \ V at z and the
complex inner product

〈w(z), i grad log f (z)〉

is non-zero and the absolute value of its argument is less than
π

4
.

Remark 1.4.15 The condition 〈w(z), i grad log f (z)〉 �= 0 guarantees that w(z) is
transverse to the fibres of φ, because if 〈w(z), i grad log f (z)〉 = 0 then we have
that Re〈w(z), i grad log f (z)〉 = 0 so w(z) ∈ TzEθ(z), since w(z) ∈ TzSε then
w(z) ∈ TzFθ(z) = TzSε ∩ TzEθ(z).
Proof It suffices to construct such a vector field locally, in a neighbourhood of some
given point z ∈ Bε0 \ V . We have two cases:

Case 1
The vectors z and grad log f (z) are linearly independent over C. Then z does not lie
in the complex line generated by grad log f (z) (where it also lies i grad log f (z)).
So z and grad log f (z) are also linearly independent over R. Then the sphere S‖z‖
is transverse to the Milnor tube N(ε0, |f (z)|) at z (see Sect. 1.2.4). The intersection
TzS‖z‖ ∩ TzN(ε0, |f (z)|) is the vector space orthogonal (with respect to 〈 , 〉R) to
the real plane generated by z and grad log f (z). It has real dimension 2n− 2 and it
does not coincide with

TzFθ(z) = TzS‖z‖ ∩ TzEθ(z)
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because in that case it would be orthogonal to i grad log f (z) contradicting that
z does not lie in the complex line generated by grad log f (z). Take w(z) in
TzS‖z‖ ∩ TzN(ε0, |f (z)|) such that it satisfies property 3. It satisfies property 1
by construction. It satisfies property 2 because the directional derivative of log |f |
along a vector tangent to N(ε0, |f (z)|) is zero because N(ε0, |f (z)|) is the level
hypersurface of log |f (z)|.

Milnor constructs w in this case taking the simultaneous solution to the linear
equations

〈w(z), z〉 = 0 and

〈w(z), i grad log f (z)〉 = 1.

The first one implies property 1 and the second one implies properties 2 and 3 since

Re〈w(z), grad log f (z)〉 = Im〈w(z), i grad log f (z)〉 = 0 and

Re〈w(z), i grad log f (z)〉 = 1.

Hence the vector field w constructed in Case 1 satisfies the conditions in the
statement of Lemma 1.4.14.

Case 2
There exists λ such that grad log f (z) = λz with | argλ| < π

4
. The point z is in the

complex line generated by grad log f (z) (see Fig. 1.10).

Take w(z) = iz

Re(λ)‖z‖2 which is tangent to S‖z‖, so it satisfies property 1. On

the other hand, we have that

〈w(z), i grad log f (z)〉 = 〈 iz

Re(λ)‖z‖2 , i grad log f (z)〉

= 1

Re(λ)‖z‖2 〈z, grad logf (z)〉

Fig. 1.10 grad log f (z) = λz
with | arg λ| < π

4 z
i grad log f (z )

grad log f (z )

iz

Tz S z
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Fig. 1.11 Case 2: w satisfies
property 2

C

1

Re( )

1

−1

= 1

Re(λ)‖z‖2 〈z, λz〉

= λ‖z‖2
Re(λ)‖z‖2 =

λ

Re(λ)
.

Hence

∣∣∣∣∣arg
λ

Re(λ)

∣∣∣∣∣ ≤
π

4
and

λ

Re(λ)
has real part equal to 1, so w satisfies

property 3. It also satisfies property 2 because (see Fig. 1.11)

|Re〈w(z), grad log f (z)〉| = |Im〈w(z), i grad log f (z)〉| < 1.

In either case one can choose a local tangential vector field v(z) which takes the
constructed value v at z. The condition

| arg〈w(z), i grad log f (z)〉| < π

4

will hold throughout a neighbourhood of z. Using a partition of unity we obtain a
global vector field w(z) having the same property. �

1.4.2 Monodromy

The fibre F of the Milnor Fibration (1.13) is a differentiable manifold of real
dimension 2(n − 1). Consider the one-parameter group of diffeomorphisms Ht
of Sε \ K given in (1.19), defined by the vector field w of Lemma 1.4.14. The
geometric monodromy on the total space h̃ : Sε \ K → Sε \ K is defined by
h̃ = H2π . By (1.20) the fibre F := F0 = F2π is invariant under h̃, so the geometric
monodromy on the fibre h : F → F is defined by the restriction h = h̃|F .

The geometric monodromy h : F → F depends on the choice of lifting w of the
unit tangent vector field on S

1, but its isotopy class does not depend on the choice
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of w. Hence, the homomorphism induced by h on homology

h∗,i : Hi(F ;A)→ Hi(F ;A) for 0 ≤ i ≤ 2(n− 1),

is independent of w. The coefficients A are usually Z, Q, R or C depending on the
situation. The isomorphism h∗,i is called the i-th monodromy isomorphism. This
also defines a well-defined homomorphism

ρi : π1(S
1)→ Aut(Hi(F ;A)) for 0 ≤ i ≤ 2(n− 1),

where the image of the canonical generator of π1(S
1), represented by a counter-

clockwise loop, is the monodromy isomorphism h∗,i .

1.4.3 Open books

The Milnor Fibration φ : Sε \ K −→ S
1 together with the link K give an open

book structure to the sphere Sε, whereK is the binding and the fibres of the Milnor
Fibration are the pages.

The formal definition of open book was introduced by Winkelnkemper in
[Win73] and has become an important concept in topology (see for example [Ran98,
Appendix]). Open books allow to describe an arbitrary closed manifold in terms of
lower dimensional ones.

Definition 1.4.16 ([Sea06, Def. 5.1]) LetM be a smooth closed n-manifold and let
N be a codimension 2 submanifold ofM with trivial normal bundle. Let

π : M \ N → S
1

be a map such that

• π is a locally trivial fibration and
• there exists a tubular neighbourhood of N diffeomorphic to N ×D

2 such that the
restriction of π to N × (D2\{0}) is the map (x, y) 
→ y/||y||.

The map π is called an open-book fibration ofM , N is called the binding and the
fibres of π are called the pages.

It follows that the pages are all diffeomorphic and each page F can be
compactified by attaching the binding N as its boundary, thus getting a compact
manifold with boundary.
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1.4.4 Thom af -condition

Let f : (Cn, 0) −→ (C, 0) be a holomorphic map-germ with 0 ∈ C
n a critical point

(not necessarily isolated), as before, set V = f−1(0). Take a Whitney stratification
of U such that V is union of strata and U \V = Sβ is a stratum. Let Sα be a stratum
contained in V such that Sα ⊂ Sβ , z ∈ Sα , {zn} ⊂ Sβ such that zn → z. Let Fn
be the fibre of f which contains zn. Let T = lim

n→∞ TznFn (taking a subsequence if

necessary). The map f satisfies the Thom af -condition if (see Fig. 1.12)

TzSα ⊂ T .

We have the following result by Hironaka [Hir77, §5, Corollary 1].

Proposition 1.4.17 All complex analytic maps f : Cn → C satisfy Thom’s af -
condition.

Let Dδ be a closed disc in C of radius δ centred at 0.

Corollary 1.4.18 Let Bε be a ball such that Sε = ∂Bε is transverse to all strata of
V . Then all the nearby fibres of f are also transverse to Sε, so there exist δ with
0 < δ � ε such that all the fibres over Dδ ⊂ C are transverse to Sε.

Proof In the case that f has 0 as an isolated critical point, since V is transverse to
the sphere Sε , the lemma follows by the Implicit Function Theorem. In the general
case, by Proposition 1.4.17 f satisfies Thom’s af -condition, which implies that all
the fibres near-by V are also transverse to Sε. �

Fig. 1.12 Thom af -property

z1 . . .
zn

V

z
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1.4.5 Milnor-Lê Fibration

There is a second fibre bundle associated to a holomorphic map-germ called the
Milnor-Lê Fibration. In this subsection we will prove its existence using Ehresmann
Fibration Theorem (Theorem 1.2.16).

Let f : (Cn, 0) −→ (C, 0) be a holomorphic map-germ with 0 ∈ C
n a critical

point. Let U be a neighbourhood of 0 ∈ C
n such that f restricted to U has 0 ∈ C

as the only critical value and set V = f−1(0) ⊂ U . Let Bε be a closed ball in U
centred at 0 of a sufficiently small radius such that Sε = ∂Bε is transverse to (all the
strata of) V .

Let ε0 > 0 as in Lemma 1.4.9. Let δ be such that 0 < δ << ε and Dδ be as
in Corollary 1.4.18 and let ∂Dδ be the boundary circle. Consider the Milnor tube
N(ε, δ) = Bε ∩ f−1(∂Dδ) defined in (1.12), and the restriction of f to it (see
Fig. 1.13).

Theorem 1.4.19 (Milnor-Lê Fibration) The restriction

f : N(ε, δ) −→ ∂Dδ (1.21)

is the projection of a smooth fibre bundle.

Milnor proved this theorem for the case when f has an isolated critical point at
0 (see proofs of [Mil68, Theorem 11.2] or [Mil66, Theorem 2]). The general case
was proved by Lê in [Lê77, Theorem (1.1)]. This is the reason why this fibration is
called the Milnor-Lê Fibration.

Fig. 1.13 Milnor-Lê
Fibration

V

f
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Proof By Corollary 1.4.18 the points in ∂N(ε, δ) are regular points of the restriction
f |Sε . Therefore f |Sε � ∂Dδ , and since f |Bε is a submersion f |Bε � ∂Dδ . Then,
by Theorem 1.2.9, N(ε, δ) is a compact submanifold with boundary of Bε . Hence
f : N(ε, δ) −→ ∂Dδ is proper and by Theorem 1.2.16 it is a fibre bundle. �

1.4.6 Equivalence of the Fibrations

Here we will prove that the Milnor fibration (1.13) and the Milnor-Lê fibra-
tion (1.21) are equivalent. Let π : C \ {0} → S

1 be the projection given by
π(x) = x

|x| . Recall that the composition π ◦ f is the map � defined in (1.14),
thus, taking the composition of the Milnor-Lê fibration (1.21) with π we get the
map

�|N(ε,δ) = π ◦ f : N(ε, δ) −→ S
1. (1.22)

Since π sends ∂Dδ diffeomorphically onto S
1, the map (1.22) is the projection of a

fibre bundle equivalent to (1.21). Thus, now we can compare the fibre bundles (1.13)
and (1.22) since now they have the same base space.

By Definition 1.2.17 we need to find a diffeomorphism between the total space
Sε \ K of (1.13) to the total space N(ε, δ) of (1.22) which commutes with the
projections. This is not possible since the latter is compact while the former is
not. So consider the restriction of the map φ defined in (1.13) to the subspace
Sε \ f−1(D̊δ), where D̊δ is the interior of the disc Dδ. Since the map φ is also a
restriction of the map � defined in (1.14) we get

�|
Sε\f−1 (̊Dδ)

: Sε \ f−1(D̊δ) −→ S
1, (1.23)

We have that Sε \ f−1(D̊δ) is a compact manifold with boundary. Now, we want to
prove that (1.22) and (1.23) are equivalent fibre bundles, so we need to prove that
there is a diffeomorphism	 : N(ε, δ)→ Sε \ f−1(D̊δ) which makes the following
diagram commute

N(ε, δ)

|

Sε \ f −1(D̊δ)

|
S
1

To prove this, suppose there is a vector field v on U \ V such that

1. It is transverse to all the spheres Sε with ε ≤ ε0.
2. It is transverse to all Milnor tubes.
3. If t 
→ p(t) is an integral curve of v then f (p(t)) has constant argument for all
t .
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Once we have such a vector field, given an integral curve t 
→ p(t) of v we have
that f (p(t)) lies on the ray L+θ with θ = arg f (z). Let z be a point in N(ε, δ) and
let p(t) be the integral curve of v through z. Following p(t) we travel “away” form
the origin, transversely to the tubes and to the spheres until we reach a point z′ on
Sε \K . Since f (p(t)) has constant argument along p(t) we have that

�(z) = f (z)

|f (z)| =
f (z′)
|f (z′)| = �(z

′).

Thus, the correspondence z 
→ z′ is a diffeomorphism which gives the equivalence
between the fibre bundle (1.22) and the fibre bundle (1.23).

Milnor constructed such a vector field in the following lemma. Originally Milnor
used this vector field just to prove that the interior of the fibre in the tube is
diffeomorphic to the fibre in the sphere, since he did not have the fibration on the
tube in the general case.

Lemma 1.4.20 ([Mil68, Lemma 5.9]) Let ε ≤ ε0. There exists a smooth vector
field v on Bε \ V so that

〈v(z), grad log f (z)〉

is real and positive for all z ∈ Bε \ V and so that the inner product 〈v(z), z〉 has
positive real part.

Proof The proof is analogous to the proof of Lemma 1.4.14. It suffices to construct
such a vector field locally, in the neighbourhood of some given point z ∈ Bε \ V .

Case 1
z and grad log f (z) linearly independent over C. Take the simultaneous solution to

〈v, grad log f (z)〉 = 1 and

〈v, z〉 = k, k ∈ C with Re(k) > 0.

Case 2
grad log f (z) = λz with | argλ| < π

4
. Take v = grad log f (z)

〈grad logf (z), grad log f (z)〉 = 〈λz, λz〉 = ‖λz‖2 ∈ R
+,

〈grad log f (z), z〉 = 〈λz, z〉 = λ‖z‖2 so | argλ‖z‖2| < π

4
so its real part is positive

(see Fig. 1.8). �
Corollary 1.4.21 The vector field v of Lemma 1.4.20 satisfies properties 1, 2 and 3.
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Proof Let t 
→ p(t) be an integral curve of v, that is dp
dt
= v(p(t)). By

equality (1.3) we have that

d log f (p(t))

dt
= 〈dp

dt
, grad log f (p(t))〉.

The condition that 〈 dp
dt
, grad logf (p(t))〉 = c with c real and positive, by

equalities (1.9) and (1.10), implies that

d log |f (p(t))|
dt

= Re
〈dp
dt
, grad log f (p(t))

〉
= c > 0, and (1.24)

dθ(p(t))

dt
= Im

〈dp
dt
, grad log f (p(t))

〉
= 0. (1.25)

From (1.24) we have that log |f (p(t))| = ct + k with k constant, hence

|f (p(t))| = ect+k,

whose derivative with respect to t does not vanish. Therefore the integral lines p(t)
of v are transverse to the Milnor tubes and w satisfies 2. From (1.25) we have that

θ(p(t)) = θ0, for a constant value θ0,

in other words, f (p(t)) has constant argument as required by 3. On the other hand,
the condition that Re〈v(z), z〉 > 0 implies that

d‖p(t)‖2
dt

= 2Re

〈
dp

dt
, p(t)

〉
> 0,

therefore the integral lines p(t) are transverse to all the spheres and w satisfies 1.
�

Remark 1.4.22 Since the fibre bundles (1.22) and (1.23) are equivalent, their
respective fibres, which are manifolds with boundary, are diffeomorphic. Thus,
also their respective interiors, which are manifolds without boundary, are also
diffeomorphic. Milnor proved, that the fibre of (1.23), which is part of the fibre
of (1.13), is diffeomorphic to the whole fibre of (1.13) (see [Mil68, Theorem 5.11]).
Hence, the Milnor-Lê Fibration (1.21) restricted to the interior of the Milnor tube
N(ε, δ) is equivalent to the Milnor Fibration (1.13).
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1.5 Resolution and Monodromy

In this section we will see the monodromy of the Milnor fibration of a complex
analytic function f : (C2, 0)→ (C, 0) with isolated singularity as a quasi-periodic
diffeomorphism using a resolution of the singularity as is made in [DM92, 1.2 to
1.11]. For this, we will describe the sphere S3 as the boundary of a plumbing.

1.5.1 Plumbing

Here we present a method to construct manifolds “gluing” disc bundles; in particular
we are interested in the construction of 4-manifolds gluing 2-disc bundles over 2-
manifolds. We use this construction in Sect. 1.5.3 to describe the monodromy of the
Milnor fibration of a curve singularity.

As Bredon in [Bre93, Ch. VI, Sect. 18] and Hirzebruch and Neumann in
[HNK71, § 8], we will first describe plumbing in arbitrary dimensions before going
into more detail in the case of our interest, namely plumbing of 2-disc bundles over
2-manifolds. See [OPP16] for a more general notion of plumbing and a historical
evolution of this concept.

Let ξ = (E, p,M) and κ = (E′, p′, N) be two smooth n-disc bundles over
smooth connected n-manifolds M and N . Let A ∼= D

n be a neighbourhood of a
point in M and take a trivialization

ζ : EA→ D
n ×D

n

where EA is the total space of the bundle ξ restricted to A, such that the following
diagram commutes:

EA

∼=

p

D
n ×D

n

p2

A
∼=

D
n

where p2(x, y) = x is the projection on the second coordinate.
Similarly, let B ∼= D

n be a neighbourhood of a point inN and take a trivialization

η : E′B → D
n × D

n.

Let χ : Dn×Dn → D
n×Dn be defined by the change of factors χ(x, y) = (y, x)

and let ϑ : E′B → EA be the composition given by

ϑ : EB

η
D

n ×D
n χ

D
n ×D

n ζ−1

EA
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Fig. 1.14 Plumbing P 2n of
E and E′ P 2nE

Definition 1.5.1 The plumbing of E and E′ is defined as the identification

P 2n = E
⋃

ϑ

E′ .

The (common) images of EA and E′B on the quotient P 2n is called the plumbing
polydisc Note that the identification ϑ matches the base of one bundle with the fibre
of the other (see Fig. 1.14).

The space P 2n is a topological 2n-manifold with boundary and is close to being
a smooth manifold, but it has “corners”. There is a canonical way to smooth these
corners and so to produce P 2n as a smooth manifold (see [Mil07a, pp. 86–87] and
[HNK71, § 8]).

We will describe how to plumb several bundles together according to a finite tree
(more generally a connected graph).

Let T be a tree. For each vertex in T one takes a n-disc bundle over S
n,

a plumbing of two bundles is made if and only if there is an edge joining the
corresponding vertices.

If several edges of T meet in one vertex v, one chooses the corresponding
neighbourhoods in S

n to be disjoint. A theorem of Thom (see [Mil07b, Th. 1.1])
assures that the plumbing is independent of the choice of these neighbourhoods.

Example 1.5.2 Given the tree T in Fig. 1.15, let us take a trivial 1-disc bundle over
S

1 for each vertex in T and make the plumbing of two of them when there is an
edge in T joining the corresponding vertices.

Fig. 1.15 Graph T , where
each vertex represents a
trivial 1-disc bundle of S1
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Fig. 1.16 Plumbing P 2(T )

according to the tree T

Fig. 1.17 Graph E8

−2 −2
−2

−2 −2 −2 −2

−2

Let P 2(T ) be the result of the plumbing (see Fig. 1.16).
We will now restrict to the case in which the bundles are 2-disc bundles over

2-manifolds.
Let T be a tree weighted in each vertex v by two integers: ev and gv ≥ 0. Let ξv

be a 2-disc bundle with Euler number ev over the surface of genus gv and let P 4(T )

be the 4-manifold with boundary obtained by the plumbing according to T ; i.e., to
plumb two bundles ξv and ξv′ when there is an edge in T joining the corresponding
vertices v and v′.

Example 1.5.3 Let E8 be the tree in Fig. 1.17 weighted at each vertex with −2 (see
[HNK71, pp. 61,62]). The other weight is not written because it is equal to zero, then
we consider −2 as the Euler number of the 2-disc bundles taken for each vertex in
T ; i.e., we take a 2-disc bundle over the sphere S2 for each vertex in T .

Figure 1.18 presents schematically the plumbing according to the tree E8.
In fact, the boundary of the manifold P 4(E8) is the Poincaré sphere mentioned

in Example 1.3.5 (see [KS77, Description 1, p. 114]).

Fig. 1.18 Plumbing P 4(E8) according to the tree E8
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In [PP07] Popescu-Pampu describes the relation between 3-manifolds which are
the boundary of the plumbing of 2-disc bundles over 2-manifolds, graph manifolds
and the JSJ decomposition. In the lecture notes by Walter Neumann [Neu19, §4.3]
in the present volume, plumbing will be used to describe Seifert manifolds.

1.5.2 Resolution and Blowup

Here we recall that a curve singularity can be resolved by successive blowups.

Definition 1.5.4 Let V be an analytic space and let R be the regular points of V . A
resolution of the singularities of V consists of a complex manifoldM and a proper
analytic map π : M → V such that π is biholomorphic on the inverse image of R
and such that π−1(R) is dense inM .

Let S be a complex surface and let p ∈ S, the blowup of p in S consists on
constructing a new surface B and a map φ : B → S such that φ−1(p) is a curve E,
φ gives an isomorphism between B \E and S \ {p}, and the points in E correspond
to different directions in S at p.

Firstly we do it for the case S = C
2 and p = (0, 0).

Consider the projective space CP1 of complex lines through the origin in C
2 and

define the map

� : C2 \ {(0, 0)} → CP
1

x 
→ �x

where �x is the complex line which passes through x and the origin. Let B be the
closure of the graph of � in C

2 × CP
1 and φ : B → C

2 the restriction to B of
the projection onto the first factor. Notice that for any point x ∈ C

2 \ {(0, 0)} the
preimage φ−1(x) only consists of the point (x, �x), while φ−1(0, 0) = {(0, 0)} ×
CP

1, so φ−1(0, 0) is a curve E isomorphic to CP
1 called the exceptional curve of

the blowup.
For a general surface S we can take a holomorphic chart around a smooth point

p, this gives a biholomorphic equivalence between a neighbourhoodU of p in S and
a neighbourhood V of (0, 0) ∈ C

2. The blowup of S is obtained by gluing together
S \ {p} and φ−1(V ) using the equivalence of U \ {p} and φ−1(V \ {(0, 0)}) via
the equivalence of each with V \ {(0, 0)}. We need this more general case because
after blowing up the origin of C2 to get B we will need to blow up a point p1 in B
to get a surface B1, and then, we will need to blow up a point p2 in B1, and so on.
All the computations can be made taking local coordinates in these surfaces, consult
[Wal04, §3.2] for details.

Theorem 1.5.5 ([Lau71, Theorem 1.1]) Let V be a 1-dimensional subvariety in a
complex surface S. There exists a complex surfaceM obtained from S by successive
blowups, a map π : M → S, such that if R is the set of regular points on V ,
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π : π−1(R) → V is a resolution of the singularities of V . Locally, M is obtained
from S by only a finite number of blowups.

Definition 1.5.6 The map π : M → S is an embedded resolution of V .

In the lecture notes by Anne Pichon [Pic19] in the present volume, resolutions
will be use to describe the Lipschitz geometry of a complex singularity.

1.5.3 Description of the Milnor Fibre in the Resolution

Let f : (C2, 0) → (C, 0) be a holomorphic reduced germ with isolated singularity
at the origin and let V = f−1(0). Let U be a neighbourhood of the origin in C

2

and let π :W→ U be a embedded resolution of V at the origin, given by a finite
number of blowups in points.

Definition 1.5.7 Let Ê = π−1(0) ⊂ π−1(U) be the exceptional divisor of π . Let
Ẽ0 ⊂ π−1(U) be the closure of the complement of Ê in π−1

(
V ∩U

)
; i.e.,

Ẽ0 = π−1(V ∩U) \ Ê,

Ẽ0 is called the strict transform of f−1(0). Let us denote by Ei the irreducible
components of Ê, with i = 1, . . . , k.

Each irreducible component Ei of Ê is non-singular and Ê has normal
crossings; i.e., if i �= j , Ei intersects Ej in at most one point where they meet
transversely and no three components of Ê intersect. Also Ê ∪ Ẽ0 has normal
crossings (see Fig. 1.19).

E0

EEi

(mi )

Ei+1

(mi+1)

Ei+2

(mi+2)

(1)

(1)

Fig. 1.19 The preimage π−1(U)
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Definition 1.5.8 Let pi,j be the intersection Ei ∩ Ej when this intersection is not
empty. A point p ∈ Ei is called smooth if p /∈ Ej for any j �= i.

Let i with 0 < i ≤ k, at each smooth point p ∈ Ei of Ê there exist some local
coordinates (u, v) centred at p such that u = 0 is a local equation ofEi and, locally,

(f ◦ π)(u, v) = umi ι(u, v) (1.26)

where ι is an unity in the ring of convergent power series C{{u, v}}. After performing
a change of coordinates, one can assume that ι = 1.

Definition 1.5.9 Let i with 0 < i ≤ k, the order mi of f ◦ π in a small
neighbourhood of a smooth point of Ei is called the multiplicity at Ei .

Let b be the number of branches of f . If the neighbourhood U is small enough,
Ẽ0 consists of b curves transverse to Ê. Let bi be the number of branches of f
intersecting Ei . As f is reduced, the multiplicity m0 at each component of Ẽ0 is
equal to one.

We choose an open neighbourhood of Ei such that it is a fibration of discs with
base Ei The fibres of this fibration are called the fibres of Ei .

By Theorem 1.4.19, there exists ε > 0 small enough and δ with 0 < δ � ε

also small such that f restricted to the Minor tube N(ε, δ) defines a locally trivial
fibration over ∂Dδ (see Fig. 1.13).

Let us choose δ small enough such that if z ∈ C with |z| = δ, then the manifold
Fz = π−1

(
f−1(z)∩B4

ε

)
is transverse to the fibres of the irreducible components of

Ê around a small neighbourhood of Ẽ0.
Let z ∈ C be fixed and let

F = Fz , X = π−1(f−1(B2
δ ) ∩ B

4
ε

)
,

F0 = π−1
(
S

3
ε ∩

⋃

0≤t≤1

f−1(tz)

)
, E0 = Ẽ0 ∩X .

The manifold X is a closed neighbourhood of Ê in W and the boundary ∂X is
diffeomorphic to the sphere S3

ε (see Fig. 1.20). The boundary ∂F is equal to F ∩ F0
and there is an isotopy between the identity in S

3
ε and the diffeomorphism on the

sphere which takes ∂F to the boundary

L = ∂(F ∪ F0) = ∂Ẽ0 .

Let U0 be a union of fibres of Ei (with Ei ∩ E0 �= ∅) such that

π
(
U0 ∩ ∂X

) ⊂ S
3
ε ∩ f−1(B2

δ ) .
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Fig. 1.20 Milnor fibration in
the embedded resolution of f

E0

X

0

0
L

Now we construct a manifold X in the following way: For all i with 0 < i ≤ k,
let Xi be the total space of a fibration of real discs with base Ei , Xi is isomorphic
to a closed neighbourhood of Ei in X.

Then X will be the manifold obtained after doing plumbing in a neighbourhood
of the intersection points pi,j , let Bi,j be the corresponding plumbing polydisc and
let Ti,j be the plumbing torus defined as the intersection Bi,j ∩ ∂X.

Proposition 1.5.10 ([DM92, Prop 1.4]) There exists a diffeomorphism with cor-
ners ρ : X→ X such that:

– ρ is the identity on Ê,
– ρ−1(E0) is a union of fibres of the Xi; these fibres are outside of the plumbing

polydiscs Bi,j for any i, j ,
– If� is a fibre of Ei outside of U0, ρ−1(�) is a fibre of Xi .

Let Xi = ρ(Xi), Bi,j = ρ(Bi,j ) and Ti,j = ρ(Ti,j ) (see Fig. 1.21), where Ti,j
is the image under ρ of the plumbing torus Ti,j with 0 < j < i ≤ k and Ti,0 will
denote the union of tori in the boundary ∂Xi such that

⋃

i>0

Ti,0 = π−1(
S

3
ε ∩ f−1(S1

δ )
)
.

Ei

E j

X i

X j
Bi , j

Ti , j

E0

T j ,0

Ei

E j

Xi

X j
B i , j

Ti , j

E0

L

T j ,00

Fig. 1.21 The plumbing of the fibred Xi’s is diffeomorphic to X
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E0

X

0

0

Ei

E j

Xi

X j
B i , j

Ti , j

L

T j ,0

Fig. 1.22 The manifold X as a plumbing

Then we obtain Fig. 1.22.

Definition 1.5.11 An orientation preserving diffeomorphism h : F → F is called
quasi-periodic if there is a family C of disjoint simple closed curves in F and a
small neighbourhood U(C) ⊂ F of C such that

– for each curve c ∈ C, U(c) is a small annulus neighbourhood of c in F,
– for any pair of curves ci , cj ∈ C, we have that U(ci) ∩U(cj ) = ∅,
– h(C) = C
– h(U(c)) = U(c),
– the restriction of h to the complement of

U(C) =
⋃

c∈C
Ů(c)

is periodic, where Ů(c) is the interior of U(c).

The family C is called a reduction system of curves for the diffeomorphism h.

Let h : F → F be a quasi-periodic diffeomorphism and let C be a reduction
system for h. Let c ∈ C be a simple closed curve in F an let U(c) ⊂ F be as before,
then there exists an orientation preserving diffeomorphismμ : [−1, 1]×S1 → U(c)
such that μ({0} × S

1) = c.
Let N be the smallest integer such that

hN |F\U(C) = idF\U(C) ,

then the restriction hN to U(c) is a Dehn twist and the restriction of h is
characterised by a rational number t in the following way:

Consider the path γ in U(c) defined by γ (s) = μ(s, eiθ ) where θ is fixed and
s ∈ [−1, 1]. We orient γ by [−1, 1] and then, we orient c in such a way that
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−
c

h N ( )

h N ( )−

Fig. 1.23 The cycles Kc and hN(γ ) − γ are homologous

γ · c = +1 in H1(U(c),Z). Then there exists K ∈ Z such that the cycles Kc
and hN(γ )− γ are homologous in U(c) (see Fig. 1.23).

Definition 1.5.12 The rational number t = K
N

is called the twist number of h
along c.

Let Fi = F ∩ ∂Xi ; we then have F = ∪i>0Fi .
The intersection of the fibres of Ei with the boundary ∂Xi endows ∂Xi with a

fibration in circles. Let hi : Fi → Fi be the first return diffeomorphism on Fi along
the fibres of ∂Xi .

By Eq. (1.26), in the local coordinates (u, v), a fibre of Ei over a smooth point
is given by the equation v = c, where c is a constant. Then the intersection of this
fibre with Fi consists of mi points (u, c), where c is solution of

umi = c .
The diffeomorphism hi permutes cyclically these mi points and hmii is the identity,
then the order of hi is mi (see Fig. 1.24).

Let h0 : F0 → F0 be the identity on F0. Now we take the following family of
curves:

C = ∪0≤j<iFi ∩ Fj .

∂Xi

Ei

fibre of Ei

hi

Fig. 1.24 The diffeomorphism hi in a fibre of Ei
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Xi

X j

B i , j

Ti , j

R

R−1 I (Bi , j )

R−1 J (Bi , j )

Tj ,0

R−1 J (Bi ,0)

Ei

E j

E0

I (Bi , j )

J (Bi , j )

Fig. 1.25 The deformation retract R from X to E

Let i, j be such that Ei ∩ Ej �= ∅, then let m̂i,j = gcd(mi,mj ). If 0 < j < i,
Ci,j = Fi ∩ Fj is a collection of m̂i,j simple closed curves of F.

Now we will construct the neighbourhood U(C): For each point pi,j (with 0 ≤
j < i ≤ k), we choose closed discs I (Bi,j ) and J (Bi,j ), neighbourhoods of Bi,j ∩
Ei in Ei and (Bi,j ∩ Ej) in Ej respectively.

Let E = Ê ∪ E0. There exists a deformation retract R : X → E (see Fig. 1.25)
such that

– the plumbing torus Ti,j goes to the point pi,j ,
– if x ∈ (Ei \⋃ I (Bi,j )

)
, R−1(x) is the fibre of Ei in the point x,

– if x ∈ I (Bi,j ) \ {pi,j }, R−1(x) is a curve transverse to Ei at the point x.

Let

V =
⋃

0≤j<i

(
R−1(I (Bi,j )

) ∪ R−1(J (Bi,j )
))

and U(C) = V ∩ F .

The next step is “to glue” the diffeomorphisms hi . On the m̂i,j curves in Ci,j ,

hi is a permutation of these curves and h
m̂i,j
i is the identity. On the boundary of the

annuli U(Ci,j ) ∩ Fi , the diffeomorphism h
m̂i,j
i is a rotation and hi = h.

Proposition 1.5.13 ([MMA11, Theorem 7.3 (iv) ], [BFP19, Proposition 4.12])
Let ni = mi/m̂i,j and nj = mj/m̂i,j . The twist number of hm̂i,j restricted to the
anulus U(c), with c a curve in Ci,j is given by ti,j = − 1

ninj
.

Then, we extend h from the boundary ∂
(
U(Ci,j ) ∩ Fi

)
to the boundary ∂Fi by

an isotopy; this is possible because U(Ci,j ) ∩ Fi is a disjoint union of annuli.
Then we have the following result.

Proposition 1.5.14 ([DM94, Prop. 1.5]) Let h be the monodromy of the Milnor
fibration of f . Its restriction h|Fi is the diffeomorphism hi .

Remark 1.5.15 The representative of the monodromy found in this way depends on
the resolution; in order to obtain a canonical quasi-periodic monodromy, we take
the minimal embedded resolution and we proceed in the same way.



1 Geometric Viewpoint of Milnor’s Fibration Theorem 41

Let us finish this section with two results about the topology of F.
For all i with 0 < i ≤ k, let ri = gcd(m̂i,j )Ei∩Ej �=∅, let F̊i be the interior of

Fi and let E̊i be the set of smooth points of Ei . Let v be the restriction to F of the
deformation retract R and let vi : F̊i → E̊i be the restriction to F̊i .

Proposition 1.5.16 ([DM94, Prop. 1.6]) The restriction vi is the finite cyclic
covering of order mi , defined by the homomorphism

ρi : H1(E̊i;Z) −→ Zmi

([Ci,j ]) 
−→ ωj

where ωj ≡ −mj (mod mi).

Proposition 1.5.17 ([DM92, Prop 1.11])

1. The number of connected components of Fi is ri ,
2. F0 is the disjoint union of b annuli, where b is the number of branches of f .
3. if si = 1, Fi is a union of discs and if si = 2, Fi is a union of annuli,

where si is the number of irreducible componentsEj of Ê which intersect Ei .
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Chapter 2
A Quick Trip into Local Singularities
of Complex Curves and Surfaces

Jawad Snoussi

Abstract In these notes we give a summary of some of the properties of curve and
surface singularities needed in the study of Lipschitz geometry of singular varieties.
In particular, we describe normalization and resolution processes, and we introduce
the concepts of polar curves and exceptional tangents for surfaces.

2.1 Introduction

Low dimensional singularities are an appropriate field for experiencing and under-
standing new tools or concepts. This is the case of the metric study of singularities
and Lipschitz geometry of singular varieties.

The wide understanding of the geometry, topology, analytic and algebraic aspects
of low-dimensional singularities is then fundamental. An extensive literature is
available for this purpose.

However we took the challenge in these notes to propose a short text with an
introduction to curve and surface singularities. We are far from pretending to expose
the state of art in this theme. Instead we try to describe some of the aspects of one-
and two-dimensional singularities that are most used in the actual study of their
metric aspects. We give almost no proof, we prefer instead to refer to some of the
appropriate references. We focus on the description of the objects, concepts, tools
and procedures that are also most used in the other lectures of this school in these
dimensions.

We present some examples, with detailed computations, as we do believe they
are the best way to understand the procedures that are followed in many of the other
texts in this volume.

The text is divided into three parts: some general aspects of local singularities,
such as normality and normalization, tangent cone, secants, blowups. Then we
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describe these concepts in the case of plane curves, with an explicit description
of normalization, point blowup and resolution. We also make a brief mention of
Newton-Puiseux parametrizations and state the theorem of the equivalence between
the topological type, the embedded resolution and the combinatorial data given by
the characteristic exponents.

For surfaces, we also describe the normalization and the point blowup. Then we
discuss some procedures of resolution of singularities and give explicit examples of
resolution by Jung’s method. We also establish the relation between base points of
hyperplane sections and polar curves with the point blowup and Nash modification
and we define and describe the exceptional tangents, since they are fundamental
objects in the Lipschitz geometry of normal surface singularities.

These notes are extracted from a series of lectures given by the author at
the “International school on singularities and Lipschitz geometry”. The author is
grateful to the audience for interesting feedback, and also would like to thank
Otoniel da Silva for fruitful discussions and strong help with technical aspects.

2.2 General Settings

By an analytic space X we mean a space defined in an open set U of C
N as

the zero set of a finite number of functions f1, . . . , fr holomorphic in U . This
space comes together with its ring of holomorphic functions defined as the quotient
O(U)/(f1, . . . , fr ), where O(U) is the ring of holomorphic functions in U and
(f1, . . . , fr ) is the ideal generated by f1, . . . , fr in O(U).

By a germ of analytic set (X, x)we mean the equivalence class of analytic spaces
under the relation where two analytic spaces defined in open sets containing x are
equivalent if they coincide on a common smaller open set containing that point.
The ring associated to a germ (X, x) is the local ring OX,x := ON,0/(f1, . . . , fr ),
quotient of the local ring of holomorphic functions in C

N near x by the ideal
generated by the equations of a representative of (X, x). The maximal ideal of OX,x
will be denoted by MX,x .

Consider a germ of analytic space (X, x); its dimension can be defined as the
Krull dimension of its local ring OX,x . The point x is singular if and only if
the ring OX,x is not regular, in other words, the ideal MX,x cannot be generated
by dim(X, x) functions. This property can also be characterized by the Jacobian
criterion, that is, if (X, x) ⊂ (CN, 0) is defined by f1, . . . , fr then, the rank of the
Jacobian matrix of the fi ’s at x is strictly smaller than N − dim(X, x).

We will say that an analytic space X is singular at a point x if the corresponding
germ (X, x) is singular. A point will be called regular or smooth when it is non-
singular.
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The direction of tangent space of an analytic space X at a regular point x ∈ X
is the vector space defined by the kernel of the Jacobian matrix of the functions
f1, . . . , fr at x. It has the same dimension as (X, x). When x is singular the
dimension of this kernel is strictly bigger than the dimension of (X, x).

2.2.1 Multiplicity and Tangent Cone

The tangent cone to X at x is the space defined by the ideal of initial forms of the
ideal (f1, . . . , fr ) in OX,x . More precisely, consider an element f ∈ I for some
ideal I ⊂ ON,x ; the initial form of f at x, is the polynomial Inx(f ) defined as the
homogeneous polynomial of lowest degree in the Taylor expansion of f around x.
The initial ideal of I at x is the ideal generated by all the initial forms of elements
of I; Inx(I) :=< {Inx(f ), f ∈ I} >. This ideal is generated by homogeneous
polynomials, so the tangent cone is in fact a homogeneous algebraic variety. We
will denote it by TxX.

When the point x is non-singular, the tangent cone at x coincides with the tangent
space. When X is equidimensional at x the tangent cone has the same dimension as
(X, x).

We define the multiplicity of an analytic germ as follows. Let (X, x) ⊂ (CN, x)
be analytic of dimension d . Choose a linear space L ⊂ C

N of codimension d , in
such a way that L ∩ TxX = {0}. One can prove that a translate Lε of L close to x
intersects X transversally in a number of points that does not depend either on ε or
on the choice of L. This number of points is called the multiplicity of (X, x) or the
multiplicity of X at x and we denote it by m(X, x).

An analytic germ (X, x) is non-singular if and only if m(X, x) = 1. In case
(X, x) is a hypersurface, i.e., defined by a function f ∈ ON,x , then m(X, x) =
ordx(f ) := degInx(f ).

The multiplicity of a germ at a point coincides with the multiplicity of its
tangent cone at the same point. For more details and equivalent definitions of the
multiplicity, see [dJP00, IV].

2.2.2 Blowups

Consider an ideal I = (g1, . . . , gk) ⊂ OX,x , a representative X of (X, x) and call
V (I) the zero locus of I in X. Define the map:

λ : X \ V (I)→ P
k−1

z 
→ [g1(z) : . . . : gk(z)]
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and call XI the closure of the graph of λ in X × P
k−1. The projection on the first

factor induces a map

eI : XI→ X

called the blowup of the ideal I in X. It is a proper map which induces an
isomorphism outside V (I). The inverse image e−1

I (V (I)) is called the exceptional
locus, or exceptional divisor of the blowup eI. When the support of the blown-up
ideal is a point, the inverse image e−1

I (V (I)) is also called the exceptional fiber.
For another description and properties of the blowup see [Har77, p. 163].

The blowup of the maximal ideal MX,x is also called the blowup of the point x in
X. In this case, the exceptional fiber is the projective space associated to the tangent
cone, that is Proj(TxX). In other words, every line l of the tangent cone passing
through the vertex x is a limit of a sequence of secant lines of the form (xzn), where
(zn) converges to x; see [Whi65, 5.8].

Example 2.2.1 Consider the curve C defined in C
2 by the function f (x, y) = 0,

where f (x, y) = y2 − x2 − x3. The origin is the only singular point of C. The
initial form of f is y2 − x2, which in this case generates the initial ideal associated
to the ideal generated by f . So the tangent cone T0C is defined by the equation
y2 − x2 = 0; it is the union of two lines.

We will compute the blowup of the origin in C. The maximal ideal is generated
by x and y. The map λ is defined from C \ {0} to P

1 by λ(x, y) = [x : y]. Its graph
in C× P

1 is defined as:

{((x, y), [u : v]) ∈ C
2 × P

1, (x, y) �= (0, 0), (x, y) ∈ C and [x : y] = [u : v]}

= {((x, y), [u : v]) ∈ C
2 × P

1, (x, y) �= (0, 0), y2 − x2 − x3 = 0 and xv = yu}.

Decomposing the projective space P
1 into affine charts (u �= 0) ∪ (v �= 0), the

closure of the graph of λ can be decomposed as the union of two pieces:

U1 = the closure of {((x, y), [u : v]) ∈ C
2 × P

1, (x, y) �= (0, 0),
y = x v

u
and x2

(
v
u

)2

− x2 − x3 = 0},
U2 = the closure of {((x, y), [u : v]) ∈ C

2 × P
1, (x, y) �= (0, 0),

x = y u
v

and y2 − y2
(
u
v

)2

− y3
(
u
v

)3

= 0}.

In U1 the main equation factorizes into x2(( v
u
)2 − 1 − x) = 0 and in U2 into

y2(1− ( u
v
)2− y(u

v
)3) = 0. In both cases the lines defined by x2 = 0 and by y2 = 0

do not belong to the closure space. So they may be removed from the equations and
then the charts of the blown-up space U1 and U2 are respectively defined by the
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functions

(
y − x v

u
,

(
v

u

)2

− 1− x
)

and

(
x − y u

v
, 1 −

(
u

v

)2

− y
(
u

v

)3)
.

The blown-up space is a curve in C
2×P1 and one can check that it is non-singular

in both charts.
Let us now compute the exceptional divisor, inverse image of the origin. In U1,

it is defined by x = y = 0 and ( v
u
)2 = 1, and in U2, by x = y = 0 and ( u

v
)2 = 1.

These are the points ((0, 0), [1 : 1]) and ((0, 0), [1 : −1]), each of them appearing
in both charts.

The affine lines corresponding to these two projective points in the affine space
C

2 with coordinates x and y are given respectively by the equation x = y and
x = −y. These are precisely the lines of the tangent cone T0C.

When Y ⊂ X is an analytic subspace of X the inverse image e−1
I (Y ) is called

the total transform of Y by eI. We call the strict transform of Y the closure of
e−1
I (Y \ V (I)) in XI.

Note that in the example above, the blowup of the curve C coincides with the
strict transform of C under the blowup of the origin in C

2.

2.2.3 Normality and Normalization

An analytic space X is said to be normal at x if every meromorphic bounded
function on X near x extends to a holomorphic function on X near x; in other
words, X satisfies the Riemann extension property near x. This is equivalent to
the following algebraic property on integral dependence of rings: the total ring of
fractions of a ring A is the ring obtained by making invertible all non-zero-divisors
of A (see [PT69]); we denote it by Tot(A). A ring A is said to be normal if it is
integrally closed in its total ring of fractions; in other words, whenever f ∈ Tot(A)
satisfies a polynomial monic equation with coefficients in A, then f is actually in
A. An analytic space X is normal at x if and only if the local ring OX,x is normal,
see [Nar66, VI. 2].

One can prove that a Unique Factorization Domain is normal, so if (X, x) is
non-singular then it is normal.

A normalization of an analytic space X is a finite (hence proper) map n : Y →
X such that Y is a normal analytic space and n induces an isomorphism outside the
non-normal points of X.

We say that an analytic space is reduced if its ring of holomorphic functions
is reduced, i.e., it has no nilpotent element. A normalization of reduced analytic
spaces always exists, it is unique up to isomorphism and is characterized by the
following universal property: every morphism from a normal analytic space to a
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given analytic space X factors through the normalization. For proofs and more see
[dJP00, 4.4].

The normal closure of a ring A is the ring of all elements of Tot(A) that satisfy
polynomial monic equations with coefficients in A. One can prove that if X is an
analytic space, then the normal closure of the ring OX is isomorphic to the ring of
holomorphic functions on the normalization of X.

A normal analytic space may be singular. For example, the surface given by the
equation z2 + x3 + y5 is normal and singular at the origin. However the singular
locus in a normal space has codimension bigger or equal than 2. For more details on
normality and normalization we recommend [GLS07, I.9].

2.2.4 Resolution of Singularities

A modification of an analytic spaceX is a proper mapμ : Y → X which induces an
isomorphism (biholomorphism) over the complement of a nowhere dense analytic
subspace of X. The blowup of an ideal and the normalization are modifications.

A resolution of singularities of an analytic spaceX is a modification ρ : Z→ X

where Z is a non-singular analytic space.
H. Hironaka proved in [Hir64] that every algebraic space defined over a field of

characteristic zero admits a resolution of singularities. An analytic version of this
result was proved in [AHV77].

Resolution of singularities is an active subject of research. Different tools have
been developed in order to produce resolutions of singularities. The problem is still
open over fields of positive characteristic. We recommend some texts on the subject,
such as [Cut04, Kol07, HLOQ00].

In next sections we will refer to some particular methods, such as Jung’s method,
Nash modification, and point blowups, for curves and surfaces.

2.3 Complex Curve Singularities

In this section, we will review some properties of plane curve singularities related
to normalization and parametrization. We will also describe the way to get an
embedded resolution and to construct its dual graph.

A curve singularity is a germ of an analytic space (C, 0) of dimension one.
When it is a hypersurface in C

2, i.e., defined by one analytic function f ∈ O2,0,
we call it a plane curve singularity, otherwise, one can talk about space curve
singularity.

Any function f ∈ O2,0 has a decomposition f = f α1
1 · · · f αrr into irreducible

holomorphic functions, corresponding to the decomposition (C, 0) = (C1, 0) ∪
. . . (Cr , 0) into irreducible components, or branches , defined by the respective fi .
The component (Ci , 0) is non-reduced if and only if αi > 1.
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2.3.1 Normality and Normalization

In dimension one, the normalization produces a non-singular curve. More precisely:

Theorem 2.3.1 The normalization of a reduced curve singularity (C, 0) is a map
n : (T1, 0)  . . .  (Tr, 0) → (C, 0), where each germ (Ti, 0) is a non-singular
(irreducible) curve germ, and the restriction of n to any (Ti, 0) is the normalization
of a branch (Ci , 0) of (C, 0).

We refer to [dJP00, 4.4] for the proof and details on normalization.

Remark 2.3.2

(a) Since all the Ti ’s in Theorem 2.3.1 are non-singular, they are isomorphic to
(C, 0). So the normalization provides a one-to-one parametrization on each
irreducible component, with parameter in C.

(b) When the curve (C, 0) is non-reduced, the normalization is not well defined as
a modification. However when the only non-reduced point of the curve is the
origin itself, one can define a normalization as the normalization of the reduced
associated curve, i.e., the curve defined by the radical ideal defining (C, 0); see
for example [Gre17].

Example 2.3.3 Consider the plane curve singularity (C, 0) defined by the function
(x, y) 
→ y2 − x2 − x3 with local ring R := OC,0 = C{x, y}/(y2 − x2 − x3).

One can see that t := y
x

is in the field of fractions of R and satisfies the
polynomial equation with coefficients in R: t2 − (1 + x) = 0. So R is not
normal. Its integral closure, R, in its field of fractions must then contain t . Let
us call R1 the minimal subring of R containing R and the element t . So R1 =
C{x, y}[t]/(y − tx, t2 − (1 + x)). It is then isomorphic to C{x}[t]/(t2 − (1 + x)).
Since the ideals (t − √1+ x) and (t + √1+ x) are co-prime in C{x}[t] then the
ring R1 is isomorphic to C{x}[t]/(t − √1+ x) ⊕ C{x}[t]/(t + √1+ x). Each of
the summands is isomorphic to C{x}. So the normalization map corresponds to

n : (C, 0)  (C, 0)→ (C, 0)
u 
→ (u, u

√
1+ u)

v 
→ (v,−v√1+ v).

2.3.2 Tangent Cone and Blowups

The tangent cone of a curve singularity is a homogeneous algebraic variety of
dimension one, so it is a finite union of lines. When it is a plane curve singularity
defined by a function f ∈ O2,0 the tangent cone is defined by the initial form of
f . This form is a homogeneous polynomial in two variables. So it factors into a
product of linear forms; the zero set of each of them is a line.
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Proposition 2.3.4 The lines of the tangent cone of a curve singularity are precisely
the limits of tangent lines to the curve.

Proof Recall from Sect. 2.2.2 that the lines of the tangent cone correspond to the
limits of secants. Consider a reduced curve (C, 0) ⊂ (CN, 0) and its normalization

n :
⊔

i

(C, 0)→ (C, 0).

The restriction ni of n to each copy of (C, 0) is given by holomorphic functions
(ϕi,1, . . . , ϕi,N ). A limit of secant lines, respectively tangent lines, can always be
taken as a limit over points lying in the same irreducible component, and hence
images of a sequence of points (uk) in the same complex line by a map ni . So the
sequence of secants is given by the sequence of projective points in P

N−1 defined by
[ϕi,1(uk) : . . . : ϕi,N (uk)] and the sequence of tangent lines is given by the sequence

of points in the dual projective space P̌
N−1

defined by [ dϕi,1
du
(uk) : . . . : dϕi,Ndu (uk)].

By l’Hospital’s rule, these two sequences have the same limit when k→∞. �
From the proof of the proposition above, one can see that for each branch there

is one and only one limit of secants or tangents. This limit will be determined by the
functions ϕi,k of minimal order when k varies. So there is no ambiguity in talking
about the tangent line to a branch at a singular point. However two different branches
may have the same limit of tangents.

Consider a germ of curve (C, 0) and the blowup of the origin e0 : X → C. The
inverse image of the origin corresponds to the projectivization of the tangent cone,
so in this case it is a finite number of points; as many as the number of distinct
tangents to C at the origin. The blowup is then a finite map and the curve X is a
multi-germ. In Example 2.3.3, the normalization map coincides with the blowup of
the origin in the curve.

One can also consider the blowup of the ambient space and follow the strict
transform of the curve. This procedure is particularly useful in the case of plane
curve singularities for its tight relation with the embedded topology of the curve.

Consider an open ball U of C2 around the origin and a representative C of (C, 0)
in U . Call π0 : Ũ → U the blowup of the origin in U . The tangent cone of U at
the origin is C2, so the exceptional fiber of π0 is the projective line P

1; we will call
it E. The inverse image of C by π0 is the total transform of C by π0; note that it
contains the exceptional fiber E. The closure in Ũ of π−1

0 (C \ {0}) is a curve in Ũ ;
it is the strict transform of C by π0. It will be denoted by C∗ whenever there is
no ambiguity. In this case, the restriction of π0 to C∗ coincides with the blowup of
the origin in the curve C. So the intersection points of C∗ with the exceptional fiber
E correspond to the distinct tangent lines to the branches of C. Two branches are
separated by π0 if and only if they have different tangent lines.

Consider a system of local coordinates (x, y) inU and homogeneous coordinates
[u : v] in P

1. The surface Ũ is then defined by the equation xv− yu = 0 in U × P
1.
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The exceptional fiber E is locally defined by one equation; namely, in the chart
u �= 0, by x = 0 and in v �= 0, by y = 0.

Consider now a representative of a smooth curve S in U defined by an equation
f = 0 with f ∈ O2(U). The Taylor expansion of f will be of the form f =
f1 + f2 + · · · , where fi is homogeneous of degree i and f1 �= 0 since S is non-
singular at the origin.

We will describe the total and strict transforms of S in both charts of Ũ .
In the chart u �= 0, denote by v1 = v

u
the local coordinate of P1. The surface

Ũ is then defined by y = xv1. Note that in this chart it is isomorphic to an
open neighborhood of the origin in C

2. The total transform of S is defined by
the equations y = xv1 and f1(x, xv1) + f2(x, xv1) + · · · = 0. Since every fi
is homogeneous of degree i, the second equation can be written as xf1(1, v1) +
x2f2(1, v1)+· · · = 0. The total transform of S has two components, the exceptional
fiber E, defined by x = 0 in this chart, and the strict transform S∗ defined in this
chart by y = xv1 and f1(1, v1) + xf2(1, v1) + . . . = 0. We have two possibilities,
either f1(1, v1) is a non zero constant, in which case the strict transform S∗ does
not intersect E in this chart, or f1(1, v1) = αv1 and in this case, S∗ intersects E
transversally in one point. In the other chart, the situation is completely symmetric.
We need to make precise that if in one chart the initial form of the strict transform
is a constant, then in the other chart it is not. In other words, if the initial form is
a constant, then the strict transform intersects the exceptional fiber at infinity with
respect to that chart.

In conclusion, the strict transform of a representative of a smooth curve intersects
the exceptional fiber transversally at one point.

When we consider a singular curve the situation can be very different:

Example 2.3.5 Consider the curve singularity C defined in a ball U around the
origin by x3+y5 = 0. This is called the E8 curve singularity. The blown-up surface
Ũ ⊂ U × P

1 is defined as above by the equation xv − yu = 0. In the chart u �= 0
with local coordinates (x, y, v1 := v

u
), the exceptional fiber is defined by x = 0 and

the total transform of C is defined by y = xv1 and x3(1 + x2v
5
1) = 0. So the strict

transform of C in this chart is given by y = xv1 and 1 + x2v
5
1 = 0 which does not

intersect the exceptional fiber.
In the other chart, v �= 0 with local coordinates (x, y, u1 := u

v
), the exceptional

fiber is defined by y = 0 and the total transform is given by x = yu1 and y3(u3
1 +

y2) = 0. So the strict transform is given by x = yu1 and y2+u3
1 = 0; it is a singular

curve, intersecting the exceptional fiber at the origin of this chart, and being tangent
to the exceptional fiber. This blowup is illustrated in the first map of Fig. 2.1.

2.3.3 Resolution and Dual Graph

We have already seen that the normalization of a curve provides a resolution of
singularities. However, in the case of plane curve singularities, one is interested
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x2 + y22 = 0

E2
−1 (5)

E1
−2 (3)

x 31 + y21 = 0

E1
−1 (3)

x 3 + y5 = 0

x3 + y3 = 0

E1
−3 (3)

E2
−2 (5)

E3
−1 (9)

E3
−2 (9)

E2
−3 (5)

E4
−1 (15)

E1
−3 (3) x4 + 1 = 0

Fig. 2.1 Embedded resolution of the E8 curve singularity

in a resolution taking into account the ambient space. This is called an embedded
resolution.

Definition 2.3.6 Consider a representativeC of a plane curve singularity in an open
ball U around the origin in C

2. An embedded resolution of C is a modification
μ : W → U such that the total transform of C by μ is a union of smooth irreducible
components having at most normal crossing intersections, i.e., the components
intersect transversally and at most two of them intersect in one point.

Theorem 2.3.7 An embedded resolution of a plane curve singularity can be
obtained after a finite number of blowups of points.

See for example [Wal04, Chap. 3] for a proof and more information.

Example 2.3.8 In Example 2.3.5, we obtained after a first blowup, a surface Ũ with
an exceptional fiber E1 tangent to the strict transform C1 of the curve C, and C1 is
given by the local equations x = yu1, u

3
1 + y2 = 0 in coordinates x, y, u1 of the

chart v �= 0. In this chart, the surface Ũ is isomorphic to an open neighborhoodU1
of the origin of C2, with local coordinates y1 = y and x1 = u1. In these coordinates,
E1 and the strict transform are respectively defined by y3

1 = 0 and x3
1 + y2

1 = 0.
We will then apply a second blowup at the intersection point C1 ∩ E1. We

obtain a new surface Ũ2 ⊂ U1 × P
1 with two charts, both isomorphic to an open

neighborhood of the origin of C2. In one of the charts the strict transform C2 of C1
does not intersect the new exceptional fiber E2. Meanwhile in the other chart U2,
where y1 = x1v2, the exceptional fiber E2 is defined by x2

1 = 0, the strict transform
C2 is defined by x1+v2

2 = 0 and the strict transform ofE1 by v3
2 = 0; for simplicity

we will still call it E1. We name a new coordinate system: x2 = x1 and y2 = v2.
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The strict transform C2 of C is non-singular, intersecting both exceptional fibers E1
and E2 at the origin, and being tangent to E2. So we are not yet at a situation of
normal crossings.

We blow up the origin, obtaining a surface Ũ3 with two charts. In the chart x2 =
y2u3, the new exceptional fiber E3 is defined by y2 = 0 and the strict transform C3
of C is defined by u3 + y2 = 0. The strict transform of E2 is defined by u3 = 0
and the strict transform of E1 does not intersect E3 in this chart. In the other chart,
the strict transform of E1 intersects transversally the exceptional fiber E3. So in the
first chart, taking new coordinates: x3 = u3 and y3 = y2, we still have a non-normal
crossing situation, since C3 ∩ E2 ∩ E3 = {0}.

We need one more blowup. Now all the considered curves are smooth (in their
reduced structure), and they all intersect transversally. So the new blowup produces
an exceptional fiber E4 intersecting transversally E2, E3 and the strict transform
C∗ of C at distinct points. The strict transform of E1 has not been modified by this
blowup. See Fig. 2.1, where the values a and (b) associated to exceptional curves
correspond respectively to the self-intersection (negative value) and the valuation.

One associates to an embedded resolution a graph constructed in the following
way:

Definition 2.3.9 Let ρ : W → U be an embedded resolution of a representative
of a plane curve germ (C, 0). Consider the decomposition of the exceptional
divisor into irreducible components, ρ−1(0) = ∪iEi and call C∗1, . . . ,C∗r the strict
transforms of the branches of (C, 0) by ρ. The graph associated to ρ consists of
vertices, edges and arrows as follows:

– a vertex is associated to each component Ei ; call it ei ,
– an arrow is associated to each component C∗j ; call it c∗j ,
– an edge will link the vertices ei and ej if and only if Ei ∩ Ej �= ∅,
– and an arrow c∗j is attached to the vertex ei if and only if Ei ∩ C∗j �= ∅.

Moreover, to each vertex ei we associate two numbers: the self-intersectionwi of
the curveEi , and the valuation vi of the function f defining (C, 0); that is, the order
of the composition map f ◦ ρ at a generic point of the curve Ei . Such a weighted
graph is called the dual graph associated to an embedded resolution.

The computation of the numbers wi and vi associated to the graph can be made
in the following way: all the blowups consist in blowing-up a point in a non-singular
surface. So at each step, the exceptional fiber produced is a smooth rational curve
(isomorphic to P

1) that will have self-intersection −1; see for example [Wal04,
Lemma 8.1.2] or [BK86, p. 531]. So the first blowup produces an exceptional curve
E1 with self-intersection −1 and valuation equal to the multiplicity of the curve at
the origin of C2. For the second blowup, the new exceptional curve E2 will have
self-intersection −1 and the strict transform of E1 will have self intersection −2
since the blown-up point belongs to E1. The valuation v1 remains unchanged, and
the new valuation v2 is the order of f at the blown-up point, that is the sum of v1
with the multiplicities of the strict transform of the irreducible components of C at
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Fig. 2.2 Dual graph
associated to the minimal
embedded resolution of the
E8 curve singularity

−3
E1

(3)

−2
E3

(9)

−1
E4

(15)

E2−3(5)

the blown-up point. So at each step, the self-intersection of the created exceptional
fiber is−1 and the strict transform of each irreducible component of the exceptional
fiber containing the blown-up point has its self-intersection decreasing by 1. The
valuation of f along the strict transform of an exceptional fiber does not change,
and the valuation along the created one is the order of f at the blown-up point.

A minimal embedded resolution ρ of a plane curve singularity is an embedded
resolution that factors through any other embedded resolution; that is, whenever π
is an embedded resolution of the plane curve singularity, there exists a sequence of
point blowups ϕ such that π = ρ ◦ ϕ.

For each plane curve singularity, a minimal embedded resolution exists and is
unique up to isomorphism. This minimal embedded resolution can be obtained from
any embedded resolution by blowing-down any irreducible component with self
intersection−1 which does not intersect the strict transform of the curve. This is due
to the fact that contracting a smooth rational projective curve with self-intersection
−1 in a smooth surface creates a non-singular surface; this is precisely the inverse
process of blowing-up a point in a non-singular surface that is locally isomorphic to
C

2.

Example 2.3.10 The resolution of the curve singularity of Example 2.3.8 is the
minimal embedded resolution and its dual graph is shown in Fig. 2.2, where the
integer values a and (b) refer respectively to the self-intersection and the valuation
of the corresponding irreducible component of the exceptional divisor. The vertex
Ei corresponds to the exceptional fiber appearing at the i’th blowup.

2.3.4 Newton-Puiseux Parametrization, Characteristic
Exponents and Topological Type

All the information about the dual graph associated to the minimal embedded
resolution of a plane curve singularity can be recovered from another process
associated to the singularity, namely Newton-Puiseux parametrization.

We have already seen that the normalization of a curve singularity provides a
parametrization and a resolution of singularity, however it does not bring all the
information about the embedded resolution.
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Definition 2.3.11 Let (C, 0) be a reduced and irreducible germ of a plane curve
singularity defined by an irreducible holomorphic function f ∈ C{x, y}. One may
proceed to a linear change of coordinates to ensure that the x-axis coincides with
the tangent cone to C at 0. A Newton-Puiseux parametrization of (C, 0) is a map
ϕ : C → C

2 with ϕ(t) = (tm,
∑

i>m

ait
i ), with f (ϕ(t)) = 0 for t ∈ C small enough

and m a non-zero integer, being the smallest one for which such a parametrization
is possible.

Such a parametrization always exists, and can be computed using the method of
Newton Polygon, see for example [Wal04, Chap. 2].

From the Newton-Puiseux parametrization one can extract significant combina-
torial data. First, the integer m in Definition 2.3.11 is the multiplicity of the curve
at the origin; we set β0 = m. The smallest power i for which ai �= 0 and i is not
multiple of β0 will be denoted by β1; if there is none the process stops. Call l1 the
greatest common divisor of β0 and β1. If l1 = 1 the process stops, otherwise, we
call β2 the smallest power i > β1 for which ai �= 0 and l1 does not divide i. And
we repeat the process. It will end-up after a finite number of steps. The values in the
ordered sequence {β0, β1, . . . , βg} are called the Puiseux characteristic exponents
of the branch (C, 0).

These exponents, or equivalent combinatorial data, characterize the topology of
an irreducible branch in C

2. Let us explain it briefly: two plane curve singularities
are topologically equivalent if there is a homeomorphism of C

2 near the origin
sending a curve surjectively into the other. We know by the local conical structure
theorem (see [Mil68, 2.10]), that a curve embedded in a small ball of C

2 is
homeomorphic to the cone over its intersection with a small sphere in R

4, this
intersection is called the link of the singularity. For plane curves the link is a one-
dimensional smooth manifold in S

3. Each connected component of this manifold is
a knot corresponding to the link of a branch.

So the topology of a plane curve singularity is determined by the topology of
each connected component of the link, together with the linking number of each
pair of components. This linking number is equal to the intersection multiplicity
of the corresponding branches. Let us recall that for two plane curve singularities
defined by f and g in O2, the intersection multiplicity is defined as the dimension
of O2/(f, g) as C-vector space.

Theorem 2.3.12 For a reduced plane curve singularity, the following data are
equivalent:

1. The characteristic exponents of each branch of the curve given by the Newton-
Puiseux parametrization together with the intersection multiplicity of each two
branches

2. The dual graph of the minimal resolution of the singularity
3. The isotopy type of the link of the singularity.

We refer to the classical book by Brieskorn and Knörrer [BK86, Theorem 21
section 8.5] as well as well as [Wal04, Theorem 5.5.9].
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2.3.5 Some Invariants: δ-Number and Milnor Number

Some other numerical invariants are associated to plane curve singularities. We will
introduce some of them that are used in other chapters of this volume.

We have already talked about the multiplicity of a plane curve singularity, which
is the sum of the multiplicities of all its branches, hence the sum of the first
characteristic exponents of the branches.

The δ-invariant is defined as follows. First consider a reduced plane curve
singularity (C, 0) and its normalization n : (C̄, 0̄)→ (C, 0); where (C̄, 0̄) is a multi-
germ having ŌC as a multi-local ring of functions. Since the normalization map is
finite, the dimension dimŌC/OC,0 as vector space over C is finite. This number is
called the δ-invariant, and is denoted by δ(C, 0).

In the case of an irreducible branch the normalization induces an inclusion n∗ :
OC,0 ↪→ C{t}. Since the normalization is finite, there is an integer ν such that for
any τ ≥ ν one has tτ ∈ n∗(OC,0), so in this case, δ(C, 0) is the number of powers
of t that are not in the image of OC,0.

The Milnor number of a reduced curve singularity is defined as follows. If (C, 0)
is defined by f ∈ C{x, y}, then μ(C, 0) := dimC C{x, y}/( ∂f

∂x
,
∂f
∂y
) is the Milnor

number of C at 0.
This number is related to the δ-invariant by the formula μ(C, 0) = 2δ(C, 0) −

r(C, 0)+ 1; where r(C, 0) is the number of branches of the curve at the origin; see
[Mil68, Chap. 10].

These two numbers are analytic invariants of curve singularities, and they play
an important role in the study of equisingularity properties of families of curves.

Example 2.3.13 Consider the curve singularity E8 defined by y3 + x5. A Newton-
Puiseux parametrization is given by x = t3 and y = t5. So there are only
two characteristic exponents, namely (3, 5). The ring of holomorphic functions is
isomorphic to C{t3, t5}, the missing powers of t are t, t2, t4 and t7. So δ(E8, 0) =
4. The Milnor number is the dimension of C{x, y}/(y2, x4), which is 8.

Note that these definitions extend to reduced space curves ([BG80]) and also to
curves with an embedded component ([BG90]).

2.4 Complex Surface Singularities

In this section we will deal with surfaces and explain the normalization and the point
blowup process. We describe some methods of resolution. We introduce the concept
of exceptional tangents and its relation with the polar curves and Nash modification.

A surface singularity is a germ (S, 0) of an analytic space of Krull dimension
2. When it is defined by one function f ∈ O3,0 we talk about a hypersurface in C

3.
However, a surface need not be either a hypersurface, or a complete intersection
(defined by an ideal with as many generators as the codimension).
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A reduced surface germ can have either isolated or non-isolated singularities, and
its different irreducible components could have different dimensions. When all the
irreducible components are surfaces we say that the surface is equidimensional,
or is of pure dimension . A hypersurface or a complete intersection is always
equidimensional, but still it could have isolated or non-isolated singularities.

Example 2.4.1 The ideal (xz, xy) ⊂ C{x, y, z} defines a surface with two compo-
nents, the two-dimensional plane defined by x = 0 and the x-axis. It has an isolated
singularity at the origin.

The function x2−y2z defines a hypersurface having the z-axis as singular locus;
it is known as the Whitney umbrella.

The function z2 + x3 + y5 defines a hypersurface with an isolated singularity at
the origin, this is known as the two-dimensionalE8-singularity.

2.4.1 Normality and Normalization

In general, a normal analytic space has a singular locus of codimension at least two.
So a normal surface has isolated singularities. More precisely, a surface germ (S, 0)
is normal if and only if it has an isolated singularity and the ring OS,0 is Cohen-
Macaulay, see for example [dJP00, 4.4]. The algebraic property of being Cohen-
Macaulay is the same as saying that the ring has a regular sequence of length two; in
other words, there exist two elements f and g in the maximal ideal MS,0 such that
f is not a zero devisor in OS,0 and g is not a zero devisor in OS,0/f . Moreover, it is
proved in [ZS75, Appendix 6, corollary. 1] thatOS,0 is Cohen-Macaulay if and only
if, whenever f ∈ MS,0 is not a zero divisor, the quotient OS,0/f has a non-zero
divisor in its maximal ideal. In other words, a surface germ is not Cohen-Macaulay
if and only if, any (or some) curve defined on it by one function has an embedded
component.

Hypersurfaces and more generally complete intersections have always Cohen-
Macaulay local rings of holomorphic functions ([ZS75, Appendix 6, Theorem 2].
So, for a complete intersection surface singularity, normality is equivalent to isolated
singularity.

Example 2.4.2 The surface (S, 0) defined in (C4, 0) by the equations y2 − zx2 =
0, yz − tx = 0, z2x − ty = 0 and t2 − z3 = 0 has an isolated singularity and is
not Cohen-Macaulay. One can see that for every f ∈ OS,0, the curve defined by
f has an embedded component. For instance, the function x defines a curve with
ring of functions C{y, z, t}/(y2, yz, yt, t2 − z3). The zero-ideal of this ring has the
following primary decomposition (0) = (y, z3 − t2) ∩ (y2, yz, z3, t), showing that
the maximal ideal is an associated prime.

The normalization map of this surface is given by: (u, v) 
→ (u, uv, v2, v3). It is
a homeomorphism which is not an isomorphism.
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Unlike the case of curves, the normalization does not always provide a resolution
of singularities. In particular when a surface is normal and singular, its normalization
is the identity. In some cases the normalization could be non-singular. This is the
case for the Whitney umbrella where the map n : (u, v) 
→ (uv, u, v2) is the
normalization.

Since a germ of a normal surface is a domain, the normalization process
separates irreducible analytic components. More precisely, let n : X → S be
the normalization of a representative of (S, 0). For every point s ∈ S the fiber
n−1(s) has as many points as irreducible components of S at s. In terms of germs,
the normalization of (S, 0) produces a multi-germ depending on the number of
irreducible components of the germ (S, 0).

In the case of the Whitney umbrella, one can see that (S, 0) is irreducible and
n−1(0) = {0}, however, for a point in the singular locus other than 0, we have
n−1(0, 0, z) = (0,±√z). In fact a representative of (S, 0) has two irreducible
components at a generic point of the singular locus.

2.4.2 Blowups and Resolution

When we blow up the origin, or equivalently the maximal ideal of a surface, we
obtain a proper morphism e0 : S′ → S which is an isomorphism outside the origin,
and has an exceptional fiber, which is a divisor in S′ equal to the projective curve
associated to the tangent cone of S at 0, e−1

0 (0) = Proj(T0S.
When one makes the computation using local coordinates, it is useful first to

apply the blowup E0 of the origin in the ambient space C
N of (S, 0), and consider

the strict transform of S by E0. This strict transform is precisely the surface
S′ obtained by the blowup e0. The exceptional divisor e−1

0 (0) is the intersection
E−1

0 (0) ∩ S′. Note that in this case E−1
0 (0) = P

N−1.

Example 2.4.3 Consider the surface (S, 0) defined by x2 + y4 + z4 = 0. It is a
hypersurface with isolated singularity, hence normal. We blow up the origin in C

3

and we obtain a three-dimensional space C ⊂ C
3 × P

2 defined by the functions
xv − yu, xw − zu and yw − zv, where [u : v : w] are homogeneous coordinates
in P

2. In the chart v �= 0, for simplicity we will say v = 1, the total transform of
S is defined by the functions x − yu, z − yv = 0 and y2(u2 + y2 + y3w5) = 0.
In this chart, the exceptional divisor is defined by y = 0, so the strict transform of
S is isomorphic to the surface of C3 with equation u2 + y2 + y3w5 = 0; this is
the surface obtained by the blowup e0 of the origin in S. The exceptional divisor
of e0 is the intersection of this strict transform with P

2, in this chart, it is given by
y = u = 0. Note that every point of the exceptional divisor is singular. This is an
example where the blowup of the origin of a normal surface produces a surface with
non-isolated singularities.
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There exists a class of surface singularities, called absolutely isolated sin-
gularities, that are normal and their blowup is still normal. This class contains
the so-called rational surface singularities for which the blowup still produces
normal surfaces with rational singularities. They are a useful source of examples
and counter-examples; see [Art66] for definitions and properties.

We have already seen that every analytic space admits a resolution of singulari-
ties. More specific results are achieved for surfaces.

Theorem 2.4.4 (O. Zariski [Zar39]) A normal surface singularity can be resolved
by the iteration of a finite number of point blowups composed with normalization.

This result provides a particular resolution of singularities for normal surfaces.
In [BL02], the authors give another proof of this result, bringing an interesting
description of normal surface singularities.

Consider a resolution ρ : X → S of singularities of a representative of a germ
of surface (S, 0). If  denotes the singular locus of S, the exceptional locus of ρ
is the inverse image ρ−1( ). When (S, 0) is normal, E := ρ−1(0) is called the
exceptional fiber of the resolution, and is a connected curve; see [Har77, 11.4].

Suppose (S, 0) is normal and considerE = ∪iEi , the decomposition ofE into its
irreducible components. They are all projective curves, but they need not be smooth
and they may have a non-zero genus. If one of these irreducible components, Ei ,
happens to be rational, smooth and with self-intersection −1, we know it can be
obtained by the blowup of a point in a non-singular surface. So, contracting, or
blowing down, the component Ei produces a non-singular surface X1 and a map
ρ1 : X1 → S that is still a resolution of singularities of S, and ρ factors through ρ1.
This leads to the concept of minimal resolution.

Definition 2.4.5 A resolution of singularities is minimal if any other resolution
factors through it.

Proposition 2.4.6 Every surface singularity admits a minimal resolution; it is
unique up-to isomorphism.

For a proof, see for example [BPVdV84, III. 6.2].
Such a minimal resolution can be obtained from any resolution of the normalized

surface, by blowing down each component of the exceptional fiber which is smooth,
rational and of self-intersection−1. Repeating this process one obtains the minimal
resolution.

The existence of a minimal resolution is a particular property of surface
singularities. It does not extend to higher dimensions.

Note that the resolution of a surface, obtained by normalized blowups as in
Theorem 2.4.4, need not be the minimal resolution. For some particular surface sin-
gularities, such as the class of rational surface singularities, the minimal resolution
is the one obtained by normalized point blowups, but this is not general.

In the minimal resolution of a normal surface, the irreducible components of the
exceptional fiber may be singular and may have non-normal crossings. Applying
point blowups one can achieve a new resolution of the surface in which the
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exceptional fiber has at most normal crossing singularities. Such a resolution is
called a good resolution.

To such a good resolution we can associate a weighted dual graph in the
following way: to each irreducible component of the exceptional fiber we associate
a vertex, edges will correspond, one-to-one, to intersection points of exceptional
curves, linking the corresponding vertices. To each vertex we attach two values:
the genus and the self-intersection of the corresponding irreducible component. See
Example 2.4.19.

The factorization of a modification through the blowup of the singularity is
related to hyperplane sections and their base points.

If (S, 0) is a normal surface singularity embedded in (CN, 0), then a hyperplane
section is the curve obtained as the intersection (H ∩S, 0), whereH is a hyperplane
in C

N . The family of all hyperplane sections is a linear system determined by
the maximal ideal MS,0. The elements of this linear system are defined by linear
combinations of a local system of coordinates of S near 0. The parameter space of
this linear system is PN−1 since a hyperplane section is defined by a unique linear
combination up to multiplication by a non-zero constant.

Now let μ : Y → S be a modification of a representative of (S, 0) over the
origin. We say that a point η ∈ μ−1(0) is a base point, or a fixed point, of the
linear system of hyperplane sections if η belongs to almost all strict transforms of
hyperplane sections by μ, that is hyperplane sections defined by a parameter in an
open dense set of PN−1.

Using the universal property of the blowup of an ideal, which states that it is
the minimal morphism in which the pull-back of the ideal is locally principal (see
for example [Har77, 7.14]), one can prove the following:

Proposition 2.4.7 Let μ : Y → S be a modification of S over 0 with Y normal,
then μ factors through the blowup of 0 if and only if the linear system of hyperplane
sections has no base point by μ.

The minimal resolution of a normal surface singularity may have base points of
the hyperplane sections; see Example 2.4.18 below.

2.4.3 Nash Modification, Exceptional Tangents and Polar
Curves

We will now construct another modification that also leads to a resolution of
singularities in dimension two.

Consider a representative S of an equidimensional surface singularity embedded
in C

N and define the map:
γ : S \Sing(S)→ G(2, N), sending every non-singular point x ∈ S to the direction
of the tangent space to S at x, γ (x) := TxS, seen as a point in the Grassmannian,
G(2, N), of two-dimensional spaces in C

N . Call S̃ the closure of the graph of γ in
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S ×G(2, N). The restriction of the first projection to S̃ defines a map

ν : S̃ → S

called the Nash modification of S. It is a modification since it is defined as the
closure of a graph.

If p ∈ S is a singular point, the inverse image ν−1(p) is made of points of the
form (p, T ) ∈ S ×G(2, N) where T is a limit of directions of tangent spaces taken
over a sequence of non-singular points of S converging to p. The set of all these
planes is called the set of limits of tangent spaces to S at p.

The normalized Nash modification is the composition ν ◦ n where n is the
normalization of the surface S̃. One has a similar result to the one of Theorem 2.4.4,
due to M. Spivakovsky in [Spi90].

Theorem 2.4.8 A normal surface singularity can be resolved by the iteration of a
finite number of normalized Nash modifications.

The normalization process is fundamental in this theorem, since it is still
unknown whether this result holds without normalization.

Nash modification satisfies a universal property with respect to a family of
curves, called the polar curves as follows:

Consider a linear projection P : CN → C
2 and its restriction to a representative

S of (S, 0), π : S → C
2. Let us call L := kerP the kernel of P ; it is an (N − 2)-

plane in C
N . For a generic choice of L in the GrassmannianG(N − 2, N), the map

π is finite. The closure in S of the critical locus of the restriction of π to the non-
singular locus of S will be denoted by PL(S, 0); recall that the critical locus can be
defined as the set of points in which the map does not induce a local isomorphism.
When the surface is normal this is simply the critical locus of π with its reduced
structure. For L general enough in G(N − 2, N) the space PL(S, 0) is either empty
or a reduced curve; we call it the polar curve associated to (S, 0) defined by L.
When (S, 0) is normal, the general polar curve is not empty, see [Tei82, IV].

The definition of polar curves only depends on the surface and the linear space
L. We have then a family of curves parametrized byG(N − 2, N). This is what we
call the family, or linear system, of polar curves on S at 0.

Proposition 2.4.9 Let μ : X→ S be a modification of S over 0, with bothX and S
normal. The modificationμ factors through the Nash modification of S if and only if
the family of polar curves has no base point by μ; base points of polar curves being
defined in a similar way as for hyperplane sections in Sect. 2.4.2.

For a proof of this proposition see [Spi90, III. Theorem 1.2].
The normalized Nash modification is then the “smallest” normalized modifica-

tion that removes all base points of the family of polar curves, as the point blowup
does for hyperplane sections.

We will now define the exceptional tangents. These objects appear in the
description of the set of limits of tangent spaces to a surface at a point. They are
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important in the thick-thin decomposition of the link of a surface singularity in
[BNP14], and in general in the Lipschitz geometry of normal surface singularities.

Unlike the curve case, the set of limits of tangent planes to a surface at a point
does not have a straight forward description, but still it is strongly related to the
tangent cone. It is easier to describe the set of limits of tangent hyperplanes.

A hyperplane H ⊂ C
N is tangent (or a limit of tangent hyperplanes) to S at a

point x ∈ S if it contains the tangent space TxS (or a limit of tangent planes to S at
x).

Theorem 2.4.10 Let (S, 0) ⊂ (CN, 0) be the germ of an equidimensional surface
singularity. There exists a finite number of lines in the tangent cone T0S of S at 0,
l1, . . . , lr , such that a hyperplaneH ⊂ C

N is a limit of tangent hyperplanes to S at
0 if and only if, either H is tangent to T0S or li ⊂ H for some i ∈ {1, . . . , r}.

For a proof of this theorem, see [LT88, 2.1.3].

Definition 2.4.11 The lines l1, . . . , lr in Theorem 2.4.10 are called the exceptional
tangents of the surface S at 0. They are generatrices of the tangent cone T0S; that
is why we will also view them as points in the projective curve associated to CS,0,
or equivalently, points in the exceptional fiber of the blowup of the origin.

Remark 2.4.12 When the tangent cone T0S is not a plane, it is singular and may
even have non-isolated singularities. Since it is conical, a tangent plane to it, or a
limit of tangent planes, is always obtained as the cone over a tangent line, or over a
limit of tangent lines, to the projective tangent cone. Since we understand the limits
of tangents to a singular curve, there is no ambiguity in defining the tangent planes,
or tangent hyperplanes, to the tangent cone.

The characterization of the exceptional tangents for normal surfaces is explained
in [Sno01].

Example 2.4.13 Consider the hypersurface singularity A2 ⊂ C
3 defined by the

equation xy − z3 = 0. It has an isolated singularity at 0. One can compute by hands
the limits of tangent spaces to A2 at 0. This can be done for instance by taking a
parametrization, that exists in this case, of the singularity: (u, v) 
→ (u3, v3, uv).
Comparing speeds of convergence to 0 of sequences (un, vn), one gets as limits of
tangent planes (equivalently hyperplanes in this case) all the planes containing the
z-axis.

The tangent cone of the surface is defined by xy = 0; it is a union of two planes:
x = 0 and y = 0. Each of them is tangent to T0S. The intersection line of these two
planes is the only exceptional tangent of S at 0.

In the example above, both planes of the tangent cone are limits of tangent spaces.
In general, whenever a two-dimensional plane is a component of the tangent cone,
it corresponds to a point in the fiber of the Nash modification over the considered
point.

We will establish a relation between exceptional tangents and planes of the
tangent cone with base points of some families of curves in some modifications.
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Proposition 2.4.14 Let (S, 0) be a normal surface singularity. Consider the Nash
modification ν and the blowup of the origin e0.

There is a one-to-one correspondence between the exceptional tangents of S at 0
and the base points of the family of polar curves in the modification e0.

There is a one-to-one correspondence between the planes of the tangent cone of
S at 0 and the base points of the family of hyperplane sections in the modification ν.

The proof of the first statement can be read in [LT88, 2.2.1], for the second
statement see [Sno05, 3.2].

Every point of the exceptional fiber of e0 is a line in T0S and hence a tangent to a
curve on the surface. So the first statement claims that the exceptional tangents are
the lines of T0S that are tangent to almost all the polar curves; that is why we also
refer to them as the fixed tangents to the polar curves.

Example 2.4.15 In the A2 singularity seen in Example 2.4.13, the exceptional
fiber of the blowup of the origin is the projective curve associated to xy = 0;
it is the union of two lines intersecting in one point that corresponds precisely
to the exceptional tangent and the base point of the family of polar curves in the

blowup. The exceptional fiber of the Nash modification is a line in P̌
2
, which is

the line of hyperplanes containing the z-axis. In this line are two particular points
corresponding to the planes x = 0 and y = 0; the planes of the tangent cone. These
are the base points of the hyperplane sections by the Nash modification.

2.4.4 Jung’s Method

We will now introduce a classical method for resolution of singularities of normal
surfaces: Jung’s method (see [KV04] and [Pop11] for more details).

Consider a representative of a normal surface singularity, together with a finite
projection π : S → C

2. Call � the reduced discriminant of π ; i.e., the image,
with reduced structure, of the critical locus of π . It is a plane curve singularity. We
will then process an embedded resolution of � as we describe in Theorem 2.3.7.
We obtain a map ρ : X → C

2 such that the total transform ρ−1(�) has only
normal crossing singularities. Call ρ′ and π ′ the pull-back of ρ by π and of π by ρ
respectively. We obtain the following diagram:

Z
n

ψ

Y
ρ

π

S

π

X
ρ

C
2

where n : Z→ Y is the normalization of the space Y obtained as pull-back of S by
ρ.
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At any point of Z the mapψ := π ′ ◦n is a finite map whose reduced discriminant
is contained in the total transform ρ−1(�).

The singularities of Z are then of special type.

Definition 2.4.16 Let S be a representative of a germ of normal surface singularity.
If there exists a finite map S → C

2 whose reduced discriminant has at most normal
crossing singularities (i.e., smooth, or union of two smooth curves intersecting
transversally), then we say that (S, 0) has a quasi-ordinary singularity.

This is a particular type of singularities that has been widely studied. They are
each a normalization of a hypersurface of C3 of type zn = xayb. The resolution of
such a singularity is completely determined by the triple (n, a, b). The exceptional
fiber of the minimal resolution is a normal crossing curve made of smooth rational
curves E = ∪ri=1Ei , such that E1 and Er intersect respectively only E2 and Er−1
and Ei intersects only Ei−1 and Ei+1 for 1 < i < r − 1. These are particular
cases of the so-called minimal surface singularities. For the complete description
of the combinatorial aspect, and also the topology of such singularities, we refer to
[BPVdV84, III. 5].

Going back to Jung’s method, we obtain then a surface Z with finitely many
quasi-ordinary singularities, whose resolution is completely described by the nor-
malization of the surface zn = xayb where n is the degree of π , a and b are the
valuation of the defining function of � along the corresponding components of the
total transform given by the local coordinates x and y respectively, as defined in
Definition 2.3.9.

We can then achieve a resolution of the surface (S, 0) by resolving the quasi-
ordinary singularities of Z. This leads to a particular resolution of singularities
called Jung’s method.

Note that this resolution need not be the minimal resolution.
We give now two examples where we use Jung’s method to obtain a resolution

and then the minimal resolution. We do it in the case of surfaces of the form z2 =
f (x, y), for which it is much easier to describe the resolution process. We will use
in particular the paper [LW00].

Consider a surface singularity (S, 0) defined by z2 = f (x, y) with f reduced.
Consider on a representativeS of (S, 0), the projection to C

2, π : (x, y, z) 
→ (x, y).
It is finite and its discriminant �, which is reduced in this case, is defined by
f (x, y) = 0. Apply the minimal embedded resolution ρ of �. Call F = ρ−1(�) =
∪iFi the decomposition of the total transform of � into irreducible components.
When Fi is part of the exceptional fiber, recall that the valuation vi(f ) is the
vanishing order of the pull-back of f on Fi , see Definition 2.3.9. When Fi is part
of the strict transform of �, and since f is reduced, by extension we define vi(f )
to be 1. The surface Y of Jung’s method, obtained by the pull-back of S by ρ, is
locally defined near each point y ∈ Y by z2 = uvi(f )vvj (f ) if π ′(y) ∈ Fi ∩ Fj ,
or z2 = uvi(f ) if π ′(y) is not an intersection point. So the normalization of Y near
such a point y is singular if and only if π ′(y) is an intersection point of Fi and Fj
and vi(f ) and vj (f ) are simultaneously odd. If this occurs, then we can apply one
extra blowup at the point π ′(y), creating a new exceptional divisor separating Fi
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and Fj for which the valuation of f is vi(f ) + vj (f ) which is odd. This way we
can produce a non-necessarily minimal embedded resolution ρ1 of�, for which the
normalization of the pull-back, Z, is non-singular.

Now the components of the exceptional fiber on Z have their genus and
self-intersection determined by the self-intersection and the valuations of the
components of the exceptional fiber on the new resolution of �. Call F ′i the
irreducible components of ρ−1

1 (�).

Proposition 2.4.17 If vF ′(f ) is odd, then D =: ψ−1(F ′) is connected and
irreducible and ψ induces an isomorphism between D and F ′; moreover (D.D) =
1
2 (F

′.F ′).
If vF ′(f ) is even, then there are two cases:

(i) If all the components of the total transform ρ−1
1 (�) intersecting F ′ have an

even valuation, thenψ−1(F ′) = D1∪D2 consists of the union of two connected
components, each of them being isomorphic to F ′ and having the same self-
intersection as F ′.

(ii) If F ′ intersects k irreducible components of the total transform ρ−1
1 (�) that

have an odd valuation, then D := ψ−1(F ′) is connected, has genus k2 − 1 and
has self-intersection (D.D) = 2(F ′.F ′).

For a proof of this proposition one can see [LW00, Propositions 2.6.1 and 2.7.2].
It has also an extension to the case z3 = f (x, y) as shown in [LW00, Propositions
3.6.1 and 3.7.1]. However, one can not always ensure the existence of a resolution of
the discriminant for which the pulled-back surface has a non-singular normalization.
It is already not possible for z5 = f (x, y).
Example 2.4.18 Let S ⊂ C

3 be the surface defined by z2 = x3 + y6. Consider
the projection π : (x, y, z) 
→ (x, y). Its discriminant � is reduced and defined
by x3 + y6 = 0. It has three irreducible smooth and tangent components. The
embedded resolution of this curve is given by two blowups. After the first one
we obtain one exceptional curve of self-intersection −1 on which the three strict
transforms intersect transversally in the same point. One extra blowup separates
these 3 curves. We obtain the resolution graph of Fig. 2.3.

Now we consider the pull-back of S by the minimal resolution of �. Since
there are no adjacent components of the total transform with odd valuation, the
normalization of the pulled-back surface is smooth.

Applying Proposition 2.4.17, we obtain a dual graph for the resolution Z → S

as in Fig. 2.4, where the values a and [b] refer respectively to the self-intersection

Fig. 2.3 Minimal embedded
resolution of x3 + y6 = 0

−2

(3)

−1 (6)
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−1 −2

[1]

Fig. 2.4 Resolution of z2 = x3 + y6 by Jung’s method

Fig. 2.5 Extended resolution of E8 curve singularity

and the genus of the corresponding irreducible component of the exceptional fiber.
When the genus is 0 we omit it in the notation.

One of the components of the graph is rational with self-intersection −1. The
resolution is not minimal. Contracting that component, we obtain a dual graph with
one component of genus 1 and self-intersection −1; it corresponds to the minimal
resolution of S.

This minimal resolution does not factor through the blowup of the origin. In fact,
if we blow up the origin, we obtain a normal surface with one singular point, and
one irreducible exceptional curve. A resolution factoring through the blowup needs
some exceptional fiber over the singular point.

The hyperplane sections have a base point in the minimal resolution of S which
corresponds precisely to the point obtained by blowing down the rational component
of self-intersection−1.

Example 2.4.19 We now describe Jung’s method for the E8-surface singularity.
Its equation is z2 = x3 + y5. Again projecting to (x, y) we obtain a reduced
discriminant curve � defined by x3 + y5 = 0. We have already computed
the minimal embedded resolution and the dual graph of this curve singularity in
Example 2.3.10.

In the description of Jung’s method for surfaces of type z2 = f (x, y) made
immediately before Proposition 2.4.17, we saw that the normalized pull-back of
the surface singularity will have singular points over each intersection point of two
components having both odd valuation. This is the case at each intersection point in
the minimal resolution of the discriminant curve. So we blowup once each of these
intersection points. We obtain a new resolution of the discriminant with dual graph
shown in Fig. 2.5. The self-intersections and valuations on this new dual graph can
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Fig. 2.6 Dual graph of E8 surface singularity

be computed either by following the explanation we gave after Definition 2.3.9, or
by using the following formula of [Lau71, Theorem 2.6]: If we denote the total
transform of the discriminant as a cycle in the form iviF ′i +�∗ where�∗ denotes
the strict transform of the discriminant curve and vi the valuation of the function
x3 + y5 along each component F ′i , then for each i one has F ′i · ( iviF ′i +�∗) = 0.
So, knowing the self-intersections one can compute the valuations and vice versa.

The surface Z obtained as normalized pull-back of the original singularity by
this extended resolution is non-singular.

Applying the process of Proposition 2.4.17 we obtain a resolution of the E8
surface singularity with dual graph as in Fig. 2.6.

All components of the exceptional fiber are rational with self-intersection −2.
This is the minimal resolution of the surface singularity.

In [Lau71, Section 2], the author gives a full description of Jung’s method for
surfaces of type zn = f (x, y). One can find there the results of Proposition 2.4.17,
but also how to compute the valuation of the function f along the exceptional
components of the obtained resolution. Precisely, in our case z2 = x3 + y5, if
the valuation vi of the function defining the discriminant along a component F ′i is
odd, then the valuation along the corresponding component in the resolution of the
surface is again vi , when vi is even the corresponding valuation will be vi

2 . These
valuations are the valuation of the polar curve defined by the considered projection
to C

2 in the resolution of the surface. This is shown in Fig. 2.7, where the value (a)
refers to the valuation of the function x3 + y5.

Note that in this example, the minimal resolution factors through the blowup of
the origin. In fact, a simple computation shows that the family of the images of
the hyperplane sections in C

2 has no base points after the blowup of the origin of
C

2. Since we obtained the minimal resolution of the E8-surface singularity without
blowing-down any component, then there is no base point of the hyperplane sections
in the minimal resolution.
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(1)

(8)

−2

(12)

−2

(6)

−2

(15)

−2

(10)

−2

(5)

−2

(3)

−2
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Fig. 2.7 The resolution graph for E8 with valuations of x3 + y5
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Chapter 3
3-Manifolds and Links of Singularities

Walter D. Neumann

Abstract This chapter gives a brief overview of general 3-manifold topology, and
its implications for links of isolated complex surface singularities. It does not
discuss Lipschitz geometry, but it provides many examples of isolated complex
surface singularities on which one can work to find their Lipschitz geometry (e.g.,
thick-thin decompositions and inner and/or outer bilipschitz classifications).

3.1 Introduction

We start with basic three-dimensional manifold topology, in view of understanding
the topology of normal complex surface singularities. The topology of a normal
surface singularity determines and is determined by its “link”, which is a closed ori-
ented 3-manifold. The link of a singularity is defined, for example, in Theorem 1.2
and Definition 3.2.3 of the lecture notes of Anne Pichon in the present volume.

So we start by describing the geometry of closed oriented 3-manifolds. In
Sect. 3.2 we give the basics of 3-manifold topology, only considering compact
oriented 3-manifolds. In Sect. 3.3 we describe the “JSJ” decomposition of a 3-
manifold, which is a minimal decomposition of the 3-manifold into so-called
“Seifert fibered” and “hyperbolic” pieces. But hyperbolic pieces do not occur in
singularity theory, so from Sect. 3.4 on we only consider Seifert fibered pieces.
Seifert fibered manifolds (Seifert manifolds for short) are described in Sects. 3.4
and 3.5 describes the decomposition into Seifert manifolds in terms of “plumbing”.
Section 3.6 describes how plumbing and minimal good resolution are basically the
same thing. Finally Sects. 3.7 and 3.8 describe the “Panorama of classical surface
singularities”. These classical singularities all come from “Thurston geometries”
(see Sect. 3.7), although Thurston geometries have nothing to do with Lipshitz
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geometry, which is the main interest of most of the book. But they nevertheless
provide a plethora of interesting examples of normal complex surface singularities.

3.2 Basics of 3-Manifold Topology

3.2.1 Basics

For us a three-dimensional manifold M (3-manifold for short) will always be
smooth, compact and oriented. A non-orientable manifold M can always be dealt
with by taking its orientation double cover M̃ along with the free Z/2 action on M̃
with quotientM , but we won’t need it.

We allow M to have a boundary, but we do not allow 2-spheres S2 as boundary
components (if there are S2 boundary components we fill them by balls). We also
require that the Euler characteristic χ(M) be 0 (which is automatic ifM has empty
boundary). Then:

Exercise 3.2.1 Prove that the components of the boundary of M are tori (hint: use
Poincaré or Poincaré-Lefschetz duality).

Definition 3.2.2 (Irreducibility, [Kne29]) M is irreducible if every embedded
S2 inM bounds a D3 inM (D3 is a three-dimensional ball).

Definition 3.2.3 (Connected Sum) Suppose M1 and M2 are 3-manifolds other
than S3. Their connected sum, denotedM1#M2, is defined as the result of removing
the interior of a closed ball from eachMi and then gluing the results together along
the resulting S2 boundaries, with orientation consistent with those ofM1 andM2. It
is a classical fact thatM1#M2 is well defined up to oriented diffeomorphism.

Proposition 3.2.4 M is irreducible if and only if

1. M �∼= S2 × S1 (where ∼= means oriented diffeomorphism) and
2. M is not a non-trivial connected sum M1#M2.

Exercise 3.2.5 Prove this proposition. (Hint: “only if” is easy, so we just give a hint
for “if”. AssumeM is not a non-trivial connected sum. Suppose there is an essential
non-separating S2. Take a simple path γ that departs this S2 from one side inM and
returns on the other, and let N be a closed regular neighbourhood of S2 ∪ γ . What
are ∂N andM3 \N?)

Definition 3.2.6 A manifold is prime if and only if it is either irreducible or it is
homeomorphic to S2 × S1.

Theorem 3.2.7 (Kneser and Milnor [Kne29, Mil62]) Any M other than S3 has
a unique “prime factorization” in terms of connected sums. I.e., there exist prime
manifoldsM1, . . . ,Mk , k ≥ 1 whose connected sum M1# · · · #Mk is diffeomorphic
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toM , and this decomposition ofM into prime manifolds is unique up to diffeomor-
phism and reordering the indices.

Exercise 3.2.8 Show that ifM is irreducible andM �∼= (D2×S1) then any boundary
torus ofM is essential, i.e., no embedded circle S1 in a boundary torus T ofM with
S1 not contractible in T can bound an embedded disk inM .

Since our interest is links of surface singularities, the following theorem is useful.

Theorem 3.2.9 (Neumann [Neu81]) Any link of an isolated surface singularity is
irreducible.

In view of this theorem the manifoldM will always be irreducible from now on.

3.3 JSJ Decomposition

JSJ stands for Jaco-Shalen & Johansson ([JS78, Joh79], see also Waldhausen
[Wal69], Thurston [Thu82]). It describes a certain decomposition ofM into Seifert
fibered and hyperbolic pieces, unique up to isotopy.

We use a simplified version of JSJ decomposition, to fit well with links of surface
singularities. This will depend on a simplified version of “Seifert fibered” (but see
Remark 3.4.4). So we must define our versions.

Definition 3.3.1 For us, a manifold M is a Seifert fibered manifold if it has an
action of the circle group S

1 on it, acting with no fixed points.
A manifold M is hyperbolic if its interior M \ ∂M admits a complete

Riemannian metric of constant curvature −1 and has finite volume. This metric
is then unique; i.e., two such manifolds which are homeomorphic with each other
are isometric with each other.

Recall again that we only consider 3-manifolds which are compact, oriented and
irreducible, and with boundary (possibly empty) consisting of tori.

Theorem 3.3.2 (Our Version of JSJ) A 3-manifold M has a decomposition into
Seifert fibered and hyperbolic pieces glued along their torus boundary components,
using a least number of tori. This decomposition is then unique up to isotopy.

A proof can be found in [Neu07] (including some classical 3-manifold the-
ory: Dehn’s Lemma, and the Loop and Sphere theorems). See also [NS97] and
Remark 3.4.4.

What we call hyperbolic in that theorem was originally called “simple”,1

because the non-Seifert-fibered pieces of the JSJ decomposition were conjectured
to be hyperbolic, but this was only finally proved in 2003 by Grigory Perelman (see

1“M simple” meant any embedded essential torus inM is isotopic to a boundary torus.
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[MT07].2 ) This was a very major result which proved the century old Poincaré
conjecture, and much more. The Poincaré conjecture states that a 3-manifold with
trivial fundamental group is diffeomorphic to the 3-sphere.

Let us return to links of complex surface singularities. Hyperbolic pieces never
arise in complex singularity links, so from now on we will only consider irreducible
3-manifolds with no hyperbolic pieces in their JSJ decomposition. Such a 3-
manifold M is called a graph-manifold, as will be explained when we describe
plumbing.

Returning to singularity links, we have in particular:

Theorem 3.3.3 ([Neu81]) The link of any isolated complex surface singularity has
a unique minimal decomposition into Seifert fibered pieces.

3.4 Seifert Fibered Manifolds

We will say “Seifert manifolds” for short. We first consider the case thatM is closed.
Recall that for us M is Seifert fibered if it has an action of the circle group S

1 on
M with no fixed points.

A special case of Seifert fibered manifolds are lens spaces, quotients of S3

by free actions of finite cyclic groups, defined as follows: let S3 := {(z1, z2) ⊂
C

2, |z1|2 + |z2|2 = 1} and let p and q be coprime integers with 0 < q < p; the
Z/p-action on (z1, z2) generated by (z1, z2) 
→ (e2πi/pz1, e

2πiq/pz2) acts freely on
S3 and the quotient is called the lens spaceL(p, q). We will discuss them later, since
these have infinitely many different Seifert fibrations. For now we exclude them.

The orbits of the S1-action onM are called the fibers ofM . We then have a map
π : M → M/S1 = F 2 with fibers homeomorphic to S1. We write

S
1 → M → M/S1 and write F 2 := M/S1 .

A fiber is singular if S1 does not act faithfully on it, equivalently the group of fixed
points of the fiber is a non-trivial cyclic subgroup Cq ⊂ S

1.
Let O1, . . . ,Os , s ≥ 1, be a collection of disjoint fibers including all the singular

ones. Let T1, . . . Ts be disjoint S1-invariant tubular neighborhoods of O1, . . . ,Os
and M0 := M \ int (T1 ∪ · · · ∪ Ts). Since M0 → M0/S

1 is an S1-bundle over a
connected surface with boundary, it has a section R ⊂ M0, i.e., a surface R ⊂ M0
which intersects each fiber ofM0 exactly once.

Let Ri := R ∩ ∂Ti . Then Ri is homologous in Ti to some multiple βiOi of the
central fiber Oi of Ti . Let αi be the order of the isotropy subgroup Cαi ⊂ S1 at Oi .
Let g be the genus of the surface F . Then the “unnormalized Seifert invariant” is

2Perelman put his work on the arXiv but refuses to publish or allow others to publish.
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the collection of numbers

M(g; (α1, β1), . . . , (αs, βs)) ,

satisfying g ≥ 0, αi ≥ 1, gcd(αiβi) = 1.
The invariant is not unique: one can add or remove some non-singular fibers

(those with αi = 1) and we can change the section R ⊂ M0 (recall that M is
closed).

Theorem 3.4.1 ([NR78]) IfM andM ′ are Seifert manifolds with invariants

M(g; (α1, β1), . . . , (αs, βs)) andM(g; (α′1, β ′1), . . . , (α′t , β ′t ))

then M and M ′ are homeomorphic preserving the fibers if and only if one can re-
index the Seifert pairs so that

1. αi = α′i for i = 1, . . . , k; αi = α′j = 1 for i, j > k;
2. βi ≡ β ′i (mod αi ) for i = 1, . . . , k;

3.
∑s
i=1

βi
αi
=∑t

i=1
β ′i
α′i

Equivalently, given M(g; (α1, β1), . . . , (αs, βs)) one can repeatedly add or delete
Seifert pairs (1, 0), replace pairs (αi, βi), (αj , βj ) by (αi , βi − αi), (αj , βj + αj ),
and reorder the indices.

Exercise 3.4.2 Prove this theorem.

We call e(M) := −∑s
i=1

βi
αi

the Euler number of the Seifert fibration, with
orientations chosen so that if M is a circle bundle then e(M) is the usual Euler
number (or Chern class c1(M)). Note that in general, e(M) is not an integer. (We
remark that the choice of orientations goes back to the 1960’s, and some authors
have preferred the opposite orientation).

The base surface F 2 = F has an orbifold structure. The surface Euler
characteristic is χ(F) and its orbifold Euler characteristic is

χ := χ(F)−
s∑

i=1

(1− 1

α1
) .

If one reverses the orientation of M , either by reversing the orientation of the
fibers or of the base, the effect is to replace each (αi , βi) by (αi,−βi), so e(−M) =
−e(M), where −M meansM with reversed orientation.

As one sees, the “unnormalized Seifert invariant” is more convenient than
Seifert’s normalized version, which is unique up to ordering of the indices:

M(g; (1, b), (α1, β1), . . . , (αk, βk)); αi > βi > 0 for i = 1, . . . , k.
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Theorem 3.4.3 ([NR78]) A Seifert manifold M is the link of a surface singularity
iff e(M) < 0.

3.4.1 Seifert Manifolds with Boundary

If M has t > 0 boundary components, the simplest classifying invariant has the
formM(g; t; (α1, β1), . . . , (αk, βk)) with k ≥ 0 and αi > βi > 0 for each i (but an
unnormalized version can be more convenient).

Remark 3.4.4 (Seifert Manifolds over Non-orientable Surfaces) We consider only
Seifert manifolds determined by S1-actions, but Seifert’s original definition allowed
Seifert fibrations over non-orientable surfaces (which do not have an S1-action).
There is a “geometric” version of JSJ decompositions, mentioned briefly in [Neu07]
and [NS97], which allows Seifert fibered manifolds over non-orientable surfaces
and which has the advantage of being compatible with taking finite covers of
M . This is more of interest to topologists than singularists, but we describe the
relationship.

Given a Möbius band Mb, the boundary of a disk neighbourhood of the tangent
space of Mb is an oriented 3-manifold fibered over Mb with circle fibers. It
is called X, but originally called Q ([Wal67], Waldhausen 1967). X also has
the structure of Seifert manifold determined by an S1-action: its Seifert invariant
is M(0; 1; (1, 2), (1, 2)). We avoid any Seifert manifold M fibered over a non-
orientable surface F by excising either one or two copies of X from M , depending
on the parity of the non-orientable genus g(F ) ∈ {−1,−2, . . . }.
Exercise 3.4.5 Prove that the two descriptions of X are diffeomorphic.

3.5 Plumbing, Plumbing Graphs, Dual Resolution Graphs

First we give a brief preview. As we already said, a 3-manifoldM with only Seifert
fibered pieces is called a graph-manifold. The JSJ decomposition of such a 3-
manifold M can be refined into smaller pieces by what is called “plumbing”. If M
has the topology of the link of an isolated surface singularity, then the topological
picture of M via a suitable plumbing and the dual graph of the minimal good
resolution of a corresponding singularity are simply views of the same object.
See also Sect. 3.5 of the lecture notes of Haydée Aguilar-Cabrera and José Luis
Cisneros-Molina in the present volume.
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3.5.1 Plumbing

Let F be an oriented real surface or complex curve and E a D2-bundle E over F .
It’s Euler number (or first Chern class) e(E → F) has many definitions. The most
geometric is given by the intersection number of F ⊂ E with a nearby copy F ′ ⊂ E
intersecting transversally (each intersection point is counted as 1 or −1 depending
on orientation).

Let ξ1 : E1 → F1 and ξ2 : E2 → F2 be two such bundles. Choose embedded
disks D2

1 ⊂ F1 and D2
2 ⊂ F2. Let fi : D2

i × D2 → Ei |D2
i

be trivializations of the
restricted bundles Ei |D2

i
. To plumb we take the disjoint union of E1 and E2 and

then identify the points f1(x, y) with f2(y, x) for each (x, y) ∈ D2 ×D2. We can
perform additional plumbings of bundles ξj : Ej → Fj , ξk : Ek → Fk in the same
way, so long as we make sure that for each plumbing the embedded disks we use in
the surfaces Fj , Fk do not overlap.

Our result is a four-dimensional manifold with boundary. We give here a
schematic picture of a pair of plumbings (imagine them as real versions of complex
objects).

This is “solid plumbing”. The boundary of the solid plumbed manifold gives
3-manifold plumbing, or simply plumbing. The boundary of the solid plumbing
is the result of gluing ∂E1 \ int (E2) and ∂E2 \ int (E1) along their boundaries
S1× S1, again using (x, y)→ (y, x) to exchange the two circles, and again we can
do additional plumbing. The result consists of gluing together circle bundles over
surfaces which have the interior of disks removed.

3.5.2 Constructing S1-Bundles over Surfaces

An S1-bundleM of Euler number e over S2 can be constructed as

M = (D2 × S
1) ∪He (D2 × S

1) with He =
(−1 0
−e 1

)
: S1 × S

1 → S
1 × S

1,

where we write S
1 additively as R/Z. The minus signs reflect the fact that the base

circle S1 × {1} inherits opposite orientations from each side.
Instead of D2 on the left (or right) we can replace D2 by an orientable surface

F0 consisting of a closed surface F with the interior of a disk removed. This gives
an S1-bundleM of Euler number e over F .
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3.5.3 Seifert Manifolds via Plumbing

Denote J =
(

0 1
1 0

)
and consider a collection of plumbed sequences of S1 bundles

over spheres, where A represents an annulus obtained by puncturingD2:

(D2 × S
1 ∪Hei1 A× S

1) ∪J · · · ∪J (A× S
1 ∪Heisi D

2 × S
1), i = 1, . . . ,m .

We then plumb an S1-bundle of Euler number e0 over a surface F of genus g onto
the start of each of these sequences to obtain a Seifert fibered manifold M . The
following weighted tree is the plumbing tree forM ([g] is generally omitted if g =
0).

e0

[g]

e11 e12 e1s1

e21 e22 e2s2

em1 em 2 em sm

The Seifert invariant of this Seifert manifold is M(g; (1,−e0), (α1, β1), . . . ,

(αm, βm)) where αi/βi is the continued fraction

ei1 − 1

ei2 −
1

ei3 − 1

. . . − 1

eisi

for each i = 1, . . . ,m.
For example the Seifert invariant of the link of the singularity E8:

−2

−2

−2

−2 −2

−2

−2 −2

is M(0; (1, 2), (5,−4), (3,−2), (2,−1)) ∼= M(0; (1,−1), (5, 1), (3, 1), (2, 1)).
(As remarked in Sect. 3.4, some people prefer the opposite orientation and then the
Seifert invariant for the link of E8 isM(0; (1,−2), (5, 4), (3, 2), (2, 1)).)
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3.5.4 General Plumbing

Using plumbing as described above we can construct general plumbing graphs

such as the ones with diagrams in Sect. 3.8. We always use J =
(

0 1
1 0

)
in these

constructions, as in Sect. 3.5.3.

For general plumbing (see [Neu81]) one also uses −J :=
(

0 −1
−1 0

)
as well as

J , but for singularity links we don’t need this so we don’t use it. In fact a general
plumbed manifold always has a double cover of it which does not use −J .

3.6 Resolution and Plumbing Graphs

Let " be a plumbing graph with vertices v1, . . . , vr and Euler number weights ei
and genus weights gi . We obtain an intersection form A(") = (aij ) with aij = ei if
i = j and aij is the number of edges connecting vi to vj in " if i �= j .

If A(") = (aij ) is negative definite, then the plumbing graph " corresponds to a
good resolution of an isolated surface singularity. (See Anne Pichon’s notes in the
present volume for resolution graphs of surface singularities. A “good” resolution
means that the exceptional curves of the resolution are smooth curves intersecting
each other transversally with only normal crossings).

Conversely, if the graph " is a graph of a minimal good resolution of an isolated
surface singularity then A(") is negative definite. So we can talk just in terms of
good resolution graphs rather than plumbing graphs.

We summarize some important properties of isolated complex surface singulari-
ties.

Theorem 3.6.1 ([Neu81])

1. Isolated complex surface singularity links are irreducible 3-manifolds.
2. The oriented homeomorphism type of the link determines the minimal good

resolution of the singularity.
3. IfM is a singularity link then−M (i.e., reversed orientation) is a singularity link

if and only ifM is a lens space or a torus bundle over a circle whose monodromy
has trace ≥ 3.

3.7 Relationship with Thurston Geometries

We describe briefly the relationship with the Thurston geometries. These geometries
have nothing to do with the Lipschitz geometry of singularities (despite Lipschitz
geometry being the main topic of the workshop). For the definition of inner and
outer Lipschitz geometry, see the first paragraph of the introduction of the lecture
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notes of Lev Birbrair and Andrei Gabrielov, or Definition 7.2.7 of the lecture notes
of Anne Pichon, or Definition 3.3.1 of the lecture notes of Maria Aparecida Soares
Ruas (all in the present volume).

3.7.1 The Thurston Geometries

A Thurston geometry is a simply-connected 3-manifold with a Riemannian metric
which is homogeneous and complete, and which is the universal cover of some finite
volume locally homogeneous 3-manifold.

There are 8 such geometries. Six of them, S3, Nil, PSL, S2×E1, E3 and H
2×E1,

are the universal covers of Seifert manifolds. The two others are called Sol and H
3.

Each of them is unique up to a finite dimensional deformation of its homogeneous
complete Riemannian metric, e.g., one-dimensional for S3, S2 × E, H3 or H2 × E

1

(which one can normalize by taking curvature 1 resp.−1 for S3 and S
2 resp. H3 and

H
2).
Given a Seifert fibered manifold with M → F = F 2, the base surface F has

extra structure as an orbifold F . If M is closed there are two invariants associated
with this situation (see paragraph after Theorem 3.4.1):

• the Euler number of the Seifert fibration e(M → F),
• and the orbifold Euler characteristic χ of F , as described earlier.

The relevant geometry is determined by these as:

χ > 0 χ = 0 χ < 0

e �= 0 S
3

Nil PSL

e = 0 S
2 × E

1
E

3
H

2 × E
1

We have already said that a Seifert manifold is a singularity link iff e < 0, and
that hyperbolic manifolds never arise in singularity links, so the singularity links
which are locally homogeneous finite volume 3-manifolds can only come from four
of the Thurston geometries: S3, Nil, PSL and Sol. They do indeed occur for all four
of these geometries, and they include many classical singularities, which we will
now describe.

3.8 The Panorama of Classical Singularities

These are the families of “classical singularities” listed below, which are determined
by their connections to the 3-manifold geometries listed above. All of them are
complex normal surface singularities.
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3.8.1 ADE

These are the Du-Val singularities. Their resolution graphs and Seifert invariants are
as follows.

An : x2 + y2 + zn+1 = 0 −2 −2 −2 −2
L(n, n − 1) = M(0; (1, n))

Dn : x2 + y2z + zn−1 = 0
−2

−2

−2
−2 −2 −2

M(0; (1,−1), (2, 1), (2, 1), (n − 2, 1))

E6 : x2 + y3 + z4 = 0

−2

−2

−2

−2

−2 −2

M(0; (1,−1), (2, 1), (3, 1), (3, 1))

E7 : x2 + y3 + yz3 = 0

−2

−2

−2

−2−2 −2 −2

M(0; (1,−1), (2, 1), (3, 1), (4, 1))

E8 x2 y3 z5 0

−2

−2

−2

−2−2 −2 −2 −2

M(0 (1, 1), (2, 1), (3, 1), (5, 1))

3.8.2 Hirzebruch-Jung Singularities

Those are the normal surface singularities whose links are lens spaces. The
resolution graph is a string of rational curves. As mentioned earlier, a lens space
has infinitely many different Seifert invariants; they are described in [JN83] and the
recent papers [GL18] and [Web18] give a clearer and more detailed version.

Sections 3.8.1 and 3.8.2 belong to the Thurston geometry S3.

3.8.3 Quasihomogeneous Surface Singularities

They are singularities with a unique S1 action with no fixed point outside the origin.
Their links are Seifert fibered manifolds. The resolution graph has a central node
connecting to strings of rational curves (see Sect. 3.5.3).

Section 3.8.3 belongs to the Thurston geometries S
3, Nil and PSL, thus

overlapping with 3.8.1.

3.8.4 Hirzebruch Cusp Singularities

There are two types of Hirzebruch cusp singularities (“cusp singularities” for short).
A cusp singularity usually means one whose minimal resolution graph is a cycle
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of vertices representing rational curves Ei . We denote the resolution graph by
[−e1, . . . ,−ek] (this notation is well-defined up to cyclic permutation and reversal).
If k > 1 then −ei is the self-intersection number Ei · Ei ; but if k = 1 then
E1 ·E1 = −e1 + 2, since E1 intersects itself normally in one point. The ei’s satisfy
ei ≥ 2 for all i and some ej ≥ 3.

The cusp singularity link is a torus bundle over S1 with monodromy

A =
(

0 −1
1 ek

)
· · ·
(

0 −1
1 e1

)
.

This matrix A has trace ≥ 3. Conversely, every torus bundle over S1 with
monodromy matrix A having trace ≥ 3 is the link of a cusp singularity (such a
matrix is conjugate to a matrix as above and the singularity is the corresponding
cusp). The fundamental group of the singularity link is the semi-direct product
Z

2
� Z where a generator of Z acts on Z

2 by the matrix A.
The second type of Hirzebruch cusp singularity is closely related to first. It is one

with a resolution of graph the form:

−2

2

e1 e2 ek−1 ek

−2

2

with k ≥ 2, ei ≤ −2 for each i and at least one ei ≤ −3. It has a double cover with
singularity link of the first type, namely it has resolution graph

e2

e2

e3

e3

ek 1

ek−1
2+2ek2+ 2e1

Note that when we speak of a “finite cover of an isolated singularity” we mean that
there is an analytic map (X̃, 0) → (X, 0) which is a finite covering map on the
complement of the point 0 in (X, 0).

Section 3.8.4 belongs to the Thurston geometry Sol.

3.8.5 Further Comments

The singularities of the Panorama are very special. All of them except quasiho-
mogeneous surface singularities are “taut”, i.e., analytically determined by their
topological type (some quasihomogeneous surface singularities are also taut). Taut
normal surface singularities were classified by Henry Laufer in 1973 ([Lau73]).
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Of course for taut singularities the topology determines the Lipschitz geometry
since it determines the analytic type. But for quasihomogeneous surface singular-
ities which are not taut the topology does not necessarily determine the Lipschitz
geometry.

A classic example of Briançon-Speder in the Panorama is the family of singular-
ities

Xt = {(x, y, z) ⊂ C
3 : x5 + z15 + y7z + txy6 = 0} ,

with (Xt , 0) depending on the parameter t . Each Xt is quasihomogeneous since it
has an S1 action (e3θix, e2θiy, eθiz), θ ∈ [0, 2π] preservingXt . The topology does
not change as t changes, but the inner Lipschitz geometry (and hence also the outer
Lipschitz geometry) changes very radically when t becomes 0. For details see, e.g.,
its discussion in [BNP14, Example 15.7] or Example 3.21 in Anne Pichon’s lecture
notes of the present volume. The same holds for other Briançon-Speder families.

A striking property of the Panorama of singularities is that any finite cover of one
of the singularities of the Panorama which is unramified outside the singular point
is a singularity of the Panorama.

Exercise 3.8.1 Prove this.

The Lipschitz geometry of a finite cover of a singularity (X, 0) rarely has a
relationship with the Lipschitz geometry of (X, 0), so the Panorama provides a
plethora of examples whose singularities have Lipschitz geometry which have not
yet been described.
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Chapter 4
Stratifications, Equisingularity
and Triangulation

David Trotman

Abstract This text is based on 3 lectures given in Cuernavaca in June 2018
about stratifications of real and complex analytic varieties and subanalytic and
definable sets. The first lecture contained an introduction to Whitney stratifications,
Kuo-Verdier stratifications and Mostowski’s Lipschitz stratifications. The second
lecture concerned equisingularity along strata of a regular stratification for the
different regularity conditions: Whitney, Kuo-Verdier, and Lipschitz, including
thus the Thom-Mather first isotopy theorem and its variants. (Equisingularity
means continuity along each stratum of the local geometry at the points of the
closures of the adjacent strata.) A short discussion follows of equisingularity for
complex analytic sets including Zariski’s problem about topological invariance
of the multiplicity of complex hypersurfaces and its bilipschitz counterparts. In
the real subanalytic (or definable) case we mention that equimultiplicity along a
stratum translates as continuity of the density at points on the stratum, and quote
the relevant results of Comte and Valette generalising Hironaka’s 1969 theorem that
complex analytic Whitney stratifications are equimultiple along strata. The third
lecture provided further evidence of the tameness of Whitney stratified sets and of
Thom maps, by describing triangulation theorems in the different categories, and
including definable and Lipschitz versions. While on the subject of Thom maps we
indicate examples of their use in complex equisingularity theory and in the definition
of Bekka’s (c)-regularity. Some very new results are described as well as old ones.
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4.1 Stratifications

Consider some singular spaces which are real algebraic varieties.

(i) Let V be the curve {y2 = x2 + x3}. Then V has a double point singularity at
the origin in R

2 (Fig. 4.1).
(ii) Let V be the curve {y2 = x3}. Here V has a cusp singularity at the origin in

R
2.

(iii) Let V be the surface {z2 = x2 + y2} in R
3. This is a cone with an isolated

singularity at the origin.
(iv) Let V be the variety {z(x2 + (y + z)2) = 0} in R

3. This is the union of a plane
P and a transverse line � (Fig. 4.2).

In each of these four examples the singular set of the variety V is a point.
However in Example (iv) the regular part of V is not equidimensional—both 1 and 2
occur as local dimensions. In the other examples the regular part is equidimensional.

Now we give an example of a surface whose singular set is a line.

(v) Let V be {y2 = t2x2− x3} in R
3. Then the singular set of V is the line< Ot >

(Fig. 4.3).

Fig. 4.1 y2 = x2 + x3

Fig. 4.2
z(x2 + (y + z)2) = 0

Fig. 4.3 y2 = t2x2 − x3

y

x

tO
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4.1.1 Whitney’s Conditions (a) and (b)

We will “stratify” our singular spaces X (closed subsets of some R
n) by expressing

them as a union of smooth manifolds defined by means of a filtration by closed
subsets:

X = Xd ⊇ Xd−1 ⊇ · · · ⊇ X1 ⊇ X0 ⊇ X−1 = ∅

where each differenceXj −Xj−1 is either a smooth manifold of dimension j , or is
empty. Each connected component of Xj −Xj−1 is called a stratum of dimension
j .

In Example (iv) the natural filtration can be either

V ⊃ � ⊃ {0} ⊃ ∅

or

V ⊃ � ⊃ ∅ = ∅.

Because the intersection point 0 is different from other points on the line � we
like to take the first filtration. The natural 1-dimensional stratum is thus � \ {0}.
Also, in Example (v) the natural 1-dimensional strata are the two components of
< Ot > \{0}, because 0 is a different point. The local topology of V at points of
the t-axis changes as we pass through t = 0.

Question How can we formalise this difference?

Whitney ( §19 in [Whi65a]; §8 in [Whi65b]) defined two regularity conditions
(a) and (b).

Let X,Y be two strata (disjoint smooth submanifolds of Rn) and let y0 ∈ Y ∩
X \ X. Then condition (a) holds for (X, Y ) at y0 if given any sequence of points
xi ∈ X tending to y0, such that the tangent spaces TxiX tend to τ in the appropriate
grassmannian, then T0Y ⊆ τ

If we stratify Example (iv) without removing the point 0 from the line �, then
Whitney’s condition (a) fails to hold for the pair of strata (P − {0}, �) at 0 ∈ �,
where P is the plane {z = 0}.

Look now at Example (v) (the Whitney cusp). We can stratify V by the filtration

V ⊃< Ot >⊃ ∅

and then Whitney’s condition (a) holds for (V \ < Ot >,< Ot >) at all points.
So we need to impose more regularity so that the point {0} becomes a stratum: the
local topology of slices {t = constant} ∩ V changes at t = 0.
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We say that condition (b) holds for (X, Y ) at y0 ∈ Y ∩ (X − X) if given
sequences xi ∈ X and yi ∈ Y both tending to y0, such that TxiX tends to τ and
yixi/||yixi || tends to λ, then λ ∈ τ .

Look at Example (v). A sequence on V ∩ {y = 0} = {x(t2 + x) = 0}, i.e.
x = −t2, has λ = (1 : 0 : 0) and τ = (1, 0, 0)⊥ (the (t, y)-plane), so that λ /∈ τ ,
and condition (b) fails to hold.

Definition 4.1.1 A locally finite stratification of a closed set Z ⊆ R
n is called

a Whitney stratification if every adjacent pair of strata satisfy condition (b) of
Whitney.

Lemma 4.1.2 Condition (b) implies condition (a).

The proof is an exercise.

Theorem 4.1.3 (Theorem 2.B.1 in [Tho69], Corollary 10.5 in [Mat12]) A Whit-
ney stratification automatically satisfies the frontier condition, i.e., whenever a
stratum Y intersects the closure of a stratum X, then Y is contained in the closure
of X.

Remark 4.1.4 In Example (iv) the stratification

V ⊃ � ⊃ ∅

does not satisfy the frontier condition. In Example (v), stratifying by

V ⊃< Ot >

there are 4 strata of dimension 2 (recall that the strata are the connected components
of V 2 \ V 1).

Let X1 = {V ∩ {x ≤ 0} ∩ {y ≤ 0}}, X2 = {V ∩ {x ≤ 0} ∩ {y ≥ 0}}, X3 =
{V ∩{t ≤ 0}∩ {x ≥ 0}} andX4 = {V ∩{t ≥ 0}∩ {x ≥ 0}}. These are the 4 strata of
our stratification (Fig. 4.4) We see that Y ∩X3 �= ∅, but that Y is not a subset of X3,
and similarly forX4, so that the frontier condition fails for (X3, Y ) and for (X4, Y ).

Fig. 4.4 The strata of V

O

X1

X2

X3

X4
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However the frontier condition holds for the pairs of adjacent strata (X1, Y ) and
(X2, Y ).

Theorem 4.1.5 ([Whi65a], Theorem 19.2) Every analytic variety V (real or
complex) admits a Whitney stratification.

In fact this is also true for more general sets: for semialgebraic sets (Łojasiewicz
[Loj65], Thom [Tho65], Wall [Wal75], Kaloshin [Kal05]), more generally for
subanalytic sets (Hironaka [Hir73], Hardt [Har75], Verdier [Ver76], Denkowska,
Wachta and Stasica [DWS85]), and even more generally for definable sets in o-
minimal structures (Loi [Loi98], van den Dries and Miller [vdDM96], Nguyen,
Trivedi and Trotman [NTT14], and Halupczok [Hal14a, Hal14b]).

One says a regularity condition is generic if every variety (or semialgebraic
set, etc.) admits a stratification such that every pair of adjacent strata satisfy the
regularity condition.

So Whitney’s condition (a) and Whitney’s condition (b) are generic.
[The term “generic” arises as follows. To prove existence of a regular stratifica-

tion one proves that for an adjacent pair of strata (X, Y ),

{y ∈ Y ⊂ X −X|(X, Y ) is regular at y}

is generic in Y in the Baire sense of containing a countable intersection of open
dense subsets, so that its complement can be added to a closed set lower in the
filtration than Y .]

Theorem 4.1.6 Both (a) and (b) are C1 invariants, i.e. given an (a)-regular (resp.
(b)-regular) stratification of Z ⊂ R

n and a C1 diffeomorphism φ : Rn −→ R
n then

φ(Z) inherits an (a)-regular (resp. (b)-regular) stratification.

The previous result follows at once from the following characterizations of (a)
and (b).

Let φ : (U,U ∩ Y, y) −→ (Rn,Rm × 0n−m, 0) be a C1 chart for Y as a
submanifold of Rn. Let πφ = φ−1◦πm◦φ : U −→ U∩Y where πm : Rn −→ R

m×
0n−m is projection onto the firstm coordinates, and let ρφ = ρm ◦φ : U −→ [0,∞)
where ρm : Rn −→ [0,∞) is defined by ρm(x1, . . . , xn) =  ni=m+1x

2
i .

First we characterize (a)-regularity.

Theorem 4.1.7 (Theorem A in [Tro79]) A pair of adjacent strata (X, Y ) is (a)-
regular at y ∈ Y ⇐⇒ for every C1 foliation F transverse to Y at y, there is a
neighbourhood of y in which F is transverse to X ⇐⇒ for every C1 chart (U, φ)
for Y at y, there exists a neighbourhood V of y, V ⊂ U , such that the retraction
πφ|V∩X is a submersion.

Next we characterize (b)-regularity.

Theorem 4.1.8 (Theorem B in [Tro79]) A pair of adjacent strata (X, Y ) is (b)-
regular at y ∈ Y ⇐⇒ for everyC1 chart (U, φ) for Y at y, there is a neighbourhood
V of y, V ⊂ U , such that (πφ, ρφ)|V∩X is a submersion.
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4.1.2 The Kuo-Verdier Condition (w)

A natural idea is to seek stronger generic regularity conditions. Now Whitney’s
condition (a) says that

dist(TxX, Ty0Y ) −→ 0 as x → y0.

We can quantify this convergence in the stronger Kuo-Verdier condition [Ver76]

(w) dist(TxX, Ty0Y ) = O(‖x − πY (x)‖) = O(dist(x, Y ))

i.e., there exists C > 0, and a neighborhoodU of y0 in R
n such that

dist(TxX, Ty0Y ) ≤ C‖x − πY (x)‖ ∀x ∈ U ∩X.

Here πY denotes a C1 submersive retraction from a tubular neighbourhood of Y
onto Y .

Theorem 4.1.9 Condition (w) is generic, i.e. (w)-regular stratifications exist in the
various classes of sets.

See Verdier (Théorème 2.2 in [Ver76]), Denkowska and Wachta [DW87] or
Łojasiewicz, Stasica and Wachta [LSW86] in the subanalytic case, and Tà Lê Loi
[Loi98] for definable sets.

In Brodersen and Trotman ([BT79], Proposition 2) it was shown that condition
(w) can be characterized by lifting of vector fields. Precisely, (w) holds for (X, Y )
at y0 ∈ Y if and only if every vector field vY on Y extends in a neighborhoodU of
y0 to a vector field vX on X which is rugose: ∃C > 0 such that

∀x ∈ U ∩X,∀y ∈ U ∩ Y, ||vX(x)− vY (y)|| ≤ C||x − y||.

Remark 4.1.10 The stratified vector field on X ∪Y is weakly Lipschitz. For it to be
Lipschitz one would need to impose the condition that

∀x ∈ U ∩X,∀x ′ ∈ U ∩X, ||vX(x)− vX(x ′)|| ≤ C||x − x ′||.

Theorem 4.1.11

(1) For semi algebraic sets (also for subanalytic sets, and for definable sets in o-
minimal structures), (w) implies (b).

(2) For complex analytic stratifications, (w)⇐⇒ (b).

For (1) in the subanalytic case see Kuo [Kuo71] or Verdier (Théorème 1.5 in
[Ver76]). The definable case is due to Loi [Loi98]. (2) is due to Teissier (Théorème
1.2 in Chapter V of [Tei82]).
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Example

(vi) Let V = {y4 = t4x+x3} ⊂ R
3, and stratify by V ⊃< Ot >⊃ ∅. This satisfies

(b) but not (w). In fact V is a C1 submanifold of R3, as proved in my thesis
(Example 7.1 in [Tro77]). This shows that (w) is not a C1 invariant.

One can check easily that condition (w) is a C2 invariant. In fact it is a C1+ε
invariant where the ε refers to a Hölder property of the first derivative. This fact is
useful in proofs that (w) is a generic condition.

4.1.3 Mostowski’s Lipschitz Stratifications

Mostowski [Mos85] introduced in 1985 a very strong regularity condition for com-
plex analytic varieties and proved genericity. Then Parusiński successively proved
genericity of Mostowski’s Lipschitz condition for real analytic varieties [Par88b],
for semi-analytic sets [Par88a] and finally for subanalytic sets [Par94]. Recently, N.
Nguyen and Valette [NV16] proved genericity of Mostowski’s Lipschitz condition
for definable sets in polynomially bounded o-minimal structures.

Mostowski’s original condition is rather technical and takes long to write down,
so we will give an equivalent version due to Parusiński (Proposition 1.5 of [Par88a]).

Definition 4.1.12 A stratification  of a set Z defined by

Z = Zd ⊃ Zd−1 ⊃ · · · ⊃ Z0 ⊃ Z−1 = ∅

is said to be a Lipschitz stratification (or satisfy condition (L)) if there exists a
constantK > 0 such that for every subsetW ⊂ Z such that

Zj−1 ⊆ W ⊆ Zj

for some j = �, . . . , d where � is the lowest dimension of a stratum of Z, each
Lipschitz  -compatible vector field on W with Lipschitz constant L which is
bounded on W ∩ Z� by a constant C > 0, can be extended to a Lipschitz  -
compatible vector field on Z with Lipschitz constant K(L+ C).
Proposition 4.1.13 Every Lipschitz stratification satisfies condition (w).

This proposition is actually an immediate consequence of Mostowki’s original
definition [Mos85].

In fact, so far the Lipschitz condition is the strongest generic regularity condition
on stratifications of definable sets.
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4.1.4 Applications of Whitney (a)-regularity

We have been describing successively stronger regularity conditions. So, why
should one study the rather weak Whitney (a)-regular stratifications? One reason is
because in singularity theory and dynamical systems (in classification problems and
in the study of stability) one often uses that transversality to a Whitney stratification
is an open condition. And in fact one can show the following equivalence, which
gives another characterisation of (a)-regularity and hence another proof that (a) is
a C1 invariant.

Theorem 4.1.14 (Theorem 1.1 in [Tro77, Tro79]) Given a stratification  of a
closed subset Z of a smooth manifoldM ,  is Whitney (a)-regular⇔ {f : N −→
M|f is transverse to  } is an open set of C1(N,M) in the strong C1 topology, for
all C1 manifolds N .

Recently, Trivedi gave holomorphic versions of this theorem for Stein manifolds
N,M [Tri13].

Another application of Whitney (a)-regularity is the following.

Theorem 4.1.15 (Kuo, Li, and Trotman [KTL89]) Given a stratum X of an (a)-
regular stratification of a subset Z of Rn, then for all x ∈ X and for every pair of
Lipschitz transversalsM1,M2 to X at x (a Lipschitz transversal is defined to be the
graph of a Lipschitz map NxX→ TxX), there is a homeomorphism

(M1, Z ∩M1, x) −→ (M2, Z ∩M2, x).

These results justify the study and verification of (a)-regularity.

4.2 Equisingularity

We have seen in the examples how Whitney (b)-regularity allows us to distinguish
points where the local topology changes. This is in fact a general property.

4.2.1 Topological Equisingularity

Theorem 4.2.1 (Thom-Mather: Théorème 2.B.1 in [Tho69] and Proposi-
tion 11.1 in [Mat12]) A Whitney (b)-regular stratification (of a closed subset
Z of a manifoldM) is locally topologically trivial along each stratum.

This means more precisely that for every point x in a stratum X there is a
neighbourhoodU of x in M , a stratified set L, and a stratified homeomorphism

h : (U,U ∩ Z,U ∩ Z, x) −→ (U ∩X)× (Rk, cL, #)
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such that p1 ◦ h = πX, where cL denotes the cone on L with vertex #.
The proof of this theorem, known as the Thom-Mather first isotopy theorem, is

by integration of a continuous stratified controlled vector field v on Z: for each
stratum X, there is a lift of vX to a vector field vY on neighbouring strata Y such
that πX#vY = πX and ρX#vY = 0 (these two conditions state that vY is a lift of vX
and that vY is tangent to the level hypersurfaces of ρY ).

In particular the isotopy theorem states that the local topological type of Z at
points of a stratum X is locally constant, hence constant, as X is connected.

Remark 4.2.2 That the lifted stratified vector field vX ∪ vY in the Thom-Mather
isotopy theorem can be chosen to be continuous was first independently proved by
Shiota (Lemma I.1.5 in [Shi97]) and du Plessis [dP99]. A much stronger statement
was recently proved as part of Whitney’s fibering conjecture (Conjecture 9.2 in
[Whi65b]). From the statement of the Thom-Mather theorem one can see that h
defines a foliation by leaves h−1(p) for p ∈ cL, each diffeomorphic to U ∩ X. In
the complex holomorphic case Whitney conjectured that the leaves be holomorphic
and that their tangents vary continuously as we take the limit for points on a stratum
Y tending to an adjacent stratum X. This was proved by Parusiński and Paunescu
(Theorem 7.6 in [PP17]) in the real and complex algebraic and analytic cases, using
a hypothesis of a stratification which is Zariski equisingular (in a generic sense),
stronger than (w)-regularity. In 2018 Parusiński has announced that this generic
Zariski equisingularity implies the Lipschitz regularity of Mostowski for families of
hypersurfaces in C

3.
With the hypothesis of (b)-regularity (in fact with the even weaker (c)-regularity

defined in Lecture III), Whitney’s fibering conjecture was proved in the smooth case
in 2017 by Murolo, du Plessis and Trotman (Theorem 7 in [MdPT17]): the leaves
of {h−1(p)}p∈cL form a C0,1 foliation.

We saw above that a Kuo-Verdier (w)-regular stratification admits locally rugose
vector fields tangent to strata. These may be integrated to provide a local rugose
trivialization.

Theorem 4.2.3 (Verdier: Théorème 4.14 in [Ver76]) Every (w)-regular stratifi-
cation is locally rugosely trivial along strata.

This is to say that a homeomorphism defining a trivialization (almost) as in the
Thom-Mather theorem can be chosen to be rugose. This requires two clarifications.
Firstly the homeomorphism of the Thom-Mather theorem is in fact already rugose
because it is controlled—h can be chosen to respect the level hyper surfaces of the
control function ρX . Secondly in Verdier’s theorem [Ver76] the homeomorphism is
not in general with the product ofU∩X and a cone, but rather with a normal slice—
see the counterexample using the topologist’s sine curve below (Example 4.2.10).

Because of the definition we gave above of a Lipschitz stratification (of
Mostowski) it is no surprise that there is also a local trivialization theorem for
Lipschitz stratifications.
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Theorem 4.2.4 (Mostowski [Mos85], Parusiński (Theorem 1.6 in [Par94]))
Every Lipschitz stratification is locally bilipschitz trivial along strata.

Corollary 4.2.5 Every semialgebraic/subanalytic/definable subset of Rn admits a
locally bilipschitz trivial stratification.

Remark 4.2.6 Here “definable” must be taken in a polynomially bounded o-
minimal structure: this means that every definable function f : Rn −→ R satisfies
|f (x)| ≤ C||x||k, for some C > 0 and some positive integer k, in a neighbourhood
of infinity (i.e. outside some compact set K ⊂ R

n).

Example 4.2.7 (Parusiński) Let X(t) be < Ox > ∪{(x, xt , t)|x > 0} ⊂ R
3. Then

the Lipschitz types of the X(t) are all distinct for t > 1. Hence there is no locally
bilipschitz trivial stratification of

⋃
X(t), thus no Lipschitz stratification.

This example is definable in any o-minimal structure which is not polynomially
bounded (xt = exp(tlogx)). Recall the theorem of C. Miller.

Theorem 4.2.8 (Miller [Mil94]) An o-minimal structure is not polynomially
bounded if and only if the exponential function is definable in the structure.

Remark 4.2.9 When working outside of the class of definable sets, in the local
triviality theorems for (w)-regular and Lipschitz stratifications we must replace cL
by a normal slice F (not necessarily a cone), as shown by the following example.

Example 4.2.10 Let Z = {y = sin(1/x), x �= 0} ⊂ R
2, the topologist’s sine curve.

If Y = (−1, 1) × 0 and X = Z − Y , with (−1, 0) and (1, 0) the 0-strata, then
we obtain a (w)-regular stratification and a Lipschitz stratification, but not a (b)-
regular stratification. The stratification is locally topologically trivial indeed locally
bilipschitz trivial along Y but is not locally topologically conical. It is clear that Z is
not definable in an o-minimal structure because the x-axis intersects Z in an infinite
number of connected components.

Although local bilipschitz triviality is in general strictly weaker than the Lips-
chitz property of Mostowski, there exist (w)-regular stratified sets which are not
locally bilipschitz trivial.

Example 4.2.11 (Koike) Let Z = {y2 = t2x2 − x3, x ≤ 0}. This is obtained by
removing the “upper half” of the Whitney cusp V = {y2 = t2x2 − x3} (Fig. 4.5).

Because the slices t = constant vary between half of a double point, with a
nonzero angle between the two branches, and a cusp, with zero angle between the 2

Fig. 4.5 Example 4.2.11 O
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branches, one sees easily that these two types of slices are not bilipschitz equivalent.
However the following calculation shows that (w)-regularity holds.

d(< 0t >, TpX) = || < (0, 0, 1), gradpF

||gradpF || ||

= 2|tx2|√
(3x2 − 2xt2)2 + 4y2 + 4t2x4

≤ 2|tx2|
2y

≤ |x| ≤
√
x2 + y2 = ||p − π(p)||.

Thus (w) holds.

4.2.2 Some Complex Equisingularity and Real Analogues

We have seen that (b)-regularity implies the constance of the local topological type
of a stratified set along each stratum. For families of complex plane curves defined
by

F : C2 × C −→ C, 0

(F−1(0), 0 × C) is (b)-regular if and only if the local topological type of F−1
t (0)

is constant as t varies, where (z, t) are the coordinates of C
2 × C. However

this equivalence does not extend to higher dimensions as shown by the following
celebrated example.

Example 4.2.12 (Briançon and Speder [BS75]) Let F(x, y, z, t) = x3 + txy3 +
y4z + z9. Then (F−1(0), 0 × C) is not (b)-regular at (0, 0, 0, 0), but the local
topological type at (0, 0, 0, t) of F )−1

t (0) is constant.

The theory of equisingularity aims at comparing different notions of regularity
on stratifications, in particular of analytic varieties (where much work has been done
in particular by Zariski, Teissier, and Gaffney).

A basic invariant in algebraic geometry is the multiplicity m0(V ) at a point 0 of
a variety V in C

n. An informal definition ofm0(V ) is the number of points near 0 in
P ∩ V for a generic plane P of dimension equal to the codimension of V , passing
near 0.

A relation with stratifications is given by a theorem of Hironaka.

Theorem 4.2.13 (Hironaka 1969 (Corollary 6.2 in [Hir69])) Given a complex
analytic Whitney (b)-regular stratification of a complex analytic variety V , the
multiplicity of V at points of V is constant on strata.



98 D. Trotman

Thus (b) implies equimultiplicity.
The proof is by integration of a vector field, and works for subanalytic sets, inter-

preted as (b) implying normal pseudo flatness (this is equivalent to equimultiplicity
in the complex case), as shown in a paper of mine with Orro (Proposition 5.2 in
[OT02]). (One defines the normal cone of a stratified set along a stratumX by taking
limits on X of orthogonal secant vectors from Y to the set and then normal pseudo
flatness means that the associated projection of the normal cone to X is open.)

4.2.2.1 Zariski’s Problem

In 1971, Zariski stated the following problem (Question A in [Zar71]): Given
analytic functions f, g : Cn+1, 0 −→ C, 0 and a germ at 0 of a homeomorphism h
of Cn+1 sending f−1(0) onto g−1(0), does m0(f

−1(0)) = m0(g
−1(0))?

As this school concerns the Lipschitz geometry of singularities I will mention
some results about Zariski’s problem when the homeomorphism h is assumed to be
bilipschitz.

Theorem 4.2.14 (Fernandes and Sampaio [FS16]) Zariski’s problem has a posi-
tive answer if n = 2 and h is bilipschitz.

Theorem 4.2.15 (Risler and Trotman [RT97]) Zariski’s problem has a positive
answer if h is bilipschitz and f = g ◦ h, for all n.

In 2018 it was announced by Birbrair, Fernandes, Sampaio, and Verbitsky
[BFSV18] that for the non hypersurface case there are infinitely many counterex-
amples to the bilipschitz invariance of the multiplicity with the dimension of the
varieties being at least 3.

For normal complex surfaces (possibly embedded in higher dimensions), Neu-
mann and Pichon [NP12] have proved that the multiplicity is an outer bilipschitz
invariant.

Theorem 4.2.16 (Comte [Com98]) Zariski’s problem has a positive answer for
complex analytic germs if h is bilipschitz with Lipschitz constants (of h and h−1)
sufficiently close to 1.

More precisely if X1 and X2 are complex analytic germs of dimension d in C
n

and there exist constants C > 0, C′ > 0 such that

(1/C′)||x − y|| ≤ ||h(x)− h(y)|| ≤ C||x − y||

for all x, y near 0 in X1 for a bilipschitz homeomorphism h : X1, 0 −→ X2, 0 and

1 ≤ CC′ ≤ (1+ 1

M
)

1
2d

whereM = max(m0(X1),m0(X2)), then m0(X1) = m0(X2).
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The proof uses a characterization of the multiplicity as the density, originally due
to Lelong [Lel57].

Definition 4.2.17 The density of a set X at p ∈ X is defined as the limit as r
tends to 0 of the volume of the intersection of X with the ball of radius r centred
at p divided by the volume of the intersection of a plane through p of the same
dimension as X with the ball of radius r centred at p.

Corollary 4.2.18 (Comte [Com98]) In a bilipschitz trivial family of complex
analytic germs (defined by a Lipschitz isotopy) the multiplicity is constant.

While on the topic of equimultiplicity and stratifications one should mention the
important characterization due to Teissier.

Theorem 4.2.19 (Teissier: Théorème 1.2 in Chapter V of [Tei82]) A complex
analytic stratification of a complex analytic variety is Whitney (b)-regular⇐⇒ the
multiplicities of the local polar varieties are constant on strata.

Here the local polar varieties at a point of the variety are the closures of the
critical sets of the restrictions to strata, whose closure contains the point, of locally
defined projections to general linear subspaces of dimensions lying between two
and the dimension of the variety (see section 3.2 in [FT]).

There are real analogues of these complex results involving what are known
as Lipschitz-Killing invariants on strata of a definable stratification, due to Comte
and Merle [CM08] and Nguyen and Valette [NV18]. These generalize another real
analogue of Hironaka’s theorem stated above, due to Comte (who proved in 2000
the partial result (Théorème 0.4 of [Com00]) of continuity of the density along strata
of a (w)-regular subanalytic stratification) and G. Valette.

Theorem 4.2.20 (Valette [Val08]) The density is a Lipschitz function along strata
of a (w)-regular subanalytic stratification, and a continuous function along strata
of a (b)-regular subanalytic stratification.

Part of the proof of Teissier’s Theorem 4.2.19 above involves studying how equi-
singularity is preserved after taking generic plane sections of different dimensions.
Precisely, let Y ⊂ X −X.

Definition 4.2.21 Consider a plane P ⊃ Y , then (X ∩ P, Y ) is a stratified pair. If
E is an equisingularity condition, such as (b) or (w), etc., then one says that the
pair (X, Y ) is E#-regular at 0 ∈ Y if for all k, 0 ≤ k ≤ n − m there exists an open
dense set of planes P of codimension k such that P is transverse to X near 0 and
(X ∩ P, Y ) is E-regular at 0.

If we abbreviate local topological triviality by (T .T .) then Teissier proved in
the complex case that (b) implies (T .T .#), a strengthening of the Thom-Mather
theorem, while the converse, that (T .T .#) implies (b), was proved by Lê and Teissier
(see Théorème 5.3.1 in [LT83]). This is thus a converse to Teissier’s strengthened
Thom-Mather theorem. Next we give some results concerning the # condition in the
subanalytic case.
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Theorem 4.2.22 For subanalytic stratifications, (w) implies (w#), the Lipschitz
property (L) implies (L#) and, when Y has dimension 1, (b) implies (b#).

The first and third implications are proved by Navarro and Trotman (Theo-
rem 3.14 in [NAT81]), and the second implication is proved by Juniati, Trotman
and Valette (Corollary 2.9 in [JTV03]). It is unknown if (b) implies (b#) when the
dimension of Y is greater than 1 for subanalytic stratifications, but in the complex
case this follows from the implication that (w) implies (w#) since (b) and (w)
are equivalent (Teissier: Théorème 1.2 in Chapter V of [Tei82]). Probably the
implications in the previous theorem are valid for definable sets in polynomially
bounded o-minimal structures. A counterexample to the third implication in the non
polynomially bounded case is given in a paper by myself and Valette (in section 4
of [TV17]). Another such example is given in a paper by myself and L. Wilson
[TW06].

Example 4.2.23 (Trotman and Wilson [TW06]) Let f (x, z) = z− z log(x+
√
x2+z2)

log z ,

z > 0. Then let Sf be the closure of the graph of f in R
3. Then (Sf− < Ox >

,< 0x >) is (b)-regular, but (b#) fails. Also (w) fails to hold, and normal pseudo
flatness fails.

Example 4.2.24 (Trotman and Valette (section 4 in [TV17])) Let

g(x, z) = zx2+1 = exp((x2 + 1) log z), z > 0.

Let Sg be the closure of the graph of g in R
3 (Fig. 4.6). Then (Sg− < 0x >,<

0x >) is (b)-regular, but (b#) fails. Also normal pseudo flatness and (w) fail to hold.

Consider the convex hull Kg of Sg and the half-plane {y = 0, z > 0}. The
density of Kg is not continuous along 0x at 0. This is a counterexample to a
possible generalization of the Comte-Valette theorem 2.20 [Com00, Val08] to non
polynomially bounded o-minimal structures. Note too that the bilipschitz type of
Kg varies continuously along 0x.

Fig. 4.6 Example 4.2.24
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These two examples provide examples of definable sets in any non polynomially
bounded o-minimal structure, because in such a structure the exponential function
and its logarithm inverse are definable by Miller’s dichotomy [Mil94] stated above.

These examples prevent definable extensions to the following theorem.

Theorem 4.2.25 (Pawłucki (Theorem 1.1 in [Paw85])) Let X,Y be (locally)
connected subanalytic strata in R

n, Y ⊂ X − X, such that dimX = dimY + 1.
Then (X, Y ) is (b)-regular⇐⇒ X ∪ Y is a C1 manifold-with-boundary.

One implication is just the C1 invariance of (b). The other is more delicate.
In 2017 with Valette (Corollary 3.11 in [TV17]) I proved that Pawłucki’s

characterization is valid for definable sets in polynomially bounded o-minimal
structures.

The two examples above show this fails in non polynomially bounded o-minimal
structures.

4.3 Triangulation of Stratified Sets and Maps

While stratifications can be thought of as a more efficient alternative to triangu-
lations, as there are less strata in a stratification into manifolds than simplexes of
maximal dimension in a triangulation, it remains the case that triangulations of sets
(and maps) are useful for calculating homology and cohomology. In this section we
present results concerning sets and maps, rather incomplete, but which may serve
as an introduction to the theory.

4.3.1 Triangulation of Sets

Theorem 4.3.1 (Hironaka [Hir75]) Every semialgebraic set S is triangulable:
there exists a polyhedron K and a semialgebraic homeomorphism φ : K −→ S.
Moreover given a finite family {Sj }j=1,...,m of semialgebraic subsets of S, we can
choose K = {σi}I=1,...,p (the simplexes) and φ such that each Sj is the union of
some of the φ(σoi ).

The proof applies also to the case of subanalytic sets.

Corollary 4.3.2 A Whitney stratified semialgebraic set S admits a triangulation
such that every stratum is a union of (images of) open simplexes.

There are similar results in the smooth category.

Theorem 4.3.3 (Goresky [Gor78]) Every Whitney stratified set is triangulable,
such that strata are unions of open simplexes.
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Conjecture 4.3.4 (Thom) Every Whitney stratified set admits a Whitney triangu-
lation, i.e. a triangulation such that the refined stratification defined by the open
simplexes is itself (b)-regular.

As a partial answer to Thom’s conjecture we have the following result of Shiota
in the semialgebraic case.

Theorem 4.3.5 (Shiota [Shi05]) Every semialgebraic set S admits a semialgebraic
Whitney triangulation , i.e. the open simplexes φ(σoi ) form the strata of a Whitney
stratification, and this may be chosen to be compatible with a finite set of
semialgebraic subsets of S.

Shiota’s theorem was improved and extended by Malgorzata Czapla in her thesis.

Theorem 4.3.6 (Czapla [Cza12]) Every definable set S admits a definable C2

(w)-regular triangulation, compatible with a finite number of definable subsets of
S. Moreover the triangulation φ : |K| −→ S is a locally Lipschitz mapping.

So Czapla improves on Shiota’s theorem in two ways: (w)-regularity and
definability. The main tool of Czapla is a bilipschitz triviality theorem of Valette
for definable families, itself an improvement of a celebrated theorem of Hardt.

A continuous semialgebraic mapping p : A −→ R
k where A ⊂ R

n is
semialgebraic, is said to be semialgebraically trivial over a semialgebraic subset
B ⊂ R

k if there is a semialgebraic set F and a semialgebraic homeomorphism
h : p−1(B) −→ B × F such that p1 ◦ h = p. Then h is called a semialgebraic
trivialization of p over B. We say h is compatible with C ⊂ A if there exists a
semialgebraic set G ⊂ F such that h(C ∩ p−1(B)) = B ×G.

Theorem 4.3.7 (Hardt’s Semialgebraic Triviality [Har80]) Let A ⊂ R
n be a

semialgebraic set and p : A −→ R
k a continuous semialgebraic mapping. Then

there is a finite semialgebraic partition of R
k into B1, . . . , Bm such that p is

semi algebraically trivial over each Bi . Moreover if C1, . . . , Cq are semialgebraic
subsets of A we can assure that each trivialization

hi : p−1(Bi) −→ Bi × Fi
is compatible with all Cj .

In particular if b, b′ ∈ Bi , then p−1(b) and p−1(b′) are semialgebraically
homeomorphic. One can take Fi = p−1(bi), bi ∈ Bi and set hi(x) = (x, bi) for all
x ∈ p−1(bi).

There is a definable version of Hardt’s triviality theorem too, given by Coste
in his Pisa notes on semialgebraic geometry [Cos00]. We now consider a further
improvement, a definable bilipschitz triviality theorem due to G. Valette [Val05a].
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Fix a polynomially bounded o-minimal structure over R (take semialgebraic sets
if preferred). LetA ⊂ R

n×Rp be a definable set, considered as a family of definable
subsets of Rn parametrized by R

p. For U ⊂ R
p, let

AU = {q = (x, t) ∈ R
n × R

p|q ∈ A, t ∈ U}

and for t ∈ R
p, letAt = {x ∈ R

n|q = (x, t) ∈ A}, the fibre of A at t .

Definition 4.3.8 A is said to be definably bilipschitz trivial along U ⊆ R
p

if there exists t0 ∈ U and a definable homeomorphism h : At0 × U −→ AU
mapping (x, t) to h(x, t) = (ht (x), t) together with a definable continuous function
C : U −→ R such that for all x, x ′ ∈ At0 and all t ∈ U ,

|ht (x)− ht (x ′)| ≤ C(t)|x − x ′|

and for all x, x ′ ∈ At , and all t ∈ U ,

|h−1
t (x)− h−1

t (x
′)| ≤ C(t)|x − x ′|.

Theorem 4.3.9 (Valette [Val05a, Val05b]) Let A be a definable subset of Rn ×
R
p in some polynomially bounded structure over R. Then there exists a definable

partition of Rp such that the family A is definably bilipschitz trivial along each
element of the partition.

Notes The Mostowski-Parusiński condition (L) of section 1.3 together with the
definable existence theorem of Nguyen and Valette [NV16] gives a local bilipschitz
trivialization h. Here we have definability of h as well. There is also better control
of the Lipschitz constants of the bilipschitz trivialization here.

As in the case of Hardt’s theorem for topological types we can deduce from
Valette’s theorem bounds on the number of Lipschitz types of sets given as zeros of
polynomials of bounded degree.

To prove his theorem, Valette proves a preparation theorem, and uses ultrafilters
as in Coste’s account of the definable Hardt triviality theorem (cf. Coste’s Pisa notes
on o-minimal geometry [Cos00]).

4.3.2 Thom Maps and the (af ) Condition

We will describe a class of stratified maps which are triangulable.

Definition 4.3.10 Let Z be a closed subset of Rn (or Cn) with a stratification  .
Let f : Rn −→ R

p be a C1 map. Then  is said to satisfy (af ) if each f |X, for
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X a stratum of  , is of constant rank (depending on X), and for sequences xi ∈ X
tending to y in a stratum Y of  ,

limxi→yTxi (f−1(f (xi))) ⊇ Ty(f−1(f (y))).

When further,

dist(Tx(f−1(f (x))), Ty(f
−1(f (y))) ≤ C||x − πY (x)||

for some C > 0 and x in a neighbourhood U of y in R
n (or Cn), we say that  

satisfies the (wf ) condition.

Theorem 4.3.11 (Loi [Loi98]) For polynomially bounded o-minimal structures,
every definable function f : Rn −→ R admits a stratification such that (wf ) holds.

For (af ) this is true in any o-minimal structure. In the complex case the result is
due to Henry, Merle, and Sabbah [HMS84].

Definition 4.3.12 Let f : R
n −→ R

m be a C1 map. If there exist Whitney
stratifications  of Z ⊂ R

n ⊂ R
m such that f maps each stratum X of  to a

stratum X′ of  ′, such that f |X is a submersion onto X′,  satisfies (af ), and each
f |X is proper, then one says that f is a Thom map .

Thom maps have nice properties.

Theorem 4.3.13 (Shiota [Shi00]) If Z,W are respectively closed subsets of Rn

and R
m and f : Z −→ W is a proper C∞ Thom map, then f is triangulable, i.e.

there exist polyhedra P,Q and homeomorphisms φ : Z −→ P , ψ : W −→ Q

such that ψ ◦ f ◦ φ−1 : P −→ Q is piecewise linear.

For non-proper maps there is still a theorem.

Theorem 4.3.14 (Shiota [Shi10]) Nonproper semialgebraic C1 Thom maps
between closed semialgebraic subsets are triangulable , i.e. there exist finite
simplicial complexes K,L and semialgebraic (resp. definable) C0 embeddings
φ : Z −→ |K|, ψ : W −→ |L| such that φ(Z) and ψ(W) are unions of open
simplexes of K,L and ψ ◦ f ◦ φ−1 : φ(Z) −→ ψ(W) can be extended to a
simplicial map K −→ L.

When the target space is of dimension > 1, the transform of the map by suitable
blowing-ups of the target space becomes (af ) stratifiable (see Sabbah [Sab83]) and
locally triangulable (see Teissier [Tei89]). Note that maps not satisfying (af ) may
not be triangulable. For example the blowup of a point in R

2 does not satisfy (af )
and is not triangulable. Any 2-simplex attached to the exceptional fibre (a projective
line) is mapped to a 1-simplex by linearity. One sees that (af ) fails because outside
the origin the fibres of points are just points and the limit of a point cannot contain
a line as the tangent space of the exceptional fibre. Thom [Tho69] called maps
satisfying (af ) maps “sans éclatement”, i.e. without blowing-up, so that this
example is in some sense a paradigm.
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Analogous to the characterization of (a)-regularity by the openness of the set of
maps transverse to a stratification, we have a similar result for (af )-maps.

Theorem 4.3.15 (Trivedi-Trotman [TT14]) Let N,P be C1 manifolds. Let f :
N −→ P be a C1 map of constant rank on the strata of a stratification  of a
closed subset Z of N . Let F denote the foliations of strata X of  induced by the
fibers of f |X. The following are equivalent:

(1)  is (af )-regular;
(2) for any C1 manifold M , {g ∈ C1(M,N) : g is transverse to F} is open in the

strong C1 topology;
(3) {g ∈ C1(N,N) : g is transverse to F} is open in the strong C1 topology.

The (af ) condition has a particular role in equisingularity of families of complex
hypersurfaces.

Let F = C
n+1×C,O×C −→ C, 0 ba an analytic function such that the singular

locus of F−1(0) is 0× C. Let Ft (z) = F(z, t).
Theorem 4.3.16 (Lê and Saito [LS73], Teissier (Remarque 3.10 in [Tei73])) .
The following conditions are equivalent:

(1) μ(Ft ) is constant as t varies,
(2) (af ) holds for the stratification (F−1(0)− 0× C, 0× C),

(3) lim(z,t)→(0,0 |∂F/∂t ||gradF | = 0.

Corollary 4.3.17 If F(z, t) = g(z) + th(z) has μ(Ft ) constant, then Ft is
equimultiple along 0× C.

This simple consequence of the previous theorem should be linked to a striking
result of Parusiński.

Theorem 4.3.18 (Parusiński [Par99]) With the same hypotheses as in the previous
corollary, the topological type of F−1

t (0) is constant as t varies.

This in turn should make us think again of an important general result.

Theorem 4.3.19 (Lê-Ramanujam [LR76]) If n �= 2 and μ(Ft) is constant, then
the topological type of F−1

t (0) is constant.

Question What happens when n = 2?

Remark 4.3.20 There are at least 3 different definitions of (bf )-regularity, due to
Thom (in section IIIB of [Tho69]), Henry-Merle (Definition 9.1.1 of [HM87]),
and Nakai (see §1 of [Nak00]). Their properties have not been studied beyond the
original papers so far as I know. And no work has been done on a possible (Lf ).
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4.3.2.1 (c)-regularity

The notion of Thom map has been used by Karim Bekka to define a new regularity
condition called (c).

Definition 4.3.21 One says that a stratification  of a closed set Z in a manifold
M is (c)-regular if for each stratum X of  there is a neighbourhood UX of X in
M and a C1 function ρX : UX −→ [0, 1) such that X = ρ−1

X (0) and ρX is a Thom
map for  .

One shows fairly easily that (b) %⇒ (c) %⇒ (a). Note that UX is a
neighbourhood of the whole of X and not just of a point of X.

Moreover, by a careful analysis of the proof of the Thom-Mather isotopy
theorem, Bekka showed:

Theorem 4.3.22 (Bekka (see §3 in [Bek91])) Every (c)-regular stratification is
locally topologically trivial along strata (and conical).

Thus, as for Whitney (b)-regular stratified sets (Z, ), for every point x in
a stratum X there is a neighbourhood U of x in M , a stratified set L and a
homeomorphism

h : (U,U ∩ Z,U ∩X) −→ (U ∩X)× (Rk, cL, #)

given by h(z) = (πX(z), ρX(z), θ(z)) where cL is the cone on L with vertex #. As
for (b)-regularity, fix the values of ρX and θ , then {z|ρX(z) = ρ, θ(z) = θ} is a leaf
diffeomorphic to U ∩X.

Theorem 4.3.23 (Murolo-du Plessis-Trotman (Theorem 7 in [MdPT17]))
Given a (c)-regular stratified set we can choose h such that the tangent spaces
to the leaves vary continuously on U , in particular as points tend to X.

Again we may fix just θ . Then {z|θ(z) = θ} is a wing, a C0 manifold with
boundary U ∩ X and smooth interior. Then one can choose h so that the tangent
spaces to the wings vary continuously and each wing is itself (c)-regular (Theorem 8
in [MdPT17]).

Question What can one say in the semialgebraic or subanalytic cases? Note that
the Parusiński-Paunescu theorem (Theorem 7.6 of [PP17] ) is only for the algebraic
and analytic cases.
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Chapter 5
Basics on Lipschitz Geometry

Maria Aparecida Soares Ruas

Abstract In this course we introduce the main tools to study the Lipschitz geometry
of real and complex singular sets and mappings: the notions of semialgebraic sets
and mappings and basic notions of Lipschitz geometry. The course then focuses on
the real setting, presenting the outer Lipschitz classification of semialgebraic curves,
the inner classification of semialgebraic surfaces, the bi- Lipschitz invariance of
the tangent cone, and ending with a presentation of several results on Lipschitz
geometry of function germs.

5.1 Introduction

These are the notes of the course Basics on Lipschitz Geometry taught at the
first week of the International School on Singularities and Lipschitz Geometry, in
Cuernavaca, Mexico, 11th to 22nd of June, 2019.

Lipschitz geometry is the study of those properties of metric spaces which are
left invariant by bi-Lipschitz homeomorphisms. It is the geometry of a topological
space based on the notion of length. Lipschitz singularity theory deals with
classification of singular points of functions and mappings with respect to bi-
Lipschitz equivalences.

Denoting by M the category of metric spaces the Lipschitz mappings are the
morphisms of M and the bi-Lipschitz homeomorphisms are the isomorphisms of
this category.

In this course we discuss basic properties of Lipschitz geometry of real and
complex singular sets and introduce the framework for the Lipschitz theory of
singularities.

By singular set we mean a compact semialgebraic or subanalytic (or definable
in some o-minimal structure) set in R

n which is not a smooth submanifold of Rn.
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In many situations we reduce our investigation to a small neighborhood of a
singular point. In this case, the language of set germs and map germs will be useful.

What is the motivation to study Lipschitz geometry and Lipschitz singularity
theory? The topological structure of real and complex analytic sets are well known
and, in many cases, a complete topological classification of singular sets is given.

The following are well known results on the topology of singularities:

Theorem 5.1.1 (Topological Conical Structure, [Mil68]) In a small neighbor-
hood of a singular point, any analytic set is homeomorphic to a cone over the link.

Theorem 5.1.2 (Topological Classification of Function Germs, [Kin78, Per85])
Let f, g : (Cn, 0)→ (C, 0) analytic function germs with isolated singularity,Xf =
f−1(0), Xg = g−1(0). Then Xf is ambient topologically equivalent to Xg if and
only if f is topologically right equivalent to g or to ḡ, where ḡ is the conjugate of
g.

See also Part 1 of Anne Pichon’s notes [Pic19] and Section 3 of Haydée Aguilar-
Cabrera and José Luis Cisneros notes [ACCM19] in the present volume.

We shall see that these two results do not remain true if we replace “homeo-
morphism” by “bi-Lipschitz homeomorphism”. In fact, Lev Birbrair and Alexandre
Fernandes proved a decade ago in [BF08a] that an algebraic set is not always
bi-Lipschitz equivalent to a cone. On the other hand, it follows from a result of
Jean-Pierre Henry and Adam Parusiński [HP03] that the bi-Lipschitz classification
of analytic functions has moduli. Furthermore, in a unique bi-Lipschitz class of real
or complex hypersurfaces there are infinitely many bi-Lipschitz classes of functions
f : (Kn, 0)→ (K, 0) with X = f−1(0).

The foundations of Lipschitz theory were the work of Frédéric Pham and Bernard
Teissier [PT69] on bi-Lipschitz classification of complex curves (published at the
end of the present volume), and Tadeusz Mostowski’s result on the existence of a
locally finite Lipschitz stratification of complex analytic sets in [Mos85].

Lipschitz geometry is now at its golden age. The notes of the courses of this
school will be a guide to students and researchers who want to proceed in this area.

The contents of these notes are organized in five sections:

1. Semi-algebraic sets and mappings
2. Basic notions in Lipschitz geometry
3. Lipschitz geometry of semialgebraic curves and surfaces
4. Bi-Lipschitz invariance of the tangent cone
5. Lipschitz theory of singularity.

In these notes we restrict our presentation to semialgebraic sets in Euclidean
spaces. Most results can be extended to the class of subanalytic sets. Both, semial-
gebraic and subanalytic sets are examples of o-minimal structures. An Appendix on
definable sets in o-minimal structures by Nhan Nguyen is presented at the end of
the notes.

I would like to thank the organizers of the International School on Singularities
and Lipschitz Geometry for the invitation to teach the course Basics on Lipschitz
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Geometry and to make available these lecture notes. I am also grateful to Lev
Birbrair and Alexandre Fernandes for very helpful discussions on the material
presented here. It is a pleasure to thank Nhan Nguyen for writing the Appendix
on o-minimal structures. Thanks are also due to Saurabh Trivedi and Nhan Nguyen
for reading and making some corrections to these notes and to Pedro Benedini Riul
for the help with the figures.

I am also grateful to the referee for his/her careful reading and suggestions that
improved very much the presentation of these notes.

5.2 Semialgebraic Sets and Mappings

In this section we define semialgebraic sets and study their properties. Semialgebraic
geometry is the study of sets of real solutions of polynomial equations and
polynomial inequalities. Semialgebraic sets have a simple topology. In a small
neighborhood of a singular point, a semialgebraic set is topologically equivalent
to a cone over the link. Moreover, the homeomorphism can be chosen to be
semialgebraic.

Semialgebraic sets are examples of o-minimal structures. For a brief introduction
to definable sets in o-minimal structures see the Appendix.

5.2.1 Definitions and Basic Properties

We start reviewing the notion of algebraic sets.

Definition 5.2.1 A setX ⊂ R
n is said to be an algebraic set if there are polynomial

functions fi : Rn→ R, i = 1, . . . , k such that

X = {x ∈ R
n| f1(x) = 0, . . . , fk(x) = 0}.

In a similar way we can define complex algebraic sets, replacingR by C in the above
definition.

Remark 5.2.2 In the real setting, we can say that X is algebraic if there exists a
polynomial function f : Rn → R such that X = {x ∈ R

n| f (x) = 0} by taking
f = f 2

1 + · · · + f 2
k .

Example 5.2.3 Sn−1 = {(x1, . . . , xn) ∈ R
n| x2

1 + · · · + x2
n = 1} is an algebraic set

in R
n. In fact, let f (x1, . . . , xn) =∑n

1=1 x
2
i − 1 then Sn−1 = f−1(0).

Proposition 5.2.4 Let X,Y be algebraic sets in R
n. Then X ∪ Y and X ∩ Y are

algebraic sets.
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Proposition 5.2.5 Let Y ⊂ R
p be an algebraic set and F : Rn→ R

p a polynomial
mapping. Then F−1(Y ) ⊂ R

n is an algebraic set.

At this point a natural question is whether the image of an algebraic set under a
polynomial mapping is an algebraic set. This is not always true, as we can see in the
following example.

Example 5.2.6 Let S1 = {(x, y)| x2+y2 = 1} ⊂ R
2 and π : R2 → R, π(x, y) = x.

We know that S1 is an algebraic set but π(S1) = [−1, 1] is not algebraic.

This example motivates the introduction of a larger class of objects called
semialgebraic sets. We start with some notations.

Let f, g : (X, a) → (R, 0) be germs of non-negative continuous functions
defined on a subset X in R

n, a ∈ X. We denote f � g when there exists a
neighborhood U of a in X and a constant K such that f (x) ≤ Kg(x), ∀x ∈ U.
We denote f ≈ g when f � g and g � f. Also, we denote f ≺≺ g when
limx→a f (x)g(x)

= 0 and f (( g when limx→a g(x)f (x)
= 0.

Definition 5.2.7 A subset X of R
n is said to be semialgebraic if there exist

polynomial functions fi,j , gi,j : Rn→ R, 1 ≤ i ≤ p, 1 ≤ j ≤ q such that

X = ∪pi=1 ∩qj=1 {x ∈ R
n| fi,j (x) = 0; gi,j (x) > 0}.

Proposition 5.2.8 The following properties hold:

1. An algebraic set is semialgebraic.
2. In R, semialgebraic sets are finite unions of intervals and points.
3. If X,Y ⊂ R

n are semialgebraic sets then X ∪ Y, X − Y, and X ∩ Y are
semialgebraic.

4. If X ⊂ R
n and Y ⊂ R

p are semialgebraic sets then X × Y ⊂ R
n × R

p is a
semialgebraic set.

Theorem 5.2.9 (Tarski-Seidenberg) Let π : Rn × R
p → R

p be the canonical
projection. If X ⊂ R

n × R
p is semialgebraic then π(X) is also semialgebraic.

Definition 5.2.10 Let X ⊂ R
n be a semialgebraic set. A mapping F : X → R

p is
said to be semialgebraic if its graph,

graph(F ) = {(x, y) ∈ R
n × R

p | y = F(x)}

is a semialgebraic subset of Rn × R
p.

The following results are consequences of Tarski-Seidenberg Theorem.

Corollary 5.2.11 IfX ⊂ R
n is semialgebraic and F : Rn → R

p is a semialgebraic
map then F(X) is a semialgebraic set of Rp.

Corollary 5.2.12 If X ⊂ R
n is semialgebraic then the closure X and the interior

Xo of X are also semialgebraic.
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Fig. 5.1 Whitney umbrella

Exercise 5.2.13 Prove Corollaries 5.2.11 and 5.2.12.

Example 5.2.14 (The Whitney Umbrella (Cross-Cap)) Let f (x, y, z) = z2 − x2y.

Then X = f−1(0) is an algebraic set in R
3 called Whitney umbrella. The image of

the map � : R2 → R
3 given by �(u, v) = (u, v2, y) is a parametrization of the

semialgebraic set {f = 0, y ≥ 0} (Fig. 5.1).

5.2.2 Semialgebraic Arcs and Curve Selection Lemma

Let f : [0, α) → R be a continuous semialgebraic function with f (0) = 0. Up to
reducing α, the function f is a converging Puiseux series

f (t) =
∑

k≥1

akt
k/p , (5.1)

where p is a positive integer (see [Wal04, BCR98]).
The order of such an f is defined as ord(f ) = q

p
where q = min{k|ak �= 0}.

Exercise 5.2.15 Verify that the function f is C1 if and only if ord(f ) ≥ 1.

Definition 5.2.16 A semialgebraic arc at x0 ∈ R
n is the image γ ([0, ε)) of a C1-

semialgebraic map γ : [0, ε)→ R
n, γ (0) = x0.

It follows that a semialgebraic arc at x0 ∈ R
n is a converging Puiseux power

series of the form

[0, ε)→ R
n (5.2)

t 
→ γ (t) = x0 +
∑

k≥1

ukt
k/p (5.3)
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for p a positive integer and uk ∈ R
n(see [BCR98, GBGPPP17].)

Remark 5.2.17 A semialgebraic arc admits a reparametrization s → t (s) into a
converging Puiseux series s → γ (s) such that ‖γ (s)− x0‖ ≈ s so that

γ (s) = x0 + sv(s) = x0 + s
⎡

⎣ u0

‖u0‖ +
∑

�≥1

s
�/r v�

⎤

⎦

for r a positive integer and vl ∈ R
n. Notice that lims→0

γ (s)−x0
‖γ (s)−x0‖ =

u0‖u0‖ .

Definition 5.2.18 The tangent cone to the image of γ at x0 is the half line R≥0u0.

We denote it C0(γ ).

The Curve Selection Lemma stated and proved by Milnor in [Mil68] is a
fundamental result in the local structure of semialgebraic sets. The first versions
of this lemma appeared for the first time around the middle of last century in the
works of Bruhat and Cartan [BC57] (see also Wallace [Wal58] and Moreira and
Ruas [MR09]).

Lemma 5.2.19 (Curve Selection Lemma) Let V be a semialgebraic set in R
n and

x0 ∈ V̄ \V. Then there exists a continuous semialgebraic mapping p : [0, ε)→ R
n,

with p(0) = x0 and p(t) ∈ V for every t > 0.

Remark 5.2.20 The parametrization of the curve in this lemma can be assumed to
be analytic, see [BCR98].

See Theorem 5.7.8 in the Appendix for the general version of the Curve Selection
lemma for definable sets in o-minimal structures.

5.2.3 The Conic Structure Theorem

We denote by B(x0, ε) (resp. S(X0, ε)) the closed ball (resp. the sphere) with center
at x0 and radius ε. Given a topological space Z the cone of vertex x0 and base Z is
the set

Cone(Z, x0) = {y = (1− t)x0 + tx, x ∈ Z, 0 ≤ t ≤ 1}.

Let X be a semialgebraic subset of Rn and x0 ∈ X. Let B̄(x0, ε) (respectively
S(x0, ε)) be the closed ball (respectively the sphere) with center in x0 and radius
ε and let K(x0,X) = X ∩ S(x0, ε) for a sufficiently small ε > 0. The
next result, called the Conic Structure Theorem, shows that in a neighborhood
of a point x0 of a semialgebraic set X, the intersection of X with a ball is
semialgebraically homeomorphic to the cone of the intersection ofXwith the sphere
(see [BR90, BCR98]).
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Theorem 5.2.21 ( Conical Structure) For ε > 0, sufficiently small, there is a
semialgebraic homeomorphism

h : B̄(x0, ε) ∩X→ Cone(K(x0,X))

such that ‖h(x)− x0‖ = ‖x − x0‖ and h|K(x0,X) = Id.

The proof of Theorem 5.2.21 follows by applying Hardt’s semialgebraic triv-
ialization Theorem to the (continuous, semialgebraic) distance function in R

n,

ρ(x) = ‖x − x0‖. The reader can see the statement and the proof of Hardt’s
Theorem in [BR90] or [BCR98], for instance. Hardt’s Theorem for definable sets in
o-minimal structures is Theorem 5.7.11 in the Appendix.

For every ε > 0 sufficiently small it follows that we can associate to the
semialgebraic distance function ρ : X→ (0, ε], the semialgebraic homeomorphism

{x ∈ R
n; 0 < ‖x − x0‖ ≤ ε} → (0, ε] × S(x0, ε)

x 
→ (‖x − x0‖, h̃(x))

where h̃(x) = x0+ ε
‖x−x0‖ (x−x0). This homeomorphism is compatible withX and

satisfies the condition h̃|S(x0,ε) = Id. Then, the homeomorphism

h(x) = x0 + ‖x − x0‖
ε

(h̃(x)− x0),

gives the result.

Corollary 5.2.22 For ε > 0, sufficiently small the semialgebraic topological type
of the set K(x0,X) = X ∩ S(x0, ε) does not depend on ε.

It follows from this corollary that the set K(x0,X) is a topological invariant of
X at x0.We call it the link at x0 in X.When x0 andX are clear from the context we
denoteK(x0,X) simply by K.

Remark 5.2.23 The Conic Structure Theorem for complex algebraic hypersurfaces
with isolated singularities was proved by Milnor [Mil68], Theorem 2.10. We
recommend to the reader to compare the results of this section with the notes by
Haydée Aguilar-Cabrera and José Luis Cisneros-Molina, Geometric viewpoint of
Milnor’s Fibration Theorem, [ACCM19], published in the present volume.

5.3 Basic Concepts on Lipschitz Geometry

In this section we review the basic definitions and properties of metric structures on
topological spaces. The notion of Lipschitz normal embedding plays a central role
in Lipschitz geometry and classification of singular spaces.
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5.3.1 Inner and Outer Metrics: Lipschitz Normal Embeddings

Let X and Y be metric spaces.

Definition 5.3.1 A map f : X→ Y is Lipschitz if there exists a positive constant
k ∈ R such that for every x1, x2 ∈ X, we have

dY (f (x2), f (x1)) ≤ kdX(x2, x1),

where dY and dX are the metrics in Y and X, respectively.

A bi-Lipschitz homeomorphism between two metric spaces X and Y is a
Lipschitz homeomorphism h : X → Y whose inverse h−1 : Y → X is also
Lipschitz. Bi-Lipschitz maps are the isomorphisms in the category of metric spaces.

Let X be a subset of Rn. There are two natural metrics defined on X, the outer
metric

dout(x, y) = ‖x − y‖

which is the induced Euclidean metric on X and the inner metric or ( intrinsic
metric)

din(x, y) = inf
γ∈"(x,y) l(γ )

where "(x, y) is the set of rectifiable arcs γ : [0, 1] → X with γ (0) = x and
γ (1) = y and l(γ ) is the length of γ.

Is clear that dout(x, y) ≤ din(x, y) but the converse does not hold in general.

Definition 5.3.2 We say that X is Lipschitz normally embedded ( LNE) if there
exists k > 0 such that for all x, y ∈ X, we have

din(x, y) ≤ kdout(x, y). (5.4)

Any convex subset of Kn is a trivial example of Lipschitz normally embedded
set. For an example of a set which is not Lipschitz normally embedded consider the
(real or complex) curve defined by x3 − y2 = 0 (see Example 1.8 in [Pic19]). Then

dout((t
2, t3), (t2,−t3)) = 2|t|3

but,

din((t
2, t3), (t2,−t3)) = 2|t|2 + o(t2).
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Then

lim
t→0

din((t
2, t3), (t2,−t3))

dout((t2, t3), (t2,−t3)) = +∞

and hence there cannot exist a constant k satisfying (5.4).

Definition 5.3.3 A space X is locally Lipschitz normally embedded at x ∈ X if
there is an open neighborhoodU in X such that U is Lipschitz normally embedded.
We say that X is locally normally embedded if this condition holds at each x ∈ X.

In his thesis Sampaio [Sam15, Example 4.4.7] (see also Sampaio [Sam20])
proves that the cone z3 = x3 + y3 in R

3 is Lipschitz normally embedded. It is
possible to generalize his proof to the complex case and to higher dimensions.

The next proposition extends Sampaio’s result for metric cones whose links are
also Lipschitz normally embedded.

Proposition 5.3.4 (Proposition 2.8, [KPR18]) Let X ⊂ K
n be the semialgebraic

cone over the link L ⊂ S with vertex at the origin in K
n, where S = Sn−1 if K = R

and S = S2n−1 if K = C. Then, the following conditions hold:

1. If L is Lipschitz normally embedded then X is Lipschitz normally embedded.
2. If X is Lipschitz normally embedded and L is compact then each connected

component of L is Lipschitz normally embedded.

Proof We will prove 1. Since L is Lipschitz normally embedded with Lipschitz
constant KL, the same is true for the scaled version rL = {x ∈ X| ‖x‖ = r} where
r ∈ R

+.
Let x, y ∈ X. We first assume 0 ≤ ‖x‖ ≤ ‖y‖. If x = 0, then dXin (x, y) =

dout(x, y) since the straight line through 0 and y is in X, because X is a cone with
vertex at the origin.

If ‖x‖ = ‖y‖ = r, then x and y are both in rL and hence

dXin (x, y) ≤ drLin (x, y) ≤ KLdout(x, y).

Now if, 0 < ‖x‖ < ‖y‖, we let y ′ = y
‖y‖‖x‖. Then, dXin (y, y

′) = dout(y, y
′)

since both lie in the same straight line through the origin. Let r = ‖x‖. Then x, y ′ ∈
rL and like before dXin (x, y

′) ≤ KLdout(x, y
′). Now y ′ is the closest point to y in

rL. Hence all of rL lies on the other side of the hyperplane through y ′ orthogonal
to the line yy ′. So, in the triangle yy ′x, the angle at y ′ is > π

2 . Then dout(y, x) ≥
dout(y, y

′) and dout(y, x) ≥ dout(y
′, x) and we obtain

dXin (x, y) ≤ dXin (x, y ′)+ dXin (y ′, y)
KLdout(x, y

′)+ dout(y
′, y)

≤ (KL + 1)dout(x, y),
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and X is Lipschitz normally embedded.
We leave the proof of item (2) to the reader. �

Corollary 5.3.5 Let (X, 0) be an algebraic hypersurface in K
n (K = R or C)

defined by a homogeneous polynomial with isolated singularity. ThenX is Lipschitz
normally embedded.

Example 5.3.6 The D4-singularity X = f−1(0) with f (x, y) = x2y + y3 is
Lipschitz normally embedded.

The notion of (Lipschitz) normally embedded subsets was defined by L. Birbrair
and T. Mostowski in [BM00]. Their main result is the Normal Embedding theorem
stated below.

Theorem 5.3.7 (Normal Embedding Theorem) Let X ⊂ R
n be a compact

semialgebraic set equipped with the inner metric. Then there is a Lipschitz normally
embedded semialgebraic set X̃ ⊂ R

m which is bi-Lipschitz homeomorphic to
(X, din).

Exercise 5.3.8 (β-Horn Surface) The semialgebraic surface in R
3 defined by

X = {(x, y, z)| (x2 + y2)q = z2p, z ≥ 0}

with β = p
q
≥ 1 is Lipschitz normally embedded.

Example 5.3.9 (E8−Singularity) Let f : R3 → R, f (x, y, z) = x2 − y3 + z5 and
X = {(x, y, z) ∈ R

3| f (x, y, z) = 0}.
The polynomial f is the normal form of the real E8 singularity.
We outline here the argument of A. Fernandes (personal communication) to

prove that E8 is not Lipschitz normally embedded.

In fact, let γ±(t) = (±t 3
2 , t, 0), t ∈ R be the two branches of the curveX∩ {z =

0}, and let β be the curve defined by X ∩ {x = 0}. The common unit tangent vector
to γ+ and γ− at t = 0 is (0, 1, 0), while the tangent to the curve β at the origin is
(0,0,1), see Fig. 5.2.

Now for any fixed t, if C is any arc in X from γ−(t) to γ+(t) then C always
intersect β.We denote byQ = (0, ȳ, z̄) this intersection point (we can assumeQ is
unique).

We have din(γ−(t), γ+(t)) = infC l(C) where l(C) = l(C−) + l(C+) and C−
and C+ are the arcs from γ−(t) and γ+(t), toQ. Then it is easy to verify that:

l(C) ≥ ‖γ−(t)−Q‖ + ‖γ+(t)−Q‖ = 2
√
t3 + (t − ȳ)2 + z̄5 ≈ t,
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Fig. 5.2 E8 is not Lipschitz
normally embedded. (a)
x2 − y3 + z5 = 0. (b)
din(γ

−(t), γ+(t)) =
infC l(C)

(a)

(b)

for ȳ, z̄ sufficiently small. The argument now is similar to the previous argument to
show that the cusp x2 − y3 = 0 is not locally normally embedded at the origin, that
is,

din(γ
−(t), γ+(t))

dout(γ−(t), γ+(t))
,→∞

when t → 0, and the result follows.

5.3.2 Existence of Extension of Lipschitz Mappings

We finish this section with a few theorems about existence of extension of Lipschitz
mappings.

The Theorem of Kirszbraun considers the problem of extending Lipschitz
functions. It says that a c−Lipschitz function f : Y → R can be extended to a
c−Lipschitz function f : X → R, where Y is a metric subspace of X. In 1934, E.
McShane in [McS34] found a new proof with an explicit formula for the extension.
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We state here a weaker version of Kirszbraun’s Theorem including McShane’s
formula in the statement.

Theorem 5.3.10 (Kirszbraun’s Theorem) Let X be a subset of Rn equipped with
the outer metric and f : X→ R be a c−Lipschitz map. Then

F(z) = sup
x∈X
(f (z)− c‖x − z‖), z ∈ R

n

is a c−Lipschitz extension of f.

We recall a classical criterion to verify if a given semialgebraic function is Lipschitz.

Lemma 5.3.11 Let U be a convex open subset of Rn and f : U → R a continuous
semialgebraic function. If Df (x) exists and ‖Df (x)‖ ≤ M except for a finite
number of points in U, then F is Lipschitz with Lipschitz constant also bounded
byM.

The following proposition proved in [FKK98] justifies the usefulness of working
with semialgebraic bi-Lipschitz homeomorphisms.

Proposition 5.3.12 Let h : (Rn, 0) → (Rn, 0) be a semialgebraic homeomor-
phism. Then h is bi-Lipschitz if and only if for every pair of analytic curves
α1, α2 : [0, δ)→ (Rn, 0) we have

ordt‖h(α1(t))− h(α2(t))‖ = ordt‖α1(t)− α2(t)‖

5.4 Lipschitz Geometry of Real Curves and Surfaces

We present here the main ingredients we need to classify real semialgebraic sets of
dimensions 1 and 2. The results are due to L. Birbrair and A. Fernandes, [Bir99,
BF00] and [Fer03].

Definition 5.4.1 Let X,Y be semialgebraic sets in R
n and dX and dY chosen

metrics in X and Y respectively. We say that X,Y are bi-Lipschitz equivalent
if there exists a bi-Lipschitz homeomorphism h : (X, dX) → (Y, dY ) such that
h(X) = Y. If h is semialgebraic we say thatX,Y are semialgebraically bi-Lipschitz
equivalent.

Similarly, we say that the germs (X, x0) and (Y, y0) are bi-Lipschitz equivalent
if there exists a germ of a bi-Lipschitz homeomorphism h : (X, x0) → (Y, y0)

satisfying the conditions of the definition above.
In these notes we distinguish three kinds of bi-Lipschitz equivalence:

(1) inner bi-Lipschitz equivalence when dX and dY are inner metrics in X and Y,
respectively,
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Fig. 5.3 Semialgebraic arc

(2) outer bi-Lipschitz equivalence when dX and dY are outer metrics, that is, the
Euclidean metric induced in X and Y, respectively,

(3) ambient bi-Lipschitz equivalence when there exists a germ of a bi-Lipschitz
homeomorphism h : (Rn, x0)→ (Rn, y0) such that h(X) = Y.

5.4.1 Lipschitz Geometry of Semialgebraic Curves

As we have seen in Sect. 5.2 a semialgebraic arc A is the image γ ([0, ε)) of a C1-
semialgebraic map γ : [0, ε)→ R

n, γ (0) = x0. It has a Puiseux series expansion

γ (t) = x0 +
∑

k≥1

ukt
k/p

where p is a positive integer and uk ∈ R
n (Fig. 5.3).

Remark 5.4.2 Notice that every arc is Lipschitz normally embedded.

Proposition 5.4.3 Every arc in R
n is bi-Lipschitz outer equivalent to a segment.

Corollary 5.4.4 If (X, 0) is the germ of a semialgebraic curve in R
n, then (X, 0)

is inner bi-Lipschitz equivalent to a star with r segments, where r is the number of
half-branches (Xi, 0) of (X, 0).

Proof Let vi denote the vectors defining the segments of the star L =
∪i∈rLi, ‖vi‖ = 1 (Fig. 5.4).

We define

�i :Xi → Li

x 
→ |x|vi

and

� :(X, 0)→ L

x 
→ �i(x), if x ∈ Xi.
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Fig. 5.4 Inner bi-Lipschitz geometry of a semialgebraic curve

Then, denoting by xi points in Xi , we have

din(�(xi),�(xj )) ≤ din(�(xi), 0)+ din(0,�(xj ))
≤ λ(din(xi, 0)+ din(xj , 0))
= λdin(xi, xj )

The contact order between arcs that we define now is an important invariant for
the bi-Lipschitz equivalence of semialgebraic curves.

Definition 5.4.5 Let A and B be arcs, we define the contact order betweenA and
B as

tord(A,B) = ordrdist(A ∩ S(0, r), B ∩ S(0, r)),

where S(0, r) is the sphere of center 0 and radius r in R
n.

Proposition 5.4.6 Let A = γ ([0, ε)) and B = β([0, ε)) be two semialgebraic arcs
at x0 = 0 in R

n such that their tangent cones are distinct (see Definition 5.2.18).
Then tord(A,B) = 1.

Proof From Remark 5.2.17, we can reparametrize A and B to get

γ (s) = s
⎛

⎝ u0

‖u0‖ +
∑

�≥1

s
�/r u�

⎞

⎠ ,

β(s) = s
⎛

⎝ w0

‖w0‖ +
∑

�≥1

s
�/rw�

⎞

⎠ ,
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where u0, w0, ul, wl are vectors in R
n. The hypothesis imply that u0 and w0 are not

parallel.
Then ord(dist(γ (s), β(s))) = 1. �

Example 5.4.7 Let x2 − y3 = 0 and x4 − y7 = 0 be two algebraic curves in R
2.

Then the contact order between the branches A : x = y 3
2 and B : x = y 7

4 , y ≥ 0 is

tord(A,B) = ord(dist((y
3
2 , y), (y

7
4 , y))) = ord(|y| 32 |1− y 1

4 |) = 3

2

Example 5.4.8 Let γ, β : [0, ε)→ R
3, given by

γ (t) = (t, t 4
3 , t

5
2 + t 7

4 ),

and

β(t) = (t, t 5
2 , t

7
3 + t 8

5 ).

Then tord(γ (t), β(t)) = 4
3 .

Exercise 5.4.9 Let σ : (Rn, 0) → (Rn, 0) be the germ of a semialgebraic diffeo-
morphism. Let A and B be semialgebraic arcs in (Rn, 0). Prove that tord(A,B) =
tord(σ (A), σ (B)).

In the next proposition we prove that tord(A,B) is a Lipschitz invariant with
respect to the outer metric. We define the following auxiliary relation.

Definition 5.4.10

t̃ord(A,B) = ordrdist(A \ B(0, r), B \ B(0, r)).

Lemma 5.4.11 (Comparison Lemma [BF00]) tord(A,B) = t̃ord(A,B).

Proposition 5.4.12 tord(A,B) is a Lipschitz invariant with respect to the outer
metric.

Proof Let σ be a bi-Lipschitz map, σ(A) = A1, σ (B) = B1. Then,

dout(A ∩ S(0, r), B ∩ S(0, r)) = |x(r)− y(r)| ≥ k|σ(x(r))− σ(y(r))|

≥ kdout(A1 \ B(0, 1

λ
r), B1 \ B(0, 1

λ
r)),

where we assume r
λ
= ‖σ(x(r))‖ ≤ ‖σ(y(r))‖. Hence,

tord(A,B) ≥ t̃ord(A1, B1)
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By the Comparison Lemma we have t̃ord(A1, B1) = tord(A1, B1), hence it
follows that tord(A,B) ≥ tord(A1, B1). The converse follows similarly. �

We are now ready to state and prove the classification theorems for semialgebraic
curves. We organize the proofs in three parts.

First, in Theorem 5.4.13, we prove that the contact between the pairs of branches
is a complete invariant for the outer bi-Lipschitz equivalence of curves in R

n.

In Lemmas 5.4.15, 5.4.17 and Proposition 5.4.19 we give the main steps of the
classification of plane curves with respect to the ambient bi-Lipschitz equivalence.

Finally, in Theorem 5.4.20 we state and prove the classification of curves in R
n

with respect to ambient bi-Lipschitz equivalence.

Theorem 5.4.13 Let (X, 0) and (Y, 0) be semialgebraic curves with branches
X1, . . . , Xl and Y1, . . . , Ys respectively. Then, (X, 0) is outer bi-Lipschitz equiv-
alent to (Y, 0) if and only if l = s and there is a permutation σ of {1, . . . , l} such
that

tord(Xi,Xj ) = tord(Yσi , Yσj ) i, j ∈ {1, 2, . . . , l}.

Proof We know that the number of branches is a topological invariant of semi-
algebraic curves (Theorem 5.2.21). Let F : (X, 0) → (Y, 0) be a bi-Lipschitz
homeomorphism with respect to the outer metric, such that F(Xi) = Yσi . Then,
from Proposition 5.4.12 it follows that tord(Xi,Xj ) = tord(Yσi , Yσj ). To prove the
converse, for x ∈ Xi we define F(x) = Yσi ∩ S(0, |x|). We have already seen
that F |Xi : Xi → Yσi is outer bi-Lipschitz. To complete the proof we show
that F : X → Y is bi-Lipschitz. In fact, supposing the contrary, we would have
xi(r) ∈ Xi, xj (r) ∈ Xj such that ‖xi(r) − xj (r)‖ � ‖F(xi(r))− F(xj (r))‖ and
this would imply tord(Xi,Xj ) �= tord(Yσi , Yσj ), a contradiction. �
Remark 5.4.14 We write tord(X, x) = tord(Y, y) to indicate that there is a bijection
σ : I → J such that tord(Xi,Xj ) = tord(Yσ(i), Yσ(j)) for each pair i �= j ∈ I.

We now want to prove that the contact between branches is a complete invariant
for the (semialgebraic) bi-Lipschitz ambient equivalence between X and Y in R

n.

We first deal with plane curves. Let f : [0, δ] → R, Af = {(x, y) ∈ R
2|x ≥

0, y = f (x)}. When f (x) = xα we denote Af = Aα. Interchanging the axis x
and y, if necessary, we can assume α ≥ 1.

Lemma 5.4.15 Let f : [0, δ] → R, be a semialgebraic function with Newton-
Puiseux decomposition in x = 0 given by f (x) = xαh(x), with h(0) > 0 and
α ≥ 1. Let F : (R2, 0)→ (R2, 0) be the semialgebraic map-germ defined by

F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(x,
y
h(x)

) if (x, y) ∈ Q and 0 ≤ y ≤ f (x),
(x, y − f (x)+ xα) if (x, y) ∈ Q and 0 ≤ f (x) ≤ y,
(x, y) if (x, y) /∈ Q.
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whereQ = [0, δ] × [0, ε] with ε = maxx∈[0,δ] f (x).
Then F is a semialgebraic bi-Lipschitz map-germ such that F(Af , 0) = (Aα, 0)

and it is the identity in the complement ofQ.

Proof F clearly defines a semialgebraic homeomorphism such that (F (Af ), 0) =
(Aα, 0). To show that F is bi-Lipschitz in Q it is enough to show its derivative is
bounded. �
Remark 5.4.16 As a consequence of Lemma 5.4.15 it follows that if f, g : [0, δ] →
R are semialgebraic functions with the same first Newton-Puiseux exponent α in
x = 0, α ≥ 1 then there is a semialgebraic bi-Lipschitz F : (R2, 0)→ (R2, 0) such
that F(Af ) = Ag. That is, Af and Ag are ambient outer bi-Lipschitz equivalent.

Lemma 5.4.17 Let fi, gi : [0, δ] → R be semialgebraic functions with fi(0) =
gi(0) = 0 and 0 ≤ fi(x), gi(x) ≤ ε for i = i, . . . ,m. Let us suppose that their first
Newton-Puiseux exponent are bigger than or equal to one. Let X = ∪igraph(fi)
and Y = ∪igraph(gi). If tord(X, 0) = tord(Y, 0), then there exists a semialgebraic
bi-Lipschitz map-germ F : (R2, 0) → (R2, 0) such that F(X) = Y, and F is the
identity in the complement ofQ = [0, δ] × [0, ε].
Proof We can assume fm ≤ fm−1 ≤ · · · ≤ f1 and gm ≤ gm−1 ≤ · · · ≤ g1 and
prove the result by induction on m.

If m = 2 the result follows from Lemma 5.4.15. Applying Lemma 5.4.15
again, we can assume fm = gm = λ where λ(x) = xαh(x), h(0) > 0. Let
X̃ = ∪m−1

i=1 graph(f̃i ), Ỹ = ∪m−1
i=1 graph(g̃i ), where f̃i = fi − λ and g̃i = gi − λ for

i = 1, . . . ,m− 1.
By induction hypothesis, there exists a semialgebraic bi-Lipschitz map-germ

F̃ : (R2, 0) → (R2, 0) such that F̃ (X̃) = Ỹ , and F̃ is the identity outside Q. We
define σ : (R2, 0) → (R2, 0) by σ(x, y) = (x, y − λ(x)). Then, F : (R2, 0) →
(R2, 0) defined by F = σ−1 ◦ F̃ ◦ σ is a semialgebraic bi-Lipschitz map-germ such
that F(X, 0) = (Y, 0) and is the identity in the complement ofQ. �
Remark 5.4.18 Let c > 0 and K = {(x, y) ∈ R

n| 0 ≤ x, 0 ≤ y ≤ cx}. Then
� : (R2, 0) → (R2, 0) defined by �(x, y) = (cx − y, y) is a semialgebraic bi-
Lipschitz map such that φ(K) = Q. So, in the statement of Lemma 5.4.17 we can
take the map-germ F : (R2, 0)→ (R2, 0) such that F(X) = Y and F is the identity
outside the coneK.

Proposition 5.4.19 Let X, Y ⊂ R
2 be semialgebraic curves and x ∈ X, y ∈ Y.

If tord(X, x) = tord(Y, y), then there exists a semialgebraic bi-Lipschitz map-germ
F : (R2, x)→ (R2, y) such that F(X) = Y.
Proof We take x = y = 0 in R

2. If tord(X, 0) = tord(Y, 0), it follows from
Theorem 5.4.13 that the number r of half lines tangent to (X, 0) is the same as
number of the ones tangent to (Y, 0). Then we can separate the branches of (X, 0),
respectively (Y, 0), in conesKX1 , . . . ,K

X
r , respectivelyKY1 , . . . ,K

Y
r , that intersect

only at the origin, and such that two branches of (X, 0), respectively (Y, 0), belong
to the same cone if and only if they have the same unit tangent vectors at the origin.
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Since tord(X, 0) = tord(Y, 0), we can enumerate the cones in such a way that

tord(X ∩KXi , 0) = tord(Y ∩KYi , 0)

for each i = 1, . . . , r.
From Lemma 5.4.17, for each i = 1, . . . , r, there is a semialgebraic bi-Lipschitz

map-germ

Fi : (R2, 0)→ (R2, 0)

such that Fi(X ∩KXi , 0) = (Y ∩KYi , 0) and Fi is the identity in the complement of
the cone KXi .

We define F : (R2, 0)→ (R2, 0) as F(x, y) = Fi(x, y) if (x, y) ∈ KXi for some
i and F(x, y) = (x, y) otherwise. �
Theorem 5.4.20 Let (X, x) and (Y, y) be germs of semialgebraic curves in R

n

with branches X = ∪i∈IXi and Y = ∪i∈I Yi . If σ : I → J is a bijection such
that tord(Xi,Xj ) = tord(Yi , Yj ), for each pair i �= j ∈ I, then there exists a
semialgebraic bi-Lipschitz F : (Rn, x)→ (Rn, y) such that F(X) = Y.
Proof We prove by induction on n ≥ 2.The case n = 2 follows from Lemma 5.4.17
and Proposition 5.4.19. Let n ≥ 2 and (X, x) and (Y, y) be semialgebraic curves in
R
n+1 such that tord(X, x) = tord(Y, y). We assume by the induction hypothesis that

the theorem holds for semialgebraic curves in R
n. Let us assume with no loss of

generality that x = y = 0 ∈ R
n+1.

Let% : (Rn+1, 0)→ (Rn, 0) be a orthogonal projection such that its kernel does
not contain the tangent cones of X and Y . Then % induces semialgebraic outer bi-
Lipschitz homeomorphisms (X, 0) ) (%(X), 0) and (Y, 0) ) (%(Y ), 0). Hence
by Theorem 5.4.13, tord(%(X), 0) = tord(X, 0) and tord(%(Y ), 0) = tord(Y, 0).
Moreover, the semialgebraic bi-Lipschitz map-germs f1 : (%(X), 0)→ (R, 0) and
f2 : (%(Y ), 0) → (R, 0) with f1 = %−1|%(X) and f2 = %−1|%(Y) are such that
graph(f1(%(X))) = X and graph(f2(%(Y ))) = Y.

By Kirszbraun’s Theorem (Theorem 5.3.10), there are Lipschitz semialgebraic
extensions �1,, �2 : (Rn, 0) → (R, 0) of f1, f2, respectively. Notice that these
extensions are semialgebraic.

Let Fi, F2 : (Rn+1, 0)→ (Rn+1, 0) be defined by

Fi(z1, . . . , zn, zn+1) = (z1,, . . . , zn, zn+1 −�i(z1, . . . , zn)),

for i = 1, 2. Then, there are semialgebraic curves X̃ and Ỹ in R
n such that

(F1(X), 0) = (X̃ × 0, 0) and (F2(Y ), 0) = (Ỹ × 0, 0).
As Fi are germs of semialgebraic bi-Lipschitz homeomorphisms, it follows that

tord(X̃, 0) = tord(X, 0) = tord(Y, 0) = tord(Ỹ , 0).
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By the induction hypothesis, there exists a bi-Lipschitz semialgebraic map-germ
F̃ : (Rn, 0)→ (Rn, 0) such that F̃ (X̃) = Ỹ .

Finally, let F3 : (Rn+1, 0)→ (Rn+1, 0) given by

F3(z1, . . . , zn, zn+1) = (F̃ (z1,, . . . , zn), zn+1).

Then F = F−1
2 ◦ F3 ◦ F1 satisfies the required conditions and F(X) = Y.

5.4.2 Lipschitz Geometry of Real Surfaces

A semialgebraic surface X ⊂ R
n is a semialgebraic set of pure dimension 2. In this

section we study the inner local classification of surfaces with respect to bi-Lipschitz
equivalence.

The classification of real semialgebraic and subanalytic surfaces was investigated
by several authors independently, using different notations and terminology.

We first discuss this classification for surfaces with isolated singularity based
on [Bir99] and [Val05]. A summary of the proof of the classification for general
semialgebraic surfaces (Theorem 8.1 in [Bir99]) is presented in Sect. 5.4.2.1.

Definition 5.4.21 A standard β−Hölder triangle Tβ , β ∈ [1,∞) ∩ Q, is the
semialgebraic set in R

2 defined by {(x, y) ∈ R
2| 0 ≤ y ≤ xβ, 0 ≤ x ≤ 1} (Fig. 5.5).

Proposition 5.4.22 The β−Hölder triangle Tβ is Lipschitz normally embedded.

Proof Let p, q ∈ Tβ and let pq be the segment joining these two points. There are
two possibilities

(1) pq is contained in Tβ.
(2) pq intersects the curve y = xβ, 0 ≤ x ≤ 1 in two points. �
If (1) holds, it follows that din(p, q) = dout(p, q) (Fig. 5.5).

If (2) holds, let p′, q ′ be the two points of intersection of pq and the curve y =
xβ, 0 ≤ x ≤ 1. We can write p′ = (x0, x

β

0 ) and q ′ = (x1, x
β

1 ) where 0 ≤ x0 <

x1 ≤ 1. Then

din(p
′, q ′) ≤ |x1 − x0| + |xβ1 − xβ0 | ≤ 2dout(p′, q ′)

Fig. 5.5 β-Hölder triangle
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and hence

din(p, q) ≤ din(p, p′)+ din(p′, q ′)+ din(q ′, q)
≤ dout(p, p′)+ din(p′, q ′)+ dout(q ′, q)
≤ 2dout(p, q).

Remark 5.4.23 Let β1 �= β2. Then the germs Tβ1 and Tβ2 are not bi-Lipschitz
equivalent.

Definition 5.4.24 A semialgebraic subset X of R
n is called β−Hölder triangle

with principal vertex a ∈ X if the germ (X, a) is (semialgebraically) bi-Lipschitz
equivalent to (Tβ, 0).

Remark 5.4.25 We consider in X the inner metric. As Tβ is Lipschitz normally
embedded, we may take any metric on (Tβ, 0).

Definition 5.4.26 A standard β-horn is the semialgebraic set Hβ ⊂ R
3 defined by

Hβ = {(x1, x2, y) ∈ R
3| (x2

1 + x2
2)
q = y2p, y ≥ 0},

where β = p
q
≥ 1 (here p and q are natural numbers.) (Fig. 5.6)

Theorem 5.4.27 Let (X, 0) be the germ at x = 0 of a semialgebraic surface with
isolated singularity at 0, and such that the linkX∩S(0, ε) is connected for all small
ε. Then X is inner bi-Lipschitz equivalent to a β−Horn for some β ∈ Q, β ≥ 1.

A semialgebraic triangle in a semialgebraic germ of surface (X, a) is a β−Hölder
triangle (T, a) with vertex at a.

The proof of Theorem 5.4.27 will follow from the following lemmas. The first
one follows from Theorem 2.2 in [Val05].

Fig. 5.6 β−horn
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Fig. 5.7 Partition in triangles

Lemma 5.4.28 There exists a partition of X in semialgebraic triangles Xi such
that

1. Xi ∩Xj is an arc.
2. For any i, there exists a generic map p : Xi → P ⊂ R

n such that p|Xi is a
bi-Lipschitz map-germ with respect to the inner metric, where P is a 2-plane in
R
n.

Notice that p(Xi) is a semialgebraic triangle in P ) R
2, bounded by 2 arcs γ i1

and γ i2 whose order of contact is tord(γ
i
1 , γ

i
2) = βi (Fig. 5.7).

Lemma 5.4.29 The germ p(Xi) at the origin in R
2 is bi-Lipschitz equivalent to a

standard Hölder triangle Tβ, β = tord(γ1, γ2).

Exercise 5.4.30 Prove Lemma 5.4.29.

Lemma 5.4.31 (Non-archimedean Lemma) Let (T1, β1) and (T2, β2) be stan-
dard Hölder triangles of exponents β1 and β2 and let X be the union T1 ∪ T2 such
that T1 ∩ T2 contains an arc. Then X is bi-Lipschitz equivalent to a Hölder triangle
Tβ, with β = min{β1, β2} (Fig. 5.8).

Proof Let us assume β1 ≤ β2 and

X = {(x, y)| 0 ≤ x ≤ 1,−xβ2 ≤ y ≤ xβ1}.

We define h : [0, 1] × [−1, 1] → Q as h(x, y) = (x, y + xβ2). Then

h(x,−xβ2) = (x, 0),
h(x, 0) = (x, xβ2),

h(x,−xβ1) = (x, xβ1(1+ xβ2−β1)).
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Fig. 5.8 Union of triangles

Hence X is inner bi-Lipschitz equivalent to Tβ, β = min{β1, β2}.
Proof of Theorem 5.4.27 By hypothesis, the link K = X ∩ S(0, ε) of X is
homeomorphic to S1. Then we can decompose K in connected arcs λ1, λ2, . . . , λs
such that they determine triangles (T1, β1) . . . (Ts, βs) satisfying the condition of
Lemma 5.4.28. More precisely, each triangle Ti is determined by the arc λi of the
linkK and arcs at the origin, γ i1 and γ i2 such that tord(γ

i
1 , γ

i
2) = βi. For each pair of

adjacent triangles (Ti, βi), (Ti+1, βi+1) we can apply Lemma 5.4.31, to reduce the
pair to a Hölder triangle with β = min{β1, β2}. In this way, the decomposition ofX
can be reduced to two triangles with common arcs γ1, γ2 and tord(γ1, γ2) = β.

5.4.2.1 The General Case

The link of a semialgebraic surface is a compact semialgebraic subset of dimension
1 of the sphere. Each one dimensional connected component of this set is homeo-
morphic to a finite union of one dimensional spheres S1’s and closed intervals, to
which we can naturally associate a graph.

To prove the bi-Lipschitz Classification Theorem for general semialgebraic
surfaces, Lev Birbrair introduced in [Bir99] a new bi-Lipschitz invariant, the Hölder
Complex. His construction can be summarized as follows:

Let " be a finite graph. We denote by E" the set of edges and by V" be the set of
vertices of ".

Definition 5.4.32 A Hölder Complex is a pair (", β), where β : E" → Q such
that β(g) ≥ 1, for every g ∈ E" . Two Hölder Complexes ("1, β1) and ("2, β2) are
called combinatorially equivalent if there exists a graph isomorphism i : "1 → "2
such that, for every g ∈ E"1 , we have β2(i(g)) = β1(g).

Definition 5.4.33 Let (", β) be a Hölder Complex. A set X ⊂ R
n is called a

(semialgebraic) Geometric Hölder Complex corresponding to (", β) with the
principal vertex a ∈ X if

1. There exists a homeomorphism ψ : C" → X, C" is the topological cone over
",
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2. If α ⊂ C" is the vertex of C" then a = ψ(α),
3. For each g ∈ E", the set ψ(Cg) is a (semialgebraic) β(g)-Hölder triangle with

principal vertex a, where Cg ⊂ C" is the subcone over g.

Theorem 5.4.34 (Theorem 6.1, [Bir99]) LetX ⊂ R
n be a two-dimensional closed

semialgebraic set and let a ∈ X. Then there exist a number δ > 0 and a Hölder
Complex (", β) such thatB(a, δ)∩X is a semialgebraic Geometric Hölder Complex
corresponding to (", β) with the principal vertex a, where B(a, δ) is the closed ball
centered at a of radius δ.

Definition 5.4.35 We say that b is a non-critical vertex of " if it is incident with
exactly two different edges g1 and g2 and these edges connect two different vertices
b1 and b2 with b. If this vertex b is connected by g1 and g2 with only one vertex
b′, b �= b′, we say that b is a loop vertex. The other vertices of " (which are neither
non-critical nor loop) are called critical vertices of ".

Given a Geometric Hölder Complex, there is a simplification process described
by Lev Birbrair (Theorem 7.3, [Bir99]), allowing to assume that every vertex in V"
is a either a critical vertex or a loop vertex. The resulting Geometric Hölder Complex
is called a Canonical Hölder Complex of X at a. Two simplifications of the same
Hölder Complex are combinatorially equivalent (Fig. 5.9).

Theorem 5.4.36 (Birbrair Classification Theorem, Theorem 8.1 [Bir99]) Let
X1,X2 ⊂ R

n be two dimensional semialgebraic subsets with a1 ∈ X1 and a2 ∈ X2.
The germs (X1, a1) and (X2, a2) are bi-Lipschitz inner equivalent if and only if
the Canonical Hölder Complexes of X1 at a1 and X2 at a2 are combinatorially
equivalent.

The computation of the Hölder complex of weighted homogeneous surfaces was
discussed in [BF08b]. We state two theorems of their work.

Theorem 5.4.37 (Theorem 4.1, [BF08b]) LetX ⊂ R
n be a semialgebraic surface.

Let x0 ∈ X be a point such that X is a β−Hölder Triangle at x0 or a β−Horn at
x0. Then

β(X, x0) =
inf{tord(γ1, γ2)|γ1 and γ2 are semialgebraic arcs in X with γ1(0) = γ2(0)},

Fig. 5.9 Simplification
process b1 b1b2 b2

b
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where tord(γ1, γ2) denote the contact between γ1 and γ2.

Theorem 5.4.38 (Theorem 2.6, [BF08b]) Let X ⊂ R
3 be a semialgebraic

(a1, a2, a3)-weighted homogeneous surface, a1 ≥ a2 ≥ a3 > 0. If 0 is an isolated
singular point and the local link of X at 0 is connected, then the germ of X at 0 is
bi-Lipschitz equivalent with respect to the inner metric, to a germ at 0 of a β−Horn
where β is equal to 1 or a2

a1
.

In the next example we apply these results to compute the β−exponent of the
E8−singularity.

Example 5.4.39 Let f : R
3 → R, f (x, y, z) = x2 − y3 + z5 and X =

{(x, y, z) ∈ R
3| f (x, y, z) = 0} as in Example 5.3.9. The polynomial f is weighted

homogeneous of type (a1, a2, a3) = (15, 10, 6), with a1 ≥ a2 ≥ a3 as required by
Theorem 5.4.38.

Then from Theorem 5.4.37 for each pair of arcs γ1 and γ2 at 0 in X one has to
compute tord(γ1, γ2). As β = p

q
≥ 1, to prove that β = 1 is sufficient to find arcs

γ1 and γ2 in X with this property.

In this case X ∩ {z = 0} is the curve x2 − y3 = 0. Let γ 1 = (+t 3
2 , t, 0)

and γ 2 = (−t 3
2 , t, 0) be the parametrizations of its branches. On the other hand

X ∩ {x = 0} is the curve y3− z5 = 0 parametrized by α(s) = (0, s 5
3 , s). Then their

tangent cones are not equal and therefore their contact is 1.

5.5 Bi-Lipschitz Invariance of the Tangent Cone

The notion of the tangent cone at a singular point is a generalization of the
notion of tangent space at a smooth point of a real or complex variety. Whitney
gave different algebraic and geometric definitions of the tangent cone in [Whi65c]
and [Whi65b] and proved some equivalences between these definitions in case of
complex varieties.

Zariski in his famous paper Some open questions in the theory of singularieties
[Zar71] asks whether the fact that two germs of complex hypersurfaces (X, 0) and
(Y, 0) in C

n having the same topological type would imply that their tangent cones
are homeomorphic. In [FdB05] Fernandez de Bobadilla gave a counterexample for
this conjecture.

We define in this section the tangent cone and prove some of its properties.
The main result is that ambient bi-Lipschitz equivalent semialgebraic sets have bi-
Lipschitz equivalent tangent cones. In the last section we discuss applications of this
result.

The results of this section are due to Edson Sampaio [Sam16].
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5.5.1 Properties of the Tangent Cone

Definition 5.5.1 Let X be a semialgebraic set such that x0 ∈ X̄. A vector v ∈ R
n

is a tangent vector of X at x0 ∈ R
n if there is a sequence of points {xi} ⊂ X \ x0,

xi → x0 and a sequence of positive real numbers {ti} such that

lim
i→∞

1

ti
(xi − x0) = v

The tangent cone of X at x0 is the set

C(X, x0) = {v ∈ R
n| v is a tangent vector of X at xo ∈ X̄.}

Remark 5.5.2 C(X, x0) coincides with the cone C3(X, x0) defined by Whitney in
[Whi65c] and [Whi65b].

Remark 5.5.3 It follows from the Curve Selection Lemma for semialgebraic sets
that if X ⊂ R

n is a semialgebraic set and x0 ∈ X̄, then the following holds:

C(X, x0) = {v ∈Rn| ∃ a C1 − semialgebraic arc α : [0, ε)→ R
n,

α(0) = x0, α((0, ε)) ⊂ X, and α(t)− x0 = tv + o(t).}

Exercise 5.5.4 Let (X, 0) be the germ of a semialgebraic set in R
n. Define the

tangent link of X at 0 as

L0X = lim
ε→0

1

ε
(X ∩ S(0, ε)).

Prove that Cone(L0X) = C(X, 0).

Definition 5.5.5 Let X = V (I) be an algebraic set in C
n, where I is the ideal

generated by the complex polynomials g1, . . . , gs . For each f ∈ I, denote by Hf
the lowest degree homogeneous polynomial of f and by I0 the ideal generated by
Hf for all f ∈ I. The algebraic tangent cone is the set

Ca(X, 0) = {x|Hf (x) = 0,∀Hf ∈ I0}.

Notice that Ca(X, 0) is a union of complex lines passing through 0.

For complex algebraic varieties, it follows from [Whi72, Theorem 4D] that
Ca(X, 0) = C(X, 0).

Example 5.5.6 Let f (x) = fm(x) + fm+1(x) + · · · + fm+k(x) be a complex
polynomial of degree d = m+k, fi homogeneous of degree i, x ∈ C

n. The tangent
cone of X = f−1(0) at x = 0 is the algebraic set C(X, 0) = {x ∈ C

n|fm(x) = 0}.
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Exercise 5.5.7 Let � : R2 → R
3, �(u, v) = (u, v2, uv) be the parametrization of

the Whitney umbrella and let X = �(R2). Find C(X, 0).

Lemma 5.5.8 (Lemma 3.1, [Val05]) Let X,Y ⊂ R
n be semialgebraic sets. If X

and Y are bi-Lipschitz equivalent with respect to the outer metric, then there is a
bi-Lipschitz homeomorphism� : R2n→ R

2n such that �(X × {0}) = {0} × Y.
Proof Let φ : X → Y be a bi-Lipschitz homeomorphism. By Mcshane-Whitney-
Kirszbraun’s Theorem (see [McS34, Theorem 1.16]) there exist Lipschitz maps φ̃ :
R
n → R

n and ψ̃ : Rn → R
n such that φ̃|X = φ and ψ̃ |Y = φ−1. We define

�,� : Rn × R
n→ R

n × R
n, as follows

�(x, y) = (x − ψ̃(y)+ φ̃(x)), y + φ̃(x))

and

�(z,w) = (z+ ψ̃(w),w − φ̃(z)+ ψ̃(x))).

Then � and � are Lipschitz maps and to show that � = �−1 choose (x, y) ∈
R
n × R

n. Then

�(�(x, y)) = �(x − ψ̃(y + φ̃(x)), y + φ̃(x)) =
= (x − ψ̃(y + φ̃(x)) + ψ̃(y + φ̃(x)), y + φ̃(x) − φ(x − ψ̃(y + φ̃(x)) + ψ̃(y + φ̃(x))
=(x, y).

Similarly �(�(z,w)) = (z,w). Therefore � = �−1. It is clear that �(X ×
{0}) = {0} × Y. �

The main theorem in [Sam16] is the following

Theorem 5.5.9 Let X ⊂ R
n, Y ⊂ R

n be semialgebraic sets. If the germs (X, x0)

and (Y, y0) are bi-Lipschitz equivalent, then C(X, x0) and C(Y, y0) are also bi-
Lipschitz equivalent.

Remark 5.5.10 This result was proved by Bernig and Lytchak [BL07] under the
additional assumption that the bi-Lipschitz homeomorphism is also semialgebraic.
A simpler proof in the complex case was given by Birbrair, Fernandes and Neumann
in [BFN10].

Proof We assume that x0 = y0 = 0. By Lemma 5.5.8 we can suppose that X,Y ⊂
R
N and there exists a bi-Lipschitz map φ : RN → R

N such that φ(X) = Y. Let
c > 0 a constant such that

1

c
‖x − y‖ ≤ ‖φ(x)− φ(y)‖ ≤ c‖x − y‖, ∀x, y ∈ R

N .
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Let ψ = φ−1. We define two sequences of mappings: for each m ∈ N, let
φm : B1 → R

N and ψm : Bc → R
N, where Br = {x ∈ R

N | ‖x‖ ≤ r} be defined
by φm(v) = mφ( vm) and ψm(v) = mψ( vm).

Notice that for any m ∈ N, we have

1

c
‖u− v‖ ≤ ‖φm(u)− φm(v)‖ ≤ c‖u− v‖, ∀u, v ∈ B̄1

and

1

c
‖z− w‖ ≤ ‖ψm(z)− ψm(w)‖ ≤ c‖z−w‖, ∀z,w ∈ B̄c

Then by Arzela-Ascoli Theorem there exist a subsequence {mj } ⊂ N and
mappings dφ : B̄1 → R

N and dψ : Bc → R
N such that φmj → dφ and

ψmj → dψ uniformly as j →∞. Clearly,

1

c
‖u− v‖ ≤ ‖dφ(u)− dφ(v)‖ ≤ c‖u− v‖, ∀u, v ∈ B̄1

and

1

c
‖z −w‖ ≤ ‖dψ(z) − dψ(w)‖ ≤ c‖z−w‖, ∀z,w ∈ B̄c

Let U = dφ(B1). Since dφ is continuous and injective, U is an open set. We
claim that

dψ ◦ dφ = idB1 and dφ ◦ dψ = idU .

Let v ∈ B1 and w = dφ(v) = limj→∞
φ(tj v)

tj
with tj = 1

mj
.

Then

‖dψ(w)− v‖ = ‖ lim
j→∞

ψ(tj v)

tj
− v‖ = lim

j→∞‖
ψ(tj v)

tj
− tj v
tj
‖

= lim
j→∞

1

tj
‖ψ(tj v)− tj v‖ = lim

j→∞
1

tj
‖φ−1(tjw)− φ−1(φ(tj v))‖

≤ lim
j→∞

c

tj
‖tjw − φ(tj v)‖ ≤ lim

j→∞ c‖w −
φ(tj v)

tj
‖

= 0
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Hence dψ(w) = dψ(dφ(v)) = v for all v ∈ B̄1. Similarly, we obtain dφ ◦
dψ|U = id|U .

We now claim that dφ(C(X, 0) ∩ B1) ⊂ C(Y, 0) and dψ(C(Y, 0)) ⊂ C(X, 0).
If v ∈ C(X, 0)∩B1, then there exists α : [0, ε)→ X such that α(t) = tv+o(t).

Thus, φ(α(t)) ∈ Y for all t ∈ [0, ε), and since φ is Lipschitz, we have φ(α(t)) =
φ(tv) + o(t). On the other hand, by definition of the map dφ, we get φ(tj v) =
tj dφ(v)+ o(tj ). Hence

dφ(v) = lim
j→∞ φmj (v) = lim

j→∞
φ(tj v)

tj
=

= lim
j→∞

φ(α(tj ))

tj
∈ C(Y, 0)

Then dφ(C(X, 0) ∩ B1) ⊂ C(Y, 0). �

5.5.2 Applications

The main reference here is [BFN10].
We say that a semialgebraic set X ⊂ R

n is metrically conical at a point x0 if
there exists an Euclidean ball B ⊂ R

n centered at x0 such that X∩B is bi-Lipschitz
homeomorphic, with respect to the inner metric, to the metric cone over its link at
x0. When such a bi-Lipschitz homeomorphism is semialgebraic we say that X is
semialgebraically metrically conical at x0.

Since the germ of a semialgebraic subset is locally (semialgebraically) homeo-
morphic to the cone over its link, we can ask whether the germ can be bi-Lipschitz
inner equivalent to the cone over its link (or to its tangent cone).

This is not always so, as we can see in the following example [BF08a].

Example 5.5.11 The β−Horn in R
3 defined by

X = {(x1, x2, x3) ∈ R
3‖(x2

1 + x2
2)
q = x2p

3 ,
p

q
≥ 1}

are metrically conical if and only if β = p
q
= 1.

In fact, if β > 1 the tangent cone of X has dimension 1 and hence X cannot be
bi-Lipschitz equivalent to a cone.

The tangent cone of a complex algebraic set is also an algebraic set of the
same dimension [Whi65a]. In [BF08a] L. Birbrair and A. Fernandes show there
exists a big class of complex algebraic surfaces, with isolated singularities that
do admit a metrically conical structure. This was pioneer result that motivated the
developments of this topic since then.
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Example 5.5.12 It follows from Theorem 6.1 in [BF08a] that the complex A2k−1
singularity given by x2 + y2 = z2k, k > 2 is not metrically conical.

The following is a Corollary of Theorem 5.5.9.

Corollary 5.5.13 (Corollary 2.5 in [BFN10]) Let X ⊂ R
n be a normally embed-

ded semialgebraic set. If X is semialgebraically conical at a point x ∈ X, then the
germ (X, x) is semialgebraically bi-Lipschitz homeomorphic to the germ (CxX, 0).

Proof The result follows from Theorem 5.5.9 since the tangent cone of a metric
cone at the vertex is the cone itself. �
Definition 5.5.14 A semialgebraic subset X ⊂ R

n is Lipschitz regular (resp.
semialgebraically Lipschitz regular) at x0 ∈ X if there is and open neighborhood of
x0 ∈ X which is bi-Lipschitz homeomorphic (resp. semialgebraically bi-Lipschitz
homeomorphic) to an Euclidean ball.

Theorem 5.5.15 (Theorem 3.2 in [BFLS16], Theorem 4.2 in [Sam16]) Let X ⊂
C
n be a complex analytic set. If X is Lipschitz regular at x0 ∈ X, then x0 is smooth

point of X.

The proof of this theorem follows from Theorem 5.5.17 and Lemma 5.5.16
bellow.

Lemma 5.5.16 If X is Lipschitz regular at x0 ∈ X, there exists a neighborhood U
of x0 in X which is normally embedded in C

n.

Theorem 5.5.17 (Prill [Pri67]) Let V ⊂ C
n be a complex cone. If 0 ∈ V has a

neighborhood homeomorphic to a Euclidean ball, then V is linear subspace of Cn.

5.6 Lipschitz Theory of Singularities

Here we consider the problem of bi-Lipschitz G-classification of analytic function-
germs, where G = R,C,K. The group R is the group of changes of coordinates
in the source, and K-equivalence is the contact equivalence defined by Mather
[Mat69]. The aim is to introduce the bi-Lipschitz singularity theory of germs of
smooth functions, including some invariants of bi-Lipschitz equivalence and discus-
sion on finiteness theorems for the classification with respect to these equivalences.

Finiteness theorems for analytic map-germs, in the real and in the complex case,
with respect to the topological equivalence were the subject of investigation of vari-
ous authors (see, for example, [Sab83, Nak84, BS91, Cos98]) and many interesting
results were obtained in this direction. Mostowski [Mos85] and Parusiński [Par88]
proved that the set of equivalence classes of semialgebraic sets with bounded degree
is finite. A finiteness result holds for bi-Lipschitz K-classification of function and
map germs [ABCF10] and [RV11]. However Henry and Parusiński [HP03] show
that the bi-Lipschitz R- classification of function germs has moduli.

The main references for this section are [NRT20] and [HP03].
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5.6.1 Basic Definitions and Results

We denote by εn the set of all smooth (when K = R) or holomorphic (when K = C)
function germs at 0 ∈ K

n, K = R or C and by Mn the set of germs in εn vanishing
at 0. Notice that εn is a local ring and Mn is the maximal ideal of εn. We define the
groups G = R,C andK, acting on εn.

Definition 5.6.1 Denote by R the group of smooth diffeomorphism germs
H : (Kn, 0)→ (Kn, 0). Then R acts on εn by composition H.f = f ◦ H−1. Two
germs f, g ∈ εn are called R-equivalent (or right equivalent ) if they lie in the same
orbit of this action. When H is a bi-Lipschitz homeomorphism and g = f ◦ H−1

we say that f and g are bi-Lipschitz R-equivalent.

Given a germ f ∈ εn, denote by Jf the Jacobian ideal of f , i.e., the ideal
in εn generated by the partial derivatives of f . The codimension (also called the
Milnor number of f ) of a germ f ∈ εn is defined to be dimK εn/Jf . It is well-
known that in the complex case the Milnor number is a topological invariant (Milnor
[Mil68]), and is therefore a bi-Lipschitz invariant, i.e. if f, g ∈ εn are bi-Lipschitz
R-equivalent then their codimensions are equal. For families of reduced complex
plane curves, Zariski [Zar65a, Zar65b] proved that the converse holds, that is, a
μ-constant family of germs is bi-Lipschitz trivial. We would like to remark that
the Milnor number is not a bi-Lipschitz R-invariant in the real case. Consider the
family ft (x, y) = x4+y4+ tx2y2+y6, t ≥ 0. This family is bi-Lipschitz R-trivial,
however, μ(ft ) = 9, t �= 2 and μ(f2) = 13 (see [NRT20] for more details).

Denote by J k0 (n, 1) the k-jet space of Mn, by Rk the set of k-jets of elements
in R. A germ f ∈ Mn is called R- k-determined if for any g ∈ Mn such that
jkg(0) = jkf (0) then f ∼R g; f is called finitely determined if f is k-determined
for some k ∈ N. If a germ f : (Kn, 0) → (K, 0) is finitely determined then it has
an isolated singularity at 0. The converse holds for K = C (see Wall [Wal81] or
[AGZV12]).

The action ofRk on J k0 (n, 1) is defined by taking composition and then truncating
the Taylor expansion. A germ f ∈ Mn is said to be R-simple if there exists k ∈
N sufficiently large and a neighborhood U of jkf (0) in J k0 (n, 1) that meets only
finitely many Rk-orbits in J k0 (n, 1). The germs that are not R-simple are called R-
modal.

Two germs z,w ∈ J k0 (n, 1) are bi-Lipschitz R-equivalent if there exists a bi-
Lipschitz homeomorphism germ φ : (Kn, 0) → (Kn, 0) such that z ◦ φ = w. The
Lipschitz R-orbits are the equivalence classes of the bi-Lipschitz R-equivalences.
A germ f ∈ Mn is Lipschitz R- simple if for k ∈ N sufficiently large f , there is
a neighborhood of jkf (0) in J k(n, 1) that meets only finitely many Lipschitz R-
orbits. The germs that are not Lipschitz simple are called Lipschitz modal. In other
words, these germs have Lipschitz modality. We remark that if a germ is smoothly
simple then it is also Lipschitz simple. The converse is not true in general.

Given f ∈ εn, the corank of f at 0 is defined to be the nullity (dimension of the

kernel) of the Hessian
(
∂2f
∂xi∂xj

(0)
)

. The following result is known as the Splitting

lemma; see Ebeling [Ebe07] or Gibson [Gib79] for example.
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Lemma 5.6.2 Let f ∈ M2
n be a finitely determined germ of corank c. Then there

exists g ∈M3
c such that

f (x1, . . . , xn) ∼R g(x1, . . . , xc)± x2
c+1 ± . . .± x2

n.

The codimension of f and g are equal. Moreover, g is uniquely determined up
to smooth equivalence, i.e. if f ∼R g +Q ∼R h +Q then g ∼R h, where Q is the
non-degenerate quadratic form.

Definition 5.6.3 Two function-germs f, g : (Kn, 0) → (K, 0) are called bi-
Lipschitz K-equivalent (or contact bi-Lipschitz equivalent) if there exist two
germs of bi-Lipschitz homeomorphisms h : (Kn, 0) → (Kn, 0) and H : (Kn ×
K, 0)→ (Kn×K, 0) such thatH(Kn×{0}) = K

n×{0} and the following diagram
is commutative:

(Kn, 0)
(id, f )−→ (Kn × K, 0)

πn−→ (Kn, 0)
h ↓ H ↓ h ↓
(Kn, 0)

(id, g)−→ (Kn × K, 0)
πn−→ (Kn, 0)

where id : Kn → K
n is the identity map and πn : Kn × K → K

n is the canonical
projection.

The function-germs f and g are called bi-Lipschitz C-equivalent if h = id .

In other words, two function-germs f and g are bi-Lipschitz K-equivalent if there
exists a germ of a bi-Lipschitz map H : (Kn × K, 0) −→ (Kn × K, 0) such that
H(x, y) can be written in the form H(x, y) = (h(x), H̃ (x, y)), where h is a bi-
Lipschitz map-germ, H̃ (x, 0) = 0 and H maps the germ of the graph (f ) onto the
graph (g).

When H and h are C∞ diffeomorphisms we get Mather’s contact group K (see
[Mat69].)

Exercise 5.6.4 If the functions f and g are bi-Lipschitz K-equivalent then the set
germs f−1(0) and g−1(0) are ambient bi-Lipschitz equivalent in K

n.

Definition 5.6.5 Two functions f, g : Rn → R are called of the same contact at
a point x0 ∈ R

n if there exist a neighborhood Ux0 of x0 in R
n and two positive

numbers c1 and c2 such that, for all x ∈ Ux0 , we have

c1 |f (x)| ≤ |g(x)| ≤ c2 |f (x)|

and f (x)g(x) ≥ 0.We use the notation: f ≈ g.

Remark 5.6.6 It is clear that if two function-germs f and g are of the same contact
then the germs of their zero-sets are equal.
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5.6.2 Finiteness of Bi-Lipschitz K-Classification

The following theorem appears in [BCFR07]. An analogous result holds for map-
germs f : (Rn, 0)→ (Rp, 0), see [RV11].

Theorem 5.6.7 Let f, g : (Rn, 0) → (R, 0) be two germs of Lipschitz functions.
Then, f and g are bi-Lipschitz C-equivalent if and only if one of the two conditions
is true:

1. f ≈ g,
2. f ≈ −g.

As a consequence of Theorem 5.6.7, one can prove the following finiteness
theorem.

Theorem 5.6.8 ([BCFR07], Theorem 2.7) Let Pk(Rn) be the set of all polynomi-
als in n variables with degree less than or equal to k. Then the set of equivalence
classes of germs at 0 of polynomials in Pk(Rn), with respect to bi-Lipschitz K-
equivalence, is finite.

In particular there is only a finite number of non-equivalent bi-Lipschitz real
algebraic hypersurfaces f = 0, where f ∈ Pk(Rn). For a proof of this Theorem see
[BCFR07]. This result extends to polynomial mappings f : Rn → R

p with degree
less than or equal to k, [RV11].

Example 5.6.9 Let ft : (K2, 0)→ (K, 0) be the one parameter family of germs in
the plane given by ft (x, y) = f (x, y, t) = x3 − 3t2xy4 + y6. Notice that ft has
isolated singularity for all t �= ± 1

3√2
. It follows from Theorem 5.6.8 that the number

of bi-Lipschitz K-equivalence classes of ft is finite. When K = C the complement
of t = ± 1

3√2
in the parameter space is a connected subset of C ) R

2 and the Milnor

number μ(ft ) is constant and equal to 10, for all t ∈ C \ {± 1
3√2
}.

Let Xt = f−1
t (0) be the germ of the reduced plane curve in C

2. Since μ(ft )
is constant in C \ {± 1

3√2
} it follows that Xt and Xt ′ are bi-Lipschitz equivalent for

all t, t ′ in this set, see Zariski [Zar65a, Zar65b]. As we shall see in Sect. 5.6.4, this
family is modal with respect to bi-Lipschitz R-equivalence.

5.6.2.1 Proof of Theorem 5.6.7

Suppose that the germs of Lipschitz functions f and g are bi-LipschitzC-equivalent.
LetH : (Rn×R, 0) −→ (Rn×R, 0) be the germ of a bi-Lipschitz homeomorphism
satisfying the conditions of Definition 5.6.3. Let V+ be the subset of Rn×R of points
(x, y) where y > 0, and V− be the subset of Rn × R where y < 0. We have one of
the following possibilities:

(1) H(V+) = V+ and H(V−) = V−, or
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(2) H(V+) = V− and H(V−) = V+.

Let us consider the first possibility. In this case, the functions f and g have the
same sign on each connected component of the set f (x) �= 0. Moreover,

|g(x)| = ‖(x, 0)− (x, g(x))‖ = ‖H(x, 0)−H(x, f (x))‖
≤ c2‖(x, 0)− (x, f (x))‖ = c2|f (x)|,

where c2 is a positive real number. Using the same argument we can show

c1|f (x)| ≤ |g(x)|, c1 > 0.

Hence, f ≈ g.
Let us consider the second possibility. Let ξ : (Rn × R, 0) → (Rn × R, 0) be a

map-germ defined as follows:

ξ(x, y) = (x,−y).

Applying the same arguments to a map ξ ◦H , we will conclude that f ≈ −g.
Reciprocally, suppose that f ≈ g. Let us construct a map-germ

H : (Rn × R, 0)→ (Rn × R, 0)

in the following way:

H(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x, 0) if y = 0,

(x,
g(x)

f (x)
y) if 0 ≤ |y| ≤ |f (x)|,

(x, y − f (x)+ g(x)) if y ≥ f (x) ≥ 0 or y ≤ f (x) ≤ 0,
(x, y + f (x)− g(x)) if y ≥ −f (x) ≥ 0 or y ≤ −f (x) ≤ 0.

(5.5)
The map H(x, y) = (x, H̃ (x, y)) above defined is bi-Lipschitz. In fact, H is

injective because, for any fixed x#, we can show that H̃ (x#, y) is a continuous and
monotone function. Moreover, H is Lipschitz if 0 ≤ |f (x)| ≤ |y|. Let us show
that H is Lipschitz if 0 ≤ |y| ≤ |f (x)|. By Rademacher’s theorem, in almost every

x near 0 ∈ R
n, all the partial derivatives

∂f

∂xi
,
∂g

∂xi
exist, hence the derivative

∂H̃

∂xi
exist in almost every x near 0 ∈ R

n. By the Mean Value Theorem and continuity

of H̃ , it is enough to show that the derivatives
∂H̃

∂xi
are bounded on the domain

0 ≤ |y| ≤ |f (x)|, for all i = 1, . . . , n. We have,

∂H̃

∂xi
= (

∂g
∂xi
f (x)− ∂f

∂xi
g(x)) y

(f (x))2
= ∂g

∂xi

y

f (x)
− ∂f

∂xi

g(x)

f (x)

y

f (x)
.
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Since |y| ≤ |f (x)|, then
y

f (x)
is bounded. The expression

g(x)

f (x)
is bounded

since f ≈ g. Moreover,
∂g

∂xi
and

∂f

∂xi
are bounded because f and g are Lipschitz

functions.
Since H−1 can be constructed in the same form as (5.5), we conclude that H−1

is also Lipschitz and, thus, H is a bi-Lipschitz map.

Remark 5.6.10 A complete invariant for contact equivalence of semialgebraic func-
tion germs was recently defined by Birbrair, Fernandes, Gabrielov and Grandjean in
[BFGG17]. They describe a partition of the neighborhood of the origin in R

2 into
zones where the function has explicit asymptotic behavior. This partition is called
a pizza. Each function germ admits a “minimal” pizza, unique up to combinatorial
equivalence. It follows from their main result that two semialgebraic function germs
are semialgebraically bi-Lipschitz K−equivalent if and only if their corresponding
minimal pizzas are equivalent.

Other recent references on bi-Lipschitz equivalences of function germs in the
plane are Koike and Parusiński[KP13] and Birbrair, Fernandes, Grandjean and
Gaffney in [BFGG18].

5.6.3 Invariants of Bi-Lipschitz R-Equivalence

We first prove the bi-Lipschitz invariance of the rank.

Theorem 5.6.11 (Theorem 4.1, [NRT20]) Let f, g : (Kn, 0) → (Kp, 0) be two
smooth map germs. If f and g are bi-Lipschitz R-equivalent then the rank of f is
equal to the rank of g at 0.

Proof Since f and g are bi-Lipschitz equivalent, there exists a germ of a bi-
Lipschitz homeomorphism ϕ : (Kn, 0)→ (Kn, 0) such that f ◦ ϕ = g. Then, there
exists a sequence {mi} in N such that the sequence of maps ϕmi : (Kn, 0)→ (Kn, 0)
defined by ϕmi = miϕ(

x
mi
) converges uniformly to a bi-Lipschitz germ dϕ on

a neighborhood of 0 as i tends to ∞. Write f (x) = Df (0)(x) + o(‖x‖) and
g(y) = Dg(0)(y)+ o(‖y‖) on a neighborhood of 0. Since f ◦ ϕ(y) = g(y)

mif ◦ ϕ( y
mi
) = mig( y

mi
)

%⇒ mi(Df (0)(ϕ(
y

mi
))+mio‖ϕ( y

mi
)‖ = miDg(0)( y

mi
)+mio‖ y

mi
‖

%⇒ lim
i→∞Df (0)(miϕ(

y

mi
))+ lim

i→∞mio‖ϕ(
y

mi
)‖ = Dg(0)(y) + lim

i→∞mio‖
y

mi
‖.
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Hence,

Df (0)(dφ(y)) = Dg(0)(y)

for y in a small neighborhood of 0. This implies that the rank of f and g are equal.
�

It has been known that the multiplicity is a bi-Lipschitz invariant (see [RT97,
FR04]). A new proof was recently given by Nguyen et al. [NRT20, Lemma 4.2].
We present here a shorter argument suggested by the referee to whom we are very
grateful.

Lemma 5.6.12 If f and g are bi-Lipschitz R-equivalent, then the multiplicitiesmf
and mg are equal.

Proof If the multiplicity mf of f is m the following holds:

(1) There is a c > 0 such that ‖f (x)‖ ≤ c‖x‖m in a neighborhood of the origin (by
Taylor’s formula).

(2) There is a sequence (xk)k converging to 0 and a constant A > 0 such that
‖f (xk)‖ ≥ A‖xk‖m. In fact any sequence whose limit of secants is not a zero
of the initial form of f at the origin satisfies this property. This follows again
from Taylor’s formula.
Since g = f ◦ φ for a φ bi-Lipschitz, g satisfies 1 and 2. �

The Thom–Levine criterion for bi-Lipschitz triviality is as follows:

Theorem 5.6.13 Let K = C or R and F : (Kn × K, 0) → (K, 0) be a one-
parameter deformation of a germ f : (Kn, 0) → (K, 0). If there exists a germ
of continuous vector field of the form

X(x, t) = ∂

∂t
+

n∑

i=1

Xi(x, t)
∂

∂xi

Lipschitz in x, (i.e. there exists a number C > 0 with

‖X(x1, t)− X(x2, t)‖ ≤ C‖x1 − x2||

for all t), such that X.F = 0, then F is a bi-Lipschitz trivial deformation of f .

Proof The existence of the flow of the vector fieldX(x, t), denoted�(x, t), follows
from the classical Picard-Lindelof theorem. Applying Gronwall’s Lemma, we can
show that �t : Kn, 0 → K

n, 0 is a bi-Lipschitz homeomorphism. Therefore, this
flow induces the bi-Lipschitz triviality of F . �

It seems to be unknown whether the converse of the above statement holds.
For this reason we call the deformation F in Theorem 5.6.13 strongly bi-Lipschitz
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trivial. Fernandes and Ruas [FR04] gave sufficient conditions for a deformation of a
quasihomogeneous polynomial (in the real case) to be strongly bi-Lipschitz trivial.

5.6.4 Henry-Parusiński’s Example

In this subsection our main object of study are the holomorphic function germs
f : (C2, 0)→ (C, 0).We first introduce the notion of relative polar curve of f.

Definition 5.6.14 The relative polar curve of f is the curve determined by an
equation "(f ) : afx + bfy = 0 where (a : b) ia a general point in the projective
line P1

C
.

Up to a linear change of coordinates in C
2 we can assume that (a : b) = (1 : 0)

and the polar curve of f is given by "(f ) : fx = 0 (see Section 8.1 in Anne
Pichon’s lecture notes for more details on polar curves and generic projections).

In [HP03], Henry and Parusiński showed that the bi-Lipschitz R-equivalence of
analytic function germs f : (C2, 0)→ (C, 0) admits continuous moduli.

They consider the one parameter family of germs

ft (x, y) = f (x, y, t) = x3 − 3t2xy4 + y6

and show that if t, t ′ are sufficiently generic then ft and ft ′ are not strongly bi-
Lipschitz R-equivalent function germs. We review here Theorem 1.1 of Henry and
Parusiński [HP03]:

Theorem 5.6.15 (Theorem 1.1 [HP03]) There is no Lipschitz vector field

v(x, y, t) = ∂

∂t
+ v1(x, y, t)

∂

∂x
+ v2(x, y, t)

∂

∂y
,

v1(0, 0, t) = v2(0, 0, t) = 0 defined in a neighborhood of (0, 0, t0) and tangent to
the levels of

f (x, y, t) = x3 − 3t2xy4 + y6.

Proof Let us suppose, by contradiction, that such v exists. Then ∂f
∂v
≡ 0.

Let " be the family of polar curves

" = {(x, y, t)|∂f
∂x
= 3(x2 − t2y4) = 0}.
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The branches of " are x = ±ty2. We now develop ∂f
∂v
≡ 0 along each branch of

" and substitute x = ±ty2 to get

0 = ∂f
∂v
= ∂f
∂t
+ v2

∂f

∂y

= −6txy4 + v2(−12t2xy3 + 6y5)

= ∓6t2y6 + v2(∓12t3y5 + 6y5)

Hence

v2(±ty2, y, t) = ±t2y
1∓ 2t3

.

Comparing v2 between the two branches of ", we get

v2(ty
2, y, t)− v2(−ty2, y, t) = t2y

1− 2t3
− −t2y

1+ 2t3
∼ y (5.6)

On the other hand if v2 is Lipschitz, with Lipschitz constant L then

|v2(ty
2, y, t)− v2(−ty2, y, t)| ≤ 2Lt|ty2|,

which contradicts (5.6). �
Henry and Parusiński introduce a new invariant based on the observation that a

bi-Lipschitz homeomorphism does not move much the regions around the relative
polar curves. For a single germ f defined at (C2, 0) , the invariant is given in terms
of the leading coefficients of the asymptotic expansions of f along the branches of
its generic polar curve.

Fernandes and Ruas in [FR13] study the strong bi-Lipschitz triviality: two
function germs f and g are strongly bi-Lipschitz equivalent if they can be
embedded in a bi-Lipschitz trivial family, whose triviality is given by integrating
a Lipschitz vector field. They show that if two weighted homogeneous (but
not homogeneous) function-germs (C2, 0) → (C, 0) are strongly bi-Lipschitz
equivalent, then they are analytically equivalent. This result does not hold for
families of homogeneous germs with isolated singularities and same degree since
they are Lipschitz equivalent [FR04].

In some sense, the problem of bi-Lipschitz classification for weighted homoge-
neous (and not homogeneous) real function-germs in two variables is quite close to
the problem of analytic classification (see [CR18]).

The moduli space of bi-Lipschitz equivalence is not completely understood yet,
not even in the case of weighted homogeneous function germs.

Motivated by [HP03], in [FR13] Fernandes and Ruas prove the following result
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Theorem 5.6.16 (Theorem 3.4, [FR13]) Let F(x, y, t) be a polynomial function
such that for all t ∈ U the function ft (x, y) = F(x, y, t) is a w−homogeneous
(w1 > w2) with an isolated singularity at (0, 0) ∈ C

2, where U ⊂ C
2 is a domain.

If {ft : t ∈ U}, as a family of function-germs at (0, 0) ∈ C
2, is strongly bi-Lipschitz

trivial then ft1 is analytically equivalent to ft2 for any t1, t2 ∈ U.
Let f : (C2, 0) → (C, 0) be a germ of reduced analytic function with Taylor

expansion

f (x, y) = Hk(x, y)+Hk+1(x, y)+ . . . (5.7)

whereHi is homogeneous polynomial of degree i.
Let us suppose that f is mini-regular in x of order k, that is, Hk(1, 0) �= 0. A

polar arc x = γ (y) is a branch of the polar curve " : ∂f
∂x
= 0. As f is mini-

regular in x, it follows that x = γ (y) is not tangent to the x−axis. As in [HP03] we
distinguish two classes of polar arcs: polar arcs that are tangent to the tangent cone
C0(X) = {Hk = 0} to X = f−1(0) at the origin and polar arcs that are not tangent
to the tangent cone C0(X).

The polar arcs of the first type are called tangential. The non-tangential polar
arcs are the moving ones as their tangents at zero moves when we make change of
coordinates.

Let γ be a polar arc. Let h0 = h0(γ ) ∈ Q+ and c0 = c0(γ ) ∈ C
∗ be given by

the expansion

f (γ (y), y) = c0y
h0 + . . . , c0 �= 0.

Let l ∈ C0(X) be a fixed tangent line to X at 0. We denote by "(l) the set of all
polar arcs tangent to l at 0. "(l) is nonempty if and only if

l ⊂ Sing(C0(X)) = {∂Hk
∂x
= ∂Hk

∂y
= 0}.

We define I (l) as the set of formal expressions

I (l) = {c0(γ )y
h0(γ )|γ ∈ "(l)}/C∗

divided by the action of C∗ where c ∈ C
∗, acts by multiplication on γ :

{c01y
h01, . . . , c0ky

h0k } ∼ {c01c
h01yh01, . . . , c0kc

h0k yh0k }.

Definition 5.6.17 (Definition 4.2, [HP03]) Let f (x, y) be an analytic function
germ. Henry-Parusiński invariant Inv(f ) of f is the set of all I (l), where l runs
over all lines in Sing(C0(X)).
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Theorem 5.6.18 (Theorem 4.3, [HP03]) Let f1, f2 be two analytic functions
germs (C2, 0)→ (C, 0) mini-regular in x. If f1 and f2 are bi-Lipschitz equivalent
then Inv(f1) = Inv(f2).

Example 5.6.19 (Proposition 3.5[FR04]) Let

ft (x, y) = 1

3
x3 − t2xy3n−2 + y3n, n ≥ 3.

The function germ f0(x, y) = 1
3x

3 + y3n is weighted homogeneous of type
(n, 1; 3n). The weighted degree of xy3n−2 with respect to these weights is 4n−2 >
3n when n ≥ 3. In [FR04, Proposition 3.5] the authors prove that the family ft is
not strongly bi-Lipschitz trivial.

The polar curve ∂ft
∂x
= 0 of ft given by x2 − t2y3n−2 = 0, has branches x =

±ty 3n−2
2 .

Then ft (±ty 3n−2
2 , y) = y6 and it follows that Inv(ft ) does not depend on the

parameter t . Hence this invariant does not distinguish the elements of the family ft .
An open question is how to define bi-Lipschitz R−invartiants associated to

higher order terms of the Taylor expansion of the function germ f.

5.7 o-Minimal Structures (by Nhan Nguyen)

We overview basic properties of definable sets in o-minimal structures. For more
details, we refer the reader to [Cos98, vdDM96, vdD98, Loi].

A structure on the ordered field of the real numbers (R,+, .) is a family D =
(Dn)n∈N such that for each n the following properties hold: (1) Dn is a Boolean
algebra of subsets of Rn; (2) if A ∈ Dn, then R × A ∈ Dn+1 and A × R ∈ Dn+1;
(3) Dn contains the zero sets of all polynomials in n variables; (4) if A ∈ Dn,
π(A) ∈ Dn−1 where π : Rn → R

n−1 denotes the orthogonal projection onto the
first (n− 1) coordinates. The structure D is said to be o-minimal if (5) every set in
D1 is a finite union of intervals and points.

A set in a structure D is called a D-set (or a definable set) and a map whose
graph is in the structure D is called a D-map (or a definable map).

Let fi : Rni → R, ni ∈ N, i ∈ I be functions. We denote by (R,+, ., (fi )I∈i )
the smallest structure on (R,+, .) containing the graphs of all functions (fi)i∈I and
call it the structure generated by the fi ’s. The following are some examples of
o-minimal structures on (R,+, .).
Example 5.7.1

1. Class of semialgebraic sets: Ralg = (R,+, .,P) where P is the class of all
polynomial functions (by Tarski–Seidenberg).
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2. Class of globally subanalytic sets: Ran = (R,+, .,A) where A is the class of
functions f : Rn → R such that f = 0 outside [−1, 1]n and the restriction of f
to [−1, 1]n is analytic (by Gabrielov).

3. RR
an = (R,+, .,A,R) where A is defined as above and R is the class of all

functions of the following form

f (x) =
{
xr, x > 0

0, x ≤ 0
, where r ∈ R.

(by Miller [Mil94a]).
4. Ran,exp = (R,+, .,A, (exp)), where A is defined as above and exp is the

exponential function (by van den Dries and Miller [vdDM94]).

Notice that

Ralg ⊂ Ran ⊂ R
R

an ⊂ Ran,exp.

A structure D is said to be polynomially bounded if for any D-function f :
R→ R, there exist a > 0 and m ∈ N such that |f (x)| < xm for all x > a.

Theorem 5.7.2 (Miller’s Dichotomy [Mil94b]) Let D be an o-minimal structure.
Then, either D is polynomially bounded or it is exponential i.e., D contains the
graph of the exponential function exp(x).

From Miller’s Dichotomy, the structures Ralg,Ran and R
R

an are polynomially
bounded o-minimal, while Ran,exp is not.

Let D be a structure. Then, the closure, interior and boundary of a D-set are
D-sets; the image and inverse images of a D-set under a D-map are D-sets;
composition of D-maps is a D-map. In the sequel, we assume that D is an o-
minimal structure.

Theorem 5.7.3 (Monotonicity) Let f : (a, b) → R be a D-function and p ∈ N.
Then, there are a0, . . . , ak with a = a0 < a1 < . . . < ak = b such that f |(ai,ai+1) is
Cp, and either constant or strictly monotone, for i = 0, . . . , k − 1.

Given p ∈ N, we say that a subset C of Rn is a Cp D-cell if, for:

n = 1: C is either a point or an open interval.
n > 1: C has one of the following forms

"(ξ) := {(x, y) ∈ B × R : y = ξ(x)},
(ξ1, ξ2) := {(x, y) ∈ B × R : ξ1(x) < y < ξ2(x)},
(−∞, ξ) := {(x, y) ∈ B × R : y < ξ(x)},
(ξ,+∞) := {(x, y) ∈ B × R : ξ(x) < y},
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whereB is aCp cell in R
n−1, ξ, ξ1, ξ2 areD-functions of classCp onB and ξ1(x) <

ξ2(x), ∀x ∈ B. The cell B is called the base of C.
ACp cylindrical D-cell decomposition (Cp cdcd) of Rn is defined by induction

as follows

1. A Cp cdcd of R is a finite collection of points and intervals

(−∞, a1), . . . , (ak,+∞), {a1}, . . . {ak}, where a1 < a2 < . . . < ak.

2. A Cp cdcd of Rn is a partition of Rn into Cp cells such that the collection of all
images of these cells under the natural projection onto the first (n−1) coordinates
π : Rn→ R

n−1 forms a Cp cdcd of Rn−1.

We say that a Cp cdcd of Rn is compatible with X = {X1, . . . Xk}, a family of
D-subsets of Rn, if each Xi is the union of some Cp D-cells of the decomposition.

Theorem 5.7.4 (Cell Decomposition)

(1) Let X = {X1, . . . , Xk} be a family of D-subsets of Rn. Then, there exists a Cp

cdcd of Rn compatible with X.
(2) Let f : X→ R be a D-function. Then, there exists a Cp cdcd of Rn compatible

with X such that the restriction of f to each cell of the cdcd is of class Cp.

Theorem 5.7.5 (On Components) Every D-set has finitely many connected com-
ponents and each of these components is also a D-set.

Theorem 5.7.6 (Uniform Bound) Let A be a D-subset of Rn+m. Then there exists
N ∈ N such that for all x ∈ R

m the set Ax = {y ∈ R
n : (x, y) ∈ A} has at most N

connected components.

Theorem 5.7.7 (Definable Choice) Let A be a D-subset of R
n+m and let π :

R
n+m → R

n be the orthogonal projection onto the first n coordinates. Then, there
exists a D-map ρ : π(A)→ R

n+m such that π(ρ(x)) = x for all x ∈ π(A).
Theorem 5.7.8 (Curve Selection) LetA be a D-subset of Rn and let a ∈ A\A. Let
p ∈ N. Then, there is aCp D-curve γ : (0, 1)→ A\{a} such that limt→0 γ (t) = a.

Theorem 5.7.9 (Local Conical Structure) Let A be a D-subset of Rn, and p be
a point in A. Then there are r > 0 and definable homeomorphism h from the cone
with vertex p and baseA∩S(p, r) onto A∩B(p, r) such that h|A∩S(p,r) = Id and
‖h(x)− p‖ = ‖x − p‖ for every x in the cone.

Given a D-set A ⊂ R
n, the dimension of A is defined as follows:

dimA = sup{dimC : C is a C1 submanifold contained in A}.

Theorem 5.7.10

1. If A ⊂ B are D-sets, then dimA ≤ dimB.
2. If A is a D-set, then dim(A \ A) < dimA.
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3. Let f : A→ R
m be a D-map. If dim f−1(x) ≤ k for every x ∈ f (A), then

dim f (A) ≤ dimA ≤ dim f (A)+ k.

For p ∈ N, we denote by �p the set of all odd, strictly increasing Cp definable
bijection from R onto R and p-flat at 0.

Theorem 5.7.11 (Łojasiewicz Inequality) Let D be a o-minimal structure. Let
A ⊂ R

n be compact and let f, g : A → R be continuous D-functions with
f−1(0) ⊆ g−1(0). Then, there exists φ ∈ �p such that φ(g(x)) ≤ |f (x)| for
all x ∈ A. In particular, if D is a polynomially bounded o-minimal structure then
there exist N > 0 and C > 0 such that |g(x)|N ≤ C|f (x)| for all x ∈ A.

LetX ⊂ R
m×Rn be a D-set. LetA be a D-subset of Rm. ConsiderX as a family

of D-sets parameterized by R
m. We denote by

X|A = {(x, y) ∈ X : x ∈ A}.

We say that X is definably trivial over A if there exist a D-set Z and a D-
homeomorphism h : A× Z→ X|A such that the following diagram commutes

A × Z

π

h
X|A

π

A

where π is the orthogonal projection onto R
m. The map h is called a definable

trivialization over A. Furthermore, if there exists a definable continuous function
C : A → R such that for x, x ′ ∈ Z and t ∈ A: |ht (x) − ht (x ′)| ≤ C(t)|x − x ′|
and for any (x, x ′) ∈ Xt × Xt, |h−1

t (x)− h−1
t (x

′)| ≤ C(t)|x − x ′| then we call X
definably bi-Lipschitz trivial and h a definable bi-Lipschitz trivialization.

The map h as above is called a definable trivialization of X over A. The
trivialization of h is said to be compatible with Y if there is a D-subset K of Z
such that h(A×K) = Y |A.

Theorem 5.7.12 (Hardt’s Triviality Theorem) Let X ⊂ R
m ×R

n be a D-set. Let
X1, . . . , Xk be D-subsets ofX. Then, there exists a finite partition of Rm into D-sets
C1, . . . , Cl such thatX is definably trivial over each Ci and the trivializations over
each Ci are compatible with X1, . . . , Xk .

Valette in [Val05] proved that if D is a polynomially bounded o-minimal structure,
then the trivializations in Theorem 5.7.12 can be chosen to be definable bi-Lipschitz
trivializations.
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Chapter 6
Surface Singularities in R

4: First Steps
Towards Lipschitz Knot Theory

Lev Birbrair and Andrei Gabrielov

Abstract A link of an isolated singularity of a two-dimensional semialgebraic
surface in R

4 is a knot (or a link) in S3. Thus the ambient Lipschitz classification
of surface singularities in R

4 can be interpreted as a metric refinement of the
topological classification of knots (or links) in S3. We show that, given a knot K
in S3, there are infinitely many distinct ambient Lipschitz equivalence classes of
outer Lipschitz equivalent singularities in R

4 with the links topologically ambient
equivalent to K .

6.1 Introduction

There are three kinds of equivalence relations in Lipschitz Geometry of Singu-
larities. One equivalence relation, inner Lipschitz equivalence, is bi-Lipschitz
homeomorphism (of the germs at the origin) of singular sets with respect to the
inner metric, where the distance between two points of a setX is defined as infimum
of the lengths of paths inside X connecting the two points. The second equivalence
relation, outer Lipschitz equivalence, is bi-Lipschitz homeomorphism with respect
to the outer metric, where the distance is defined as the distance between the points
in the ambient space. A set X is called Lipschitz normally embedded if its inner
and outer metrics are equivalent.

In [BG19], we considered the third equivalence relation, ambient Lipschitz
equivalence. Two germs X and Y of semialgebraic sets at the origin of R

n are
called ambient Lipschitz equivalent if there exists a germ of a bi-Lipschitz
homeomorphism h of (Rn, 0) such that Y = h(X). In particular, such sets X and
Y are outer Lipschitz equivalent. Two outer Lipschitz equivalent sets are always
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inner Lipschitz equivalent, but can be ambient topologically non-equivalent (see
Neumann–Pichon [NP17]).

Let X and Y be two semialgebraic surface singularities (two-dimensional germs
at the origin) in R

n which are outer Lipschitz equivalent. Suppose also thatX and Y
are topologically ambient equivalent. Does it imply that the setsX and Y are ambient
Lipschitz equivalent? It seems plausible that the answer is “yes” when n ≥ 5, or
when X and Y are Lipschitz normally embedded. However, examples in [BG19]
show that the answer may be “no” when n = 3 or n = 4.

One class of examples in R
3 andR4 is based on the theorem of Sampaio [Sam16]:

ambient Lipschitz equivalence of two sets implies ambient Lipschitz equivalence of
their tangent cones. Thus any two sets with topologically ambient non-equivalent
tangent cones cannot be ambient Lipschitz equivalent.

The case n = 4 is especially interesting, as in that case the link of a two-
dimensional germ X in R

4 is a knot (or a link) in S3, and the arguments are based
on the knot theory. For a given surface X ⊂ R

3 there are finitely many distinct
ambient Lipschitz equivalence classes of the surfaces which are topologically
ambient equivalent and outer Lipschitz equivalent to X. However, there may be
infinitely many such ambient Lipschitz equivalence classes for a surface in R

4.
Moreover, a more delicate argument, based on the “bridge construction” below,
provides infinitely many distinct Lipschitz ambient equivalence classes of surfaces
which are topologically ambient equivalent to a given surfaceX ⊂ R

4 and all belong
to the same outer Lipschitz equivalence class, even when each of these surfaces has
a tangent cone consisting of a single ray.

In this paper we use the topological ambient equivalence relation for the
germs at the origin of singular sets, and for their links. It means that there exists
a homeomorphism of a small ball (or a small sphere) centered at the origin,
mapping one singular set (or its link) to another. This definition corresponds to the
classical topological equivalence in Singularity Theory. For the links of surfaces
in R

4 this equivalence is closely related to isotopy of knots. There is, however,
a minor difference between the topological ambient equivalence and isotopy: in
Knot Theory the homeomorphism is required to be isotopic to identity. Two knots
may be topologically ambient equivalent but not isotopic. This difference between
two equivalence relations is non-essential, as the number of ambient Lipschitz
equivalence classes is infinite in both cases.

The authors thank the anonymous referee whose thoughtful suggestions helped
us to improve the exposition.

6.2 Examples in R
3 and R

4 Based on Sampaio’s Theorem

In this paper, an arc in R
n is a germ at the origin of a semialgebraic mapping

γ : [0, ε) → Rn such that ‖γ (t)‖ = t . The tangency order or contact order
tord(γ1, γ2) of two arcs is the smallest Puiseux exponent at zero of the function



6 Surface Singularities in R
4: First Steps Towards Lipschitz Knot Theory 159

Fig. 6.1 The links of the
surfaces X1 and X2 in
Example 6.1, and of their
tangent cones
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‖γ2(t)−γ1(t)‖. Sometimes in the literature the tangency order is called the tangency
exponent or the order of contact (see [BFGG17, BM18, Par88]).

Example 6.1 (See [BG19, Example 2]) Let X1 and X2 be two surfaces in R
3 with

the links at the origin shown in Fig. 6.1(a), (b).

There are two pairs of “pinched” arcs, γ± and ζ±, with tord(γ+, γ−) > 1
and tord(ζ+, ζ−) > 1, while both surfaces are straight-line cones over their links
outside small conical neighborhoods of γ± and ζ±. The arcs γ+ and γ− correspond
to a single ray γ of the tangent cone, and the arcs ζ+ and ζ− correspond to a
single ray ζ . One can define X1 and X2 by explicit semialgebraic formulas. For
small conical neighborhoods of the pinched arcs γ± and ζ± it can be done as in
[BG19, Example 3], and outside those neighborhoods the links ofX1 andX2 can be
approximated by piecewise linear curves. Both surfacesX1 andX2 are topologically
ambient equivalent to a cone over a circle in S2 and outer Lipschitz equivalent, but
not ambient Lipschitz equivalent by Sampaio’s theorem, since their tangent cones
are not topologically ambient equivalent: there is a connected component of the
complement in S2 of the link of X1 (see Fig. 6.1(a’)) with the whole link as its
boundary, while there is no such component of the complement of the link of X2
(see Fig. 6.1(b’)).
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Fig. 6.2 The links of the
surfaces X1 and X2 in
Example 6.2, and of their
tangent cones
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(b)
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Example 6.2 (See [BG19]) Let X1 and X2 be two surfaces in R
4 with the links

at the origin shown in Fig. 6.2(a) and (b), and the links of their tangent cones at the
origin shown in Fig. 6.2(a’) and in (b’). The tangency exponent of the arcs γ+ and γ−
is α > 1, thus the arcs γ+ and γ− correspond to a single ray γ of the tangent cone.
One can define X1 and X2 by explicit semialgebraic formulas. Both surfaces X1
and X2 are topologically ambient equivalent to a cone over a circle in S3 embedded
as the connected sum of two trefoil knots, and outer Lipschitz equivalent but not
ambient Lipschitz equivalent by Sampaio’s theorem, since their tangent cones at
the origin are not topologically ambient equivalent: the link of the tangent cone of
X1 (see Fig. 6.1(a’)) is a bouquet of two knotted circles, while the link of X2 (see
Fig. 6.1(b’)) is a bouquet of a knotted circle and an unknotted one.

6.3 Bridge Construction

A (q, β)-bridge is the set Aq,β = T+ ∪ T− ⊂ R
4 where 1 < β < q and

T± =
{
0 ≤ t ≤ 1, −tβ ≤ x ≤ tβ , y = ±tq , z = 0

}
.
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Fig. 6.3 The links of a (q, β)-bridge Aq,β and a broken (q, β)-bridge Bq,β

Its link is shown in Fig. 6.3 (left). A broken (q, β)-bridge Bq,β is obtained from
Aq,β by the saddle operation, removing from T± two p-Hölder triangles

{
t ≥ 0, |x| ≤ tp, y = ±tq , z = 0

}

where p > q , and replacing them by two q-Hölder triangles

{
0 ≤ t ≤ 1, x = ±tp, |y| ≤ tq , z = 0

}
.

Its link is shown in Fig. 6.3 (right). We call (q, β)-bridge any surface outer Lipschitz
equivalent to Aq,β . It was shown in [BG19] that ambient Lipschitz equivalence h :
X→ Y of two surfaces in R

4 maps a (q, β)-bridge inX to a (q, β)-bridge in Y , and
that the two surfaces remain ambient Lipschitz equivalent when their (q, β)-bridges
are replaced by the broken (q, β)-bridges.

Remark 6.3.1 Our definition of a broken bridge is slightly different from the
definition in Example 4 of [BG19], where it was defined with p < q . Condition
p > q makes the “broken bridge” operation invertible: two surface germs with the
same (q, β)-bridge are ambient Lipschitz equivalent if and only if they are ambient
Lipschitz equivalent after the bridge is broken (with the same p > q). Note that this
invertibility is never used here or in [BG19].

Example 6.3 (See [BG19]) The common boundary of Aq,β and Bq,β consists of
the four arcs

{
0 ≤ t ≤ 1, x = ±tβ , y = ±tq , z = 0

}
shown as m, n, m′, n′ in

Fig. 6.3. LetG ⊂ R
4 be a semialgebraic surface containingAq,β and bounded by the

four straight line segments {0 ≤ t ≤ 1, ±x = ±y = t, z = 0} (see Fig. 6.4 where
the boundary arcs ofG are shown asM, N, M ′, N ′). LetH be the surface obtained
fromG by replacing the bridge Aβ,q by the broken bridge Bβ,q (see Fig. 6.5).

Consider two topologically trivial knots K and L in the hyperplane {t = 1} ⊂
R

4
x,y,z,t as shown in Fig. 6.6a, b. Each of these two knots contains the curve g =
G ∩ {t = 1}, We define the surface X as the union of G and a straight cone over
K \ g, and the surface Y as the union of G and a straight cone over L \ g.

Theorem 6.3.2 (See [BG19, Theorem 3.2]) The germs of the surfaces X and Y at
the origin are outer Lipschitz equivalent, topologically ambient equivalent, but not
ambient Lipschitz equivalent.
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Fig. 6.4 The link of the surface G in Example 6.3
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Fig. 6.5 The link of the surface H in Example 6.3
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Fig. 6.6 The links of the surfaces X and Y in Example 6.3
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Fig. 6.7 The links of the surfaces X′ and Y ′ in Example 6.3

This is proved by replacing the (q, β)-bridges in X and Y by the broken (q, β)-
bridges, resulting in the new surfaces X′ and Y ′, shown in Fig. 6.7. The link of X′
consists of two unlinked circles while the two circles in the link of Y ′ are linked.
Thus X′ and Y ′ are not topologically ambient equivalent, which implies that X and
Y are not ambient Lipschitz equivalent.

Remark 6.3.3 Notice that the tangent cones of both surfaces X and Y in Exam-
ple 6.3 are topologically ambient equivalent to a cone over two unknotted circles,
pinched at one point. Thus Sampaio’s theorem does not apply, and we need
the bridge construction in this example. Notice also that the bridge construction
employed in this example allows one to construct examples of outer Lipschitz
equivalent, topologically ambient equivalent but ambient Lipschitz non-equivalent
surface singularities in R

4 with the tangent cones as small as a single ray.

The surfaces X and Y in Example 6.3 differ by a “twist” of the (q, β)-bridge,
which can be extended to a homeomorphism of the ambient space, but not to a bi-
Lipschitz homeomorphism. One can iterate such a twist to obtain infinitely many
ambient Lipschitz non-equivalent surfaces. On can also attach an additional knot
to the links of both surfaces X and Y (see Fig. 6.8). This yields the following
“universality” result (see [BG19] Theorem 4.1).

Theorem 6.3.4 For any semialgebraic surface germ S ⊂ R
4 there exist infinitely

many semialgebraic surface germs Xi ⊂ R
4 such that

(1) For all i, the germs Xi are topologically ambient equivalent to S;
(2) All germs Xi are outer Lipschitz equivalent;
(3) The tangent cones of all germs Xi at the origin are topologically ambient

equivalent;
(4) For i �= j the germs Xi and Xj are not ambient Lipschitz equivalent.

Other versions of universality can be formulated:
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Fig. 6.8 The links of the
surfaces X and Y with an
extra knot attached
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Theorem 6.3.5 (Universality Theorem) For each knot K ⊂ S3, there exists a
germ at the origin of a semialgebraic surface XK ⊂ R

4 such that

(1) The germs XK are outer Lipschitz equivalent for all knotsK .
(2) The links of all germs XK are topologically trivial knots in S3 ⊂ R

4.
(3) The germs XK1 and XK2 are ambient Lipschitz equivalent only if the knots K1

and K2 are topologically ambient equivalent.

Proof Idea of the proof is illustrated in Fig. 6.9. The knotK is realized as a smooth
semialgebraic circle embedded in S3. Let L be a semialgebraic strip homeomorphic
toK × [0, ε] embedded in S3 so that K is one of the two boundary curves of L. Let
K ′ be the other boundary curve of L, so that the knots K and K ′ are isotopic. Let
C ⊂ R

4 be a cone over K ∪ K ′ with the vertex at the origin. Let y be a point such
that the intersection of a small ball B ⊂ S3 centered at y with K ∪ K ′ consists of
two segments, [a, b] ⊂ K and [a′, b′] ⊂ K ′. We can remove from C the cone CB
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Fig. 6.9 The link of the
surface XK in Theorem 6.3.5

a
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over B ∩ (K ∪K ′) and replace it by a semialgebraic surfaceG inside the cone over
B, with the link shown in the zoomed part of Fig. 6.9, such that

(a) the link of G consists of two segments [a, a′] and [b, b′],
(b) the boundary of G is the same as the boundary of CB ,
(c) two arcs γ and γ ′ in G have the tangency order β > 1.

This results in the surface XK with the link shown in Fig. 6.9. The link of XK is a
trivial knot (it is contractible to a point inside L). The link of the tangent cone of
the surface XK consists of two knots, each of them isotopic to K , pinched at a point
corresponding to the common tangent line to γ and γ ′. Thus the tangent cones of
the surfacesXK are not topologically ambient equivalent for the knots which are not
topologically ambient equivalent. It follows from Sampaio’s theorem that the same
is true for the surfacesXK themselves. �
Remark 6.3.6 Theorem 6.3.5 is called “Universality Theorem” because it implies
that the ambient Lipschitz classification problem for the surface germs in R

4 in a
single outer Lipschitz equivalence class, with the topologically ambient trivial links,
contains all of the Knot Theory.
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Chapter 7
An Introduction to Lipschitz Geometry
of Complex Singularities

Anne Pichon

Abstract The aim of this paper to introduce the reader to a recent point of view
on the Lipschitz classifications of complex singularities. It presents the complete
classification of Lipschitz geometry of complex plane curves singularities and in
particular, it introduces the so-called bubble trick, which is a key tool to study
Lipschitz geometry of germs. It describes also the thick-thin decomposition of a
normal complex surface singularity and built two geometric decompositions of a
normal surface germ into standard pieces which are invariant by respectively inner
and outer bilipschitz homeomorphisms. This leads in particular to the complete
classification of Lipschitz geometry for the inner metric.

7.1 Introduction

The aim of this paper is to introduce the reader to a recent point of view on the
Lipschitz classifications of complex singularities.

The notes are structured as follows. Section 7.2 explains what is Lipschitz
geometry for the inner and outer metrics of singularities and why it is interesting for
the classification of space singularities. Section 7.3 gives the complete classification
of Lipschitz geometry of complex curves and covers the results of [NP14]. In
particular, it introduces the so-called bubble trick, which is a key tool to study
Lipschitz geometry of germs. Section 7.4 describes the thick-thin decomposition
of a normal complex surface germ following [BNP14]. Section 7.5 describes two
geometric decompositions of a normal surface germ into standard pieces which
are invariant by respectively inner and outer bilipschitz homeomorphism, following
the results of [BNP14] and [NP12]. This leads in particular to the complete
classification of Lipschitz geometry for the inner metric.
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The paper contains a lot of detailed examples which were presented and
discussed during the afternoon exercise sessions of the school and also an appendix
(Part 7.6) which gives the computation of the resolution graph of a surface
singularity with equation x2+f (y, z) = 0 following Hirzebruch–Jung and Laufer’s
method. This enables the readers to produce a lot of examples by themself.

In these notes, I do not give the detailed proofs of the invariance of the inner and
outer Lipschitz decompositions (Theorems 7.5.30 and 7.5.36). We refer to [BNP14]
and [NP12] respectively. However, it has to be noted that even if the two statements
look similar, the techniques used in the proofs are radically different. The invariance
of the inner decomposition uses the Lipschitz invariance of fast loops (introduced
in Sect. 7.4) of minimal length in their homology class ([BNP14, Section 14]) while
that of the outer invariance uses sophisticated bubble trick arguments [NP12].

Notice that the pioneering paper [BNP14] is written for a normal complex
surface, as well as the initial version of [NP12]. However, the extensions of the inner
and outer geometric decompositions to the general case of a reduced singularity (not
necessarily isolated) are fairly easy. A version of [NP12] in this general setting will
appear soon.

Finally, notice that the inner and outer geometric decompositions are the analogs
of the pizza decompositions of a real surface germ presented in the lecture notes of
Maria Aparecida Ruas (for inner metric) and Lev Birbrair (for the outer metric) in
the present volume. In the real surface case, these decompositions give complete
classifications for the inner and outer metrics. As already mentioned, the inner
decomposition in the complex case also gives a complete classification after adding
a few more invariants (Theorem 7.5.30). In contrast, a complete classification for
the outer metric of complex surface singularities would need more work and is still
an open question.

7.2 Preliminaries

7.2.1 What is Lipschitz Geometry of Singular Spaces?

In the sequel, K will denote either R or C.
Let (X, 0) be a germ of analytic space in K

n which contains the origin. So X is
defined by

X = {(x1, . . . , xn) ∈ K
n | fj (x1, . . . , xn) = 0, j = 1, . . . , r},

where the fj ’s are convergent power series, fj ∈ K{x1, . . . , xn} and fj (0) = 0.

Question 7.1 How doesX look in a small neighbourhood of the origin?

There are multiple answers to this vague question depending on the category we
work in, i.e., on the chosen equivalence relation between germs.
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First, we can consider the topological equivalence relation:

Definition 7.2.1 Two analytic germs (X, 0) and (X′, 0) are topologically equiv-
alent if there exists a germ of homeomorphism ψ : (X, 0) → (X′, 0). The
topological type of (X, 0) is the equivalence class of (X, 0) for this equivalence
relation.

Two analytic germs (X, 0) ⊂ (Kn, 0) and (X′, 0) ⊂ (Kn, 0) are topologically
equisingular if there exists a germ of homeomorphismψ : (Kn, 0)→ (Kn, 0) such
that ψ(X) = X′. We call embedded topological type of (X, 0) the equivalence
class of (X, 0) for this equivalence relation.

The embedded topological type of (X, 0) ⊂ (Rn, 0) is completely determined by the
embedded topology of its link as stated in the following famous Conical Structure
Theorem, presented in Sect. 7.4 of the course of José Luis Cisneros Molina in the
present volume. Let us recall its statement.

Theorem 7.2.2 (Conical Structure Theorem) Let Bnε be the ball with radius ε >
0 centered at the origin of Rn and let Sn−1

ε be its boundary.
Let (X, 0) ⊂ (Rn, 0) be an analytic germ. For ε > 0, setX(ε) = Sn−1

ε ∩X. There
exists ε0 > 0 such that for every ε > 0 with 0 < ε ≤ ε0, the pair (Bnε ,X ∩ Bnε )
is homeomorphic to the pair (Bnε0

, Cone(X(ε0))), where Cone(X(ε0)) denotes the

cone over X(ε0), i.e., the union of the segments [0, x] joining the origin to a point
x ∈ X(ε0).

In other words, the homeomorphism class of the pair (Sn−1
ε ,X(ε)) does not depend

on ε when ε > 0 is sufficiently small and it determines completely the embedded
topological type of (X, 0).

Definition 7.2.3 When 0 < ε ≤ ε0, the intersection X(ε) is called the link of
(X, 0).

Example 7.2.4

1. Assume that X is the real cusp in R
2 with equation x3 − y2 = 0. Then its link at

0 consists of two points in the circle S1
ε .

2. If X is the complex cusp in C
2 with equation x3 − y2 = 0, its link at 0 is the

trefoil knot in the 3-sphere S3
ε .

3. If X is the complex surface E8 in C
3 with equation x2 + y3 + z5 = 0, its

(non embedded) link at 0 is a Seifert manifold whose homeomorphism class is
completely described through plumbing theory by its minimal resolution graph.
See the course of Walter Neumann in the present volume for more details. The
resolution graph is explicitely computed in appendix section 7.6 of the present
notes.

The Conical Structure Theorem gives a complete answer to Question 7.1 in the
topological category, but it completely ignores the geometric properties of the set
(X, 0). In particular, a very interesting question is:

Question 7.2 How does the link X(ε) evolve metrically as ε tends to 0?
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In other words, is X ∩ Bε bilipschitz homeomorphic to the straight cone
Cone(X(ε))? Or are there some parts ofX(ε) which shrink faster than linearly when
ε tends to 0?

This question can be studied from different points of view depending on the
choice of the metric. If (X, 0) ⊂ (Rn, 0) is the germ of a real analytic space, there
are two natural metrics on (X, 0) which are defined from the Euclidean metric of
the ambient space R

n:

Definition 7.2.5 The outer metric do on X is the metric induced by the ambient
Euclidean metric, i.e., for all x, y ∈ X, do(x, y) = ‖x − y‖Rn .

The inner metric di on X is the length metric defined for all x, y ∈ X by:
di(x, y) = inf length(γ ), where γ : [0, 1] → X varies among rectifyable arcs onX
such that γ (0) = x and γ (1) = y.

Definition 7.2.6 Let (M, d) and (M ′, d ′) be two metric spaces. A map f : M →
M ′ is a bilipschitz homeomorphism if f is a bijection and there exists a real
constantK ≥ 1 such that for all x, y ∈ M ,

1

K
d(x, y) ≤ d ′(f (x), f (y)) ≤ Kd(x, y).

Definition 7.2.7 Two real analytic germs (X, 0) ⊂ (Rn, 0) and (X′, 0) ⊂ (Rm, 0)
are inner Lipschitz equivalent (resp. outer Lipschitz equivalent) if there exists a
germ of bilipschitz homeomorphismψ : (X, 0)→ (X′, 0) with respect to the inner
(resp. outer) metrics.

The equivalence classes of the germ (X, 0) ⊂ (Rn, 0) for these equivalence
relations are called respectively the inner Lipschitz geometry and the outer
Lipschitz geometry of (X, 0).

Throughout these notes, we will use the “big-Theta” asymptotic notations of
Bachmann–Landau in the following form:

Definition 7.2.8 Given two function germs f, g : ([0,∞), 0) → ([0,∞), 0), we
say that f is big-Theta of g and we write f (t) = 	(g(t)) if there exist real numbers
η > 0 and K > 0 such that for all t such that for all t ∈ [0, η), 1

K
g(t) ≤ f (t) ≤

Kg(t).

Example 7.2.9 Consider the real cusp C with equation y2 − x3 = 0 in R
2 (see

Fig. 7.1). For a real number t > 0, consider the two points p1(t) = (t2, t3) and
p2(t) = (t2,−t3) on C. Then do(p1(t), p2(t)) = 	(t3/2) while the inner distance
is obtained by taking infimum of lengths of paths on C between the two points p1(t)

and p2(t). The shortest length is obtained by taking a path going through the origin,
and we have di(p1(t), p2(t)) = 	(t). Therefore, taking the limit of the quotient as
t tends to 0, we obtain:

do(p1(t), p2(t))

di(p1(t), p2(t))
= 	(t1/2)→ 0.
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Fig. 7.1 The real cusp
y2 − x3 = 0

x

C

p1(t )

p2(t )

y

Using this, you are ready to make the following:

Exercise 7.2.10

1. Prove that there is no bilipschitz homeomorphism between the outer and inner
metrics on the real cusp C with equation y2 − x3 = 0 in R

2.
2. Prove that (C, 0) equipped with the inner metric is metrically conical, i.e.

bilipschitz equivalent to the cone over its link.

Example 7.2.11 Consider the real surface S in R
3 with equation x2 + y2 − z3 = 0

in R
2. For a real number t > 0, consider the two points p1(t) = (t3, 0, t2)

and p2(t) = (t3, 0,−t2) on S. Then do(p1(t), p2(t)) = 	(t3/2). We also have
di(p1(t), p2(t)) = 	(t3/2) since di(p1(t), p2(t)) is the length of a half-circle
joining p1(t) and p2(t) on the circle {x = t3} ∩ S.

Exercise 7.2.12 Consider the real surface S of Example 7.2.11.

1. Prove that the identity map is a bilipschitz homeomorphism between the outer
and inner metrics on (S, 0).

2. Prove that (S, 0) equipped with the inner metric is not metrically conical.

7.2.2 Independence of the Embedding and Motivations

If (X, 0) is a germ of a real analytic space, the two metrics do and di defined above
obviously depend on the choice of an embedding (X, 0) ⊂ (Rn, 0) since they are
defined by using the Euclidean metric of the ambient Rn. The aim of this section
is to give a proof of one of the main results which motivates the study of Lipschitz
geometry of singularities:

Proposition 7.2.13 The Lipschitz geometries of (X, 0) for the outer and inner
metrics are independent of the embedding (X, 0) ⊂ (Rn, 0).
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In other words, bilipschitz classes of (X, 0) just depend on the analytic type of
(X, 0). Before proving this result, let us give some consequences which motivate
the study of Lipschitz geometry of germs of singular spaces.

The outer Lipschitz geometry determines the inner Lipschitz geometry since
the inner metric is determined by the outer one through integration along paths.
Moreover, the inner Lipschitz geometry obviously determines the topological type
of (X, 0). Therefore, an important consequence of Proposition 7.2.13 is that the
Lipschitz geometries give two intermediate classifications between the analytical
type and the topological type.

A very small amount of analytic invariants are determined by the topological
type of an analytic germ (even if one considers the embedded topological type).
In particular, a natural question is to ask whether the Lipschitz classification is
sufficiently rigid to catch analytic invariants:

Question 7.3 Which analytical invariants are in fact Lipschitz invariants?

Recent results show that in the case of a complex surface singularity, a large
amount of analytic invariants are determined by the outer Lipschitz geometry. For
example, the multiplicity of a complex surface singularity is an outer Lipschitz
invariant ([NP12] for a normal surface, [Sam17] for a hypersurface in C

3 and
[FdBFS18] for the general case). However it is now known that the multiplicity is
not a Lipschitz invariant in higher dimensions [BFSV18]. In [NP12] it is shown that
many other data are in fact Lipschitz invariants in the case of surface singularities,
such as the geometry of hyperplane sections and the geometry of polar curves and
discriminant curves of generic projections (Theorem 7.5.38); higher dimensions
remain almost unexplored. This shows that the outer Lipschitz class contains
potentially a lot of information on the singularity and that outer Lipschitz geometry
of singularities is a very promising area to explore.

Here is another motivation. Analytic types of singular space germs contain
continuous moduli, and this is why it is difficult to describe a complete analytic
classification. For example, consider the family of curves germs (Xt , 0)t∈C where
Xt is the union of four transversal lines with equation xy(x − y)(x − ty) = 0.
For every pair (t, t ′) with t �= t ′, (Xt , 0) is not analytically equivalent to (Xt ′, 0).
On the contrary, it is known since the works of T. Mostowki in the complex case
[Mos85], and Parusiński in the real case [Par88] and [Par94], that the outer Lipschitz
classification of germs of singular spaces is tame, which means that it admits a
discrete complete invariant. Then a complete classification of Lipschitz geometry of
singular spaces seems to be a more reachable goal.

Proof of Proposition 7.2.13 Let (f1, . . . , fn) and (g1, . . . , gm) be two systems of
generators of the maximal ideal M of (X, 0). We will first prove that the outer
metrics dI and dJ for the embeddings

I = (f1, . . . , fn) : (X, 0)→ (Rn, 0) and J = (g1, . . . , gm) : (X, 0)→ (Rm, 0)
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are bilipschitz equivalent. It suffices to prove that the outer metric for the embedding
(f1, . . . , fn, g1, . . . , gm) is bilipschitz equivalent to the metric dI . By induction, we
just have to prove that for any g ∈M, the metric dI ′ associated with the embedding
I ′ = (f1, . . . , fn, g) : (X, 0)→ (Rn+1, 0) is bilipschitz equivalent to dI .

Since g is in the ideal M, it may be expressed as G(f1, . . . , fn) where
G : (Rn, 0) → (R, 0) is real analytic. Let " be the graph of the function
G(x1, . . . , xn) in (Rn, 0) × R. It is defined over a neighbourhood of 0 in R

n.
The projection π : " → (Rn, 0) is bilipschitz over any compact neighbourhood
of 0 in R

n on which it is defined. We have I ′(X, 0) ⊂ " ⊂ (Rn, 0) × R, so
π |I ′(X,0) : I ′(X, 0)→ I (X, 0) is bilipschitz for the outer metrics dI ′ and dI . �

7.3 The Lipschitz Geometry of a Complex Curve Singularity

7.3.1 Complex Curves Have Trivial Inner Lipschitz Geometry

LetX ⊂ C
2 be the complex cusp with equation y2−x3 = 0. Let t ∈ R and consider

the two points p1(t) = (t2, t3) and p2(t) = (t2,−t3) on X. Since these two points
are on two distinct strands of the braidX∩(S1|t |×C), it is easy to see that the shortest
path in X from p1(t) to p2(t) passes through the origin and that di(p1(t), p2(t)) =
	(t). This suggests that (X, 0) is locally inner bilipschitz homeomorphic to the cone
over its link. This means that the inner Lipschitz geometry tells one no more than
the topological type, i.e., the number of connected components of the link (which
are circles), and is therefore uninteresting. The aim of this section is to prove this
for any complex curve.

Definition 7.3.1 An analytic germ (X, 0) is metrically conical if it is inner
Lipschitz homeomorphic to the straight cone over its link.

In this paper, a complex curve germ or complex curve singularity will mean a
germ of reduced complex analytic space of dimension 1.

Proposition 7.3.2 Any complex space curve germ (C, 0) ⊂ (CN, 0) is metrically
conical.

Proof Take a linear projection p : CN → C which is generic for the curve (C, 0)
(i.e., its kernel contains no tangent line of C at 0) and let π := p|C , which is a
branched cover of germs. LetDε = {z ∈ C : |z| ≤ ε} with ε small, and let Eε be the
part ofC which branched coversDε . Since π is holomorphic away from 0 we have a
local Lipschitz constantK(x) at each point x ∈ C\{0} given by the absolute value of
the derivative map of π at x. On each branch γ of C thisK(x) extends continuously
over 0 by taking for K(0) the absolute value of the restriction p |T0γ : T0γ → C

where T0γ denotes the tangent cone to γ at 0. So the infimum and supremum K−
and K+ of K(x) on Eε \ {0} are defined and positive. For any arc γ in Eε which
is smooth except where it passes through 0 we have K−�(γ ) ≤ �′(γ ) ≤ K+�(γ ),
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where � respectively �′ represent arc length using inner metric on eε respectively
the metric lifted from Bε . Since Eε with the latter metric is strictly conical, we are
done. �

7.3.2 The Outer Lipschitz Geometry of a Complex Curve

Let G(n− 2,Cn) be the Grassmanian of (n− 2)-planes in C
n.

Let D ∈ G(n− 2,Cn) and let �D : Cn→ C
2 be the linear projection with kernel

D. Suppose (C, 0) ⊂ (Cn, 0) is a complex curve germ. There exists an open dense
subset �C of G(n − 2,Cn) such that for D ∈ �C , D contains no limit of secant
lines to the curve C ([Tei82, pp. 354]).

Definition 7.3.3 The projection �D is said to be generic for C if D ∈ �C .

In the sequel, we will use extensively the following result

Theorem 7.3.4 ([Tei82, pp. 352–354]) If �D is a generic projection for C, then the
restriction �D|C : C → �D(C) is a bilipschitz homeomorphism for the outer metric.

As a consequence of Theorem 7.3.4, in order to understand Lipschitz geometry
of curve germs, it suffices to understand Lipschitz geometry of plane curve germs.

Let us start with an example.

Example 7.3.5 Consider the plane curve germ (C, 0) with two branches having
Puiseux expansions

y = x3/2 + x13/6, y = x5/2 .

Its topological type is completely described by the sets of characteristic exponents
of the branches: {3/2, 13/6} and {5/2} and by the contact exponents between the
two branches: 3/2. Those data are summarized in the Eggers-Wall tree of the curve
germ (see [Wal04, GBGPPP19]), or equivalently, in what we will call the carrousel
tree (see the proof of Lemma 7.3.8 and Fig. 7.2), which is exactly the Kuo-Lu tree
defined in [KL77] but with the horizontal bars contracted to points.

Now, for small t ∈ R
+, consider the intersection C ∩ {x = t}. This gives 8

points pi(t), i = 1 . . . , 8 and then, varying t , this gives 8 real semi-analytic arcs
pi : [0, 1)→ X such that pi(0) = 0 and ‖pi(t)‖ = 	(t).

Figure 7.3 gives pictures of sections of C with complex lines x = 0.1, 0.05,
0.025 and 0. The central two-points set corresponds to the branch y = x5/2 while
the two lateral three-points sets correspond to the other branch.

It is easy to see on this example that for each pair (i, j) with i �= j , we have
do(pi(t), pj (t)) = 	(tq(i,j)) where q(i, j) ∈ Q

+ and that the set of such q(i, j)’s
is exactly the set of essential exponents {3/2, 13/6, 5/2}. This shows that one can
recover the essential exponents by measuring the outer distance between points of
C.
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Fig. 7.2 The carrousel tree

0.1

0.05

0.025

0

Fig. 7.3 Sections of C

More generally, we will show that we can actually recover the carrousel tree
by measuring outer distances on X even after a bilipschitz change of the metric.
Conversely, the outer Lipschitz geometry of a plane curve is determined by its
embedded topological type. This gives the complete classification of the outer
geometry of complex plane curve germs:

Theorem 7.3.6 Let (E1, 0) ⊂ (C2, 0) and (E2, 0) ⊂ (C2, 0) be two germs of
complex curves. The following are equivalent:

1. (E1, 0) and (E2, 0) have same outer Lipschitz geometry.
2. there is a meromorphic germ φ : (E1, 0) → (E2, 0) which is a bilipschitz

homeomorphism for the outer metric;
3. (E1, 0) and (E2, 0) have the same embedded topological type;
4. there is a bilipschitz homeomorphism of germs h : (C2, 0) → (C2, 0) with
h(E1) = E2.

As a corollary of Theorems 7.3.4 and 7.3.6, we obtain:
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Corollary 7.3.7 The outer Lipschitz geometry of a curve germ (C, 0) ⊂ (CN, 0)
determines and is determined by the embedded topological type of any generic
linear projection (�(C), 0) ⊂ (C2, 0).

The equivalence of (1), (3), and (4) of Theorem 7.3.6 is proved in [NP14]. The
equivalence of (2) and (3) was first proved by Pham and Teissier [PT69] (published
in the present volume) by developing the theory of Lipschitz saturation and revisited
by Fernandes in [Fer03]. In the present lecture notes, we will give the proof of (1)
⇒ (3), since it is based on the so-called bubble trick argument which can be
considered as a prototype for exploring Lipschitz geometry of singular spaces in
various settings. Another more sophisticated bubble trick argument is developed
in [NP12] to study Lipschitz geometry of surface germs (namely in the proof of
Theorem 7.5.36).

Proof of (1)⇒ (3) of Theorem 7.3.6 We want to prove that the embedded topo-
logical type of a plane curve germ (C, 0) ⊂ (C2, 0) is determined by the outer
Lipschitz geometry of (C, 0).

We first prove this using the analytic structure and the outer metric on (C, 0).
The proof is close to Fernandes’ approach in [Fer03]. We then modify the proof to
make it purely topological and to allow a bilipschitz change of the metric.

The tangent cone toC at 0 is a union of linesL(j), j = 1, . . . ,m, and by choosing
our coordinates we can assume they are all transverse to the y-axis.

There is ε0 > 0 such that for every ε ∈ (0, ε0], the curve C meets transversely
the set

Tε := {(x, y) ∈ C
2 : |x| = ε} .

Let M be the multiplicity of C. The hypothesis of transversality to the y-axis
means that the lines x = t for t ∈ (0, ε0] intersect C inM points p1(t), . . . , pM(t).
Those points depend continuously on t . Denote by [M] the set {1, 2, . . . ,M}. For
each j, k ∈ [M] with j < k, the distance d(pj (t), pk(t)) has the form O(tq(j,k)),
where q(j, k) = q(k, j) ∈ Q ∩ [1,+∞) is either a characteristic Puiseux exponent
for a branch of the plane curve C or a coincidence exponent between two branches
of C in the sense of e.g., [TMW89]. We call such exponents essential.

For j ∈ [M], define q(j, j) = ∞. �
Lemma 7.3.8 The map q : [M] × [M] → Q ∪ {∞}, (j, k) 
→ q(j, k), determines
the embedded topology of C.

Proof To prove the lemma we will construct from q the so-called carrousel tree.
Then, we will show that it encodes the same data as the Eggers tree. This implies
that it determines the embedded topology of C.

The q(j, k) have the property that q(j, l) ≥ min(q(j, k), q(k, l)) for any triple
j, k, l. So for any q ∈ Q ∪ {∞}, q > 0, the binary relation on the set [M] defined
by j ∼q k ⇔ q(j, k) ≥ q is an equivalence relation.
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Name the elements of the set q([M] × [M]) ∪ {1} in decreasing order of size:
∞ = q0 > q1 > q2 > · · · > qs = 1. For each i = 0, . . . , s let Gi,1, . . . ,Gi,Mi
be the equivalence classes for the relation ∼qi . So M0 = M and the sets G0,j are
singletons while Ms = 1 and Gs,1 = [M]. We form a tree with these equivalence
classes Gi,j as vertices, and edges given by inclusion relations: the singleton sets
G0,j are the leaves and there is an edge between Gi,j and Gi+1,k if Gi,j ⊆ Gi+1,k .
The vertexGs,1 is the root of this tree. We weight each vertex with its corresponding
qi .

The carrousel tree is the tree obtained from this tree by suppressing valence
2 vertices (i.e., vertices with exactly two incident edges): we remove each such
vertex and amalgamate its two adjacent edges into one edge. We follow the computer
science convention of drawing the tree with its root vertex at the top, descending to
its leaves at the bottom (see Fig. 7.2).

At any non-leaf vertex v of the carrousel tree we have a weight qv , 1 ≤ qv ≤
q1, which is one of the qi’s. We write it as mv/nv , where nv is the lcm of the
denominators of the q-weights at the vertices on the path from v up to the root
vertex. If v′ is the adjacent vertex above v along this path, we put rv = nv/nv′ and
sv = nv(qv−qv′). At each vertex v the subtrees cut off below v consist of groups of
rv isomorphic trees, with possibly one additional tree. We label the top of the edge
connecting to this additional tree at v, if it exists, with the number rv , and then delete
all but one from each group of rv isomorphic trees below v. We do this for each non-
leaf vertex of the carrousel tree. The resulting tree, with the qv labels at vertices and
the extra label on a downward edge at some vertices is easily recognized as a mild
modification of the Eggers tree: there is a natural action of the Galois group whose
quotient is the Eggers tree. �

As already noted, this reconstruction of the embedded topology involved the
complex structure and the outer metric. We must show that we can reconstruct it
without using the complex structure, even after applying a bilipschitz change to the
outer metric. We will use what we call a bubble trick.

Recall that the tangent cone of C is a union of lines L(j). We denote by C(j)

the part of C tangent to the line L(j). It suffices to recover the topology of each
C(j) independently, since the C(j)’s are distinguished by the fact that the distance
between any two of them outside a ball of radius ε around 0 is 	(ε), even after
bilipschitz change of the metric. We therefore assume from now on that the tangent
cone of C is a single complex line.

We now arrive at a crucial moment of the proof and of the paper.

The Bubble Trick The points p1(t), . . . , pM(t) which we used in order to find
the numbers q(j, k) were obtained by intersecting C with the line x = t . The
arc p1(t), t ∈ [0, ε0] satisfies d(0, p1(t)) = 	(t). Moreover, the other points
p2(t), . . . , pM(t) are in the transverse disk of radius rt centered at p1(t) in the plane
x = t . Here r can be as small as we like, so long as ε0 is then chosen sufficiently
small.

Instead of a transverse disk of radius rt , we can use a ball B(p1(t), rt)

of radius rt centered at p1(t). This ball B(p1(t), rt) intersects C in M disks
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D1(t), . . . ,DM(t), and we have d(Dj (t),Dk(t)) = 	(tq(j,k)), so we still recover
the numbers q(j, k). In fact, the ball in the outer metric on C of radius rt around
p1(t) is BC(p1(t), rt) := C ∩ B(p1(t), rt), which consists of these M disks
D1(t), . . . ,DM(t).

We now replace the arc p1(t) by any continuous arc p′1(t) on C with the property
that d(0, p′1(t)) = 	(t). If r is sufficiently small it is still true that BC(p′1(t), rt)
consists of M disks D′1(t), . . . ,D′M(t) with d

(
D′j (t),D′k(t)

) = 	(tq(j,k)). So at
this point, we have gotten rid of the dependence on analytic structure in discovering
the topology, but not yet of the dependence on the outer geometry.

Let now d ′ be a metric on C such that the identity map is a K-bilipschitz home-
omorphism in a neighbourhood of the origin. We work inside this neighbourhood,
taking t, ε0 and r sufficiently small. B ′(p, η) will denote the ball in C for the metric
d ′ centered at p ∈ C with radius η ≥ 0.

The bilipschitz change of the metric may disintegrate the balls in many connected
components, as sketched on Fig. 7.4, where the round ball BC(p′1(t), rt) has 3
components (3 is the mulitplicity of C), while B ′(p′1(t), rt) has 6 components
(for clarity of the picture, we draw the ball B ′(p′1(t), rt) as if the distance d ′ were
induced by an ambient metric, but this is not the case in general).

If we try to perform the same argument as before using the balls B ′(p′1(t), rt)
instead of BC(p′1(t), rt), we get a problem since B ′(p′1(t), rt) may have many
irrelevant components and we can no longer simply use distance between connected
components. To resolve this, we consider the two balls B ′1(t) = B ′(p′1(t), rtK3 ) and
B ′2(t) = B ′(p′1(t), rtK ), we have the inclusions:

BC
(
p′1(t),

rt

K4

) ⊂ B ′1(t) ⊂ BC
(
p′1(t),

rt

K2

) ⊂ B ′2(t) ⊂ BC
(
p′1(t), rt

)

Using these inclusions, we obtain that only M components of B ′2(t) intersect
B ′1(t) and that naming these components D′1(t), . . . ,D′M(t) again, we still have
d(D′j (t),D′k(t)) = 	(tq(j,k)) so the q(j, k) are determined as before (prove this as
an exercise). See Fig. 7.5 for a schematic picture of the situation (again, for clarity

0

p1(t )

B (p1(t ), r t )

BC (p1(t ), r t )

Fig. 7.4 Change of the metric
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p1(t ) B2(t )
BC (p1(t ),

r t
K 2 )

B1(t )

Fig. 7.5 The bubble trick

of the picture, we draw the balls B ′1(t) and B ′2(t) as if the distance d ′ were induced
by an ambient metric, but this is not the case in general).

7.3.3 The Bubble Trick with Jumps

The “bubble trick” introduced in the proof of Theorem 7.3.6 is a powerful tool to
capture invariants of Lipschitz geometry of a complex curve germ. However, this
first version of the bubble trick is not well adapted to explore the outer Lipschitz
geometry of a singular space of dimension ≥2 for the following reason. In the case
of a plane curve germ (C, 0), the bubble trick is based on the fact that the distance
orders between points of �−1(t) ∩ C with respect to t ∈ R are Lipschitz invariants,
where � : (C, 0) → (C, 0) denotes a generic projection of the curve germ. Now,
assume that (X, 0) is a complex surface germ with multiplicity m ≥ 2 (so it has a
singularity at 0), and consider a generic projection � : (X, 0) → (C2, 0). Then the
critical locus of � is a curve germ (%�, 0) ⊂ (X, 0) called the polar curve, and
its image �� = �(%�) is a curve germ (��, 0) ⊂ (C2, 0) called the discriminant
curve of �. Let x ∈ C

2 \ {0}. The number of points in �−1(x) ∩ C depends on x: it
equalsm−1 if x ∈ ��, wherem denotes the multiplicity of (X, 0), andm otherwise.
Moreover, consider a semialgebraic real arc germ p : t ∈ [0, η) 
→ p(t) ∈ C

2 such
that ‖p(t)‖ = |t| and ∀t �= 0, p(t) �∈ ��; then the distance orders between the
m points p1(t), . . . , pm(t) of �−1(p(t)) will depend on the position of the arc p(t)
with respect to the curve ��. So the situation is much more complicated, even in
dimension 2.

In [NP14], we use an adapted version of the bubble trick which enables us to
explore the outer Lipschitz geometry of a complex surface (X, 0). We call it the
bubble trick with jumps. Roughly speaking, it consists in using horns

H(p(t), r|t|q ) =
⋃

t∈[0,1)
B((p(t), r|t|q ),
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where B(x, a) denotes the ball in X with center x and radius a and where p(t) is
a real arc on (X, 0) such that ||p(t)|| = 	(t) and r ∈]0,+∞[, and in exploring
“jumps” in the topology of H(p(t), a|t|q ) when q varies from +∞ to 1, for
example, jumps of the number of connected components of H(p(t), r|t|q ) \ {0}.

In order to give a flavour of this bubble trick with jumps, we will perform it
on a plane curve germ, giving an alternative proof of the implication (1)⇒ (3) of
Theorem 7.3.6.

The Bubble Trick with Jumps
We use again the notations of the version 1 of the bubble trick from the proof of
Theorem 7.3.6. Let (C, 0) be a plane curve germ with multiplicity M and with s
branches C1, . . . , Cs . Let p′1(t) be a continuous arc on C1 with the property that
d(0, p′1(t)) = 	(t). Let us order the numbers q(1, k), k = 2, . . . ,M in decreasing
order:

1 ≤ q(1,M) < q(1,M − 1) < · · · < q(1, 2) < q(1, 1) = ∞.

Let us consider the horns Hq,r = H(p′1(t), r|t|q ) with q ∈ [1,+∞[.
For q >> 1 and small ε > 0, the number of connected components of B(0, ε) ∩(

Hq,r \ {0}
)

equals 1. Now, let us decrease q . For every η > 0 small enough, the
number of connected components of Hq(1,2+η),r \ {0} equals 1, while the number
of connected components of Hq(1,2−η),r \ {0} is > 2. Decreasing q , we have a jump
in the number of connected components exactly when passing one of the rational
numbers q(1, k). So this enables one to recover all the characteristic exponents of
C1 and its contact exponents with the other branches of C. We can do the same for
a real arc p′i (t) in each branch Ci of (C, 0) and this will recover the integers q(i, k)
for k = 1, . . . ,M . We then reconstruct the function q : [M] × [M] → Q≥1 which
characterizes the embedded topology of (C, 0), or equivalently the carrousel tree of
(C, 0).

Moreover, the same jumps appear when one uses instead horns

H′(p′(t), r|t|q ) =
⋃

t∈[0,1)
B ′((p′(t), r|t|q ),

where B ′ denotes balls with respect to a metric d ′ which is bilipschitz equivalent to
the initial outer metric. Indeed, if K is the bilipschitz constant of such a bilipschitz
change, then we have the inclusions

H
(
p′(t), rt

K4

) ⊂ H′
(
p′(t), rt

K3

) ⊂ H
(
p′(t), rt

K2

)

⊂ H′
(
p′(t),

rt

K3

) ⊂ H
(
p′(t), rt

)
.
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Fig. 7.6 Sections of C
associated to the arc p′1(t)

Then the same argument as in the version 1 of the bubble trick shows that for q fixed
and different from q(1, k), k = 2, . . . ,M , the numbers of connected components of
B(0, ε) ∩ (Hq,r \ {0}

)
and B(0, ε) ∩ (H′q,r \ {0}

)
are equal.

Example 7.3.9 Consider again the plane curve singularity with two branches of
Example 7.3.5 given by the Puiseux series:

C1 : y = x3/2 + x13/6, C2 : y = x5/2 .

Consider first an arc p′1(t) inside C1 parametrized by x = t ∈ [0, 1). Then p′1(t)
corresponds to one of the two extremities of the carrousel tree of Fig. 7.2 whose
neighbour vertex is weighted by 5/2. Figure 7.6 represents the intersection of the
horn Hq,r with the line {x = t} for different values of q ∈ [1,+∞[ and for t ∈ C

∗
of sufficiently small absolute value. This shows two jumps: a first jump at q = 5/2,
which says that 5/2 is a characteristic exponent of a branch since p′1(t) and the new
point appearing in the intersection belong to the same connected component C1 of
C \ {0}, while the second jump at 3/2 says that 3/2 is the contact exponent of C1
with the other component since the new points appearing at q = 3/2− η belong to
C2.

This first exploration enables one to construct the left part of the carrousel tree of
C shown on Fig. 7.7, i.e., the one corresponding to the carrousel tree of C1.

To complete the picture, we now consider an arc p′2(t) inside C2 corresponding
to a component of C2 ∩ {x = t}. This means that p′2(t) corresponds to one of the 6
extremities of the carrousel tree of Fig. 7.2 whose neighbour vertex is weighted by
13/6. Figure 7.8 represents the jumps for the horns Hq,r, centered on p′2(t). This
shows two jumps: a first jump at q = 13/6, which says that 13/6 is a characteristic
exponent of C2, then a second jump at 3/2 corresponding to the contact exponent
of C1 and C2.

This exploration of C2 enables one to construct the right part of the carrousel tree
of C shown on Fig. 7.9, i.e., the one corresponding to the carrousel tree of C2.

Merging the two partial carrousel trees above, we obtain the carrousel tree of
Fig. 7.2, recovering the embedded topology of (C, 0).
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Fig. 7.7 Partial carrousel tree associated to the arc p′1(t)

Fig. 7.8 Sections of C associated to the arc p′2(t)
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Fig. 7.9 Partial carrousel tree associated to the arc p′2(t)
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7.4 The Thick-Thin Decomposition of a Surface Singularity

7.4.1 Fast Loops as Obstructions to Metric Conicalness

We know that every complex curve germ (C, 0) ⊂ (CN, 0) is metrically conical for
the inner geometry (Proposition 7.3.2). This is no longer true in higher dimensions.
The first example of a non-metrically-conical complex analytic germ (X,0) appeared
in [BF08]: for k ≥ 2, the surface singularityAk : x2+y2+zk+1 = 0 is not metrically
conical for the inner metric.1 The examples in [BFN08, BFN09, BFN10] then
suggested that failure of metric conicalness is common. For example, among ADE
singularities of surfaces, only A1 and D4 are metrically conical (Exercise 7.4.22).
In [BFN10] it is also shown that the inner Lipschitz geometry of a singularity may
not be determined by its topological type.

A complete classification of the Lipschitz inner geometry of normal complex
surfaces is presented in [BNP14]. It is based on the existence of the so-called
thick-thin decomposition of the surface into two semi-algebraic sets. The aim of
Sects. 7.4.1–7.4.3 is to describe this decomposition.

The simplest obstruction to the metric conicalness of a germ (X, 0) is the
existence of fast loops (see Definition 7.4.2 below).

Let p and q be two pairwise coprime positive integers such that p ≥ q . Set
β = p

q
. The prototype of a fast loop is the β-horn, which is the following semi-

algebraic surface in R
3 (Fig.7.10):

Hβ = {(x, y, z) ∈ R
2 × R

+ : (x2 + y2)q = (z2)p}.

Exercise 7.4.1 Show that Hβ is inner bilipschitz homeomorphic to Hβ ′ if and only
if β = β ′.2

H1 is a straight cone, so it is metrically conical. As a consequence of Exer-
cise 7.4.1, we obtain that for β > 1, Hβ is not metrically conical. For t > 0, set
γt = Hβ ∩ {z = t}. When β > 1, the family of curves (γt )t>0 is a fast loop inside
Hβ . More generally:

1Notice that in the real algebraic setting, it is easy to construct germs with dimension ≥ 3 which
are not metrically conical for the inner geometry. For example a three-dimensional horn-shaped
germ (X, 0) whose link X(ε) is a 2-torus with diameter 	(ε2).
2Hint: the length of the family of curves Ct = Hβ ∩ {z = t} is a 	(tβ) and this is invariant by a
bilipschitz change of the metric. Show that such a family of curves cannot exist in Hβ ′ if β ′ �= β.
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Fig. 7.10 The β-horns Hβ

= 1 > 1

Definition 7.4.2 Let (X, 0) ⊂ (Rn, 0) be a semianalytic germ. A fast loop in (X, 0)
is a continuous family of loops {γε : S1 → X(ε)}0<ε≤ε0 such that:

1. γε is essential (i.e., homotopically non trivial) in the link X(ε) = X ∩ Sε ;
2. there exists q > 1 such that

lim
ε→0

length(γε)

εq
= 0.

In the next section, we will define what we call the thick-thin decomposition of
a normal surface germ (X, 0). It consists in decomposing (X, 0) as a union of two
semi-algebraic sets (X, 0) = (Y, 0)⋃(Z, 0) where (Z, 0) is thin (Definition 7.4.5)
and where (Y, 0) is thick (Definition 7.4.10). The thin part (Z, 0) will contain all
the fast loops of (X, 0) inside a Milnor ball with radius ε0. The thick part (Y, 0) is
the closure of the complement of the thin part and has the property that it contains
a maximal metrically conical set. This enables one to characterize the germs (X, 0)
which are metrically conical:

Theorem 7.4.3 ([BNP14, Theorem 7.5, Corollary 1.8]) Let (X, 0) be a normal
complex surface and let

(X, 0) = (Xthick, 0)
⋃
(Xthin, 0)

be its thick-thin decomposition.
Then (X, 0) is metrically conical if and only if Xthin = ∅, so (X, 0) =

(Xthick, 0).

7.4.2 Thick-Thin Decomposition

Definition 7.4.4 Let (Z, 0) ⊂ (Rn, 0) be a semi-algebraic germ. The tangent cone
of (Z, 0) is the set T0Z of vectors v ∈ R

n such that there exists a sequence of points
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(xk) in Z \ {0} tending to 0 and a sequence of positive real numbers (tk) such that

lim
k→∞

1

tk
xk = v.

Definition 7.4.5 A semi-algebraic germ (Z, 0) ⊂ (Rn, 0) of pure dimension is thin
if the dimension of its tangent cone T0X at 0 satisfies dim(T0Z) < dim(Z).

Example 7.4.6 For every β > 1, the β-horn Hβ is thin since dim(Hβ) = 2 while
T0Hβ is a half-line. On the other hand, H1 is not thin.

Example 7.4.7 Let λ ∈ C
∗ and denote by Cλ the plane curve with Puiseux

parametrization y = λx5/3. Let a, b ∈ R such that 0 < a < b. Consider the
semi-algebraic germ (Z, 0) ⊂ (C2, 0) defined by Z = ⋃a≤|λ|≤b Cλ. The tangent
cone T0Z is the complex line y = 0, while Z is 4-dimensional, so (Z, 0) is thin.

Let Z(ε) be the intersection of Z with the boundary of the bidisc {|x| ≤ ε} ×
{|y| ≤ ε}. By [Dur83], one obtains, up to homeomorphism (or diffeomorphism in a
stratified sense), the same link Z(ε) as when intersecting with a round sphere. When
ε > 0 is small enough, Z(ε) ⊂ {|x| = ε} × {|y| ≤ ε} and the projection Z(ε) → S1

ε

defined by (x, y) → x is a locally trivial fibration whose fibers are the flat annuli
At = Z ∩ {x = t}, |t| = ε, and the lengths of the boundary components of At are
	(ε5/3).

Notice that Z can be described through a resolution as follows. Let σ : Y → C
2

be the minimal embedded resolution of the curve E1 : y = x5/3. It decomposes
into four successive blow-ups of points. Denote E1, . . . , E4 the corresponding
components of the exceptional divisor σ−1(0) indexed by their order of creation.
Then σ is a simultaneous resolution of the curves Cλ. Therefore, the strict transform
ofZ by σ is a neighbourhood ofE4 minus neighbourhoods of the intersecting points
E4 ∩E2 and E4 ∩E3 as pictured in Fig. 7.11. The tree T on the left is the dual tree
of σ . Its vertices are weighted by the self-intersections E2

i and the arrow represents
the strict transform of C1.

Definition 7.4.8 Let 1 < q ∈ Q. A q-horn neighbourhood of a semi-algebraic
germ (A, 0) ⊂ (RN, 0) is a set of the form {x ∈ R

n ∩ Bε : d(x,A) ≤ c|x|q} for
some c > 0, where d denotes the Euclidean metric.

The following proposition helps picture “thinness”

T
E4E2

E3

E1

−1−3−3 −2−2

∗

Fig. 7.11 The strict transform of Z by σ
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Fig. 7.12 Trying to glue a
thin germ with a metrically
conical germ

hole

B

A

Proposition 7.4.9 ([BNP14, Proposition 1.3]) Any thin semi-algebraic germ
(Z, 0) ⊂ (RN, 0) is contained in some q-horn neighbourhood of its tangent cone
T0Z.

We will now define thick semi-algebraic sets. The definition is built on the
following observation. Let (X, 0) ⊂ (Rn, 0) be a real algebraic germ; we would
like to decompose (X, 0) into two semialgebraic sets (A, 0) and (B, 0) glued along
their boundary germs, where (A, 0) is thin and (B, 0) is metrically conical. But
try to glue a thin germ (A, 0) with a metrically conical germ (B, 0) so that they
intersect only along their boundary germs. . . . It is not possible! There would be a
hole between them (see Fig. 7.12). So we have to replace (B, 0) by something else
than conical.

“Thick” is a generalization of “metrically conical.” Roughly speaking, a thick
algebraic set is obtained by slightly inflating a metrically conical set in order that it
can interface along its boundary with thin parts. The precise definition is as follows:

Definition 7.4.10 Let Bε ⊂ R
N denote the ball of radius ε centered at the origin,

and Sε its boundary. A semi-algebraic germ (Y, 0) ⊂ (RN, 0) is thick if there exists
ε0 > 0 and K ≥ 1 such that Y ∩ Bε0 is the union of subsets Yε , ε ≤ ε0 which are
metrically conical with bilipschitz constant K and satisfy the following properties
(see Fig. 7.1):

1. Yε ⊂ Bε , Yε ∩ Sε = Y ∩ Sε and Yε is metrically conical;
2. For ε1 < ε2 we have Yε2 ∩ Bε1 ⊂ Yε1 and this embedding respects the conical

structures. Moreover, the difference (Yε1 ∩ Sε1) \ (Yε2 ∩ Sε1) of the links of these
cones is homeomorphic to ∂(Yε1 ∩ Sε1)× [0, 1).
Clearly, a semi-algebraic germ cannot be both thick and thin (Fig. 7.13).

Example 7.4.11 The set Z = {(x, y, z) ∈ R
3 : x2 + y2 ≤ z3} gives a thin germ

at 0 since it is a three-dimensional germ whose tangent cone is half the z-axis. The
intersection Z ∩ Bε is contained in a closed 3/2-horn neighbourhood of the z-axis.
The complement in R

3 of this thin set is thick.

Example 7.4.12 Consider again the thin germ (Z, 0) ⊂ (C2, 0) of Example 7.4.7.

Then the germ (Y, 0) defined by Y = C
2 \ Z is a thick germ. To give an imaged

picture of it, fix η > 0 and consider the conical set W ⊂ C
2 defined as the union

of the complex lines y = αx for |α| ≥ η; then (Y, 0) is obtained by “slighly
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Fig. 7.13 Thick germ

0

S 1

S 2

Y 1

Y 2

inflating” W . Notice that the strict transform of Y by the resolution σ introduced
in Example 7.4.7 is a neighbourhood of the union of curves E1 ∪ E3.

For any semi-algebraic germ (A, 0) of (RN, 0), we write A(ε) := A ∩ Sε ⊂ Sε .
When ε is sufficiently small, A(ε) is the ε-link of (A, 0).

Definition 7.4.13 (Thick-Thin Decomposition) A thick-thin decomposition of
the normal complex surface germ (X, 0) is a decomposition of it as a union of semi-
algebraic germs of pure dimension 4 called pieces:

(X, 0) =
r⋃

i=1

(Yi , 0) ∪
s⋃

j=1

(Zj , 0) , (7.1)

such that the Yi \ {0} and Zj \ {0} are connected and:

1. Each Yi is thick and each Zj is thin;
2. The Yi \ {0} are pairwise disjoint and the Zj \ {0} are pairwise disjoint;
3. If ε0 is chosen small enough such that Sε is transverse to each of the germs (Yi , 0)

and (Zj , 0) for ε ≤ ε0, then X(ε) = ⋃r
i=1 Y

(ε)
i ∪

⋃s
j=1 Z

(ε)
j decomposes the 3-

manifold X(ε) ⊂ Sε into connected submanifolds with boundary, glued along
their boundary components.

Definition 7.4.14 A thick-thin decomposition is minimal if

1. the tangent cone of its thin part
⋃s
j=1 Zj is contained in the tangent cone of the

thin part of any other thick-thin decomposition and
2. the number s of its thin pieces is minimal among thick-thin decompositions

satisfying (1).

The following theorem expresses the existence and uniqueness of a minimal
thick-thin decomposition of a normal complex surface singularity.

Theorem 7.4.15 ([BNP14, Section 8]) Let (X, 0) be a normal complex surface
germ. Then a minimal thick-thin decomposition of (X, 0) exists. For any two minimal
thick-thin decompositions of (X, 0), there exists q > 1 and a homeomorphism of the
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germ (X, 0) to itself which takes one decomposition to the other and moves each
x ∈ X by a distance at most ‖x‖q .

7.4.3 The Thick-Thin Decomposition in a Resolution

In this section, we describe explicitly the minimal thick-thin decomposition of a
normal complex surface germ (X, 0) ⊂ (Cn, 0) in terms of a suitable resolution of
(X, 0) as presented in [BNP14, Section 2]. The uniqueness of the minimal thick-thin
decomposition is proved in [BNP14, Section 8]. We refer to Sect. 7.5 of the lecture
notes of Jawad Snoussi and to Sect. 7.6 of those of Walter Neumann in the present
volume for classical background about resolution of complex surfaces.

Let π : (X̃, E) → (X, 0) be the minimal resolution with the following proper-
ties:

1. It is a good resolution, i.e., the irreducible components of the exceptional divisor
are smooth and meet transversely, at most two at a time.

2. It factors through the blow-up e0 : X0 → X of the origin. An irreducible
component of the exceptional divisor π−1(0) which projects surjectively on an
irreducible component of e−1

0 (0) will be called an L-curve.
3. No two L-curves intersect.

This is achieved by starting with a minimal good resolution, then blowing up to
resolve any base points of a general system of hyperplane sections, and finally
blowing up any intersection point between L-curves.

Definition 7.4.16 Let " be the resolution graph of the above resolution. A vertex
of " is called a node if it has valence ≥3 or represents a curve of genus >0 or
represents an L-curve. If a node represents an L-curve it is called an L-node . By
the previous paragraph, L-nodes cannot be adjacent to each other. Other types of
nodes will be introduced in Definitions 7.5.23 and 7.5.31.

A string is a connected subgraph of " containing no nodes. A bamboo is a string
ending in a vertex of valence 1.

For each irreducible curve Eν in E, let N(Eν) be a small closed tubular
neighborhood of Eν in X̃. For any subgraph "′ of " define (see Fig. 7.14):

N("′) :=
⋃

ν∈"′
N(Eν) and N ("′) := N(") \

⋃

ν /∈"′
N(Eν) .

The subgraphs of " resulting by removing the L-nodes and adjacent edges from
" are called the Tyurina components of " (following [Spi90, Definition III.3.1]).

Let "1, . . . , "s denote the Tyurina components of " which are not bamboos, and
by "′1, . . . , "′r the maximal connected subgraphs in " \⋃s

j=1 "j . Therefore each
"′i consists of an L-node and any attached bamboos and strings.
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Fig. 7.14 The sets N("′) and N ("′)

Assume that ε0 is sufficiently small such that π−1(X∩Bε0) is included in N(").
For each i = 1, . . . , r , define

Yi := π(N("′i )) ∩ Bε0,

and for each j = 1, . . . , s, define

Zj := π(N ("j )) ∩ Bε0 .

Notice that the Yi are in one-to-one correspondence with the L-nodes.

Theorem 7.4.17 ([BNP14, Section 2, Proposition 5.1, Proposition 6.1])

1. For each i = 1, . . . , r , (Yi , 0) is thick;
2. For each j = 1, . . . , s, (Zj , 0) is thin;
3. The decomposition (X, 0) = ⋃

(Zj , 0) ∪ ⋃(Yi , 0) is a minimal thick-thin
decomposition of (X, 0).

The proof of (2) is easy:

Proof Choose an embedding (X, 0) ⊂ (Cn, 0) and let e0 : X0 → X be the blow-up
of the origin. If x ∈ C

n \ {0}, denote by Lx the class of x in P
n−1, so Lx represents

the line through 0 and x in C
n. By definition X0 is the closure in C

n × P
n−1 of the

set {(x, Lx) : x ∈ X \ {0}}.
The semi-algebraic set Zj is of real dimension 4. On the other hand, the strict

transform of Zj by e0 meets the exceptional divisor e−1
0 (0) at a single point (x, Lx),

so the tangent cone at 0 to Zj is the complex line Lx . Therefore (Zj , 0) is thin. �
In the next section, we present the first part of the proof of the thickness of (Yi , 0),

which consists of proving the following intermediate Lemma:

Lemma 7.4.18 For each L-node ν, the subset π(N (ν)) of (X, 0) is metrically
conical.

The rest of the proof of Point (1) of Theorem 7.4.17 is more delicate. In particular,
it uses the key Polar Wedge Lemma [BNP14, Proposition 3.4] which is stated later
in the present notes (Proposition 7.5.15) and a geometric decomposition of (X, 0)
into standard pieces which is a refinement of the thick-thin decomposition and
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Fig. 7.15 The thick-thin
decomposition of the
singularity E8

-node
−2 −2 −2 −2 −2 −2 −2

−2

which leads to the complete classification of the inner Lipschitz geometry of (X, 0)
presented in Sect. 7.5.4. We refer to [BNP14] for the proofs.

The minimality (3) is proved in [BNP14, Section 8].
We now give several explicit examples of thick-thin decompositions. More

examples can be found in [BNP14, Section 15].

Example 7.4.19 Consider the normal surface singularity (X, 0) ⊂ (C3, 0) with
equation x2 + y3 + z5 = 0. This is the standard singularity E8 (see [Dur79]). Its
minimal resolution has exceptional divisor a tree of eight P1 having self intersections
−2 and it factors through the blow-up of the point 0. The dual graph" is represented
on Fig. 7.15. It can be constructed with Laufer’s method (see Appendix section 7.6).
The arrow represents the strict transform of a generic linear form h = αx+βy+γ z
on (X, 0). The vertex adjacent to it is the unique L-node and " has two nodes which
are circled on the figure. The thick-thin decomposition of (X, 0) has one thick piece
(Y1, 0) and one thin piece (Z1, 0). The subgraph "′1 of " such that Y1 = π(N("′1))
is in black and the subgraph "1 such that Z1 = π(N ("1)) is in white.

Example 7.4.20 Consider the normal surface singularity (X, 0) ⊂ (C3, 0) with
equation x2 + zy2 + z3 = 0. This is the standard singularity D4. Its minimal
resolution has exceptional divisor a tree of four P1’s having self intersections −2
and it factors through the blow-up of the point 0. The dual graph " is represented on
Fig. 7.16. It has one L-node, which is the central vertex circled on the figure and no
other node. Therefore, the thick-thin decomposition of (X, 0) has empty thin part
and (X, 0) is metrically conical. The subgraph of " corresponding to the thick part
is the whole ".

Example 7.4.21 Consider the family of surface singularities in (Xt , 0) ⊂ (C3, 0)
with equations x5 + z15 + y7z+ txy6 = 0 depending on the parameter t ∈ C. This
is a μ-constant family introduced by Briançon and Speder in [BS75]. The thick-thin
decomposition changes radically when t becomes 0. Indeed, the minimal resolution
graph of every (Xt , 0) is the first graph on Fig. 7.17 while the two other resolution
graphs describe the thick-thin decompositions for t = 0 and for t �= 0. For t �= 0 it
has three thick components and a single thin one. For t = 0, it has one component
of each type. We refer to [BNP14, Example 15.7] for further details.

Fig. 7.16 The thick-thin
decomposition of the
singularity D4

−2 −2

−2

−2
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−3

[8]

−2
Minimal resolution

−5 [8] −2

−1

−1

t ≠ 0 t = 0

−5 [8] −1 −2 −3

Fig. 7.17 The two thick-thin decompositions in the Briançon-Speder family x5 + z15 + y7z +
txy6 = 0

Exercise 7.4.22 Describe the thick-thin decomposition of every ADE surface
singularity and show that among them, only A1 and D4 are metrically conical
(Answer: [BNP14, Example 15.4]). The equations are:

• An : x2 + y2 + zk+1 = 0, k ≥ 1
• Dn : x2 + zy2 + zk−1 = 0, k ≥ 4
• E6 : x2 + y3 + z4 = 0
• E7 : x2 + y3 + yz3 = 0
• E8 : x2 + y3 + z5 = 0

7.4.4 Generic Projection and Inner Metric: A Key Lemma

In this section, we state and prove Lemma 7.4.29 which is one of the key results
which will lead to the complete classification of the inner metric of (X, 0). We give
two applications. The first one is the proof of Lemma 7.4.18. The second describes
the inner contact between complex curves on a complex surface.

We first need to introduce the polar curves of generic projections and the Nash
modification of (X, 0). We refer to the lecture notes of Jawad Snoussi [Sno19] in
the present volume for more details about Nash modification.

7.4.4.1 Polar Curves and Generic Projections

Let (X, 0) ⊂ (Cn, 0) be a normal surface singularity. We restrict ourselves to those
D in G(n−2,Cn) such that the restriction �D|(X,0) : (X, 0)→ (C2, 0) is finite. The
polar curve %D of (X, 0) for the direction D is the closure in (X, 0) of the critical
locus of the restriction of �D to X \ {0}. The discriminant curve �D ⊂ (C2, 0) is
the image �D(%D) of the polar curve%D.



192 A. Pichon

Proposition 7.4.23 ([Tei82, Lemme-clé V 1.2.2]) An open dense subset � ⊂
G(n− 2,Cn) exists such that:

1. The family of curve germs (%D)D∈� is equisingular in terms of strong simulta-
neous resolution;

2. The curves �D(%D′), (D,D′) ∈ �× � form an equisingular family of reduced
plane curves;

3. For each D, the projection �D is generic for its polar curve %D (Defini-
tion 7.3.3).

Definition 7.4.24 The projection �D : Cn → C
2 is generic for (X, 0) if D ∈ �.

7.4.4.2 Nash Modification

Definition 7.4.25 Let λ : X \ {0} → G(2,Cn) be the map which sends x ∈ X \ {0}
to the tangent plane TxX. The closure Xν of the graph of λ in X × G(2,Cn) is
a reduced analytic surface. By definition, the Nash modification of (X, 0) is the
morphism ν : Xν → X induced by projection on the first factor.

Lemma 7.4.26 ([Spi90, Part III, Theorem 1.2]) A morphism π : Y → X factors
through Nash modification if and only if it has no base points for the family of polar
curves of generic projections, i.e., there is no point p ∈ π−1(0) such that for every
D ∈ �, the strict transform of %D by π passes through p.

Definition 7.4.27 Let (X, 0) ⊂ (Cn, 0) be a complex surface germ and let
ν : Xν → X be the Nash modification of X. The Gauss map λ̃ : Xν → G(2,Cn) is
the restriction to Xν of the projection of X ×G(2,Cn) on the second factor.

Let � : Cn → C
2 be a linear projection such that the restriction �|X : (X, 0) →

(C2, 0) is generic. Let % and� be the polar and discriminant curves of �|X.

Definition 7.4.28 The local bilipschitz constant of �|X is the map K : X \ {0} →
R∪{∞} defined as follows. It is infinite on the polar curve% and at a pointp ∈ X\%
it is the reciprocal of the shortest length among images of unit vectors in TpX under
the projection � |TpX : TpX→ C

2.

Let%∗ denote the strict transform of the polar curve% by the Nash modification
ν. Set Bε = {x ∈ C

n : ‖x‖Cn ≤ ε}.
Lemma 7.4.29 Given any neighbourhoodU of %∗∩ν−1(Bε∩X) inXν∩ν−1(Bε∩
X), the local bilipschitz constantK of � |X is bounded on Bε ∩ (X \ ν(U)).
Proof Let κ : G(2,Cn) → R ∪ {∞} be the map sending H ∈ G(2,Cn) to the
bilipschitz constant of the restriction �|H : H → C

2. The map κ ◦ λ̃ coincides with
K ◦ν onXν \ν−1(0) and takes finite values outside%∗. The map κ ◦ λ̃ is continuous
and therefore bounded on the compact set ν−1(Bε ∩X) \ U . �

We will use “small” special versions of U called polar wedges, defined as
follows.
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Definition 7.4.30 Let %0 be a component of % and let (u, v) be local coordinates
in Xν centered at p = %∗0 ∩ ν−1(0) such that v = 0 is the local equation of ν−1(0).
For α > 0, consider the polydisc U%0(α) = {(u, v) ∈ C

2 : |u| ≤ α}. For small
α, the set W%0 = ν(U%0(α)) is called a polar wedge around %0 and the union
W =⋃%0⊂%W%0 a polar wedge around%.

7.4.4.3 Application 1

Proof of Lemma 7.4.18 We want to prove that for every L-node ν, the germ
π(N (ν)) is metrically conical.

Consider a polar wedgeW around%. A direct consequence of Lemma 7.4.29 is
that the restriction of � to X \W is a local bilipschitz homeomorphism for the inner
metric. Therefore, for any metrically conical germ C in (C2, 0), the intersection of
the lifting �−1(C) with X \W will be a metrically conical germ.

For each j = 1, . . . , s, let Lj ⊂ C
n be the complex tangent line of the thin

germ (Zj , 0) and let L′j ⊂ C
2 be image of Lj by the generic linear form � : Cn →

C
2. Assume L′j has equation y = ajx. For a real number α > 0, we consider

the conical subset Vα ⊂ C
2 defined as the union of the complex lines y = ηx

such that |η − aj | ≥ α, so Vα is the closure of a set obtained by removing conical
neighbourhoods of the lines L′j . Applying the above result, we obtain that for all

α > 0, the intersection of the lifting �−1(Vα) with X \W gives a metrically conical
germ at 0. Since there exist two real numbers α1, α2 with 0 < α1 < α2 such that
inside a small ball Bε , we have �−1(Vα1) ⊂ π(N (ν)) ⊂ �−1(Vα2), then the germ
π(N (ν)) ∩ (X \W) at 0 is also metrically conical.

If the strict transform of % by π does not intersect the L-curve Eν , then the
intersection π(N (ν)) ∩ (X \W) is the whole π(N (ν)). Therefore π(N (ν)) is
metrically conical.

If the strict transform of% by π intersects the L-curveEν , then we have to use a
second generic projection �′ : (X, 0)→ (C2, 0) such that the strict transform of the
polar curve %′ of �′ by π does not intersect U , and we prove that π(N (ν)) ∩W
is metrically conical using the above argument. Therefore π(N (ν)) is metrically
conical as the union of two metrically conical sets. �

7.4.4.4 Application 2

Let (X, 0) be a normal complex surface singularity.

Definition 7.4.31 Let Sε = {x ∈ C
n : ‖x‖Cn = ε}. Let (γ, 0) and (γ ′, 0) be two

distinct irreducible germs of complex curves inside (X, 0). Let qinn = qinn(γ, γ ′)
be the rational number≥ 1 defined by

di(γ ∩ Sε, γ ′ ∩ Sε) = 	(εqinn),
where di means inner distance in (X, 0) as before.
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We call qinn(γ, γ ′) the the inner contact exponent or inner contact order
between γ and γ ′.

The proof of the existence and rationality of the inner contact qinn needs deep
arguments of [KO97]. We refer to this paper for details.

Remark 7.4.32 One can also define the outer contact exponent qout between two
curves by using the outer metric instead of the inner one. In that case, the existence
and rationality of qout come easily from the fact that the outer distance do is a
semialgebraic function. (While the inner distance di is not semi-algebraic.)

Definition 7.4.33 Let π : Z → X be a resolution of X and let E be an irreducible
component of the exceptional divisor π−1(0). A curvette of E is a smooth curve
δ ⊂ Z which is transversal toE at a smooth point of the exceptional divisor π−1(0).

Lemma 7.4.34 ([NPP20a, Lemma 15.1]) Let π : Z→ X be a resolution of (X, 0)
and let E be an irreducible component of the exceptional divisor π−1(0). Let (γ, 0)
and (γ ′, 0) be the π-images of two curvettes of E meeting E at two distinct points.
Then qinn(γ, γ ′) is independent of the choice of γ and γ ′.

Definition 7.4.35 We set qE = qinn(γ, γ ′) and we call qE the inner rate of E.

Remark 7.4.36 When X = C
2, inner and outer metrics coincide and the result is

well known and comes from classical plane curve theory: in that case, qinn(γ, γ ′) is
the coincidence exponent between Puiseux expansions of the curves γ and γ ′ (see
for example [GBT99, page 401]). The inner rate at each vertex of a sequence of
blow-ups can be computed by using the classical dictionary between characteristic
exponents of an irreducible curve and its resolution graph. We refer to [EN85, page
148] or [Wal04, Section 8.3] for details. As a consequence of this, the inner rates
along any path from the root vertex to a leaf of T form a strictly increasing sequence.

Example 7.4.37 The dual tree T0 of the minimal resolution σ0 : Y0 → C
2 of the

curve γ with Puiseux expansion y = z5/3 is obtained (Fig. 7.18) by computing the
continued fraction development

5

3
= 1+ 1

1+ 1
2

=: [1, 1, 2]+.

Since 1 + 1 + 2 = 4, σ0 consists of four successive blow-ups of points starting
with the blow-up of the origin of C2 which correspond to the four vertices of T0.
The irreducible curves E1, . . . , E4 are labelled in their order of appearance and the
vertices of T0 are also weighted by their self-intersections E2

i .

Fig. 7.18 The resolution tree
T0 of the curve
x5 + z15 + y7z+ txy6 = 0

E2 E3E4 E1

root vertex
−3 −1 −2 −3
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Fig. 7.19 The inner rates in
resolutions of the curve
y = x5/3 T0

T

2 3
2

5
3 1

−3 −1 −2 −3

14
3

3
2

8
5

5
3

7
42

2

−4 −1 −4 −1 −4 −1 −4

−1

The inner rates are computed by using the approximation numbers associated
with the sequence [1, 1, 2]+: qv1 = [1]+ = 1, qv2 = [1, 1]+ = 1 + 1

1 = 2,
qv3 = [1, 1, 1]+ = 3

2 and qv3 = [1, 1, 2]+ = 5
3

This gives the tree T0 of Fig. 7.19 where each vertex is weighted by the self
intersection of the corresponding exceptional curve Ei and with the inner rate qEi
(in bold).

Let us blow up every intersection point between irreducible components of the
total transform σ−1

0 (γ ). The resulting tree T is that used to compute the dual
resolution graph ofE8 : x2+y3−z5 = 0 by Laufer’s method (Appendix section 7.6).
Again, the inner rates are in bold. Their computation is left to the reader as an
exercise.

Proof of Lemma 7.4.34 Consider a generic projection � : (X, 0) → (C2, 0) which
is also generic for the curve germ (γ ∪ γ ′, 0) (Definition 7.3.3). Then consider the
minimal sequence of blow-ups σ : Y → C

2 such that the strict transforms �(γ )∗
and �(γ ′)∗ by σ do not intersect. Then �(γ )∗ and �(γ ′)∗ are two curvettes of the
last exceptional curve C created by σ and we then have qinn(�(γ ), �(γ ′)) = qC .
Moreover, an easy argument using Hirzebruch–Jung resolution of surfaces (see
[PP11] for an introduction to this resolution method) shows that σ does not depend
on the choice of the curvettes γ ∗ and γ ′∗ of E. Now, since � is generic for the
curve γ ∪ γ ′, the strict transform of the polar curve % of � by π does not intersect
the strict transform of γ ∪ γ ′, and then, γ ∗ ∪ γ ′∗ is outside any sufficiently small
polar wedge of � around%. Therefore, by Lemma 7.4.29, we obtain qinn(γ, γ ′) =
qinn(�(γ ), �(γ

′)) = qC �
Example 7.4.38 The proof of Lemma 7.4.34 shows that the inner rates qE can be
computed by using inner rates in C

2 through a generic projection � : (X, 0) →
(C2, 0). Applying this, Fig. 7.20 shows the inner rate at each vertex of the minimal
resolution graph of the surface singularityE8 : x2+ y3+ z5 = 0. They are obtained
by lifting the inner rates of the graph T of Example 7.4.37.
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Fig. 7.20 The inner rates for
the singularity E8
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7.4.5 Fast Loops in the Thin Pieces

Consider a normal surface germ (X, 0) ⊂ (Cn, 0). We choose coordinates
(z1 . . . , zn) in C

n so that z1 and z2 are generic linear forms and � := (z1, z2) : X→
C

2 is a generic linear projection. The family of Milnor balls we use in the sequel
consists of standard “Milnor tubes” associated with the Milnor-Lê fibration for the
map ζ := z1|X : X → C (see Section 3.5 of the lecture notes of Cisneros and
Aguilar in chapter 1 of the present volume). Namely, for some sufficiently small ε0
and some R > 0 we define for ε ≤ ε0:

Bε := {(z1, . . . , zn) ∈ C
n : |z1| ≤ ε, ‖(z1, . . . , zn)‖ ≤ Rε} and Sε = ∂Bε.

By [BNP14, Proposition 4.1], on can choose ε0 and R so that for ε ≤ ε0:

1. ζ−1(t) intersects the round sphere

S2n−1
Rε = {(z1, . . . , zn) ∈ C

n : ‖(z1, . . . , zn)‖ = Rε}

transversely for |t| ≤ ε;
2. the polar curve of the projection � = (z1, z2) meets Sε in the part |z1| = ε.

If (A, 0) is a semialgebraic germ, we denote by A(ε) = Sε ∩ X its link with
respect to the Milnor ball Bε .

Theorem 7.4.39 ([BNP14, Theorem 1.7]) Consider the minimal thick-thin decom-
position

(X, 0) =
r⋃

i=1

(Yi, 0) ∪
s⋃

j=1

(Zj , 0)

of (X, 0). For 0 < ε ≤ ε0 and for each j = 1, . . . , s, let ζ (ε)j : Z(ε)j → S1 be the

restriction to Z(ε)j of the generic linear form h = z1. Then there exists qj > 1 such

that the fibers ζ−1
j (t) have diameter	(εqj ).

Sketch of Proof of Theorem 7.4.39 The proof of Theorem 7.4.39 is based on two
keypoints: Lemma 7.4.29, which implies that � is an inner Lipschitz homeomor-
phism outside a polar wedge W , and the so called Polar Wedge Lemma [BNP14,
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Proposition 3.4] which describes the geometry of a polar wedge. The idea is to use
a generic linear projection � = (z1, z2) : (X, 0) → (C2, 0) and to describe (Zj , 0)
as a component of the lifting by � of some semi-algebraic germ (Vj , 0) in C

2 which

has the properties described in the Theorem, i.e., for small ε > 0, V (ε)j fibers over

S1 with fibers having diameter 	(εqj ) for some qj > 1.
Consider a sequence σ : Y → C

2 of blow-ups of points which resolves the base
points of the family of projected polar curves �(%D)D∈� and let T be its dual tree.
Notice that the strict transforms of the curves �(%D),D ∈ � form an equisingular
family of complex curves, but that these curves are not necessarily smooth, i.e., σ is
not, in general, a resolution of �(%D).

Denote by v1 the root vertex of T , i.e., the vertex corresponding to the exceptional
curve created by the first blow-up and by T0 the subtree of T consisting of v1 union
any adjacent string or bamboo. Then Zj is a component of �−1(Vj ) where Vj =
σ(N (Tj )) and where Tj is a component of T \T0. Let vj be the vertex of Tj adjacent
to T0. By classical curve theory, Vj is a set of the form Vj = {z2 = λzqj1 , a ≤ |λ| ≤
b}, where qj is the inner rate of the exceptional curve represented by the vertex vj .

In particular, the 3-manifold V (ε)j = Vj ∩ {|z1| = ε} is fibered over the circle S1
ε by

the projection z1 : V (ε)j → S1
ε and the fibers have diameter	(εqj ).

LetW be a polar wedge around%. By Lemma 7.4.29, we know that � is a locally
inner bilipschitz homeomorphism outsideW . Therefore, the fibers of the restriction
ζ
(ε)
j : Z(ε)j \W(ε) → S1 have diameter 	(εqj ). Moreover the Polar Wedge Lemma

[BNP14, Proposition 3.4] guarantees that the fibers of the restriction of ζ (ε)j to the
link of a component of a polar wedge inside (Zj , 0) have diameter at most 	(εqj ).

�
In [BNP14, Section 7], it is proved that each Z(ε)j contains loops which are

essential in X(ε). As a consequence of Theorem 7.4.39, we obtain the existence
of families of fast loops γε inside each Z(ε)j .

7.5 Geometric Decompositions of a Surface Singularity

In this part, we explain how to break the thin pieces of the thick-thin decomposition
into standard pieces which are still invariant by bilipschitz change of the inner
metric. The resulting decomposition of (X, 0) is what we call the inner geometric
decomposition of (X, 0). Then, we will define the outer geometric decomposition of
(X, 0), which is a refinement of the inner one, and which is invariant by bilipschitz
change of the outer metric.

The inner and outer geometric decompositions will lead to several key results:

1. The complete classification of the inner Lipschitz geometry of a normal surface
germ (Theorem 7.5.30);
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2. A refined geometric decomposition which is an invariant of the outer Lipschitz
geometry (Theorem 7.5.36);

3. A list of analytic invariants of the surface which are in fact invariants of the outer
Lipschitz geometry (Theorem 7.5.38);

7.5.1 The Standard Pieces

In this section, we introduce the standard pieces of our geometric decompositions.
We refer to [BNP14, Sections 11 and 13] for more details.

The pieces are topologically conical, but usually with metrics that make them
shrink non-linearly towards the cone point. We will consider these pieces as germs
at their cone-points, but for the moment, to simplify notation, we suppress this.

7.5.1.1 The B-Pieces

Let us start with a prototype which already appeared earlier in these notes
(Example 7.4.7). Choose q > 1 in Q and 0 < a < b in R. Let Z ∈ C

2 be defined as
the semi-algebraic set

Z := {(x, y) ⊂ C
2 : y = λxq, a ≤ |λ| ≤ b}.

Then for all ε > 0, the intersection Z(ε) = Z ∩ {|x| = ε} is a 3-manifold (namely a
thickened torus) and the restriction of the function x to Z(ε) defines a locally trivial
fibration x : Z(ε)→ S1

ε whose fibers are annuli with diameter	(εq).

Definition 7.5.1 (B(q)-Pieces) Let F be a compact oriented 2-manifold, φ : F →
F an orientation preserving diffeomorphism, and Mφ the mapping torus of φ,
defined as:

Mφ := ([0, 2π] × F)/((2π, x) ∼ (0, φ(x))) .

Given a rational number q > 1, we will define a metric space B(F, φ, q) which is
topologically the cone on the mapping torusMφ .

For each 0 ≤ θ ≤ 2π choose a Riemannian metric gθ on F , varying smoothly
with θ , such that for some small δ > 0:

gθ =
{
g0 for θ ∈ [0, δ] ,
φ∗g0 for θ ∈ [2π − δ, 2π] .
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Then for any r ∈ (0, 1] the metric r2dθ2 + r2qgθ on [0, 2π] × F induces a smooth
metric onMφ . Thus

dr2 + r2dθ2 + r2qgθ

defines a smooth metric on (0, 1]×Mφ . The metric completion of (0, 1]×Mφ adds
a single point at r = 0. Denote this completion by B(F, φ, q). We call a metric
space which is bilipschitz homeomorphic to B(F, φ, q) a B(q)-piece or simply a
B-piece.

A B(q)-piece such that F is a disc is called a D(q)-piece or simply a D-piece.
A B(q)-piece such that F is an annulus S1 × [0, 1] is called an A(q, q)-piece.

Example 7.5.2 The following is based on classical theory of plane curve singu-
larities and is a generalization of the prototype given before Definition 7.5.1. Let
σ : Y → C

2 be a sequence of blow-ups of points starting with the blow-up of the
origin and let Ei be a component of σ−1(0) which is not the component created by
the first blow-up. Then the inner rate qEi is strictly greater than 1, Bi = σ(N (Ei))

is a B(qEi )-piece fibered by the restriction of a generic linear form and the fiber
consists of a disc minus a finite union of open discs inside it.

This is based on the fact that in suitable coordinates (x, y), one may construct
such a piece Bi as a union of curves γλ : y = ∑m

k=1 akx
pk + λxqEi , where p1 <

. . . < pm < qEi . Here y =∑m
k=1 akx

pk is the common part of their Puiseux series
and the coefficient λ ∈ C

∗ varies in a compact disc minus a finite union of open
discs inside it.

Notice that if Ei intersects exactly one other exceptional curve Ej , then one gets
a D(qEi )-piece. If Ei intersects exactly two other curves Ej and Ek , one gets an
A(qEi , qEi )-piece.

7.5.1.2 The A-Pieces

Again, we start with a prototype. Choose 1 ≤ q < q ′ in Q and 0 < a in R and let
Z ⊂ C

2 be defined as the semi-algebraic set

Z := {(x, y) ⊂ C
2 : y = λxs, |λ| = a, q ≤ s ≤ q ′} .

Then for all ε > 0, the intersection Z(ε) = Z∩{|x| = ε} is a thickened torus whose
restriction of the function x to Z(ε) defines a locally trivial fibration x : Z(ε) → S1

ε

whose fibers are flat annuli with outer boundary of length	(εq) and inner boundary
of length	(εq

′
).

Definition 7.5.3 (A(q, q ′)-Pieces) Let q, q ′ be rational numbers such that 1 ≤ q ≤
q ′. Let A be the Euclidean annulus {(ρ,ψ) : 1 ≤ ρ ≤ 2, 0 ≤ ψ ≤ 2π} in polar
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coordinates and for 0 < r ≤ 1 let g(r)
q,q ′ be the metric on A:

g
(r)

q,q ′ := (rq − rq
′
)2dρ2 + ((ρ − 1)rq + (2− ρ)rq ′)2dψ2 .

Endowed with this metric, A is isometric to the Euclidean annulus with inner and
outer radii rq

′
and rq . The metric completion of (0, 1] × §1 × A with the metric

dr2 + r2dθ2 + g(r)
q,q ′

compactifies it by adding a single point at r = 0. We call a metric space which
is bilipschitz homeomorphic to this completion an A(q, q ′)-piece or simply an A-
piece.

Notice that when q = q ′, this definition ofA(q, q) coincides with that introduced
in Definition 7.5.1.

Example 7.5.4 Let σ : Y → C
2 be as in Example 7.5.2 and let T be its dual tree.

As already mentioned in Remark 7.4.36, the inner rates along any path from the root
vertex to a leaf of T form a strictly increasing sequence. In particular, any edge e in
T joins two vertices v and v′, with inner rates respectively q and q ′ with 1 ≤ q < q ′.
Moreover, the semialgebraic set Z = σ(N(v) ∩N(v′)) is an A(q, q ′)-piece fibered
by the restriction of a generic linear form and is bounded by the B(q)- and B(q ′)-
pieces σ(N (v)) and σ(N (v′)).

More generally, let S ⊂ T be a string in T which does not contain the root vertex
of T . let 1 < q < q ′ be the two inner rates associated with the two vertices adjacent
to S. Then Z = σ(N(S)) is an A(q, q ′)-piece fibered by the restriction of a generic
linear form.

Definition 7.5.5 (Rate) The rational number q is called the rate of B(q) or D(q).
The rational numbers q and q ′ are the two rates of A(q, q ′).

7.5.1.3 Conical Pieces (or B(1)-Pieces)

Definition 7.5.6 (Conical Pieces) Given a compact smooth 3-manifoldM , choose
a Riemannian metric g onM and consider the metric dr2+ r2g on (0, 1] ×M . The
completion of this adds a point at r = 0, giving a metric cone on M . We call a
metric space which is bilipschitz homeomorphic to a metric cone a conical piece or
a B(1)-piece (they were called CM-pieces in [BNP14]).

Example 7.5.7 Let σ : Y → X and T be as in Example 7.5.2 and let v1 be the root
vertex of T . Then σ(N (v1)) is a conical piece.
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7.5.2 Geometric Decompositions of C2

A geometric decomposition of a semi-algebraic germ (Y, 0) consists of a decompo-
sition of (Y, 0) as a union of A, B and conical pieces glued along their boundary
components in such a way that the fibrations of B and A pieces coincide on the
gluing.

Examples 7.5.2, 7.5.4, and 7.5.7 show that any sequence σ : Y → C
2 of blow-ups

of points starting with the blow-up of the origin defines a geometric decomposition
of (C2, 0) whose B-pieces are in bijection with the exceptional curvesEi in σ−1(0)
and the intermediateA(q, q ′)-pieces, q < q ′ with the intersection points Ei ∩ Ej .

Definition 7.5.8 We call this geometric decomposition of (C2, 0) the geometric
decomposition associated with σ .

Example 7.5.9 Consider the minimal resolution σ of the curve germ γ with Puiseux
expansion y = x3/2+x7/4. Its resolution tree T , with exceptional curvesEi labelled
in order of occurrence in the sequence of blow-ups, is pictured on Fig. 7.21. Each
vertex is also weighted by the corresponding self-intersection E2

i and by the inner
rate qEi in bold. The inner rates qE1 = 1, qE2 = 2 and qE3 = 3

2 are computed
as in Example 7.4.37 using the first characteristic exponent 3

2 = [1, 2]+. The two
last inner rates are computed using the characteristic Puiseux exponents 3

2 and 7
4

as follows. Set p1
q1
= 3

2 and p2
q2
= 7

4 and write p2
q2
= p1

q1
+ 1

q1

p′2
q ′2

. Then the two

last inner rates are computed by using the continued fraction development
p′2
q ′2
=

[a1, . . . , ar ]+. In our case, we have 7
4 = 3

2 + 1
2 .

1
2 , so

p′2
q ′2
= 1

2 = [0, 2]+. This gives

qE4 = 3
2 + 1

1 = 5
2 and qE5 = 3

2 + 1
2 = 7

4 . (Again, we refer to [EN85] or [Wal04] for
details on these computations).

The underlying geometric decomposition of (C2, 0) consists of:

• Five B-pieces σ(N (Ei)), i = 1, . . . , 5 in bijection with the vertices of T having
rates respectively 1, 2, 3

2 ,
5
2 ,

7
4 . Notice that the B-pieces corresponding to E2 and

E4 are respectively a D(2)- and a D( 5
2 )-piece since the corresponding vertices

have valence one.

Fig. 7.21 Geometric
decomposition of (C2, 0)
associated with the resolution
of the curve y = x3/2 + x7/4
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• Four A-pieces in bijection with the edges of T : σ(N(E1)∩N(E3)), σ (N(E3)∩
N(E2)), σ (N(E3) ∩ N(E5)) and σ(N(E5) ∩ N(E4)) which are respectively an
A(1, 3

2 )-piece, an A( 3
2 , 2)-piece, an A( 3

2 ,
7
4 )-piece and an A( 7

4 ,
5
2 )-piece.

Example 7.5.10 The trees T0 and T in Example 7.4.37 describe two different
geometric decompositions of (C2, 0) associated with two resolutions of the curve
y = x5/3.

The following lemma shows that one can simplify a geometric decomposition
by amalgamating pieces. In this lemma ∼= means bilipschitz equivalence and ∪
represents gluing along appropriate boundary components by an isometry. D2

means the standard 2-disc.

Lemma 7.5.11 (Amalgamation Lemma)

1. B(D2, φ, q) ∼= B(D2, id, q); B(S1 × I, φ, q) ∼= B(S1 × I, id, q).
2. A(q, q ′) ∪A(q ′, q ′′) ∼= A(q, q ′′).
3. If F is the result of gluing a surface F ′ to a diskD2 along boundary components

then B(F ′, φ|F ′ , q) ∪ B(D2, φ|D2 , q) ∼= B(F, φ, q).
4. A(q, q ′) ∪ B(D2, id, q ′) ∼= B(D2, id, q).
5. Each B(D2, id, 1), B(S1 × I, id, 1) or B(F, φ, 1) piece is a conical piece and

a union of conical pieces glued along boundary components is a conical piece.�
Example 7.5.12 Consider again the geometric decomposition of (C2, 0) introduced
in Example 7.5.9. We can amalgamate the D(2)-piece union the A( 3

2 , 2)-piece
to the neighbour B( 3

2 )-piece. We can also amalgamate the D( 5
2 )-piece union the

adjacent A( 7
4 ,

5
2 )-piece to the neighbour B( 7

4 )-piece. This produces a geometric
decomposition of (C2, 0) represented by the tree of Fig. 7.22, where we write inner
rates only at the central vertices of B-pieces and not at the amalgamated pieces.
This decomposition has five pieces: a conical B(1) (black vertex), a B( 3

2 )-piece
(red vertices), a B( 7

4 )-piece (blue vertices) and intermediate A(1, 3
2 )- and A( 7

4 ,
5
2 )-

pieces.

Remark 7.5.13 Notice that the new B( 7
4 )-piece is now a D-piece. Then we could

continue the amalgamation process by amalgamating iteratively all D-pieces. Of
course, in the case of a geometric decomposition of (C2, 0), an iterative amalgama-

Fig. 7.22 Amalgamated
geometric decomposition
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Fig. 7.23 Amalgamated
geometric decomposition for
the curve y = x5/3

15
3

−3 −1 −2 −3

tion of the pieces always produces eventually a unique conical piece which is the
whole (C2, 0).

Example 7.5.14 In the tree T0 of Example 7.5.10, the amalgamation of the D(2)-
piece union the A( 5

3 , 2)-piece to the neighbour B( 5
3 )-piece forms a bigger B( 5

3 )-
piece. The amalgamation of the A( 3

2 ,
3
2 )-piece with the two neighbourA(1, 3

2 )- and
A( 3

2 ,
5
3 )-pieces creates an intermediate A(1, 5

3 )-piece between the B(1)- and the
B( 5

3 )-pieces. This creates a new geometric decomposition of (C2, 0) with two B-
pieces and one A-piece represented on Fig. 7.23. The red vertices correspond to the
B( 5

3 )-piece and the white one to the A-piece.

7.5.3 The Polar Wedge Lemma

Let (X, 0) ⊂ (C2, 0) be a normal surface singularity. Consider a linear projection
C
n → C

2 which is generic for (X, 0) (e.g. [NPP20a, Definition 2.4 ]) and denote
again by � : (X, 0)→ (C2, 0) its restriction to (X, 0). Let % be the polar curve of �
and let � = �(%) be its discriminant curve.

Proposition 7.5.15 (Polar Wedge Lemma) [BNP14, 3.4] Consider the resolution
σ : Y → C

2 which resolves the base points of the family of projections of generic
polar curves (�(%D))D∈�. Let %0 be an irreducible component of% and let �0 =
�(%0). Let C be the irreducible component of σ−1(0) which intersects the strict
transform of�∗0 by σ .

Let W%0 be a polar wedge around %0 as introduced in Definition 7.4.30. Then
W%0 is a D(qC)-piece, and when qC > 1, W%0 is fibered by its intersections with
the real surfaces {h = t} ∩X, where h : Cn → C is a generic linear form.

7.5.4 The Geometric Decomposition and the Complete
Lipschitz Classification for the Inner Metric

Let (X, 0) be a surface germ, let � : (X, 0)→ (C2, 0) be a generic linear projection
with polar curve % and let W be a polar wedge around %. Let σ : Y → C

2 be
the minimal sequence of blow-ups which resolves the base points of the family of
projected polar curves (�(%D))D∈� and consider the geometric decomposition of
(C2, 0) associated with σ (Definition 7.5.8).
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Definition 7.5.16 Let T be the resolution tree of σ . We call �-curve any compo-
nent of σ−1(0) which intersects the strict transform of the discriminant curve � of
�, and we call �-node of T any vertex representing a �-curve.

We call node of T any vertex which is either the root-vertex or a �-node or a
vertex with valence ≥ 3.

Using Lemma 7.5.11, we amalgamate iteratively all the D-pieces of the geo-
metric decomposition of (C2, 0) associated with σ with the rule that we never
amalgamate a piece containing a component of the discriminant curve � of �. We
then obtain a geometric decomposition of (C2, 0) whose pieces are in bijection with
the nodes of T .

Definition 7.5.17 We call this decomposition the geometric decomposition of
(C2, 0) associated with the projection � : (X, 0)→ (C2, 0).

Example 7.5.18 Consider again the germ (X, 0) of the surface E8 with equation
x2 + y3 + z5 = 0 and the projection � : (x, y, z) → (y, z). In order to compute
the geometric decomposition of (C2, 0) associated with �, we need to compute a
resolution graph of σ : Y → C

2 as defined above with its inner rates. We will first
compute the minimal resolution of (X, 0) which factors through Nash modification.

We first consider the graph " of the minimal resolution π of E8 as computed in
the appendix of the present notes. We add to " decorations by arrows corresponding
to the strict transforms of the coordinate functions x, y and z : (X, 0)→ (C, 0) and
we denote the exceptional curves by Ei, i = 1, . . . , 8 (the order is random). All the
self-intersections of the exceptional curves equal−2 so we do not write them on the
graph. We obtain the graph of Fig. 7.24.

Let h : (X, 0)→ (C, 0) be an analytic function, and let (h◦π) =∑8
j=1mjEj +

h∗ be its total transform by π , so mj denotes the multiplicity of h along Ej and
h∗ its strict transform by π . Then, for all j = 1, . . . , 8, we have (h ◦ π).Ej = 0
([Lau71, Theorem 2.6]). Using this, we compute the total transforms by π of the
coordinate functions x, y and z:

(x ◦ π) = 15E1 + 12E2 + 9E3 + 6E4 + 3E5 + 10E6 + 5E7 + 8E8 + x∗
(y ◦ π) = 10E1 + 8E2 + 6E3 + 4E4 + 2E5 + 7E6 + 4E7 + 5E8 + y∗
(z ◦ π) = 6E1 + 5E2 + 4E3 + 3E4 + 2E5 + 4E6 + 2E7 + 3E8 + z∗

Set f (x, y, z) = x2 + y3 + z5. The polar curve% of a generic linear projection
� : (X, 0)→ (C2, 0) has equation g = 0 where g is a generic linear combination of

Fig. 7.24 Resolution of the
coordinates functions on the
E8 singularity

E1 E2 E3 E4 E5E6E7

E8y

x

z
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the partial derivatives fx = 2x, fy = 3y2 and fz = 5z4. The multiplicities of g are
given by the minimum of the compact part of the three divisors

(fx ◦ π) = 15E1 + 12E2 + 9E3 + 6E4 + 3E5 + 10E6 + 5E7 + 8E8 + f ∗x
(fy ◦ π) = 20E1 + 16E2 + 12E3 + 8E4 + 4E5 + 14E6 + 8E7 + 10E8 + f ∗y
(fz ◦ π) = 24E1 + 20E2 + 16E3 + 12E4 + 8E5 + 16E6 + 8E7 + 12E8 + f ∗z

We then obtain that the total transform of g is equal to:

(g ◦ π) = 15E1 + 12E2 + 9E3 + 6E4 + 3E5 + 10E6 + 5E7 + 8E8 +%∗ .

In particular,% is resolved by π and its strict transform%∗ has just one component,
which intersects E8.

Exercise 7.5.19

1. Prove that since the multiplicities m8(fx) = 8, m8(fy) = 10 and m8(z) = 12
along E8 are distinct, the family of polar curves, i.e., the linear system generated
by fx, fy and fz, has a base point on E8.

2. Prove that one must blow up twice to get an exceptional curve E10 along which
m10(fx) = m10(fy), which resolves the linear system and, that this gives the
resolution graph "′ of Fig. 7.25.

Now, consider the computation of the resolution of E8 by Laufer’s method (see
Appendix section 7.6) which consists of computing the double over � : (X, 0) →
(C2, 0) branched over the discriminant curve � : y3 + z5 = 0. We start with the
minimal resolution σ ′ : Y ′ → C

2 of �, and we see from the computation of self-
intersections given in Appendix section 7.6 that we need to blow up five times the
strict transform�∗ in order to get the resolution graph "′. The resulting map is the
morphism σ : Y → C

2 which resolves the base points of the family of projected
polar curves (�(%D))D⊂�. The morphism σ is a composition of blow-ups of points
and the last exceptional curve created in the process is the �-curve. Its inner rate is
5
3 + 5. 13 = 10

3 .

Fig. 7.25 The graph "′
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Π∗
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Fig. 7.26 Geometric
decomposition of (C2, 0)
associated with �
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The geometric decomposition of C
2 associated with � is described by the

resolution tree of σ with nodes weighted by the inner rates (Fig. 7.26).
Notice that the inner rate of the�-curve, which is also the inner rate of the curve

Ev10 of π−1(0) can also be computing using the equations as follows. For a generic
(a, b) ∈ C

2, x + ay2 + bz4 = 0 is the equation of the polar curve%a,b of a generic
projection. The image �(%a,b) ⊂ C

2 under the projection � = (y, z) has equation

y3 + a2y4 + 2aby2z4 + z5 + b2z8 = 0

The discriminant curve � = �(%0,0) has Puiseux expansion y = (−z) 5
3 , while for

(a, b) �= (0, 0), we get for �(%a,b) a Puiseux expansion y = (−z) 5
3 − a2

3 z
10
3 + · · · .

So the discriminant curve � has highest characteristic exponent 5
3 and its contact

exponent with a generic �(%a,b) is 10
3 .

By construction, the projection �(W) of a polar wedge W is a union of D-
pieces which refines the geometric decomposition of (C2, 0) associated with �. By
Lemma 7.4.29, which guarantees that � is a local bilipschitz homeomorphism for the
inner metric outsideW , any piece of this geometric decomposition outside the polar
wedgeW lifts to a piece of the same type. We obtain a geometric decomposition of
X \W . Finally, the Polar Wedge Lemma 7.5.15 says thatW is a union of D-pieces
whose fibrations match with those of its neighbour B-pieces in X \W . We obtain
the following result:

Proposition 7.5.20 Each B(q)-piece (resp. A(q, q ′)-piece) of the geometric
decomposition of (C2, 0) associated with � lifts by � to a union of B(q)-pieces
(resp. A(q, q ′)-pieces) in (X, 0) (with the same rates).

Therefore, we obtain a geometric decomposition of (X, 0) into a union of B-
pieces and A-pieces obtained by lifting by � the A- and B-pieces of the geometric
decomposition of (C2, 0) associated with �.

Definition 7.5.21 We call this decomposition the initial geometric decomposition
of (X, 0).
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Fig. 7.27 Initial geometric
decompostion for the
singularity E8
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3
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−2

−1

Example 7.5.22 The initial geometric decomposition of the surface germ E8 is
represented by the graph of Fig. 7.27. The vertices corresponding to the B( 5

3 )-piece
and the B( 10

3 )-piece are in red, the L-node is in black, the white vertices correspond
to the A-pieces.

We will now amalgamate some pieces to define the inner geometric decomposi-
tion of (X, 0). We first need to specify some special vertices in the resolution graph.

Definition 7.5.23 (Nodes) Let π : Z → X be a resolution of (X, 0) which factors
through the blow-up of the maximal ideal e0 : X0 → X and through the Nash
modification. Let " be the dual resolution graph of π .

We call L-curve any component of π−1(0) which corresponds to a component
of e−1

0 (0) and L-node any vertex of " which represents an L-curve.
We call special P-curve any component Ei of π−1(0) which corresponds to a

component of ν−1(0) (i.e., it intersects the strict transform of the polar curve %)
and such that

1. The curve Ei intersects exactly two other components of Ej and Ek of π−1(0);
2. The inner rates satisfy: max(qEj , qEk ) < qEi .

We call special P-node any vertex of " which represents a special P-curve.
We call inner node any vertex of " which has at least three incident edges or

which represents a curve with genus> 0 or which is an L- or a special P-node.

Using Lemma 7.5.11, we now amalgamate iteratively D and A-pieces but with
the rule that we never amalgamate the special A-pieces with a neighbouring piece.

Definition 7.5.24 We call this decomposition the inner geometric decomposition
of (X, 0).

The following is a straightforward consequence of this amalgamation rule. The
pieces of the inner geometric decomposition of (X, 0) can be described as follows
(we refer to the lecture notes of Walter Neumann in the present volume for the
notions of Seifert manifolds, graph decomposition and their relations with resolution
graphs and plumbing).
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Fig. 7.28 Inner geometric
decompostion for the
singularity E8

15
3

−2−2−2 −2 −2 −2 −2

−2

Proposition 7.5.25 For each inner node (i) of ", let "i be the subgraph of "
consisting of (i) union any attached bamboo.

1. The B-pieces are the sets Bi = π(N ("i)), in bijection with the inner nodes of
". Moreover, for each node (i), Bi is a B(qi)-piece, where qi is the inner rate of
the exceptional curve represented by (i) and the link B(ε)i is a Seifert manifold.

2. The A-pieces are the sets Ai,j = π(N(Si,j )) where Si,j is a string or an edge
joining two nodes (i) and (j) of ". Moreover, Ai,j is an A(qi, qj )-piece and the

link A(ε)i,j is a thickened torus having a common boundary component with both

B
(ε)
i and B(ε)j .

In particular, the inner geometric decomposition of (X, 0) induces a graph decom-
position of the link X(ε) whose Seifert components are the links B(ε)i and the

separating tori are in bijection with the thickened tori A(ε)i,j .

Remark 7.5.26 The inner geometric decomposition is a refinement of the thick-thin
decomposition. Indeed, the thick part is the union of the B(1)-pieces and adjacent
A(1, q)-pieces, and the thin part is the union of the remaining pieces.

Example 7.5.27 The inner geometric decomposition of the surface germ E8 is
represented by the graph of Fig. 7.28. The vertices corresponding to the B( 5

3 )-piece
are in red, the L-node is in black, the white vertices correspond to the A-piece.

Exercise 7.5.28 Draw the resolution graph with inner rates at inner nodes repre-
senting the inner geometric decomposition of the surface germ z2 + f (x, y) = 0

where f (x, y) = 0 is the plane curve with Puiseux expansion y = x 3
2 + x 7

4 .

Example 7.5.29 Here is an example with a special P-node. This is a minimal
surface singularity (see [Kol85]). Minimal singularities are special rational singu-
larities which play a key role in resolution theory of surfaces, and they also share a
remarkable metric property, as shown in [NPP20b]: they are Lipschitz normally
embedded, i.e., their inner and outer metrics are Lipschitz equivalent. We refer
to [NPP20b] for details on minimal singularities and for the computations on this
particular example.

Consider the minimal surface singularity given by the minimal resolution graph
of Fig. 7.29. The L-nodes are the black vertices.

As shown in [NPP20b], one has to blow up once to obtain the minimal resolution
which factors through Nash modification, creating the circled vertex on the graph
of Fig. 7.30. The arrows on this graph correspond to the components of the polar
curve. The inner rates (in bold) are computed in [NPP20b]. We obtain two special
P-nodes (the blue vertices).
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Fig. 7.29 Minimal resolution
of a minimal surface
singularity −4 −3
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−3 −3 −2 −2

−2

−2

−2

Fig. 7.30 P-nodes and
resolution of the generic polar
curve
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Fig. 7.31 Minimal resolution
which factors through Nash
transform 1 2

1
5
2 2 1 2 1

1

We then obtain the inner geometric decomposition described on Fig. 7.31. There
are nine inner nodes, which correspond to five B(1)-pieces (in black), two special
A-pieces with rates 5

2 and 2 (in blue) and two B(2)-pieces (in red).

The terminology inner geometric decomposition comes from the following
result:

Theorem 7.5.30 ([BNP14] Complete Classification Theorem for Inner Lip-
schitz Geometry) The inner Lipschitz geometry of (X, 0) determines and is
uniquely determined by the following data:

1. The graph decomposition of X(ε) as the union of the links B(ε)i and A(ε)i,j .
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2. for each B(ε)i , the inner rate qi ≥ 1.

3. for each B(ε)i such that qi > 1, the homotopy class of the foliation by fibers of

the fibration z1 : B(ε)i → S1
ε .

Moreover, these data are completely encoded in the resolution graph" whose nodes
are weighted by the rates qi and by the multiplicities of a generic linear form h along
the exceptional curves Ei up to a multiplicative constant. The latter is equivalent to
the data of the maximal ideal Zmax (see [Nem99]) up to a multiple.

7.5.5 The Outer Lipschitz Decomposition

We now define on (X, 0) a geometric decomposition of (X, 0) which is a refinement
of the inner geometric decomposition.

Definition 7.5.31 We use again the notations of Definition 7.5.23. We call P-curve
any component of π−1(0) which corresponds to a component of ν−1(0) and P-
node any vertex of " which represents a P-curve. We call outer node any vertex of
" which has at least three incident edges or which represents a curve with genus
> 0 or which is an L- or a P-node.

We start again with the initial geometric decomposition of (X, 0) (Defini-
tion 7.5.21). Using Lemma 7.5.11, we amalgamate iteratively D and A-pieces but
with the rule that we never amalgamate any B-pieces corresponding to a P-node.

Definition 7.5.32 We call this decomposition the outer geometric decomposition
of (X, 0).

Let us now state an analog of Proposition 7.5.25:

Proposition 7.5.33 The pieces of the outer geometric decomposition of (X, 0) can
be described as follows. For each outer node (i) of ", let "i be the subgraph of "
consisting of (i) and any attached bamboo.

1. The B-pieces are the sets Bi = π(N ("i)), in bijection with the outer nodes of
", and Bi is a B(qi)-piece.

2. The A-pieces are the sets Ai,j = π(N(Si,j )) where Si,j is a string or an edge
joining two outer nodes i and j of ". Moreover, Ai,j is an A(qi, qj )-piece.

Example 7.5.34 The outer decomposition of the minimal singularity of Exam-
ple 7.5.29 is described on Fig. 7.32. There is exactly one outer node which is not
an inner node. So the outer decomposition is a refinement of the inner one: there is
an extra B(3)-piece.

Example 7.5.35 The outer geometric decomposition of theE8 singularity coincides
with the initial geometric decomposition. So its graph is the one of Example 7.5.22.
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Fig. 7.32 Outer Lipschitz
decomposition

1 2

1
5
2 2 1 2 1

1
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Notice that the E8 example is very special. In general the outer geometric decom-
position has much less pieces than the initial geometric decomposition.

Theorem 7.5.36 The outer Lipschitz geometry of a normal surface singularity
(X, 0) determines the geometric decomposition of (X, 0) up to self-bilipschitz
homeomorphism.

Moreover, these data are completely encoded in the resolution graph " where
each outer node is weighted by the inner rate qEi and the self-intersection E2

i of the
corresponding exceptional curve Ei and by the multiplicity mi of a generic linear
form h along Ei .

Notice that the latter is equivalent to the datum of the maximal ideal cycle
Zmax :=∑i miEi in the resolution π . (see [Nem99, 2.I] for details on Zmax).

The statement of Theorem 7.5.36 has some similarities with that of Theo-
rem 7.5.30, but the proof is radically different. The proof of the Lipschitz invariance
of the outer geometric decomposition is based on a bubble trick which enables one
to recover first the B-pieces of the decomposition which have highest inner rate.
Then the whole decomposition is determined by an inductive process based again
on a second bubble trick by exploring the surface with bubbles having radius εq ,
with decreasing rates q . The proof is delicate. We refer to [NP12] for details.

Remark 7.5.37 As a byproduct of the bilipschitz invariance of the maximal ideal
cycle Zmax stated in Theorem 7.5.36 we obtain that the multiplicity m(X, 0) is
an invariant of the Lipschitz geometry of a complex normal surface germ. Indeed,
m(X, 0) is nothing but the sum of the multiplicities of Zmax at the L-nodes of ".

In [FdBFS18], the authors prove a broad generalization of this fact: the outer
Lipschitz geometry of a surface singularity (not necessarily normal) determines its
multiplicity

The Lipschitz invariance of the multiplicity is no longer true in higher dimension
as proved in [BFSV18]. Actually, the proofs of the bilipschitz invariance in [NP12]
and [FdBFS18] deeply use the classification of three-dimensional manifolds up to
diffeomorphisms.

Using again bubble tricks, we can prove that beyond the weighted graph " and
the maximal cycle Zmax , the outer Lipschitz geometry determines a large amount
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of other classical analytic invariants. These invariants are of two types. The first is
related to the generic hyperplane sections and the blow-up of the maximal ideal,
and the second is related to the polar and discriminant curves of generic plane
projections and the Nash modification:

Theorem 7.5.38 ([NP12]) If (X, 0) is a normal complex surface singularity, then
the outer Lipschitz geometry on X determines:

1. Invariants from generic hyperplane sections:

(a) the decoration of the resolution graph " by arrows corresponding to the
strict transform of a generic hyperplane section (these data are equivalent
to the maximal ideal cycle Zmax);

(b) for a generic hyperplaneH , the outer Lipschitz geometry of the curve (X ∩
H, 0).

2. Invariants from generic plane projections:

(a) the decoration of the resolution graph " by arrows corresponding to the
strict transform of the polar curve of a generic plane projection;

(b) the embedded topology of the discriminant curve of a generic plane projec-
tion;

(c) the outer Lipschitz geometry of the polar curve of a generic plane projection.

7.6 Appendix: The Resolution of the E8 Surface Singularity

In this appendix, we explain how to compute the minimal resolution graph of a
singularity with equation of the form z2 + f (x, y) = 0 by Laufer’s method,
described in [Lau71, Chapter 2] (page 23 to 27 for the E8 singularity). Here we
will just introduce the method and perform it in the particular case of E8. We invite
the reader to study it in [Lau71] or in the course of Jawad Snoussi [Sno19] in the
present volume and to compute further examples.

Laufer’s method is based on the Hirzebruch–Jung algorithm which resolves any
surface singularity.

7.6.1 Hirzebruch–Jung Algorithm

We refer to the paper [PP11] of Patrick Popescu-Pampu for more details on this
part. The Hirzebruch–Jung algorithm consists in considering a finite morphism
� : (X, 0) → (C2, 0). Then one takes a resolution σ : Y → C

2 of the discriminant
curve � of �, one resolves the singularities of � and one considers the pull-back
σ̃ : Z → X of σ by �. We then also have a finite morphism �̃ : Z → Y such that
σ ◦ �̃ = σ̃ ◦ �. Let n : Z0 → Z be the normalization of Z.



7 An Introduction to Lipschitz Geometry of Complex Singularities 213

The singularities of Z0 are quasi-ordinary singularities relative to the projection
�̃ ◦ n : Z0 → Y and with discriminant the singularities of the curve σ−1(�),
which are ordinary double points. Resolving these remaining singularities, one gets
a morphism α : Z → Z0. The composition π = σ̃ ◦ α : Z → X is a resolution of
(X, 0) (in general far from being minimal).

7.6.2 Laufer’s Method

It resolves the surface germ (X, 0) : x2 + f (y, z) = 0 by applying Hirzebruch–
Jung algorithm with the projection � : (x, y, z) 
→ (y, z) and then by giving an
easy way to compute Z from a specific resolution tree T of the discriminant curve
� : f (y, z) = 0 of �.

Let us explain it on the singularity E8. The discriminant � of the projection
� : (X, 0) → (C2, 0) has equation f (y, z) = 0 where f (y, z) = y3 + z5. We
start with the minimal resolution σ : Y → C

2 of �. Its exceptional divisor consists
in four curves E1, . . . , E4 labelled in their order of occurrence in the sequence of
blow-ups. Let mi be the multiplicity of the function f along Ei . The integer mi is
defined as the exponent umi appearing in the total transform of f by σ in coordinates
centered at a smooth point of Ei , where u = 0 is the local equation of Ei (see the
lectures notes of José Luis Cisneros in the present volume for details). So it can be
computed when performing the sequence of blow-ups resolving f = 0.

By [Lau71, Theorem 2.6] these multiplicities can also be computed from the self-
intersectionsE2

j using the fact that for each j = 1, . . . , 4, the intersection (σ ∗f ).Ej
in Y equals 0, where (σ ∗f ) = m1E1+. . .+m4E4+f ∗, with f ∗ the strict transform
of f = 0 by σ .

One obtains the following resolution tree T on which each vertex (i) is weighted
by the self intersection E2

i and by the multiplicity mi (into parenthesis). The arrow
represents the strict transform of �.

Now, we blow up any intersection point between two components of the
total transform (σ ∗f ) having both even multiplicities. In the case of E8, all the
multiplicities are even, so we blow up every double point of (σ ∗f ). We obtain the
resolution tree T ′ of Fig. 7.34.

In the particular case where there are no adjacent vertices having both odd
multiplicities (this is the case in the above tree T ′), a resolution graph " of
(X, 0) : x2 = f (y, z) is obtained as follows: " is isomorphic to T ′, and for any
vertex (i) of T ′, the corresponding vertex of " carries self-intersection 2E2

i if

Fig. 7.33 The minimal
resolution tree of y3 + z5 = 0

T

(1)

−1−3 −2−2

(15)(5) (3)(9)
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Fig. 7.34 The resolution tree
T ′

T ′
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−1
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Fig. 7.35 The resolution
graph " for E8 with
multiplicities of y3 + z5
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Fig. 7.36 The resolution
minimal graph for E8

−2 −2 −2

−2

−2−2 −2−2

the multiplicity mi is odd and 1
2E

2
i if it is even. Moreover, the multiplicity of the

function f ◦� : (X, 0)→ (C, 0) ismi ifmi is odd and 1
2mi ifmi is even. In the case

of E8, we obtain the resolution graph " of Fig. 7.35, where the arrow represents the
strict transform of f ◦ � : (X, 0)→ (C, 0).

There are no −1-exceptional curves which could be blown down. So forgetting
f and its multiplicities we get the well known graph of the minimal resolution of
E8 (Fig. 7.36).

In the case where some consecutive vertices have multiplicities which are odd,
some vertices of T ′ may give two vertices in ". We refer to [Lau71] for details.
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Chapter 8
The biLipschitz Geometry of Complex
Curves: An Algebraic Approach

Arturo Giles Flores, Otoniel Nogueira da Silva, and Bernard Teissier

Abstract The purpose of these notes is to explain why a generic projection to
a plane of a reduced germ of complex analytic space curve is a bi-Lipschitz
homeomorphism for the outer metric. This is related to the fact that all topologically
equivalent germs of plane curves are exactly the generic projections of a single
germ of a space curve. The analytic algebra of this germ is the algebra of Lipschitz
meromorphic functions on any of its generic projections. An application to the
Lipschitz geometry of polar curves is given.

8.1 Introduction

These are the lecture notes of the course given by Bernard Teissier during the second
week of the “International School on Singularities and Lipschitz Geometry” which
took place in Cuernavaca, Mexico from June 11 to June 22, 2018. The aim of the
course was to explore the concept of “generic plane linear projection” of a complex
analytic germ of curve in CN . The objects of our study will therefore be germs of
curves (X, 0) ⊂ (CN, 0), linear map germs π : (CN, 0)→ (C2, 0), and the images
(π(X), 0) ⊂ (C2, 0).

Intuitively, a projection π is generic for (X, 0) if a small variation of π does
not change the “equisingularity type” (or embedded topological type) of the image
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(π(X), 0) in (C2, 0). The main objective was to provide algebraic criteria for a
projection to be generic and to use them to prove two results related to Lipschitz
geometry:

1. That all equisingular (topologically equivalent) germs of reduced plane curves
are, up to analytic isomorphism, images of a single space curve (X, 0) ⊂
(CN, 0) by generic linear projections π : CN → C2, and that the restriction
π |(X, 0) : (X, 0) → (π(X), 0) to (X, 0) of such a generic projection is a
biLipschitz map for the metrics induced by the Hermitian metrics of their
respective ambient spaces. In particular, all topologically equivalent germs of
plane curves are biLipschitz equivalent.

2. Given a reduced equidimensional germ of a complex space (X, 0) ↪→ (CN, 0),
with dimension d , we consider a “general” projection π : CN → C2 and the
polar curve on X associated to the projection π . It is the closure in X of the
critical locus of the restriction of π to the smooth part of X. If it is not empty, it
is a curve usually denoted by Pd−1(X, π) which plays an important role in the
study of the Lipschitz geometry of X. We can consider π as defining a plane
projection of the space curve (Pd−1(X, π), 0) which varies with π . The result is
that if the projection π is sufficiently general, then it is a generic plane projection
for the curve (Pd−1(X, π), 0) ⊂ (CN, 0).
The course assumed a certain familiarity with algebraic or complex analytic

geometry, such as the definition of a complex analytic spaceX, the fact that its local
algebras of functions are analytic algebras, that is, quotients of rings of convergent
power series with complex coefficients, that the singular locus SingX consisting
of points where the local algebra is not isomorphic to a ring of convergent power
series, is a closed analytic subspace, etc. The reader is also encouraged to consult
the article [Sno20] of Jawad Snoussi in this volume, which has some overlap with
the content of these notes.

8.1.1 What Is a Germ of Complex Analytic Curve?

A complex analytic curve1 X may be locally regarded as a family of points in
an open subset U of the complex affine space CN which is the union of finitely
many sets of points depending analytically on one complex parameter. It can also
be defined as the zero set of a finite number of holomorphic functions f1, . . . , fs on
U satisfying certain algebraic conditions:

X = {z ∈ U | f1(z) = · · · = fs(z) = 0}.

1For more details on what follows in this section, we refer the reader to [Tei07].
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A germ of curve (X, 0) ⊂ (CN, 0) at a point which we take to be the origin
is an equivalence class of curves in open neighborhoods of the origin. Two such
objects defined respectively in U and U ′ are equivalent if their restrictions to a third
neighborhood of the origin U ′′ ⊂ U ∩ U ′ coincide. Of course, when we speak of
germs, we think of representatives in some “sufficiently small” neighborhood of the
origin. Because of analyticity, to give a germ is equivalent to giving the convergent
power series of f1, . . . , fs around the origin with respect to some coordinate system.

This allows us to associate to the germ (X, 0) ⊂ (CN, 0) the analytic algebra of
germs of holomorphic functions on (X, 0):

OX,0 := C{z1, . . . , zN }/〈f1, . . . , fs〉,

where C{z1, . . . , zN } denotes the ring of convergent power series. In these notes we
will only be interested in reduced germs, meaning that the ideal J := 〈f1, . . . , fs〉
is radical and OX,0 is a reduced analytic algebra of pure dimension 1.

In the case of plane curves (N = 2) the ideal I = 〈f 〉C{x, y} is principal and
f is square free, which means that f has a factorization of the form f = f1 · · · fr ,
where each fi is irreducible in C{x, y} and they are all different. The point is that the
fi ’s correspond to germs (Xi, 0) ⊂ (C, 0) of analytically irreducible curves called
the branches of the curve:

(X, 0) =
r⋃

i=1

(Xi, 0).

For arbitrary N , the branches (Xi, 0) correspond to the prime ideals appearing in
the primary decomposition of the ideal (0) in OX,0

(0) = P1 ∩ . . . ∩ Pr, where each Pi is a minimal prime in OX,0

A germ of curve (X, 0) ⊂ (CN, 0) may also be described parametrically by r
sets of power series

ϕi1(ti ), . . . , ϕ
i
N (ti) ∈ C{ti}, 1 ≤ i ≤ r,

where again r is the number of branches. For each i, zk = ϕik(ti), 1 ≤ k ≤ N
defines a germ of map (Di , 0) −→ (CN, 0) where Di is a disk in C. Together these
r n-uples of series correspond to a multi-germ of map

ϕ :
r⊔

i=1

(Di , 0) −→ (CN, 0); zk = ϕik(ti). (8.1)

The connexion between these two definitions goes back to Newton, who showed that
an equation f (x, y) = 0, with f (0, 0) = 0 has solutions y(x) which are power
series in x with rational exponents with bounded denominators and coefficients
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in the algebraic closure of the smallest field containing the coefficients of f (x, y).
For Newton f (x, y) is a polynomial with real coefficients, but the method works
for series over any field k of characteristic zero. Note that if ∂f (x,y)

∂y
does not vanish

at (0, 0) the implicit function Theorem gives us a power series y(x) with integers

as exponents. In the general case, such a series y(x) = ∑i∈N aix
i
n gives rise to a

parametrization

x = tn, y =
∑

i∈N

ait
i .

of one of the branches of the curve over an algebraic extension of k.

8.1.2 Structuring a Parametrization

Suppose that we have an irreducible and reduced germ of curve in (CN, 0), given
by zk = ϕk(t) ∈ C{t}, k = 1, . . . , N . For simplicity we shall write zk = ϕk(t) =∑
i a
(i)
k t

i . We assume that the group generated by the exponents is Z, which means
that they are coprime. Let n be the smallest exponent appearing in all the series
ϕk(t); up to reindexing the variables zi we may assume that it is the order of ϕ1(t),
so that we may write ϕ1(t) = a

(n)
1 tn(1 + ψ(t)) with ψ(0) = 0. By making a

homothetic change on the variable z1 we may assume that a(n)1 = 1. Since we are in
characteristic zero, we may extract an n-th root of the unit 1+ψ(t) so that 1+ψ(t) =
u(t)n where u(t) is again invertible in C{t}. Now we make the change of parameter
t ′ = tu(t) so that ϕ1(t

′) = t ′n. Now by making a linear change of the form zi−aiz1
on the coordinates z2, . . . , zN we may assume that z1 is the only variable where the
lowest exponent n appears. Geometrically this means that our curve is tangent to
the z1-axis at the origin: its set-theoretic tangent cone is the z1-axis. Similarly, by
making now a non linear change of coordinates of the form zi −∑ a

(i)
k z

k
1 we may

assume that the first exponent appearing in each ϕk(t ′) is not divisible by n. This is
geometrically more subtle and corresponds to Hironaka’s maximal contact. Since
t ′ is now our uniformizing parameter, we call it t henceforth.

Let us now compare z1 = tn with one of the other coordinates, which we may
write (up to a homothetic change of variables) zi = ϕi(t) = tbi + · · · . It may be
that the exponents appearing in ϕi(t) and n are not coprime. As we shall see below
it means that the projection of our curve to the (z1, zi )-plane is not reduced. If that
is the case, we may begin by dividing all the exponents by their greatest common
divisor. The interesting case is therefore that of two series expansions tn, ϕ(t) with
coprime exponents: we are in the case N = 2 of a plane branch to which we now
turn.

The Case of a Plane Branch As we saw, after a change of coordinates and of
uniformizing parameter, we can describe our plane branch by: z1 = tn, z2 = ϕ(t) ∈
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C{t} where the smallest exponent of t in ϕ(t) is not divisible by n. This smallest
exponent is traditionally denoted by β1. We take the g.c.d. of n and β1; set e1 =
(n, β1) < n. If e1 = 1, the series ϕ(t) is of the form tβ1 +∑k≥1 akt

β1+k . If e1 >

1, since the exponents are coprime, there has to be a smallest exponent β2 in the
series ϕ(t) which is not divisible by e1. Then we set e2 = (e1, β2) < e1, and we
continue in this manner. Since n > e1 > e2 > · · · there exists an integer g such
that eg = (eg−1, βg) = 1. Finally we have the following structure for ϕ(t): its
expansion is decomposed into segments corresponding to the divisibility properties
of the exponents.

z2 = tβ1+
s1∑

k=1

aβ1+ke1 t
β1+ke1+aβ2 t

β2+
s2∑

k=1

aβ2+ke2 t
β2+ke2+· · ·+aβj tβj +

sj∑

k=1

aβj+kej t
βj+kej+

· · · + aβg tβg +
∞∑

k=1

aβg+k tβg+k,

where all aβi are �= 0 and each sum has to stop before the g.c.d. of the
exponents drops and only the last segment is possibly infinite. The set of integers
n, β1, β2, . . . , βg , which is often also denoted by β0, β1, β2, . . . , βg, is called the
Puiseux characteristic of the branch and the βi , or sometimes the βi

n
, are called

the characteristic exponents. It determines and is determined by the embedded
topological type of the branch (see [Zar71, §7], [Zar68, Theorem 2.1, pg. 983],
[Lej73]). This means that if two germs of plane branches (X1, 0) and (X2, 0) have
the same Puiseux characteristic there exists a homeomorphism (U1, 0) → (U2, 0)
of neighborhoods of the origin mapping the representative X1 ⊂ U1 to X2 ⊂ U2,
and conversely. The two germs are also said to be equisingular. We shall meet this
Puiseux characteristic again after Example 8.5.25 below, where we shall see that it
determines not only the topology but also the biLipschitz geometry of the branch.

After what we have seen, the expansion above can be reinterpreted as a Newton

expansion in terms of t = z
1
n

1 , but here we have to choose a n-th root of z1. The

algebraic interpretation is that ϕ(z
1
n

1 ) ∈ C{{z1}}{z
1
n

1 } determines a cyclic extension
of the field C{{z1}} of meromorphic functions in z1 with Galois group equal to the

group μn of n-th roots of 1. The n series ϕ(ωz
1
n

1 ), ω ∈ μn, are the roots of a unitary

polynomial
∏
ω∈μn

(
z2 − ϕ(ωz

1
n

1 )
) ∈ C{z1}[z2] whose vanishing is an equation for

our germ of curve in the sense we shall see in the next section.
The structure of the series gives rise to a filtration of the Galois group:

μn ⊃ μe1 ⊃ μe2 ⊃ · · · ⊃ μeg = {1},

with the characteristic property that if we set n = e0 and denote by νt the t-adic
order of a series, then for 1 ≤ k ≤ g, we have that

ω ∈ μek−1 \ μek ⇐⇒ νt (ϕ(ωt)− ϕ(t)) = βk.
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Let us now refine the structure according to [Zar06, Chapters III, IV,V]. The
parametrization of a branch by tn, y(t) as above presents its analytic algebra OX,0
as a subalgebra of C{t}. The t-adic orders of the series in t which are in OX,0 form
a numerical semigroup " ⊂ N since one can multiply them and stay in OX,0. Since
the exponents are coprime the complement of " in N is finite (Dickson’s Lemma)
and the semigroup " is finitely generated. The smallest element c of N such that all
integers ≥ c are in " is called the conductor of the semigroup. It is not difficult to
verify (see [Zar06, Chapter III, Lemma 1.1]) that if the order of a series ξ(t) ∈ OX,0
is > β1, then ξ(t) ∈ 〈x, y〉2, and therefore if the order s of ξ(t) is in " we can make
a change of coordinates x ′ = x, y ′ = y − ξ(t) to eliminate a term in ts from the
expansion of y(t). Using this, and the fact that by definition any element of " is the
order of a series in OX,0, Zariski proved in [Zar06, Chapter III, Proposition 1.2]:

Proposition 8.1.1 (Zariski)

(1) Assume that n > 2. Then one has c ≥ β1+1. Let s1, . . . , sq be the integers of the
set {β1 + 1, . . . , c} which do not belong to ". The branch (X, 0) is analytically
isomorphic to a branch given parametrically by:

x ′(t) = tn, y ′(t) = tβ1 +
q∑

i=1

a′si t
si .

(2) If n = 2 then β1 is odd since our germ is irreducible and the conductor is β1;
our curve is analytically isomorphic to x(t) = t2, y(t) = tβ1 .

Zariski calls this a short representation. There are more simplifications of the
expansion of y(t) one can make without changing the analytic type. See [Zar06,
Chapters III, IV,V].

The next thing we need to know is that the semigroup " determines and is
determined by the Puiseux characteristic of the branch: it is a complete invariant
of the equisingularity class. See [Zar06, Chap. II, §3]. In particular, in the short
expansion, the coefficients of the tβi are �= 0.

With this description of branches, we are able to describe the contact of two
branches, which plays a key role in the characterization of the topological (and
biLipschitz) type of a reduced germ of plane curve.

We shall see below how, conversely, the image of a parametrization can be
defined by equations.

The modern presentation of the parametrization of a curve goes through the
normalization, which is the topic of the next section.

8.2 Normalization

The property of being normal has an algebraic aspect which has to do with integral
extension of rings.
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Definition 8.2.1 Let R ⊂ S be rings.

• The inclusion R ⊂ S is called a finite extension if S is a finitely generated R-
module.

• An element s ∈ S is called integral over R if and only if it satisfies an equation

sh + a1s
h−1 + · · · + ah−1s + ah = 0

with all ai ∈ R. The extension is called integral if every element s ∈ S is integral
over R. (Just as in field theory, if the extension R ⊂ S is finite it is integral. See
[deJP00, Lemma 1.5.2])

• The ring R is said to be integrally closed in S if every element in S which is
integral over R already belongs to R.

• The ring R is called normal if it is reduced and integrally closed in its total
quotient ringQ(R).

Suppose that R is a reduced ring. Recall that the set of non-zero divisors of a
ring R is a multiplicatively closed set and the corresponding ring of fractionsQ(R)
is called the total ring of fractions. It has the property that the canonical morphism
R→ Q(R) is injective.

The normalization ofR is defined as the setR of all elements ofQ(R) which are
integral over R. It is a reduced ring, integrally closed in Q(R) and whose total ring
of fractions coincides withQ(R). In particular, the normalizationR is a normal ring.
Moreover, for the rings appearing in analytic or algebraic geometry, the extension
R ⊂ R is finite in the sense that R is a finitely generated R-module.2

So what about if we start with the analytic algebra OX,0 of a germ of analytic
space (X, 0) ⊂ (CN, 0)? We will say that the germ (X, 0) is normal if OX,0 is a
normal ring.

• Unique factorization domains are normal ([deJP00, Thm 1.5.5]), so the ring
of power series C{z1, . . . , zn} and the corresponding smooth germ (CN, 0) are
normal.

• Noetherian normal local rings are integral domains ([deJP00, Thm 1.5.7]), so a
normal germ (X, 0) is irreducible.

• Suppose (X, 0) is irreducible. Since OX,0 and its normalization have the same
total ring of fractions, which in this case is a field, it follows from what we have
just seen that OX,0 is a local noetherian domain. Moreover, by [deJP00, Cor.
3.325] it is an analytic algebra and so we can associate to it a normal germ (X, 0).

2It is interesting to note that the term “integral” comes from algebraic number theory in the tradition
of Dedekind and the definition of the ring of integers of an algebraic number field, while the term
“normal” was used by Zariski (see [Zar39]) in the course of his studies in birational geometry and
resolution of singularities to designate an algebraic variety which could not be presented as the
image of a different one by a finite birational map. This is why the terms “integral closure in the
total ring of fractions” and “normalization” are used in algebraic or analytic geometry as names
for the algebraic and geometric aspects of the same operation.
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In particular we have:

OX,0 = OX,0.

• Splitting of normalization ([deJP00, Thm. 1.5.20]) tells us that if we have the
irreducible decomposition

(X, 0) = (X1, 0) ∪ . . . ∪ (Xs, 0),

then the normalizationOX,0 is equal to a direct sum of analytic algebras which are
the normalizations of the analytic algebras OXi,0 corresponding to the irreducible
components (Xi, 0):

OX,0 =
s⊕

i=1

OXi,0.

Note that this implies that (X, 0) and (X, 0) have the same dimension.

A multi-germ of analytic spaces (X, x) is a finite disjoint union:

(X, x) := (X1, x1)  (X2, x2)  . . .  (Xr, xr)

of germs of analytic spaces. The ring OX,x by definition is equal to
⊕r
i=1 OXi,xi .

The multi-germ (X, x) is called normal if OX,x is a normal ring.
Let (Y, y) = (Y1, y1) . . .(Ys, ys) be another multi-germ. A map ϕ : (X, x)→

(Y, y) of multi-germs is given by a system of maps

ϕi : (Xi, xi)→ (Yα(i), yα(i)), i ∈ {1, . . . , r}, α(i) ∈ {1, . . . , s}.

Such a map ϕ induces, and is induced by, a C-algebra map ϕ∗ : OY,y → OX,x .

Definition 8.2.2 Let (X, x) be a germ of analytic space. A normalization of (X, x)
is a normal multi-germ (X, x) together with a finite, generically 1-1 map

n : (X, x)→ (X, x).

With this definition at hand, for any germ of analytic space (X, 0) with
irreducible decomposition

(X, 0) = (X1, 0) ∪ . . . ∪ (Xs, 0),

we can now obtain a normal multi-germ

(X, x) = (X1, x1)  . . .  (Xs, xs)
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with associated normal ring

OX,0 =
s⊕

i=1

OXi,0 =
s⊕

i=1

OXi,xi ,

and it is not hard to prove that the inclusion map OX,0 ↪→ OX,0 induces a finite
and generically 1-1 map, proving thus the existence of normalization ([deJP00,
Thm 4.4.8]). Note that, geometrically, the normalization of a germ separates the
irreducible components and normalizes each of them separately.

Example 8.2.3 Let (X, 0) ⊂ (C2, 0) be the germ of plane curve defined by
f (x, y) = x2 − y2. It has two irreducible components (X1, 0) and (X2, 0) with
associated analytic algebras

OX1,0 = C{x, y}/〈x − y〉 OX2,0 = C{x, y}/〈x + y〉.

These two germs are smooth, in particular they are normal and we have:

OX,0 = C{x, y}
〈x2 − y2〉 −→

C{x, y}
〈x − y〉

⊕ C{x, y}
〈x + y〉 = OX,0

f 
−→ (f + 〈x − y〉, f + 〈x + y〉)

Since the germs are smooth and of dimension 1, their analytic algebras are
isomorphic to the ring of convergent power series C{t}:

C{x, y}/〈x − y〉 → C{t} x 
→ t, y 
→ t

C{x, y}/〈x + y〉 → C{u} x 
→ u, y 
→ −u

This means that the resulting normalization map

n : (C, 0)  (C, 0)→ (X, 0)

is the parametrization of each of the branches t1 
→ (t, t) and t2 
→ (u,−u).
It is useful to consider a function-theoretic interpretation of normal spaces. A

general result tells us that in a smooth germ (Cd, 0) if you have a meromorphic
function which is (locally) bounded then it is actually holomorphic (See for example
[GF02, IV.4]). The algebraic version is that a locally bounded meromorphic function
h satisfies an integral dependence relation of the form:

hm + c1h
m−1 + · · · + cm = 0; cj ∈ On := C{z1, . . . , zn},

and since On is normal then h ∈ On.
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Now there are many more analytic spaces for which OX,x is normal than just the
non singular ones.

Definition 8.2.4 Given a reduced germ of analytic space (X, x), we call a function
f : X \ SingX→ C weakly holomorphic at x ∈ X if:

• f is holomorphic on X \ SingX in a neighborhood of x.
• f is (locally) bounded near x.

A function is weakly holomorphic on X if it is so at every point.

The key point is proving that the germs at x ∈ X of weakly holomorphic func-
tions onX form a ring which is canonically isomorphic to the normalization ofOX,x .
That is, f is weakly holomorphic onX if and only if it is meromorphic and satisfies
an integral dependence relation. This gives us the following characterization:

Theorem 8.2.5 ([deJP00, Thm 4.4.15])

(1) Let (X, x) be a germ of reduced analytic space. Then a function f is weakly
holomorphic on X if and only if f is in the integral closure of OX,x in its total
ring of quotients.

(2) The integral closure of OX,x in its total ring of quotients is a direct sum of
analytic algebras.

(3) The reduced germ (X, x) is normal if and only if every weakly holomorphic
function germ can be extended to a holomorphic function.

Remark 8.2.6 Since this fact is fundamental for what follows, here is an idea of
why boundedness and polynomial equation are related: The roots of a polynomial
are bounded in terms of its coefficients, so a solution of a polynomial equation with
holomorphic coefficients is bounded because holomorphic functions are. In the other
direction, let h = f

g
, with f, g in the maximal ideal of OX,0, be our meromorphic

function, let (Y, 0) ⊂ (X, 0) be the subset defined by the ideal 〈f, g〉O(X,0), and
consider the analytic subspace X′ of X × P1 which is the closure of the graph of
the map X \ Y → P1 defined by x 
→ [f (x) : g(x)] ∈ P1. It is contained in
the hypersurface of X × P1 defined by T2f (x) − T1g(x) = 0 where [T1 : T2]
are projective coordinates on P1. The first projection induces a holomorphic map
e : X′ → X (we are blowup the ideal 〈f, g〉). The fiber over 0 is a complex analytic
subspace of P1 and therefore is either P1 or a finite subset of it. If our meromorphic
function is bounded, the point [1 : 0] ∈ P1 is not in the fiber, so that by the
Weierstrass preparation Theorem (see Theorem 8.2.8 below), for a small enough
representative X of the germ (X, 0) the map X′ → X is finite and X′ has to be a
hypersurface in X × C: its equation is our integral dependence relation.

Example 8.2.7 For the germ (X, 0) ⊂ (C2, 0) defined by xy = 0 we have

OX,0 = C{x} ⊕ C{y}.

The function f = (1, 0), meaning it is the constant function 1 on the x-axis and the
constant function 0 on the y-axis, is holomorphic on X \ SingX = X \ {0} and is
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certainly bounded so it is weakly holomorphic. Note that it can not be continuously
extended to (X, 0). As a meromorphic function it can be written as

f (x, y) = x

x + y .

Let us wrap up this discussion on normal spaces and normalization by stating
several important properties of which you can find detailed expositions in [Loj91,
GLS07] and [KK83].

1. If X is reduced, the non normal locus is the set of points x ∈ X where the
local algebra OX,x is not normal; it is the complement of the normal locus and
is a closed analytic subspace contained in the singular locus SingX of X. It is
defined by the conductor sheaf which is the annihilator of the coherent OX-
module OX/OX and thus a coherent sheaf of ideals.

2. If T is a normal space and X is reduced then any map T → X which does
not map any irreducible component of T to the non-normal locus of X factors
uniquely through the normalization n : X→ X.

3. If X is normal then dim Sing(X) ≤ dimX− 2 (Singular locus of codimension at
least 2).

4. If X is normal, the polar locus of a meromorphic function is either of codimen-
sion 1 or empty.

Going back to the curve case, a classical result of commutative algebra ([deJP00,
Thm 4.4.9]) states that a Noetherian local ring of dimension one is normal if and
only if it is regular. This implies that if (X, 0) = ⋃r

i=1(Xi, 0) ⊂ (CN, 0) is a
germ of analytic curve with r branches then the normal ring OX,0 is isomorphic to
a direct sum of r copies of C{t} and the corresponding normalization map is equal
to the parametrization of each branch, thus recovering the description in (8.1).

For plane curves, this result can also be seen using algebraic field extensions,
but first we need a couple of definitions and the Weierstrass preparation Theorem.
A convergent power series f ∈ C{z1, . . . , zN } is called regular of order b in zN if
the power series f (0, . . . , 0, zN) in the variable zN has a zero of order b. A simple
calculation shows that if f is of order b in the sense that f ∈ 〈z1, . . . , zN 〉b \
〈z1, . . . , zN 〉b+1, then after a general linear change of coordinates, f is regular of
order b in zN (see [deJP00, Lemma 3.2.2]). Geometrically this means that if we
consider the germ of hypersurface (X, 0) ⊂ (CN−1 × C, 0) defined by f and the
first projection p : X → CN−1, then for a small enough representative the fiber
p−1(0) is the single point 0.

Theorem 8.2.8 (Weierstrass Preparation Theorem (See [deJP00, Thm 3.2.4]))
Let f ∈ C{z1, . . . , zN } be regular of order b in zN . Then there exists a unique
monic polynomial P ∈ C{z1, . . . , zN−1}[zN ]

P(z1, . . . , zN ) = zbN + a1(z1, . . . , zN−1)z
b−1
N + · · · + aN(z1, . . . , zN−1)
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with ai(0) = 0, and a unit u ∈ C{z1, . . . , zN } such that we have the equality of
convergent power series

f = uP.

As a consequence of this result we deduce two important facts: if we choose
adequate coordinates such that f = uP then it is equivalent to seek solutions of
f (z1, . . . , zN ) = 0 and of P(z1, . . . , zN ) = 0. As a geometric consequence of this
we get that if we consider the first projection as before and p−1(0) = {0}, then for
any point q = (q1, . . . , qN−1) ∈ CN−1 sufficiently close to the origin the points of
the fiber p−1(q) correspond to the roots of the polynomial of degree b

P(q1, . . . , qN−1, zN ) = zbN + a1(q1, . . . , qN−1)z
b−1
N + · · · + aN(q1, . . . , qN−1),

and so all nearby fibers are also finite. More generally one uses this result to prove
that if a complex analytic map p : X′ → X is such that for some point 0 ∈ X we
have that p−1(0) is a finite set, then there exists a neighborhood U of 0 in X such
that the restricted map p−1(U)→ U is finite. See [deJP00, Thm 3.4.24].

For curve singularities, there is a classical invariant which measures how far
the singularity is from being normal, or non singular. It has several geometric
interpretations, the classical one being “diminution of genus”, and we shall see more
about it below.

Definition 8.2.9 Let (X, 0) be a reduced curve singularity. Its δ-invariant is

δ = dimC OX,0/OX,0.

This quotient is a finite dimensional vector space because it is the stalk of a coherent
sheaf supported at the origin. For plane, and more generally Gorenstein, branches we
have the equality c = 2δ, where c is the conductor defined before Proposition 8.1.1.
See [Zar06, Chap. II, §1].

Going back to the plane curve case, that is curves (X, 0) ⊂ (C2, 0) defined by
a convergent power series f ∈ C{x, y}, or according to the Weierstrass preparation
Theorem and possibly after a linear change of coordinates, by a polynomial P ∈
C{x}[y]. Now from an algebraic point of view, consider the field of fractions C{{x}}
of the integral domain C{x}; the irreducible polynomial yn− x ∈ C{{x}}[y] defines

an algebraic extension of degree n of C{{x}}, denoted by C{{x 1
n }}, which is a Galois

extension with Galois group equal to the group μn of n-th roots of unity in C. The

action of μn is exactly the change in determination of x
1
n determined by x

1
n 
→ ωx

1
n

for ω ∈ μn. A series of the form y =∑ aix
i
n such that the greatest common divisor

of n and all the exponents i which effectively appear is 1 gives n different series as
ω runs through μn.

Suppose now that our polynomial P is an irreducible element of C{x}[y] of
degree n. Then the Newton polygon method (see for example [Tei07, Che78], or
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[BK86, Section 8.3]) provides a series y(x1/m) ∈ C{x 1
n } such that P(x, y(x

1
n )) = 0

and we have the equality:

P(x, y) =
∏

ω∈μn

(
y − y(ωx 1

n )
)
.

In particular we have that

C{{x}}∗ :=
⋃

n∈N

C{{x 1
n }}

is an algebraically closed field (See [Wal78, IV.3] or [Che78, Thm 8.2.1]), and so
every polynomial P ∈ C{x}[y] has all its roots in C{{x}}∗. Finally, the relation with
the parametrizations given by the normalization is the following, if

y(x
1
n ) ∈ C{x 1

n } ⊂ C{{x}}∗

is a root of P(x, y), then by taking x = tn we get the parametrization

t 
→ (tn, y(t)).

Let us finish this section by looking at plane projections from an algebraic
perspective. For simplicity suppose (X, 0) ⊂ (CN, 0) is a reduced and irreducible
germ of complex analytic curve with N ≥ 3. Let us write the associated analytic
algebra

OX,0 = C{z1, . . . , zN }/I,

where I is a prime ideal, and so OX,0 is an integral domain. If we choose a suffi-
ciently general coordinate system (or if you prefer after a general linear coordinate
change) the Noether normalization Theorem ([deJP00, Corollary 3.3.19]) tells us
that we have a finite ring extension C{z1} ↪→ OX,0. This implies that the we have
an algebraic field extension

C{{z1}} ⊂ Quot
(
OX,0

)
,

and by the primitive element Theorem there exists an element f ∈ OX,0 such that
Quot

(
OX,0

) = C{{z1}}[f ].
So if we denote by C{z1, f } the analytic algebra obtained as the quotient of

C{x, y} by the kernel of the map C{x, y} → OX,0 defined by x 
→ z1 + J , y 
→ f

then we have finite ring extensions with the same field of fractions

C{z1, f } ↪→ OX,0 ↪→ C{t}.
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Now C{z1, f } is the analytic algebra of a plane curve (X1, 0) ⊂ (C2, 0) and it has
the same normalization as OX,0. We have used the primitive element Theorem as
a substitute for the proof of the existence of a projection CN → C2 sufficiently
general for it to induce a “ bimeromorphic” map (X, 0) → (X1, 0). However the
primitive element Theorem does not tell us much about the geometric nature of the
projection. That is the object of the following sections.

8.3 Fitting Ideals: A Good Structure for the Image of a Finite
Map

In this section, following [Tei73, §3] and [Rim72, Definition 5.6], [Tei77, §5], we
will give the definitions of Fitting ideals, which we will use later to give a definition
of the image, as a complex analytic space, of a finite map between complex analytic
spaces.

Let A be a ring, and letM be an A-module of finite presentation, that is, there is
an exact sequence, called a presentation ofM:

Aq
�−→ Ap −→ M −→ 0,

where p, q ∈ N. For each integer j we associate to M the ideal Fj (M) of A
generated by the (p − j) × (p − j) minors of the matrix (with entries in A)
representing� . Here we need the convention that if there are no (p− j)× (p− j)
minors because j is too large, i.e., j ≥ p, then Fj (M) = A (the empty determinant
is equal to 1) and if, at the other extreme, p − j > q , set Fj (M) = 0 (the ideal
generated by the empty set is 0).

A Theorem of Fitting (see [Tou72, Chap. I, §2], [Eis95, Chap. 20, §2]) asserts
that the ideals Fj (M) depend only on the A-module M and not on the choice of a
presentation. We call Fj (M) the j -th Fitting ideal ofM .

More generally, if (X,OX) is a ringed space, and M a coherent sheaf of OX-
modules, we can define a sheaf of ideals Fi (M) of OX, by defining Fi (M) locally
as above, and then by uniqueness the ideals found locally patch up into a sheaf of
ideals. Remark also that since Fi (M) is locally finitely generated, Fi (M) will be a
coherent sheaf of ideals as soon as OX is coherent, which is the case for a complex
analytic space by Oka’s Theorem (see [Loj91, Chap. VI, 1.3]).

Let now f : (X,OX)→ (Y,OY ) be a map of complex analytic spaces. We would
like to define the image of f as a complex analytic subspace of (Y,OY ). This is not
always possible, and in particular if one hopes to get a closed complex subspace of
Y it is better to assume f is proper, and here we will consider only the case where
f is finite (that is, proper with finite fibres).

The first sheaf of ideals that comes to mind as a candidate to define f (X) is the
sheaf of functions g on Y such that g ◦ f = 0 on X, i.e., the annihilator sheaf of the
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sheaf of OY -modules f∗OX, which is coherent by a theorem of Grauert-Remmert:

AnnOY (f∗(OX)) = sheaf{functions g on Y such thatg · f∗OX = 0 }.

This is not a good choice because its formation does not commute with base
extension, as we will show by an example below (Example 8.3.3).

The second option is the 0-th Fitting ideal of f∗OX, which set theoretically
also defines the image of f , since as a set the subspace of Y defined by it is
{y ∈ Y | dimC(f∗OX) > 0} = {y ∈ Y | (f∗OX)y �= 0}. Indeed, since the OY -
module f∗OX is coherent, it has locally on suitable open sets U of Y a presentation
by an exact equence of OY (U)-modules:

OY (U)q
�−→ OY (U)p −→ f∗OX(U) −→ 0.

The sheaf of ideals F0(f∗OX) is then generated on U by the p × p minors of a
matrix representing� .

Since both the formation of direct images and the formation of Fitting ideals
commute with base change (see Proposition 8.3.2 below), this definition of the
image will also have this property. So we set:

Definition 8.3.1 Let f : X→ Y be a finite morphism of complex analytic spaces.
The image im(f ) of f is the subspace of Y defined by the coherent sheaf of ideals
F0(f∗OX). It is sometimes called the Fitting image of f to distinguish it from the
one defined by the annihilator.

Proposition 8.3.2

1. The formation of im(f ) commutes with base change: Given a complex analytic
map φ : T → Y , consider the map fT : X×Y T → T obtained by base extension,
where X ×Y T is the fiber product. Then im(fT ) = φ−1(im(f )) as analytic
spaces.

2. We have the inclusion F0(f∗OX) ⊂ Ann(f∗OX) and the equality
√
F0(f∗OX) =√

Ann(f∗OX).

Proof

(1) Since OX is a finitely generated OY -module the OT -module OX×Y T is equal to
OX ⊗OY OT and if M is a finitely presented A-module as above and A→ B is
a map of algebras, then

Bq
�⊗A1−→ Bp −→ M ⊗A B −→ 0

is a presentation of M ⊗A B as a B-module and the matrix of � ⊗A 1 is the
matrix of � so that Fj (M ⊗A B) = Fj (M).B.
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(2) The inclusion follows directly from Cramer’s rule and the equality from the
definition of the Fitting ideal as defining the set of points where the cokernel of
the second arrow is not zero. �

Example 8.3.3 Let f : (C, 0) → (C2, 0) be given by x = t2k , y = t3k for some
integer k. The set-theoretic image of f is the curve y2 − x3 = 0. However, we
wish to obtain an ideal defining a space supported on that curve, but possibly with
nilpotent functions. Let us compute F0(f∗(OC)0 as the 0-th Fitting ideal of C{t}
considered as C{x, y}-module via the map of rings C{x, y} → C{t} sending x to t2k

and y to t3k . We must write a presentation of C{t} as C{x, y}-module. Let e0 = 1,
e1 = t, . . . , e2k−1 = t2k−1. It is easily seen that they form a system of generators of
C{t} as C{x, y}-module, and that between them we have the following 2k relations:

xek − ye0 = 0, x2e0 − yek = 0
xek+1 − ye1 = 0, x2e1 − yek+1 = 0

...
...

xe2k−1 − yek−1 = 0, x2ek−1 − ye2k−1 = 0

which are independent. Hence we have a sequence of C{x, y}-modules:

0 −→
2k−1⊕

i=0

C{x, y}ei ψ−→
2k−1⊕

i=0

C{x, y}ei ϕ−→ C{t} −→ 0

with ϕ(ei) = t i , and ψ is given by the 2k × 2k matrix

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y 0 · · · 0 x 0 · · · 0
0 −y · · · 0 0 x · · · 0
...

. . .
...

. . . 0
0 0 · · · −y 0 0 · · · x
x2 0 · · · 0 −y 0 · · · 0
0 x2 · · · 0 0 −y · · · 0
...

. . .
...

. . . 0
0 0 · · · x2 0 0 · · · −y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is not hard to see that the sequence is exact, which means that the independent
relations we have found must generate all relations between the ei . Indeed, there is a
general reason why C{t} must have a resolution of length 1 as C{x, y}-module: the
C{x, y}-module C{t} is of homological dimension one (see [MP89]) and therefore
the module of relations between the ei is a free submodule of

⊕2k−1
i=0 C{x, y} and

thus of rank ≤ 2k − 1.
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By permuting rows and columns of ψ one checks that det(ψ) = (y2 − x3)k i.e.,
we have shown that

F0(f∗OC)0 = (y2 − x3)kC{x, y}

Let us now calculate AnnC{x,y}C{t}; the annihilator is just the kernel of the map
C{x, y} → C{t}, which is the ideal generated by (y2− x3), certainly different from
our Fitting ideal if k > 1.

Let us now make a base change by restricting our map over the x-axis, i.e., by
the inclusion {y = 0} ⊂ (C2, 0) or algebraically by C{x, y} → C{x} sending y to
0. Then the annihilator of C{t}⊗C{x,y}C{x} = C{t}/(t3k) viewed as C{x}-module

is (x2)C{x} while the image in C{x} of (y2 − x3)C{x, y} is (x3)C{x}. This shows
that the formation of the annihilator does not commute with base change.

8.3.1 Equations Versus Parametrizations

As we said in Sect. 8.1.1, a germ of curve (X0, 0), abstractly, is a germ of a purely
1-dimensional analytic space, hence it is described by an analytic algebra OX0,0 of
pure dimension 1. Geometrically, (X0, 0) can be effectively given in two ways:

By equations: By giving an ideal I = 〈f1, . . . , fm〉 in C{x1, . . . , xN } such that
OX0,0 ) C{x1, . . . , xN }/I . Saying that OX0,0 is purely one-dimensional means
that the ideal 〈0〉 has a primary decomposition 〈0〉 = Q1 ∩ . . . ∩ Qr where√
Qi = Pi is a minimal prime ideal in OX0,0, and dim(OX0,0/I) = 1.

By a parametrization: By giving ourselves a germ of finite map p :⊔r
i=1(C, 0)→ (CN, 0).

Here one has to be very careful: except when n = 2, it is not true, even if r = 1
and p is generically 1-to-1 so that the image (given by the Fitting structure) of
this mapping is a reduced curve: it will have “embedded components” concentrated
at the singular points, as will be shown in Example 8.3.4. The analysis of this
phenomenon is beyond the scope of these notes. The case where n = 2 is explained
in Proposition 8.3.6 in the next section.

Example 8.3.4 Consider the curve (X0, 0) parametrized by n(t) = (t4, t6, t7)

which is a complete intersection (with the reduced structure) with ideal

〈y2 − x3, z2 − x2y〉C{x, y, z}.

We have that C{t} is generated as a C{x, y, z}-module by e0 = 1, e1 = t , e2 = t2
and e3 = t3 and it is not difficult to see that the relations are described by the
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following matrix

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y 0 −x 0
0 y 0 −x
−x2 0 y 0

0 −x2 0 y

z 0 0 −x
−x2 z 0 0

0 −x2 z 0
0 0 −x2 z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

that is, � is the matrix of a presentation

C{x, y, z}8 �−→ C{x, y, z}4 −→ C{t} −→ 0.

of the C{x, y, z}-module C{t}. Computing the 4× 4 minors of � we find that:

F0(C{t}) =
〈y2 − x3, z2 − x2y〉 ∩ 〈z2, xy3, y4, xy2z − x4z, y3z, x4y, x3y2, x3yz, x6, x5z〉C{x, y, z},

where
√〈z2, xy3, y4, xy2z− x4z, y3z, x4y, x3y2, x3yz, x6, x5z〉 = 〈x, y, z〉C

{x, y, z}.
The ring C{x, y, z}/F0(C{t}) is not purely one-dimensional: it has an embedded

component, i.e., an ideal of the primary decomposition of the ideal (0) which
defines a subspace of strictly lower dimension, in this case dimension zero.

8.3.2 Deformations of Equations vs. Deformations
of Parametrizations

In this subsection we consider deformations of a curve. We will follow the
presentation given in [BG80]. The results in this subsection are due to B. Teissier
(see [Tei77]).

Let (X0, 0) ⊂ (CN, 0) be a germ of a reduced curve and X0 ⊂ B0 a
representative, where B0 ⊂ CN is a small open ball with center 0. Let

ϕ0 : X0 =
r⊔

j=1

Dj → X0 ⊂ B0,

ϕ0(t) = (ϕ0(t1), . . . , ϕ0(tr )) , t = (t1, . . . , tr ),
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be a representative of the normalization of X0, where
r⊔

j=1

Dj is the disjoint union

of r open discs centered at the origin in C, ϕ0 is a r-uple of distinct maps
ϕ0|Dj : (Dj , 0) → B0, and for each j the restriction ϕ0|Dj is a homeomorphism

(Dj , 0) → (X
j
0 , 0), where (Xj0 , 0) is the j -th branch of (X0, 0). It induces an

analytic isomorphism (Dj , 0)\{0} → (X
j
0 , 0)\{0} because an analytic map C→ C

which is a homeomorphism is an isomorphism.

Definition 8.3.5 Let D ⊂ Cq be a small disc with center 0. A deformation of the
normalization of X0 is a holomorphic mapping

ϕ : X0 ×D =
r⊔

j=1

(Dj ×D)→ B0,

such that ϕ(t, v) = ϕ0(t) + vψ(t , v), t ∈ X0, v ∈ D and ψ(t, v) =
(ψ(t1, v), . . . , ψ(tr , v)) withψ(tj , v) : (Dj×D, 0)→ B0. Note that we are dealing
with representatives of germs of deformations of germs.

Then for sufficiently small Dj and D we have that φ = (ϕ, v) : X0×D→ B0×D
is a finite mapping and therefore

X = φ(X0 ×D) ⊂ B0 ×D

is a q + 1-dimensional analytic subset.

Proposition 8.3.6 Given a germ of finite map n : ⊔r
i=1(Dj × D, 0) → (C2, 0) ×

D with D ⊂ Cq as above, corresponding to a map of analytic C-algebras
OCq ,0{x, y} →⊕r

i=1 OCq ,0{ti} which is the identity on OCq ,0 and makes the second
algebra a finite module over the first, the Fitting ideal F0(

⊕r
i=1 OCq ,0{ti}) is a non

zero principal ideal of OCq ,0{x, y}.
Proof The argument goes back to [Tei73, Chap.III, 3.4] (see also [Tei77, Section
5], [GLS07, Exercise 1.6.4], [MP89, Proposition 3.1]): the depth of the OCq ,0{x, y}-
module

⊕r
i=1 OCq ,0{ti} is q + 1 because it is Cohen–Macaulay (see [GLS07,

Theorem B.8.11]) of dimension q + 1, so by the Auslander-Buchsbaum formula
its homological dimension is one (see [GLS07, Theorem B.9.3]), which implies
that its minimal presentations are exact sequences of OCq ,0{x, y}-modules

(0)→ OCq ,0{x, y}p → OCq ,0{x, y}p →
r⊕

i=1

OCq ,0{ti} → (0).

Therefore the 0-th Fitting ideal is generated by the determinant of a p × p-matrix.

See also [MP89, Lemma 2.1]. �
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Applying Proposition 8.3.6 with q = 0, we see that none of the plane images
we consider has embedded components. The Fitting image of a parametrization is
reduced if and only if for i = 1, . . . , r the set of all exponents appearing in the
series x(ti) or in y(ti) is coprime. For given i, the gcd of those exponents is the
degree of the map (D, 0) → (C2, 0) defined by ti 
→ (x(ti), y(ti )) and it is also
the degree at which the equation fi(x, y) = 0 of the reduced image curve is raised
to give a generator of the Fitting ideal of the C{x, y}-module C{ti}. Compare with
Example 8.3.3 and see [MP89, Proposition 3.1] for a more general result.

Going back to the case q > 0, we see that if the parametrization for v = 0 has
a reduced image X0, then the hypersurface X in D × C2 which is the image of the
parametrization is reduced. Otherwise, since it is the Fitting image, applying the
compatibility with base change to 0 ∈ D, we find that the special fiberX0 would not
be reduced.

But then each fiber is reduced and its parametrization is an isomorphism outside
of the singularities; it is a bimeromorphic map. This implies that the map p :⊔r
i=1(Dj ×D, 0× 0)→ (X, 0) is the normalization of the hypersurfaceX because

the source is normal, and the map p is finite and bimeromorphic. It is a non singular
normalization of the hypersurface X which induces the normalization of each fiber
of the projection map X→ D. So we have proved:

Corollary 8.3.7 The parametrization of the total space of the family of plane curves
n : (X, 0) → (D, 0) obtained by deforming the parametrization of the germ of
reduced plane curve (X0, 0) is a simultaneous normalization.

Moreover, we can observe that the OCq ,0-modulesOX,0 andOX,0 =⊕r
i=1 OCq ,0{ti}

are flat. The first one because a hypersurface is Cohen–Macaulay (see [GLS07,
Theorem B.8.11]) and the second one because it is a sum of flat modules (see
[GLS07, Corollary I 1.88]).

We have the exact sequence of OCq ,0-modules:

(0)→ OX,0 → OX,0 → OX,0/OX,0 → (0),

and the flatness of the first two modules implies that of the third.
Now by the Weierstrass Preparation Theorem, the singular locus of X is finite

over D, 0) and is the support of the OCq ,0-module OX,0/OX,0, which is flat and thus
locally free. So the dimensions of its fibers over points v ∈ D is constant. Provided
D and B0 are sufficiently small, this dimension is the sum of the δ-invariants (see
Definition 8.2.9) of the finitely many singularities of the curveXv = n−1(v), which
all tend to ) as v→ 0. So we have:

Corollary 8.3.8 In a small enough representative of family of reduced plane curves
obtained by deformation of the parametrization of the special fiber, the sum of the
δ-invariants of the singularities of the fibers is constant.

We shall use this in the proof of Proposition 8.4.6 below.
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We have just seen that the space X defined by deforming a parametrization of a
plane curve can also be described as the space defined by deforming an equation
for the reduced plane curve X0, since the equation for X has to reduce to the
equation for X0 when setting v = 0. The situation is more delicate for parametrized
curves in CN with N > 2, not only because of the behavior of the Fitting ideal,
but also because in general deforming equations does not produce a flat family.
The general definition of a deformation of a germ (X0, 0) ⊂ (CN, 0) is a germ
(X, 0) ⊂ (CN, 0) × (S, 0), flat over S and defined by equations which, when
restricted over 0 ∈ S give a set of equations ofX0, up to isomorphism. It is therefore
a reasonable question to ask whether any such deformation can be obtained by a
deformation of the parametrization of X0 in the sense that X is the reduced image
of such a deformation.

The answer is a converse to Corollary 8.3.8, as follows:

Proposition 8.3.9 (See [Tei80, Theorème 1, page 80], and [GLS07, §2.6] for
plane curves) Let p : (X, 0) → (S, 0) be a flat morphism where all the fibers
are reduced curves and S is non singular. Then, for suitable representatives, the
following conditions are equivalent:

• The normalizationX is non singular, the composed mapX
n→ X

p→ S is flat and
for each s ∈ S the map of fibers (X)s → Xs is the normalization.

• The sum δs of the δ-invariants of the singular points of the fibers Xs is
independent of s ∈ S.

Since the map p ◦ n is flat with non singular fiber, at every point of X lying above
0 ∈ X, the space X is locally isomorphic over S to a product of a disk by S. This
shows that the map n is a deformation of the parametrization ofX0. The assumption
that the fibers are reduced is necessary, as evidenced by the following example.

Example 8.3.10 Consider the of curveX0 in C3 given by the equations x = 0, z2−
y3 = 0. The normalization of X0 is given by

ϕ(t) = (0, t2, t3).

Consider the deformation �(v, t) = (vt, t2, t3, v). So, the reduced image Xred
of � is given by the following equations:

x2 − v2y = 0, xy − vz = 0, xz− vy2 = 0, z2 − y3 = 0.

Now, when we consider the projection f : Xred → D, the fiber f−1(0) = X0 is
given by

x2 = 0, xy = 0, xz = 0, z2 − y3 = 0.

Note that it is not reduced at the origin, hence there is no deformation of the
equations x = z2 − y3 = 0 which defines Xred . One can understand this as
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follows: while the special fiber of our family of curves has embedding dimension
two, the general fiber has embedding dimension three. In an analytic family the
embedding dimension of the fibers can only increase by specialization so that in our
analytic family f : Xred → D the ideal defining the special fiber has in its primary
decomposition an infinitesimal embedded component with ideal 〈x2, y, z〉 sticking
out of the x = 0 plane, which makes the embedding dimension of f−1(0) equal to
three as it must be. This fact was stressed also in [Tei77, §3, section 3.5].

More material on the plane curve case is found in [GLS07, Chap. II, §2]. There
are generalizations of these results to the cases where the fibers may be non reduced
and have embedded components. There are definitions of the invariant δ which apply
to this more general situation. We refer the reader to [Le15] and the references
therein.

Remark 8.3.11 We note that one can use Mond-Pellikaan’s algorithm in [MP89]
to find a presentation matrix of a finite analytic map germ g : (X, 0) →
(Cd+1, 0), where (X, x) is a germ of Cohen–Macaulay analytic space of dimension
d . For the computations one can use also the software Singular [DGPS19] and
the implementation of Mond-Pellikaan’s algorithm given by Hernandes et al. in
[HMP18]. At the web page of Miranda [Mir19] one can find a Singular library to
compute presentation matrices based on the results of [HMP18].

8.4 General Projections

For a reduced and equidimensional germ of complex analytic variety (X, 0) ⊂
(CN, 0) Whitney gave 6 possible definitions of tangent vectors [Whi65], the sets
of which constitute tangent cones:

C1(X, 0) ⊂ C2(X, 0) ⊂ C3(X, 0) ⊂ C4(X, 0) ⊂ C5(X, 0) ⊂ C6(X, 0),

and when the germ (X, 0) is smooth they all coincide with the tangent space T0X.
What is usually known as the tangent cone CX,0 is what Whitney defined as the

coneC3(X, 0) and is constructed by taking limits of secants through the origin. This
means that if we take a representative (X, 0) ⊂ (CN, 0), then a vector v ∈ CN is
in C3(X, 0) if there exists a sequence of points {pi} ⊂ X \ {0} tending to 0 and a
sequence of complex numbers {λi} ⊂ C∗ such that

λipi → v.

Algebraically it is constructed by blowing up the point

e0 : Bl0X→ X
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and the fiber over the origin is the projectivized tangent cone e−1
0 (0) = PC3(X, 0).

In particular it is a pure d-dimensional algebraic cone where d is the dimension of
(X, 0).

If (X, 0) is a curve then the cone C3(X, 0) is a finite number of lines, one for
each branch of X. By abuse of language they are called the tangents to X at 0. Of
course different branches may have the same tangent.

Definition 8.4.1 A linear projection π : (CN, 0) → (CM, 0) with kernel D is
called C3-general (with respect to X) if it is transversal to the tangent cone. That is

D ∩ C3(X, 0) = {0}.

Note that by the Weierstrass Preparation Theorem (see 8.2.8 and [deJP00, Thm
3.4.24]) the condition is equivalent to the fact that the map

π |C3(X, 0) : C3(X, 0)→ C3(CM, 0) = TCM,0

is finite (proper with finite fibers), which implies M ≥ d . The restriction of a C3-
general projection to X

π |X : (X, 0)→ (CM, 0)

satisfies π−1(0) = {0} since otherwise the tangent cone to π−1(0), which
is contained in C3(X, 0), would be contained in D. Again by the Weierstrass
Preparation Theorem, this is equivalent to π |X being a finite map. However the
finiteness of π |X does not imply that the projection is C3-general; consider the
projection of y3 − x2 = 0 to the x-axis.

Since C3(X, 0) is of dimension d , almost all (an open dense set of) linear
projections π : (CN, 0) → (Cd+1, 0) are C3-general for (X, 0). Since we assume
X to be equidimensional, this tells us that π(X) ⊂ Cd+1 is a hypersurface. In the
curve case (d = 1) this guarantees the existence of linear projections with image a
plane curve.

By [Chi89, Cor. 8.2] we have that C3(π(X), 0) = π (C3(X, 0)) in Cd+1. We
leave it as an exercise for the reader to verify that this last equality is an equality
of Fitting images. Hint: use the specialization spaces X and Y to the tangent cones
for X and Cd+1 respectively (see [GT18, §2, 2.4]) and the fact that the natural map
X → Y is finite by the Weierstrass Preparation Theorem because the genericity
assumption is equivalent to the finiteness of the map C3(X, 0) → TCd+1,0, and
apply [MP89, Prop. 1.6].

Finally, a projection π : (CN, 0)→ (Cd , 0) is C3-general for (X, 0) if and only
if the map C3(X, 0)→ C3(Cd , 0) = TCd ,0 which it induces is finite and surjective,
and thus a ramified covering. These C3-general maps all induce on (X, 0) ramified
analytic coverings (X, 0)→ (Cd , 0) of degree equal to the multiplicity of (X, 0).

The cone C4(X, 0) is constructed by taking limits of tangent vectors at smooth
points. One can prove that it is equivalent to taking limits at 0 in the appropriate
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Grasmannian of tangent spaces at non singular points of X and so it is determined
by the fiber over 0 of the Semple-Nash modification of a representativeX of (X, 0).
Of course there is an analogous definition of a C4-general linear projection and they
do have interesting equisingularity properties. However, since in the curve case the
cones C3 and C4 coincide we will skip this part and ask the interested reader to look
at [Chi89, Stu72a] and [Stu72b].

The cone C5(X, 0) is constructed by taking limits of secants. This means that if
we take a representativeX ⊂ CN then a vector v ∈ CN is in C5(X, 0) if there exist
sequences of pairs of distinct points {pi}, {qi} ⊂ X \ {0} tending to 0 as i →∞ and
a sequence of complex numbers {λi} ⊂ C∗ such that

λi(pi − qi)→ v.

To prove that C5(X, 0) is an algebraic cone and has a bound for its dimension, take
a small representativeX ⊂ Cn, consider the (closed) diagonal embedding δ : X ↪→
X ×X and blow up its image �:

e� : Bl�(X ×X)→ X ×X.

If we choose coordinates (z1, . . . , zN ,w1, . . . , wN) of the ambient space C2N , then
we can obtain the space Bl�(X × X) as the closure of the graph of the secant map
defined away from the diagonal� by:

X ×X \� −→ PN−1

(z,w) 
−→ [z1 − w1 : · · · : zN −wN ].

So we have Bl�(X × X) as a closed subspace of the product X × X × PN−1, the
map e� is induced by the projection to X × X, and the exceptional fiber is the
divisor D := e−1

� (�) ⊂ � × PN−1 which comes with a map D → � such that
for every point (q, q) ∈ � the fiber is the projective subvariety corresponding to
the projectivization of the C5-cone of X at q , that is PC5(X, q). This is roughly the
way Whitney proved that the C5-cone is an algebraic variety in [Whi65, Th. 5.1].
Now C5(X) is the analytic space obtained by deprojectivization of the (fibers of)
the divisorD and ψ corresponds to the pullback of e� by δ:

X × C
N ⊃ C5(X)

ψ

Bl (X× X)

e

X
δ

X X

where the upper arrow is defined only outside ofX×{0}. Note that the dimension of
C5(X) is 2d , and the dimension of ψ−1(p) = C5(X, p) for a smooth point p ∈ X
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is equal to d since in this case we have C5(X, p) = TpX. By the semicontinuity of
the dimensions of the fibers of an analytic morphism, this implies that:

d ≤ dimC5(X, 0) ≤ 2d

Definition 8.4.2 A linear projection π : (CN, 0) → (CM, 0) with kernel D is
called generic (or C5-general) with respect to X if it is transversal to the cone
C5(X, 0). That is

D ∩ C5(X, 0) = {0}.

In other words, no limit at 0 of secants to X is contained in D.
Note that a generic projection is in particular C3-general and C4-general.

Proposition 8.4.3 Let (X, 0) ⊂ (CN, 0) be a reduced equidimensional germ of
complex analytic variety of dimension d and π : (CN, 0) → (CM, 0) a linear
projection.

(a) If π is generic then the restriction to X induces a homeomorphism with its
image.

(b) (X, 0) is smooth if and only if dim C5(X, 0) = d
Proof First of all note that the transversality to the cone C5(X, 0) implies that the
restriction π |X is injective for a small enough representative of X. But then the
induced map π |X : X → CM is injective, continues and the map X → π(X) is
open since π is and so it should be a homeomorphism of X with its image π(X).

Now for (b): sufficiency is clear since (X, 0) smooth implies C5(X, 0) = T0X

and so it is of dimension d. Conversely, if the dimension of C5(X, 0) is d there
exist generic linear projections of X to Cd . By (a) this gives us a homeomorphism
between (X, 0) and (Cd, 0). Note that π is also C3-general so it induces a ramified
covering of degree equal to the multiplicity of (X, 0), but the injectivity gives us
multiplicity 1 and so (X, 0) is smooth. �
For more on this and more general results see [Stu72a, Stu77] and [Chi89, Section
9.4]

An important thing to notice is that in the reducible case the cone C5(X, 0)
contains but is not equal to the union of the C5-cones of its irreducible components.
For instance if (X,0) is a curve consisting of two smooth branches X1 and X2 then
both cones C5(Xi, 0) are one-dimensional but since (X, 0) is singular then by the
previous result C5(X, 0) can not have dimension 1.

So now we have that if (X, 0) is singular then d + 1 ≤ dimC5(X, 0) ≤ 2d , and
for curves this gives dim C5(X, 0) = 2. This guarantees the existence of generic
projections of curves to C2.

Corollary 8.4.4 Let (X, 0) ⊂ (CN, 0) be a germ of reduced analytic curve. Then
almost all (an open dense set of) linear projections π : (CN, 0) → (C2, 0)
are generic and their Fitting images π(X) ⊂ C2 are reduced plane curves



242 A. G. Flores et al.

homeomorphic to X. Moreover, π induces an analytic isomorphism X \ {0} →
π(X) \ {0}.
Proof This follows from Proposition 8.3.6 and the fact that an analytic map C→ C
which is a homeomorphism is an isomorphism. �

8.4.1 The Case of Dimension 1

In the case of curves we have the following important results:

Proposition 8.4.5 (See [BGG80, Prop IV.1]) Let (X, 0) ⊂ (CN, 0) be a germ of
reduced analytic curve. If (X, 0) is singular then the cone C5(X, 0) is a finite union
of 2-planes each one of them containing at least one tangent line to (X, 0).

Proof We will only give an idea of the proof.
By Proposition 8.4.3 the cone C5(X, 0) is two-dimensional and by the blowup

construction it has a finite number of irreducible components. So what one has to
prove is that all the irreducible components are 2-planes. Again, by this blowup
construction, any (direction of) line contained in C5(X, 0) can be picked off by
lifting an arc

(ψ1, ψ2) : (C, 0)→ (X ×X, (0, 0))

to Bl�(X × X) like (ψ1(t), ψ2(t), [ψ1(t)− ψ2(t)]). Now each ψi(t) is an arc
(C, 0) → (X, 0) and can be obtained using the parametrization of one of the
branches of (X, 0). Once you see this, what you have to do is consider the different
cases and work out the calculations.

The first case is when (X, 0) ⊂ (CN, 0) is irreducible of multiplicity n so
according to Sect. 8.1.2, in suitable coordinates we have a parametrization of the
form:

ϕ(t) =
(
tn,
∑

i>n

a2,i t
i , . . . ,

∑

i>n

aN,i t
i

)

with the tangent line being the z1-axis [1 : 0 : · · · : 0]. For every n-th root of unity
ω �= 1 the lifted arc

t 
→ (ϕ(t), ϕ(ωt), [ϕ(t)− ϕ(ωt)]) ∈ X ×X × PN−1

will define a limit line �ω ∈ PN−1 as t → 0 which is distinct from the z1-axis
and if you define Hω as the 2-plane generated by the z1-axis and the line in CN

corresponding to �ω, then you can prove that

C5(X, 0) = Hω1 ∪ . . . ∪Hωn−1,
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by verifying that any line obtained by lifting an arc is contained in one of these
2-planes. We note that they are not necessarily all different.

For the reducible case it is enough to consider two branches (X, 0) = (X1, 0) ∪
(X2, 0). In this case you have that the C5-cone of each irreducible component
(Xi, 0) will be contained in C5(X, 0) but you will have additional components
that come from the configuration of these two branches. For instance if they have
different tangent lines �1 and �2 then all you have to add is the plane H12 generated
by these two lines. i.e.,

C5(X, 0) = C5(X1, 0) ∪ C5(X2, 0) ∪H12.

When the two branches are tangent (have the same tangent line) then you have to
play a game very similar to the irreducible case by reparametrizing your branches
in such a way as to travel through them at the same “speed” and using roots of unity
to find lines �ω in the C5(X, 0) that are different from the tangent line and these will
give you the additional 2-planes. i.e.,

C5(X, 0) = C5(X1, 0) ∪ C5(X2, 0) ∪Hω1 ∪ . . . ∪Hωk . �

Proposition 8.4.6 (see [BGG80, Prop IV.2]) Let (X, 0) ⊂ (CN, 0) be a germ of
reduced analytic curve, and let � ⊂ G(N − 2, N) be the non-empty Zariski open
set of the Grassmannian of (N−2)-planes of CN which are transversal to C5(X, 0).
Then:

(a) For H ∈ � the plane curve (πH (X), 0) is reduced and of constant topological
(equisingularity) type with Milnor number μ0.

(b) If H /∈ � then one of the following statements is verified:

– 0 is not an isolated point of H ∩X.
– 0 is an isolated point of H ∩X but the curve (πH (X), 0) is not reduced.
– 0 is an isolated point of H ∩ X, the curve (πH (X), 0) is reduced but its

Milnor number is greater than μ0.

Proof Let W ′ ⊂ G(N − 2, N) be the open subset of the Grassmannian of
(N − 2)-planes of CN defined by the condition that H ∈ W ′ if and only if
0 ∈ CN is an isolated point of H ∩ X. Let W ⊂ C2N with coordinate system
(a1, . . . , aN , b1, . . . , bN) be the associated open subset, where d = (a, b) ∈ W if
and only if the linear forms

a1z1 + · · · + aNzN and b1z1 + · · · + bNzN
are linearly independent and the N − 2 planeHd ⊂ CN they define is inW ′. Let πd
be the linear projection

πd : CN −→ C2

(z1, . . . , zN ) 
→ (a1z1 + · · · + aNzN, b1z1 + · · · + bNzN)
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Note that for d ∈ W the germ πd : (X, 0) → (C2, 0) is finite, and if we denote
by (πd(X), 0) ⊂ (C2, 0) the image germ with the Fitting structure then by [MP89,
Lemma 2.1] it is a (not necessarily reduced, but without embedded component, by
Proposition 8.3.6) plane curve.

We put all these projections in an analytic family by considering the map

% : CN ×W −→ C2 ×W
(z1, . . . , zN , d) 
→ (πd(z1, . . . , zN ), d)

Note that for every d ∈ W the map germ

% : (X ×W, (0, d))→
(

C2 ×W, (0, d)
)

is finite. And since the analytic algebra OX×W,(0,d) is Cohen–Macaulay again
by [MP89, Lemma 2.1] we have a germ of hypersurface (%(X×,W), (0, d)) ⊂(
C2 ×W, (0, d)). By projecting toW ⊂ C2N we obtain (by [GLS07, Thm B.8.11])

a flat map:

G : (%(X ×W), (0, d))→ (W, d).

Since the Fitting structure commutes with base change we have that the germ(
G−1(d), (0, d)

)
is isomorphic to (πd(X), 0), and so we have a flat deformation

of (πd(X), 0) where all the fibers are plane curves.
Note that if ϕ : (C, 0)→ (CN, 0), t 
→ (ϕ1(t), . . . , ϕN(t)) is the normalization

of a branch of (X, 0) then the plane curve (πd(X), 0) is parametrized by:

t 
→ (a1ϕ1(t)+ · · · + aNϕN(t), b1ϕ1(t)+ · · · + bNϕN(t)) ,

and by varying d we get that the deformation space of G admits a parametrization
in family.

Proof of (a) When Hd is transversal to C5(X, 0) then for every d ′ in a small
neighborhood of d the (n − 2)-plane Hd ′ is also transversal to C5(X, 0) and all
the corresponding projections πd ′ are therefore generic. By Corollary 8.4.4 this tells
us that πd ′ : X \ {0} → G−1(d ′) \ {0} is an analytic isomorphism for every d ′
sufficiently close to d . This implies:

• All the curves in the family G−1(d ′) have the same number of branches as X.
• The parametrization in family is actually a normalization in family and by

Corollary 8.3.8, or [Tei77, §3], see also [GLS07, II, Thm 2.56] the family is δ
constant.

By the Milnor formulaμ = 2δ−r+1 the familyG : (%(X×,W), (0, d))→ (W, d)

is μ-constant and thus equisingular by [LR76] or [BGG80, Thm II.4].
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Proof of (b) For Hd ∈ W \� we have that the map

πd : (X, 0)→ (C2, 0)

is finite but if it is generically k to 1 then by [MP89, Prop. 3.1] the Fitting structure
of (πd(X), 0) is not reduced.

When πd is generically 1-1 then (πd(X), 0) is reduced but by assumption there
is a line � ⊂ Hd ∩C5(X, 0). Take a sequence of secants �k going through the points
xk, yk ∈ X\{0} such that �k converges (in direction) to �, since� is Zariski open we
can find a sequence dk tending to d such that Hdk ∈ � and it contains (the direction
of) �k. Note that πdk (�k) = qk �= 0 and so the plane curve (G−1(dk), qk) is singular
which implies that μ ((πd(X), 0)) > μ

(
(πdk (X), 0)

)
. �

Example 8.4.7 Let (X, 0) ⊂ (C3, 0) the germ of irreducible curve parametrized by

t 
→ (t4, t5, t7)

then the tangent cone C3(X, 0) is the z1-axis.
By taking other arcs t 
→ (t4, ωt5, ω3t7) were ω ∈ μ4 \ {1} and taking the limit

as t → 0 of the difference [0 : (1− ω)t5 : (1− ω3)t7] we get the z2-axis as a limit
of secants and we can deduce that the cone C5(X, 0) is the z1z2-plane.

For d = (1, 0, 0, 0, 1, 0) the corresponding projection

πd(z1, z2, z3) = (z1, z2)

isC5-general and its image πd(X, 0) ⊂ (C2, 0) is the reduced plane curve y4−x5 =
0 with Milnor number μ = 12.

On the other hand For d0 = (1, 0, 0, 0, 0, 1) the corresponding projection

πd0(z1, z2, z3) = (z1, z3)

is not C5-general and its image πd0(X, 0) ⊂ (C2, 0) is the reduced plane curve
y4 − x7 = 0 with Milnor number μ = 18.

By taking dα = (1, 0, 0, 0,−α2, 1) we get a sequence of C5-general projections
πdα converging to πd0

πdα(z1, z2, z3) = (z1, z3 − α2z2)

Note that the plane curveXα := πdα(X) has a singular point in (α4, 0) coming from
the image of the secant going through the points (α4, α5, α7) and (α4,−α5,−α7)

in X. Moreover as α tends to 0 these secants dα = [0 : 1 : α2] converge to the
z2-axis [0 : 1 : 0] in P2 which is precisely the intersection Hd0 ∩ C5(X, 0).
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8.5 Main Result

We have just seen that all (C5-)generic plane projections of a reduced analytic
curve are equisingular. Now our objective is to prove that all equisingular germs
of reduced plane curves are generic projections of a single space curve. As we shall
see, given a reduced plane curve (X, 0) ⊂ (C2, 0) this space curve corresponds
to the one-dimensional analytic algebra which is the Lipschitz saturation OsX,0 of
OX,0 in the sense of [PT69]. In doing so we will also give another reason why
(a) of Proposition 8.4.6 is true, since we shall see that a projection π is generic
for a space curve (X, 0) ⊂ (CN, 0) if and only if it induces an isomorphism of
the saturated algebras OsX,0 and Osπ(X),0. In particular, two germs of reduced plane
curves are equisingular (topologically equivalent) if and only if their saturations are
analytically isomorphic.

In order to define these saturations we need the theory of integral closure of
ideals.

8.5.1 Integral Closure of Ideals

Our main references for this subsection are, [LT08, Lip82, Tei73] and [HS06].

Definition 8.5.1 Let I be an ideal in a ring R. An element r ∈ R is said to be
integral over I if there exists an integer h and elements aj ∈ I j , j = 1, . . . , h, such
that

rh + a1r
h−1 + a2r

h−2 + · · · + ah−1r + ah = 0.

The set of all elements of R that are integral over I is an ideal called the integral
closure of I and denoted by I . We say that I is integrally closed if I = I . If I ⊂ J
are ideals we say that J is integral over I if J ⊂ I .

Remark 8.5.2 The following properties are easily verified:

1. I ⊂ I . For each r ∈ I choose n = 1 and a1 = −r .
2. If I ⊂ J are ideals then I ⊂ J since an integral dependence equation for r over
I is also an integral dependence equation for r over J .

3. I ⊂ √I since the integral dependence equation implies rn ∈ 〈a1, . . . , an〉 ⊂ I .
4. Radical ideals are integrally closed.
5. If ϕ : R → S is a ring morphism and I ⊂ S is an integrally closed ideal of S

then ϕ−1(I) is an integrally closed ideal of R.

A related concept is that of reduction: For ideals J ⊂ I ⊂ R we say that J is a
reduction of I if there exists a non-negative integer n such that In+1 = J In. This
implies that I = J . We can express integral dependence using equalities of ideals
and modules.
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Proposition 8.5.3 (See [LT08, Chapter 1], [HS06, Prop 1.1.7, Cor. 1.1.8 & Cor.
1.2.2]) For any element r ∈ R and ideal I ⊂ R. The following are equivalent:

(a) r ∈ I .
(b) There exists an integer k such that (I + r)k = I (I + r)k−1.
(c) I is a reduction of I+ < r >.
(d) There exists a finitely generated R-moduleM such that rM ⊂ IM and if there

exists a ∈ R such that aM = 0, then there exists an integer � such that ar� = 0.

A very important corollary of this Proposition is that I ⊂ R is an integrally
closed ideal of R and you can find a complete proof of this fact in [HS06, Cor.
1.3.1].

We have that I ⊂ I ⊂ √I , but in fact the integral closure is much “closer”
to I than to the radical and a very good family of examples in which it is easy to
calculate and compare is that of monomial ideals in C{z1, . . . , zd}, which are the
ideals generated by monomials. We begin with an example:

Example 8.5.4 For the ideal I = 〈x4, xy2, y3〉C{x, y} we have that

I = 〈x4, x3y, xy2, y3〉

and

√
I = 〈x, y〉.

The exponent set of I consists of all integer lattice points in the yellow region
below:

Similarly, in C{z1, . . . , zd } we have 〈zn1, . . . , znd 〉 = 〈z1, . . . , zd〉n.
The exponent vector of a monomial zm1

1 · · · zmdd is (m1, . . . ,md) ∈ Nd . For
any monomial ideal I , the set of all exponent vectors of all the monomials in I is
called the exponent set of I . Since a monomial is in I if and only if it is a multiple
in C{z1, . . . , zd } of one of the monomial generators of I , the exponent set of I
consists of all those points of Nd which are componentwise greater or equal than

Fig. 8.1 The point (3, 1)
representing the monomial
x3y is in the convex hull of
the yellow region, whose
integral points represent
monomials in I . The integral
dependence relation is
(x3y)2 − x5.xy2 = 0

exp.x

exp.y

(4,0)

(0,3)

(1,2)

(3,1)

x 4

y3

xy 2

x 3y
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the exponent vector of one of the monomial generators of I . Moreover one can
prove that I is monomial and its exponent set is equal to all the integer lattice points
in the convex hull of the set of exponents of elements of I . (See [Tei82, Chap.1, §2],
[Tei04, §3, §4], [HS06, Props 1.4.2 & 1.4.6]). To understand how this theory can be
used in the setting of complex analytic geometry the following result is fundamental.

Theorem 8.5.5 ([LT08, Thm 2.1, p. 799]) Let X be a reduced complex analytic
space. Let Y ⊂ X be a closed, nowhere dense, analytic subspace of X, and x a
point in Y . Let I ⊂ OX be the coherent ideal defining Y , and let J ⊂ OX be
another coherent ideal. Let I (resp. J ) be the stalk of I (resp. J) at x. Then the
following statements are equivalent:

1. J ⊂ I ,
2. For every germ of morphism φ : (C, 0)→ (X, x)

φ∗J · OC,0 ⊂ φ∗I · OC,0,

3. For every morphism π : X′ → X such that X′ is a normal analytic space, π
is proper and surjective, and I · OX′ is locally invertible, there exists an open
subset U ⊂ X containing x, such that:

J · OX′ |π−1(U) ⊂ I · OX′ |π−1(U),

3∗. If % : BlIX → X denotes the normalized blowup of X along I, then there
exists an open subset U ⊂ X containing x, such that:

J · OBlIX|%−1(U) ⊂ I · OBlIX|%−1(U),

4. Let V ⊂ X be a neighborhood of x, where both J and I are generated by their
global sections. Then for every system of generators g1, . . . , gm of "(V,I) and
every f ∈ "(V,J), there exist a neighborhood V ′ of x in V and a constant C
such that:

|f (y)| ≤ C sup
i=1,...,m

|gi(y)|

for every y ∈ V ′.
Let us take a closer look at statement 2: For any arc ϕ : (C, 0) → (X, 0) ⊂

(CN, 0) we have a corresponding morphism of analytic algebras

ϕ∗ : OX,0 = C{z1, . . . , zN }/a −→ C{t}
zi + a 
→ ϕi(t) = tmi ui(t)

where mi ≥ 1 and ui(t) is a unit in C{t}. So if I ⊂ OX,0 is an ideal then
ϕ∗(I)OC,0 = 〈tk〉C{t} for some integer k and an element g ∈ OX,0 is in I if and
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only if for any such arc t 
→ ϕ(t) the order of the series g (ϕ1(t), . . . , ϕN(t)) is
greater or equal than this k.

The fact that the normalized blowup map is proper implies that the condition
of statement 2 needs to be verified only for finitely many arcs. Since the general
statement is somewhat cumbersome, let us illustrate how this works in the case
where the ideal I a complete intersection defining the origin in (X, 0). Let I =
〈h1, . . . , hd 〉 ⊂ OX,0. The blowup BlIX of I in X is the subspace of X × Pd−1

defined by the d − 1 equations h1
T1
= h2

T2
= · · · = hd

Td
, again a complete intersection.

The fiber of the natural projection BlIX → Pd−1 over a point t ∈ Pd−1 with
coordinates (t1 : t2 : · · · : td ) is a curve in BlIX which is isomorphic to its
image in X defined by the equations hitj − hj ti = 0. So we can view BlIX as
a family of curves Ct on X parametrized by Pd−1, which is the exceptional divisor
of the map BlIX → X. When we pass to the normalization n : BlIX → BlIX,
by general Theorems on normalization (see Proposition 8.3.9 and use the fact that
by generic flatness there is a dense open U ⊂ Pd−1 where δ is constant), there
exists a Zariski dense open subset U ⊂ Pd−1 such that n−1(U) is a non singular
divisor in a non singular space n−1((X × U) ∩ BlIX), and for each point t ∈ U
the map n induces a normalisation of the curve Ct . This normalization is then a
union of disks, one for each irreducible component of Ct , and each disk transversal
to n−1(Pd−1) in n−1((X × U) ∩ BlIX). Because a meromorphic function on a
normal space is holomorphic if it has no poles in codimension one, to verify that
an element g ∈ OX,0 is in I , it suffices to verify that for some t ∈ U , the order of
vanishing of g along each arc parametrizing a branch ofCt is larger than the order of
vanishing of the ideal I . Because of what we have just seen, the order of vanishing
along these arcs will, after lifting to BlIX, translate as the order of vanishing along
some irreducible component of the exceptional divisor in BlIX. Since the ideal I is
locally principal on BlIX, to prove that g ∈ I it suffices to prove that after lifting
to BlIX the function g becomes a multiple of the local equations of the exceptional
divisor. But the polar set of the quotient of g by that equation is contained in that
exceptional divisor and the inequalities of orders imply that there are no poles at a
general point of each irreducible component. Because BlIX is normal, there are no
poles anywhere and on BlIX the pull back of the function g is indeed in the pull
back of the ideal I so that g is in I .

We shall use this below to describe the saturation.
With this at hand we can now characterize C3-general projections in terms of

integral closure of ideals. Let (X, 0) ⊂ (CN, 0) be a reduced germ of analytic space
of pure dimension d . Let us choose coordinates z1, . . . , zN on CN , denote by L the
linear subspace of CN defined by z1 = · · · = zd = 0 and let a be the ideal of OX,0
generated by the images of z1, . . . , zd .

Proposition 8.5.6 The restriction to (X, 0)

π |(X, 0) : (X, 0)→ (Cd , 0) (z1, . . . , zN ) 
→ (z1, . . . , zd )
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of the linear projection π with kernel L is C3-general if and only if a = m where
m = 〈z1, . . . , zN 〉OX,0 is the maximal ideal of the analytic algebra OX,0.

Proof Recall that π is C3-general if and only if C3(X, 0) ∩ L = {0}. Let � = [a1 :
· · · : aN ] ∈ PN−1 be a line in the (projectivized) tangent cone C3(X, 0), then � �⊂ L
if and only if ai �= 0 for some i ∈ {1, . . . , d}. Note that any arc ϕ : (C, 0)→ (X, 0)
determines a line in C3(X, 0), the limit as t → 0 of

t −→ [ϕ1(t) : · · · : ϕN(t)] ∈ PN−1,

and conversely any line in the tangent cone can be obtained through an arc since it
corresponds to a point in the fiber over 0 of the blowup Bl0X → X. On the other
hand, for every arc ϕ : (C, 0)→ (X, 0) we have that

ϕ∗(a)OC,0 = 〈ϕ1(t), . . . , ϕd(t)〉C{t} = 〈tk〉C{t},

where k = min{ord0ϕi(t) | i = 1, . . . , d}. Finally ai �= 0 for some i ∈ {1, . . . , d} if
and only if for all j ∈ {d + 1, . . . , N}

ord0ϕj (t) ≥ k = min{ord0ϕi(t) | i = 1, . . . , d}

if and only if ϕ∗(zj ) ∈ ϕ∗(a)OC,0 if and only if zj ∈ a for all j ∈ {d + 1, . . . , N},
that is, a = m. �

By a linear change of coordinates in CN we can always place ourselves in the
setting of the previous result. But the theory of integral closure also gives us an
algebraic way to prove that for a given germ (X, 0) of pure dimension d almost all
linear projections π : (CN, 0)→ (Cd, 0) are C3-general as stated in the following
result (For a proof see [Mat89, Thm 14.14])

Theorem 8.5.7 (Rees-Samuel) Let OX,0 be a d-dimensional analytic algebra with
maximal ideal m = 〈z1, . . . , zN 〉. For i ∈ {1, . . . , d}, let yi = ∑N

j=1 λij zj be
a sufficiently general C-linear combination of z1, . . . , zN . Then the ideal a =
〈y1, . . . , yd〉 satisfies a = m.

We can take this one step further by considering another important aspect of this
theory, namely its relation with multiplicity. For a local Noetherian ring (R,m) and
an m-primary ideal a ⊂ R we can define a Hilbert Samuel function

k ∈ N 
→ dimR/mR/ak.

The result is that for large enough k the Hilbert-Samuel function behaves like a
polynomial of degree equal to the dimension of R and its leading coefficient is of
the form e(a)kd/d!, where e(a) is a positive integer called the multiplicity of the
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ideal a. In the case R is the analytic algebra OX,0 of a germ (X, 0) and a = m it IS
the multiplicity of the germ. (See [deJP00, Section 4.2])

Theorem 8.5.8 (Rees (See [Ree61, Thm 3.2],[HS06, Thm 11.3.1])) Let (OX,0,m)
be a reduced and equidimensional analytic algebra and a ⊂ b two m-primary
ideals. Then a = b if and only if e(a) = e(b).

A geometric interpretation of this result is described by Lipman in [Lip82]. Let
(X, 0) be a germ of reduced and equidimensional singularity of dimension d with
associated analytic algebra

(
OX,0,m

)
. Every m-primary ideal is generated by at

least d elements, and every d-tuple (f1, . . . , fd) of elements of m defines a map-
germ F : (X, 0)→ (Cd, 0).

Now, the ideal a = 〈f1, . . . , fd 〉 is m-primary if and only if F is finite. As we
have mentioned before you can prove that such an F : (X, 0) → (Cd, 0) is then a
ramified analytic cover of degree equal to e(a) and by Rees’ Theorem this degree
will be the multiplicity of (X, 0) (= e(m)) if and only if a = m.

Moreover using Nakayama’s Lemma one checks that a is a reduction of m
(equivalently a = m) if and only if in the graded C-algebra

grmO =
⊕

k≥0

mk/mk+1, with m0 = O

(which is the homogeneous coordinate ring of the projectivized tangent cone
PC3(X, 0) see [GT18, Section 2.4]) the images fi of the fi in m/m2 generate an
irrelevant ideal (that is, an ideal containing all elements of grmO of sufficiently
large degree so that its zero locus in projective space is empty).

What this last condition means is that first of all the fi are linearly independent
over C, so that there is an embedding of the germ (X, 0) into (CN, 0) for some N
and a linear projection π : (CN, 0) → (Cd, 0) such that its restriction to (X, 0)
is germwise the F associated above to (f1, . . . , fd) and secondly, since a = m by
Proposition 8.5.6 the projection π is C3-general.

We end this section by establishing a result analogous to Proposition 8.5.6 but
with respect to generic projections of curves.

Definition 8.5.9 Let ϕ1 : R → A1 and ϕ2 : R → A2 be morphisms of C-analytic
algebras. There is a unique C-analytic algebra, denoted A1�⊗RA2, together with
morphisms θi : Ai → A1�⊗RA2, i = 1, 2, such that θ1 ◦ ϕ1 = θ2 ◦ ϕ2 and for
every pair of morphisms of C-analytic algebras ψ1 : A1 → B, ψ2 : A2 → B

satisfying ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2 there is a unique morphism of C-analytic algebras
ψ : A1�⊗RA2 → B making the whole diagram commute. The algebra A1�⊗RA2 is
called the analytic tensor product of A1 and A2 over R.
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A1

θ1

ψ1

R

ϕ1

ϕ2

A1⊗RA2
ψ

B

A2

θ2

ψ2

Geometrically this analytic tensor product is the operation on the analytic
algebras that corresponds to the fibre product of analytic spaces. Given holomorphic
maps φ1 : (X1, p1)→ (Y, q) and φ2 : (X2, p2)→ (Y, q)we have the fibre product:

X1×Y X2

2

1
X1

φ1

X2
φ2

Y

which induces the corresponding diagram of analytic algebras

OY,q

ϕ2

ϕ1 OX1,p1

X2,p2 X1 Y X2,(p1,p2)

that is, the analytic algebra OX1×Y X2,(p1,p2) is isomorphic to OX1,p1
�⊗OY,qOX2,p2 .

Remark 8.5.10 See [GP07, Def 1.28, Example 1.46.1 & Lemma 1.89] and
[Ada12].

1. When R = C in the definition, the analytic tensor product OX1,p1
�⊗COX2,p2

is the analytic algebra corresponding to the product germ (X1 ×X2, (p1, p2)).
Moreover if OX1,p1 = C{z}/I and OX2,p2 = C{w}/J with z = (z1, . . . , zN ) and
w = (w1, . . . , wM) then

OX1,p1
�⊗COX2,p2 =

C{z,w}
〈IC{z,w} + JC{z,w}〉 .

2. In general if (X1, p1) ⊂ (CN, 0), (X2, p2) ⊂ (CM, 0) and (Y, q) ⊂ (Ck, 0)
with OY,q = C{y1, . . . , yk}/K , denoting by yk(z) (resp. yk(w) a representative
in C{z} (resp. C{w}) of the image of yk in OX1,p1 (resp. OX2,p2 by the structure
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maps OY,q → OXi,pi i = 1, 2, then

OX1,p1
�⊗OY,qOX2,p2 =

C{z}
I

�⊗OY,q
C{w}
J

∼= C{z,w}
IC{z,w} + JC{z,w} + 〈y1(z)− y1(w), . . . , yk(z)− yk(w)〉C{z,w} .

Let (X, 0) ⊂ (CN, 0) be a germ of reduced singular curve. By Proposition 8.4.5 the
C5 cone is a finite union of 2-planes of Cn

C5(X, 0) = H1 ∪ . . . ∪Hr.

If we let π : (CN, 0) → (C2, 0) denote the linear projection to the first two
coordinates (z1, . . . , zN ) 
→ (z1, z2) then π is generic if and only if π(Hi) = C2

for i = 1, . . . , r . Recall that the construction of C5(X, 0) goes through the blowup
of the diagonal of X×X, so let I� ⊂ OX×X,(0,0) be the ideal defining this diagonal

I� = 〈z1 − w1, . . . , zN −wN 〉OX×X,(0,0).

Proposition 8.5.11 Let I�2 ⊂ OX×X,(0,0) be the ideal coming from the projection
π , that is, I�2 = 〈z1 − w1, z2 − w2〉OX×X,(0,0). Then π is generic if and only if
I�2 = I�.

Proof The proof is now very similar to the C3-general case, and since I�2 ⊂ I� all
we have to prove is that genericity is equivalent to the inclusion I� ⊂ I�2 .

Let L = V (z1, z2) be the kernel of π . Then π is generic if and only if C5(X, 0)∩
L = {0}. Let � = [a1 : · · · : aN ] ∈ PN−1 be a line in the (projectivized) cone
C5(X, 0), then � �⊂ L if and only if ai �= 0 for some i ∈ {1, 2}. This time the lines
in C5(X, 0) are determined by taking the limit as t → 0 of the secants associated to
pairs of arcs (ϕ,ψ) : (C, 0)→ (X ×X, (0, 0))

t −→ [ϕ1(t)− ψ1(t) : · · · : ϕN(t)− ψN(t)] ∈ PN−1

Again for every such pair of arcs (ϕ,ψ) : (C, 0)→ (X ×X, (0, 0)) we have that

(ϕ,ψ)∗(I�2)OC,0 = 〈ϕ1(t)− ψ1(t), ϕ2(t)− ψ2(t)〉C{t} = 〈tk〉C{t}

where k = min{ord0(ϕ1(t)−ψ1(t)), ord0(ϕ2(t)−ψ2(t))}. Finally ai �= 0 for some
i ∈ {1, 2} if and only if for all j ∈ {3, . . . , N}

ord0(ϕj (t)− ψj(t)) ≥ k = min{ord0(ϕ1(t)− ψ1(t)), ord0(ϕ2(t)− ψ2(t))}

if and only if (ϕ,ψ)∗(zj − wj) ∈ (ϕ,ψ)∗(I�2)OC,0 if and only if zj − wj ∈ I�2

for all j ∈ {3, . . . , N}, that is, I� ⊂ I�2 . �
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8.5.2 Lipschitz Saturation

Let n∗ : OX,0 ↪→ OX,0 be the integral closure of a reduced complex analytic
algebra which is a quotient of C{z1, . . . , zN }. Recall that OX,0 is a direct sum of
normal analytic algebras (in particular integral domains), one for each irreducible
component of the germ (X, 0). By Definition 8.5.9 the following commutative
diagram determines a unique morphism � of direct sums of analytic algebras:

OX,0

θ1

ψ1

C OX,0 OX,0⊗COX,0 OX,0⊗OX,0 OX,0

OX,0

θ2

ψ2

where θ1(f ) = f�⊗C1 and θ2(f ) = 1�⊗Cf . Note that the map � :
OX,0 �⊗C OX,0 → OX,0 �⊗OX,0 OX,0 is the morphism of sums of analytic
algebras corresponding to the inclusion

(
X ×X X, (0, 0)

)
↪→ (

X ×X, (0, 0)).
By Remark 8.5.10 if we denote by n : (X, 0)→ (X, 0) the normalization map and
OX,0 =⊕r

i=1 C{t i}/Ji(t i) with t i = (ti,1, . . . , t i,mi ), then

OX,0 �⊗C OX,0 =
⊕

i,j

C{t i , uj }
〈Ji(t i), Jj (uj )〉

and � is a surjection with kernel

I� = 〈z1�⊗C1− 1�⊗Cz1, . . . , zN�⊗C1− 1�⊗CzN 〉OX,0 �⊗C OX,0.

Definition 8.5.12 Let I� be the kernel of the morphism � above. We define the
Lipschitz saturation OsX,0 of OX,0 as the algebra

OsX,0 :=
{
f ∈ OX,0 | θ1(f )− θ2(f ) ∈ I�

}
=
{
f ∈ OX,0 | f�⊗C1− 1�⊗Cf ∈ I�

}
.

Example 8.5.13 Let (X, 0) ⊂ (C3, 0) be the irreducible curve with normalization
map:

η : (C, 0) −→ (X, 0)

t 
→ (t4, t6, t7)
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In this setting the map � above is

� : OX,0 �⊗C OX,0 → OX,0 �⊗OX,0 OX,0

� : C{t, u} −→ C{t, u}
〈t4 − u4, t6 − u6, t7 − u7〉 .

The maps θi are just inclusions, C{t} ↪→ C{t, u}, C{u} ↪→ C{t, u}
and the ideal I� = 〈t4 − u4, t6 − u6, t7 − u7〉. By definition OsX,0 :={
f ∈ C{t} | f (t)− f (u) ∈ I�

}
and note that OX,0 ⊂ OsX,0. For example t5 ∈ C{t}

is in OsX,0 if and only if t5 − u5 is in I�. By taking the arc φ(τ) = (τ,−τ ) we have
that φ∗I�OC,0 = 〈τ 7〉 and φ∗(t5−u5) = 2τ 5 /∈ φ∗I�OC,0, so by Theorem 8.5.5(2)
the element t5 ∈ C{t} = OX,0 is not in the Lipschitz saturation OsX,0. For this
particular arc we have φ∗(t9 − u9) = 2τ 9 ∈ φ∗I�OC,0, and one can actually prove
that t9 ∈ OsX,0. As we shall see later on, in fact OsX,0 = C{t4, t6, t7, t9}.

We are going to show that the Lipschitz saturation OsX,0 is always an analytic
algebra, even if the germ (X, 0) is not irreducible. To begin to understand why this
is true, let’s look at the irreducible case. Define the map

α : OX,0 → OX,0 �⊗C OX,0
f 
→ θ1(f )− θ2(f ) = f (z)− f (w)

It is not a ring map, however if n∗ : OX,0 ↪→ OX,0 denotes the inclusion coming
from the normalization map n : X → X then α(n∗(OX,0)) = α(n∗(mX,0)) and
I = Ker� = 〈α(n∗(mX,0))〉.

By Definition 8.5.9 OX,0 �⊗OX,0 OX,0 is an OX,0-algebra, in particular an OX,0-
module. However, an interesting point is that since n : X → X is a finite map,
by [GP07, Lemma 1.89] this algebra is isomorphic to the algebraic tensor product
OX,0 ⊗OX,0 OX,0, so for instance

C{t, u}
〈t2 − u2, t3 − u3〉

∼= C{t} ⊗C{t2,t3} C{u}

Lemma 8.5.14 The map

� ◦ α : OX,0 −→ OX,0 �⊗OX,0 OX,0

is a morphism of OX,0-modules.

Proof Indeed for r ∈ OX,0 and f ∈ OX,0:

rf
α
→ r(z)f (z)− r(w)f (w) �
→ r(z)f (z)− r(w)f (w)+ I
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but r(z) = r(w)mod(I) so r(z)f (z)−r(w)f (w) = (r(z)+I)(f (z)−f (w)+I) =
r(� ◦ α)(f ). �

By definition I� is an ideal of OX,0 �⊗C OX,0 and since � is a surjective ring
homomorphism we have that �(I�) ⊂ OX,0 �⊗OX,0 OX,0 is an ideal, in particular it
is an OX,0-module. But this implies that

(� ◦ α)−1 (�(I�)) = α−1(I�) = OsX,0 ⊂ OX,0

is an OX,0-module. �
Lemma 8.5.15 The Lipschitz saturation OsX,0 is an OX,0-algebra and a direct sum
of analytic algebras.

Proof Since OsX,0 is a submodule of the Noetherian module OX,0, it is a finitely
generated OX,0-module. Even more, you can easily check that OsX,0 is closed under
multiplication, so it is an OX,0-algebra and by [deJP00, Cor. 3.3.25 & 3.3.26] this
implies that OsX,0 is a direct sum of analytic algebras.

Indeed, take f1, f2 ∈ OsX,0 then (� ◦ α)(f1) = f1(z) − f1(w) + I� ∈ �(I�),
but it is an ideal so (f2(z) + I�)(f1(z) − f1(w) + I�) ∈ �(I�). Analogously
(f1(w) + I�)(f2(z)− f2(w)+ I�) ∈ �(I�) by taking their sum we get that (� ◦
α)(f1f2) = f1(z)f2(z) − f1(w)f2(w) + I� ∈ �(I�) which implies that f1f2 ∈
OsX,0 as claimed. �

Before proving that OsX,0 is actually an analytic algebra we would like to give
an idea of how things work in the non-irreducible case so suppose there are two
irreducible components (X, 0) = (X1, 0) ∪ (X2, 0). As we said before X is then a
multi-germ (X1, p) (X2, q) and OX,0 = OX1,0

⊕
OX2,0 = OX1,p

⊕
OX2,q

. Since
the analytic tensor product should be the algebraic counterpart of the fibre product
then we should consider/define

OX,0 �⊗OX,0 OX,0 =

OX1,p
�⊗OX,0 OX1,p

⊕OX1,p
�⊗OX,0 OX2,q

⊕OX2,q
�⊗OX,0 OX1,p

⊕OX2,q
�⊗OX,0 OX2,q

and analogously for OX,0 �⊗C OX,0. By componentwise taking the ring maps �ij
coming from the universal property of the irreducible case, for example:

�12 : OX1,p
�⊗C OX2,q

→ OX1,p
�⊗OX,0 OX2,q

we get the ring map � as before with kernel I� = I11 ⊕ I12 ⊕ I21 ⊕ I22. The map
α should now be defined as

α : OX,0 −→ OX,0 �⊗C OX,0
(f1, f2) 
→ (f1(z)− f1(w), f1(z)− f2(w), f2(z)− f1(w), f2(z)− f2(w))
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and we get the same definition for the Lipschitz saturation

OsX,0 :=
{
f = (f1, f2) ∈ OX,0 | α(f ) ∈ I�

}
.

More importantly both Lemmas remain valid. Note that in this context of two
irreducible components we have α(f ) ∈ I� if and only if f1(z) − f1(w) ∈ I11,
f1(z)− f2(w) ∈ I12, f2(z)− f1(w) ∈ I21 and f2(z)− f2(w) ∈ I22.

Proposition 8.5.16 (See [PT69, Theorem 1.2], [Tei82, Prop. 6.1.1]) The algebra
OsX,0 is the ring of germs of meromorphic functions on (X, 0) which are locally
Lipschitz with respect to the ambient metric.

Proof Recall that OX,0 is the ring of meromorphic functions on (X, 0) that are
locally bounded and a Lipschitz meromorphic function is locally bounded. Now
if h ∈ OsX,0 we need to prove that there exists a real positive constant C > 0
such that for every couple (x1, x2) ∈ X \ SingX × X \ SingX (in a small enough
representative) we have

|h(x1)− h(x2)| ≤ C||x1 − x2||.

Let n : X → X ⊂ Cn be the normalization map. In the irreducible case where
OX,0 = C{z1, . . . , zN }/〈f1, . . . , fs〉 and OX,0 = C{t1, . . . , tm}/J (t), the map n
induces a morphism of analytic algebras which may be described by

n∗ : OX,0 −→ OX,0
zi 
→ zi(t1, . . . , tm) = zi(t)

and referring to the maps α and � as above we have that

I� = Ker� = 〈z1(t)− z1(u), . . . , zN (t)− zN(u)〉.

By definition, h ∈ OsX,0 if α(h) = h(t) − h(u) ∈ I� and by Theorem 8.5.5 there
exists a constant C such that

|h(t)− h(u)| ≤ C sup |zi(t)− zi(u)| = C||z(t)− z(u)||,

with
(
z(t), z(u)

) ∈ X × X and so h is Lipschitz. Reading the proof in the opposite
sense gives that a meromorphic, locally Lipschitz function h is necessarily in OsX,0.

If (X, 0) has r irreducible components then X is a multi-germ and then we
have r maps nk : (Xk, xk) → (Xk, 0) ⊂ (X, 0) with coordinate functions
z1(tk), . . . , zN (tk). Then for h = (h1, . . . , hr ) ∈ OX,0 we have that α(h) =
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(
hi(ti )�⊗1− 1�⊗hj (uj )

)

i,j
∈⊕i,j=r

i,j=1 OXi,0 �⊗C OXj ,0, and

I� =
i,j=r⊕

i,j=1

Iij with Iij = 〈z1(t i )�⊗1− 1�⊗z1(uj ), . . . , zN(t i )�⊗1− 1�⊗zN(uj )〉OXi ,0 �⊗C OXj ,0

and α(h) ∈ I� if and only if hi(t i)�⊗1− 1�⊗hj (uj ) ∈ Iij for all (i, j).
So in the spirit of Example 8.2.7 the “coordinate” hi of h indicates you how

to evaluate h in points of the corresponding irreducible component (Xi, 0) of
(X, 0) and for i �= j the condition hi(ti )�⊗1 − 1�⊗hj (uj ) ∈ Iij tells you that
the Lipschitz condition must also be satisfied when you take points in different
irreducible components. �
Corollary 8.5.17 (See [PT69, Corollary 1.3]) Let (X, 0) ⊂ (CN, 0) be a reduced
germ of complex analytic singularity. The ring OsX,0 is an analytic algebra.

Proof We already proved in Lemma 8.5.15 that OsX,0 is a direct sum of analytic
algebras, but if there were more than one, the function (1, 0, . . . , 0) ∈ OsX,0 would
not be Lipschitz, contradicting Proposition 8.5.16. �

From Lemma 8.5.15 we have injective ring morphisms

OX,0 ↪→ OsX,0 ↪→ OX,0.

Since OX,0 is contained in the total ring of fractions Q(OX,0), the total ring of
fractions of the Lipschitz saturationOsX,0 coincides withQ(OX,0) and by transitivity

of integral dependence the normalizations also coincides i.e., OsX,0 = OX,0. In terms
of holomorphic maps we have:

X
ns−→ Xs

ζ−→ X,

where Xs is the germ of complex analytic singularity corresponding to the analytic
algebra OsX,0, the map ns : X→ Xs is the normalization map of Xs , ζ : (Xs, 0)→
(X, 0) is finite and induces an isomorphism outside the non-normal locus of X, and
n = ζ ◦ ns : X→ X is the normalization map of X.

Definition 8.5.18 The germ (Xs, 0) together with the finite map ζ : (Xs, 0) →
(X, 0) is called the Lipschitz saturation of (X, 0).

Lemma 8.5.19 Let (X, 0) ⊂ (Cn, 0) be a reduced germ of complex analytic
singularity, then

(
OsX,0

)s = OsX,0.

Proof Following the notation of Lemma 8.5.14 we have the maps:

OX,0 ↪→ OsX,o ↪→ OX,0
α−→ OX,0 �⊗C OX,0,
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and this induces a map

OX,0 �⊗OX,0 OX,0 ∼=
OX,0 �⊗C OX,0
〈α(OX,0)〉 −→ OX,0 �⊗C OX,0

〈α(OsX,0)〉
∼= OX,0 �⊗OsX,0 OX,0

that makes the following diagram commute

OX,0 ⊗C OX,0

s

X,0 X,0 X,0 X,0 s
X,0 X,0

If we denote I� = Ker� and I�s = Ker�s we have I� ⊂ I�s . Now by definition
we have OsX,0 = {h ∈ OX,0 | α(h) ∈ I�} so α(OsX,0) ⊂ I� which implies I� = I�s
and so

(
OsX,0

)s = {h ∈ OX,0 | α(h) ∈ I�s = I�} = OsX,0. �

8.5.3 The Case of Dimension 1

Let (X, 0) ⊂ (C2, 0) be a germ of reduced plane curve, and ζ : (Xs, 0)→ (X, 0) ⊂
(C2, 0) the finite map given by the Lipschitz saturation of (X, 0). What we want
to emphasize is that this map can always be realized as a linear projection on
suitable representatives. Indeed, any representative of (Xs, 0) ⊂ (Cm, 0) can be
re-embedded as the graph of ζ in Cm+2, namely by the mapXs → C2×Cm : p 
→
(ζ1(p), ζ2(p), p). The map ζ is now the projection of (Xs, 0) to (X, 0) by the first
two coordinates: (z1, . . . , zm+2) 
→ (z1, z2).

Proposition 8.5.20 (See [Tei82, Proposition 6.2.1]) For a germ of reduced plane
curve (X, 0) ⊂ (C2, 0) the Lipschitz saturation map ζ : (Xs, 0) → (X, 0) is a
generic projection.

Proof Suppose first that (X, 0) is irreducible, in this case we have the holomorphic
maps

(C, 0)
ηs−→ (Xs, 0) ⊂ (Cm+2, 0)

ζ−→ (X, 0) ⊂ (C2, 0)

t 
→ (z1(t), z2(t), z3(t), . . . , zm+2(t)) 
→ (z1(t), z2(t))

By Proposition 8.5.11 we have to prove that the ideals I�s = 〈z1−w1, . . . , zm+2−
wm+2〉 and I�s2 = 〈z1−w1, z2−w2〉 have the same integral closure in OXs×Xs,(0,0).
In this coordinate system we have the normalization map η∗s : OXs,0 ↪→ OX,0
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given by

C{z1, . . . , zm+2}
I

↪−→ C{t}

zi 
→ zi(t) i = 1, 2 ; zj+2 
→ zj+2(t) j = 1, . . .m,

which induces the morphism

θ : OXs×Xs,(0,0) = C{z1, . . . , zm+2, w1, . . . , wm+2}
I (z)+ I (w) ↪−→ C{t, u} = OX,0�⊗C OX,0

zi 
→ zi(t) i = 1, 2 ; zj+2 
→ zj+2(t) j = 1, . . .m

wi 
→ zi(u) i = 1, 2 ; wj+2 
→ zj+2(u) j = 1, . . .m.

But from the proof of Lemma 8.5.19 we have that the ideals I�s2 = 〈z1(t) −
z1(u), z2(t)− z2(u)〉 and
I�s = 〈z1(t)−z1(u), z2(t)−z2(u), z3(t)−z3(u), . . . , zm+2(t)−zm+2(u)〉 have the
same integral closure in C{t, u} and so by Remark 8.5.2(5) the ideals θ−1(I�s ) and
θ−1(I�s2

) have the same integral closure in OXs×Xs,(0,0), which is what we wanted.
In the reducible case the proof works exactly the same way, it is just a lot

messier to write down. The only thing you have to keep track off is the following.
Suppose (X, 0) has two irreducible components (X1, 0) ∪ (X2, 0) then (Xs, 0) also
has two irreducible components and OX,0 ∼= C{t1} ⊕ C{t2}. This implies that the
normalization map η∗s : OXs,0 ↪→ OX,0 is given by

C{z1, . . . , zm+2}
I

↪−→ C{t1} ⊕ C{t2}

zi 
→ (zi (t1), zi (t2)) i = 1, 2 ; zj+2 
→ (zj+2(t1), zj+2(t2)) j = 1, . . . m

In this case OX,0 �⊗C OX,0 ∼= C{t1, u1} ⊕C{t1, u2} ⊕C{t2, u1} ⊕C{t2, u2} and the
induced morphism θ looks like:

θ : OXs×Xs,(0,0) = C{z1, . . . , zm+2, w1, . . . , wm+2}
I (z)+ I (w) ↪−→ OX,0 �⊗C OX,0

zi 
→ (zi(t1), zi(t1), zi(t2), zi(t2)) i = 1, 2

zj+2 
→ (zj+2(t1), zj+2(t1), zj+2(t2), zj+2(t2)) j = 1, . . .m

wi 
→ (zi(u1), zi(u2), zi(u1), zi(u2)) i = 1, 2

wj+2 
→ zj+2(u1), zj+2(u2), zj+2(u1), zj+2(u2)) j = 1, . . .m,
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then you have the map α as in the proof of Proposition 8.5.16 and the rest follows
through. �
Remark 8.5.21

1. Since the Lipschitz saturation map ζ : (Xs, 0)→ (X, 0) is a generic projection,
the multiplicity of (Xs, 0) is equal to the multiplicity of (X, 0).

2. Except if the plane branch (X, 0) is non singular, the map (X, 0) → (X, 0) is
never obtained as a generic projection since the multiplicity changes. However,
among all germs (X′, 0) which dominate (X, 0) and are dominated by (X, 0),
and in addition are such that the map (X′, 0) → (X, 0) can be represented by
a generic linear projection, there is a unique one, up to isomorphism, which
dominates all the others: it is the saturation.

Corollary 8.5.22 Let (X, 0) ⊂ (C2, 0) be a reduced plane curve. The Lipschitz
saturation map ζ : (Xs, 0)→ (X, 0) is a biLipschitz homeomorphism.

Proof We already know that a generic projection induces a homeomorphism with
its image (Proposition 8.4.3), so by Proposition 8.5.20 the map ζ is a homeorphism
and since it is the restriction toXs of the linear projection (z1, . . . , zm+2) 
→ (z1, z2)

it is Lipschitz. The inverse of ζ can be described on each irreducible componentXk
by

(z1(tk), z2(tk)) 
→ (z1(tk), z2(tk), z3(tk), . . . , zm+2(tk)),

and since for all j ∈ {1, . . . ,m}, zj+2(t) ∈ OsX,0 Proposition 8.5.16 tells us that it
is also Lipschitz. �

Our main result now follows from the following theorem:

Theorem 8.5.23 (See [PT69, §4], [BGG80, Prop. VI.3.2]) Let OX,0 be the ana-
lytic algebra of a germ of reduced plane curve (X, 0) ⊂ (C2, 0). The Lipschitz
saturation OsX,0 determines and is determined by the characteristic exponents of
its branches (irreducible components) and the intersection multiplicities mij =
(Xi,Xj ) of each pair of branches. In particular the saturated curve (Xs, 0) is an
invariant (up to isomorphism) of the equisingularity class of (X, 0).

This implies that every member of the equisingularity class of a germ of reduced
plane curve (X, 0) ⊂ (C2, 0) can be obtained by a generic projection of the
Lipschitz saturation (Xs, 0) of any one of them. The proof of the Proposition
involves a lot of calculations and can be found in the references. For this reason
we would rather describe how to calculate the saturated curve (Xs, 0). Let us start
with the irreducible case:

Definition 8.5.24 Let h ∈ C{t} be a power series with coprime exponents. If

h =
∞∑

j=0

aj t
j ,
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we define the set of exponents of f as Ex(f ) = {j ∈ N | aj �= 0}. And for a
germ of analytically irreducible plane curve (X, 0) ⊂ (C2, 0) we define the set of
exponents of OX,0 as

E(OX,0) =
⋃

h∈m
Ex(h),

where m is the maximal ideal of OX,0. Note that the semigroup "(X) of the plane
branch (X, 0) is contained in E(OX,0). (See [Tei07, Section 8]).

If (X, 0) ⊂ (C2, 0) is irreducible then:

1. For every j ∈ E(OX,0) we have that tj ∈ OsX,0.
2. The analytic algebra OsX,0 is monomial, in particular:

OsX,0 = C{tj | j ∈ E(OsX,0)}.

For a numerical semigroup (i.e., a subsemigroup of (N,+) with finite comple-
ment) there is the concept of saturated semigroup (see [RG09, Chapter 3, Section
2]) which is defined as follows:

For A ⊂ N and a ∈ A \ {0} define

dA(a) = gcd{x ∈ A | x ≤ a}.

Then a non-empty subset A ⊂ N such that 0 ∈ A and gcd(A) = 1 is a saturated
numerical semigroup if and only if a + kdA(a) ∈ A for all a ∈ A \ {0} and k ∈ N.

The reader can verify that the condition indeed implies that A is a semigroup
and that the intersection of two saturated semigroups is again saturated, so that any
A ⊂ N such that 0 ∈ A and gcd(A) = 1 is contained in a smallest saturated
semigroup.

Example 8.5.25 Let (X, 0) ⊂ (C2, 0) be the cusp singularity defined by y2 − x3 =
0. Its normalization map is t 
→ (t2, t3) and so its semigroup is generated by 〈2, 3〉.
Since "(X) = N \ {1} then E(OX,0) = "(X) is a saturated numerical semigroup.

This definition also tells us how to obtain the smallest saturated semigroup
containing anyA ⊂ N with 0 ∈ A and gcd(A) = 1, for example the set of exponents
E(OX,0).

Let e0 = β0 = min {x ∈ A} and define

Ã0 := A ∪ β0 ·N.

In the case of E(OX,0) we have that e0 = β0 is the multiplicity of (X, 0).
Let β1 := min{x ∈ A | e0 does not dividex} and e1 = gcd{β0, β1}; note that

e1 = dA(β1). Again define

Ã1 := Ã0 ∪ {β1 + ke1 | k ∈ N}.
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Continuing this way we obtain two sequences of natural numbers e0 > e1 > · · · >
eg = 1 = gcd(A) and β0 < β1 < · · · < βg and an associated sequence of subsets
of Ã0 ⊂ Ã1 ⊂ · · · ⊂ Ãg ⊂ N where βi+1 := min{x ∈ A | ei does not divide x},
ei := gcd{β0, . . . , βi} = dA(βi) and

Ãi+1 := Ãi ∪ {βi+1 + kei+1 | k ∈ N}.

Note that Ã := Ãg is a saturated semigroup which is completely determined by
its characteristic sequence {β0, . . . , βg}. Moreover if t 
→ (

tn,
∑
i≥n ait i

)
is a

Puiseux parametrization of the plane branch (X, 0) ⊂ (C2, 0), the characteristic
sequence of E(OX,0) is the set of characteristic exponents of (X, 0) and so it
determines its equisingularity class.

Proposition 8.5.26 ((Pham-Teissier), See [PT69, §4], [BGG80, Thm VI.1.6])
For a germ of irreducible plane curve singularity (X, 0) ⊂ (C2, 0) the Lipschitz
saturation OsX,0 is given by

OsX,0 = C{tp |p ∈ Ẽ(OX,0)}.

In particular E
(
OsX,0

) = Ẽ(OX,0).
Let us give a sketch of the proof: we start from a structured parametrization
(tn, y(t)) of our branchX as in Sect. 8.1.2 and we have to study integral dependence
over the ideal I� = (t − u)N := 〈tn − un, y(t) − y(u)〉 ⊂ C{t, u}. Here
N is the primary ideal 〈 tn−un

t−u ,
y(t)−y(u)
t−u 〉C{t, u}. According to what we saw after

Theorem 8.5.5, to verify that g(t) − g(u) is integral over I , which is the same as
g(t)−g(u)
t−u being integral over N, it suffices to verify that its order along any of the

branches of a plane curve CT ⊂ C2 defined by T1
tn−un
t−u − T2

y(t)−y(u)
t−u = 0 is larger

than that of the ideal I for T = [T1 : T2] in the open set U ⊂ P1. Now we claim that
the open set U is T1 �= 0. Indeed, since the order of y(t) is > n all the plane curves
CT with T1 �= 0 have a tangent cone consisting of n − 1 lines in general position.
It is not difficult then to show (see [Tei73, Chap. II, Lemma 2.6, Proposition 2.7])
that they are equisingular with their tangent cone, and therefore are all equisingular,
with simultaneous normalization. So the curve tn−un

t−u = 0 is in U , and its branches
are the lines u = ωt, ω ∈ μn \ {1}, which means that a function g(t) ∈ C{t} is in
the saturation if and only if we have

ordt (g(t) − g(ωt)) ≥ ordt (y(t)− y(ωt)) for all ω ∈ μn \ {1}.

The result now follows easily from what we saw at the end of Sect. 8.1.2 about the
orders of the y(t)− y(ωt).

It may be interesting to remark here that this construction gives an intrinsic
(coordinate free) definition of the Puiseux characteristic as the set of valuations
(orders of vanishing) of the ideal N along the irreducible components of the
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exceptional divisor of the normalized blowup of N in X × X. For more details,
see [PT69, §4] and [BGG80, Thm VI.1.6].

Remark 8.5.27 It is shown in [Tei80, 5.2] that the multiplicity, in the sense we saw
after Theorem 8.5.7, of the primary ideal N is equal to twice the invariant δ which
appears in Propositions 8.3.9 and 8.4.6. It is also shown there that δ is the maximum
number of different singular points (then necessarily ordinary double points) which
can appear when deforming the parametrization of the plane branch. Both results
extends to reducible curves. One can define an analogous ideal N for a non-plane
branch but then, in view of Theorem 8.5.8 and Proposition 8.5.11, its multiplicity
is twice the δ-invariant of a generic plane projection and no longer the classical

dimC
OX,0
OX,0 in this case.

Example 8.5.28 Let (X, 0) ⊂ (C2, 0) be the plane branch with normalization map:

η : (C, 0) −→ (X, 0)

t 
→ (t4, t6 + t7)

Then the exponent set E(OX,0) contains the semigroup "(X) = 〈4, 6, 13〉N but by
definition it also contains 7. Now β1 = 6 and e1 = 2 so

Ẽ1 = E(OX,0) ∪ {6+ 2k | k ∈ N}.

In the next step β2 = 7 and e2 = 1 so g = 2 and we get the saturated semigroup

Ẽ2 = Ẽ1 ∪ {7+ k | k ∈ N}.

Note that Ẽ(OX,0) = 〈4, 6, 7, 9〉N and so we have the normalization map for the
Lipschitz saturation (Xs, 0) ⊂ (C4, 0) given by:

ηs : (C, 0) −→ (Xs, 0)

t 
→ (t4, t6, t7, t9)

By making the change of coordinates in (C4, 0), (x, y, z,w) 
→ (x, y + z, z,w) we
can view the Lipschitz saturation map

ζ : (Xs, 0)→ (X, 0)

as the projection on the first two coordinates as before.

Remark 8.5.29 (See [Tei82, Chap. I, Theorem 6.3.1], [BGG80, Appendice]) A
more concrete way of seeing that all plane branches with the same Puiseux
characteristic are generic plane projections of a single space curve is to go back to
the notations of Sect. 8.1.2 to write down explicitly the saturation of a plane branch
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(X, 0) with given characteristic (n, β1, . . . , βg): it is isomorphic to the monomial
curve with analytic algebra

C{tn, t2n, . . . , tβ1 , tβ1+e1, . . . , tβ2 , tβ2+e2, . . . , tβ3 , . . . , tβg , tβg+1, . . .},

where n = e0 = β0 as above. The semigroup generated by these exponents, which

are those of Ẽ(OX,0), is finitely generated by Dickson’s Lemma and because the
Puiseux exponents are coprime its complement in N is finite. For more details on
the saturation of semigroups we refer to [RG09, Chapter 3, Section 2].

As we saw in Sect. 8.1.2, up to isomorphism, the image of this monomial
curve by a generic linear projection can be parametrized by x = tn, y =∑
p∈ ˜E(OX,0)\{n} apt

p . Now we see that the generic projections are precisely those

which are such that the coefficient of tn is �= 0 and for p = β1, . . . , βg we have
ap �= 0, which means that the projection has characteristic (n, β1, . . . , βg).

Remark that, except if n = 2, the semigroup of integers generated by the
exponents of the monomials belonging to the saturation OsX,0 is different from the
semigroup " we saw in Sect. 8.1.2. This has the interesting consequence that the
specialization of a plane branch to the monomial curve with the same semigroup,
which is Whitney equisingular (see [GT18, Remark 4.1]; the argument there can be
generalized to any plane branch), is not in general biLipschitz trivial.

When (X, 0) is not irreducible it is a bit more complicated, nevertheless the
Lipschitz saturation OsX,0 can be described in the following way:

Theorem 8.5.30 (See [PT69, §4] and [BGG80, Thm VI.2.2]) Let OX,0 be the
analytic algebra of a reduced plane curve (X, 0) = (X1, 0) ∪ . . . ∪ (Xr, 0) with
normalization OX,0 = C{t1} ⊕ · · · ⊕ C{tr}. We may assume that the image of x in
OX,0 is

(
t
n1
1 , . . . , t

nr
r

)
where ni is the multiplicity of the branch (Xi, 0). Let μ be the

least common multiple of {n1, . . . , nr }. Then the element h = (h1, . . . , hr ) ∈ OX,0
is in the Lipschitz saturation OsX,0 if and only if the following two conditions are
satisfied:

1. For every j ∈ {1, . . . , r} we have that hj ∈ OsXj ,0.
2. For every μ-th root of unity ε and every couple i �= j we have the inequality

mi,j,ε(h) ≥ mi,j,ε := inf
g∈OX,0

{
ντ
(
gi(τ

μ/ni )− gj ([ετ ]μ/nj )
)}
,

where mi,j,ε(h) = ντ
(
hi(τ

μ/ni )− hj ([ετ ]μ/nj )
)

and ντ is the valuation of
C{τ } given by the order of the series. The number mi,j,ε depends only on the
characteristic exponents and the intersection multiplicity of the branches Xi and
Xj .
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Example 8.5.31 Let (X, 0) = (X1, 0)∪ (X2, 0) be the plane curve with normaliza-
tion map:

η : (C, 0)  (C, 0) −→ (X, 0)

t1 
→ (t41 , t
6
1 + t71 )

t2 
→ (t32 , t
5
2 )

In the previous example we already calculated the Lipschitz saturation OsX1,0 =
C{t41 , t61 , t71 , t91 } and following the algorithm we get the Lipschitz saturation OsX2,0 =
C{t32 , t52 , t72 }. Since the branches are tangent, their intersection multiplicity is greater
than the product of their multiplicities and is equal to the order of the series in t1
obtained by substituting the parametrization of (X1, 0) in the equation y3 − x5 = 0
defining (X2, 0). In this case it is equal to 18.

By definition μ = lcm{3, 4} = 12 and it is not hard to prove that for any 12-th
root of unity ε

m1,2,ε = ντ
(
y1(τ

3)− y2([ετ ]4)
)

= ντ
(
τ 18 + τ 21 − ε8τ 20

)
= 18.

So from the Theorem 8.5.30 we have that h = (h1(t1), h2(t2)) is in OsX,0 if and only
if h1(t1) ∈ OsX1,0, h2(t2) ∈ OsX2,0 and m1,2,ε(h) ≥ 18. For example if h = (t41 , t52 )
then

m1,2,ε(h) = ντ
(
(τ 3)4 − ([ετ ]4)5

)

= ντ (τ 12 − ε8τ 20) = 12⇒ h /∈ OsX,0.

On the other hand if h = (t61 + t71 , t52 ) then

m1,2,ε(h) = ντ
(
(τ 3)6 + (τ 3)7 − ([ετ ]4)5

)

= ντ (τ 18 + τ 21 − ε8τ 20) = 18⇒ h ∈ OsX,0.

We will end this section with the following consequence of the Theorem:

Corollary 8.5.32 (See [BGG80, VI.3.7]) Let (X, 0) = (X1, 0) ∪ . . . ∪ (Xr, 0) be
a reduced plane curve with normalization OX,0 = C{t1} ⊕ · · · ⊕ C{tr }. If %j :
OX,0 → C{tj } denotes the canonical projection to the j -th factor then

%j(OsX,0) = OsXj ,0.
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8.5.4 Application to Local Polar Curves

Let (X, 0) ⊂ (CN, 0) be a reduced equidimensional germ of complex analytic
space. Consider linear projections π : CN → C2 and the critical locus of π
restricted to the smooth part X0 of X. It is proved in [LT81], where the theory
of (absolute)3 local polar varieties was initiated, that for a Zariski dense open set U
in the space G(N,N − 2) of linear projection, this critical locus is either empty or
a reduced curve. The closure of this curve in X is an (absolute) polar curve of X
and is denoted by Pd−1(X, π) where d is the dimension of X. It is also denoted
by Pd−1(X,D), where D = kerπ . These curves play an important role in the
local study of singularities, and especially in the study of the Lipschitz geometry
of surfaces. See [LT81], [Tei82, Chap. IV] and [NP16] for more details.

Of course, if it is not empty, Pd−1(X, π) varies with the projection π ∈ U and a
priori it could be that π remains constantly a non generic projection forPd−1(X, π).
That seems unlikely but still we need a proof for the following:

Theorem 8.5.33 (See [Tei82, Chap. V, Lemme 1.2.2]) Given (X, 0) ⊂ (CN, 0) as
above and assuming that Pd−1(X, π) is a reduced curve for π ∈ U ⊂ G(N,N−2),
there exists a non empty Zariski open set V ⊂ U such that for π ∈ V , the projection
π : CN → C2 is a generic projection for the curve Pd−1(X, π) ⊂ CN .

The proof, which we only sketch, gives an example of the notion of Lipschitz
equisaturation , which is found in [PT69, §6]. Fixing coordinates z1, . . . , zN on
CN and x, y on C2, we can parametrize by C2(N−2) a dense open set of the space
of linear projections CN → C2 as follows:

x = z1 +
N∑

3

aizi , y = z2 +
N∑

3

bizi , (a, b) ∈ C2(N−2).

To simplify notations while keeping the ideas, we assume that X is a hypersurface
defined by f (z1, . . . , zN ) = 0. One can also consult [BH80, Lemme 3.7] which
gives the proof for isolated singularities of surfaces in C3.

For any series h(z1, . . . , zN ) ∈ C{z1, . . . , zN } let us denote by ha,b the series

ha,b(z, a, b) = h(x −
N∑

3

aizi , y −
N∑

3

bizi, z3, . . . , zN ).

3This precision refers to a distinction between absolute and relative polar varieties, which is not
relevant here but should be mentioned to avoid confusions. See [Tei82, Chap. IV, p. 417].
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The equation fa,b = 0 defines a germ of hypersurfaceZ in CN ×C2(N−2) and if we
consider the family of projections πa,b : CN × C2(N−2) → C2 × C2(N−2) defined
by

x = z1 +
N∑

3

aizi , y = z2 +
N∑

3

bizi, a 
→ a, b 
→ b,

and the closure of its critical locus on the non singular part of Z, we obtain a
subspace which, over a Zariski open subset of C2(N−2), contains the family of polar
curves associated to the family of projections πa,b. Over a possibly smaller Zariski
open subset V of C2(N−2) this family of curves is equisingular in the sense that it
has a simultaneous parametrization. The number r of irreducible components of Z
at points of {0} × V ⊂ CN × V is constant and after choosing as origin of C2(N−2)

a point of V we can parametrize each irreducible component in a neighborhood of
{0} × {0} by:

z1 = tn�� , z2 = υ(t�, a, b), zi = ζi(t�, a, b),

with υ(t�, a, b), ζi(t�, a, b) ∈ C{t�, a, b} for i = 3, . . . , N . The normalization of
OZ,0 being OZ,0 =

∏r
i=1 C{t�, a, b}.

By definition of Z we have for each � = 1, . . . , r the identity in C{t�, a, b}

f (tn�−
N∑

3

aiζi (t�, a, b), υ(t�, a, b)−
N∑

3

aiζi(t�, a, b), ζ3(t�, a, b), . . . , ζN (t�, a, b)) ≡ 0.

Differentiating fa,b = 0 with respect to zi gives the following equations on Z:

−ai ∂fa,b
∂z1
− bi ∂fa,b

∂z2
+ ∂fa,b
∂zi
≡ 0,

for i = 3, . . . , N . which by definition are satisfied on the polar curve.
Differentiating the first identity with respect to bk and taking into account the

second set of identities, we obtain that the equation

(
ζk(t�, a, b)− ∂υ(t�, a, b)

∂bk

)
∂fa,b

∂z2
= 0

must be satisfied in each C{t�, a, b}. By general transversality results found in

[LT81, Cor. 4.1.6] and [Tei82, Chap. IV, 5.1],
∂fa,b
∂z2

does not vanish because it
would entail a lack of C3-transversality (see Definition 8.4.1) of the polar curve
with the kernel of the projection which defines it. So we must have on Z the identity
zk = ∂υ

∂bk
.
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By [Tei82, Proposition 6.4.2], after perhaps shrinking V to a smaller Zariski
open dense subset V1 of C2(N−2) we have that over V1 the family Z1 of plane
curves given parametrically by the parametrizations x = tn� , y = υ(t�, a, b),
which consists of the plane projections of our polar curves, is equisaturated. This
implies that the derivations ∂

∂bk
of C{a, b} extend to derivations Dk of OZ1,(0,v) =

OZ,(0,v) = ∏r
i=1 C{t�, a, b} into itself which preserve the relative saturated ring

(see [PT69]). Since of course the functions υ(t�, a, b) belong to the relative
saturation of OZ1,(0,v), so do the ζk(t�, a, b) which are their images by Dk . But ζk
belonging to this relative saturation means precisely that for v ∈ V1, the saturations
of the rings OZ1(v) and OZ(v) of the fibers over v of Z and Z1 are equal for v ∈ V1,
which is the condition for C5-genericity according to Proposition 8.5.11.

The fact that the plane projection of a generic polar curve by the map which
defines it is generic plays an important role in the following three domains: the
comparison of Zariski equisingularity and Whitney equisingularity for surfaces
(see [BH80, NP16]), the comparison of Zariski equisingularity and Lipschitz
equisingularity for surfaces (see [NP16, PP20]), the numerical characterization of
Whitney equisingularity (see [Tei82, Chap. V]) and the valuative study of the metric
geometry of surface singularities in view of their biLipschitz classification (see
[BFP19]).

Acknowledgments Arturo Giles Flores was supported by CONACyT Grant 221635.
Otoniel Nogueira da Silva would like to thank CONACyT (grant 282937) for the financial

support by Fordecyt 265667, and also UNAM/DGAPA for support by PAPIIT IN 113817.
The authors are grateful to the referee for his or her very careful reading and numerous useful

observations.

References

[Ada12] J. Adamus, in Topics in Complex Analytic Geometry Part II. Lecture Notes. https://
www.uwo.ca/math/faculty/adamus/adamus_publications/AGII.pdf 252

[BH80] J. Briançon, J.P.G. Henry, Equisingularité générique des familles de surfaces à singu-
larités isolées. Bull. S.M.F. 108(2), 259–281 (1980) 267, 269

[BGG80] J. Briançon, A. Galligo, M. Granger, Déformations équisingulières des germes de
courbes gauches réduites. Mém. Soc. Math. France, 2ème serie (1) 69 (1980) 242,
243, 244, 261, 263, 264, 265, 266

[BFP19] A. Belotto da Silva, L. Fantini, A. Pichon, Inner geometry of complex surfaces: a
valuative approach (2019). arXiv:1905.01677v1 [math.AG] 269

[BK86] E. Brieskorn, H. Knörrer, Plane Algebraic Curves (Birkhäuser/Springer Basel AG,
Basel, 1986) 229

[BG80] R. Buchweitz, G.M. Greuel, The Milnor number and deformations of complex curve
singularities Invent. Math. 58, 241–281 (1980) 234

[Che78] A. Chenciner, Courbes Algébriques Planes (Publications Mathématiques de
l’Université Paris VII, 1978) 228, 229

[Chi89] E.M. Chirka, Complex Analytic Sets. (Kluwer, Dordecht, 1989) 239, 240, 241
[DGPS19] W. Decker, G.M. Greuel, G. Pfister, H. Schönemann, Singular 4-1-2—A computer

algebra system for polynomial computations (2019). http://www.singular.uni-kl.de 238

https://www.uwo.ca/math/faculty/adamus/adamus_publications/AGII.pdf
https://www.uwo.ca/math/faculty/adamus/adamus_publications/AGII.pdf
http://www.singular.uni-kl.de


270 A. G. Flores et al.

[deJP00] T. de Jong, G. Pfister, Local Analytic Geometry: Basic Theory and Applications.
Advanced Lectures in Mathematics (Springer, Berlin, 2000) 223, 224, 225, 226, 227,
228, 229, 239, 251, 256

[Eis95] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Graduate
Texts in Mathematics, n◦ 150 (Springer, Berlin, 1995) 230

[GT18] A.G. Flores, B. Teissier, Local polar varieties in the geometric study of singularities.
Ann. Fac. Sci. Toulouse Math. (6) 4, 679–775 (2018) 239, 251, 265

[GF02] H. Grauert, K. Fritzsche, From Holomorphic Functions to Complex Manifolds. Gradu-
ate Texts in Mathematics (Springer, Berlin, 2002) 225

[GLS07] G.M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations.
Springer Monographs in Mathematics (Springer, Berlin, 2007) 227, 235, 236, 237,
238, 244

[GP07] G.M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra (Springer,
Berlin, 2007) 252, 255

[HMP18] M.E. Hernandes, A.J. Miranda, G. Peñafort-Sanchis, A presentation matrix algorithm
for f∗OX,x . Topol. Appl. 234, 440–451 (2018) 238

[HS06] C. Huneke, I. Swanson, Integral Closure of Ideals, Rings and Modules. London
Mathematical Society Lecture Note Series, n◦ 336 (Cambridge University Press,
Cambridge, 2006) 246, 247, 248, 251

[KK83] L. Kaup, B. Kaup, Holomorphic Functions of Several Variables. An Introduction to the
Fundamental Theory De Gruyter Studies in Mathematics (1983) 227

[Le15] C.-T. Lê, Equinormalizability and topological triviality of deformations of isolated
curve singularities over smooth base spaces. Kodai Math. J. (38) 3, 642–657 (2015)
238

[LR76] D.T. Lê, C.P. Ramanujam, The invariance of Milnor’s number implies the invariance of
topological type. Am. J. Math. (91) 1, 67–78 (1976) 244

[LT81] D.T. Lê, B. Teissier, Variétés polaires locales et classes de Chern des variétés
singulières. Ann. Math. (2) 114, 457–491 (1981) 267, 268

[Lej73] M. Lejeune-Jalabert, Sur l’équivalence des singularités des courbes algébriques planes.
Coefficients de Newton, ıIntroduction à la théorie des singularités, Thesis, Paris 7,
1973. Published in Travaux en Cours, vol. 36 (Hermann, 1988), pp. 49–124 221

[LT08] M. Lejeune-Jalabert, B. Teissier, Clôture intégrale des idéaux et équisingularité. Ann.
Fac. Sci. Toulouse Math. (6) 4, 781–859 (2008) 246, 247, 248

[Lip82] J. Lipman, Equimultiplicity, reduction and blowing up, in Commutative Algebra:
Analytical Methods, Conf. Fairfax/Va. 1979. Lecture Notes in Pure and Applied
Mathematics, vol. 68 (1982), pp. 111–147 246, 251

[Loj91] S. Łojasiewicz, Introduction to Complex Analytic Geometry (Birkhäuser, Basel, 1991)
227, 230

[Mat89] H. Matsumura, Commutative Ring Theory. Cambridge Studies in Advanced Mathemat-
ics (Cambridge University Press, Cambridge, 1989) 250

[Mir19] A.J. Miranda. https://sites.google.com/site/aldicio/publicacoes 238
[MP89] D. Mond, R. Pellikaan, Fitting Ideals and Multiple Points of Analytic Mappings.

Lecture Notes in Mathematics, vol. 1414 (Springer, Berlin, 1989), pp. 107–161 232,
235, 236, 238, 239, 244, 245

[NP16] W.D. Neumann, A. Pichon, Lipschitz geometry of complex surfaces, analytic invariants
and equisingularity (2016). arXiv:1211.4897v3 [math.AG] 267, 269

[PT69] F. Pham, B. Teissier, Lipschitz fractions of a complex analytic algebra and Zariski
saturation, in Introduction to Lipschitz Geometry of Singularities: Lecture Notes of
the International School on Singularity Theory and Lipschitz Geometry, Cuernavaca,
June 2018, ed. by W. Neumann, A. Pichon. Lecture Notes in Mathematics, vol. 2280
(Springer, Cham, 2020), pp. 309–337. https://doi.org/10.1007/978-3-030-61807-0_10
246, 257, 258, 261, 263, 264, 265, 267, 269
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Chapter 9
Ultrametrics and Surface Singularities

Patrick Popescu-Pampu

Abstract The present lecture notes give an introduction to works of García
Barroso, González Pérez, Ruggiero and the author. The starting point of those
works is a theorem of Płoski, stating that one defines an ultrametric on the set of
branches drawn on a smooth surface singularity by associating to any pair of distinct
branches the quotient of the product of their multiplicities by their intersection
number. We show how to construct ultrametrics on certain sets of branches drawn
on any normal surface singularity from their mutual intersection numbers and how
to interpret the associated rooted trees in terms of the dual graphs of adapted
embedded resolutions. The text begins by recalling basic properties of intersection
numbers and multiplicities on smooth surface singularities and the relation between
ultrametrics on finite sets and rooted trees. On arbitrary normal surface singularities
one has to use Mumford’s definition of intersection numbers of curve singularities
drawn on them, which is also recalled.

9.1 Introduction

This paper is an expansion of my notes prepared for the course with the same title
given at the International school on singularities and Lipschitz geometry, which
took place in Cuernavaca (Mexico) from June 11th to 22nd 2018.

If S denotes a normal surface singularity, that is, a germ of normal complex
analytic surface, a branch on it is an irreducible germ of analytic curve contained in
S. In his 1985 paper [Pło85], Arkadiusz Płoski proved that if one associates to every

pair of distinct branches on the singularity S = (C2, 0) the quotient
A · B

m(A) ·m(B) of

their intersection number by the product of their multiplicities, then for every triple
of pairwise distinct branches, two of those quotients are equal and the third one is
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not smaller than them. An equivalent formulation is that the inverses
m(A) ·m(B)

A · B
of the previous quotients define an ultrametric on the set of branches on (C2, 0).

Using the facts that the multiplicity of a branch is equal to its intersection number
with a smooth branch L transversal to it, and that a given function is an ultrametric
on a set if and only if it is so in restriction to all its finite subsets, one deduces that
Płoski’s theorem is a consequence of:

Theorem 9.1.1 Let L be a smooth branch on the smooth surface singularity S and
let F be a finite set of branches on S, transversal to L. Then the function uL : F ×
F→ [0,∞) defined by uL(A,B) := (L ·A) · (L · B)

A · B if A �= B and uL(A,A) :=
0 is an ultrametric on F.

This may be seen as a property of the pair (S, L) and one may ask whether it
extends to other pairs consisting of a normal surface singularity and a branch on it.
It turns out that this property characterizes the so-called arborescent singularities,
that is, the normal surface singularities such that the dual graph of every good
resolution is a tree. Namely, one has the following theorem, which combines
[GBGPPP18, Thm. 85] and [GBPPPR19, Thm. 1.46]:

Theorem 9.1.2 Let L be a branch on the normal surface singularity S. Then the
function uL defined as before is an ultrametric on any finite set F of branches on S
distinct from L if and only if S is an arborescent singularity.

It is possible to think topologically about ultrametrics on finite sets in terms of
certain types of decorated rooted trees. In particular, any such ultrametric determines
a rooted tree. One may try to describe this tree directly from the pair (S,F ∪ {L}),
when S is arborescent and the ultrametric is the function uL associated to a branch
L on it. In order to formulate such a description, we need the notion of convex hull
of a finite set of vertices of a tree: it is the union of the paths joining those vertices
pairwise.

The following result was obtained in [GBGPPP18, Thm. 87]:

Theorem 9.1.3 Let L be a branch on the arborescent singularity S and let F be
a finite set of branches on S distinct from L. Then the rooted tree determined by
the ultrametric uL on F is isomorphic to the convex hull of the strict transform of
F∪ {L} in the dual graph of its preimage by an embedded resolution of it, rooted at
the vertex representing the strict transform of L.

Even when the singularity S is not arborescent, the function uL becomes an
ultrametric in restriction to suitable sets F of branches on S. Those sets are defined
only in terms of convex hulls taken in the so-called brick-vertex tree of the
dual graph of an embedded resolution of F ∪ {L}, and do not depend on any
numerical parameter of the exceptional divisor of the resolution, be it a genus or
a self-intersection number. The brick-vertex tree of a connected graph is obtained
canonically by replacing each brick—a maximal inseparable subgraph which is
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not an edge—by a star, whose central vertex is called a brick-vertex. One has the
following generalization of Theorem C (see [GBPPPR19, Thm. 1.42]):

Theorem 9.1.4 Let L be a branch on the normal surface singularity S and let F be
a finite set of branches on S distinct from L. Consider an embedded resolution of
F ∪ {L}. Assume that the convex hull of its strict transform in the brick-vertex tree
of the dual graph of its preimage does not contain brick-vertices of valency at least
4 in the convex hull. Then the function uL is an ultrametric in restriction to F and
the associated rooted tree is isomorphic to the previous convex hull, rooted at the
vertex representing the strict transform of L.

If S is not arborescent, there may exist other sets of branches on which uL
restricts to an ultrametric. Unlike the sets described in the previous theorem, in
general they do not depend only on the topology of the dual graph of their preimage
on some embedded resolution, but also on the self-intersection numbers of the
components of the exceptional divisor (see [GBPPPR19, Ex. 1.44]).

The aim of the present notes is to introduce the reader to the previous results.
Note that in the article [GBPPPR19, Part 2], these results were extended to the
space of real-valued semivaluations of the local ring of S.

Let us describe briefly the structure of the paper. In Sect. 9.2 are recalled basic
facts about multiplicities and intersection numbers of plane curve singularities.
In Sect. 9.3 are stated two equivalent formulations of Płoski’s theorem. In Sect. 9.4
is explained the relation between ultrametrics and rooted trees mentioned above,
an intermediate concept being that of hierarchy on a finite set. Using this relation,
Sect. 9.5 presents a proof of Theorem 9.1.1. This proof uses the so-called Eggers-
Wall tree of a plane curve singularity relative to a smooth reference branch
L, constructed using associated Newton–Puiseux series. Section 9.6 explains the
notions used in the formulation of Theorem 9.1.2, that is, those of good resolution,
embedded resolution, associated dual graph and arborescent singularity. In
Sect. 9.7 are described the related notions of cut-vertex and brick-vertex tree
of a finite connected graph. Section 9.8 explains and illustrates the statement of
Theorem 9.1.4. In Sect. 9.9 is explained Mumford’s intersection theory of divisors
on normal surface singularities, after a proof of a fundamental property of such
singularities, stating that the intersection form of any of their resolutions is negative
definite. In Sect. 9.10 the ultrametric inequality concerning the restriction of uL
to a triple of branches is reexpressed in terms of the notion of angular distance
on the dual graph of an adapted resolution. A crucial property of this distance
is stated, which relates it to the cut-vertices of the dual graph. In Sect. 9.11 is
sketched the proof of a theorem of pure graph theory, relating distances satisfying
the previous crucial property and the brick-vertex tree of the graph. This theorem
implies Theorem 9.1.4.
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9.2 Multiplicity and Intersection Numbers for Plane Curve
Singularities

In this section we recall the notions of multiplicity of a plane curve singularity and
intersection number of two such singularities. One may find more details in [dJP00,
Sect. 5.1] or [Fis01, Chap. 8].

Let (S, s) be a smooth surface singularity, that is, a germ of smooth complex
analytic surface. Denote by OS,s its local C-algebra and by mS,s its maximal
ideal, containing the germs at s of holomorphic functions vanishing at s.

A local coordinate system on S at s is a pair (x, y) ∈ mS,s×mS,s establishing an
isomorphism between a neighborhood of s in S and a neighborhood of the origin in
C

2. Algebraically speaking, this is equivalent to the fact that the pair (x, y) generates
the maximal ideal mS,s , or that it realizes an isomorphism OS,s ) C{x, y}. This
isomorphism allows to see each germ f ∈ OS,s as a convergent power series in the
variables x and y.

A curve singularity on (S, s) is a germ (C, s) ↪→ (S, s) of not necessarily
reduced curve on S, passing through s. As the germ (S, s) is isomorphic to the
germ of the affine plane C

2 at any of its points, one says also that (C, s) is a plane
curve singularity A defining function of (C, s) is a function f ∈ mS,s such that
OC,s = OS,s/(f ), where (f ) denotes the principal ideal of OS,s generated by f . We

write then C = Z(f ) .
The curve singularity (C, s) may also be seen as an effective principal divisor

on (S, s). This allows to write C = ∑i∈I piCi , where pi ∈ N
∗ for all i ∈ I and

the curve singularities Ci are pairwise distinct and irreducible. We say in this case
that the Ci ’s are the branches of C. A branch on (S, s) is an irreducible curve
singularity on (S, s).

Next definition introduces the simplest invariant of a plane curve singularity:

Definition 9.2.1 Assume that f ∈ OS,s . Its multiplicity is the vanishing order of
f at s:

ms(f ) := sup{n ∈ N, f ∈ mnS,s} ∈ N ∪ {∞}.

If (C, s) is the curve singularity defined by f , we say also that ms(C) := ms(f )
is its multiplicity at s.

It is a simple exercise to check that the multiplicity of a curve singularity is
independent of the function defining it. If one chooses local coordinates (x, y)
on (S, s), then ms(f ) is the smallest degree of the monomials appearing in the
expression of f as a convergent power series in the variables x and y. One has
ms(f ) = ∞ if and only if f = 0 and ms(f ) = 1 if and only if f defines a smooth
branch on (S, s).

The following definition describes a measure of the way in which two curve
singularities intersect:
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Definition 9.2.2 Let C,D ↪→ (S, s) be two plane curve singularities defined by
f, g ∈ mS,s . Then their intersection number is defined by:

C ·D := dimC

OS,s
(f, g)

∈ N ∪ {∞},

where (f, g) denotes the ideal of OS,s generated by f and g.

Note that C · D < +∞ if and only if C and D do not share common
branches, which is also equivalent to the existence of n ∈ N

∗ such that one has the
following inclusion of ideals: (f, g) ⊇ mnS,s . Nevertheless, unlike the multiplicity,
the intersection number C ·D is not always equal to the smallest exponent n having
this property. For instance, if one takes f := x3 and g := y2, then C · D = 6 but
(f, g) ⊇ (x, y)5. We leave the verification of the previous facts as an exercise.

The following proposition, which may be proved using Proposition 9.2.5 below,
relates multiplicities and intersection numbers:

Proposition 9.2.3 If (C, s) ↪→ (S, s) is a plane curve singularity, then C · L ≥
ms(C) for any smooth branch L through s, with equality if and only if L is
transversal to C. More generally, if D is a second curve singularity on (S, s), then
C ·D ≥ ms(C) ·ms(D), with equality if and only if C and D are transversal.

Let us explain the notion of transversality used in the previous proposition, as
it is more general than the standard notion of transversality, which applies only
to smooth submanifolds of a given manifold. If C is a branch on (S, s) and one
chooses a local coordinate system (x, y) on (S, s), as well as a defining function
f of C, it may be shown that the lowest degree part of f is a power of a complex
linear form in x and y. This linear form defines a line in the tangent plane TsS of
S at s, which is by definition the tangent line of C at s. One may show that it is
independent of the choices of local coordinates and defining function of C. If C is
now an arbitrary curve singularity, then its tangent cone is the union of the tangent
lines of its branches. Given two plane curve singularities on the same smooth surface
singularity S, one says that they are transversal if each line of the tangent cone of
one of them is transversal (in the classical sense) to each line of the tangent cone of
the other one.

Let us pass now to the question of computation of intersection numbers. A basic
method consists in breaking the symmetry between the two curve singularities, by
working with a defining function of one of them and by parametrizing the other
one. One has to be cautious and choose a normal parametrization, in the following
sense:

Definition 9.2.4 A normal parametrization of the branch (C, s) is a germ of
holomorphic morphism ν : (C, 0) → (C, s) which is a normalization morphism,
that is, it has topological degree one.

For instance, if the branch (C, 0) on (C2, 0) is defined by the function y2 − x3,
then t → (t2, t3) is a normal parametrization of C, but u → (u4, u6) is not. A
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normal parametrization of a branch (C, s) may be also characterized by asking it
to establish a homeomorphism between suitable representatives of the germs (C, 0)
and (C, s).

Normalization morphisms may be defined more generally for reduced germs
(X, x) of arbitrary dimension (see [dJP00, Sect. 4.4]), by considering the multi-
germ whose multi-local ring is the integral closure of the local ring OX,x in its
total ring of fractions. Except for curve singularities, the source of a normalization
morphism is not smooth in general.

The following proposition is classical and states the announced expression of
intersection numbers in terms of a parametrization of one germ and a defining
function of the second one (see [BHPVdV04, Prop. II.9.1] or [dJP00, Lemma
5.1.5]):

Proposition 9.2.5 Let C be a branch on the smooth surface singularity (S, s) and
D be a second curve singularity, not necessarily reduced. Let ν : (C, 0) → (C, s)

be a normal parametrization of C and let g ∈ mS,s be a defining function of D.
Then:

C ·D = ordt (g ◦ ν(t)) ,

where ordt denotes the order of a power series in the variable t .

Proof This proof is adapted from that of [dJP00, Lemma 5.1.5].
The order of the zero power series is equal to ∞ by definition, therefore the

statement is true when C is a branch of D.
Let us assume from now on that C is not a branch of D.
Consider a defining function f ∈ mS,s of C. By Definition 9.2.2:

C ·D = dimC

OS,s
(f, g)

= dimC

OS,s/(f )
(gC)

= dimC

OC,s
(gC)

, (9.1)

where we have denoted by gC ∈ OC,s the restriction of g to the branch C.
Algebraically, the normal parametrization ν : (C, 0) → (C, s) corresponds to a

morphism of local C-algebras OC,s ↪→ C{t}, isomorphic to the inclusion morphism
of OC,s into its integral closure taken inside its quotient field. In order to distinguish
them, denote from now on by gC OC,s the principal ideal generated by gC inside
OC,s and by gC C{t} its analog inside C{t}. One has the following equality inside
the local C-algebra C{t}:

g ◦ ν(t) = gC.

As a consequence:

gC C{t} = tordt (g◦ν(t))C{t}.
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Therefore:

ordt (g ◦ ν(t)) = dimC

C{t}
gC C{t} . (9.2)

By comparing Eqs. (9.1) and (9.2), we see that the desired equality is equivalent to:

dimC

OC,s
gC OC,s

= dimC

C{t}
gC C{t} . (9.3)

The two quotients appearing in (9.3) are the cokernels of the two injective

multiplication maps OC,s
·gC−→ OC,s and C{t} ·gC−→ C{t}. The associated short exact

sequences may be completed into a commutative diagram in which the first two
vertical maps are the inclusion map OC,s ↪→ C{t}:

0 OC,s OC,s
OC,s

gC OC,s
0

0 C{t} C{t} C{t}
gC C t

0

The last vertical map is not necessarily an isomorphism. We want to show that its
source and its target have the same dimension. Let us complete it into an exact
sequence by considering its kernelK1 and cokernelK2:

0 −→ K1 −→ OC,s
gC OC,s

−→ C{t}
gC C{t} −→ K2 −→ 0.

For every finite exact sequence of finite-dimensional vector spaces, the alternating
sum of dimensions vanishes. Therefore:

dimCK1 − dimC

OC,s
gC OC,s

+ dimC

C{t}
gC C{t} − dimCK2 = 0.

This shows that the desired equality (9.3) would result from the equality dimCK1 =
dimCK2. This last equality is a consequence of the so-called “snake lemma” (see
for instance [AM69, Prop. 2.10]), applied to the previous commutative diagram.
Indeed, by this lemma, one has an exact sequence:

0 −→ K1 −→ C{t}
OC,s

−→ C{t}
OC,s

−→ K2 −→ 0.
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Reapplying the previous argument about alternating sums of dimensions, one gets
the needed equality dimCK1 = dimCK2. �

Note that the previous proof shows in fact that for any abstract branch (C, s), not
necessarily planar, one has the equality:

dimC

OC,s
(g)
= ordt (g ◦ ν(t)) , (9.4)

for any g ∈ OC,s and for any normal parametrization ν : (C, 0)→ (C, s) of (C, s).
If the branch (C, s) is contained in an ambient germ (X, s) and H is an effective
principal divisor on (X, s) which does not contain the branch, then equality (9.4)
shows that the intersection number of C and H at s may be computed as the order
of the series obtained by composing a defining function of (H, s) and a normal
parametrization of (C, s).

Example 9.2.6 Consider the branches:

⎧
⎨

⎩

A := Z(y2 − x3),

B := Z(y3 − x5),

C := Z(y6 − x5)

on the smooth surface singularity (C2, 0). Denoting by m0 the multiplicity function
at the origin of C2, we have:

m0(A) = 2, m0(B) = 3, m0(C) = 5,

as results from Definition 9.2.1. Using Proposition 9.2.5 and the fact that whenever
m and n are coprime positive integers, t → (tn, tm) is a normal parametrization
of Z(yn − xm), one gets the following values for the intersection numbers of the
branches A,B,C:

B · C = 15, C · A = 10, A · B = 9.

Therefore:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B · C
m0(B) ·m0(C)

= 1,

C · A
m0(C) ·m0(A)

= 1,

A · B
m0(A) ·m0(B)

= 3

2
.



9 Ultrametrics and Surface Singularities 281

One notices that two of the previous quotients are equal and the third one is greater
than them. Płoski discovered that this is a general phenomenon for plane branches,
as explained in the next section.

9.3 The Statement of Płoski’s Theorem

In this section we state a theorem of Płoski of 1985 and a reformulation of it in terms
of the notion of ultrametric.

Denote simply by S the germ of smooth surface (S, s) and by m(A) the
multiplicity of a branch (A, s) ↪→ (S, s).

In his 1985 paper [Pło85], Płoski proved the following theorem:

Theorem 9.3.1 IfA,B,C are three pairwise distinct branches on a smooth surface
singularity S, then one has the following relations, up to a permutation of the three
fractions:

A · B
m(A) ·m(B) ≥

B · C
m(B) ·m(C) =

C ·A
m(C) ·m(A).

Denote by B(S) the infinite set of branches on S. By inverting the fractions
appearing in the statement of Theorem 9.3.1, it may be reformulated in the following
equivalent way:

Theorem 9.3.2 Let S be a smooth surface singularity. Then the map B(S) ×
B(S)→ [0,∞) defined by

(A,B)→
⎧
⎨

⎩

m(A) ·m(B)
A · B if A �= B,

0 otherwise

is an ultrametric.

What does it mean that a function is an ultrametric? We explain this in the next
section and we show how to think topologically about ultrametrics on finite sets in
terms of certain kinds of decorated rooted trees. This way of thinking is used then
in Sect. 9.5 in order to prove the reformulation 9.3.2 of Płoski’s theorem.

9.4 Ultrametrics and Rooted Trees

In this section we define the notion of ultrametric and we explain how to think
about an ultrametric on a finite set in topological terms, as a special kind of rooted
and decorated tree. This passes through understanding that the closed balls of an
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ultrametric form a hierarchy and that finite hierarchies are equivalent to special types
of decorated rooted trees. For more details, one may consult [GBGPPP18, Sect. 3.1].

Definition 9.4.1 Let (M, d) be a metric space. It is called ultrametric if one has
the following strong form of the triangle inequality:

d(A,B) ≤ max{d(A,C), d(B,C)}, for allA,B,C ∈ M.

In this case, one says also that d is an ultrametric on the setM .

In any metric space (M, d), a closed ball is a subset ofM of the form:

B(A, r) := {P ∈ M, d(P,A) ≤ r}

where the center A ∈ M and the radius r ∈ [0,∞) are given. As we will see
shortly, given a closed ball, neither its center nor its radius are in general well-
defined, contrary to an intuition educated only by Euclidean geometry.

One has the following characterizations of ultrametrics:

Proposition 9.4.2 Let (M, d) be a metric space. Then the following properties are
equivalent:

1. (M, d) is ultrametric.
2. The triangles are all isosceles with two equal sides not less than the third side.
3. All the points of a closed ball are centers of it.
4. Two closed balls are either disjoint, or one is included in the other.

Proof All the equivalences are elementary but instructive to check. We leave their
proofs as exercises. �
Example 9.4.3 Consider a set M = {A,B,C,D} and a distance function d on
it such that: d(B,C) = 1, d(A,B) = d(A,C) = 2, d(A,D) = d(B,D) =
d(C,D) = 5. Note that one may embed (M, d) isometrically into a 3-dimensional
Euclidean space by choosing an isosceles triangleABC with the given edge lengths,
and by choosing then the point D on the perpendicular to the plane of the triangle
passing through its circumcenter. Let us look for the closed balls of this finite metric
space. For radii less than 1, they are singletons. For radii in the interval [1, 2), we get
the sets {B,C}, {A}, {D}. Note that both B and C are centers of the ball {B,C}, that
is, B(B, r) = B(C, r) = {B,C} for every r ∈ [1, 2). Once the radius belongs to the
interval [2, 5), the balls are {A,B,C} and {D}. Finally, for every radius r ∈ [5,∞),
there is only one closed ball, the whole set. Figure 9.1 depicts the set {A,B,C,D}
as well as the mutual distances and the associated set of closed balls.

Example 9.4.3 illustrates the fact that neither the center nor the radius of a closed
ball of a finite ultrametric space is well-defined, once the ball has more than one
element. Instead, every closed ball has a well-defined diameter:
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Fig. 9.1 The balls of an
ultrametric space with four
points

Definition 9.4.4 The diameter of a closed ball in a finite metric space is the
maximal distance between pairs of not necessarily distinct points of it.

The last characterization of ultrametrics in Proposition 9.4.2 shows that the set
Balls(M, d) of closed balls of an ultrametric space (M, d) is a hierarchy onM , in

the following sense:

Definition 9.4.5 A hierarchy on a set M is a subset H of its power set P(M),
satisfying the following properties:

• ∅ /∈ H.
• The singletons belong to H.
• M belongs to H.
• Two elements of H are either disjoint, or one is included into the other.

If H is a hierarchy on a setM , it may be endowed with the inclusion partial order.
We will consider instead its reverse partial order /H , defined by:

A /H B ⇐⇒ A ⊇ B, for all A,B ∈ H.

Reversing the inclusion partial order has the advantage of identifying the leaves of
the corresponding rooted tree with the maximal elements of the poset (H,/H) (see
Proposition 9.4.8 below).

When M is finite, one may represent the poset (H,/H) using its associated
Hasse diagram:
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Definition 9.4.6 Let (X,/) be a finite poset. Its Hasse diagram is the directed
graph whose set of vertices is X, two vertices a, b ∈ X being joined by an edge
oriented from a to b whenever a ≺ b and the two points are directly comparable,
that is, there is no other element of X lying strictly between them.

Hasse diagrams of finite posets are abstract oriented acyclic graphs. This means
that they have no directed cycles, which is a consequence of the fact that a partial
order is antisymmetric and transitive. Hasse diagrams are not necessarily planar,
but, as all finite graphs, they may be always immersed in the plane in such a way
that any pair of edges intersect transversely. When drawing a Hasse diagram in the
plane as an immersion, we will use the convention to place the vertex a of the Hasse
diagram below the vertex b whenever a ≺ b. This is always possible because of the
absence of directed cycles. This convention makes unnecessary adding arrowheads
along the edges in order to indicate their orientations.

Example 9.4.7 Consider the finite set {1, 2, 3, 4, 6, 12} of positive divisors of 12,
partially ordered by divisibility: a / b if and only if a divides b. Its Hasse diagram
is drawn in Fig. 9.2.

The Hasse diagrams of finite hierarchies are special kinds of graphs:

Proposition 9.4.8 The Hasse diagram of a hierarchy (H,/H) on a finite set M
is a tree in which the maximal directed paths start from M and terminate at the
singletons. Moreover, for each vertex which is not a singleton, there are at least two
edges starting from it.

Proof We sketch a proof, leaving the details to the reader.
The first statement results from the fact that the singletons of M are exactly

the maximal elements of the poset (H,/H), that M itself is the unique minimal
element and that all the elements of a hierarchy which contain a given element are
totally ordered by inclusion.

Fig. 9.2 The Hasse diagram
of the set of positive divisors
of 12

12

4

2

6

3

1
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Let us prove the second statement. Consider B1 ∈ H and assume that it is not
a singleton. This means that it is not minimal for inclusion, therefore there exists
B2 ∈ H such that B2 � B1 and B2 is directly comparable to B1. Let A be a point
of B1 \ B2. Consider B3 ∈ H which contains the point A, is included into B1 and
is directly comparable to it. As A ∈ B3 \ B2, this shows that B3 is not included
in B2. We want to show that the two sets B2 and B3 are disjoint. Otherwise, by the
definition of a hierarchy, we would have B2 � B3 � B1, which contradicts the
assumption that B1 and B2 are directly comparable. �
Example 9.4.9 Consider the ultrametric space of Example 9.4.7, represented in
Fig. 9.1. We repeat it on the left of Fig. 9.3. The Hasse diagram of the hierarchy
of its closed balls is drawn on the right of Fig. 9.3. Near each vertex is represented
the diameter of the corresponding ball. We have added a root vertex, connected to
the vertex representing the whole set. It may be thought as a larger ball, obtained by
adding formally to M = {A,B,C,D} a point ω, infinitely distant from each point
ofM . This larger ball is the setM :=M ∪ {ω}.

One may formalize in the following way the construction performed in Exam-
ple 9.4.9:

Definition 9.4.10 The tree of a hierarchy (H,/H) on a finite posetM is its Hasse

diagram, completed with a root representing the set M := M ∪ {ω}, joined with
the vertex representingM and rooted atM . Here ω is a point distinct from the points
ofM .

The tree of a hierarchy is a rooted tree in the following sense:

Fig. 9.3 The tree of the hierarchy of closed balls of Example 9.4.9
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Definition 9.4.11 A rooted tree is a tree with a distinguished vertex, called its root.
If 	 is a rooted tree with root r , then the vertex set of 	 gets partially ordered by
declaring that a /r b if and only if the unique segment [r, a] joining r to a in the
tree is contained in [r, b].

When 	 is the rooted tree of a hierarchy H on a finite set M , then the partial
order /M defined by choosing M as root restricts to the partial order /H if one
identifies the set H with the set of vertices of 	 which are distinct from the root.

Proposition 9.4.8 may be reformulated in the following way as a list of properties
of the tree of the hierarchy:

Proposition 9.4.12 Let 	 be the tree of a hierarchy on a finite set, and let r be its
root. Then r is a vertex of valency 1 and there are no vertices of valency 2.

This proposition motivates the following definition:

Definition 9.4.13 A rooted tree whose root is of valency 1 and which does not
possess vertices of valency 2 is a hierarchical tree. The hierarchy of a hierarchical
tree (	, r) is constructed in the following way:

• Define M to be the set of leaves of the rooted tree (	, r), that is, the set of
vertices of valency 1 which are distinct from the root r .

• For each vertex p of 	 different from the root, consider the subset of M
consisting of the leaves a such that p /r a.

We leave as an exercise to prove:

Proposition 9.4.14 The constructions of Definitions 9.4.10 and 9.4.13, which
associate a hierarchical tree to a hierarchy on a finite set and a hierarchy to a
hierarchical tree are inverse of each other.

As a preliminary to the proof, one may test the truth of the proposition on the
example of Fig. 9.3.

Let us return to finite ultrametric spaces (M, d). We saw that the set Balls(M, d)
of its closed balls is a hierarchy onM . Proposition 9.4.14 shows that one may think
about this hierarchy as a special kind of rooted tree, namely, a hierarchical tree. This
hierarchical tree alone does not allow to get back the distance function d . How to
encode it on the tree?

The idea is to look at the function defined on Balls(M, d), which associates to
each ball its diameter (see Definition 9.4.4):

Proposition 9.4.15 Let (M, d) be a finite ultrametric space. Then the map which
sends each closed ball to its diameter is a strictly decreasing [0,∞)-valued function
defined on the poset (Balls(M, d),/), taking the value 0 exactly on the singletons
of M . Equivalently, it is a strictly decreasing [0,∞]-valued function on the set of
vertices of the tree of the hierarchy, vanishing on the setM of leaves and taking the
value∞ on the root.

As an example, one may look again at Fig. 9.3. The value taken by the previous
diameter function is written near each vertex of the hierarchical tree.



9 Ultrametrics and Surface Singularities 287

If (	, r) is a hierarchical tree, denote by V (	) its set of vertices and by

a ∧r b the infimum of a and b relative to/r , whenever a, b ∈ V (	). This infimum
may be characterized by the property that [r, a] ∩ [r, b] = [r, a∧r b]. The following
is a converse of Proposition 9.4.15:

Proposition 9.4.16 Let (	, r) be a hierarchical tree and λ : V (	) → [0,∞] be
a strictly decreasing function relative to the partial order /r on 	 induced by the
root. Assume that λ vanishes on the set M of leaves of 	 and takes the value∞ at
r . Then the map

d : M ×M → [0,∞)
(a, b) → λ(a ∧r b)

is an ultrametric onM .

Let us introduce a special name for the functions appearing in Proposition 9.4.16:

Definition 9.4.17 Let (	, r) be a hierarchical tree. A depth function on it is a
function λ : V (	)→ [0,∞] which satisfies the following properties:

• it is strictly decreasing relative to the partial order /r on 	 induced by the root
r;

• it vanishes on the set of leaves of 	;
• it takes the value∞ at the root r .

Note that the first two conditions of Definition 9.4.17 imply that a depth function
vanishes exactly on the set of leaves of the underlying hierarchical tree.

One has the following analog of Proposition 9.4.14:

Proposition 9.4.18 The constructions of Propositions 9.4.15 and 9.4.16 are inverse
of each other. That is, giving an ultrametric on a finite setM is equivalent to giving
a depth function on a hierarchical tree whose set of leaves isM .

It is this proposition which allows to think about an ultrametric as a special kind
of rooted and decorated tree. We leave its proof as an exercise (see [BD98]).

9.5 A Proof of Płoski’s Theorem Using Eggers-Wall Trees

In this section we sketch a proof of Płoski’s theorem 9.3.1 using the equivalence
between ultrametrics on finite sets and certain kinds of rooted trees formulated in
Proposition 9.4.18. The rooted trees used in this proof are the Eggers-Wall trees
of a plane curve singularity relative to smooth reference branches. The precise
definition of Eggers-Wall trees is not given, because the proofs of the subsequent
generalizations of Płoski’s theorem will be of a completely different spirit.



288 P. Popescu-Pampu

Instead of working both with multiplicities and intersection numbers as in
Płoski’s original statement, we will work only with the latest ones.

Let S be a smooth germ of surface and L ↪→ S be a smooth branch. Define the
following function on the set of branches on S which are different from L:

uL : (B(S) \ {L})2 → R+

(A,B) →
⎧
⎨

⎩

(L · A) · (L · B)
A · B if A �= B,

0 otherwise.

(9.5)

In the remaining part of this section we will sketch a proof of:

Theorem 9.5.1 The function uL is an ultrametric.

We leave as an exercise to show using Proposition 9.2.3 that Theorem 9.5.1
implies the reformulation given in Theorem 9.3.2 of Płoski’s Theorem 9.3.1.

Our proof of Theorem 9.5.1 will pass through the notion of Eggers-Wall tree
associated to a plane curve singularity relative to a smooth branch of reference L
(see the proof of Theorem 9.5.5 below). Let us illustrate it by an example.

Example 9.5.2 Consider again the branchesA = Z(y2−x3), B = Z(y3−x5), C =
Z(y6− x5) on S = (C2, 0) of Example 9.2.6. Assume that the branch L is the germ
at 0 of the y-axis Z(x). The defining equations of the three branches A,B,C may
be considered as polynomial equations in the variable y. As such, they admit the
following roots which are fractional powers of x:

A : x3/2,

B : x5/3,

C : x5/6.

Associate to the root x3/2 a compact segment 	L(A) identified with the interval
[0,∞] using an exponent function eL : 	L(A)→ [0,∞] and mark on it the point
e−1
L (3/2) with exponent 3/2. Define also an index function iL : 	L(A) → N

∗,
constantly equal to 1 on the interval [e−1

L (0), e
−1
L (3/2)] and to 2 on the interval

(e−1
L (3/2), e

−1
L (∞)] (see the left-most segment of Fig. 9.4). Here the number 2

is to be thought as the minimal positive denominator of the exponent 3/2 of the
monomial x3/2. The segment 	L(A) endowed with the two functions eL and iL is
the Eggers-Wall tree of the branch A relative to the branch L. It is considered as a
rooted tree with root e−1

L (0), labeled with the branch L. Its leaf e−1
L (∞) is labeled

with the branch A. Consider analogously the Eggers-Wall trees	L(B) and	L(C),
endowed with pairs of exponent and index functions and labeled roots and leaves
(see the left part of Fig. 9.4).

Look now at the plane curve singularity A + B + C. Its Eggers-Wall tree
	L(A + B + C) relative to the branch L is obtained from the individual trees
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Fig. 9.4 The Eggers-Wall tree of the plane curve singularity of Example 9.5.2

	L(A),	L(B),	L(C) by a gluing process, which identifies two by two initial
segments of those trees.

Consider for instance the segments 	L(A),	L(B). Look at the order of the
difference x3/2 − x5/3 of the roots which generated them, seen as a series with
fractional exponents. This order is the fraction 3/2, because 3/2 < 5/3. Identify
then the points with the same exponent≤ 3/2 of the segments	L(A),	L(B). One
gets a rooted tree	L(A+B) with root labeled by L and with two leaves, labeled by
the branches A,B. The exponent and index functions of the trees 	L(A),	L(B)
descend to functions with the same name eL, iL defined on 	L(A + B). Endowed
with those functions, 	L(A + B) is the Eggers-Wall tree of the curve singularity
A+ B.

If one considers now the curve singularityA+B+C, then one glues analogously
the three pairs of trees obtained from	L(A),	L(B),	L(C). The resulting Eggers-
Wall tree 	L(A+ B + C) is drawn on the right side of Fig. 9.4. It is also endowed
with two functions eL, iL, obtained by gluing the exponent and index functions
of the trees 	L(A),	L(B),	L(C). Its marked points are its ends, its bifurcation
points and the images of the discontinuity points of the index function of the Eggers-
Wall tree of each branch. Near each marked point is written the corresponding value
of the exponent function. The index function is constant on each segment (a, b]
joining two marked points a and b, where a ≺L b. Here /L denotes the partial
order on the tree 	L(A+B + C) determined by the root L (see Definition 9.4.11).

One may associate analogously an Eggers-Wall tree 	L(D) to any plane curve
singularity D, relative to a smooth reference branch L. It is a rooted tree endowed
with an exponent function eL : 	L(D) → [0,∞] and an index function iL :
	L(D) → N

∗. The tree and both functions are constructed using Newton-Puiseux
series expansions of the roots of a Weierstrass polynomial f ∈ C[[x]][y] defining
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D in a coordinate system (x, y) such that L = Z(x). The triple (	L(D), eL, iL)
is independent of the choices involved in the previous definition (see [GBGPPP18,
Proposition 103]). One may find the precise definition and examples of Eggers-
Wall trees in Section 4.3 of the previous reference and in [GBGPPP19, Sect. 3].
Historical remarks about this notion may be found in [GBGPPP19, Rem. 3.18]
and [GBGPPP20, Sect. 6.2]. The name, introduced in author’s thesis [PP01], makes
reference to Eggers’ 1983 paper [Egg82] and to Wall’s 2003 paper [Wal03].

What allows us to prove Theorem 9.5.1 using Eggers-Wall trees is that the
values uL(A,B) of the function uL defined by relation (9.5) are determined in the
following way from the Eggers-Wall tree 	L(D), for each pair of distinct branches
(A,B) of D (recall from the paragraph preceding Proposition 9.4.16 that A ∧L B
denotes the infimum of A and B relative to the partial order/L induced by the root
L of 	L(D)):

Theorem 9.5.3 For each pair (A,B) of distinct branches of D and every smooth
reference branch L different from the branches ofD, one has:

1

uL(A,B)
=
∫ A∧LB

L

deL

iL
.

Example 9.5.4 Let us verify the equality stated in Theorem 9.5.3 on the branches
of Example 9.5.2. Looking at the Eggers-Wall tree	L(A+B+C) on the right side
of Fig. 9.4, we see that:

∫ A∧LB

L

deL

iL
=
∫ 3/2

0

de

1
= 3

2
.

But 1/uL(A,B) = (A · B)/ ((L ·A)(L · B)) = (A · B)/ (m(A) ·m(B)) = 3/2,
as was computed in Example 9.2.6. The equality is verified. We have used the fact
that both A and B are transversal to L, which implies that L · A = m(A) and
L · B = m(B).

In equivalent formulations which use so-called characteristic exponents, Theo-
rem 9.5.3 goes back to Smith [Smi75, Section 8], Stolz [Sto79, Section 9] and Max
Noether [Noe90]. A modern proof, based on Proposition 9.2.5, may be found in
[Wal04, Thm. 4.1.6].

As a consequence of Theorem 9.5.3, we get the following strengthening of
Theorem 9.5.1:

Theorem 9.5.5 Let D be a plane curve singularity. Denote by F(D) the set of
branches ofD. Let L be a reference smooth branch which does not belong to F(D).
Then the function uL is an ultrametric in restriction to F(D) and its associated
rooted tree is isomorphic as a rooted tree with labeled leaves to the Eggers-Wall
tree 	L(D).

Proof Consider 	L(D) as a topological tree with vertex set equal to its set of ends
and of ramification points. Root it at L. Then it becomes a hierarchical tree in the
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sense of Definition 9.4.13. The function

P →
(∫ P

L

deL

iL

)−1

is a depth function on it, in the sense of Definition 9.4.17. Using Theorem 9.5.3 and
Proposition 9.4.18, we get Theorem 9.5.5. �

For more details about the proof of Płoski’s theorem presented in this section,
see [GBGPPP18, Sect. 4.3].

9.6 An Ultrametric Characterization of Arborescent
Singularities

In this section we state a generalization of Theorem 9.5.1 for all arborescent sin-
gularities and the fact that it characterizes this class of normal surface singularities.
We start by recalling the needed notions of embedded resolution and associated dual
graph of a finite set of branches contained in a normal surface singularity.

From now on, S denotes an arbitrary normal surface singularity, that is, a germ
of normal complex analytic surface. Let us recall the notion of resolution of such a
singularity:

Definition 9.6.1 Let (S, s) be a normal surface singularity. A resolution of it is
a proper bimeromorphic morphism π : Sπ → S such that Sπ is smooth. Its

exceptional divisor Eπ is the reduced preimage π−1(s). The resolution is good
if its exceptional divisor has normal crossings and all its irreducible components are
smooth. The dual graph "(π) of the resolution π is the finite graph whose set

of vertices P(π) is the set of irreducible components of Eπ , two vertices being
joined by an edge if and only if the corresponding components intersect.

Every normal surface singularity admits resolutions and even good ones. This
result, for which partial proofs appeared already at the end of the nineteenth century,
was proved first in the analytical context by Hirzebruch in his 1953 paper [Hir53].
His proof was inspired by previous works of Jung [Jun08] and Walker [Wal35], done
in an algebraic context.

Assume now that F is a finite set of branches on S. It may be also seen as
a reduced divisor on S, by thinking about their sum. The notion of embedded
resolution of F is an analog of that of good resolution of S:

Definition 9.6.2 Let (S, s) be a normal surface singularity and let π : Sπ → S be
a resolution of S. If A is a branch on S, then its strict transform by π is the closure
inside Sπ of the preimage π−1(A \ s). Let F be a finite set of branches on S. Its
strict transform by π is the set or, depending on the context, the divisor formed
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by the strict transforms of the branches of F. The preimage π−1F of F by π is
the sum of its strict transform and of the exceptional divisor of π . The morphism π
is an embedded resolution of F if it is a good resolution of S and the preimage of

F by π is a normal crossings divisor. The dual graph "(π−1F) of the preimage

π−1F is defined similarly to the dual graph "(π) of π , taking into account all the
irreducible components of π−1F.

In the previous definition, the preimage π−1F of F by π is seen as a reduced
divisor. We will see in Definition 9.9.4 below that there is also a canonical way,
due to Mumford, to define canonically a not necessarily reduced rational divisor
supported by π−1F, called the total transform of F by π , and denoted by π∗F.

The notion of dual graph of a resolution allows to define the following class of
arborescent singularities, whose name was introduced in the paper [GBGPPP18],
even if the class had appear before, for instance in Camacho’s work [Cam88]:

Definition 9.6.3 Let S be a normal surface singularity. It is called arborescent if
the dual graphs of its good resolutions are trees.

Remark that in the previous definition we ask nothing about the genera of the
irreducible components of the exceptional divisors.

By using the fact that any two resolutions are related by a sequence of blow ups
and blow downs of their total spaces (see [Har77, Thm. V.5.5]), one sees that the
dual graphs of all good resolutions are trees if and only if this is true for one of
them.

Consider now an arbitrary branchL on the normal surface singularity S. We may
define the function uL by the same formula (9.5) as in the case when both S and L
were assumed smooth. Intersection numbers of branches still have a meaning, as was
shown by Mumford. We will explain this in Sect. 9.9 below (see Definition 9.9.5).

The following generalization of Theorem 9.5.1 both gives a characterization of
arborescent singularities and extends Theorem 9.5.5 to all arborescent singularities
S and all—not necessarily smooth—reference branchesL on them (recall that B(S)
denotes the set of branches on S):

Theorem 9.6.4 Let S be a normal surface singularity and L ∈ B(S). Then:

1. uL is ultrametric on B(S) \ {L} if and only if S is arborescent.
2. In this case, for any finite set F of branches on S not containing L, the rooted

tree of the restriction of uL to F is isomorphic to the convex hull of F∪{L} in the
dual graph of the preimage of F ∪ {L} by any embedded resolution of F ∪ {L},
rooted at L.

We do not prove in the present notes that if uL is an ultrametric on B(S)\{L}, then
S is arborescent. The interested reader may find a proof of this fact in [GBPPPR19,
Sect. 1.6]. The remaining implication of point (1) and point (2) of Theorem 9.6.4 are,
taken together, a consequence of Theorem 9.8.1 below. For this reason, we do not
give a separate proof of them, the rest of this paper being dedicated to the statement
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and a sketch of proof of Theorem 9.8.1. The notion of brick-vertex tree of a finite
connected graph being crucial in this theorem, we dedicate next section to it.

By combining Theorems 9.5.5 and 9.6.4 one gets (see [GBGPPP18, Thm. 112]):

Proposition 9.6.5 Whenever S and L are both smooth, the Eggers-Wall tree
	L(D) of a plane curve singularity D ↪→ S not containing L is isomorphic to the
convex hull of the strict transform of F(D) ∪ {L} in the dual graph of its preimage
by any of its embedded resolutions.

A prototype of this fact was proved differently in the author’s thesis [PP01, Thm.
4.4.1], then generalized in two different ways by Wall in [Wal04, Thm. 9.4.4] (see
also Wall’s comments in [Wal04, Sect. 9.10]) and by Favre and Jonsson in [FJ04,
Prop. D.1].

9.7 The Brick-Vertex Tree of a Connected Graph

In this section we introduce the notion of brick-vertex tree of a connected graph,
which is crucial in order to state Theorem 9.8.1 below, the strongest known
generalization of Płoski’s theorem.

Definition 9.7.1 A graph is a compact cell complex of dimension ≤ 1. If " is a
graph, its set of vertices is denoted V (") and its set of edges is denoted E(") .

In the sequel it will be crucial to look at the vertices which disconnect a given
graph:

Definition 9.7.2 Let " be a connected graph. A cut-vertex of " is a vertex whose
removal disconnects ". A bridge of " is an edge such that the removal of its interior
disconnects ". If a, b, c are three not necessarily distinct vertices of ", one says that
b separates a from c if either b ∈ {a, c} or if a and c belong to different connected
components of the topological space " \ {b}.

Note that an end of a bridge is a cut-vertex if and only if it has valency at least 2
in ", that is, if and only if it is not a leaf of ". It will be important to distinguish the
class of graphs which cannot be disconnected by the removal of one vertex, as well
as the maximal graphs of this class contained in a given connected graph:

Definition 9.7.3 A connected graph is called inseparable if it does not contain cut-
vertices. A block of a connected graph " is a maximal inseparable subgraph of it.
A brick of " is a block which is not a bridge.

Note that all the bridges of a connected graph are blocks of it.

Example 9.7.4 In Fig. 9.5 is represented a connected graph. Its cut-vertices are
surrounded in red. Its bridges are represented as black segments. It has three bricks,
the edges of each brick being colored in the same way.
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Fig. 9.5 A connected graph,
its cut-vertices, its bridges
and its bricks

By replacing each brick of a connected graph by a star-shaped graph, one gets
canonically a tree associated to the given graph:

Definition 9.7.5 The brick-vertex tree of a graph BV(") of a connected graph "
is the tree whose set of vertices is the union of the set of vertices of " and of a set
of new brick-vertices corresponding bijectively to the bricks of ", its edges being
either the bridges of " or new edges connecting each brick-vertex to the vertices of
the corresponding brick. Formally, this may be written as follows:

• V (BV(")) = V (")  {bricks of "}.
• E(BV(")) = {bridges of "}  {[v, b], v ∈ V ("), b is a brick of ", v ∈ V (b)}.
We denoted by v the vertex v of " when it is seen as a vertex of BV(") and

b ∈ V (BV(")) the brick-vertex representing the brick b of ".

The notion of brick-vertex tree was introduced in [GBPPPR19, Def. 1.34]. It is
strongly related to other notions introduced before either in general topology or in
graph theory, as explained in [GBPPPR19, Rems. 1.35, 2.50].

Note that whenever " is a tree, BV(") is canonically isomorphic to it, as " has
no bricks.

Example 9.7.6 On the left side of Fig. 9.6 is repeated the graph " of Fig. 9.5, with
its cut-vertices and bricks emphasized. On its right side is represented its associated
brick-vertex tree BV("). Each representative vertex of a brick is drawn with the
same color as its corresponding brick. The edges of BV(") which are not bridges
of " are represented in magenta and thicker than the other edges.

Fig. 9.6 The connected graph of Example 9.7.6 and its brick-vertex tree
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The importance of the brick-vertex tree in our context stems from the following
property of it (see [GBGPPP19, Prop. 1.36]), formulated using the vocabulary
introduced in Definition 9.7.2 and the notations introduced in Definition 9.7.5:

Proposition 9.7.7 Let " be a finite graph and a, b, c ∈ V ("). Then b separates a
from c in " if and only if b separates a from c in BV(").

We are ready now to state the strongest known generalization of Płoski’s theorem
(see Theorem 9.8.1 below).

9.8 Our Strongest Generalization of Płoski’s Theorem

In this section we formulate Theorem 9.8.1, which generalizes Theorem 9.5.5 to all
normal surface singularities and all branches on them, using the notion of brick-
vertex tree introduced in the previous section.

Recall that the notion of brick-vertex tree of a connected graph was introduced
in Definition 9.7.5. A fundamental property of normal surface singularities is that
the dual graphs of their resolutions are connected (which is a particular case of the
so-called Zariski’s main theorem, whose statement may be found in [Har77, Thm.
V.5.2]). This implies that the dual graph of the preimage (see Definition 9.6.2) of
any finite set of branches on such a singularity is also connected. Therefore, one
may speak about its corresponding brick-vertex tree. The convex hull of a finite set
of vertices of it is the union of the segments which join them pairwise.

Here is the announced generalization of Theorem 9.5.5, which is a slight
reformulation of [GBPPPR19, Thm. 1.42]:

Theorem 9.8.1 Let S be a normal surface singularity. Consider a finite set F of
branches on it and an embedded resolution π : Sπ → S of F. Let " be the dual
graph of the preimage π−1F of F by π . Assume that the convex hull ConvBV(")(F)
of the strict transform of F by π in the brick-vertex tree BV(") does not contain
brick-vertices of valency at least 4 in ConvBV(")(F). Then for all L ∈ F, the
restriction of uL to F \ {L} is an ultrametric and the corresponding rooted tree
is isomorphic to ConvBV(")(F), rooted at L.

Example 9.8.2 Assume that the dual graph " of π−1F is as shown on the left side
of Fig. 9.7. The vertices representing the strict transforms of the branches of the set
F are drawn arrowheaded. Note that the subgraph which is the dual graph of the
exceptional divisor is the same as the graph of Fig. 9.5. On the right side of Fig. 9.7
is represented using thick red segments the convex hull ConvBV(")(F). We see that
the hypothesis of Theorem 9.8.1 is satisfied. Indeed, the convex hull contains only
two brick-vertices, which are of valency 2 and 3 in ConvBV(")(F). Note that the
blue one is of valency 4 in the dual graph ", which shows the importance of looking
at the valency in the convex hull ConvBV(")(F), not in ".
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Fig. 9.7 An example where the hypothesis of Theorem 9.8.1 is satisfied

As shown in [GBPPPR19, Ex. 1.44], the condition about valency is not necessary
in general for uL to be an ultrametric on F \ {L}.

Note that we have expressed Theorem 9.8.1 in a slightly different form than
the equivalent Theorem 9.1.4 of the introduction. Namely, we included L in
the branches of F. This formulation emphasizes the symmetry of the situation:
all the choices of reference branch inside F lead to the same tree, only the
root being changed. In fact, we will obtain Theorem 9.8.1 as a consequence of
Theorem 9.10.10, in which no branch plays any more a special role.

Before that, we will explain in the next section Mumford’s definition of
intersection number of two curve singularities drawn on an arbitrary normal surface
singularity, which allows to define in turn the functions uL appearing in the
statement of Theorem 9.8.1.

9.9 Mumford’s Intersection Theory

In this section we explain Mumford’s definition of intersection number of Weil
divisors on a normal surface singularity, introduced in his 1961 paper [Mum61].
It is based on Theorem 9.9.1, stating that the intersection form of any resolution of a
normal surface singularity is negative definite. This theorem being fundamental for
the study of surface singularities, we present a detailed proof of it.

Let π : Sπ → S be a resolution of the normal surface singularity S. Denote by
(Eu)u∈P(π) the collection of irreducible components of the exceptional divisor Eπ

of π (see Definition 9.6.1).
Denote by:

E(π)R :=
⊕

u∈P(π)
REu

the real vector space freely generated by those prime divisors, that is, the space
of real divisors supported by Eπ . It is endowed with a symmetric bilinear form
(D1,D2)→ D1 ·D2 given by intersecting the corresponding compact cycles on Sπ .
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We call it the intersection form. Its following fundamental property was proved by
Du Val [DV44] and Mumford [Mum61]:

Theorem 9.9.1 The intersection form on E(π)R is negative definite.

Proof The following proof is an expansion of that given by Mumford in [Mum61].
The singularity S being normal, the exceptional divisor Eπ is connected (this is

a particular case of Zariski’s main theorem, see [Har77, Thm. V.5.2]). Therefore:

The dual graph "(π) is connected. (9.6)

Consider any germ of holomorphic function f on (S, s), vanishing at s, and look at
the divisor of its lift to the surface Sπ :

(π∗f ) =
∑

u∈P(π)
auEu + (π∗f )str . (9.7)

Here (π∗f )str denotes the strict transform of the divisor defined by f on S. Denote
also:

⎧
⎪⎨

⎪⎩

eu := auEu ∈ E(π)R, for all u ∈ P(π),
σ :=

∑

u∈P(π)
eu ∈ E(π)R. (9.8)

As f vanishes at the point s, its lift π∗f vanishes along each componentEu of Eπ ,
therefore au > 0 for every u ∈ P(u). We deduce that (eu)u∈P(π) is a basis of E(π)R
and that:

eu · ev ≥ 0, for all u, v ∈ P(π) such that u �= v. (9.9)

The divisor (π∗f ) being principal, its associated line bundle is trivial. Therefore:

(π∗f ) · Eu = 0 for every u ∈ P(π), (9.10)

because this intersection number is equal by definition to the degree of the restriction
of this line bundle to the curveEu. By combining the relations (9.7), (9.8) and (9.10),
we deduce that:

σ · eu = −au(π∗f )str · Eu, for every u ∈ P(π). (9.11)

As the germ of effective divisor (π∗f )str along Eπ has no components of Eπ in
its support, the intersection numbers (π∗f )str · Eu are all non-negative. Moreover,
at least one of them is positive, because the divisor (π∗f )str is non-zero. By
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combining this fact with relations (9.11) and with the inequalities au > 0, we get:

{
σ · eu ≤ 0, for every u ∈ P(π),
there exists u0 ∈ P(π) such that σ · eu0 < 0.

(9.12)

Consider now an arbitrary element τ ∈ E(π)R \ {0}. One may develop it in the
basis (eu)u∈P(π):

τ =
∑

u∈P(π)
xueu. (9.13)

We will show that τ 2 < 0. As τ was chosen as an arbitrary non-zero vector, this
will imply that the intersection form on E(π)R is indeed negative definite. The trick
is to express the self-intersection τ 2 using the expansion (9.13), then to develop it
by linearity and to replace the vectors eu by σ −∑v �=u ev in a precise place:

τ 2 =
(
∑

u

xueu

)2

=

=
∑

u

x2
ue

2
u + 2

∑

u<v

xuxveu · ev =

=
∑

u

x2
u

⎛

⎝σ −
∑

v �=u
ev

⎞

⎠ · eu + 2
∑

u<v

xuxveu · ev =

=
∑

u

x2
u(σ · eu)−

∑

u �=v
x2
ueu · ev + 2

∑

u<v

xuxveu · ev =

=
∑

u

x2
u(σ · eu)−

∑

u<v

(xu − xv)2eu · ev.

We got the equality:

τ 2 =
∑

u

x2
u(σ · eu)−

∑

u<v

(xu − xv)2eu · ev. (9.14)

Using the inequalities (9.9) and (9.12), we deduce that its right-hand side is non-
positive, therefore the intersection form is negative semi-definite.

It remains to show that τ 2 < 0. Assume by contradiction that τ 2 = 0.
Equality (9.14) shows that the following equalities are simultaneously satisfied:

∑

u

x2
u(σ · eu) = 0, (9.15)

(xu − xv)2eu · ev = 0, for all u < v. (9.16)
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The relations (9.16) imply that xu = xv whenever eu · ev > 0. As eu = auEu
with au > 0, the inequality eu · ev > 0 is equivalent with Eu · Ev > 0, that
is, with the fact that [u, v] is an edge of the dual graph "(π). This dual graph
being connected (see (9.6)), we see that xu = xv for all u, v ∈ P(π). Consider
now an index u0 satisfying the second condition of relations (9.12). Equation (9.15)
implies that xu0 = 0. Therefore all the coefficients xu vanish, which contradicts the
hypothesis that τ �= 0. �

As a consequence of Theorem 9.9.1, one may define the dual basis ( E∨u )u∈P(π)
of the basis (Eu)u∈P(π) by the following relations, in which δuv denotes Kronecker’s
delta-symbol:

E∨u ·Ev = δuv, for all (u, v) ∈ P(π)2. (9.17)

By associating to each prime divisor Eu the corresponding valuation of the local
ring OS,s , computing the orders of vanishing along Eu of the pull-backs π∗f of the
functions f ∈ OS,s , one injects the set P(π) in the set of real-valued valuations
of OS,s . This allows to see the index u of Eu as a valuation. Such valuations are
called divisorial. If u denotes a divisorial valuation, it has a center on any resolution,
which is either a point or an irreducible component of the exceptional divisor. In the
second case, one says that the valuation appears in the resolution . The following
notion, inspired by approaches of Favre and Jonsson [FJ04, App. A] and [Jon15,
Sect. 7.3.6], was introduced in [GBPPPR19, Def. 1.6]:

Definition 9.9.2 Let u, v be two divisorial valuations of S. Consider a resolution of
S in which both u and v appear. Then their bracket is defined by:

〈u, v〉 := −E∨u · E∨v .

The bracket 〈u, v〉 may be interpreted as the intersection number of two Weil
divisors on S associated to the divisorsEu and Ev (see Proposition 9.9.7 below). As
a consequence, it is well-defined. That is, if the divisorial valuations u, v are fixed,
then their bracket does not depend on the resolution in which they appear. This fact
may be also proved using the property that any two resolutions of S are related by a
sequence of blow ups and blow downs (see [GBPPPR19, Prop. 1.5]).

It is a consequence of Theorem 9.9.1 that the brackets are all non-negative (see
[GBPPPR19, Prop. 1.4]). Moreover, by the Cauchy–Schwarz inequality applied to
the opposite of the intersection form:

Lemma 9.9.3 For every a, b ∈ P(π):

〈a, b〉2 ≤ 〈a, a〉〈b, b〉,

with equality if and only if a = b.
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Let nowD be a Weil divisor on S, that is, a formal sum of branches on S. IfD is
principal, that is, the divisor (f ) of a meromorphic germ on S, then one may lift it to
a resolution Sπ as the principal divisor (π∗f ). This divisor decomposes as the sum
of an exceptional part (π∗D)ex supported by Eπ and the strict transform ofD. The
crucial property of the lift (π∗f ), already used in the proof of Theorem 9.9.1 (see
relation (9.10)), is that its intersection numbers with all the components Eu of Eπ

vanish. In [Mum61, Sect. II (b)], Mumford imposed this property in order to define
a lift π∗D for any Weil divisor D on S:

Definition 9.9.4 Let D be a Weil divisor on S. Its total transform π∗D is the

unique sum (π∗D)ex + (π∗D)str such that:

1. (π∗D)ex ∈ E(π)Q.
2. (π∗D)str is the strict transform of D by π .
3. (π∗D) ·Eu = 0 for all u ∈ P(π).

The divisor (π∗D)ex supported by the exceptional divisor of π is the exceptional
transform of D by π .

The divisor π∗D is well-defined, as results from Theorem 9.9.1. The point is
to show that (π∗D)ex exists and is unique with the property (3). Write it as a sum∑
v∈P(π) xvEv . The last condition of Definition 9.9.4 may be written as the system:

∑

v∈P(π)
(Ev ·Eu)xv = −(π∗D)str · Eu, for all u ∈ P(π).

This is a square linear system in the unknowns xv , whose matrix is the matrix of
the intersection form in the basis (Eu)u∈P(π). As the intersection form is negative
definite, it is non-degenerate, therefore this system has a unique solution. Moreover,
all its coefficients being integers, its solution has rational coordinates, which shows
that (π∗D)ex ∈ E(π)Q .

Using Definition 9.9.4 and the standard definition of intersection numbers on
smooth surfaces recalled in Sect. 9.2, Mumford defined in the following way in
[Mum61, Sect. II (b)] the intersection number of two Weil divisors on S:

Definition 9.9.5 LetA,B be two Weil divisors on S without common components,
and π be a resolution of S. Then the intersection number of A and B is defined by:

A · B := π∗A · π∗B.

Using the fact that any two resolutions of S are related by a sequence of blow
ups and blow downs (see [Har77, Thm. V.5.5]), it may be shown that the previous
notion is independent of the choice of resolution, similarly to that of bracket of two
divisorial valuations introduced in Definition 9.9.2. In particular, if S is smooth, one
may choose π to be the identity. This shows that in this case Mumford’s definition
gives the same intersection number as the standard Definition 9.2.2.
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Example 9.9.6 Let S be the germ at the origin 0 of the quadratic cone Z(x2+ y2+
z2) ↪→ C

3 (it is the so-called A1 surface singularity). Let A and B be the germs
at 0 of two distinct generating lines of the cone. One may resolve S by blowing
up 0. This morphism π : Sπ → S separates all the generators, therefore it is an
embedded resolution of {A,B}. The exceptional divisor of π is the projectivisation
of the cone, that is, it is a smooth rational curve E. Its self-intersection number is
the opposite of the degree of the curve seen embedded in the projectivisation of
the ambient space C

3. Therefore, E2 = −2. Let us compute the total transform
π∗A = (π∗A)str + xE. The imposed constraint π∗A ·E = 0 becomes 1− 2x = 0,
therefore x = 1/2. We have used the fact that the strict transform (π∗A)str of A by
π is smooth and transversal to E, which implies that (π∗A)str · E = 1.

We obtained π∗A = (π∗A)str + (1/2)E and similarly, π∗B = (π∗B)str +
(1/2)E. Using Definition 9.9.5, we get:

A · B = π∗A · π∗B =
= ((π∗A)str + (1/2)E) · ((π∗B)str + (1/2)E) =
= (π∗A)str · (π∗B)str + (1/2)((π∗A)str + (π∗B)str) ·E + (1/2)2E2 =
= 0+ (1/2) · 2+ (1/2)2 · (−2) =
= 1/2.

This example shows in particular that the intersection number of two curve
singularities depends on the normal surface singularity on which it is computed.
Indeed, the branches A and B are also contained in a smooth surface (any two
generators of the quadratic cone are obtained as the intersection of the cone with
a plane passing through its vertex). In such a surface, their intersection number is 1
instead of 1/2.

Definition 9.9.5 allows to give the following interpretation of the notion of
bracket introduced in Definition 9.9.2 (see [GBPPPR19, Prop. 1.11]):

Proposition 9.9.7 Let A,B be two distinct branches on S. Consider an embedded
resolution π of their sum. Denote by Ea,Eb the components of the exceptional
divisor Eπ which are intersected by the strict transforms (π∗A)str and (π∗B)str
respectively. Then:

A · B = 〈a, b〉.

Proof This proof uses directly Definition 9.9.4.
As π is an embedded resolution of A + B, the strict transforms (π∗A)str and

(π∗B)str are disjoint. Therefore (π∗A)str · (π∗B)str = 0. Using the last condition
in the Definition 9.9.4 of the total transform of a divisor, we know that (π∗A) ·
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(π∗B)ex = (π∗A)ex · (π∗B) = 0. Combining both equalities, we deduce that:

A · B = (π∗A) · (π∗B) =
= (π∗A) · ((π∗B)ex + (π∗B)str ) =
= (π∗A) · (π∗B)str =
= ((π∗A)ex + (π∗A)str) · (π∗B)str =
= (π∗A)ex · (π∗B)str =
= (π∗A)ex · (π∗B − (π∗B)ex) =
= −(π∗A)ex · (π∗B)ex =
= −(−E∨a ) · (−E∨b ) =
= 〈a, b〉.

At the end of the computation we have used the equality (π∗A)ex = −E∨a , which
results from the fact that π is an embedded resolution of A. Indeed, this implies that
((π∗A)str +E∨a ) ·Eu = 0 for every u ∈ P(π), which shows that one has indeed the
stated formula for (π∗A)ex . �

9.10 A Reformulation of the Ultrametric Inequality

In this section we explain the notion of angular distance on the set of vertices of
the dual graph of a good resolution of S. Theorem 9.10.2 states a crucial property
of this distance, relating it to the cut-vertices of the dual graph. Then the ultrametric
inequality is reexpressed in terms of the angular distance. This allows to show that
Theorem 9.8.1 is a consequence of Theorem 9.10.10, which is formulated only in
terms of the angular distance.

Let π : Sπ → S be a good resolution of the normal surface singularity S. Recall
that P(π) denotes the set of irreducible components of its exceptional divisor Eπ .
Using the notion of bracket from Definition 9.9.2, one may define (see [GR, Sect.
2.7] and [GBPPPR19, Sect. 1.2]):

Definition 9.10.1 The angular distance is the function ρ : P(π)×P(π)→ [0,∞)
given by:

ρ(a, b) :=
⎧
⎨

⎩
− log

〈a, b〉2
〈a, a〉〈b, b〉 if a �= b,

0 if a = b.

The fact that the function ρ takes values in the interval [0,∞) is a consequence of
Lemma 9.9.3. The attribute “angular” was chosen by Gignac and Ruggiero because
their definition in [GR, Sect. 2.7] was more general, applying to any pair of real-
valued semivaluations of the local ring OS,s , and that it depended only on those
valuations up to homothety, similarly to the angle of two vectors. It is a distance
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by the following theorem of Gignac and Ruggiero [GR, Prop. 1.10] (recall that the
notion of vertex separating two other vertices was introduced in Definition 9.7.2):

Theorem 9.10.2 The function ρ is a distance on the set P(π). Moreover, for every
a, b, c ∈ P(π), the following properties are equivalent:

• one has the equality ρ(a, b)+ ρ(b, c) = ρ(a, c);
• b separates a and c in the dual graph "(π).

This theorem explains the importance of cut-vertices of the dual graph "(π) for
understanding the angular distance.

Theorem 9.10.2 is a reformulation of the following theorem, which was first
proved by in [GBGPPP18, Prop. 79, Rem. 81] for arborescent singularities, then in
[GR, Prop. 1.10] for arbitrary normal surface singularities (see also [GBPPPR19,
Prop. 1.18] for a slightly different proof):

Theorem 9.10.3 Let a, b, c ∈ P(π). Then:

〈a, b〉〈b, c〉 ≤ 〈b, b〉〈a, c〉,

with equality if and only if b separates a and c in the dual graph "(π).

Theorem 9.10.3 may be also reformulated in terms of spherical geometry using
the spherical Pythagorean theorem (see [GBPPPR19, Prop. 1.19.III]).

Using Proposition 9.9.7 and Definition 9.10.1 of the angular distance, one may
reformulate in the following way the ultrametric inequality for the restriction of the
function uL to a set of three branches:

Proposition 9.10.4 LetL,A,B,C be pairwise distinct branches on S. Consider an
embedded resolution of their sum and letEl,Ea,Eb,Ec the irreducible components
of its exceptional divisor which intersect the strict transforms of L,A,B and C
respectively. Then the following (in)equalities are equivalent:

1. uL(A,B) ≤ max{uL(A,C), uL(B,C)}.
2. (A · B) · (L · C) ≥ min{(A · C)(L · B), (B · C)(L · A)}.
3. 〈a, b〉〈l, c〉 ≥ min{〈a, c〉〈l, b〉, 〈b, c〉〈l, a〉}.
4. ρ(a, b)+ ρ(l, c) ≤ max{ρ(a, c)+ ρ(l, b), ρ(b, c)+ ρ(l, a)}.

We leave the easy proof of this proposition to the reader. It uses the definitions
of the function uL, of the angular distance, as well as Proposition 9.9.7. Note
that excepted the first one, all the inequalities are symmetric in the four branches
L,A,B,C. The fourth one is a well-known condition in combinatorics, whose
name was introduced by Bunemann in his 1974 paper [Bun74]:

Definition 9.10.5 Let (X, δ) be a finite metric space. One says that it satisfies the
four points condition if whenever a, b, c, d ∈ X, one has the following inequality:

δ(a, b)+ δ(c, d) ≤ max{δ(a, c)+ δ(b, d), δ(a, d)+ δ(b, c)}.
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In the same way in which a finite ultrametric may be thought as a special kind
of decorated rooted tree (see Proposition 9.4.18), a finite metric space satisfying the
four points condition may be thought as a special kind of decorated unrooted tree
(see [BD98]):

Proposition 9.10.6 The metric space (X, δ) satisfies the four points condition if
and only if δ is induced by a length function on a tree containing the set X among
its set of vertices. If, moreover, one constrains X to contain all the vertices of the
tree of valency 1 or 2, then this tree is unique up to a unique isomorphism fixing X.

Let us introduce supplementary vocabulary in order to deal with the special trees
appearing in Proposition 9.10.6:

Definition 9.10.7 Let X be a finite set. An X-tree is a tree whose set of vertices
contains the set X and such that each vertex of valency at most 2 belongs to X.
If (X, δ) is a finite metric space which satisfies the four points condition, then the
unique X-tree characterized in Proposition 9.10.6 is called the tree hull of (X, δ).

The basic idea of the proof of Proposition 9.10.6 is that anX-tree is characterized
by the shapes of the convex hulls of the quadruples of points of X, and that those
shapes are determined by the cases of equality in the 12 triangle inequalities and the
3 four points conditions associated to each quadruple. In Fig. 9.8 are represented the
five possible shapes. For instance, the H -shape is the generic one, characterized by
the fact that one has no equality in the previous inequalities.

Let us come back to our normal surface singularity S. One has the following
property (see [GBPPPR19, Prop. 1.24]):

Proposition 9.10.8 Let F be a finite set of branches on S. If uL is an ultrametric
on F \ {L} for one branch L in F, then the same is true for any branch of F.

By Proposition 9.10.4, if uL is an ultrametric on F \ {L} for one branch L in
F, then one has the symmetric relation (2) for every quadruple of branches of F
containing L. The subtle point of the proof of Proposition 9.10.8 is to deduce from
this fact that (2) is satisfied by all quadruples.

Given Proposition 9.10.8, it is natural to try to relate the rooted trees associated
to the ultrametrics obtained by varying L among the branches of F. By looking at

Fig. 9.8 The possible shapes of an X-tree, when X has four elements
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quadruples of branches from F, one may prove using Propositions 9.10.4 and 9.10.8
that:

Proposition 9.10.9 Let F be a finite set of branches on S. Consider an embedded
resolution of F such that the map associating to each branch A of F the component
Ea of the exceptional divisor intersected by its strict transform is injective. Denote
by Fπ the set of divisorial valuations a appearing in this way. Then:

1. The function uL is an ultrametric on F \ {L} for some branch L ∈ F if and only
if the angular distance ρ satisfies the four points condition in restriction to the
set Fπ .

2. Assume that the previous condition is satisfied. Then the rooted tree associated
to uL on F \ {L} is isomorphic to the tree hull of (Fπ , ρ) by an isomorphism
which sends each end marked by a branchA of F to the vertex a of the tree hull.

Proposition 9.10.9 implies readily that Theorem 9.8.1 is a consequence of the
following fact (see [GBPPPR19, Cor. 1.40]):

Theorem 9.10.10 Let S be a normal surface singularity. Consider a set G of
vertices of the dual graph " of a good resolution π : Sπ → S of S. Assume that the
convex hull ConvBV(")(G) of G in the brick-vertex tree of " does not contain brick-
vertices of valency at least 4 in ConvBV(")(G). Then the restriction of the angular
distance ρ to G satisfies the four points condition and the associated tree hull is
isomorphic as a G-tree to ConvBV(")(G).

In turn, Theorem 9.10.10 is a consequence of a graph-theoretic result presented
in the next section (see Theorem 9.11.1).

9.11 A Theorem of Graph Theory

In this final section we state a pure graph-theoretical theorem, which implies Theo-
rem 9.10.10 of the previous section. As we explained before, that theorem implies
in turn our strongest generalization of Płoski’s theorem, that is, Theorem 9.8.1.

Theorem 9.10.10 is a consequence of Theorem 9.10.2 and of the following graph-
theoretic result:

Theorem 9.11.1 Let " be a finite connected graph and δ be a distance on the set
V (") of vertices of ", such that for every a, b, c ∈ V ("), the following properties
are equivalent:

• one has the equality δ(a, b)+ δ(b, c) = δ(a, c);
• b separates a and c in ".

Let X be a set of vertices of " such that the convex hull ConvBV(")(X) of X in
the brick-vertex tree of " does not contain brick-vertices of valency at least 4 in
ConvBV(")(X). Then δ satisfies the 4 points condition in restriction to X and the
tree hull of (X, δ) is isomorphic to ConvBV(")(X) as an X-tree.
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Fig. 9.9 A convex hull of four vertices

The idea of the proof of Theorem 9.11.1 is to show that, under the given
hypotheses, the equalities among the triangle inequalities and four points conditions
are as described by the brick-vertex tree. It is writtend in a detailed way in
[GBPPPR19, Thm. 1.38].

Example 9.11.2 Let us consider again the connected graph " of Example 9.7.6.
Look at its vertices a, b, c, d shown on the left of Fig. 9.9. The corresponding
vertices a, b, c, d of the brick-vertex tree BV(") are shown on the right side of
the figure. Denoting X := {a, b, c, d}, the convex hull ConvBV(")(X) is also
drawn on the right side using thick red segments. We see that the hypothesis of
Theorem 9.11.1 about the valencies of brick-vertices is satisfied, as the only brick-
vertex contained in ConvBV(")(X) is of valency 3 in this convex hull.

As shown by the F -shape of ConvBV(")(X), one should have the following
equalities and inequalities in the four points conditions concerningX:

δ(a, d)+ δ(b, c) = δ(a, c)+ δ(b, d) > δ(a, b)+ δ(c, d). (9.18)

Let us prove that this is indeed the case. Consider the cut vertex v of " shown on
the left side of Fig. 9.9. As it separates a from d , we have the equality δ(a, d) =
δ(a, v) + δ(v, d). As v does not separate a from b, we have the strict inequality
δ(a, v)+ δ(b, v) > δ(a, b). Using similar equalities and inequalities, we get:

δ(a, d)+ δ(b, c) =
= (δ(a, v)+ δ(v, d))+ (δ(b, v)+ δ(v, c)) =
= (δ(a, v)+ δ(v, c))+ (δ(b, v)+ δ(v, d)) =
= δ(a, c)+ δ(b, d) =
= (δ(a, v)+ δ(b, v))+ (δ(v, d)+ δ(v, c)) =
> δ(a, b)+ δ(c, d).

The (in)equalities (9.18) are proved.
One proves similarly the triangle equalities δ(a, b)+δ(b, c) = δ(a, c), δ(a, b)+

δ(b, d) = δ(a, d) and the fact that one has no equality among the triangle
inequalities concerning the triple {a, c, d}, which shows that the tree hull of (X, δ)
has indeed an F -shape, with the vertices a, b, c, d placed as in ConvBV(")(X).
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Chapter 10
Lipschitz Fractions of a Complex
Analytic Algebra and Zariski Saturation

Frédéric Pham and Bernard Teissier

Abstract This text is about the algebra of germs of Lipschitz meromorphic
functions on a germ of reduced complex analytic space (X, 0). It is shown to be
an analytic algebra, the Lipschitz saturation of the algebra of (X, 0), which in
some important cases coincides with Zariski’s algebraic saturation. In the case of
reduced germs of plane curves, the results in Sect. 10.6 imply that two such germs
are topologically equivalent if and only if their Lipschitz saturations are analytically
isomorphic. Applications to bi-Lipschitz equisingularity are given.

10.1 Introduction

While seeking to define a good notion of equisingularity (see [Zar65a, Zar65b]),
Zariski was led to define in [Zar68] what he calls the saturation of a local ring:
the saturated ring Ã of a ring A contains A and is contained in its normalization
A, and for a complete integral ring of dimension 1, the datum of the saturated
ring is equivalent to the datum of the set of Puiseux characteristic exponents of
the corresponding algebroid curve.

In the case of complex analytic algebras, it is well known that the normalization
A coincides with the set of germs of meromorphic functions with bounded module;
among the intermediate algebras between A and A, there is one which can be
introduced quite naturally: it is the algebra of the germs of Lipschitz meromorphic
functions. We propose to study this algebra, first formally (Sect. 10.3), then geomet-
rically (Sect. 10.4), and to prove (Sects. 10.5 and 10.7) that at least in the case of
hypersurfaces, it coincides with the Zariski saturation. In Sect. 10.6, in the case of
a reduced but not necessarily irreducible curve, we show how the constructions of
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Sects. 10.3 and 10.4 provide a sequence of rational exponents (defined intrinsically,
without reference to any coordinates system), which generalizes the sequence of
characteristic Puiseux exponents of an irreducible curve. Finally, in Sect. 10.8, we
recover in a very simple way the result of Zariski which states that the equisaturation
of a family of hypersurfaces implies their topological equisingularity (we even
obtain the Lipschitz equisingularity, realized by a Lipschitz deformation of the
ambient space).

All the arguments are based on the techniques of normalized blowups (recalled
in the Preliminary Section; see also [Hir64b]), and we thank Professor H. Hironaka
who taught it to us.1

10.2 Preliminaries

(Reminders on the techniques of normalized blowups and majorations of
analytic functions)

10.2.1 Conventions

In what follows the rings are commutative, unitary and noetherian. A ring A is said
to be normal if it is integrally closed in its total ring of fractions tot(A). An analytic
space (X,OX) is said to be normal if at every point x ∈ X, OX,x is normal. We will
denote by A the integral closure of a ring A in tot(A).

10.2.2 Universal Property of the Normalisation

Let n : X→ X be the normalisation of an analytic spaceX, i.e.,X = specanXOX,
where OX is a finite OX-algebra satisfying (OX)x = OX,x .

Definition 10.2.1 For every normal analytic space Y
f−→ X aboveX such that the

f -image of any irreducible component of Y is not contained in N = supp OX/OX
(the analytic subspace of points inXwhereOX,x is not normal), there exists a unique

1We are also very grateful to Mr. Naoufal Bouchareb who brilliantly and expertly translated our
1969 manuscript from French to English and from typewriting to LaTeX.
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factorization:

Y
f

f

X

n

X

Proof

(a) Algebraic version:
Let ϕ : A → B be a homomorphism of rings. Let (pi )i=1,...,k be the prime
ideals of 0 in B.
We suppose that:

(i) B is normal;
(ii) for every i = 1, . . . , k, CA(A) is not included in ϕ−1(pi ), where CA(A)

denotes the conductor of A in A:

CA(A) = {g ∈ A/gA ⊂ A}.

Then, there is a unique factorization:

A

ϕ

A
ϕ

B

Indeed, by the Prime Avoidance Lemma (see [Bou61, §1]), there exists g ∈
CA(A) such that g /∈ ϕ−1(pi ) for all i = 1, . . . , k. This implies that ϕ(g) is not
a divisor of 0 in B. For every h ∈ A, set:

ϕ(h) = ϕ(g.h)
ϕ(g)

∈ tot(B)

Since h is integral on A, ϕ(h) is integral on ϕ(A), and thus also on B. Hence,
ϕ(h) ∈ B and ϕ is the desired factorization. The uniqueness is obvious.

(b) Geometric version:

Let Y
f−→ X satisfy the conditions of the statement. The conditions of the

statement remain true locally at y ∈ Y since if ϕ−1(N) contains locally an
irreducible component of Y , it contains it globally. We deduce from this that the
local homomorphism:

OX,f (y) −→ OY,y
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satisfies the conditions of the algebraic version. We then have the unique
factorization:

OX,f (y)

X,f (y) Y,y

and by the coherence of OX, the existence and uniqueness of the searched
morphism. �

10.2.3 Universal Property of the Blowing-up (see [Hir64a])

Proposition 10.2.2 Let Y ↪→ X be two analytic spaces and let I be the ideal of Y
in X. There exists a unique analytic space Z

π−→ X over X such that:

(i) π−1(Y ) is a divisor of Z, i.e., I.OZ is invertible.

(ii) for every morphism T
ϕ−→ X such that I.OT is invertible, there is a unique

factorization:

T
Bl(ϕ)

ϕ

Z

π

X

The morphism Z
π→ X is called the blowup of X along Y . Recall that π is

bimeromorphic, proper and surjective and that π |Z \ π−1(Y ) is an isomorphism
on X \ Y .

10.2.4 Universal Property of the Normalized Blowup

Proposition 10.2.3 Let Y ↪→ X such thatX is normal outside of Y . Then, for every

morphism T
ϕ−→ X such that:

(i) T is normal;
(ii) I.OT is invertible,
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there exists a unique factorization.

T
Bl(ϕ)

ϕ

Z

n◦π

X

Proof It is sufficient to check that the factorization T
Bl(ϕ)−→ Z satisfies the conditions

of Sect. 10.2.3. Since π |Z \ π−1(Y ) is an isomorphism, Z \ π−1(Y ) is normal and
it is sufficient to verify that the image of each irreducible component of T meets
Z \ π−1(Y ). But the inverse image of π−1(Y ) by Bl(ϕ) is a divisor by assumption.
Since T is normal, this divisor cannot contain any irreducible component. �

10.2.5 Normalized Blowup and Integral Closure of an Ideal

(See also [Lip69, Chap. II].)
LetA be the analytic algebra of an analytic space germ (X, 0), let I be an ideal of

A and let Y ↪→ X be the corresponding sub-germ. It is known that the blowup of the
germ Y in the germX2 is the projective object Z = ProjAE overX associated with
the graded algebraE = ⊕

n�0
In. The normalization ofZ can be written Z = ProjAE,

with E = ⊕
n�0
In (where, for an ideal J of A, we define:

J =
{
h ∈ tot(A) | ∃j1 ∈ J, j2 ∈ J 2, . . . , jk ∈ J k : hk + j1hk−1 + · · · + jk = 0

}
,

which is the ideal of A called the integral closure of the ideal J in A).
As an object over X, the space Z equals ProjAE. But since E is a graded A-

algebra of finite type, there exists a positive integer s such that the graded algebra

E
(s) = ⊕

n�0
In.s

is generated by its degree 1 elements: E
(s)

1 = I s . But then, E
(s)

n = (I s)n, and as

we know that there is a canonical isomorphism Z = ProjAE
(s)

, we see that the
normalized blowup Z of I in A, with its canonical morphism to X, coincides with
the blowup of I s in A.

2Here, as in other places, we abuse language to identify the germ (X, 0) with one of its
representatives.
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Proposition 10.2.4 I and I generate the same ideal of OZ, i.e., IOZ = IOZ .

Proof E is a finite typeE-module, so forN big enough, I.IN = IN+1. But I .IN ⊂
IN+1, therefore:

IOZ . INOZ ⊂ IOZ . INOZ. (10.1)

But if N = k.s, then IN . OZ = (I s)k. OZ . The latter ideal being invertible, we

can simplify by INOZ in the inclusion (10.1). Then I .OZ ⊂ I.OZ . The reverse
inclusion is obvious. �
Proposition 10.2.5 I coincides with the set of elements ofA which define a section
of I.OZ.

Proof If f ∈ I , then f obviously defines a section of IOZ . But IOZ = IOZ
according to Proposition 10.2.4. Conversely, suppose that f ∈ A defines a section
of IOZ ; by writing what this means in some affine open sets Z(gk) ⊂ Z, where
gk ∈ I s , one finds that there must exist some integersμk such that f.gμkk ∈ I.(I s)μk .

Let (gk) be a finite family of generators of I s . For N large enough, every
monomial of degree N in the gk’s will contain one of the gμkk as a factor, so:

f. (I s)N ⊂ I. (I s)N ,

i. e., by choosing a base (ei) of (I s)N ,

f. ei =
∑

j

aij ej , aij ∈ I.

Since A can be supposed to be integral, we deduce from this that

det(f. 1− ∥∥aij
∥∥) = 0,

which is an equation of integral dependence for f on I . �

10.2.6 Majoration Theorems

Theorem 10.2.6 (Well Known, see for Example [Abh64]) Let A be a reduced
complex analytic algebra and let (X, 0) be the associated germ. For every h ∈
tot(A), the following properties are equivalent:

(i) h ∈ A
(ii) h defines on Xred a function germ with bounded module.
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Theorem 10.2.7 Let A be a complex analytic algebra, let (X, 0) be the associated
germ, let I = (x1, . . . , xp) be an ideal of A and let Z be the normalized blowup of
I in X. For every h ∈ tot(A), the following properties are equivalent:

(i) h ∈ I.OZ
(ii) h defines on Xred a germ of function with module bounded by sup|xi| (up to

multiplication by a constant).

Proof Let A be a noetherian local ring and let I = (x1, . . . , xp) be a principal
ideal of A. Then I is generated by one of the xi’s (easy consequence of Nakayama’s
lemma). ThusZ is covered by a finite number of open sets such that in each of them,
one of the xi’s generates I.OZ .

To show that |h|
sup |xi | is bounded on X, we just have to prove that it is bounded

on each of these open-sets, since Z → X is proper and surjective. In the open set
where xi generates I.OZ , |h|

sup |xi | is bounded if and only if |h||xi | is bounded and we are
back to Theorem 10.2.6. �
Corollary 10.2.8 (From Preliminary 10.2.5) For every h ∈ A, the following
properties are equivalent:

(i) h ∈ I
(ii) h defines on Xred a germ of function with module bounded by sup|xi| (up to

multiplication by a constant).

10.3 Algebraic Characterization of Lipschitz Fractions

Let A be a reduced complex analytic algebra and let A be its normalization (A is
a direct sum of normal analytic algebras, each being therefore an integral domain,
one per irreducible component of the germ associated to A). Consider the ideal:

IA = ker(A�⊗
C
A→ A⊗

A
A),

where �⊗ means the operation on the algebras that corresponds to the cartesian
product of the analytic spaces.

Definition 10.3.1 We will call Lipschitz saturation of A the algebra:

Ã = {f ∈ A | f�⊗1− 1�⊗f ∈ IA}

where IA denotes the integral closure of the ideal IA (in the sense of Sect. 10.2.5).

Theorem 10.3.2 Ã is the set of fractions of A that define Lipschitz function germs
on the analytic spaceX, a small enough representative of the germ (X, 0) associated
to A.
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Proof Firstly, let us remark that that every Lipschitz function is locally bounded
and that the set of bounded fractions of A constitutes the normalization A (Theo-
rem 10.2.6). However, denoting by X the disjoint sum of germs of normal analytic
spaces associated to the algebra A, the Lipschitz condition |f (x) − f (x ′)| �
C sup |zi − z′i | for an element f ∈ A is equivalent to say that on X × X, the
function f�⊗1 − 1�⊗f has its module bounded by the supremum of the modules of
the zi�⊗1 − 1�⊗zi , where z1, . . . , zr denotes a system of generators of the maximal
ideal of A. But the ideal generated by zi�⊗1 − 1�⊗zi , i = 1 . . . , r is nothing but
the ideal IA defined above. Theorem 10.3.2 is therefore a simple application of
Corollary 10.2.8. �
Corollary 10.3.3 Ã is a local algebra (and thus an analytic algebra).

Proof Since the algebra Ã is intermediate between A and A, it is a direct sum of
analytic algebras. If this sum had more than one term, the element 1⊕0⊕· · ·⊕0 of
Ã would define on X a germ of function equal to 1 on at least one of the irreducible
components of X, and to 0 on another of these components. But such a function
could not be continuous on X and a fortiori not Lipschitz. �

The following geometric construction, which comes from Sect. 10.2.5, will play
a fundamental role in the sequel. We will associate the following commutative
diagram to the analytic space germ X:

DX EX

X ×
X

X X × X

where E denotes the projective object over X × X obtained by the blowup with
center X ×

X
X followed by the normalization (i.e., EX is the normalized blowup

of the ideal IA which defines X ×
X
X in X × X); the space DX is the exceptional

divisor, inverse image of X ×
X
X in EX. According to Sect. 10.2.5, the condition:

f�⊗1− 1�⊗f ∈ IA,

which defines Ã, is equivalent to:

(f�⊗1− 1�⊗f )|DX = 0.
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In other words, the germ X̃ associated with the analytic algebra Ã is nothing but the
coequalizer3 of the canonical double arrow

DX ⇒ X

obtained by composing the natural map DX → X × X with the two projections to
X. This germ of analytic space X̃ will be called the the Lipschitz saturation of the
germ X.

It is easy to see that the above local construction can be globalized: it is well
known for the objects EX and DX, which come from blowups and normalizations.
Likewise for X̃: it is easy to define, on an analytic space X = (|X|,OX), the
sheaf ÕX of germs of Lipschitz fractions, and to verify that it is a coherent sheaf
of OX-modules (as a subsheaf of the coherent sheaf OX ); we thus define an analytic
space X̃ = (|X|, ÕX) called the Lipschitz saturation of X = (|X|,OX), whose
underlying topological space |X| coincides with that of X (in fact, the canonical
morphism is bimeromorphic and with Lipschitz inverse, so it is a homeomorphism).

Question 10.1 The inclusion Ã ⊂ A was obvious in the transcendental interpreta-
tion: “every Lipschitz fraction is bounded”.

But if one is interested in objects other than analytic algebras, for example in
algebras of formal series, there is no longer any reason for A to play a particular
role in the definition of Ã. For example, we can define, for any extension B of A in
its total fractions ring, the Lipschitz saturation of A in B:

Ã(B) = {f ∈ B|f ⊗ 1− 1⊗ f ∈ IA(B)
}

with

IA(B) = ker(B ⊗
C
B → B ⊗

A
B).

The question then arises whether we still have the inclusion Ã(B) ⊂ A.

10.4 Geometric Interpretation of the Exceptional Divisor
DX: Pairs of Infinitely Near Points on X

Each point of Dred
X (the reduced space of the exceptional divisor DX) will be

interpreted as a pair of infinitely near points on X. The different irreducible
components τDred

X of Dred
X , labelled by the index τ , will correspond to different

types of infinitely near points. The image of τDred
X in X (by the canonical map

3So we have a canonical morphism of analytic spaces DX → X̃.
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τDred
X ↪→ DX → X̃ → X) is an irreducible analytic subset germ τX ⊂ X,

which we can call confluence locus of the infinitely near points of type τ . Among
the types of infinitely near points, it is necessary to distinguish the trivial types
whose confluence points are the irreducible components of X: the generic point
of a trivial τDred

X will be a pair obtained by making two points of X tend towards
the same smooth point of X. All the other (non-trivial) types have their confluence
locus consisting of singular points of X: for example, we will see later that every
hypersurface has as non-trivial confluence locus the components of codimension 1
of its singular locus.

What do the Lipschitz fractions become in this context? We have seen
in Sect. 10.3 that a Lipschitz fraction is an element f ∈ A such that
(f ⊗ 1− 1⊗ f ) |DX = 0. But, since DX is a divisor of the normal space EX,
this condition will be satisfied everywhere if it is only satisfied in a neighbourhood
of a point of each irreducible component of this divisor; or, in intuitive language:
“to verify the Lipschitz condition it is enough to verify it for a pair of infinitely near
points of each type”. Notice that we do not need to worry about trivial types, for
which the condition is trivially satisfied for all f ∈ A (note also that the trivial τDX
are reduced).

We deduce from this the following result.

Theorem 10.4.1 A meromorphic function which is locally bounded on the complex
analytic space X is locally Lipschitz at every point if only it is locally Lipschitz at
one point in each confluence locus τX.

To give a first (very rough) idea of the shape of the τDred
X , let us look at their

images in the space ÊX defined by blowing-up the ideal IA in X×X. The space EX
that we are interested in is the normalization of ÊX. But ÊX has a simpler geometric
interpretation: it is the closure in X ×X × PN−1 of the graph " of the map

(X ×X −X ×
X
X) −→ PN−1

which maps each pair (x, x ′) outside of the diagonal to the line defined, in
homogeneous coordinates, by:

(z1 − z′1 : z2 − z′2 : . . . : zN − z′N) ,

where (z1, z2, . . . , zN ) denotes a system of generators of the maximal ideal of OX,x .
We will denote by ẑ : ÊX → PN−1 the underlying morphism and by ẑ′ : D̂X →

PN−1 the restriction of ẑ overX×
X
X (these morphisms depend on the choice of the

generators (z1, z2, . . . , zN )). The fiber D̂X(x) of the exceptional divisor D̂X over a
point x ∈ X is the disjoint sum of a finite number of algebraic varieties (as many
as X ×

X
X has points over x) that are embedded in PN−1 by the map ẑ′|D̂X(x). In

particular, if x is a smooth point, D̂X(x) is nothing but the projective space Pn−1

associated with the tangent space to X at x.
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By composition with the finite morphisms EX → ÊX (normalization) and
DX → D̂X, we deduce from ẑ and ẑ′ two morphisms

z̃ : EX → PN−1

z̃′ = z̃| DX : DX → PN−1

where z̃′ has the following property: its restriction to the fiber DX(x) of DX over
x ∈ X is a finite morphism.

Corollary 10.4.2 If X ⊂ CN is of pure dimension n, the confluence loci τX are of
dimension at least equal to 2n−N .

Proof According to the finiteness of the above morphism, dimDX(x) � N − 1, so
each irreducible component τDred

X ofDX will have an image τX inX of dimension:

dim τX ≥ dim τDred
X − (N − 1) = (2n− 1)− (N − 1) = 2n−N.

The Special Case of Hypersurfaces In this case, N = n + 1, so the confluence
loci are of dimension at least equal to n − 1. The only non-trivial confluence loci
are the codimension 1 components of the singular locus of X. Furthermore, the
fibres τDX(x) of the non-trivial τDX are sent onto PN−1 by finite morphisms
(which are surjective by a dimension argument). In the special case of hypersurfaces,
Theorem 10.4.1 is thus formulated as follows:

Theorem 10.4.3 A meromorphic function on a complex analytic hypersurfaceX is
locally Lipschitz at every point if only it is locally Lipschitz at one point of each
irreducible component (of codimension 1) of its polar locus.

Definition 10.4.4 At a generic point of the divisor τDred
X , this divisor is a smooth

divisor of the smooth space EX. Let s be its irreducible local equation. The ideal
of the non reduced divisor τDX is then locally of the form (sμ(τ)), where μ(τ) is a
positive integer, the multiplicity of the divisor τDX".

10.5 Lipschitz Fractions Relative to a Parametrization

Let R ⊂ A be an analytic subalgebra of A and let S be the associated analytic space
germ. By consideringX as a relative analytic space over S, we are going to proceed
to a construction analogous to that of Sect. 10.3, where the product X̄×X̄ is replaced
by the fiber product on S. This gives a diagram:

DX/S EX/S

X ×
X

X X ×
S

X
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which enables one to define the algebra of Lipschitz fractions relative to S:

ÃR = {f ∈ A | (f�⊗1− 1�⊗f )|DX/S = 0
}
,

whose geometric interpretation is given by the “relative” analog to Theorem 10.3.2:

Theorem 10.5.1 (Relative Theorem 10.3.2) ÃR is the set of fractions of A that
satisfy a Lipschitz condition:

∣∣f (x)− f (x ′)∣∣ ≤ C sup
i

∣∣zi − z′i
∣∣

for every pair of points (x, x ′) taken in the same fiber ofX/S (with the same constant
C for all fibers).

Notice the inclusion Ã ⊂ ÃR , which is evident in the geometric interpretation.
Formally, this inclusion can also be deduced from the existence of a “morphism”
from the above relative diagram to the absolute diagram of Sect. 10.3:

DX EX

DX/S EX/S

X ×
S

X X×XX ×
X

X

where the dotted arrow ��������� is defined by the universal property of

the normalized blowup (see Sect. 10.2.4, noting that X×X is normal).
We will now assume thatX is of pure dimension n and we will be interested in the

case where R is a parametrization of A, i.e., the regular algebra C {z1, z2, . . . , zn}
generated by a system of parameters of A (an n-uple of elements of A such that the
ideal generated inA contains a power of the maximal ideal). In other words,X→ S

is a finite morphism from X to a Euclidean space of dimension equal to that of X.
Let z = (z1, z2, . . . , zN ) be a system of generators of the maximal ideal of A, and
let us consider n linear combinations of them:

(az)1 = a11z1 + a12z2 + · · · + a1NzN

(az)2 = a21z1 + a22z2 + · · · + a2NzN

(az)n = an1z1 + an2z2 + · · · + anNzN
(
ai,j ∈ C

)
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The set of the a = (aij ) for which C {(az)1, (az)2, . . . , (az)n} is a parametriza-
tion of A forms, obviously, a dense open set of the spaceMN×n(C) of all the N × n
matrices. We will say more generally that a family P of parametrizations is generic
if for every system z = (z1, z2, . . . , zn) of generators of the maximal ideal of A, the
set of matrices a for which C {(az)1, (az)2, . . . , (az)n} ∈ P contains a dense open
set ofMN×n(C).

We propose to prove the:

Theorem 10.5.2 For any generic family P of parametrizations,

Ã =
⋂

R∈P
ÃR

It follows from this theorem that the following two questions admit identical
answers:

Question 10.2 Is the equality Ã = ÃR generically true (i.e., for a generic family R
of parametrizations)?

Question 10.2’ Is ÃR generically independent of R?

We will see that at least in the case of hypersurfaces the answer to these two
questions is yes.

Proof (of Theorem 10.5.2) We have already seen that Ã ⊂ ÃR for every R.
Conversely, consider a function f ∈ ⋂R∈P ÃR; does it belong to Ã?

Let us consider the family of irreducible divisors in EX consisting of the τDred
X

and of the irreducible components of {f�⊗1− 1�⊗f = 0}. Let us denote by τ�f the
set of points of τDred

X which:

1. do not belong to any other irreducible divisor of the family;
2. are smooth points of τDred

X and of EX.

SinceEX is normal, hence non-singular in codimension 1, τ�f is a Zariski dense
open set of τDred

X . At every point w ∈ τDred
X , the local ideal of τDX in EX is

of the form
(
sμ(τ)

)
, where s is a coordinate function of a local chart of EX, and

μ(τ) an integer ≥ 1 (the multiplicity of the divisor τDX). Moreover, the function
f�⊗1 − 1�⊗f is of the form usν(τ), where u is a unit of the local ring of EX at the
point w and ν(τ ) is an integer ≥ 0.

Then, it remains to prove that v(τ ) ≥ μ(τ) for every τ (see Sect. 10.4).
Let S be the germ associated with a parametrization R ∈ P and let us denote

by E∗X/S (resp. D∗X/S) the image of EX/S (resp. DX/S) in EX by the canonical map
EX/S ��������� EX defined at the beginning of the section. By definition,
D∗X/S = E∗X/S ∩ DX, so that if E∗X/S contains a point w ∈ τ�f , the divisor D∗X/S
will be given in E∗X/S , in a neighbourhood of this point, by the ideal (sμ(τ)). If this
ideal is not zero, i.e., if E∗X/S is not included inDX , the relative Lipschitz condition:

(f�⊗1− 1�⊗f )| DX/S = 0
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implies that the function (f�⊗1− 1�⊗f )| E∗X/S is divisible by sμ(τ) in a neighbour-
hood of w.

By writing f�⊗1 − 1�⊗f = usν(τ) and by remarking that u, which is a unit of
EX, remains a unit after restriction to E∗X/S , we deduce from this that ν(τ ) ≥ μ(τ).

On the way, we had to admit that there exists an R ∈ P such that, for every non-
trivial type τ , E∗X/S meets τ�f and is not locally included in τ�f . To make sure of
this, and thus to complete the proof of Theorem 10.5.2, it suffices to prove:

Lemma 10.5.3 For every Zariski dense open set τ� ⊂ τDX
red (τ non-trivial)

consisting of smooth points of τDred
X which are also smooth points of EX, there

exists a generic family of parametrizations R for which the map EX/S → EX
intersects τ� in at least one point w and is an embedding transversal to τ� at
this point. �
(The condition of “transversal embedding” is obviously stronger than what we
asked, but will be more manageable).

Let z = (z1, z2, . . . , zn) be a system of generators of the maximal ideal of OX,0,
and denote by τ z̃ : τDred

X → PN−1 the restriction of the morphism z̃ : EX → PN−1

of Sect. 10.4. To every parametrization R(a) = C {(az)1, (az)2, . . . , (az)n} defined
by a matrix a ∈ MN×n(C), let us associate the (N − n − 1)-plane PN−n−1(a) ⊂
PN−1 defined as the projective subspace associated to the kernel of the matrix a.

Lemma 10.5.4 If the map τ z̃ : τ�→ PN−1 is effectively transversal4 to PN−1(a)

at the point w ∈ τ�, then the map EX/S(a) → EX is an embedding effectively
transversal to τ� at this point. �
Proof (of Lemma 10.5.4) Since τ z̃ is the restriction of z̃ : EX → PN−1, the
transversality of τ z̃ implies the transversality of z̃.

Hence, z̃−1(PN−n−1(a)) is a smooth subvariety of EX of dimension n, which
intersects τ� transversely along the smooth subvariety τ z̃−1(PN−n−1(a)) of dimen-
sion n − 1. In particular, z̃−1(PN−n−1(a)) is the closure of the complement of
τ z̃−1(PN−n−1(a)), i.e., the closure of its part located outside of the exceptional
divisor. But outside of the exceptional divisor, the right vertical arrow of the
following commutative diagram is an isomorphism (since X̄ × X̄ is normal), while
the left vertical arrow is surjective.

4The sentence: the map is transversal at w expresses one of the following two possible cases:

1. w is sent outside of the subvariety into consideration;
2. w is sent into the subvariety into consideration, and the image of the tangent map to the point
w is a vector subspace transversal to the tangent space of this subvariety.

In the second case, we will say that the map is effectively transversal in w.
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EX/S(a) EX

X ×
S(a)

X X× X

Therefore, the image E∗X/S(a) of the upper arrow is identified with X ×
S(a)

X, i.e.,

with z̃−1(PN−n−1(a)). Since the equality

E∗X/S(a) = z̃−1(PN−n−1(a))

is true outside of the exceptional divisor, it is true everywhere, by taking the closure.
It remains to prove that EX/S(a) → E∗X/S(a) is an isomorphism (in a neighbour-

hood of w), but it is obvious. Indeed, it is the germ of a morphism between two
smooth varieties of the same dimension which sends a smooth divisor of one onto a
smooth divisor of the other and which is an isomorphism outside of these divisors.

�
By Lemma 10.5.4, we can consider Lemma 10.5.3 as a simple consequence of:

Lemma 10.5.5 There exists a dense open set of matrices a ∈ MN×n(C) for which
the map τ z̃ : τ� → PN−1 is effectively transversal to PN−n−1(a) in at least one
point w ∈ τ�.

Proof Let us construct a stratification of τDXred such that each of the following
analytic sets is a union of strata:

1. the reduced fiber τDred
X (0) of τDred

X over the origin 0 ∈ X;
2. the complement of the Zariski open set τ�.

Let us denote by W be the maximal stratum of this stratification (obviously
W ⊂ τ�) and by W0 the maximal stratum of one (arbitrarily chosen) of the
irreducible components of τDred

X . We will assume that the stratification has been
chosen sufficiently fine so that every pair of strata (W0, V ) satisfies Whitney (a)-
Condition [Whi65], where V belongs to the star of W0 (see the appendix in the
present paper). In these conditions, it follows from the appendix that if the map
τ z̃ : τDred

X → PN−1 has its restriction to W0 effectively transversal to PN−n−1(a)

at a point w0 ∈ W0, then its restriction to W will be effectively transversal to
PN−n−1(a) in at least one point w ∈ W close to w0. �
But, we will now prove the:

Lemma 10.5.6 There exists a dense open set of matrices a ∈ MN×n(C) for which
the map τ z̃ |W0 : W0 → PN−1 is effectively transversal to PN−n−1(a) in at least one
point w0 ∈ W0. �
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Proof Since τ is a non-trivial type, the image of the projection τDred
X → X is of

dimension � n − 1, so that the dimension of the fiber τDred
X (0) must be at least n

(as dimτDred
X = 2n − 1). Now, we know (Sect. 10.4) that the map τ z̃ restricted to

τDred
X (0) is a finite morphism. By considering the algebraic variety of dimension

� n in PN−1 defined as the image of a component of τDred
X (0), and the Zariski

dense open set of this variety defined as the image of the set of points of W0 where
the morphism is a local isomorphism, we see that Lemma 10.5.6 is reduced to:

Lemma 10.5.7 Consider an algebraic variety of dimension � n in the projective
space PN−1 and a Zariski dense open set in this variety. The set of (N − n − 1)-
planes of PN−1 which intersect transversely this open set in at least one smooth
point contains a dense open set of the Grassmann manifold. �
The proof of this lemma is left to the reader. This completes the proof of
Lemma 10.5.6. �

To summarize:

Lemma 10.5.7%⇒ Lemma 10.5.6%⇒ Lemma 10.5.5
Lemma 10.5.4

}

%⇒ Lemma 10.5.3%⇒ Theorem 10.5.2

This completes the proof of Theorem 10.5.2. �
Remark 10.5.8 The arguments of Sect. 10.4 generalize without difficulty to the
relative case. Thus, for every analytic subalgebra R ⊂ A, we have the notion of
confluence locus relative to R and the relative analog of Theorem 10.4.1. If R is
a parametrization of A, we can see, by an argument similar to that of Sect. 10.4,
that the dimension of the relative confluence locus admits the same lower bound
2n−N as in the absolute case; in particular, the confluence locus of a hypersurface
X relative to a parametrization are the codimension 1 components of the relative
singular locus of X, i.e., the set of points of X where the finite morphism X → S

is not a submersion of smooth varieties.

We deduce from this:

Theorem 10.5.9 (Relative Version of Theorem 10.4.3) Let X → S be a finite
morphism of a complex analytic hypersurface to a smooth variety of the same
dimension. Then, a meromorphic function on X is locally Lipschitz relatively to
S at every point of X if and only if it is locally Lipschitz relatively to S at one point
of each irreducible component (of codimension 1) of its polar locus.

10.6 The Particular Case of Plane Curves

Let X
(x,y)
↪→ C2 be a germ of reduced analytic plane curve and let z̃ : EX → P1 be

the morphism corresponding to the germ of embedding (x, y) (Sect. 10.4).
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Let U be the dense open set of P1 defined as the complement of the tangent
directions of X.

Let u ∈ U . By performing a linear change of coordinates if necessary, we can
assume that u corresponds to the direction of {x = 0}. In a neighbourhood of u, we
take as local coordinate v in P1 the inverse of the slope in these coordinates.

Proposition 10.6.1 In a neighbourhood of every pointw ∈ DX ∩ z̃−1(u), z̃|Dred
X is

an isomorphism, EX is smooth, and EX ∼= EX/S(u) ×Dred
X .

Proof Firstly, let us remark that for every |v| and |t| (and obviously every |x| and
|y|) small enough, the line x − vy = t remains non-tangent to X and therefore,
intersects X transversally at simple points if t is non-zero.

Let " ⊂ (X×X−X×
X
X)×P1 be the graph of the map defined in Sect. 10.4. We

consider the map�0 : "→ C×P1 defined by (P, P ′, v) 
→ (x(P )−vy(P ), v) (by
noticing that, by definition, x(P )−vy(P ) = x(P ′)−vy(P ′)). The map�0 extends

to a meromorphic map ÊX
�1−→ C×P1 which is obviously bounded, and so extends

locally to a unique morphismEX
�−→ C×P1 (all this is done in a neighbourhood of

a point w of z̃−1(u) on EX).
It is easy to check, and moreover it is geometrically obvious, that � has finite

fibers. In addition, by the remark of the beginning of the proof, it is clear that � is
unramified outside of {0}×P1. Therefore, the ramification locus is {0}×P1 (unless
it is empty).

Hence, the vector field ∂
∂v

of C × P1 is tangent to the ramification locus of � .
Therefore, it lifts by � to a holomorphic vector field on the normal space EX (see
[Zar65a, Theorem 2]).5 At every point w ∈ DX ∩ z̃−1(u), the integration of this
vector field in a neighbourhood of w endows locally EX with a product structure
EX ) z̃−1(u)×�−1({0} × P1).

But, on the one hand, we can now apply Lemma 10.5.4 to prove that z̃−1(u) )
EX/S(u) in a neighbourhood of w, and on other hand, again by the above remark,
z̃−1(u) does not meet any τDX with trivial type τ .

We conclude by noticing that since the origin, which is the only possible
singularity of the germ X, is the support of all non trivial confluence loci τX, we
have:

�−1({0} × P1) =
⋃

τ non trivial

τDX.

Corollary 10.6.2 (See Sect. 10.4) In this situation, the equation of DX/S(u) in
EX/S(u) is the equation of DX in EX.

5We can also see this by an argument similar to that of Lemma 10.8.6 below.
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We will now study the relative situation:

X

(x)

(x,y)
C2

pr1

S C

by assuming that {x = 0} is not tangent to X at 0.
We will denote by Xα the irreducible components of X and by nα their

multiplicities.
For a local ring of dimension 1, the normalized blowup of an ideal is a regular

ring which is nothing but the normalized ring. Hence, EX/S = X ×
S
X. We can

easily determine the irreducible components of EX/S and the morphism EX/S → S

by using the following lemmas, after having noticed that an irreducible component
of EX/S projects onto a pair of irreducible components of X.

Lemma 10.6.3 Set mα,α′ = lcm(nα, nα′) and let ϕ : C{x} → C{s} be given by
ϕ(x) = smα,α′ . The set B of C{x}-homomorphisms

C{x1/nα } ⊗
C{x}

C{x1/nα′ } −→ C{x}

can be identified with the set of pairs {(β, β ′) ∈ C2 : (βnα , β ′nα′ ) = (1, 1)} by the
correspondance:

{
x1/nα ⊗ 1 
−→ βsmαα′ /nα

1⊗ x1/nα′ 
−→ β ′xmαα′/nα′

(the pairs (β, β ′) correspond to the pairs of determinations of (x1/nα , x1/nα′ )).
If we endow B with the equivalence relation: b1 ∼ b2 if b1 − b2 is a C{x}-

automorphism of C{s} (it is the equivalence of pairs of determinations “modulo the
monodromy”), then, the set B/∼ has (nα, nα′) elements.

Lemma 10.6.4

C{x1/nα } ⊗
C{x}

C{x1/nα′ } = ⊕
B/∼

C{x1/mαα′ }

with the obvious arrows.

Lemma 10.6.4 can be proved by using Lemma 10.6.3 and the universal property
of the normalization. The proof of Lemma 10.6.3 is left to the reader.

We can now determine the equation ofDX/S inEX/S . At a point of an irreducible
component of EX/S , the ideal of τDX/S is generated by y ⊗ 1 − 1 ⊗ y = aτ sμ(τ)
(where aτ is a unit of C{s}), which can be interpreted as the difference of yαβ(x)−
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yα′β ′(x) of the Puiseux expansions of yα and y ′α computed for the “determinations”
(β, β ′) of (x1/nα , x1/nα′ ) corresponding to the chosen irreducible component:

yαβ(x)− yα′β ′(x) = aββ ′xμ(β,β ′)/mαα′

where aββ ′ is a unit of C{x1/mαα′ }, aββ ′ = aτ and μ(β, β ′) = μ(τ).
In the particular case where X is irreducible of multiplicity n at the origin, we

deduce from this that the sequence of the distinct μ(τ) (for τ non trivial), indexed
in increasing order, coincides with the sequence:

{
m1

n1
n,

m2

n1n2
n, . . . ,

mg

n1 . . . ng
n

}

where the mi
n1...ni

n are the characteristic Puiseux exponents.
Now, we return back to EX and DX . If τDX/S is an irreducible component of

DX, we know from Sect. 10.4 that z̃|τDX is a finite morphism, and it follows from
Proposition 10.6.1 that its ramification locus is contained in the set of directions of
tangent lines to the irreducible componentsXα and Xα′ corresponding to τDX.

Proposition 10.6.5

(i) If Xα and Xα′ have the same tangent line, then deg z̃|τDX = 1, so the number
of types τ corresponding to the pair (α, α′) equals (nα, nα′).

(ii) IfXα andXα′ have distinct tangent lines, then deg z̃|τDX = (nα, nα′) and there
is a unique type τ .

Proof In Case (i), let r ∈ P1 be the direction of the common tangent line. Since
P1 \ {r} is contractible, τDX \ z̃−1(r) is a trivial fiber bundle on P \ {r}. This fiber
bundle is connected since τDX is irreducible, therefore, it is a covering space of
degree 1.

Case (ii) is more delicate. Let r1 and r2 be the two tangent directions and let
u ∈ P1 \ {r1, r2}. We have to prove that we can join any two points of EX/S(u) by a
path contained in τDX and avoiding z̃−1(r1) ∪ z̃−1(r2). We can do this by looking
at two pairs of points (Pα, Pα′) and (Qα,Qα′), where Pα,Qα ∈ Xα \ {0} and
Pα′ ,Qα′ ∈ Xα′ \ {0} are close to the origin and located on the same line with slope
u. It is possible to pass continuously from the pair (Pα, Pα′) to the pair (Qα,Qα′) in
such a way that the slopes of the lines joining the intermediate pairs stay at bounded
distance from r1 and r2. We then conclude by taking the limit.

10.7 Lipschitz Saturation and Zariski Saturation

Let R ⊂ A be a parametrization of a complex analytic algebra A, and letX→ S be
the associated germ of morphism of analytic spaces. Zariski defines a domination
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relation between fractions of A which, translated into transcendental terms, can be
formulated as follows:

Definition 10.7.1 f dominates g over R (f >
R
g) if and only if, for every pair

gβ(x), gβ ′(x) of distinct determinations of g, considered as a multivalued function
of x ∈ S, the quotient

fβ(x)− fβ ′(x)
gβ(x)− gβ ′(x)

has bounded module, where fβ(x) and fβ ′ (x) denote the corresponding determina-
tions of f .

An extensionB ofA in its total ring of fractions is said saturated overR if every
fraction which dominates an element of B belongs to B.

The saturated algebra of A (with respect to R) is defined as the smallest
saturated algebra containing A.

Question 10.3 Is there a relation between the saturated algebra in the sense of
Zariski and the algebra ÃR defined in Sect. 10.5?

In the particular case of hypersurfaces, A = R[y], we can easily see that the
Zariski saturation coincides with the set of fractions which dominate y, i.e., in this
case, with the algebra ÃR of Lipschitz fractions relative to the parametrization R.

In the general case of an arbitrary codimension, A = R[y1, . . . , yk], the Zariski
saturation and the Lipschitz saturation are both more complicated to define, and
answering Question 10.3 does not seem easy to us.

In some cases, including the case of hypersurfaces, Zariski can prove that his
saturation is independant of the chosen parametrization as long as the latter is
generic. Therefore, we obtain, in the case of hypersurfaces, a positive answer to
Questions 10.2 and 10.2’ of Sect. 10.5. More precisely, we have:

Theorem 10.7.26 LetA be the complex analytic algebra of a hypersurface germX,
and consider the (generic) family P of the parametrizations defined by a direction
of projection transversal to X (i.e., not belonging to the tangent cone) at a generic
point of each irreducible component of codimension 1 of the singular locus. Then,
for every R ∈ P, Ã = ÃR , which equals the Zariski saturation.

Indeed, this family of parametrizations P is the one for which Zariski proves the
invariance of his saturation [Zar68, Theorem 8.2].

6(Added in 2020) For a more algebraic approach, see [Lip75a, Lip75b]. For a more general result
without the hypersurface assumption, see [Bog74, Bog75].
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10.8 Equisaturation and Lipschitz Equisingularity

The notion of saturation used in this section is the Lipschitz saturation which, as we
have just seen, coincides with the Zariski saturation in the case of hypersurfaces.

Let r : X → T be an analytic retraction of a reduced complex analytic space
germ X on a germ of smooth subvariety T ↪→ X. Denote by X0 = r−1(0) the fiber
of this retraction over the origin 0 ∈ T .

Definition 10.8.1 We say that (X, r) is equisaturated along T if the saturated
germ X̃ admits a product structure:

X̃ = X̃0 × T

compatible with the retraction r (i.e., such that the second projection is X̃→ X
r−→

T ).

Theorem 10.8.2 If (X, r) is equisaturated along T , then (X, r) is topologically
(and even Lipschitz) trivial along T .

By topological triviality, we mean the following property: for every embedding

X

r

CN

rN

T

of the retraction r in a retraction rN of a euclidean space, the pair (CN,X) is
homeomorphic to the product (CN−p × T ,X0 × T ), in a compatible way with the
retraction rN .

By Lipschitz triviality, we mean that the above homeomorphism is Lipschitz as
well as its inverse.

Proof Let (t1, . . . , tp) be a local coordinates system on T . By using the product
structure X̃ = X̃0×T , let us denote by�i the vector field on X̃whose first projection
is zero and whose second one equals ∂

∂ti
. LetA be the algebra ofX; �i is a derivation

from Ã to Ã. Then, by restriction, it defines a derivation fromA to Ã. Let us consider
an embeddingX ↪→ CN , i.e., a system of N generators of the maximal ideal of A:

(z1, z2, . . . , zN−p, t1 ◦ r, t2 ◦ r, . . . , tp ◦ r)

(by a change of coordinates, all the systems can be reduced to this form). The
functions �i z1,�i z2 . . . ,�izN−p are Lipschitz functions on X. Then, they can
extend to Lipschitz functions gi,1, gi,2, . . . , gi,N−p on all CN . Hence, for all i =
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1, 2, . . . , p, we have a Lipschitz vector field on CN :

gi,1
∂

∂z1
+ gi,2 ∂

∂z2
+ · · · + gi,N−p ∂

∂zN−p
+ ∂

∂ti

which is tangent to X and projects onto the vector field ∂
∂ti

of T . Since they are
Lipschitz, these vector fields are locally integrable and their integration realizes the
topological triviality of X. �

Relative Equisaturation

We will now define a relative notion of equisaturation. LetX/S be a germ of analytic
space relative to a parametrization, consisting of the data of a reduced analytic germ
X of pure dimension n and of the germ of a finite morphism X → S on a germ of
smooth variety of dimension n. Let

r : X/S → T

be an analytic retraction of the relative analytic space X/S on a smooth subvariety
T . By this, we mean the datum of a commutative diagram:

T

identity

X
r

T

S

Denote byX0/S0 the relative analytic space defined as the inverse image of the point
0 ∈ T by this retraction.

Definition 10.8.3 (Relative Definition 10.8.1) We say that (X/S, r) is equisat-
urated along T , if the germ of relative saturated space X̃S/S admits a product
structure:

XS = X0
S0 × T

id

S S0 T

which is compatible with the retraction r .



10 Lipschitz Fractions of a Complex Analytic Algebra and Zariski Saturation 331

In the case where X is a hypersurface, it results immediately from Theorem 10.7.2
that if S is a generic parametrization, the equisaturation of X/S (relative equisatu-
ration) implies the equisaturation of X (absolute equisaturation).

Question 10.4 Conversely, does the equisaturation of X imply the existence of a
generic parametrization S such that X/S is equisaturated?

It would be interesting to know the answer to this question because the work of
Zariski gives a lot of informations on the relative notion of equisaturation.

We assume in the sequel that X is a hypersurface. Let R = C{z1, . . . , zn} be a
parametrization of A. We can write:

A = R[y] = R[Y ]/(f ),

where f is a reduced monic polynomial in Y with coefficients in R and where
y = Y + (f ) is the residue class of Y modulo f . The reduced discriminant of this
polynomial generates an ideal in R which depends only of A and R; we will call
it the ramification ideal of the parametrization R. We will denote by  ⊂ S the
subspace defined by this ideal; this subspace will be called the ramification locus
of X/S.

Definition 10.8.4 We say that (X/S, r) has trivial ramification locus along T if
the pair (S, ) admits a product structure:

= 0 × T

id

S S0 T

which is compatible with the retraction r .

Theorem 10.8.5 (Zariski [Zar68]) Let X be a hypersurface. The following two
properties are equivalent:

(i) (X/S, r) is equisaturated along T ;
(ii) (X/S, r) has trivial ramification locus.

Moreover, these two properties imply the topological triviality along T of the
hypersurface X.

Notice that in the case of a generic parametrization, where the relative equisaturation
implies the absolute equisaturation, the last part of Theorem 10.8.5 is a simple
Corollary of our Theorem 10.7.2. But Zariski proves Theorem 10.8.5 for any
parametrization.

We will limit ourselves to the proof of the implication (ii)⇒ (i) and we refer to
[Zar68] for the rest.
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Lemma 10.8.6 Every derivation of the ringR in itself which leaves stable the ideal
of ramification extends canonically into a derivation of the relative saturation ÃR

in itself.

Proof Since A is finite over R, every derivation � : R → R admits a canonical
extension to the ring of fractions of A. Explicitly, we have:

�y = −(
n∑

i=1

∂f

∂zi
�zi
)
/
∂f

∂y
.

We have to prove that under the hypothesis of the lemma, �g ∈ ÃR for every
g ∈ ÃR . But the polar locus of every g ∈ A is obviously included in the singular
locus of X, so, in the zero locus of ∂f

∂y
. By writing

�g = ∂g
∂y

�y +
n∑

i=1

∂g

∂zi
�zi,

we deduce from this that the polar locus of �g is included in the zero locus of ∂f
∂y

.

In order to check that g ∈ ÃR , it is then sufficient (by Theorem 10.5.9) to check
it at a generic point of each irreducible component (of codimension 1, of course) of
the zero locus of ∂f

∂y
.

Let SX be such an irreducible component, restricted to a small neighbourhood of
one of its points. For a generic choice of the point, we can assume that:

(1) SX is smooth and the restriction to SX of the morphism: X → S is an
embedding;

(2) SX = (X| )red, where  ⊂ S denotes the image of SX, i.e., the ramification
locus of the morphism X→ S;

(3) the finite cover Dred
X/S → SX is étale, i.e., Dred

X/S is a disjoint union of7

components τDred
X/S isomorphic to SX.

By (1),  is a smooth divisor of S and we can choose local coordinates
(x, t1, t2, . . . , tn−1) in S so that x = 0 is a local equation of this divisor. (2) means
that x does not vanish outside of SX.

Locally in S, the submodule of the derivations which leave stable the ramification
ideal (x) is generated by x ∂

∂x
and the ∂

∂ti
’s.

Therefore, it suffices to prove that the functions x ∂g
∂x

and ∂g
∂ti

are Lipschitz
relatively to S.

Consider the space EX/S , that we can assume to be smooth, in a neighbourhood
of one of the components τDred

X/S of the étale cover of (3). The function x is well

7(Added in 2020) . . . open subsets of components τDred
X/S , isomorphic to their image in . . .
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defined on EX/S (by composition with the canonical morphismEX/S → X×
S
X→

S) and by (2), it does not vanish outside of Dred
X/S . Therefore it is of the form x =

sm(τ), where s = 0 is an irreducible equation of the smooth divisor τDred
X/S . On the

other hand, the ideal of the non-reduced divisor τDX/S is generated by:

τ�y = y ⊗ 1− 1⊗ y = aτ (t)sμ(τ) + · · · ,

where aτ must be a unit of the ring C{t1, t2, . . . , tn−1} since τ�y vanishes only on
τDred

X .
Thus, for every τ , we have a series expansion whose terms are increasing powers

of x1/m(τ) (compare to Sect. 10.6):

τ�y = aτ (t)x
μ(τ )
m(τ ) + · · · ,

and a function g will be Lipschitz relatively to S if and only if for every τ , the series
expansion of τ�g into rational powers of x has no terms with exponents less than
μ(τ)/m(τ). Let g be such a function:

τ�g = bτ (t)x
μ(τ )
m(τ ) + · · ·

We have:

τ�(x
∂g

∂x
) = x ∂

∂x
(τ�g) = x

(
μ(τ)

m(τ)
bτ (t)x

μ(τ )
m(τ )−1 + · · ·

)

and:

τ�(
∂g

∂ti
) = ∂

∂ti
(τ�g) = ∂bτ (t)

∂ti
x
μ(τ )
m(τ ) + · · · ,

so that x ∂g
∂x

and ∂g
∂ti

are still functions of the same type, i.e., Lipschitz functions
relative to S. This completes the proof of Lemma 10.8.6 �
Proof (of (ii)⇒ (i) of Theorem 10.8.5) Let us choose local coordinates
(x1, x2, . . . , xn−p, t1, t2, . . . , tp) in S compatible with the product structure S0×T .
The vector field ∂

∂ti
is tangent to the ramification locus  =  0 × T . Therefore, by

Lemma 10.8.6, it lifts to a holomorphic vector field �i on X̃S . The integration of
these p vector fields �1, . . . ,�p realizes the desired product structure on X̃S . �
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Speculation on Equisingularity

We would like to find a “good” definition of equisingularity ofX along T , satisfying
if possible the two following properties:

(TT) the equisingularity implies the topological triviality;
(OZ) the set of points of T where X is equisingular forms a dense Zariski open set.

Equisaturation satisfies (TT) (Theorem 10.7.2 above), but satisfies (OZ) only in
the case where codimXT = 1 (equisaturation of a family of curves coincides with
equisingularity). In the general case, one can find some X → T such that X is not
equisaturated at any point of T .8

Zariski proposed a definition to the equisingularity of hypersurfaces that gen-
eralizes the idea of trivialization of the ramification locus [Zar37, Zar64]: the
hypersurfaceX is equisingular along T if, for a generic parametrization, the rami-
fication locus  is equisingular along (the projection of) T . Since the codimension
of T in  is smaller than its codimension in X minus one, we therefore obtain a
definition of the equisingularity by induction on the codimension.9

This definition satisfies (OZ), but we do not know how to prove (TT).10

In the case where T coincides with the singular locus of X (family of analytic
spaces with isolated singularities), Hironaka found a criterion of equisingularity
which satisfies (TT) and (OZ) at the same time. This criterion is defined [Hir64] in
terms of the normalized blowup of an ideal (i.e., the product of the ideal of T by
the Jacobian ideal of X). The topological triviality is proved by integrating a vector
field,11 but:

1. Instead of being holomorphic on X, this vector field is differentiable (i.e., C∞)
on the blown-up space X̂ of X (the normalized blowup of the ideal mentioned
above).

2. Instead of being Lipschitz on X, i.e., satisfying a Lipschitz inequality for every
ordered pair of points in X × X, this vector field satisfies a Lipschitz inequality
only for the ordered pair of points in T ×X.

8Here we are thinking about the relative equisaturation characterized (Theorem 10.8.5) by the
triviality of the ramification locus. But likely, the notion of absolute equisaturation leads to about
the same thing—don’t we want to answer yes to Question 10.4?

Added in 2020: The approaches of E. Böger in [Bog75] and J. Lipman in [Lip75b] would
probably lead to a positive answer.
9(Added in 2020) This theory was described by Zariski in [Zar79, Zar80]. The reason why
equisaturation does not satisfy (OZ) in general is that it corresponds to a condition of analytical
triviality of the discriminant, which of course does not satisfy (OZ) in general. See also [LT79].
10(Added in 2020) There are now several results where Zariski equisingularity implies topological
triviality sometimes via the Whitney conditions. See [Var73, Spe75].
11Cf. H. Hironaka (not published but see [Hir64b]).
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The general solution to the problem of equisingularity will maybe use some rings
of this type of functions (C∞ in a blown-up space and “weakly Lipschitz” below).12

Appendix: Stratification, Whitney’s (a)-property
and Transversality

A stratification13 of an analytic (reduced) space X is a locally finite partition of X
in smooth varieties called strata, such that:

1. the closureW of every stratumW is an (irreducible) analytic space;
2. the boundary ∂W = W \W of every stratumW is a union of strata.

We call star of a stratumW the set of strata which haveW in their boundary.
Let (W0,W) be an ordered pair of strata, with W0 ⊂ ∂W . We say that this

ordered pair satisfies the property (a) of Whitney at a point x0 ∈ W0 if for every
sequence of points xi ∈ W tending to x0 in such a way that the tangent space
Txi (W) admits a limit, this limit contains the tangent space Tx0(W) (we suppose that
X is locally embedded in a Euclidean space, in such a way that the tangent spaces
are realized as subspaces of the same vector space; the property (a) of Whitney is
independent of the chosen embedding). For every ordered pair of strata (W0,W)

of a stratification, there exists a Zariski dense open set of points of W0 where the
property (a) of Whitney is satisfied [Whi65]. We can then refine every stratification
into a stratification such that the property (a) of Whitney is satisfied at every point
for every ordered pair of strata.

Proposition 10.8.7 Let (X, x0) be a stratified germ of complex analytic space such
that the ordered pairs of strata (W0,W) satisfy the property (a) of Whitney, where
W0 denotes the stratum which contains x0 and where W is any stratum of the
star of W0. Let ϕ : X → Cm be a morphism germ such that ϕ|W0 is effectively
transversal to the value 0 at the point x0. Then, for every stratum W , ϕ|W is
effectively transversal to the value 0 at (at least) one point ofW arbitrarily close to
x0.

Proof The transversality of ϕ|W at every point close to x0 is an obvious conse-
quence of the property (a) of Whitney for the ordered pair (W0,W). It remains to
prove the effective transversality i.e., to prove that (ϕ|W)−1(0) is not empty. But
(ϕ|W)−1(0) is a closed analytic subset of W , non empty (because it contains the
point x0) and defined by m equations. Therefore its codimension is at most m. If

12(Added in 2020) The idea of considering vector fields which are differentiable on some blown-
up space was used by Pham in [Pha71a] and, in real analytic geometry by Kuo who introduced
blow-analytic equivalence of singularities; see [Kuo85].
13See also David Trotman’s article “Stratifications, Equisingularity and Triangulation” in this
volume.
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(ϕ|W)−1(0) were empty, then ∂W would contain at least one stratum W ′ such that
(ϕ|W ′)−1

(0) is non empty and of dimension � dimW −m. But on the other hand,
the transversality of ϕ|W ′ implies that (ϕ|W ′)−1

(0) is a smooth variety of dimension
< dimW ′ −m, and then of dimension< dimW −m. We then get a contradiction.

�
Remark 10.8.8 Of course, in the statement of Proposition 10.8.7, we could replace
the transversality relative to the value of 0 by the transversality relative to a smooth
variety of Cm.
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