
Suffix Trees, DAWGs and CDAWGs
for Forward and Backward Tries

Shunsuke Inenaga1,2(B)

1 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. The suffix tree, DAWG, and CDAWG are fundamental
indexing structures of a string, with a number of applications in bioinfor-
matics, information retrieval, data mining, etc. An edge-labeled rooted
tree (trie) is a natural generalization of a string, which can also be seen
as a compact representation of a set of strings. Kosaraju [FOCS 1989]
proposed the suffix tree for a backward trie, where the strings in the trie
are read in the leaf-to-root direction. In contrast to a backward trie, we
call a usual trie as a forward trie. Despite a few follow-up works after
Kosaraju’s paper, indexing forward/backward tries is not well under-
stood yet. In this paper, we show a full perspective on the sizes of index-
ing structures such as suffix trees, DAWGs, and CDAWGs for forward
and backward tries. In particular, we show that the size of the DAWG
for a forward trie with n nodes is Ω(σn), where σ is the number of dis-
tinct characters in the trie. This becomes Ω(n2) for an alphabet of size
σ = Θ(n). Still, we show that there is a compact O(n)-space implicit
representation of the DAWG for a forward trie, whose space requirement
is independent of the alphabet size. This compact representation allows
for simulating each DAWG edge traversal in O(log σ) time, and can be
constructed in O(n) time and space over any integer alphabet of size
O(n).

1 Introduction

Text indexing is a fundamental problem in theoretical computer science that
dates back to 1970’s when suffix trees were invented [26]. Here the task is to
preprocess a given text string S so that subsequent patten matching queries on
S can be answered efficiently. Suffix trees have numerous other applications e.g.
sequence comparisons [26], lossless data compression [2], data mining [23], and
bioinformatics [15,21].

A trie is a rooted tree where each edge is labeled with a single character. A
backward trie is an edge-reversed trie. Kosaraju [19] was the first to consider the
trie indexing problem, and he proposed the suffix tree of a backward trie that
takes O(n) space, where n is the number of nodes in the backward trie. Kosaraju
also claimed an O(n log n)-time construction. Breslauer [7] showed how to build
the suffix tree of a backward trie in O(σn) time and space, where σ is the
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 194–206, 2020.
https://doi.org/10.1007/978-3-030-61792-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_16

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 195

Table 1. Summary of the numbers of nodes and edges of the suffix tree, DAWG, and
CDAWG for a forward/backward trie with n nodes over an alphabet of size σ. The new
bounds obtained in Sect. 5 of this paper are highlighted in bold. All the bounds here
are valid with any alphabet size σ ranging from Θ(1) to Θ(n). Also, all these upper
bounds are tight in the sense that there are matching lower bounds (see Sect. 5).

Forward trie Backward trie

Indexing structure # of nodes # of edges # of nodes # of edges

Suffix tree O(n2) O(n2) O(n) O(n)

DAWG O(n) O(σn) O(n2) O(n2)

CDAWG O(n) O(σn) O(n) O(n)

alphabet size. Shibuya [25] presented an O(n)-time and space construction for
the suffix tree of a backward trie over an integer alphabet of size O(n). This line
of research has been followed by the invention of XBWTs [11], suffix arrays [11],
enhanced suffix arrays [18], and position heaps [24] for backward tries.

This paper considers the suffix trees, the directed acyclic word graphs
(DAWGs) [5,9], and the compact DAWGs (CDAWGs) [6] built on a backward
trie or on a forward (ordinary) trie. While all these indexing structures support
linear-time pattern matching queries on tries, their sizes can significantly differ.
We present tight lower and upper bounds on the sizes of all these indexing struc-
tures, as summarized in Table 1. Probably the most interesting result in our size
bounds is the Ω(n2) lower bound for the size of the DAWG for a forward trie
with n nodes over an alphabet of size Θ(n) (Theorem 6), since this reveals that
Mohri et al.’s algorithm [22] that constructs the DAWG for a forward trie with
n nodes must take at least Ω(n2) time and space in the worst case. We show
that, somewhat surprisingly, there exists an implicit compact representation of
the DAWG for a forward trie that occupies only O(n) space independently of
the alphabet size, and allows for simulating traversal of each DAWG edge in
O(log σ) time. We also present an algorithm that builds this implicit represen-
tation of the DAWG for a forward trie in O(n) time and space for any integer
alphabet of size O(n).

DAWGs for strings have important applications to pattern matching with
don’t cares [20], online Lempel-Ziv factorization in compact space [27], finding
minimal absent words [13], etc. CDAWGs for strings can be regarded as grammar
compression of input strings and can be stored in space linear in the number of
right-extensions of maximal repeats [3]. It is known that the number of maxi-
mal repeats can be much smaller than the string length, particularly in highly
repetitive strings. Hence, studying and understanding DAWGs/CDAWGs for
tries are very important and are expected to lead to further research on efficient
processing of tries.

Omitted proofs and supplemental figures can be found in a full version [16].

196 S. Inenaga

2 Preliminaries

Let Σ be an ordered alphabet. Any element of Σ∗ is called a string. For any
string S, let |S| denote its length. Let ε be the empty string, namely, |ε| = 0.
Let Σ+ = Σ∗ \ {ε}. If S = XY Z, then X, Y , and Z are called a prefix, a
substring, and a suffix of S, respectively. For any 1 ≤ i ≤ j ≤ |S|, let S[i..j]
denote the substring of S that begins at position i and ends at position j in S.
For convenience, let S[i..j] = ε if i > j. For any 1 ≤ i ≤ |S|, let S[i] denote
the ith character of S. For any string S, let S denote the reversed string of S,
i.e., S = S[|S|] · · · S[1]. Also, for any set S of strings, let S denote the set of the
reversed strings of S, namely, S = {S | S ∈ S}.

A trie T is a rooted tree (V,E) such that (1) each edge in E is labeled by a
single character from Σ and (2) the character labels of the out-going edges of
each node begin with mutually distinct characters. In this paper, a forward trie
refers to an (ordinary) trie as defined above. On the other hand, a backward trie
refers to an edge-reversed trie where each path label is read in the leaf-to-root
direction. We will denote by Tf = (Vf ,Ef) a forward trie and by Tb = (Vb,Eb) the
backward trie that is obtained by reversing the edges of Tf . We denote by a triple
(u, a, v)f an edge in a forward trie Tf , where u, v ∈ V and a ∈ Σ. Each reversed
edge in Tb is denoted by a triple (v, a, u)b. Namely, there is a directed labeled
edge (u, a, v)f ∈ Ef iff there is a reversed directed labeled edge (v, a, u)b ∈ Eb.

For a node u of a forward trie Tf , let anc(u, j) denote the jth ancestor of
u in Tf if it exists. Alternatively, for a node v of a backward Tb, let des(v, j)
denote the jth descendant of v in Tb if it exists. We use a level ancestor data
structure [4] on Tf (resp. Tb) so that anc(u, j) (resp. des(v, j)) can be found in
O(1) time for any node and integer j, with linear space.

For nodes u, v in a forward trie Tf s.t. u is an ancestor of v, let strf(u, v)
denote the string spelled out by the path from u to v in Tf . Let r denote the
root of Tf and Lf the set of leaves in Tf . The sets of substrings and suffixes of
the forward trie Tf are respectively defined by Substr(Tf) = {strf(u, v) | u, v ∈
Vf , u is an ancestor of v} and Suffix(Tf) = {strf(u, l) | u ∈ Vf , l ∈ Lf}.

For nodes v, u in a backward trie Tb s.t. v is a descendant of u, let strb(v, u)
denote the string spelled out by the reversed path from v to u in Tb. The sets
of substrings and suffixes of the backward trie Tb are respectively defined by
Substr(Tb) = {strb(v, u) | v, u ∈ Vb, v is a descendant of u} and Suffix(Tb) =
{strb(v, r) | v ∈ Vb, r is the root of Tb}.

In what follows, let n be the number of nodes in Tf (or equivalently in Tb).

Fact 1. (a) For any Tf and Tb, Substr(Tf) = Substr(Tb). (b) For any forward
trie Tf , |Suffix(Tf)| = O(n2). For some forward trie Tf , |Suffix(Tf)| = Ω(n2).
(c) |Suffix(Tb)| ≤ n − 1 for any backward trie Tb.

Fact 1-(a), Fact 1-(c) and the upper bound of Fact 1-(b) should be clear
from the definitions. To see the lower bound of Fact 1-(b) in detail, consider a
forward trie Tf with root r such that there is a single path of length k from r to
a node v, and there is a complete binary tree rooted at v with k leaves. Then,

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 197

for all nodes u in the path from r to v, the total number of strings in the set
{strf(u, l) | l ∈ Lf} ⊂ Suffix(Tf) is at least k(k+1), since each strf(u, l) is distinct
for each path (u, l). By setting k ≈ n/3 so that the number |Vf | of nodes in Tf

equals n, we obtain Fact 1-(b). The lower bound is valid for alphabets of size σ
ranging from 2 to Θ(k) = Θ(n).

3 Maximal Substrings in Forward/Backward Tries

Blumer et al. [6] introduced the notions of right-maximal, left-maximal, and
maximal substrings in a set S of strings, and presented clean relationships
between the right-maximal/left-maximal/maximal substrings and the suffix
trees/DAWGs/CDAWGs for S. Here we give natural extensions of these notions
to substrings in our forward and backward tries Tf and Tb, which will be the
basis of our indexing structures for Tf and Tb.

Maximal Substrings on Forward Tries: For any substring X in a forward
trie Tf , X is said to be right-maximal on Tf if (i) there are at least two distinct
characters a, b ∈ Σ such that Xa,Xb ∈ Substr(Tf), or (ii) X has an occurrence
ending at a leaf of Tf . Also, X is said to be left-maximal on Tf if (i) there are at
least two distinct characters a, b ∈ Σ such that aX, bX ∈ Substr(Tf), or (ii) X
has an occurrence beginning at the root of Tf . Finally, X is said to be maximal on
Tf if X is both right-maximal and left-maximal in Tf . For any X ∈ Substr(Tf), let
r-mxmlf(X), l-mxmlf(X), and mxmlf(X) respectively denote the functions that
map X to the shortest right-maximal substring Xβ, the shortest left-maximal
substring αX, and the shortest maximal substring αXβ that contain X in Tf ,
where α, β ∈ Σ∗.

Maximal Substrings on Backward Tries: For any substring Y in a backward
trie Tb, Y is said to be left-maximal on Tb if (i) there are at least two distinct
characters a, b ∈ Σ such that aY, bY ∈ Substr(Tb), or (ii) Y has an occurrence
beginning at a leaf of Tb. Also, Y is said to be right-maximal on Tb if (i) there are
at least two distinct characters a, b ∈ Σ such that Y a, Y b ∈ Substr(Tb), or (ii) Y
has an occurrence ending at the root of Tb. Finally, Y is said to be maximal on Tb

if Y is both right-maximal and left-maximal in Tb. For any Y ∈ Substr(Tb), let
l-mxmlb(Y), r-mxmlb(Y), and mxmlb(Y) respectively denote the functions that
map Y to the shortest left-maximal substring γY , the shortest right-maximal
substring Y δ, and the shortest maximal substring γY δ that contain Y in Tb,
where γ, δ ∈ Σ∗.

Clearly, the afore-mentioned notions are symmetric over Tf and Tb, namely:

Fact 2. String X is right-maximal (resp. left-maximal) on Tf iff X is left-
maximal (resp. right-maximal) on Tb. Also, X is maximal on Tf iff X is maximal
on Tb.

198 S. Inenaga

4 Indexing Forward/Backward Tries and Known Bounds

A compact tree for a set S of strings is a rooted tree such that (1) each edge
is labeled by a non-empty substring of a string in S, (2) each internal node is
branching, (3) the string labels of the out-going edges of each node begin with
mutually distinct characters, and (4) there is a path from the root that spells
out each string in S, which may end on an edge. Each edge of a compact tree
is denoted by a triple (u, α, v) with α ∈ Σ+. We call internal nodes that are
branching as explicit nodes, and we call loci that are on edges as implicit nodes.
We will sometimes identify nodes with the substrings that the nodes represent.

In what follows, we will consider DAG or tree data structures built on a
forward trie or backward trie. For any DAG or tree data structure D, let |D|#Node

and |D|#Edge denote the numbers of nodes and edges in D, respectively.

4.1 Suffix Trees for Forward Tries

The suffix tree of a forward trie Tf , denoted STree(Tf), is a compact tree which
represents Suffix(Tf). All non-root nodes in STree(Tf) represent right-maximal
substrings on Tf . Since now all internal nodes are branching, and since there
are at most |Suffix(Tf)| leaves, the numbers of nodes and edges in STree(Tf)
are proportional to the number of suffixes in Suffix(Tf). The following (folklore)
quadratic bounds hold due to Fact 1-(b).

Theorem 1. For any forward trie Tf with n nodes, |STree(Tf)|#Node = O(n2)
and |STree(Tf)|#Edge = O(n2). These upper bounds hold for any alpha-
bet. For some forward trie Tf with n nodes, |STree(Tf)|#Node = Ω(n2) and
|STree(Tf)|#Edge = Ω(n2). These lower bounds hold for a constant-size or larger
alphabet.

4.2 Suffix Trees for Backward Tries

The suffix tree of a backward trie Tb, denoted STree(Tb), is a compact tree which
represents Suffix(Tb). Since STree(Tb) contains at most n−1 leaves by Fact 1-(c)
and all internal nodes of Suffix(Tb) are branching, the following precise bounds
follow from Fact 1-(c), which were implicit in the literature [7,19].

Theorem 2. For any backward trie Tb with n ≥ 3 nodes, |STree(Tb)|#Node ≤
2n − 3 and |STree(Tb)|#Edge ≤ 2n − 4, independently of the alphabet size.

The above bounds are tight since the theorem translates to the suffix tree with
2m−1 nodes and 2m−2 edges for a string of length m (e.g., am−1b), which can
be represented as a path tree with n = m + 1 nodes. By representing each edge
label α by a pair 〈v, u〉 of nodes in Tb such that α = strb(u, v), STree(Tb) can
be stored with O(n) space.

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 199

Suffix Links and Weiner Links: For each explicit node aU of the suffix tree
STree(Tb) of a backward trie Tb with a ∈ Σ and U ∈ Σ∗, let slink(aU) = U .
This is called the suffix link of node aU . For each explicit node V and a ∈ Σ, we
also define the reversed suffix link Wa(V) = aV X where X ∈ Σ∗ is the shortest
string such that aV X is an explicit node of STree(Tb). Wa(V) is undefined if
aV /∈ Substr(Tb). These reversed suffix links are also called as Weiner links (or
W-link in short) [8]. A W-link Wa(V) = aV X is said to be hard if X = ε, and
soft if X ∈ Σ+. The suffix links, hard and soft W-links of nodes in the suffix
tree STree(Tf) of a forward trie Tf are defined analogously.

4.3 DAWGs for Forward Tries

The directed acyclic word graph (DAWG) of a forward trie Tf is a (partial)
DFA that recognizes all substrings in Substr(Tf). Hence, the label of every edge
of DAWG(Tf) is a single character from Σ. DAWG(Tf) is formally defined as
follows: For any substring X from Substr(Tf), let [X]E,f denote the equivalence
class w.r.t. l-mxmlf(X). There is a one-to-one correspondence between the nodes
of DAWG(Tf) and the equivalence classes [·]E,f , and hence we will identify the
nodes of DAWG(Tf) with their corresponding equivalence classes [·]E,f . By the
definition of equivalence classes, every member of [X]E,f is a suffix of l-mxmlf(X).
If X,Xa are substrings in Substr(Tf) and a ∈ Σ, then there exists an edge labeled
with character a ∈ Σ from node [X]E,f to node [Xa]E,f in DAWG(Tf). This edge
is called primary if |l-mxmlf(X)| + 1 = |l-mxmlf(Xa)|, and is called secondary
otherwise. For each node [X]E,f of DAWG(Tf) with |X| ≥ 1, let slink([X]E,f) = Z,
where Z is the longest suffix of l-mxmlf(X) not belonging to [X]E,f . This is the
suffix link of this node [X]E,f .

Mohri et al. [22] introduced the suffix automaton for an acyclic DFA G,
which is a small DFA that represents all suffixes of strings accepted by G. They
considered equivalence relation ≡ of substrings X and Y in an acyclic DFA G
such that X ≡ Y iff the following paths of the occurrences of X and Y in G
are equal. Mohri et al.’s equivalence class is identical to our equivalence class
[X]E,f when G = Tf . To see why, recall that l-mxmlf(X) = αX is the shortest
substring of Tf such that αX is left-maximal, where α ∈ Σ∗. Therefore, X is a
suffix of l-mxmlf(X) and the following paths of the occurrences of X in Tf are
identical to the following paths of the occurrences of l-mxmlf(X) in Tf . Hence,
in case where the input DFA G is in form of a forward trie Tf such that its leaves
are the accepting states, then Mohri et al.’s suffix automaton is identical to our
DAWG for Tf . Mohri et al. [22] showed the following:

Theorem 3 (Corollary 2 of [22]). For any forward trie Tf with n ≥ 3 nodes,
|DAWG(Tf)|#Node ≤ 2n − 3, independently of the alphabet size.

We remark that Theorem 3 is immediate from Theorem 2 and Fact 2.
This is because there is a one-to-one correspondence between the nodes of
DAWG(Tf) and the nodes of STree(Tb), which means that |DAWG(Tf)|#Node =
|STree(Tb)|#Node. Recall that the bound in Theorem 3 is only on the number of

200 S. Inenaga

nodes in DAWG(Tf). We shall show later that the number of edges in DAWG(Tf)
is Ω(σn) in the worst case, which can be Ω(n2) for a large alphabet.

4.4 DAWGs for Backward Tries

The DAWG of a backward trie Tb, denoted DAWG(Tb), is a (partial) DFA that
recognizes all strings in Substr(Tb). The label of every edge of DAWG(Tb) is a sin-
gle character from Σ. DAWG(Tb) is formally defined as follows: For any substring
Y from Substr(Tb), let [Y]E,b denote the equivalence class w.r.t. l-mxmlb(Y).
There is a one-to-one correspondence between the nodes of DAWG(Tb) and the
equivalence classes [·]E,b, and hence we will identify the nodes of DAWG(Tb) with
their corresponding equivalence classes [·]E,b. The notions of primary edges, sec-
ondary edges, and the suffix links of DAWG(Tb) are defined in similar manners
to DAWG(Tf), but using the equivalence classes [Y]E,b for substrings Y in the
backward trie Tb.

Symmetries Between Suffix Trees and DAWGs: The well-known symme-
try between the suffix trees and the DAWGs (refer to [5,6,10]) also holds in our
case of forward and backward tries. Namely, the suffix links of DAWG(Tf) (resp.
DAWG(Tb)) are the (reversed) edges of STree(Tb) (resp. STree(Tf)). Also, the
hard W-links of STree(Tf) (resp. STree(Tb)) are the primary edges of DAWG(Tb)
(resp. DAWG(Tf)), and the soft W-links of STree(Tf) (resp. STree(Tb)) are the
secondary edges of DAWG(Tb) (resp. DAWG(Tf)).

4.5 CDAWGs for Forward Tries

The compact directed acyclic word graph (CDAWG) of a forward trie Tf , denoted
CDAWG(Tf), is the edge-labeled DAG where the nodes correspond to the equiv-
alence class of Substr(Tf) w.r.t. mxmlf(·). In other words, CDAWG(Tf) can be
obtained by merging isomorphic subtrees of STree(Tf) rooted at internal nodes
and merging leaves that are equivalent under mxmlf(·), or by contracting non-
branching paths of DAWG(Tf).

Theorem 4 ([17]). For any forward trie Tf with n nodes over a constant-size
alphabet, |CDAWG(Tf)|#Node = O(n) and |CDAWG(Tf)|#Edge = O(n).

We emphasize that the above result by Inenaga et al. [17] states size bounds
of CDAWG(Tf) only in the case where σ = O(1). We will later show that this
bound does not hold for the number of edges, in the case of a large alphabet.

4.6 CDAWGs for Backward Tries

The compact directed acyclic word graph (CDAWG) of a backward trie Tb,
denoted CDAWG(Tb), is the edge-labeled DAG where the nodes correspond to
the equivalence class of Substr(Tb) w.r.t. mxmlb(·). Similarly to its forward trie
counterpart, CDAWG(Tb) can be obtained by merging isomorphic subtrees of
STree(Tb) rooted at internal nodes and merging leaves that are equivalent under
mxmlf(·), or by contracting non-branching paths of DAWG(Tb).

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 201

5 New Size Bounds on Indexing Forward/Backward Tries

To make the analysis simpler, we assume each of the roots, the one of Tf and
the corresponding one of Tb, is connected to an auxiliary node ⊥ with an edge
labeled by a unique character $ that does not appear elsewhere in Tf or in Tb.

5.1 Size Bounds for DAWGs for Forward/Backward Tries

Theorem 5. For any backward trie Tb with n nodes, |DAWG(Tb)|#Node =
O(n2) and |DAWG(Tb)|#Edge = O(n2). These upper bounds hold for any alpha-
bet. For some backward trie Tb with n nodes, |DAWG(Tb)|#Node = Ω(n2) and
|DAWG(Tb)|#Edge = Ω(n2). These lower bounds hold for a constant-size or larger
alphabet.

Theorem 6. For any forward trie Tf with n nodes, |DAWG(Tf)|#Edge = O(σn).
For some forward trie Tf with n nodes, |DAWG(Tf)|#Edge = Ω(σn) which is
Ω(n2) for a large alphabet of size σ = Θ(n).

Proof. Since each node of DAWG(Tf) can have at most σ out-going edges, the
upper bound |DAWG(Tf)|#Edge = O(σn) follows from Theorem 3.

To obtain the lower bound |DAWG(Tf)|#Edge = Ω(σn), we consider Tf which
has a broom-like shape such that there is a single path of length n − σ − 1
from the root to a node v which has out-going edges with σ distinct characters
b1, . . . , bσ. Since the root of Tf is connected with the auxiliary node ⊥ with an
edge labeled $, each root-to-leaf path in Tf represents $an−σ+1bi for 1 ≤ i ≤ σ.
Now ak for each 1 ≤ k ≤ n − σ − 2 is left-maximal since it is immediately
preceded by a and $. Thus DAWG(Tf) has at least n−σ −2 internal nodes, each
representing ak for 1 ≤ k ≤ n − σ − 2. On the other hand, each ak ∈ Substr(Tf)
is immediately followed by bi with all 1 ≤ i ≤ σ. Hence, DAWG(Tf) contains
σ(n − σ − 2) = Ω(σn) edges when n − σ − 2 = Ω(n). By choosing e.g. σ ≈ n/2,
we obtain DAWG(Tf) that contains Ω(n2) edges. ��
Mohri et al. (Proposition 4 of [22]) claimed that one can construct DAWG(Tf)
in time proportional to its size. The following corollary is immediate from The-
orem 6:

Corollary 1. The DAWG construction algorithm of [22] applied to a forward
trie with n nodes must take at least Ω(n2) time in the worst case for an alphabet
of size σ = Θ(n).

5.2 Size Bounds for CDAWGs for Forward/Backward Tries

Theorem 7. For any backward trie Tb with n nodes, |CDAWG(Tb)|#Node ≤
2n − 3 and |CDAWG(Tb)|#Edge ≤ 2n − 4. These bounds are independent of the
alphabet size.

202 S. Inenaga

Proof. Since any maximal substring in Substr(Tb) is right-maximal in
Substr(Tb), by Theorem 2 we have |CDAWG(Tb)|#Node ≤ |STree(Tb)|#Node ≤
2n − 3 and |CDAWG(Tb)|#Edge ≤ |STree(Tb)|#Edge ≤ 2n − 4. ��
The bounds in Theorem 7 are tight: Consider an alphabet {a1, . . . , a�log2 n�,
b1, . . . , b�log2 n�, $} of size 2
log2 n� + 1 and a binary backward trie Tb with
n nodes where the binary edges at each depth d ≥ 2 are labeled by the sub-
alphabet {ad, bd} of size 2. Because every suffix S ∈ Suffix(Tb) is maximal in
Tb, CDAWG(Tb) for this Tb contains n − 1 sinks. Also, since for each suffix S in
Tb there is a unique suffix S′ �= S that shares the longest common prefix with
S, CDAWG(Tb) for this Tb contains n − 2 internal nodes (including the source).
This also means CDAWG(Tb) is identical to STree(Tb) for this backward trie Tb.

Theorem 8. For any forward trie Tf with n nodes, |CDAWG(Tf)|#Node ≤ 2n −
3 and |CDAWG(Tf)|#Edge = O(σn). For some forward trie Tf with n nodes,
|CDAWG(Tf)|#Edge = Ω(σn) which is Ω(n2) for a large alphabet of size σ =
Θ(n).

Proof. It immediately follows from Fact 1-(a), Fact 2, and Theorem 7 that
|CDAWG(Tf)|#Node = |CDAWG(Tb)|#Node ≤ 2n−3. Since a node in CDAWG(Tf)
can have at most σ out-going edges, the upper bound |CDAWG(Tf)|#Edge =
O(σn) of the number of edges trivially holds. To obtain the lower bound, we
consider the same broom-like forward trie Tf as in Theorem 6. In this Tf , ak for
each 1 ≤ k ≤ n − σ − 2 is maximal and thus CDAWG(Tf) has at least n − σ − 2
internal nodes each representing ak for 1 ≤ k ≤ n−σ−2. By the same argument
to Theorem 6, CDAWG(Tf) for this Tf contains at least σ(n − σ − 2) = Ω(σn)
edges, which accounts to Ω(n2) for a large alphabet of size e.g. σ ≈ n/2. ��
The upper bound of Theorem 8 generalizes the bound of Theorem 4 for constant-
size alphabets. Remark that CDAWG(Tf) for the broom-like Tf is almost identical
to DAWG(Tf), except for the unary path $a that is compacted in CDAWG(Tf).

6 Constructing O(n)-size Representation of DAWG(Tf)
in O(n) Time

We have seen that DAWG(Tf) for any forward trie Tf with n nodes contains
only O(n) nodes, but can have Ω(σn) edges for some Tf over an alphabet of
size σ ranging from Θ(1) to Θ(n). Thus some DAWG(Tf) can have Θ(n2) edges
for σ = Θ(n) (Theorem 3 and Theorem 6). Hence, in general it is impossible
to build an explicit representation of DAWG(Tf) within linear O(n)-space. By
an explicit representation we mean an implementation of DAWG(Tf) where each
edge is represented by a pointer between two nodes.

We show that there exists an O(n)-space implicit representation of DAWG(Tf)
for any alphabet of size σ ranging from Θ(1) to Θ(n), that allows us O(log σ)-
time access to each edge of DAWG(Tf). This is trivial in case σ = O(1), and hence
in what follows we consider an alphabet of size σ such that σ ranges from ω(1)

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 203

to Θ(n). Also, we suppose that our alphabet is an integer alphabet Σ = [1..σ]
of size σ. Then, we show that such an implicit representation of DAWG(Tf) can
be built in O(n) time and working space.

Based on the property stated in Sect. 4, constructing DAWG(Tf) reduces to
maintaining hard and soft W-links over STree(Tb). Our data structure explicitly
stores all O(n) hard W-links, while it only stores carefully selected O(n) soft W-
links. The other soft W-links can be simulated by these explicitly stored W-links,
in O(log σ) time each.

Our algorithm is built upon the following facts which are adapted from [12]:

Fact 3. Let a be any character from Σ.

(a) If there is a (hard or soft) W-link Wa(V) for a node V in STree(Tb), then
there is a (hard or soft) W-link Wa(U) for any ancestor U of V in STree(Tb).

(b) If two nodes U and V have hard W-links Wa(U) and Wa(V), then the LCA
Z of U and V also has a hard W-link Wa(Z).

In the following statements (c), (d), and (e), let V be any node of STree(Tb)
such that V has a soft W-link Wa(V) for a ∈ Σ.

(c) There is a descendant U of V s.t. U �= V and U has a hard W-link Wa(V).
(d) The highest descendant of V that has a hard W-link for character a is unique.

This fact follows from (b).
(e) Let U be the unique highest descendant of V that has a hard W-link Wa(U).

For every node Z in the path from V to U , Wa(Z) = Wa(U), i.e. the W-links
of all nodes in this path for character a point to the same node in STree(Tb).

We construct a micro-macro tree decomposition [1] of STree(Tb) in a similar
manner to [14], such that the nodes of STree(Tb) are partitioned into O(n/σ)
connected components (called micro-trees), each of which contains O(σ) nodes.
Such a decomposition always exists and can be computed in O(n) time. The
macro tree is the induced tree from the roots of the micro trees, and thus the
macro tree contains O(n/σ) nodes.

In every node V of the macro tree, we explicitly store all soft and hard W-
links from V . Since there can be at most σ W-links from V , this requires O(n)
total space for all nodes in the macro tree. Let mt denote any micro tree. We
compute the ranks of all nodes in a pre-order traversal in mt. Let a ∈ Σ be any
character such that there is a node V in mt that has a hard W-link Wa(V).
Let Pmt

a denote an array that stores a sorted list of pre-order ranks of nodes V
in mt that have hard W-links for character a. Hence the size of Pmt

a is equal to
the number of nodes in mt that have hard W-links for character a. For all such
characters a, we store Pmt

a in mt. The total size of these arrays for all the micro
trees is O(n).

Let a ∈ Σ be any character, and V any node in STree(Tb) which does not
have a hard W-link for a. We wish to know if V has a soft W-link for a, and
if so, we want to retrieve the target node of this link. Let mt denote the micro-
tree that V belongs to. Consider the case where V is not the root R of mt, since

204 S. Inenaga

otherwise Wa(V) is explicitly stored. If Wa(R) is nil, then by Fact 3-(a) no nodes
in the micro tree has W-links for character a. Otherwise (if Wa(R) exists), then
we can find Wa(W) as follows:

(A) If the predecessor P of V exists in Pmt
a and P is an ancestor of V , then we

follow the hard W-link Wa(P) from P . Let Q = Wa(P), and c be the first
character in the path from P to V .
(i) If Q has an out-going edge whose label begins with c, the child of Q below

this edge is the destination of the soft W-link Wa(V) from V for a.
(ii) Otherwise, then there is no W-link from V for a.

(B) Otherwise, Wa(R) from the root R of mt is a soft W-link, which is explicitly
stored. We follow it and let U = Wa(R).
(i) If Z = slink(U) is a descendant of V , then U is the destination of the soft

W-link Wa(V) from V for a.
(ii) Otherwise, then there is no W-link from V for a.

The correctness of this algorithm follows from Fact 3-(e). Since each micro-tree
contains O(σ) nodes, the size of Pmt

a is O(σ) and thus the predecessor P of V in
Pmt

a can be found in O(log σ) time by binary search. We can check if one node is
an ancestor of the other node (or vice versa) in O(1) time, after standard O(n)-
time preprocessing over the whole suffix tree. Hence, this algorithm simulates
soft W-link Wa(V) in O(log σ) time.

Lemma 1. Given a backward trie Tb with n nodes, we can compute STree(Tb)
with all hard W-links in O(n) time and space.

Lemma 2. We can compute, in O(n) time and space, all W-links of the macro
tree nodes and the arrays Pmt

a for all the micro trees mt and characters a ∈ Σ.

Proof. We perform a pre-order traversal on each micro tree mt. At each node V
visited during the traversal, we append the pre-order rank of V to array Pmt

a iff
V has a hard W-link Wa(V) for character a. Since the size of mt is O(σ) and
since we have assumed an integer alphabet [1..σ], we can compute Pmt

a for all
characters a in O(σ) time. It takes O(n

σ · σ) = O(n) time for all micro trees.
The preprocessing for the macro tree consists of two steps. Firstly, we need

to compute soft W-links from the macro tree nodes (recall that we have already
computed hard W-links from the macro tree nodes by Lemma 1). For this sake,
in the above preprocessing for micro trees, we additionally pre-compute the
successor of the root R of each micro tree mt in each non-empty array Pmt

a . By
Fact 3-(d), this successor corresponds to the unique descendant of R that has a
hard W-link for character a. As above, this preprocessing also takes O(σ) time for
each micro tree, resulting in O(n) total time. Secondly, we perform a bottom-up
traversal on the macro tree. Our basic strategy is to “propagate” the soft W-
links in a bottom up fashion from lower nodes to upper nodes in the macro tree
(recall that these macro tree nodes are the roots of micro trees). In so doing,
we first compute the soft W-links of the macro tree leaves. By Fact 3-(c) and
-(e), this can be done in O(σ) time for each leaf using the successors computed

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 205

above. Then we propagate the soft W-links to the macro tree internal nodes.
The existence of soft W-links of internal nodes computed in this way is justified
by Fact 3-(a), however, the destinations of some soft W-links of some macro tree
internal nodes may not be correct. This can happen when the corresponding
micro trees contain hard W-links (due to Fact 3-(e)). These destinations can be
modified by using the successors of the roots computed in the first step, again
due to Fact 3-(e). Both of our propagation and modification steps take O(σ)
time for each macro tree node of size O(σ), and hence, it takes a total of O(n)
time. ��
Theorem 9. Given a forward trie Tf of size n over an integer alphabet
Σ = [1..σ] with σ = O(n), we can construct an O(n)-space representation of
DAWG(Tf) in O(n) time and working space.

References

1. Alstrup, S., Secher, J.P., Spork, M.: Optimal on-line decremental connectivity in
trees. Inf. Process. Lett. 64(4), 161–164 (1997)

2. Apostolico, A., Lonardi, S.: Off-line compression by greedy textual substitution.
Proc. IEEE 88(11), 1733–1744 (2000)

3. Belazzougui, D., Cunial, F.: Fast label extraction in the CDAWG. In: Fici, G.,
Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 161–175.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 14

4. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

5. Blumer, A., et al.: The smallest automaton recognizing the subwords of a text.
Theor. Comput. Sci. 40, 31–55 (1985)

6. Blumer, A., Blumer, J., Haussler, D., Mcconnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

7. Breslauer, D.: The suffix tree of a tree and minimizing sequential transducers.
Theor. Comput. Sci. 191(1–2), 131–144 (1998)

8. Breslauer, D., Italiano, G.F.: Near real-time suffix tree construction via the fringe
marked ancestor problem. J. Discrete Algorithms 18, 32–48 (2013)

9. Crochemore, M.: Transducers and repetitions. Theor. Comput. Sci. 45(1), 63–86
(1986)

10. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Cam-
bridge (1994)

11. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 4:1–4:33 (2009)

12. Fischer, J., Gawrychowski, P.: Alphabet-dependent string searching with wexpo-
nential search trees. In: Proceedings of the 26th Annual Symposium on Combi-
natorial Pattern Matching, CPM, pp. 160–171 (2015). Full version: https://arxiv.
org/abs/1302.3347

13. Fujishige, Y., Tsujimaru, Y., Inenaga, S., Bannai, H., Takeda, M.: Computing
DAWGs and minimal absent words in linear time for integer alphabets. In: Pro-
ceedings of the 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS, pp. 38:1–38:14 (2016)

14. Gawrychowski, P.: Simple and efficient LZW-compressed multiple pattern match-
ing. J. Discrete Algorithms 25, 34–41 (2014)

https://doi.org/10.1007/978-3-319-67428-5_14
https://arxiv.org/abs/1302.3347
https://arxiv.org/abs/1302.3347

206 S. Inenaga

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

16. Inenaga, S.: Suffix trees, DAWGs and CDAWGs for forward and backward tries.
arXiv e-prints p. 1904.04513 (2019). http://arxiv.org/abs/1904.04513

17. Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: Construction of
the CDAWG for a trie. In: Proceedings of the Prague Stringology Conference, PSC
2001, pp. 37–48 (2001)

18. Kimura, D., Kashima, H.: Fast computation of subpath kernel for trees. In: Pro-
ceedings of the 29th International Conference on Machine Learning, ICML (2012)

19. Kosaraju, S.R.: Efficient tree pattern matching (preliminary version). In: Proceed-
ings of the 30th Annual Symposium on Foundations of Computer Science, FOCS,
pp. 178–183 (1989)

20. Kucherov, G., Rusinowitch, M.: Matching a set of strings with variable length don’t
cares. Theor. Comput. Sci. 178(1–2), 129–154 (1997)

21. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, Cambridge (2015)

22. Mohri, M., Moreno, P.J., Weinstein, E.: General suffix automaton construction
algorithm and space bounds. Theor. Comput. Sci. 410(37), 3553–3562 (2009)

23. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 657–666 (2002)

24. Nakashima, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: The position heap of a
Trie. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.)
SPIRE 2012. LNCS, vol. 7608, pp. 360–371. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34109-0 38

25. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE
Trans. E86-A(5), 1061–1066 (2003)

26. Weiner, P.: Linear pattern-matching algorithms. In: Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)

27. Yamamoto, J., Tomohiro, I., Bannai, H., Inenaga, S., Takeda, M.: Faster compact
on-line Lempel-Ziv factorization. In: Proceedings of the 31st International Sympo-
sium on Theoretical Aspects of Computer Science, STACS, pp. 675–686 (2014)

http://arxiv.org/abs/1904.04513
https://doi.org/10.1007/978-3-642-34109-0_38
https://doi.org/10.1007/978-3-642-34109-0_38

	Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries
	1 Introduction
	2 Preliminaries
	3 Maximal Substrings in Forward/Backward Tries
	4 Indexing Forward/Backward Tries and Known Bounds
	4.1 Suffix Trees for Forward Tries
	4.2 Suffix Trees for Backward Tries
	4.3 DAWGs for Forward Tries
	4.4 DAWGs for Backward Tries
	4.5 CDAWGs for Forward Tries
	4.6 CDAWGs for Backward Tries

	5 New Size Bounds on Indexing Forward/Backward Tries
	5.1 Size Bounds for DAWGs for Forward/Backward Tries
	5.2 Size Bounds for CDAWGs for Forward/Backward Tries

	6 Constructing O(n)-size Representation of DAWG(Tf) in O(n) Time
	References

