
On Minimal-Perimeter Lattice Animals

Gill Barequet(B) and Gil Ben-Shachar

Department of Computer Science, The Technion—Israel Institute of Technology,
3200003 Haifa, Israel

{barequet,gilbe}@cs.technion.ac.il

Abstract. A lattice animal is a connected set of cells on a lattice. The
perimeter of a lattice animal A consists of all the cells that do not
belong to A, but that have a least one neighboring cell of A. We consider
minimal-perimeter lattice animals, that is, animals whose periemeter is
minimal for all animals of the same area, and provide a set of conditions
that are sufficient for a lattice to have the property that inflating all
minimal-perimeter animals of a certain size yields (without repetitions)
all minimal-perimeter animals of a new, larger size. We demonstrate this
result for polyhexes (animals on the two-dimensional hexagonal lattice).

Cyvin S.J., Cyvin B.N., Brunvoll J. (1993) Enumeration of benzenoid chem-
ical isomers with a study of constant-isomer series. In: Computer Chemistry,
part of Topics in Current Chemistry book series, vol. 166. Springer, Berlin,
Heidelberg (p. 117).

1 Introduction

An animal on a d-dimensional lattice is a connected set of lattice cells, where
connectivity is through (d−1)-dimensional faces of the cells. Specifically, in two
dimensions, connectivity is through lattice edges. Two animals are considered
identical if one can be obtained from the other by translation only, without
rotations or flipping. (Such animals are called “fixed” animals in the literature.)

Lattice animals attracted interest as combinatorial objects [10] and as a
model in statistical physics and chemistry [17]. In this paper, we consider lattices
in two dimensions, specifically, the hexagonal, triangular, and square lattices,
where animals are called polyhexes, polyiamonds, and polyominoes, respectively.
We focus on the application of our results to the hexagonal lattice, and explain
how to make them applicable also to the triangular lattice.

Let AL(n) denote the number of lattice animals of size n, that is, animals
composed of n cells, on a lattice L. A major research problem in the study of
lattices is understanding the nature of AL(n), either by finding a formula for it
as a function of n, or by evaluating it for specific values of n. This problem is
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to this date still open for any nontrivial lattice. Redelmeier [15] introduced the
first algorithm for counting all polyominoes of a given size, with no polyomino
being generated more than once. Later, Mertens [14] showed that Redelmeier’s
algorithm can be utilized for any lattice. The first algorithm for counting lattice
animals without generating all of them was introduced by Jensen [13]. Using
his method, the number of animals on the 2-dimensional square, hexagonal, and
triangular lattices were computed up to size 56, 46, and 75, respectively.

An important measure of lattice animals is the size of their perimeter (some-
times called “site perimeter”). The perimeter of a lattice animal is defined as
the set of empty cells adjacent to the animal cells. This definition is motivated
by models in statistical physics. In such discrete models, the plane or space is
made of small cells (squares or cubes, respectively), and quanta of material or
energy “jump” from a cell to a neighboring cell with some probability. Thus, the
perimeter of a cluster determines where units of material or energy can move to,
and guide the statistical model of the flow.

Q I(Q)

Fig. 1. A polyomino Q
and its inflated poly-
omino I(Q). Polyomino
cells are colored gray,
perimeter cells are col-
ored white.

Asinowski et al. [2,3] provided formulae for poly-
ominoes and polycubes with perimeter size close to
the maximum possible. On the other extreme reside
animals with the minimum possible perimeter size for
their area. The study of polyominoes of a minimal
perimeter dates back to Wang and Wang [19], who
gave an infinite sequence of cells on the square lat-
tice, the first n of which (for any n) form a minimal-
perimeter polyomino. Later, Altshuler et al. [1], and
independently Sieben [16], studied the closely-related
problem of the maximum area of a polyomino with p
perimeter cells, and provided a closed formula for the
minimum perimeter of an n-cell polyomino.

Recently, Barequet and Ben-Shachar [4,5] studied properties of minimal-
perimeter polyominoes. A key notion in their findings is the inflation operation.
Simply put, inflating a polyomino is creating the union of a polyomino and
the set of its perimeter cells (see Fig. 1). Barequet and Ben-Shachar showed
that inflating all the minimal-perimeter polyominoes of some size yields all the
minimal-perimeter polyominoes of some larger size in a bijective manner. In
this paper, we generalize this result to other lattices and find a sufficient set of
conditions for such a bijection to exist.

In the literature, minimal-perimeter animals were studied also on other lat-
tices. For animals on the triangular lattice (polyiamonds), the main result is
due to Fülep and Sieben [11], who characterized all the polyiamonds with
maximum area for their perimeter, and provided a formula for the minimum
perimeter of a polyiamond of size n. However, there has been much more
intensive research of minimal-perimeter animals on the hexagonal lattice (poly-
hexes), mainly in the literature on organic chemistry. There has been a vast
amount of work on molecules called benzenoid hydrocarbons. It is a known
natural fact that molecules made of carbon atoms are structured as shapes
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on the hexagonal lattice, that is, exactly as polyhexes. Benzenoids hydrocar-
bons are made of only carbon and hydrogen atoms. In such a molecule, the

Fig. 2. The Naph-
thalene molecule
(C10H8).

carbon atoms are arranged as a polyhex and the hydrogen
atoms are arranged around the carbons, at the perimeter
of the polyhex. The number of hydrogen atoms is exactly
the size of the perimeter of the imaginary polyhex. Figure 2
shows a schematic drawing of Naphthalene (molecular for-
mula C10H8), a simple benzenoid hydrocarbon made of 10
carbon atoms and 8 hydrogen atoms. Note that differ-
ent configurations of atoms exist for the same molecular
formula—these are called isomers. In the field of organic chemistry, a major
goal is to enumerate all the different isomers of a given formula. In a series
of papers (culminated in Reference [9]), Dias provided the basic theory of the
enumeration of benzenoids hydrocarbons.

A comprehensive review of the subject is given by Brubvoll and Cyvin [6].
Several other works [7,8,12] also dealt with the properties and enumeration of
such animals. Inflating is called by chemists circumscribing. For example, cir-
cumscribing the Naphthalene molecule yields a molecule known as Circumnaph-
thalene. In the chemistry literature, it is well known that inflating all isomers of
some molecular formulae creates all isomers that correspond to another molec-
ular formula. (The sequences of molecular formulae that have the same num-
ber of isomers created by circumscribing are known as constant-isomer series.)
Although this fact is well known, to the best of our knowledge, no rigorous proof
of it was ever given. This is exactly the analogue of a theorem proven by the
authors of this paper for polyominoes [4].

In this paper, we generalize the fact that inflation induces a bijection between
sets of minimal-perimeter animals from the square lattice to other lattices, specif-
ically, to the hexagonal lattice. By this, we prove the long-observed (but never
proven) phenomenon of “constant-isomer chains,” that is, that inflating isomers
of benzenoid hydrocarbon molecules (in our terminology, inflating minimum-
perimeter polyhexes) yields all the isomers of a larger molecule.

2 Preliminaries

Q I(Q) D(Q)

Fig. 3. A polyhex Q, its
inflated polyhex I(Q), and its
deflated polyhex D(Q).

Let L be a lattice, and let Q be an animal on L.
The perimeter of Q, denoted by P(Q), is the set of
all empty lattice cells that are neighbors of at least
one cell of Q. Similarly, the border of Q, denoted
by B(Q), is the set of cells of Q that are neighbors
of at least one empty cell. The inflated version
of Q is defined as I(Q) := Q ∪ P(Q). Similarly,
the deflated version of Q is defined as D(Q) :=
Q\B(Q). These operations are demonstrated in Fig. 3.

Denote by εL(n) the minimum size (number of cells) of the perimeter of n-cell
animals on L, and by ML

n the set of all minimal-perimeter n-cell animals on L.
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Let S be the two-dimensional square lattice. Animals on S are usually called
polyominoes. For this lattice, we know the following.

Theorem 1. [4, Thm. 4]
∣
∣MS

n

∣
∣ =

∣
∣
∣MS

n+εS(n)

∣
∣
∣ (for n ≥ 3).

This theorem is a corollary of another theorem that states that the inflation
operation induces bijections between sets of minimal-perimeter polyominoes.
This is demonstrated in Fig. 4.

(a) All four minimal-perimeter
polyominoes of size 7 (up to rotations)

(b) All four minimal-perimeter polyominoes of
size 17 (up to rotations)

Fig. 4. A demonstration of Theorem 1.

3 Minimal-Perimeter Animals

Our main result consists of a certain set of conditions, which is sufficient
for minimal-perimeter animals to satisfy a claim similar to the one stated in
Theorem 1. Throughout this section, we consider animals on some specific
lattice L.

3.1 A Bijection

Theorem 2. Consider the following set of conditions.

(1) The function εL(n) is weakly monotone increasing.
(2) There exists some constant c ≥ 0, for which, for any minimal-perimeter

animal Q, we have that |P(Q)| = |B(Q)| + c and |P(I(Q))| ≤ |P(Q)| + c.
(3) If Q is a minimal-perimeter animal, then D(Q) is a valid (connected) ani-

mal.

If all the above conditions hold for L, then
∣
∣ML

n

∣
∣ =

∣
∣
∣ML

n+εL(n)

∣
∣
∣. If these

conditions are not satisfied for only a finite amount of sizes of animals on L,
then the claim holds for all sizes greater than some nominal size n0. ��

Remark. Obviously, no lattice fulfills condition (2) with c < 0, and only trivial
lattices (e.g., the 1-dimensional lattice) fulfill it with c = 0.

The remainder of this section is devoted to proving the theorem above. We
begin with proving that inflation preserves perimeter minimality.

Lemma 1. If Q is a minimal-perimeter animal, then I(Q) is a minimal-
perimeter animal as well.
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Proof. Let Q be a minimal-perimeter animal. Assume to the contrary that I(Q) is
not a minimal-perimeter animal, thus, there exists an animal Q′, such that |Q′| =
|I(Q)| and |P(Q′)| < |P(I(Q))|. By Condition (2) of Theorem 2, we know that
|P(I(Q))| ≤ |P(Q)| + c, thus, |P(Q′)| < |P(Q)| + c, and since Q′ is a minimal-
perimeter animal, we also know by the same condition that |P(Q′)| = |B(Q′)| + c,
and, thus, that |B(Q′)| < |P(Q)|. Consider now the animal D(Q′). Recall that
|Q′| = |I(Q)| = |Q| + |P(Q)|, hence, the size of D(Q′) is at least |Q| + 1,
and |P(D(Q′))| < |P(Q)| = εL(|Q|) (since the perimeter of D(Q′) is a subset
of the border of Q′). This is a contradiction to Condition (1), which states that
the sequence εL(n) is monotone increasing. Therefore, the animal Q′ cannot exist,
and I(Q) is a minimal-perimeter animal. ��

We now proceed to demonstrate the effect of repeated inflation on the size
of minimal-perimeter animals.

Lemma 2. The minimum size of the perimeter of animals of area n+kεL(n)+
ck(k − 1)/2 (for n > 1 and any k ∈ N) is ε(n) + ck.

Proof. We repeatedly inflate a minimal-perimeter animal Q, whose initial size
is n. The size of the perimeter of Q is εL(n), thus, inflating it creates a new
animal of size n + εL(n), and the size of the border of I(Q) is εL(n), thus,
by Condition (2), the size of the perimeter of I(Q) is εL(n) + c. By repeating
this operation, the kth inflation step will increase the size of the animal by
εL(n) + (k − 1)c and will increase the size of the perimeter by c. Summing up
these amounts yields the claim. ��

Next, we prove that inflation preserves difference, that is, inflating two differ-
ent minimal-perimeter animals (of equal or different sizes) always produces two
different new animals. (This is not true for non-minimal-perimeter animals.)

Lemma 3. Let Q1, Q2 be two different minimal-perimeter animals. Then,
regardless of whether or not Q1, Q2 have the same area, the animals I(Q1)
and I(Q2) are different as well.

Proof. Assume to the contrary that Q = I(Q1) = I(Q2), i.e., that Q = Q1 ∪
P(Q1) = Q2 ∪P(Q2). In addition, since Q1 �= Q2, and since a cell cannot belong
simultaneously to both an animal and to its perimeter, this means that P(Q1) �=
P(Q2). The border of Q is a subset of both P(Q1) and P(Q2), that is, B(Q) ⊂
P(Q1) ∩ P(Q2). Since P(Q1) �= P(Q2), we have that either |B(Q)| < |P(Q1)|
or |B(Q)| < |P(Q2)|; assume without loss of generality the former case. Now,
consider the animal D(Q). Its size is |Q|−|B(Q)|. The size of Q is |Q1|+ |P(Q1)|,
thus, |D(Q)| > |Q1|, and since the perimeter of D(Q) is a subset of the border
of Q, we have that |P(D(Q))| < |P(Q1)|. However, Q1 is a minimal-perimeter
animal, which is a contradiction to Condition (1) of Theorem 2, which states
that εL(n) is monotone increasing. ��

To complete the cycle, we also prove that for any minimal-perimeter ani-
mal Q ∈ ML

n+εL(n), there is a minimal-perimeter source in ML
n , i.e., an animal Q′

whose inflation yields Q. Specifically, this animal is D(Q).
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Lemma 4. For any Q ∈ ML
n+εL(n), we also have that I(D(Q)) = Q.

Proof. Since Q ∈ ML
n+ε(n), we have by Lemma 2 that |P(Q)| = ε(n) + c. Com-

bining this with the equality |P(Q)| = |B(Q)|+ c, we obtain that |B(Q)| = ε(n),
thus, |D(Q)| = n and |P(D(Q))| ≥ ε(n). Since the perimeter of D(Q) is a subset
of the border of Q, and |B(Q)| = ε(n), we conclude that the perimeter of D(Q)
and the border of Q are the same set of cells, and, thus, I(D(Q)) = Q. ��

Let us now wrap up the proof of Theorem 2. In Lemma 1 we have shown that
for any minimal-perimeter animal Q ∈ Mn, we have that I(Q) ∈ ML

n+εL(n). In
addition, Lemma 3 states that the inflation of two different minimal-perimeter
animals results in two other different minimal-perimeter animals. Combining
the two lemmata, we obtain that

∣
∣ML

n

∣
∣ ≤

∣
∣
∣ML

n+εL(n)

∣
∣
∣. On the other hand, in

Lemma 4 we have shown that if Q ∈ ML
n+εL(n), then I(D(Q)) = Q, and, thus,

for any animal in ML
n+εL(n), there is a unique source in ML

n (specifically, D(Q)),

whose inflation yields Q. Hence,
∣
∣ML

n

∣
∣ ≥

∣
∣
∣ML

n+εL(n)

∣
∣
∣. Combining the two rela-

tions, we conclude that
∣
∣ML

n

∣
∣ =

∣
∣
∣ML

n+εL(n)

∣
∣
∣.

3.2 Inflation Chains

Theorem 2 implies that there exist infinitely-many chains of sets of minimal-
perimeter animals, each one obtained from the previous one by inflation, while
the cardinalities of all sets in a single chain are identical. Obviously, there are
sets of minimal-perimeter animals that are not created by inflating any other
set. We call the size of animals in such sets an inflation-chain root. Using the
definitions and proofs in the previous section, we are able to characterize which
sizes are the inflation-chain roots. The result is stated in the following theorem,
and its full proof is given in the full version of the paper.

Theorem 3. Let L be a lattice for which the three premises of Theorem 2 are
satisfied, and, in addition, the following condition holds.

(4) The inflation operation preserves (for an animal) the property of having a
maximum size for a given perimeter.

Then, if n is the minimum animal area for a minimal-perimeter size p, or equiv-
alently, if there exists a perimeter size p, such that n = min

{

n ∈ N | εL(n) = p
}

,
then n is an inflation-chain root. ��

4 Application to Polyhexes

Denote the two-dimensional hexagonal lattice by H. In this section, we show
that the conditions of Theorem 2 hold for the lattice H.
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4.1 Condition 1: Monotonicity

Condition (1) was proven independently, first by Vainsencher and Bruck-
stien [18], and later by Fülep and Sieben [11]. We will use the latter, stronger
proof which also provides a formula for εH(n).

Theorem 4. [11, Thm. 5.12] εH(n) =
⌈√

12n − 3
⌉

+ 3. ��
Clearly, the function εH(n) is weakly monotone increasing.

4.2 Condition 2: Constant Inflation

To show that Condition (2) holds, we will analyze the different patterns that
may appear in the border and perimeter of minimal-perimeter polyhexes. We can
classify every border or perimeter cell by one of exactly 24 patterns, distinguished
by the number and positions of their adjacent occupied cells. The 24 existing
patterns are shown in Fig. 5.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

(o) (p) (q) (r) (s) (t) (u) (v) (w) (x) (y) (z)

Fig. 5. All possible patterns (up to symmetric cases) of border (first row) and perimeter
(second row) cells. The gray cells are polyhex cells, while the white cells are perimeter
cells. Each pattern consists of a cell in the middle, and the possible distribution of cells
surrounding it.

Asinowski et al. [2] defined the excess of a perimeter cell to be the number
of adjacent occupied cell minus one. We extend this definition to border cells,
and, in a similar manner, we define the excess of a border cell as the number
of adjacent empty cells minus one. Following these definitions, we define the
perimeter excess of a polyhex Q, eP (Q), to be the sum of excesses over all
perimeter cells of Q, and similarly, the border excess of Q, eB(Q), is defined to
be the sum of excesses over all border cells of Q.

The following formula is universal for all polyhexes.

Lemma 5. For every polyhex Q, we have that

|P(Q)| + eP (Q) = |B(Q)| + eB(Q) (1)
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Proof. Consider the (one or more) polygons bounding the polyhex Q. The two
sides of the equation are equal to the total length of the polygon(s) in terms of
polyhex edges. Indeed, this length can be computed by iterating over either the
border or the perimeter cells of Q. In both cases, each cell contributes one edge
plus its excess to the total length. The claim follows. ��

Our next goal is to express the excess of a polyhex Q as a function of the
numbers of cells of Q of each pattern. We denote the number of cells of a specific
pattern in Q by #�, where ‘�’ is one of the 24 patterns listed in Fig. 5. The
excess (either border or perimeter excess) of Pattern � is denoted by e(�). (For
simplicity, we omit the dependency on Q in the notations of #� and e(�). This
should be understood from the context.) The border excess can be expressed
as eB(Q) =

∑

�∈{a,...,l} e(�)#�, and, similarly, the perimeter excess can be
expressed as eP (Q) =

∑

�∈{o,...,z} e(�)#�. By plugging these equations into
Eq. (1), we obtain that

|P(Q)| +
∑

�∈{o,...,z}
e(�)#� = |B(Q)| +

∑

�∈{a,...,l}
e(�)#� . (2)

The next step of proving the second condition is showing that minimal-
perimeter polyhexes cannot contain some of the 24 patterns. This will simplify
Eq. (2).

Lemma 6. No minimal-perimeter polyhex contains holes.

Proof. Assume to the contrary that there exists a minimal-perimeter polyhex Q
which contains one or more holes, and let Q′ be the polyhex obtained by filling
one of the holes in Q. Clearly, |Q′| > |Q|, and by filling the hole we eliminated
some perimeter cells and did not create new perimeter cells. Hence, |P(Q′)| <
|P(Q)|. This contradicts the fact that εH(n) is monotone increasing, as implied
by Theorem 4. ��

Another important observation is that minimal-perimeter polyhexes tend to
be “compact.” We formalize this observation in the following lemma.

A bridge is a cell whose removal unites two holes or renders the polyhex
disconnected (specifically, Patterns (b), (d), (e), (g), (h), (j), and (k)). Similarly,
a perimeter bridge is an empty cell whose addition to the polyhex creates a hole
in the latter (specifically, Patterns (p), (r), (s), (u), (v), (x), and (y)).

Lemma 7. Minimal-perimeter polyhexes contain neither bridges nor perimeter
bridges. ��
The proof is given in the full version of the paper.

As a consequence of Lemma 6, Pattern (o) cannot appear in any minimal-
perimeter polyhex. In addition, Lemma 7 tells us that the Border Patterns (b),
(d), (e), (g), (h), (j), and (k), as well as the Perimeter Patterns (p), (r), (s), (u),
(v), (x), and (y) cannot appear in any minimal-perimeter polyhex. (Note that
the central cells in Patterns (b) and (p) are not bridges by themselves, however,
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the adjacent cells are bridges.) Finally, Pattern (a) appears only in the singleton
cell (the unique polyhex of size 1), which can be disregarded. Ignoring all the
patterns mentioned above, we conclude that

|P(Q)| + 3#q + 2#t + #w = |B(Q)| + 3#c + 2#f + #i. (3)

Note that Patterns (l) and (z) have excess 0, and, thus, although they may
appear in minimal-perimeter polyhexes, they do not appear in the equation.

Consider a polyhex having only the six feasible patterns (those that appear
in Eq. (3)). Let us examine the single polygon bounding the polyhex, specifically,
let us count the number of vertices and the sum of internal angles which appear
in this polygon as a function of the numbers of appearances of the different
patterns. We are able to show that the total number of vertices is

3#c + 2#f + #i + 3#q + 2#t + #w,

and that the sum of internal angles is

(3#c + 2#f + #i)120◦ + (3#q + 2#t + #w)240◦. (4)

The full details of these calculations are given in the full version of the paper.
On the other hand, it is known that the sum of internal angles is equal to

(3#c + 2#f + #i + 3#q + 2#t + #w − 2)180◦. (5)

Equating the terms in Formulae (4) and (5), we obtain that

3#c + 2#f + #i = 3#q + 2#t + #w + 6.

Plugging this into Eq. (3), we conclude that |P(Q)| = |B(Q)| + 6, as required.
We also need to show the second part of Condition (2), that is, that if Q is a

minimal-perimeter polyhex, then |P(I(Q))| ≤ |P(Q)|+6. To this aim, note that
B(I(Q)) ⊂ P(Q), thus, it is sufficient to show that |P(I(Q))| ≤ |B(I(Q))| + 6.
Obviously, Eq. (2) holds for the polyhex I(Q), thus, in order to prove the relation,
we only need to show that there are no bridges in I(Q). The proof is given in the
full version of the paper. We wrap up this discussion with the following lemma.

Lemma 8. If Q is a minimal-perimeter polyhex, then I(Q) does not contain
any polyhex bridge. ��

4.3 Condition 3: Deflation Resistance

The last condition which we need to show states that deflating a minimal-
perimeter polyhex results in another (smaller) valid polyhex. The intuition
behind this condition is that a minimal-perimeter polyhex is “compact,” having
a shape which does not become disconnected by deflation. The next lemma for-
malizes this notion of compactness. The proof is provided in the full version of
the paper.
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Lemma 9. For any minimal-perimeter polyhex Q, the shape D(Q) is a valid
polyhex. ��

To conclude, we have shown that all the premises of Theorem 2 are satisfied
for the hexagonal lattice, and, thus, inflating a set of all the minimal-perimeter
polyhexes of a certain size yields another set of minimal-perimeter polyhexes of
another, larger size. This result is demonstrated in Fig. 6.

Fig. 6. A demonstration of Theorem 2 for polyhexes. The top row contains all poly-
hexes (up to rotations and reflections) in MH

9 (minimal-perimeter polyhexes of area 9),
while the bottom row contains their inflated versions, all members of MH

23.

We also characterized inflation-chain roots of polyhexes. As is mentioned
above, the premises of Theorem 3 are satisfied for polyhexes [16,18], and, thus,
the inflation-chain roots are those which have the minimum size for a given
minimal-perimeter size. An easy consequence of Theorem 4 is that the for-
mula

⌊
(p−4)2

12 + 5
4

⌋

generates all these inflation-chain roots. This result is demon-
strated in Fig. 7.

Fig. 7. The relation between the minimum perimeter of polyhexes, εH(n), and the
inflation-chain roots. The points represent the minimum perimeter of a polyhex of
size n, and sizes which are inflation-chain roots are colored in red. The arrows show
the mapping between sizes of minimal-perimeter polyhexes (induced by the inflation
operation).
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5 Polyiamonds

Polyiamonds are sets of edge-connected triangles on the regular triangular lat-
tice, which is made of two types of cells. Due to this complication, inflat-
ing a minimal-perimeter polyiamond does not necessarily result in a minimal-
perimeter polyiamond. Indeed, the second condition of Theorem 2 does not hold
for polyiamonds. This fact is not surprising, since inflating minimal-perimeter
polyiamonds creates “jagged” polyiamonds, which do not have a minimal perime-
ter (see Fig. 8(b)).

Q I(Q) I∗(Q)

Fig. 8. Inflating polyiamonds.
The polyiamond Q is of mini-
mum perimeter, but I(Q) is not.
However, the polyiamond I∗(Q),
obtained by adding to Q all the
cells sharing a vertex with Q, is a
minimal-perimeter polyiamond.

However, we can fix this situation by modi-
fying the definition of the perimeter of a polyi-
amond so that the perimeter will include all
cells that share a vertex (instead of an edge) of
the (boundary of the) polyiamond. Theorem 2
holds under the new definition. The reason for
this is surprisingly simple: The modified defi-
nition merely mimics the inflation of animals
on the graph dual to that of the triangular lat-
tice. (Recall that graph duality maps vertices
to faces (cells), and vice versa, and edges to
edges.) However, the dual of the triangular lat-
tice is the hexagonal lattice, for which we have
already shown in Sect. 4 that all the premises of Theorem 2 hold. Thus, applying
the modified inflation operator (I∗(·)) to the triangular lattice induces a bijection
between sets of minimal-perimeter polyiamonds. This operation is demonstrated
in Fig. 8.

6 Conclusion

In this paper, we have generalized a result which states that inflation induces
a bijection between sets of minimal-perimeter polyominoes, to any lattice sat-
isfying three conditions. We have shown that this generalization holds for the
hexagonal lattice, and in some sense (with a modified definition of perimeter)
also for the triangular lattice. The most important contribution of this paper is
providing a proof for this phenomenon for polyhexes, which was observed in the
chemistry literature more than 30 years ago but was never proven.

However, we do not believe that this set of conditions is necessary. Empir-
ically, it seems that by inflating all the minimal-perimeter polycubes (animals
on the 3-dimensional cubical lattice) of a given size, we obtain all the minimal-
perimeter polycubes of some larger size. However, Condition (2) does not hold
for this lattice. Moreover, we believe that as stated, Theorem 2 applies only to
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2-dimensional lattices! A simple conclusion from Lemma 2 is that if the premises
of Theorem 2 hold for animals on a lattice L, then εL(n) = Θ(

√
n). We find it is

reasonable to assume that for a d-dimensional lattice Ld, the relation between
the size of a minimal-perimeter animal and its perimeter is roughly equal to the
relation between a d-dimensional sphere and its surface area. Hence, we con-
jecture that εLd(n) = Θ(n

d−1
d ), and, thus, Theorem 2 does not hold in higher

dimensions.
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