
14th Latin American Symposium
São Paulo, Brazil, January 5–8, 2021
Proceedings

LATIN 2020:

Theoretical InformaticsLN
CS

 1
21

18
A

RC
oS

S
Yoshiharu Kohayakawa
Flávio Keidi Miyazawa (Eds.)

Lecture Notes in Computer Science 12118

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Yoshiharu Kohayakawa •

Flávio Keidi Miyazawa (Eds.)

LATIN 2020:
Theoretical Informatics
14th Latin American Symposium
São Paulo, Brazil, January 5–8, 2021
Proceedings

123

Editors
Yoshiharu Kohayakawa
University of São Paulo
São Paulo, Brazil

Flávio Keidi Miyazawa
University of Campinas
Campinas, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-61791-2 ISBN 978-3-030-61792-9 (eBook)
https://doi.org/10.1007/978-3-030-61792-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7841-157X
https://orcid.org/0000-0002-1067-6421
https://doi.org/10.1007/978-3-030-61792-9

Preface

We are very pleased to present this volume with the papers accepted to the 14th Latin
American Theoretical INformatics Symposium (LATIN 2020). The conference was
scheduled to run in May 2020, in São Paulo, Brazil, the birthplace of this series of
meetings, but owing to the global COVID-19 pandemic, it was postponed to 2021.
Previous editions of LATIN took place in São Paulo, Brazil (1992), Valparaíso, Chile
(1995), Campinas, Brazil (1998), Punta del Este, Uruguay (2000), Cancún, Mexico
(2002), Buenos Aires, Argentina (2004), Valdivia, Chile (2006), Búzios, Brazil (2008),
Oaxaca, Mexico (2010), Arequipa, Peru (2012), Montevideo, Uruguay (2014), Ense-
nada, Mexico (2016), and Buenos Aires, Argentina (2018).

The conference received 136 submissions from around the world. Each submission
was reviewed by three Program Committee members, often with the help of additional
external referees. After an intense reviewing process, the Program Committee selected
50 submissions for presentation.

We are delighted that the following distinguished speakers accepted our invitation to
give a plenary lecture at LATIN 2020: Maria-Florina Balcan (Carnegie Mellon
University, USA), Nikhil Bansal (Centrum Wiskunde & Informatica and Eindhoven
University of Technology, The Netherlands), Maria Chudnovsky (Princeton Univer-
sity, USA), Nicole Immorlica (Microsoft Research, USA) Eduardo Sany Laber (Pon-
tifical Catholic University of Rio de Janeiro, Brazil), Alexander Razborov (The
University of Chicago, USA), Luca Trevisan (Bocconi University, Italy), and Bianca
Zadrozny (IBM Research, Brazil). Furthermore, Nikhil Bansal kindly accepted to give
the course “Algorithmic Discrepancy and Applications” in LATIN 2020. We are very
grateful to all the speakers for accepting to support and enrich LATIN 2020. The title
and abstract of the keynote talks as well as the course are available on the conference
website.

LATIN 2020 featured two awards: the Imre Simon Test-of-Time Award and the
Alejandro López-Ortiz Best Paper Award. In this edition, the Imre Simon Test-of-Time
Award winner is Anne Brüggemann-Klein, for her paper “Regular expressions into
finite automata,” which appeared in LATIN 1992. For the Alejandro López-Ortiz Best
Paper Award, the Program Committee selected the paper “Monotone Circuit Lower
Bounds from Robust Sunflowers,” by Bruno Pasqualotto Cavalar, Mrinal Kumar, and
Benjamin Rossman. We thank Springer for supporting both awards.

In order to facilitate and promote attendance, poster sessions were planned for
LATIN 2020 to encourage theory students and young researchers to report their
ongoing research and preliminary findings. We thank the Posters Committee members
for their work.

Our heartfelt thanks go to the authors for their excellent papers and cooperation, to
the Program Committee members for the insightful discussions, to the subreferees for
their careful reports, and to the Steering Committee for their valuable advice and
feedback.

We are very grateful to the organizing team for all their support and commitment in
these challenging times, which demanded inventiveness and all sorts of additional
work. Last but not least, we warmly thank all our academic and corporate sponsors:
B2W, CAPES, CNPq, FAPESP, Google, IME-USP, SBC, Springer, UFABC,
UNICAMP, and USP.

August 2020 Yoshiharu Kohayakawa
Flávio Keidi Miyazawa

vi Preface

The Imre Simon Test-of-Time Award

The winner of the 2020 Imre Simon Test-of-Time Award, considering papers up to the
2010 edition of the Latin American Theoretical INformatics Symposium (LATIN), is:

“Regular expressions into finite automata” by Anne Brüggemann-Klein,
LATIN 1992, LNCS 583, 87–98, 1992,

which has also been published in Theoretical Computer Science, vol. 120 (1993),
197–213, in its more detailed journal version.

Not many results in (theoretical) computer science are considered as being as basic
and fundamental as Kleene’s theorem. This result states the equality of the family of
regular languages, that is, the family of languages denoted by regular expressions, with
the family of languages accepted by finite automata.

If the fact that languages accepted by finite automata are regular is mostly of theo-
retical, or aesthetical, interest, the one that regular languages are accepted by finite
automata, that is, more precisely, that a regular expression can be turned into an
equivalent finite automaton, is of paramount importance and ubiquitously implemented
in countless pieces of software. Every textbook in computer science, especially those
dealing with parsing and compiler construction, has a chapter where such algorithms
are described. They are due to Thompson, Glushkov, Brzozowski, or Antimirov, to
name a few.

The contribution of the awarded paper in the abundant literature on the subject is
original and unique in the sense that it does not offer a new algorithm or an
improvement of an algorithm that computes an automaton from an expression. It
describes a syntactic transformation of a regular expression E into an equivalent
expression, called the ‘star normal form of E’. An expression is in star normal form
(SNF) if the star operator applies only to subexpressions that denote languages which
do not contain the empty word.

The computation of the SNF of an expression is achieved by a recursive traversal
of the syntactic tree of the expression, hence with a linear complexity in the size of the
expression. The paper then establishes that the ‘Glushkov construction’ applied to an
expression in SNF is of quadratic complexity – in contrast with the general case, which
is of cubic complexity. And the two properties together thus yield the first quadratic
algorithm for computing an automaton from an expression.

The interest of the concept of SNF goes beyond this complexity breakthrough which
already brings the paper numerous quotations and references. It first allows one to
clarify the notions of weak and strong unambiguity (an expression is weakly unam-
biguous iff its SNF is strongly unambiguous). More important, the definition of SNF
underlies those of 1-unambiguous expressions and languages, developed in a subse-
quent paper by the same author (together with D. Wood) and that were motivated by

the study of the grammars appearing in markup languages. This is another strong
background for the long-lasting interest in the paper selected for the 2020 Imre Simon
Test-of-Time Award.

January 2020 Marcos Kiwi
Conrado Martínez

Jacques Sakarovitch

viii The Imre Simon Test-of-Time Award

Organization

Program Committee Chairs

Yoshiharu Kohayakawa University of São Paulo, Brazil
Flávio Keidi Miyazawa University of Campinas, Brazil

Steering Committee

Kirk Pruhs University of Pittsburgh, USA
Michael Bender Stony Brook University, USA
Cristina Fernandes University of São Paulo, Brazil
Joachim von zur Gathen Bonn-Aachen International Center for Information

Technology, Germany
Evangelos Kranakis Carleton University, Canada
Alfredo Viola Universidad de la República, Uruguay

Program Committee

Andris Ambainis University of Latvia, Latvia
Frédérique Bassino CNRS and Université Sorbonne Paris Nord, France
Flavia Bonomo Universidad de Buenos Aires, Argentina
Prosenjit Bose Carleton University, Canada
Olivier Carton Université Paris Diderot, France
Ferdinando Cicalese University of Verona, Italy
Jose Correa Universidad de Chile, Chile
Pierluigi Crescenzi Université Paris Diderot, France
Luc Devroye McGill University, Canada
Martin Dietzfelbinger Technische Universität Ilmenau, Germany
David Fernández-Baca Iowa State University, USA
Esteban Feuerstein Universidad de Buenos Aires, Argentina
Eldar Fischer Technion - Israel Institute of Technology, Israel
Pierre Fraigniaud CNRS and Université Paris Diderot, France
Martin Fürer Penn State University, USA
Anna Gál The University of Texas at Austin, USA
Ron Holzman Technion - Israel Institute of Technology, Israel
Marcos Kiwi Universidad de Chile, Chile
Yoshiharu Kohayakawa University of São Paulo, Brazil
Teresa Krick Universidad de Buenos Aires, Argentina
Cláudia Linhares Sales Federal University of Ceará, Brazil
Kazuhisa Makino Kyoto University, Japan
Conrado Martínez Universitat Politècnica de Catalunya, Spain
Flávio Keidi Miyazawa University of Campinas, Brazil

Marco Molinaro PUC-Rio, Brazil
Veli Mäkinen University of Helsinki, Finland
Gonzalo Navarro Universidad de Chile, Chile
Rolf Niedermeier Technische Universität Berlin, Germany
Rafael Oliveira University of Toronto, Canada
Roberto Oliveira IMPA, Brazil
Daniel Panario Carleton University, Canada
Alessandro Panconesi Sapienza University of Rome, Italy
Pan Peng The University of Sheffield, UK
Ely Porat Bar-Ilan University, Israel
Paweł Prałat Ryerson University, Canada
Pavel Pudlák Czech Academy of Sciences, Czech Republic
Svetlana Puzynina Saint Petersburg State University, Russia
Sergio Rajsbaum Universidad Nacional Autónoma de Mexico, Mexico
Andrea Richa Arizona State University, USA
Rahul Santhanam University of Oxford, UK
Asaf Shapira Tel Aviv University, Israel
Alistair Sinclair University of California, Berkeley, USA
Mohit Singh Georgia Institute of Technology, USA
Maya Stein Universidad de Chile, Chile
Jayme Szwarcfiter Federal University of Rio de Janeiro, Brazil
Eli Upfal Brown University, USA
Jorge Urrutia Universidad Nacional Autónoma de México, Mexico
Brigitte Vallée Université de Caen, France
Mikhail Volkov Ural Federal University, Russia
Raphael Yuster University of Haifa, Israel

Organizing Committee

José C. de Pina (Co-chair) University of São Paulo, Brazil
Carla N. Lintzmayer

(Co-chair)
Federal University of ABC, Brazil

Guilherme O. Mota
(Co-chair)

Federal University of ABC, Brazil

Yoshiko Wakabayashi
(Co-chair)

University of São Paulo, Brazil

Marcel K. de Carli Silva University of São Paulo, Brazil
Carlos E. Ferreira University of São Paulo, Brazil
Cristina G. Fernandes University of São Paulo, Brazil
Arnaldo Mandel University of São Paulo, Brazil
Daniel M. Martin Federal University of ABC, Brazil
Lehilton L. C. Pedrosa University of Campinas, Brazil
Sinai Robins University of São Paulo, Brazil
Cristiane M. Sato Federal University of ABC, Brazil
Rafael C. S. Schouery University of Campinas, Brazil
Eduardo C. Xavier University of Campinas, Brazil

x Organization

Additional Reviewers

Yehuda Afek
Matteo Almanza
Simon Apers
Julio Aracena
Julio Araujo
Diego Arroyuelo
Srinivasan Arunachalam
Yeganeh Bahoo
Niranjan Balachandran
Gill Barequet
Zuzana Bednarova
Alexander Belov
Omri Ben-Eliezer
Fabrício Benevides
Matthias Bentert
Benjamin Bergougnoux
René Van Bevern
Ahmad Biniaz
Hans Bodlaender
Ilario Bonacina
Anthony Bonato
Nicolas Bousquet
Marco Bressan
Karl Bringmann
Shaowei Cai
Xing Cai
Victor Campos
Clément Canonne
Bastien Cazaux
Dibyayan Chakraborty
Erika Coelho
Cyrus Cousins
Gabriel Coutinho
Anthony D’Angelo
Konrad Dabrowski
Joshua Daymude
Marcelo de Carvalho
Mateus de Oliveira Oliveira
Pedro de Rezende
Lorenzo De Stefani
Antoine Deza
Giuseppe Di Luna
Josep Diaz

Benjamin Doerr
Vinicius dos Santos
Jean-Philippe Dubernard
Enrica Duchi
Philippe Duchon
Guillaume Ducoffe
Tinaz Ekim
Sergi Elizalde
Matthias Englert
Massimo Equi
Thomas Erlebach
Luerbio Faria
Andreas Feldmann
Cristina Fernandes
Gabriele Fici
Till Fluschnik
Lukas Folwarczny
Travis Gagie
Pu Gao
Konstantinos Georgiou
Daniel Gibney
Shay Golan
Claude Gravel
Jarosław Grytczuk
Sylvain Guillemot
Shahrzad Haddadan
Pooya Hatami
Benjamin Hellouin de Menibus
Anne-Sophie Himmel
Cecilia Holmgren
Janis Iraids
Vesna Iršič
Svante Janson
Gwenaël Joret
Bogumił Kamiński
Leon Kellerhals
Michael Khachay
Sang-Sub Kim
Konstantin Kobylkin
Tomasz Kociumaka
Martins Kokainis
Christian Komusiewicz
Dmitry Kosolobov

Organization xi

O-Joung Kwon
Elmar Langetepe
Carlos Lima
Paloma Lima
Min Chih Lin
Sylvain Lombardy
Raul Lopes
Hosam Mahmoud
Konstantin Makarychev
Arnaldo Mandel
Andrea Marino
Leonardo Martinez
Paolo Massazza
Pedro Matias
Alessio Mazzetto
Alessia Milani
Marni Mishna
Hendrik Molter
Guilherme Mota
Matthias Müller-Hannemann
Marcelo Mydlarz
André Nichterlein
Prajakta Nimbhorkar
Hugo Nobrega
Thomas Nowak
Pascal Ochem
Carlos Ochoa
Stephan Olariu
Juan Manuel Ortiz de Zarate
Ayoub Otmani
Linda Pagli
Prakash Panangaden
Olga Parshina
Matthew Patitz
Lehilton Pedrosa
Pablo Pérez-Lantero
Martin Pergel
Miguel Pizaña
Daniel Posner
Dominique Poulalhon
Ali Pourmiri
Lionel Pournin
Thomas Prellberg
Krisjanis Prusis

Artem Pyatkin
Arash Rafiey
Giuseppe Re
Vinod Reddy
Malte Renken
Susanna Rezende
Assaf Rinot
Matteo Riondato
Trent Rogers
Javiel Rojas-Ledesma
Massimiliano Rossi
Pablo Rotondo
Ville Salo
Rudini Sampaio
Mathieu Sassolas
Ignasi Sau
Saket Saurabh
Joe Sawada
Christian Scheffer
Kevin Schewior
Ulrich Schmid
Ben Seamone
Ohad Shamir
Saswata Shannigrahi
Arseny Shur
Ana Silva
Ronan Soares
José Soto
Uéverton Souza
Joachim Spoerhase
Jakob Spooner
Alejandro Strejilevich de Loma
Xiaoming Sun
Jay Tenenbaum
Hans Tiwari
Gabriel Tolosa
Nadi Tomeh
Iddo Tzameret
Eleni Tzanaki
Pavel Valtr
Victor Verdugo
Sergey Verlan
José Verschae
Laurent Viennot

xii Organization

Jevgenijs Vihrovs
Yoshiko Wakabayashi
Haitao Wang
Jamison Weber
Fan Wei

Stu Whittington
Sebastian Wiederrecht
Andreas Wiese
Nengkun Yu
Philipp Zschoche

Posters Committee

Lehilton L. C. Pedrosa
(Chair)

University of Campinas, Brazil

Rafael C. S. Schouery University of Campinas, Brazil
Yoshiko Wakabayashi University of São Paulo, Brazil
Eduardo C. Xavier University of Campinas, Brazil

Sponsoring Institutions

Brazilian Research Agencies and Academic Institutions

CAPES Coordination for the Improvement of Higher Education
Personnel

CNPq National Council for Scientific and Technological
Development

FAPESP São Paulo Research Foundation
IME-USP Institute of Mathematics and Statistics, USP
SBC Brazilian Computer Society
UFABC Federal University of ABC
UNICAMP University of Campinas
USP University of São Paulo

Corporate Sponsors
B2W
Google
Springer

Organization xiii

Contents

Approximation Algorithms

PTAS for Steiner Tree on Map Graphs . 3
Jarosław Byrka, Mateusz Lewandowski, Syed Mohammad Meesum,
Joachim Spoerhase, and Sumedha Uniyal

Near-Linear Time Algorithm for Approximate Minimum Degree
Spanning Trees . 15

Ran Duan, Haoqing He, and Tianyi Zhang

Approximation Algorithms for Cost-Robust Discrete Minimization
Problems Based on Their LP-Relaxations . 27

Khaled Elbassioni

Scheduling on Hybrid Platforms: Improved Approximability Window 38
Vincent Fagnon, Imed Kacem, Giorgio Lucarelli, and Bertrand Simon

Leafy Spanning Arborescences in DAGs . 50
Cristina G. Fernandes and Carla N. Lintzmayer

Approximating Routing and Connectivity Problems
with Multiple Distances . 63

Lehilton L. C. Pedrosa and Greis Y. O. Quesquén

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 76
Lehilton L. C. Pedrosa and Hugo K. K. Rosado

Parameterized Algorithms

Maximizing Happiness in Graphs of Bounded Clique-Width 91
Ivan Bliznets and Danil Sagunov

Graph Hamiltonicity Parameterized by Proper Interval Deletion Set. 104
Petr A. Golovach, R. Krithika, Abhishek Sahu, Saket Saurabh,
and Meirav Zehavi

Graph Square Roots of Small Distance from Degree One Graphs 116
Petr A. Golovach, Paloma T. Lima, and Charis Papadopoulos

Structural Parameterizations for Equitable Coloring 129
Guilherme C. M. Gomes, Matheus R. Guedes, and Vinicius F. dos Santos

Algorithms and Data Structures

Dynamically Optimal Self-adjusting Single-Source Tree Networks 143
Chen Avin, Kaushik Mondal, and Stefan Schmid

Batched Predecessor and Sorting with Size-Priced Information
in External Memory . 155

Michael A. Bender, Mayank Goswami, Dzejla Medjedovic,
Pablo Montes, and Kostas Tsichlas

Probabilistically Faulty Searching on a Half-Line: (Extended Abstract) 168
Anthony Bonato, Konstantinos Georgiou, Calum MacRury,
and Paweł Prałat

Query Minimization Under Stochastic Uncertainty 181
Steven Chaplick, Magnús M. Halldórsson, Murilo S. de Lima,
and Tigran Tonoyan

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 194
Shunsuke Inenaga

Towards a Definitive Measure of Repetitiveness . 207
Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza

Computational Geometry

Flips in Higher Order Delaunay Triangulations . 223
Elena Arseneva, Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira

An Xðn3Þ Lower Bound on the Number of Cell Crossings for Weighted
Shortest Paths in 3-Dimensional Polyhedral Structures 235

Frank Bauernöppel, Anil Maheshwari, and Jörg-Rüdiger Sack

Computing Balanced Convex Partitions of Lines. 247
Sergey Bereg

Ordered Strip Packing . 258
K. Buchin, D. Kosolobov, W. Sonke, B. Speckmann, and K. Verbeek

Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain. . . . 271
Mincheol Kim, Sang Duk Yoon, and Hee-Kap Ahn

Farthest Color Voronoi Diagrams: Complexity and Algorithms 283
Ioannis Mantas, Evanthia Papadopoulou, Vera Sacristán,
and Rodrigo I. Silveira

Rectilinear Convex Hull of Points in 3D . 296
Pablo Pérez-Lantero, Carlos Seara, and Jorge Urrutia

xvi Contents

Complexity Theory

Monotone Circuit Lower Bounds from Robust Sunflowers 311
Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman

Tight Bounds on Sensitivity and Block Sensitivity of Some Classes
of Transitive Functions . 323

Siddhesh Chaubal and Anna Gál

Sherali-Adams and the Binary Encoding of Combinatorial Principles. 336
Stefan Dantchev, Abdul Ghani, and Barnaby Martin

Hardness of Variants of the Graph Coloring Game 348
Thiago Marcilon, Nicolas Martins, and Rudini Sampaio

Tractable Unordered 3-CNF Games . 360
Md Lutfar Rahman and Thomas Watson

Quantum Computing

Lower Bounds for Testing Complete Positivity and Quantum Separability . . . 375
Costin Bădescu and Ryan O’Donnell

Exponential-Time Quantum Algorithms for Graph Coloring Problems 387
Kazuya Shimizu and Ryuhei Mori

Neural Networks and Biologically Inspired Computing

On Symmetry and Initialization for Neural Networks. 401
Ido Nachum and Amir Yehudayoff

How to Color a French Flag: Biologically Inspired Algorithms
for Scale-Invariant Patterning . 413

Bertie Ancona, Ayesha Bajwa, Nancy Lynch,
and Frederik Mallmann-Trenn

Simple Intrinsic Simulation of Cellular Automata in Oritatami Molecular
Folding Model . 425

Daria Pchelina, Nicolas Schabanel, Shinnosuke Seki, and Yuki Ubukata

Randomization

Transmitting once to Elect a Leader on Wireless Networks 439
Ny Aina Andriambolamalala and Vlady Ravelomanana

Asymptotics for Push on the Complete Graph. 451
Rami Daknama, Konstantinos Panagiotou, and Simon Reisser

Contents xvii

The Hardness of Sampling Connected Subgraphs . 464
Andrew Read-McFarland and Daniel Štefankovič

Combinatorics

Lower Bounds for Max-Cut via Semidefinite Programming 479
Charles Carlson, Alexandra Kolla, Ray Li, Nitya Mani, Benny Sudakov,
and Luca Trevisan

Quasi-Random Words and Limits of Word Sequences 491
Hiệp Hàn, Marcos Kiwi, and Matías Pavez-Signé

Thresholds in the Lattice of Subspaces of Fn
q . 504

Benjamin Rossman

Analytic and Enumerative Combinatorics

On Minimal-Perimeter Lattice Animals . 519
Gill Barequet and Gil Ben-Shachar

Improved Upper Bounds on the Growth Constants of Polyominoes
and Polycubes . 532

Gill Barequet and Mira Shalah

On the Collection of Fringe Subtrees in Random Binary Trees 546
Louisa Seelbach Benkner and Stephan Wagner

A Method to Prove the Nonrationality of Some Combinatorial
Generating Functions . 559

Miklós Bóna

Binary Decision Diagrams: From Tree Compaction to Sampling 571
Julien Clément and Antoine Genitrini

Graph Theory

Graph Sandwich Problem for the Property of Being Well-Covered
and Partitionable into k Independent Sets and ‘ Cliques 587

Sancrey Rodrigues Alves, Fernanda Couto, Luerbio Faria,
Sylvain Gravier, Sulamita Klein, and Uéverton S. Souza

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree
and Matching Number . 600

Jean R. S. Blair, Pinar Heggernes, Paloma T. Lima,
and Daniel Lokshtanov

xviii Contents

Steiner Trees for Hereditary Graph Classes. 613
Hans L. Bodlaender, Nick Brettell, Matthew Johnson, Giacomo Paesani,
Daniël Paulusma, and Erik Jan van Leeuwen

On Some Subclasses of Split B1-EPG Graphs . 625
Zakir Deniz, Simon Nivelle, Bernard Ries, and David Schindl

On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs 637
M. Groshaus, A. L. P. Guedes, and F. S. Kolberg

Author Index . 649

Contents xix

Approximation Algorithms

PTAS for Steiner Tree on Map Graphs

Jaros�law Byrka1 , Mateusz Lewandowski1(B) ,
Syed Mohammad Meesum1 , Joachim Spoerhase2 ,

and Sumedha Uniyal2

1 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
mlewandowski@cs.uni.wroc.pl

2 Aalto University, Espoo, Finland

Abstract. We study the Steiner tree problem on map graphs, which
substantially generalize planar graphs as they allow arbitrarily large
cliques. We obtain a PTAS for Steiner tree on map graphs, which builds
on the result for planar edge weighted instances of Borradaile et al.

The Steiner tree problem on map graphs can be casted as a special
case of the planar node-weighted Steiner tree problem, for which only a
2.4-approximation is known. We prove and use a contraction decompo-
sition theorem for planar node weighted instances. This readily reduces
the problem of finding a PTAS for planar node-weighted Steiner tree
to finding a spanner, i.e., a constant-factor approximation containing a
nearly optimum solution. Finally, we pin-point places where known tech-
niques for constructing such spanner fail on node weighted instances and
further progress requires new ideas.

1 Introduction

The Steiner tree problem has been recognized by both theorists and practitioners
as one of the most fundamental problems in combinatorial optimization and
network design. In this classical NP-hard problem we are given a graph G =
(V,E) and a set of terminals R. The goal is to find a tree connecting all the
terminals of minimum cost. A long sequence of papers established the current
best approximation ratio of 1.386 [10].

The node-weighted Steiner tree problem (nwst) is a generalization of the
above problem. This can be easily seen by placing additional vertices in the
middle of edges. Moreover, an easy reduction shows that this variant is as difficult
to approximate as the Set Cover problem. Indeed, there are greedy O (log n)
approximation algorithms [20,24] matching this lower bound.

Much research has been devoted to studying combinatorial optimization
problems on planar graphs, i.e. graphs that can be drawn on a plane without
crossings. This natural restriction allows for better results, especially in terms of
approximation algorithms. To this end, multiple techniques have been developed
using the structural properties of planar graphs, including balanced separators

The first three authors were supported by the NCN grant number 2015/18/E/ST6/
00456.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-61792-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_1&domain=pdf
http://orcid.org/0000-0002-3387-0913
http://orcid.org/0000-0003-2912-099X
http://orcid.org/0000-0002-1771-403X
http://orcid.org/0000-0002-2601-6452
http://orcid.org/0000-0002-3999-7827
https://doi.org/10.1007/978-3-030-61792-9_1

4 J. Byrka et al.

[1,5,25], bidimensionality [17], local search [12,15], shifting technique [2]. Such
techniques are immediately applicable to a wide range of problems.

Steiner tree problems, however, require more involved construction. The
already established framework for approximation schemes for Steiner problems
on planar graphs can be summarized as follows:

1. Construct a spanner
A spanner is a subgraph of the input graph satisfying two properties: (1) total
cost of the spanner is at most f(ε) times the cost of the optimum solution
and (2) the spanner preserves a nearly-optimum solution, i.e. there exist a
solution of cost (1 + ε) · OPT. Planarity of the input graph is heavily used to
find such a spanner.

2. Apply the contraction decomposition theorem
The edges of the spanner are partitioned into k sets, such that contracting
each set results in a graph of constant treewidth. Because we started with a
cheap spanner, there is a choice of k for which the cheapest such set of edges
has cost ε · OPT. This partitioning is given by a contraction decomposition
theorem [23] (also known as thinning) which can be obtained by applying
Baker’s shifting technique [2] to the dual graph.

3. Solve bounded-treewidth instances
The remaining instance is solved exactly (or in some cases approximately) in
polynomial time via dynamic programming.

Indeed, the PTAS construction for the Steiner tree problem due to Borradaile,
Klein and Mathieu [8] uses exactly this framework. Follow-up results for related
problems such as Steiner forest [6,19], prize-collecting Steiner tree [3], group
Steiner tree [4] successfully follow the same approach (although adding new
important ingredients like spanner bootstrapping).

On the other hand—despite many efforts—the status of the node-weighted
Steiner tree problem is not yet decided on planar graphs. The state-of-the-art
algorithms achieve only constant factor approximations. A GW-like primal-dual
method gives a ratio of 6 [16], which was further simplified and improved to 3 by
Moldenhauer [26]. The current best result is a more involved 2.4-approximation
by Berman and Yaroslavtsev [7]. However, as the integrality gap of the LP used
by the above primal-dual algorithms is lower-bounded by 2, this approach does
apparently not lead to an approximation scheme.

1.1 Motivation for Map Graphs

The problems tractable on planar graphs are often considered also in more gen-
eral classes of graphs. Most common such classes include bounded genus graphs
and even more general H-minor-free graphs. In this work however, we focus on
a different generalization, i.e. map graphs introduced by Chen et al. [13]. They
are defined as intersection graphs of internally disjoint connected regions in the
plane. Unlike for planar graphs, two regions are adjacent if they share at least
one point (see Fig. 1). Notably, map graphs are not H-minor-free as they may
contain arbitrarily large cliques as minors.

PTAS for Steiner Tree on Map Graphs 5

(a) Regions (b) Planar graph (c) Map graph

Fig. 1. (a) Some municipalities of the province of Catania (Sicily, Italy). The vertices
are representing connected regions. (b) The planar graph has edges between two regions
if they share a border. (c) The map graph has edges whenever regions share at least a
single point.

It is useful to characterize map graphs as half-squares of bipartite planar
graphs. A half-square of a bipartite graph W = (V ∪U,EW) is a graph G = (V,E)
where we have an edge between a pair of vertices, whenever the distance between
these vertices in W is equal to two. If W is planar, then it is called a witness
graph of map graph G. See Fig. 2 for a witness graph (solid edges) and the
corresponding map graph (dashed edges).

Fig. 2. Map
graph and its
witness

We are the first to study the Steiner tree problem on map
graphs. We study the case when all edges have uniform cost;
otherwise the map graphs would capture the general case. To
see this, observe that a clique Kn is a map graph and putting
large costs on some edges mimics any arbitrary graph.

On the other hand, the case of map graphs with uniform
edge costs is still more general than arbitrary edge-weighted
planar graphs for the Steiner tree problem. This follows from
the fact that subdividing edges preserves planarity, and we
can reduce planar graphs to the uniform case (loosing a factor
1 + ε by guessing the heaviest edge in an optimum solution,
pruning heavier and contracting cheap edges).

Therefore it is natural to ask if there is a PTAS for the Steiner tree in our
setting. This question gets even more compelling upon realizing that this is a
special case of the node-weighted problem on planar graphs. To see this, consider
the following reduction: take the witness graph W = (V ∪U,EW) of the uniformly
edge-weighted map graph and put weight 1 on the vertices in V and weight 0 on
the vertices in U . The terminals are kept at the corresponding vertices in V . The
solutions for the resulting node-weighted problem can be easily translated back
to the initial instance. The validity of the reduction is assured by the simple fact
that the number of vertices in a tree is equal to the number of edges in this tree

6 J. Byrka et al.

plus one. The structure of instances arising from this reduction is very special
and is captured in the definition below.

Definition 1. A node-weighted Steiner tree instance is map-weighted if it is
a bipartite planar graph with weight 1 on the left side and weight 0 on the right
side. Moreover, the terminals are required to lie on the left side.

1.2 Our Results

We study the node-weighted Steiner tree problem on planar graphs and give a
PTAS for the special case of map-weighted instances.

Theorem 1. There is a polynomial-time approximation scheme for the node-
weighted Steiner tree problem on map-weighted instances.

By the reduction described above, we immediately obtain a PTAS for the
edge-weighted Steiner tree problem on uniform map graphs.

Corollary 1. There is a polynomial-time approximation scheme for the Steiner
tree problem on uniform map graphs.

In the proof of Theorem 1 we adopt the framework for constructing PTASs
and the brick-decomposition of Borradaile et al. [8]. However, we need to tackle
additional obstacles related to high-degree vertices in the node-weighted setting.

The first difficulties emerge in the Spanner construction. In the cutting-open
step, the duplication of high-degree vertices may make the cost unbounded.
Another difficulty is bounding the number of portals needed. Essentially, the
presence of expensive high-degree vertices excludes the existence of nearly-
optimum solution with bounded number of joining vertices. The properties of
map-weighted instances allow us to overcome multiple difficulties and prove the
following.

Lemma 1 (Steiner-Tree Spanner). Given a map-weighted instance W =
(V ∪ U,EW) for a map graph G, where R ⊆ V are terminal nodes, there is a
polynomial time algorithm that outputs a spanner subgraph H ⊆ W containing
all the terminals R which has the following properties:

(i) (shortness property) w(H) ≤ f(ε) · OPT (W,R)
(ii) (spanning property) OPT (H,R) ≤ (1 + ε) · OPT (W,R)

where f(ε) is a function that depends only on ε and OPT (G,R) is the cost of
an optimal Steiner tree for graph G and the set R ⊆ V (G) of terminals.

A different issue arises in the use of the Contraction Decomposition Theorem
with node weights. A naive approach could be to move the costs of vertices to
edges by setting the cost of each edge to be the sum of costs of its endpoints
and then using the contraction decomposition theorem as it is. However—again
due to high-degree nodes—the total cost of edges would no longer be a constant
approximation of OPT. Therefore we cannot directly use the existing contraction
decomposition theorem.

To handle the last issue, we develop a new decomposition theorem with the
additional property that each vertex participates in a limited number of sets.

PTAS for Steiner Tree on Map Graphs 7

Lemma 2 (Node-weighted Contraction Decomposition). There is a
polynomial time algorithm that given a planar embedding of a graph H and an
integer k, finds k sets E0, E1, . . . , Ek−1 ⊆ E(H) such that:

(i) contracting each Ei results in a graph with treewidth O(k), and
(ii) for each vertex v, all the incident edges of v are in at most two sets Ei, Ej.

We note that our decomposition can be applied to any node-weighted
contraction-closed problem, i.e. the problem for which contracting edges and
setting the weight of resulting vertex to 0 does not increase the value of opti-
mum solution. Therefore the lemma above adds a novel technique to the existing
framework for planar approximation schemes.

Finally, using standard techniques, we give a dynamic programming algo-
rithm for the node-weighted Steiner tree problem on bounded treewidth
instances (see Appendix A of the extended version of the paper [11]).

Lemma 3 (Bounded Treewidth NWST). An optimal node-weighted
Steiner tree can be found in time 2O(t log t) · nO(1), where t is the treewidth of
the input graph with n vertices.

We note that Lemma 2 and Lemma 3 work for arbitrary node-weights.
Only the spanner construction of Lemma 1 uses properties of the map-weighted
instances.

In the next section we give the details of the Spanner construction. In Sect. 3
we prove Lemma 2 and show how the combination of the three above lemmas
yields the main result. In the last section we conclude with a puzzling open
problem.

2 Spanner Construction for Map-Weighted Graph

In this section we describe how we construct the spanner for a map-weighted
planar witness graph W and prove Lemma 1. For convenience, instead of (1+ε),
we will prove property (ii) for (1 + cε) where c ≥ 0 is some fixed constant. For
any given ε > 0, running the construction for ε̃ = ε/c gives the precise result.
From now on, we will work with a fixed embedding of the witness graph W .

Notations: For any map-weighted graph W , we define dW : V 2 → R to be the
function giving the node-weighted length of the shortest-path between any two
vertices using only the edges from W (including the end vertices weights). Let
PW (u, v) ⊆ W be an arbitrary path of cost dW (u, v). Similarly, let �W : V 2 → R

be the length of the unweighted shortest-path ignoring the node-weights between
any two vertices using only the edges from W . Similarly we define for any path
P ⊆ W , c(P) to be the cost of the path corresponding to the map-weights
(including the end vertices) and �(P) to be the length of the unweighted-path
ignoring the node-weights. Analogously, for any graph H ⊆ W , we define c(H)
to be the total weight of nodes of H and �(H) to be the number of edges of H.

8 J. Byrka et al.

For any path P and u, v ∈ V (P), we define P [u, v] to be the sub-path starting
at u and ending at v (including u and v). If P [u, v] has at least one internal node
then P (u, v) denotes the sub-path starting at u and ending at v but excluding
u and v. We refer to any path/cycle with no edges and one vertex as singleton
path/cycle and the ones containing at least one edge as non-singleton path/cycle
respectively.

The spanner construction is summarized in Algorithm 1.

Algorithm 1. Spanner construction
1: Start with a 2.4-approximate node-weighted Steiner tree solution for graph W and

terminal set R using [7].
2: Cut open the corresponding solution tree ST in W to create another graph W ′

which has an outer face with boundary D of cost at most 10 · OPT .
3: Build the mortar graph MG on the cut-open graph W ′ using the procedure in

Section 6 of [8], ignoring the weights on the nodes and using �(e) = 1 for each
e ∈ E(W ′) and ε′ := ε/4

4: Construct the set P (B) ⊆ ∂B of portals for each brick B ∈ B.
5: For each brick B ∈ B and for each subset X ⊆ P (B), run the generalized Dreyfus-

Wagner algorithm [18,9] to compute the optimal Steiner tree on terminal set X in
map-weighted graph B in time 3|X|nO(1).

6: Return the union of MG along with all the trees found in the previous step.

Before proving Lemma 1, we elaborate on the steps of Algorithm 1 that
require more detailed explanation and state the key properties of the construc-
tion.

Cutting-Open operation. We start with a 2.4-approximate node-weighted Steiner
tree solution ST for our node-weighted plane graph W and terminal set R
using [7]. Using tree ST , we perform an cut-open operation as in [8] to cre-
ate a new map-weighted planar graph W ′ whose outer face is a simple cycle D
arising from ST .

Since we are dealing with node weights and the node degrees are unbounded,
we need an additional argument to bound the cost of D as compared to the
edge-weighted case. A crucial property used to prove the observation is that all
the leaves of ST have weight one.

Lemma 4. (Cut-Open) The cost c(D) of the boundary D is at most 10 · OPT.
Moreover R ⊆ V (D).

Mortar Graph Construction. We apply the construction of a mortar graph along
with a brick decomposition as described in [8] as a black box. Here, we state the
properties of the mortar graph that we need in our work without referring to
the details of the algorithm that constructs it.

(i) The mortar graph MG is a subgraph of the cut-open graph W ′ and vertices
of MG contain all the terminals.

PTAS for Steiner Tree on Map Graphs 9

(ii) Let f be a face of the mortar graph. A brick B (corresponding to f) is
the subgraph of W ′ enclosed by the boundary ∂f of f . Specifically, the
boundary ∂B of B is precisely ∂f . Let B denote the set of bricks in W ′.

(iii) The collection of all bricks covers the cut-open graph W ′.
(iv) The mortar graph is “grid-like” in the following sense. The boundary ∂B of

each brick B can be decomposed into a western part WB , a southern part
SB, an eastern part EB and a northern part NB . Each of these parts is
close to be a shortest path, i.e. each subpath is at most 1 + ε times more
expensive than the shortest path between the endpoints.

The construction of the mortar graph and the corresponding brick decomposition
as described in [8] has two parameters. An error parameter ε′ and an edge-weight
function �. We invoke their construction procedure of the mortar graph as a black
box using error parameter ε′ = ε/4 and unit edge-weights �(e) = 1 for all edges
e ∈ E(W ′). Note that the node weights are ignored in this construction.

In what follows, we will prove certain properties of the mortar graph MG
about its node weights and error parameter ε based on the fact that similar
properties hold with respect to the unit edge weights and error parameter ε′ =
ε/4.

The following technical lemma tells us that the node weight of a path is
roughly half its edge length apart from a small additive offset. It turns out
convenient for the shortness properties of the spanner that this offset is the
same for any two paths sharing their end nodes.

Lemma 5. Let P, P ′ be two paths sharing both of their end points u and v. Then
the following properties hold.

(i) There is b ∈ {0,−1,−2} such that �(P) = 2c(P)+ b and �(P ′) = 2c(P ′)+ b.
(ii) �(P)/2 ≤ c(P) ≤ �(P)/2 + 1
(iii) �W (u, v)/2 ≤ dW (u, v) ≤ �W (u, v)/2 + 1
(iv) P is a shortest path under �W if and only if it is a shortest path under dW .

The following lemma gives cost bounds on the mortar graph. In contrast
to [8], we have to exclude singleton boundaries in property (i) in order to avoid a
cost explosion. To account for the singleton boundaries in the shortness property
of Lemma 1 we bound their total number separately. (See proof of Lemma 1.)

Lemma 6. The mortar graph MG has the following two properties.

(i) The total cost
∑

B∈B:E(WB) �=∅
c(WB)+

∑
B∈B:E(EB) �=∅

c(EB) of all the non-
singleton western and eastern boundaries of all bricks is bounded by O(ε) ·
OPT.

(ii) The total cost c(MG) of the mortar graph is O(1/ε) · OPT.

Designating Portals. For finding the portals, we cannot directly use the same
greedy procedure as in Step 3(a) [8]. It does not work for bricks having a bound-
ary with small cost, because of the additive one in Lemma 5 bound. To circum-
vent this issue, we pick all the vertices to be the set of portals when the boundary

10 J. Byrka et al.

has small cost. And then for any remaining brick, the boundary cost is bounded
from below. For these bricks the greedy procedure works, as the additive plus
can be absorbed in the big-Oh by creating a factor 3 gap in the number of portals
and the cost bounds, which is sufficient.

By balancing all the parameters, we get that for any brick B ∈ B there exists
at most 3τ portals P (B) such that each vertex on the boundary of B lies within
a distance of at most c(∂B)/τ from some portal. Here τ = τ(ε) = Θ(g(ε)ε−2),
where g(ε) is defined in Lemma 16 of the extended version of the paper [11].

Lemma 7. Given a brick B ∈ B, there exists a set of vertices P (B) ⊆ ∂B, such
that:

1. (Cardinality Property) |P (B)| ≤ 3τ
2. (Coverage Property) For any u ∈ V (∂B), there exists v ∈ P (B), such that

d∂B(u, v) ≤ c(∂B)/τ and �∂B(u, v) ≤ �(∂B)/(3τ)

Now we can sketc.h the proof of Lemma 1.

Proof (Proof of Lemma 1).
(i) Shortness property. We have to bound the total cost of H, which consists
of the mortar graph and optimal Steiner trees added in step 5 of Algorithm 1.
By Lemma 6 the cost of the mortar graph is O(1/ε) ·OPT. We bound the cost of
Steiner trees analogously as in the Lemma 4.1 [8], i.e., we charge it to the cost
of the mortar graph (losing a large constant). However, we have to take extra
care to not overcharge vertices adjacent to multiple bricks.

Consider any brick B and any tree connecting portals of B added in step
5. The cost of this tree can be upper-bounded by the cost of the boundary of
the brick c(∂B). Since there is a constant number of such trees (this follows
from Lemma 7), the total cost of the trees added is a constant times the cost
of the boundary of the brick. Now, if every vertex belonged to the boundary of
a constant number of bricks, this would imply that the total cost of all Steiner
trees is bounded by constant times OPT. Below we show that if this is not the
case for some vertices, then we have a different way to pay for the cost incurred
by these vertices.

We say that a vertex v is a corner of a brick B if it belongs to the intersection
of NB (or SB) with EB (or WB). In the special case in which EB or WB is empty,
we call any v that belongs to the intersection NB ∩ SB a trivial corner. We also
say, that v is a regular boundary vertex of a brick if it is not a corner of this
brick.

Observe that v can be a regular boundary vertex of at most two bricks. It
remains to show how to charge corner vertices. For trivial corners, observe that
there are as many unique pairs (corner vertex, corresponding brick) as there were
strips during creation of the mortar graph. Note that there are O(f(ε)OPT)
strips (see Lemma 10 in Appendix B of extended paper [11]). This, together
with the fact that weight of each vertex is at most 1 implies that we charge at
most constant times OPT for trivial corners.

The charging for non-trivial corners is different. By the first property of
Lemma 6, we know that the sum of the costs of non-singleton west and east

PTAS for Steiner Tree on Map Graphs 11

boundaries for all bricks is bounded by O(ε)OPT. As non-trivial corners belong
to WB or EB , the total cost incurred by charging to non-trivial corners is
also bounded by constant times OPT. This finishes the proof of the shortness
property.

(ii) Spanning property The proof of the spanning property is similar in the
spirit to the proof of Structural Theorem 3.2, and Lemma 4.2 in [8]. However,
we cannot use their approach of portal-connected graph via the brick insertion
operation, as in the node weighted setting this would destroy the structure of
the optimum solution. Therefore we give a slightly more direct proof, where we
avoid the portal-connected graph at all.

Moreover, we have to take extra care when showing structural lemmas. These
proofs do not transfer immediately to the node-weighted instances. For example,
we have to heavily use special structure of map-weighted instances to bound the
number of joining vertices. Due to the high technicality of the arguments and lack
of space, the details are explained in the extended version of the paper [11]. 	

3 Node-Weighted Contraction Decomposition

In this section we give a reduction of a spanner to graphs with bounded
treewidth. The input to our reduction is a spanner (e.g. the one constructed
in the previous section, see Lemma 1), i.e. a graph H of cost f(ε) · OPT that
approximately preserves an optimum solution.

We apply Lemma 2 (proven later in this section) with k = 2·f(ε)
ε to graph

H and obtain sets E0, E1, . . . , Ek−1. Now, define the cost of the set of edges
to be the total weight of vertices incident to edges in this set. Because every
vertex belongs to at most two sets, the total cost of all the edge sets is at most
2f(ε) · OPT and therefore, the cheapest set, say Ec has cost at most ε · OPT.

We now contract Ec to obtain graph H ′. We assign weight 0 to the vertices
resulting from contraction, while the weight of the other stays untouched. It
is clear that after this operation the value of the optimum solution will not
increase. Now we solve the node-weighted Steiner tree problem for H ′ using
Lemma 3 (see Appendix A of the extended version of a paper [11]). We can
do this in polynomial time, since the treewidth of H ′ is at most k. We include
the set of edges Ec in the obtained solution for H ′ to get the final tree of cost
(1 + ε) · OPT.

Therefore we are left with proving Lemma 2. Here, we build on Klein’s [23]
contraction decomposition and modify it to our needs.

Proof (Proof of Lemma 2).
At first, we triangulate the dual graph H∗ by adding an artificial vertex in

the middle of each face of the dual graph and introducing artificial edges (see
Fig. 3). This is the crucial step which—as explained later—enables us to control
the level of edges in the breadth-first search tree.

Let J∗ be the graph after above modification of H∗. Now, from some arbitrary
node r we run breadth-first search on J∗, this gives us a partition of V (J∗) =

12 J. Byrka et al.

Fig. 3. (a) A vertex of a graph (in black) and the dual. The dual is shown in blue. (b)
Triangulation of the dual graph. (Color figure online)

L0 ∪ L1 . . . ∪ Ld, for some d ∈ Z
+. Fix an i ∈ {0, . . . , k − 1}, and let E∗

i be
the set of edges with one endpoint in Lp and the other endpoint in Lp+1, for
all p congruent to i modulo k. Also, let Ei be the set of primal edges of H
corresponding to the dual edges in E∗

i . Note that we do not include in Ei the
artificial edges. We claim that sets Ei satisfy both the requirements.

First we show that each vertex participates in at most two sets.

Lemma 8. For each vertex v ∈ H, all the incident edges of v are contained in
at most two sets Ei, Ej.

Proof. Consider the faces f1, f2, . . . fl incident to a vertex v (in the clockwise
order of appearing in the planar embedding). Each fi has a corresponding vertex
in the dual graph H∗ and therefore also in J∗. Moreover, there is a cycle on
these vertices. Call the edges of this cycle e∗

1, e
∗
2, . . . e

∗
l . These edges correspond

to all primal edges e1, e2, . . . el incident to vertex v in H. However, J∗ has also
additional vertex g adjacent to all vertices fi. Therefore, the distance between
any two fi and fj in J∗ is at most 2. Hence, the vertices fi will be in at most
three consecutive layers of BFS ordering. Therefore, all the incident edges of v
will be contained in at most two of the E∗

i ’s, and hence be contained in at most
two corresponding Ei’s. 	

We are left with showing that contracting each set reduces the treewidth. In
essence, we use the argument of Klein. We only need to take care of artificial
edges.

Lemma 9. The graph H after contracting Ei has treewidth O(k).

Proof. Let J be a dual graph of J∗. We will call J the primal of J∗.
By directly applying the result of Klein, contracting all the primal edges

of E∗
i from J results in a graph X of treewidth O(k). It is easy to see, that

contracting all other artificial edges in X results exactly in a graph H/Ei
. Since

contraction of edges does not increase treewidth, the lemma follows. 	

The algorithm described above together with Lemma 8 and Lemma 9 completes
the proof of Lemma 2. 	

PTAS for Steiner Tree on Map Graphs 13

4 Conclusion

Fig. 4. Node-weighted subset
spanner does not exists. Red
vertices are of cost 1, squares
are terminals of cost 0.

We reduced the node-weighted Steiner tree prob-
lem on planar graphs to the problem of finding a
spanner. The main obstacles in constructing such
general spanner are caused by the high-degree
vertices. The first difficulty arises already in the
cutting-open step. The second issue is related to
bounding the number of joining vertices.

As we have shown, both of the difficulties are
solvable in map-weighted graphs. However, we pose
an interesting open problem: decide the existence
of a PTAS for node-weighted Steiner tree prob-
lem on map-weighted graphs where terminals are
allowed to lie also on vertices of weight 0.

There are two reasons why the above open problem is compelling. First, it
nicely isolates the first difficulty—the latter issue is not present on such graphs.
Second, a node-weighted subset spanner does not exist for these instances. A
subset spanner is a cheap subgraph (in terms of optimum Steiner tree) that
approximately preserves distances between pairs of terminals. In contrast, a sub-
set spanner construction exists in the edge-weighted case [22].

Figure 4 gives an example of such a node-weighted instance. The cheapest
Steiner tree has cost 3. However, any subset spanner would have to use all the
red central vertices.

References

1. Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time
approximation scheme for weighted planar graph TSP. In: Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, 25–27 January 1998, San
Francisco, California, USA, pp. 33–41 (1998)

2. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

3. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M.T., Korula, N., Marx, D.: Prize-
collecting Steiner problems on planar graphs. In: Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Fran-
cisco, California, USA, January 23–25, 2011, pp. 1028–1049 (2011)

4. Bateni, M., Demaine, E.D., Hajiaghayi, M., Marx, D.: A PTAS for planar group
Steiner tree via spanner bootstrapping and prize collecting. In: Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, 18–21 June 2016, pp. 570–583 (2016)

5. Bateni, M., Farhadi, A., Hajiaghayi, M.: Polynomial-time approximation scheme
for minimum k-cut in planar and minor-free graphs. In: Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, 6–9 January 2019, pp. 1055–1068 (2019)

6. Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner forest
on planar graphs and graphs of bounded treewidth. J. ACM 58(5), 21:1–21:37
(2011)

14 J. Byrka et al.

7. Berman, P., Yaroslavtsev, G.: Primal-dual approximation algorithms for node-
weighted network design in planar graphs. In: Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques - 15th International
Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012,
Cambridge, MA, USA, 15–17 August 2012. Proceedings, pp. 50–60 (2012)

8. Borradaile, G., Klein, P., Mathieu, C.: An o(n log n) approximation scheme for
Steiner tree in planar graphs. ACM Trans. Algorithms 5, 31:1–31:31 (2009)

9. Buchanan, A., Wang, Y., Butenko, S.: Algorithms for node-weighted Steiner tree
and maximum-weight connected subgraph. Networks 72(2), 238–248 (2018)

10. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

11. Byrka, J., Lewandowski, M., Meesum, S.M., Spoerhase, J., Uniyal, S.: PTAS for
steiner tree on map graphs. CoRR abs/1912.00717 (2019), http://arxiv.org/abs/
1912.00717

12. Cabello, S., Gajser, D.: Simple ptas’s for families of graphs excluding a minor.
Discrete Appl. Math. 189, 41–48 (2015)

13. Chen, Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138
(2002)

14. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded
treewidth. J. Discrete Algorithms 16, 67–78 (2012)

15. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J.
Comput. 48(2), 644–667 (2019)

16. Demaine, E.D., Hajiaghayi, M.T., Klein, P.N.: Node-weighted Steiner tree and
group Steiner tree in planar graphs. ACM Trans. Algorithms 10(3), 13:1–13:20
(2014)

17. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. Comput. J. 51(3), 292–302 (2008)

18. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971)

19. Eisenstat, D., Klein, P.N., Mathieu, C.: An efficient polynomial-time approxima-
tion scheme for Steiner forest in planar graphs. In: Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, 17–19 January 2012, pp. 626–638 (2012)

20. Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage
(extended abstract). In: Proceedings of the Thirty-First Annual ACM Symposium
on Theory of Computing, 1–4 May 1999, Atlanta, Georgia, USA, pp. 574–582
(1999)

21. Kammer, F., Tholey, T.: Approximate tree decompositions of planar graphs in
linear time. Theoret. Comput. Sci. 645, 60–90 (2016)

22. Klein, P.N.: A subset spanner for planar graphs: with application to subset TSP.
In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, 21–23 May 2006, pp. 749–756 (2006)

23. Klein, P.N.: A linear-time approximation scheme for TSP in undirected planar
graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

24. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995)

25. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
Comput. 9(3), 615–627 (1980)

26. Moldenhauer, C.: Primal-dual approximation algorithms for node-weighted Steiner
forest on planar graphs. Inf. Comput. 222, 293–306 (2013)

http://arxiv.org/abs/1912.00717
http://arxiv.org/abs/1912.00717

Near-Linear Time Algorithm
for Approximate Minimum Degree

Spanning Trees

Ran Duan, Haoqing He(B), and Tianyi Zhang

Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China

{hehq13,tianyi-z16}@mails.tsinghua.edu.cn, duanran@mail.tsinghua.edu.cn

Abstract. Given a graph G = (V, E), we wish to compute a spanning
tree whose maximum vertex degree, i.e. tree degree, is as small as pos-
sible. Computing the exact optimal solution is known to be NP-hard,
since it generalizes the Hamiltonian path problem. For the approxima-
tion version of this problem, a Õ(mn) time algorithm that computes
a spanning tree of degree at most Δ∗ + 1 is previously known [Fürer
& Raghavachari 1994]; here Δ∗ denotes the minimum tree degree of
all the spanning trees. In this paper we give the first near-linear time
approximation algorithm for this problem. Specifically speaking, we pro-
pose an Õ(1

ε7
m) time algorithm that computes a spanning tree with

tree degree (1 + ε)Δ∗ + O(1
ε2

logn) for any constant ε ∈ (0, 1
6
). Thus,

when Δ∗ = ω(logn), we can achieve approximate solutions with con-
stant approximate ratio arbitrarily close to 1 in near-linear time.

Keywords: Approximate algorithm · Graph algorithm · Minimum
degree spanning tree

1 Introduction

Computing minimum degree spanning trees is a fundamental problem that has
inspired a long time of research. Let G = (V,E) be an undirected graph, and
we wish to compute a spanning tree of G whose tree degree, or maximum ver-
tex degree in the tree, is the smallest. Clearly this problem is NP-hard as the
Hamiltonian path problem can be reduced to it, and so we could only hope for
a good approximation in polynomial time. The optimal approximation of this
problem was achieved in [7] where the authors proposed a 1Õ(mn) time algo-
rithm that computes a spanning tree of tree degree ≤ Δ∗ + 1; conventionally
n = |V |,m = |E| and Δ∗ denotes the minimum tree degree of all the spanning
trees. For convenience, in this paper the degree of a vertex usually means its tree
degree in the current spanning tree.

This work has been supported in part by the Zhongguancun Haihua Institute for Fron-
tier Information Technology.
1 Õ(·) hides poly-logarithmic factors.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 15–26, 2020.
https://doi.org/10.1007/978-3-030-61792-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_2

16 R. Duan et al.

Our Result. The major result of this paper is a near-linear time algorithm for
computing minimum degree spanning trees in undirected graphs. Formally we
propose the following statement.

Theorem 1. For any constant ε ∈ (0, 1
6), there is an algorithm that runs in

O(1
ε7 m log7 n) time which computes a spanning tree with tree degree at most

(1 + ε)Δ∗ + 576
ε2 log n.

The core argument of Theorem 1 is that, starting from an arbitrary spanning
tree, we repeatedly search for a sequence of distinct non-tree edges, named as
augmenting sequence, to modify the current spanning tree which immediately
reduces the degree of some high-degree vertex. The idea of augmenting sequence
is similar to [7], that is, given a fixed degree bound k, an augmenting sequence
w.r.t. the current spanning tree and k is a sequence of vertex-disjoint non-tree
edges (w1, z1), (w2, z2), · · · , (wh, zh) such that w1, w2, · · · , wh−1 have tree degree
k − 1 and wh, z1, z2, · · · , zh have tree degree < k − 1. Also there is a vertex w0

with tree degree ≥ k on the tree path between w1 and z1, and wi for 1 ≤ i < h
is on the tree path between wi+1 and zi+1 but not on the tree path between wj

and zj for j > i + 1. Then we can add theses edges (w1, z1) · · · , (wh, zh) to the
spanning tree and delete the edges associated with w0, · · · , wh−1 on the cycles
formed, so the total degree of vertices with degree ≥ k will decrease by 1 but
more degree-(k − 1) vertices may emerge.

In our process of searching, similar to the blocking flow approach [3] for
max-flow, we first construct a layering of the graph by the shortest length of
augmenting sequences, then each time find a shortest augmenting sequence in the
layering and do such tree modification by this augmenting sequence, thus after
near-linear time the shortest length of augmenting sequences would increase.
We repeat this until the length of the shortest augmenting sequence is longer
than 1

ε log n. When this happens, the number of layers also exceeds 1
ε log n, so

there are two adjacent layer whose ratio is at most 1 + ε, then if the number
of augmenting sequences we found are not too large (not too many new degree-
(k − 1) vertices emerge), we can argue a 1 + O(ε) approximation for the optimal
solution Δ∗. In the whole procedure of our algorithm, we can let k = (1−O(ε))Δ
for the degree Δ of the current spanning tree, and make k increase by one after
each iteration until in some iteration the sum of degree of all the vertices with
degree ≥ k is not significantly decreased. See Sect. 3.2.

Related Work. There is a line of works that are concerned with low-degree
trees in weighted undirected graphs. In this scenario, the target low-degree that
we wish to compute is constrained by two parameters: an upper bound B on
tree degree, an upper bound C on the total weight summed over all tree edges.
The problem was originally formulated in [4]. Two subsequent papers [10,11]
proposed polynomial time algorithms that compute a tree with cost ≤ wC and
degree ≤ w

w−1bB + logb n, ∀b, w > 1. This result was substantially improved
by [2]; using certain augmenting path technique, their algorithm is capable of
finding a tree with cost ≤ C and degree B + O(log n/ log log n). Results and

Near-Linear Time Algorithm for Approximate MDST 17

techniques from [2] might sound similar to ours, but in undirected graphs we are
actually faced with different technical difficulties. [2]’s result was improved by
[8] where for all k, a spanning tree of degree ≤ k +2 and of cost at most the cost
of the optimum spanning tree of maximum degree at most k can be computed
in polynomial time. The degree bound was later further improved from k + 2
to the optimal k + 1 in [14]. There are also many works studying the minimum
degree Steiner tree problem in undirected graphs [5,7,13], and the minimum
degree spanning tree or Steiner tree problems in directed graphs [1,6,9,12,15].

2 Preliminary

Let G = (V,E) be the graph we consider, and we assume G is a connected
graph. Logarithms are taken at base 2. During the execution of our algorithm, a
spanning tree T will be maintained. For every u ∈ V , let deg(u) be the tree degree
of u in T, and the degree of the spanning tree T is defined as Δ = maxu∈V deg(u).
Our algorithm will repeatedly modify T to reduce its degree Δ. Let Δ∗ denote
the minimum degree of all the spanning trees. For each pair u, v ∈ V , let ρu,v

be the unique tree path that connects u and v in T. For each 1 ≤ k ≤ n,
define Sk = {u | deg(u) ≥ k} to be the set of vertices of degree at least k,
Nk = {u | deg(u) = k} to be the set of vertices of degree exactly k, and
dk =

∑
u∈Sk

deg(u) to be the sum of degrees of vertices in Sk.

Boundary Edge and Boundary Set. Boundary edge and boundary set are
important concepts to get the lower bound of Δ∗.

Definition 1. For a graph G = (V,E) and a sequence of disjoint vertex subsets
V1, V2, · · · , Vl ⊆ V , an edge (u, v) ∈ E is called a boundary edge if u ∈ Vi, v ∈ Vj

for 1 ≤ i �= j ≤ l, or u ∈ Vi for some i but v /∈ V1 ∪ · · · ∪ Vl. A vertex set W is
called a boundary set (with respect to V1, V2, · · · , Vl), if for every boundary edge
(u, v), at least one of u, v belongs to W .

Lemma 1. Let V1, V2, · · · , Vl ⊆ V be a sequence of disjoint vertex subsets, W
be a boundary set and Δ∗ be the minimum degree of all the spanning tree in G.
Then, Δ∗ ≥ l−1

|W | .

Proof. By Definition 1, every set Vi can only be connected to other vertices by
boundary edges, so for any spanning tree T of G, there are at least l−1 boundary
edges connecting V1, V2, · · · , Vl in T . Then for any boundary edge (u, v), at least
one of u, v belongs to W . Thus by the pigeon-hole principle, there exists a u ∈ W
whose tree degree is ≥ l−1

|W | .

3 A (1 + ε)Δ∗ + O(1
ε2

logn) Approximation

Let ε ∈ (0, 1
48) be a fixed parameter. This algorithm starts from an arbitrary

spanning tree T and keeps modifying T to decrease its tree degree Δ. It consists
of two phases: the large-step phase and the small-step phase.

18 R. Duan et al.

– In the large-step phase, as long as Δ ≥ 10 log2 n
ε3 , we repeatedly apply a near-

linear time subroutine that, either Δ is reduced to ≤ (1− ε) ·Δ or a spanning
tree T is returned with the guarantee that Δ = (1 + O(ε))Δ∗.

– In the small-step phase, we deal with the situation where 9 log n
ε2 ≤ Δ <

10 log2 n
ε3 , and a spanning tree T is returned with the guarantee that Δ ≤

(1 + O(ε))Δ∗ + O(log n
ε2).

For the rest of this section, we first propose and analyze the degree reduction
algorithm AugSeqDegRed which efficiently reduces the total degree of vertices
with degree ≥ k by 1 using an augmenting sequence technique. After that we
specify how the large-step phase work. Due to page limit, the small-step phase
is omitted and can be found in the full version of this paper.

3.1 Degree Reduction via Augmenting Sequences

In this algorithm, we continue to explore possibilities of improving the tree struc-
ture using the idea of augmenting sequence as in [7]. For a non-tree edge (u, v)
that connects two different components Cu, Cv of T \ Sk where deg(u) = k − 1,
we try to add (u, v) to T and delete some edge incident on Sk to eliminate cycles.
At the same time, as deg(u) increases to k, we keep looking for a sequence of
distinct non-tree edges inside Cu to add to T and delete a sequence of tree edges
to eliminate cycles.

A difficulty is that when the degrees of some original (k − 1)-degree vertices
decrease, it is hard to make the layering of the graph stable. Therefore, we define
marked vertices instead of the concept of the vertices with degree ≥ k−1. Given
a degree threshold k ≤ Δ, a vertex gets marked whenever its tree degree becomes
k−1, and it stays marked even if its tree degree becomes below k−2 afterwards.
We only re-initialize the set of marked vertices when we change k in Sect. 3.2.
Then we can define augmenting sequence formally.

Definition 2 (augmenting sequence). An h-length augmenting sequence
consists of a sequence of vertex-disjoint non-tree edges (w1, z1), · · · , (wh, zh) ∈ E
with the following properties.

(i) ∃w0 ∈ ρw1,z1 ∩ Sk, and for all 0 ≤ i < h,wi ∈ ρwi+1,zi+1 \ (
⋃h

j=i+2 ρwj ,zj
).

(ii) All zi’s are unmarked (∀1 ≤ i ≤ h); wi’s are marked for all 1 ≤ i < h and
wh is unmarked.

The tree can be modified by the augmenting sequence (w1, z1), · · · , (wh, zh):

Lemma 2 (tree modification). Given an augmenting sequence (w1, z1), · · · ,
(wh, zh) ∈ E, one can modify T such that dk decreases and no vertices are added
to Sk. Also Δ cannot increase.

Proof. We modify T in an inductive way. For i = h − 1, h − 2, · · · , 0, as wi ∈
ρwi+1,zi+1 , we can take an arbitrary tree edge (wi, x) ∈ ρwi+1,zi+1 , and then
perform an update T ← T ∪ {(wi+1, zi+1)} \ {(wi, x)} which guarantees that T

Near-Linear Time Algorithm for Approximate MDST 19

Algorithm 1: Layering
1 B0 ← Sk, h ← 0;
2 while h < 1 + log1+ε n do

3 compute the forest {Ch
u} spanned by T \ (

⋃h
i=0 Bi);

4 if exists unmarked u, v such that (u, v) ∈ E, Ch
u �= Ch

v then
5 break;

6 else

7 compute Bh+1 to be the set of all marked vertices u ∈ V \ (
⋃h

i=0 Bi)

such that there exists an unmarked adjacent vertex v with Ch
u �= Ch

v ;
8 h ← h + 1;

9 return h and B0, B1, · · · , Bh;

is still a spanning tree. Because wj /∈ ρwi+1,zi+1 for 0 ≤ j ≤ i − 1, tree update
T ← T ∪ {(wi+1, zi+1)} \ {(wi, x)} does not change the connected components
of T \ {wj}, so the property that wj ∈ ρwj+1,zj+1 \ (

⋃h
l=j+2 ρwl,zl

),∀0 ≤ j < i is
preserved.

During the process, if for any zi, deg(zi) (1 ≤ i ≤ h) becomes k−1 during the
process, mark zi. By definition, dk decreases as w0 loses a tree neighbour; plus,
no vertices are newly added to Sk because all deg(wi), 1 ≤ i < h are unchanged
and deg(wh) ≤ k − 2, deg(zi) ≤ k − 2,∀1 ≤ i ≤ h. Also vertices in Sk can only
lose tree neighbors so Δ cannot increase.

Now, back to the AugSeqDegRed algorithm. The core of this algorithm is that,
if the currently shortest augmenting sequences have length h (h < 1+log1+ε n), it
searches for augmenting sequences of length h and applies Lemma 2 to decrease
dk. When there is no augmenting sequence of length h, it repeats this process
for some larger h. Finally this algorithm terminates when h ≥ 1 + log1+ε n and
we prove a lower bound on Δ∗ based on the structure of T.

First, we introduce the Layering algorithm which computes an auxiliary layer-
ing of the graph that will also help tree modification later. Initially set B0 ← Sk.
Inductively, suppose B0, B1, · · · , Bh, h ≥ 0 is already computed, then we com-
pute the forest spanned by T \ (

⋃h
i=0 Bi); for each u ∈ V \ (

⋃h
i=0 Bi), let Ch

u

be the connected component of T \ (
⋃h

i=0 Bi) that contains u. If there exists an
edge (u, v) ∈ E such that both u, v are unmarked vertices, and that Ch

u �= Ch
v ,

then the algorithm terminates and reports that the shortest length of augment-
ing sequences is equal to h + 1; otherwise, we compute Bh+1 to be the set of all
marked vertices u ∈ V \ (

⋃h
i=0 Bi) such that there exists an unmarked adjacent

vertex v with Ch
u �= Ch

v , and then continue until h > 1 + log1+ε n. Note that
whenever Bh = ∅, Bh+1, · · · , B�1+log1+ε n� are all empty. The pseudo code is
shown in the Layering algorithm 1.

After we have invoked Layering and computed a sequence of vertex subsets
B0, B1, · · · , Bh which naturally divides the graph into h + 2 layers (including
a layer of other vertices), every time we will find a length-(h + 1) augmenting

20 R. Duan et al.

Algorithm 2: AugDFS(i,(u,v))

1 if i = 1 then
2 return (u, v);

3 for untagged w ∈ ρu,v ∩ Bi−1 do
4 for unmarked z such that (w, z) is untagged and Ci−2

z �= Ci−2
w do

5 pi−1 ← AugDFS(i-1,(w,z));
6 tag (w, z);
7 if pi−1 �= null then
8 let pi be pi−1 plus (u, v);
9 return pi;

10 tag w;

11 return null;

sequence (w1, z1), (w2, z2), · · · , (wh+1, zh+1) such that wi ∈ Bi for 1 ≤ i ≤ h,
then apply tree modifications of Lemma 2 by this augmenting sequence. Repeat
this until there is no more length-(h + 1) augmenting sequences any more. The
difficulty in searching for the shortest augmenting sequences is that, for a search
that starts from a pair of adjacent and unmarked vertices u, v satisfying Ch

u �= Ch
v

and goes up the layers Bh, Bh−1, · · · , B1, B0, not every route can reach the top
layer B0 because some previous (h+1)-length augmenting sequences have already
blocked the road. Therefore, a depth-first search needs to be performed. To save
running time, some tricks are needed: if a certain vertex has been searched before
by some previous (h + 1)-length augmenting sequences and has failed to lead a
way upwards to B0, then we tag this vertex so that future depth-first searches
may avoid this tagged vertex; if a certain edge has been searched before, then we
tag this edge whatsoever. The AugDFS algorithm may be a better illustration
of this algorithm. The recursive algorithm AugDFS takes the layer number i
and an edge (u, v) as input and keeps searching for edges between a vertex
w ∈ (u, v) ∩ Bi−1 and an unmarked vertex z. If such an edge is found, invoke
AugDFS with the parameter (i − 1, (w, z)) and return the result plus (u, v).
The pseudo code is shown in the AugDFS algorithm 2. Later we will prove that
AugDFS(h+1,(u,v)) always returns an augmenting sequence if exists.

The upper-level AugSeqDegRed algorithm repeatedly applies Layering fol-
lowed by several rounds of AugDFS. Each time AugDFS returns an augment-
ing sequence p, modify T by Lemma 2 via p. The repeat-loop ends when
h ≥ 1 + log1+ε n. The pseudo code is shown in the AugSeqDegRed algorithm 3.

Before proving termination of AugSeqDegRed, we first need to argue some
properties of Layering. The following lemma and corollary will serve as the basis
for our future proof.

Lemma 3 (the blocking property). Throughout each iteration of the repeat-
loop in AugSeqDegRed, for any 1 ≤ i < h and any two adjacent vertices u, v ∈

Near-Linear Time Algorithm for Approximate MDST 21

Algorithm 3: AugSeqDegRed(k)

1 mark all degree k − 1 vertices, unmark other vertices;
2 repeat
3 run Layering which computes h and B0, B1, · · · , Bh;
4 untag all vertices and edges;

5 for (u, v) ∈ E such that u, v are unmarked and adjacent, and that Ch
u �= Ch

v

do
6 p ←AugDFS(h+1,(u,v));
7 if p �= null then
8 modify T by augmenting sequence p via Lemma 2;

9 until h ≥ 1 + log1+ε n;
10 return T;

V \ (
⋃i

j=0 Bj) such that u is unmarked and Ci
u �= Ci

v, then v ∈ Bi+1. (Recall

that Ch
u is the connected component of T \ (

⋃h
i=0 Bi) that contains u.)

Proof. By rules of Layering, this blocking property holds right after Layering out-
puts them. This claim continuous to hold afterwards because tree modifications
only merge components Ci

u’s and never split any Ci
u’s.

Here is an important corollary of this Lemma 3, whose proof is in the full
version of this paper.

Corollary 1. Throughout each iteration of the repeat-loop, for any w ∈ Bi, 1 ≤
i ≤ h, suppose w is adjacent to an unmarked z such that Ci−1

w �= Ci−1
z . Then

ρw,z only contains vertices from V \ (
⋃i−2

j=0 Bj).

Now we have the following lemmas:

Lemma 4. If AugDFS(h+1, (u,v)) returns a sequence of edges (w1, z1), · · · ,
(wh+1, zh+1), then wi ∈ Bi for 1 ≤ i ≤ h, and wh+1, z1, · · · zh+1 are unmarked,
also the edges are vertex-disjoint.

Proof. The initial u, v are unmarked. From the algorithm, when calling
AugDFS(i, (u,v)), we find a w ∈ ρu,v ∩ Bi−1 and z is unmarked, so the cor-
responding wi ∈ Bi for 1 ≤ i ≤ h, and wh+1, z1, · · · zh+1 are unmarked, also the
vertices {wi|1 ≤ i ≤ h} are distinct. To see that wh+1, z1, · · · zh+1 are distinct,
we argue that in one execution of AugDFS(i, (u,v)), w and z have Ci−2

z �= Ci−2
w

but Ci−3
z = Ci−3

w , since if Ci−3
z �= Ci−3

w , w would be in Bi−2 by the algorithm
Layering. Thus wh+1, z1, · · · zh+1 are in distinct components in T \ (

⋃h
i=0 Bi).

Lemma 5. In the AugSeqDegRed algorithm, AugDFS(h+1, (u,v)) returns either
null or an augmenting sequence.

Proof. Assume a sequence of edges (w1, z1), · · · , (wh+1, zh+1) is returned by
AugDFS(h+1, (u,v)). Property (ii) in Definition 2 is proved by Lemma 4.

22 R. Duan et al.

Now let us focus on property (i). We can take an arbitrary w0 ∈ ρw1,z1 ∩ B0

since C0
w1

�= C0
z1

by the algorithm. Also since wi ∈ Bi,∀0 ≤ i ≤ h, by Corollary
1 we know ρwi,zi

does not contain any wj , 0 ≤ j ≤ i − 2, so property (ii) holds.

The following statement concludes the AugSeqDegRed algorithm will termi-
nate quickly.

Lemma 6. In the AugSeqDegRed algorithm, h is increased by at least one dur-
ing each repeat-loop, except the last one.

Proof. By the rules of Layering, it is easy to see that at the beginning when
Layering outputs B0, B1, · · · , Bh, the shortest length of augmenting sequence is
equal to h+1. So it suffices to prove that by the end of this iteration the shortest
augmenting sequence has length > h + 1.

First we need to characterize all augmenting sequences using B0, B1, · · · , Bh.
Let the sequence (w1, z1), (w2, z2), · · · , (wl, zl) be an arbitrary augmenting
sequence and let w0 be the B0-vertex on ρw1,z1 . We argue that l ≥ h+1, and more
importantly, if l = h + 1, it must be that wi ∈ Bi,∀0 ≤ i ≤ h. We inductively
prove that wi ∈ ⋃i

j=0 Bj for i = 0, 1, · · · , l−1. The basis is obvious as is required
by property (i) in Definition 2. Now assume wi ∈ Br for some r ≤ i. Then, from
algorithm Layering, it would not be hard to see wi+1 ∈ ⋃r+1

j=0 Bj ⊆ ⋃i+1
j=0 Bj .

Now, since components {Cr
u} for r ≤ h − 1 are not connected by edges whose

both endpoints are unmarked by Lemma 3, so ρwl,zl
∩ ⋃h−1

j=0 Bj = ∅, and on the

other hand wl−1 ∈ ρwl,zl
∩ ⋃l−1

j=0 Bj , so l ≥ h + 1. Plus, we can see from the
induction that, when l = h + 1 it must be that wi ∈ Bi,∀0 ≤ i ≤ h.

For any unmarked and adjacent vertices u, v such that Ch
u �= Ch

v , consider
the instance of AugDFS with input (h + 1, (u, v)). We make two claims.

(1) If there is an (h+1)-length augmenting sequence ending with (u, v), AugDFS
would succeed in finding one.

(2) If it has returned null, then there would be no (h + 1)-augmenting sequence
ending with (u, v) throughout the entire repeat-loop iteration.

If (1), (2) can be proved, then by the end of this repeat-loop iteration, there
would be no (h + 1)-length augmenting sequences because such augmenting
sequence should end with a pair of adjacent unmarked vertices. Next we come
to prove (1), (2).

(1) The depth-first search of AugDFS exactly coincides with the conditions that
wi ∈ Bi, except that it skips all tagged vertices and edges. Now we prove
that omitting tagged vertices and edges does not miss any (h+1)-length aug-
menting sequences. For an edge (w, z) to be tagged, either a further recur-
sion AugDFS has succeeded or failed in finding an augmenting sequences;
in the former case, Ci−2

w and Ci−2
z has been merged, and so the condition

Ci−2
w �= Ci−2

z would be violated afterwards; in the latter case, we would not
need to recur on (w, z) since the components w.r.t. B0, · · · , Bi−2 also can
only merge. For a vertex w to be tagged, we must have enumerated all of
its untagged edges (w, z) but failed to find any augmenting sequences, and
therefore any future depth-first searches on w would still end up in vain.

Near-Linear Time Algorithm for Approximate MDST 23

(2) If AugDFS has once failed to find any augmenting sequences starting with
(u, v), then all vertices w ∈ ρu,v ∩ Bh visited by this instance of AugDFS
should be tagged and they would be omitted by all succeeding instances of
AugDFS. Therefore ρu,v ∩Bh would stay unchanged since then. Hence, if we
re-run AugDFS with h + 1, (u, v), it will return null without any recursion
because all vertices in ρu,v ∩ Bh are tagged.

Suppose AugSeqDegRed has terminated with B0, B1, · · · , B�log1+ε n+1�. We
introduce the notion of a clean component, a sequence of disjoint vertex subsets,
and apply Lemma 1 to get the lower bound on Δ∗.

Definition 3. After an instance of AugSeqDegRed has been executed, for any
vertex u ∈ V \ (

⋃h
i=0 Bi), an arbitrary component Ch

u , 0 ≤ h ≤ log1+ε n + 1� is
called clean if all vertices in Ch

u are unmarked.

Lemma 7. For any 0 ≤ h < log1+ε n + 1�, suppose T \ (
⋃h

i=0 Bi) has l clean
components, then a lower bound holds that Δ∗ ≥ l−1

∑h+1
i=0 |Bi| .

Proof. Since h < log1+ε n + 1�, Bh is not the last one, so there is no edge
connecting two unmarked vertices in different components of T \ (

⋃h
i=0 Bi). By

Lemma 3, any edge that connects a clean components of T \ (
⋃h

i=0 Bi) outwards
must be incident on a vertex in

⋃h+1
i=0 Bi, so

⋃h+1
i=0 Bi is a boundary set w.r.t.

clean components. Therefore by Lemma 1 we have Δ∗ ≥ l−1

| ⋃h+1
i=0 Bi| = l−1

∑h+1
i=0 |Bi|

Lemma 8. There is an implementation of procedure AugSeqDegRed that runs
in O(1

ε2 m log2 n) time.

(Proof omitted.)

3.2 Large-Step Phase

The large-step phase are described in the ImprovedMDST algorithm 4, in which
we deal with the case Δ ≥ 10 log2 n

ε3 (the small-step phase for 9 log n
ε2 ≤ Δ < 10 log2 n

ε3

is in the full version of this paper). It works by invoking AugSeqDegRed with
an incremental parameters k from (1 − 2ε)Δ + 1 if dk−1 ≤ 2dk. Within each
iteration, if AugSeqDegRed fails to reduce dk by a factor of (1− ε2

2 log n), then the
algorithm reports a lower bound on Δ∗ and returns T immediately. Otherwise,
increase k by 1 and continue until dk becomes 0. Since dk+1 ≤ dk, dk will become
0 in at most O(log2 n/ε2) iterations. Once dk = 0, Δ must have decreased and
repeat the while-loop. (Note that by Lemma 2, Δ cannot increase during the
whole algorithm.)

Running Time. In the large-step phase, every iteration dk shrinks by a factor
of ≤ (1 − ε2

2 log n), so dk will become zero in O(log2 n/ε2) iterations. We have:

Lemma 9. The running time of the large-step phase is O(1
ε5 m log5 n).

24 R. Duan et al.

Algorithm 4: ImprovedMDST

1 Let T be a spanning tree of G with tree degree Δ;
/* Large-step phase */

2 while Δ ≥ 10 log2 n
ε3

do
3 k = (1 − 2ε)Δ + 1;
4 while dk > 0 do
5 if dk−1 ≤ 2dk then
6 d ← dk;
7 run AugSeqDegRed(k);

8 if dk > (1 − ε2

2 log n
) · d then

9 return T;

10 k = k + 1;

11 update the tree degree Δ;

12 return T;

Proof. From the previous subsection we already know that AugSeqDegRed runs
in O(1

ε2 m log2 n) time, so here we only need to upper bound the total number
of times AugSeqDegRed gets invoked before Δ < 10 log2 n

ε3 or a spanning tree T is
returned within a while-loop. Next we only focus on the previous cases because
it takes a longer running time. In this case, at the end of each iteration, dk ≤
(1 − ε2

2 log n) · d. The inside while-loop would break when k > (1 − 2ε)Δ + 2 log2 n
ε2

because by the time dk ≤
(
1 − ε2

2 log n

) 2 log2 n

ε2 · d(1−2ε)Δ ≤ d(1−2ε)Δ

n < 1. As

(1 − 2ε)Δ + 2 log2 n
ε2 ≤ (1 − ε)Δ when Δ ≥ 10 log2 n

ε3 , which means Δ has been
reduced by a factor of at most 1 − ε in the end of each while-loop and there
are at most O(1ε log n) while-loops. In summary, the total running time of the

large-step phase is O
(

log2 n
ε2 m × log2 n

ε2 × log n
ε

)
= O

(
m · log5 n

ε5

)
.

Approximation Guarantee. When a spanning tree T is returned within the
large-step phase, the vertex subsets B0, B1, · · · , B�1+log1+ε n� created by AugSe-

qDegRed satisfies the blocking property (see Lemma 3). By Lemma 7, there is a
lower bound on Δ∗ for each vertex set Bh, 0 ≤ h < 1 + log1+ε n� as long as we
get the lower bound on the number of clean components in T \ (

⋃h
i=0 Bi). The

following two statements show the lower bound on Δ∗.

Lemma 10. For any vertex subset B and any spanning tree T, the number of
connected components in T \ B is at least

∑
u∈B deg(u) − 2|B| + 2.

(Proof omitted and can be found in the full version of this paper.)

Lemma 11. If a spanning tree T is returned within the large-step phase and k is
the parameter of the last invoked AugSeqDegRed, for any 0 ≤ h < 1+log1+ε n�,

Near-Linear Time Algorithm for Approximate MDST 25

the number of clean components in T\(
⋃h

i=0 Bi) is at least k·(1−4ε)
∑h

i=0 |Bi|+1
for ε ∈ (0, 1

48). Furthermore,

Δ∗ ≥ k(1 − 4ε) ·
∑h

i=0 |Bi|
∑h+1

i=0 |Bi|
Proof. By Lemma 10, the number of tree components in T\ (

⋃h
i=0 Bi) is at least

∑
u∈⋃h

i=0 Bi
deg(u) − 2

∣
∣
∣
⋃h

i=0 Bi

∣
∣
∣ + 2. Let d′

k, d′
k−1, S′

k−1 and S′
k be snapshots of

dk, dk−1, Sk−1 and Sk right before the last instance of AugSeqDegRed started
and let M be the set of all marked vertices /∈ S′

k−1 (i.e., vertices that are initially
unmarked) by the end of AugSeqDegRed. Then, the number of clean components
in T \ (

⋃h
i=0 Bi) is at least

∑

u∈⋃h
i=0 Bi

deg(u) − 2
h∑

i=0

|Bi| + 2 − |M ∪ S′
k−1|

We have the following lower bound on
∑

u∈⋃h
i=0 Bi

deg(u) and upper bound
on |M ∪ S′

k−1|, whose detailed proof is in the full version.

∑

u∈⋃h
i=0 Bi

deg(u) ≥ (k − 1)
h∑

i=1

|Bi| +
(

1 − 3ε2

2 log n
− ε

2

)

d′
k

|M ∪ S′
k−1| ≤ 2ε · d′

k

Then for n > 2 and ε ∈ (0, 1
48), k ≥ 9 log n

ε2 − log n and d′
k ≥ k|B0|, it is

not hard to see the number of clean components in T \ (
⋃h

i=0 Bi) is at least
k(1 − 4ε) · ∑h

i=0 |Bi| + 2. Apply Lemma 7 and conclude the proof

Δ∗ ≥ k(1 − 4ε) · ∑h
i=0 |Bi| + 1

∑h+1
i=0 |Bi|

≥ k(1 − 4ε) ·
∑h

i=0 |Bi|
∑h+1

i=0 |Bi|
In the following statement, we combine all the inequalities for each Bh and

get the upper bound on Δ with Δ∗.

Lemma 12. When a spanning tree T is returned within the large-step phase, it
must be that Δ ≤ (1 + 8ε) · Δ∗ for ε ∈ (0, 1

48).

Proof. Consider the most recent execution of AugSeqDegRed before return-
ing. By the previous subsection, this instance of AugSeqDegRed has created
a sequence of disjoint vertex subsets B0, B1, · · · , B1+log1+ε n that satisfy the
blocking property. By the pigeon-hole principle, there exists an h such that
∑h

i=0 |Bi|
∑h+1

i=0 |Bi| ≥ 1
1+ε . Then by Lemma 11, (recall that in the large-step phase

k > (1 − 2ε)Δ)

Δ∗ ≥ k(1 − 4ε) · 1
1 + ε

>
1 − 6ε + 8ε2

1 + ε
Δ

or equivalently, Δ ≤ 1+ε
1−6ε+8ε2 Δ∗ < (1 + 8ε)Δ∗ when ε ∈ (0, 1

48).

26 R. Duan et al.

We claim that, for any constant ε ∈ (0, 1
6), the ImprovedMDST algorithm

computes a spanning tree with tree degree at most (1 + ε)Δ∗ + O(log
2 n

ε3) in
O(1

ε5 m log5 n) time (by resetting ε → 8ε′ where ε′ is the ε in previous analysis).
In the full paper, we will see that with the small-step phase, we can compute a
spanning tree with tree degree (1 + ε)Δ∗ + 576

ε2 log n in O(1
ε7 m log7 n) time.

References

1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded
directed network design. SIAM J. Comput. 39(4), 1413–1431 (2009)

2. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: What would edmonds do? aug-
menting paths and witnesses for degree-bounded MSTs. In: Chekuri, C., Jansen,
K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624,
pp. 26–39. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 3

3. Dinitz, Y.: Algorithm for solution of a problem of maximum flow in networks with
power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)

4. Fischer, T.: Optimizing the degree of minimum weight spanning trees. Cornell
University, Technical report (1993)

5. Fraigniaud, P.: Approximation algorithms for minimum-time broadcast under the
vertex-disjoint paths mode. In: Proceedings of the 9th Annual European Sympo-
sium on Algorithms, pp. 440–451 (2001)

6. Fürer, M., Raghavachari, B.: An NC approximation algorithm for the minimum
degree spanning tree problem. In: Proceedings of the 28th Annual Allerton Con-
ference on Communication, Control and Computing, pp. 274–281 (1990)

7. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to
within one of optimal. J. Algorithms 17(3), 409–423 (1994)

8. Goemans, M.X.: Minimum bounded degree spanning trees. In: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006,
pp. 273–282. IEEE (2006)

9. Klein, P.N., Krishnan, R., Raghavachari, B., Ravi, R.: Approximation algorithms
for finding low-degree subgraphs. Networks 44(3), 203–215 (2004)

10. Könemann, J., Ravi, R.: A matter of degree: improved approximation algorithms
for degree-bounded minimum spanning trees. In: Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing, pp. 537–546. ACM (2000)

11. Könemann, J., Ravi, R.: Primal-dual meets local search: approximating mst’s with
nonuniform degree bounds. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pp. 389–395. ACM (2003)

12. Krishnan, R., Raghavachari, B.: The directed minimum-degree spanning tree prob-
lem. In: Hariharan, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol.
2245, pp. 232–243. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45294-X 20

13. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.
In: Proceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence, pp. 202–213. IEEE (1994)

14. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, pp. 661–670. ACM (2007)

15. Yao, G., Zhu, D., Li, H., Ma, S.: A polynomial algorithm to compute the minimum
degree spanning trees of directed acyclic graphs with applications to the broadcast
problem. Discrete Math. 308(17), 3951–3959 (2008)

https://doi.org/10.1007/11538462_3
https://doi.org/10.1007/3-540-45294-X_20
https://doi.org/10.1007/3-540-45294-X_20

Approximation Algorithms
for Cost-Robust Discrete Minimization

Problems Based on Their LP-Relaxations

Khaled Elbassioni(B)

Khalifa University of Science and Technology, Abu Dhabi, UAE
khaled.elbassioni@ku.ac.ae

Abstract. We consider robust discrete minimization problems where
uncertainty is defined by a convex set in the objective. Assuming the
existence of an integrality gap verifier with a bounded approximation
guarantee for the LP relaxation of the non-robust version of the problem,
we derive approximation algorithms for the robust version under different
types of uncertainty, including polyhedral and ellipsoidal uncertainty.

Keywords: Approximation algorithms · Discrete optimization ·
Linear programming · Randomized rounding · Robust optimization

1 Introduction

Standard optimization algorithms assume precise knowledge of their inputs, and
find optimal or near-optimal solutions under this assumption. However, in real-
life applications, the input data may be known up to a limited precision with
errors introduced possibly due to inaccuracy in measurements or lack of exact
information about the precise value of the input parameters. Clearly, an opti-
mization algorithm designed based on such distorted data to optimize a certain
objective function would not yield reliable results, if no special consideration of
such uncertainty is taken. Several approaches to deal with uncertainty in data
have been introduced, including stochastic optimization (see e.g., [11]), where
certain probabilistic assumptions are made on the uncertainty and the objective
is to optimize the average-case or the probability of a certain desirable event,
and robust optimization (see, e.g., [4]), where some deterministic assumptions
are made on the uncertain parameters, and the objective is to optimize over the
worst-case these parameters can assume1.

In this paper, we consider a class of robust discrete optimization (DO) prob-
lems, where uncertainty is assumed to be only in the objective (called sometimes
cost-robust optimization problems). Given a discrete set of feasible solutions, one

1 Yet, there is a third (intermediate) approach, namely, distributionally robust opti-
mization (see, e.g., [14]), in which one optimizes the expectation over the worst-case
choice from a set of distributions on the uncertain parameters.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 27–37, 2020.
https://doi.org/10.1007/978-3-030-61792-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_3&domain=pdf
http://orcid.org/0000-0001-7021-5400
https://doi.org/10.1007/978-3-030-61792-9_3

28 K. Elbassioni

is interested in maximizing/minimizing a linear objective function over this set;
it is assumed that the objective function is not explicitly given, but is known to
belong to a convex uncertainty set. The requirement is to solve the optimization
problem in the worst-case scenario that the objective assumes in the uncertainty
set. Our goal is to show how an approximation algorithm, based on the linear
programming (LP) relaxation for the nominal version of a discrete optimization
problem, can be used to derive an approximation algorithm for the robust ver-
sion. We will focus on minimization problems, even though some of the results
can be extended to maximization problems.

1.1 Integrality Gap Verifiers

More formally, we consider a minimization problem over a discrete set S ⊆ Z
n
+

and a corresponding LP-relaxation over Q ⊆ R
n
+:

Opt = min cT x (1)
s.t. x ∈ S

z∗ = min cT x (2)
s.t. x ∈ Q,

where c ∈ R
n
+. We will be mainly working with discrete optimization problems for

which there is an approximation algorithm that rounds any feasible LP solution
to a discrete one with a bounded approximation ratio. This is formulated in the
following definition.
Definition 1. For α ≥ 1, a (deterministic) α-integrality gap verifier A =
A(c, x) for (1)–(2), w.r.t. a class C ⊆ R

n
+ of objectives is a polytime algo-

rithm that, given any c ∈ C and any x ∈ Q returns an x̂ ∈ S such that
cT x̂ ≤ α · cT x. An integrality gap verifier A is said to be oblivious (see, e.g.,
[18]) if A(c, x) = A(x) does not depend on the objective c. When the class of
objectives is C = R

n
+, we simply call A an (oblivious) integrality gap verifier.

A randomized α-integrality gap verifier is the same as in Definition 1 except
that it returns a random x̂ ∈ S such that E[cT x̂] ≤ αcT x. We will consider a
special class of randomized integrality gap verifiers that are given by the following
definition.
Definition 2. For α ≥ 1 and x ∈ Q, an α-approximate semi-negatively cor-
related randomized rounding, denoted α-Ancrr, of x is an x̂ such that: (i)
Pr[x̂ ∈ S] = 1 − o(1); (ii) E[cT x̂] ≤ αcT x; and (iii) for any S ⊆ [n]:

Pr
[

∧

i∈S

(x̂i = 1)
]

≤
∏

i∈S

Pr[x̂i = 1]. (3)

An α-Ancrr integrality gap verifier is a polytime algorithm that, given any
x ∈ Q, returns an α-Ancrr of x.

Remark 1. Consider a minimization problem (1) and its LP relaxation (2).
By Markov’s inequality and probabilistic amplification, given an α-randomized
intergality gap verifier A, x ∈ Q, c ∈ R

n
+ and ε > 0, we can get in O(log n

ε) calls
to A an x̂ ∈ S such that cT x̂ ≤ (1 + ε)α · cT x holds with probability 1 − o(1).

Approximation Algorithms for Cost-Robust Discrete Minimization Problems 29

1.2 Robust Discrete Optimization Problems

In the framework of robust optimization (see, e.g. [4,6]), we assume that the
objective vector c is not known exactly. Instead, it is given by a convex uncer-
tainty set C ⊆ R

n
+. It is required to find a (near)-optimal solution for the DO

problem under the worst-case choice of objective c ∈ C. Typical examples of
uncertainty sets C include:

– Polyhedral uncertainty: C := P(A, b, c0) := {c ∈ R
n
+ : A(c − c0) ≤ b}, for

given matrix A ∈ R
m×n
+ , vector b ∈ R

m
+ and (nominal) vector c0 ∈ R

n
+.

– Ellipsoidal uncertainty: C := E(c0,D) := {c ∈ R
n
+ : (c−c0)T D−2(c−c0) ≤ 1},

for given positive definite matrix D ∈ R
m×n and vector c0 ∈ R

n
+.

More generally, we will consider a class of uncertainty sets defined by affine
perturbations around a nominal vector c0 ∈ R

n
+ (see, e.g., [4]):

C = C(c0, c1, . . . , cr;D) :=

{

c := c0 +
k

∑

r=1

δrc
r : δ = (δ1, . . . , δk) ∈ D

}

, (4)

where c0, c1, . . . , ck ∈ R
n
+ and D ⊆ R

k is a convex perturbation set:

– Polyhedral perturbation D = P(A, b, 0) := {δ ∈ R
k
+ : Aδ ≤ b}, for given

matrix A ∈ R
m×k
+ and vector b ∈ R

m
+ .

– Ellipsoidal perturbation: D = E(0,D) := {δ ∈ R
k
+ : δT D−2δ ≤ 1}, for a given

positive definite matrix D ∈ R
k×k.

The vectors c1, . . . , ck ∈ R
n
+ will be called the generators of the perturbation

set D. Note that a polyhedral uncertainty set P(A, b, c0) can be described in
the form (4) by setting C := C(c0,11, . . . ,1n;D) for the polyhedral perturbation
set D := P(A, b, 0), where 1j denotes the jth unit vector in R

n. Similarly, an
ellipsoidal uncertainty set E(c0,D) can be described in the form (4) by setting
C := C(c0,11, . . . ,1n;D) for the ellipsoidal perturbation set D := E(0,D).

1.3 Convex Relaxation for the Robust DO Problem
We can model the robust DO problem and its convex relaxation as follows:

OptR = min
x∈S

max
c∈C

cT x, (5) z∗
R = min

x∈Q
max
c∈C

cT x. (6)

Equivalenlty, we can write (5)–(6) as

OptR = min z (7)

s.t. cT x ≤ z ∀c ∈ C (8)
x ∈ S.

z∗
R = min z (9)

s.t. cT x ≤ z ∀c ∈ C (10)
x ∈ Q.

Note that (6) amounts to a convex programming problem that can be solved
(almost to optimality) in polynomial time (see, e.g., [21]). Near-optimal solutions
can also be found more efficiently, based on the semi-infinite LP formulation (9),
using the multiplicative weight updates method [17].

30 K. Elbassioni

1.4 Approximation Guarantees for a Robust DO Problem
We consider both deterministic and randomized algorithms for the robust opti-
mization problem (5) (see, e.g., [8,23]):

Definition 3. For α ≥ 1, a randomized approximation algorithm B for the
robust DO problem (5) is said to be:

– α-robust-in-expectation (w.r.t. the uncertainty set C), if the expected objective
in the uncertainty set C, w.r.t. the output solution, over the random choices
of the algorithm, is within a factor of α from the optimum solution:

Ex̂∼B[cT x̂] ≤ α · OptR ∀c ∈ C;
– α-robust-with-high-probability, if with probability approaching 1, all objec-

tives in the uncertainty set C, w.r.t. the output solution, are within a factor
of α from the optimum solution:

Pr
x̂∼B

[cT x̂ ≤ α · OptR ∀c ∈ C] = 1 − o(1);

– α-deterministically robust if it is α-robust with probability 1, i.e., it outputs
a vector x̂ ∈ S such that:

cT x̂ ≤ α · OptR ∀c ∈ C.

Clearly, the notion of α-deterministically robust is stronger than that of
α-robust-with-high-probability, which is, in turn, (more or less2) stronger than
that of α-robust-in-expectation.

1.5 Summary of Main Results

To describe the results we obtain in this paper, let us consider the polyhe-
dral/ellipsoidal uncertainty sets:

C1 :=
{

c := c0 + u
∣

∣ u ∈ R
n
+, u ≤ d, Au ≤ b

}

(11)

C2 :=
{

c := c0 +Cδ
∣

∣ δ ∈ R
k
+, Aδ ≤ b

}

(12)

C3 :=
{

c := c0 + u
∣

∣ u ∈ R
n
+, ‖D−1u‖2 ≤ 1

}

(13)

C4 :=
{

c := c0 +Cδ
∣

∣ δ ∈ R
k
+, ‖D−1δ‖2 ≤ 1

}

. (14)

Assume the matrices A, b, d,C are non-negative and D is positive definite, where
C ∈ R

n×k
+ is the matrix whose columns are c1, . . . , ck. Let m be the number of

rows of A, β := minj maxi aij and γ := maxi,j aij , cmin := minr �=0,j: cr
j >0 cr

j and
cmax := maxr �=0,j cr

j . Our results are summarized in Table 1. The first column
describes the restrictions on the discrete set S (if any): S is binary if S ⊆ {0, 1}n

and covering if x ∈ S and y ≥ x implies y ∈ S. In the second column, we
2 Indeed, if B is α-robust-with-high-probability, then for any c ∈ C, Ex̂∼B[cT x̂] ≤

α · OptR + o(1) maxc∈C, x∈S cTx = α · OptR + o(1).

Approximation Algorithms for Cost-Robust Discrete Minimization Problems 31

describe the type of uncertainty set considered, and the conditions on it (if any).
The third column gives the type of approximation algorithm which we assume
available for the nominal problem, while the fourth column gives the guarantee
for the corresponding robust version which we obtain in this paper. As can be
seen from the table, except for the first two results, the approximation factors we
obtain depend on the “width” of the uncertainty set as described by the ratios
γ
β and cmax

cmin
for polyhedral uncertainty, and λmax(D)

λmin(D) for ellipsoidal uncertainty.
The approximation ratio is also proportional to the square root of the number
of generators in the perturbation set. Whether these bounds can be significantly
improved remains an interesting open question.

1.6 Some Related Work

While there is an extensive body of work on robust continuous optimization
problems (see, e.g., [4–7,10,16,24]), much less is known in the discrete case,
where most work has considered special uncertainty sets or specific discrete
problems. In [8], Bertsimas and Sim consider the minimization problem (5) with
budget uncertainly, where at most k components of the objective are allowed
to increase; for binary optimization problems they gave an α-deterministically
robust approximation algorithm for the robust version which is obtained by
making n+1 calls to any α-approximation algorithm for the non-robust version.
Some generalizations of this result to the non-binary case were obtained in [20],
and other improvements and generalizations were obtained in [3]. In Sect. 2.1
below, we show that the number of calls to the approximation algorithm can be
made significantly smaller and also extend the result to any constant number
of budget constraints. For uncorrelated ellipsoidal uncertainty (where the uncer-
tainty set is an axis-aligned ellipsoid), Bertsimas and Sim [9] also gave a pseudo
polynomial-time reduction from solving a robust version of a DO problem over
a binary set S to a linear optimization problem over the same set. As observed
in [22, Chapter 2], when specialized to ball uncertainty, this yields a polynomial
time algorithm for solving the robust problem, whenever the nominal version
can be solved in polynomial time. This should be contrasted with our result
above, where an O(α

√
n)-approximation for the robust problem with ellipsoidal

uncertainty, satisfying D > 0, over an arbitrary discrete set, can be obtained
from any α-integrailty gap verifier for the nominal problem.

More recently, Kawase and Sumita (2018) gave robust-in-expectation algo-
rithms for special problems such as the knapsack problem and the maximum
independent set problem in the intersection of r matroids, among others. We
note, however, that their results are not of the “reduction” type, that is, they
provide algorithms that are specific to each problem. We note also that some of
these results can be derived from our reduction in Sect. 2. Finally, it is worth
noting that there is a number of results on special problems, such as Shortest-
Path [1], MinCostFlow [8], MachineScheduling [12], VehicleRouting
[2], two-stage robust optimization [15,19], mostly under a class of budget uncer-
tainty. In general, this seems to be a growing area of research, see, e.g., the theses
by Poss [24] and Ilyina [22].

32 K. Elbassioni

Table 1. Summary of the reductions.

S Uncertainty set Available Approx.

Alg.

Approximation guarantee

General General convex set General

α-integrality gap

verifier

α-robust-in-expectation

Binary C1; m = O(1) General α-approx.

Alg.

O(α)-deterministically robust

Binary & Covering C1 General

α-integrality gap

verifier

O
(

α +
√

αγn
β

)

-deterministically

robust

Binary C2 α-Ancrr integrality

gap verifier

O
(

α
√

k log(k) γ
β

cmax
cmin

)

-robust-

with-high-probability

General C4; DC ≥ 0 General

α-integrality gap

verifier

O
(

α
√

k
)

-deterministically robust-

Binary & Covering C3; D−1 > 0 General

α-integrality gap

verifier

O
(

α +
√

αλmax(D)n
λmin(D)

)

-

deterministically

robust

Binary C4; D−1 > 0 α-Ancrr integrality

gap verifier

O
(

α
√

k log(k)
λmax(D)
λmin(D)

cmax
cmin

)

-

robust-with-high-probability

Outline of the Techniques. Almost all the results in Table 1 are based on
solving the convex relaxation for the robust optimization problem (in some
form), then rounding the obtained fractional solution. A useful tool that we
rely on, first proved by Carr and Vempala [13], allows one to turn a given non-
oblivious integrality gap verifier for the LP-relaxation into an oblivious one.
Another ingredient of our proofs is the use of strong LP-duality to go from a
maxmin-optimization problem to a purely minimization problem; this was the
approach used by Bertsimas and Sim in [8], which we push further by combining
it with randomized rounding techniques (see, e.g., [25]), and using a dual-fitting
argument to bound the approximation guarantee on the rounded solution. First,
we describe this approach for polyhedral uncertainty, then it would not be hard
to extend the results to ellipsoidal uncertainty (which are omitted die to lack
of space), by envisioning an ellipsoid as a polytope with infinitely many linear
inequalities.

2 A Robust-in-Expectation Approximation Algorithm

We first observe simply that an oblivious intergality gap verifier for the nominal
problem implies an α-robust-in-expectation algorithm for the robust version.

Lemma 1. Consider a combinatorial minimization problem (1) and its LP
relaxation (2), admitting an oblivious α-integrality gap verifier A w.r.t. a class
C of objectives. Then there is a polytime α-robust-in-expectation algorithm for
the robust version (7) w.r.t. to any convex uncertainty set C ⊆ C .

Approximation Algorithms for Cost-Robust Discrete Minimization Problems 33

Carr and Vempala [13] gave a decomposition theorem that allows one to
use an α-integrality gap verifier for a given LP-relaxation of a combinatorial
minimization problem, to decompose a given fractional solution to the LP into
a convex combination of integer solutions that is dominated by α times the
fractional solution. We can restate their result as follows.

Theorem 1 [13]. Consider a discrete minimization problem (1) and its LP
relaxation (2), admitting an α-integrality gap verifier A. Then there is a poly-
time algorithm that, for any given x∗ ∈ Q, finds a set X ⊆ S, of polynomial size,
and a set of convex multipliers {μx ∈ R+ : x ∈ X}, ∑

x∈X μx = 1, such that

αx∗ ≥
∑

x∈X
μxx. (15)

We obtain the following (known) corollary of Theorem 1.

Corollary 1. Consider a discrete minimization problem (1) and its LP relax-
ation (2), admitting an α-integrality gap verifier A. Then (2) admits an oblivious
α-integrality gap verifier A′.

From Lemma 1 and Corollary 1, we obtain an α-robust-in-expectation algo-
rithm for (5) from an α-integrality gap verifier for (1)–(2).

Theorem 2. Consider a discrete minimization problem (1) and its LP relax-
ation (2), admitting an α-integrality gap verifier A. Then there is a polytime
α-robust-in-expectation algorithm for the robust version (7) w.r.t. to the any
convex uncertainty set C ⊆ R

n
+.

We emphasize that, in Theorem 2, the integrality gap verifier must be defined
with w.r.t. the whole class C = R

n
+ of objectives. Finally, we note that the

results in this section can be extended, in a straightforward way, to maximization
problems.

2.1 A Deterministically Robust Algorithm for a Class of Polyhedral
Uncertainty

In [8], Bertsimas and Sim considered the minimization version of the DO problem
(1), when the set S ⊆ {0, 1}n and the (budget) uncertainty set C is given by

C =

{

c := c0 + d ◦ u

∣

∣

∣

∣

∣

u ∈ R
n
+, ui ≤ 1,∀i ∈ [n],

n
∑

i=1

ui ≤ k

}

, (16)

where c0, d ∈ R
n
+ are given non-negative vectors, k ∈ Z+ is a given positive

integer, and d◦y is the n-dimensional vector with components (d◦u)i := diui, for
i = 1, . . . , n. The constraints in (16) describe the situation when the uncertainty
in each component of the objective vector c is described by an interval [c0j , c

0
j+dj]

and at most k components are allowed to change. It was shown in [8] that an
α-deterministically robust approximation algorithm for the minimization version

34 K. Elbassioni

of (5) with the uncertainty set given in (16), can be obtained from n+1 calls to
an α-approximation algorithm for the nominal problem (1).

In this section, we extend this result as follows. Consider a polyhedral uncer-
tainty set given by

C =
{

c := c0 + u
∣

∣ u ∈ R
n
+, u ≤ d, Au ≤ b

}

, (17)

where d ∈ R
n
+, b ∈ R

m
+ are given non-negative vectors and A ∈ R

m×n
+ is a given

non-negative matrix. Note that the uncertainty set C in (16) can be written in
the form (17) by replacing d ◦ u by u and setting A :=

[

1
d1

· · · 1
dn

] ∈ R
1×n
+ ,

b :=
[

k
] ∈ R

1
+ (assuming w.l.o.g. that di > 0 for all i).

Fix an ε > 0. As we shall see below, we may assume, w.l.o.g., that bi > 0 for
all i ∈ [m]. Define

L(A, c0, d) := n · max

{

maxj c0j
minj c0j

,
(m + n)

ε
· max

{ maxi,j aij/bi
minj maxi aij/bi

,
maxj dj

minj dj

}

}

.

(18)

Theorem 3. Consider the DO problem (1), when the set S ⊆ {0, 1}n and
the uncertainty set C is given by (17). Then, for any given ε > 0, there is
a (1 + ε)α-deterministically robust approximation algorithm for the cost-robust
version (5), which can be obtained from O(log L(A,c0,d)

ε (log (1+ε)m
ε)m) calls to an

α-approximation algorithm for the nominal problem (1).

Note that, if both maxj c0j
minj c0j

and maxj dj

minj dj
are bounded by poly(n), then The-

orem 3 requires only polylog(n) number of calls to the integraliy gap verifier,
which is an exponential improvement over the result in [8] in such a case.

A set S ⊆ {0, 1}n is said to be covering if x ∈ S implies that y ∈ S for
any y ≥ x. For instance, if the set S represents subgraphs (say, as edge sets)
of a given graph satisfying a certain monotone property (such as connectivity
or containment), then S is covering. Theorem 3 gives a reduction from any α-
approximation algorithm to a (1 + ε)α-deterministically robust approximation
algorithm, assuming m = O(1). When m is not a constant, and the set S is of
the covering type, we have the following result.

Theorem 4. Consider the DO problem (1), when the set S ⊆ {0, 1}n is a
covering set and the uncertainty set C is given by (17). Then, there is an
(

α + 2
√

αγn
β

)

-deterministically robust approximation algorithm for the robust

version (5), which can be obtained by a polynomial number of calls to an α-
integrality gap verifier for the nominal problem (1).

3 A Robust-with-high-probability Approximation
Algorithm for Polyhedral Uncertainty

Next, we consider the case when the uncertainty set C is given by (4) and D =
{δ ∈ R

k
+ : Aδ ≤ b}. Let β := minj maxi aij and γ := maxi,j aij , cmin :=

minr �=0,j: cr
j >0 cr

j ,c
r
max := maxj cr

j and cmax := maxr �=0 cr
max.

Approximation Algorithms for Cost-Robust Discrete Minimization Problems 35

Theorem 5. Consider the DO problem (1), when S ⊆ {0.1}n and the uncer-
tainty set C is given by (4) and D = {δ ∈ R

k
+ : Aδ ≤ b}. Then, there is an

O
(

α
√

k log(k) γ
β

cmax
cmin

)

-robust-with-high-probability approximation algorithm for

the robust version (5), which can be obtained by a polynomial number of calls to
an α-Ancrr integrality gap verifier for the nominal problem (1).

Proof. Assume the availability of an α-Ancrr integrality gap verifier for the
nominal problem (1). We assume w.l.o.g. that b = 1m. Note that the robust DO
problem (5) in this case takes the form:

OptR = min
x∈S

{

(c0)T x + max
δ∈R

k
+: Aδ≤1m

xTCδ

}

, (19)

where C ∈ R
n×k
+ is the matrix whose columns are c1, . . . , ck. Let us consider the

inner maximization problem in (19) and its dual (for a given x ∈ {0, 1}n):

z∗(x) = max xTCδ (20)
s.t. Aδ ≤ 1m, (21)

δ ∈ R
k
+

z∗(x) = min 1T
mθ (22)

s.t. AT θ ≥ CT x, (23)
θ ∈ R

m
+ . (24)

Note that if CT x = 0 for x ∈ {0, 1}n, then z∗(x) = 0 and xj = 0 for all
j ∈ J := {j ∈ [n] | ∃r ∈ [k] : cr

j > 0}. Thus, by considering the relaxation (2)
with c = c0 and Q replaced by Q′ := {x ∈ Q : xj = 0 ∀j ∈ J}, and calling the
integrality gap verifier on the obtained optimal fractional solution x∗, we can find
an x̂ that belongs to S with prob. 1 − o(1) such that E[(c0)T x̂] ≤ α(c0)T x∗ (or
discover that none exist if the relaxation is infeasible). In view of Remark 1, this
expectation guarantee can be turned into a high-probability guarantee without
sacrificing much the approximation ratio, that is, we can get a solution x̂0 such
that, with probability 1 − o(1), we have x̂0 ∈ S and (c0)T x̂0 ≤ (1 + ε)(c0)T x∗,
for any given ε > 0. We will assume therefore in the following that CT x �= 0 for
all x ∈ S, as we will return the minimum of the solution obtained under this
assumption and (c0)T x̂0.

Claim 1. For any x ∈ {0, 1}n such that CT x �= 0, we have z∗(x) ≥ cmin
γ .

Let z∗
R be the value of the relaxation for (19), that is,

z∗
R = min

x∈Q

{

(c0)T x + max
δ∈R

k
+: Aδ≤1m

xTCδ

}

. (25)

Using strong LP duality (20)–(22), we may rewrite (25) as

z∗
R = min (c0)T x + 1T

mθ (26)

s.t. AT θ ≥ CT x, (27)

36 K. Elbassioni

θ ∈ R
m
+ , x ∈ Q.

Let (x∗, θ∗) be an optimal solution for the LP (26). We call the α-Ancrr inte-
grality gap verifier on x∗ to get an α-Ancrr x̂. Let τ ∈ (0, 1) be a number to
be chosen later, and define R := {r ∈ [k] : (cr)T x∗ ≥ τcr

max}.
Claim 2. For ρ ≥ 1, Pr

[∀r ∈ R : (cr)T x̂ ≤ (1 + ρ)α(ar)T θ∗] ≥ 1 − ke−ρατ/3.

For r �∈ R, define i(r) to be the smallest i ∈ [m] such that i ∈ argmaxi′ ai′r.
Let us next choose ρ := 6 ln(2k)

τ > 1 and define the dual solution ̂θ ∈ R
m
+ as

follows:

̂θi := (1 + ρ)αθ∗
i +

1
β

∑

r �∈R: i=i(r)

(cr)T x̂, for i = 1, . . . ,m.

Let us fix an arbitrary constant ε ∈ (0, 1).

Claim 3. With probability 1−o(1), (x̂, ̂θ) is feasible for (26) and (c0)T x̂+1T
m

̂θ ≤
(

(1 + ρ) + (1+ε)γτcmaxk
βcmin

)

αOptR.

It follows from Claim 3 that, with probability 1−o(1), for any c = c0+Cδ ∈ C,
given by (4) with D = {δ ∈ R

k
+ : Aδ ≤ 1m}, we have

cT x̂ = (c0)T x̂ + (Cδ)T x̂ ≤ (c0)T x̂ + z∗(x̂) ≤ (c0)T x̂ + 1T
m

̂θ

≤
(

(1 + ρ) +
(1 + ε)γτcmaxk

βcmin

)

αOptR.

The theorem follows by choosing τ :=
√

6β ln(2k)cmin
(1+ε)γcmaxk .

References

1. Pessoa, A.A., Pugliese, L.D.P., Guerriero, F., Poss, M.: Robust constrained shortest
path problems under budgeted uncertainty. Networks 66(2), 98–111 (2015)

2. Agra, A., Santos, M., Nace, D., Poss, M.: A dynamic programming approach for a
class of robust optimization problems. SIAM J. Optim. 26(3), 1799–1823 (2016)

3. Álvarez-Miranda, E., Ljubić, I., Toth, P.: A note on the Bertsimas & sim algorithm
for robust combinatorial optimization problems. 4OR 11(4), 349–360 (2013)

4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.S.: Robust Optimization. Princeton
Series in Applied Mathematics, Princeton University Press, October 2009

5. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4),
769–805 (1998)

6. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications.
Math. Program. 92(3), 453–480 (2002)

7. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM Rev. 53(3), 464–501 (2011)

8. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. 98(1), 49–71 (2003)

Approximation Algorithms for Cost-Robust Discrete Minimization Problems 37

9. Bertsimas, D., Sim, M.: Robust discrete optimization under ellipsoidal uncertainty
sets. Technical report, Technical report, MIT (2004)

10. Bertsimas, D., Sim, M.: Tractable approximations to robust conic optimization
problems. Math. Program. 107(1–2), 5–36 (2006)

11. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn.
Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

12. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncer-
tainty. Discrete Appl. Math. 261, 93–107 (2019)

13. Carr, R.D., Vempala, S.: Randomized metarounding. Random Struct. Algorithms
20(3), 343–352 (2002)

14. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

15. Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may:
approximation algorithms for demand-robust covering problems. In: Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2005, pp. 367–378 (2005)

16. El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite
programs. SIAM J. Optim. 9(1), 33–52 (1998)

17. Elbassioni, K., Makino, K., Najy, W.: A multiplicative weight updates algorithm
for packing and covering semi-infinite linear programs. Algorithmica (2019)

18. Feige, U., Feldman, M., Talgam-Cohen, I.: Oblivious Rounding and the Integrality
Gap. In: Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2016. Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 60, pp. 8:1–8:23 (2016)

19. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust combinatorial optimization
with exponential scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72792-7 33

20. Goetzmann, K.-S., Stiller, S., Telha, C.: Optimization over integers with robustness
in cost and few constraints. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011.
LNCS, vol. 7164, pp. 89–101. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29116-6 8

21. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinato-
rial Optimization, Algorithms and Combinatorics, second corrected edn., vol. 2.
Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-97881-4

22. Ilyina, A.: Combinatorial optimization under ellipsoidal uncertainty. Technischen
Universität Dortmund. Ph.D. Thesis (2017)

23. Kawase, Y., Sumita, H.: Randomized strategies for robust combinatorial optimiza-
tion. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, AAAI,
pp. 7876–7883 (2019)

24. Poss, M.: Contributions to robust combinatorial optimization with budgeted uncer-
tainty. Université de Montpellier. Operations Research [cs.RO] (2016 tel-01421260)

25. Srinivasan, A.: Improved approximation guarantees for packing and covering inte-
ger programs. SIAM J. Comput. 29(2), 648–670 (1999)

https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-3-540-72792-7_33
https://doi.org/10.1007/978-3-540-72792-7_33
https://doi.org/10.1007/978-3-642-29116-6_8
https://doi.org/10.1007/978-3-642-29116-6_8
https://doi.org/10.1007/978-3-642-97881-4

Scheduling on Hybrid Platforms:
Improved Approximability Window

Vincent Fagnon1(B) , Imed Kacem2 , Giorgio Lucarelli2 ,
and Bertrand Simon3

1 University Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG,
38000 Grenoble, France

vincent.fagnon@univ-grenoble-alpes.fr
2 LCOMS, University of Lorraine, Metz, France

{imed.kacem,giorgio.lucarelli}@univ-lorraine.fr
3 Universität Bremen, Bremen, Germany

bsimon@uni-bremen.de

Abstract. Modern platforms are using accelerators in conjunction with
standard processing units in order to reduce the running time of specific
operations, such as matrix operations, and improve their performance.
Scheduling on such hybrid platforms is a challenging problem since the
algorithms used for the case of homogeneous resources do not adapt
well. In this paper we consider the problem of scheduling a set of tasks
subject to precedence constraints on hybrid platforms, composed of two
types of processing units. We propose a (3 + 2

√
2)-approximation algo-

rithm and a conditional lower bound of 3 on the approximation ratio.
These results improve upon the 6-approximation algorithm proposed by
Kedad-Sidhoum et al. as well as the lower bound of 2 due to Svensson for
identical machines. Our algorithm is inspired by the former one and dis-
tinguishes the allocation and the scheduling phases. However, we propose
a different allocation procedure which, although is less efficient for the
allocation sub-problem, leads to an improved approximation ratio for the
whole scheduling problem. This approximation ratio actually decreases
when the number of processing units of each type is close and matches
the conditional lower bound when they are equal.

Keywords: Approximation algorithms · Scheduling · Precedence
constrains · CPU/GPU

1 Introduction

Nowadays, more and more High Performance Computing platforms use spe-
cial purpose processors in conjunction with classical Central Processing Units
(CPUs) in order to accelerate specific operations and improve their performance.
A typical example is the use of modern Graphics Processing Units (GPUs) which
can accelerate vector and matrix operations.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 38–49, 2020.
https://doi.org/10.1007/978-3-030-61792-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_4&domain=pdf
http://orcid.org/0000-0001-5347-5729
http://orcid.org/0000-0001-6649-7257
http://orcid.org/0000-0001-7368-355X
http://orcid.org/0000-0002-2565-1163
https://doi.org/10.1007/978-3-030-61792-9_4

Scheduling on Hybrid Platforms: Improved Approximability Window 39

Due to the heterogeneity that introduce this kind of accelerators, the schedul-
ing problem on such hybrid platforms becomes more challenging. Several exper-
imental results as well as theoretical lower bounds [1] show that the decision of
the allocation of a task to the type of processors is crucial for the performance of
the system. Specifically, classical greedy policies, such as Graham’s List Schedul-
ing [10], which perform well in the case of identical computing resources, fail to
generalize on hybrid platforms. For this reason, all known algorithms for hybrid
platforms [1,5,7,11] choose the type of the resource for each task before deciding
its scheduling in the time horizon.

In this paper, we focus on the problem of scheduling an application on such
an hybrid platform consisting of m identical CPUs and k identical GPUs. An
application is described as a set of n mono-processor tasks V which are linked
through precedence dependencies described by a directed acyclic graph G =
(V,E). This means that a task can start being executed only after all of its
predecessors are completed. The processing time of task j on a CPU (resp. on a
GPU) is denoted by pj (resp. by pj), and we do not assume any relation between
pj and pj . This is justified in real systems where tasks performing for instance
matrix operations can be executed much more efficiently on a GPU, while the
execution of tasks which need to communicate often with the file system is faster
on a CPU. Therefore, we can assume without loss of generality than m ≥ k.

We are interested in designing polynomial-time algorithms with good per-
formance guarantees in the worst case. As performance measure we use the
well-known approximation ratio which compares the solution of an algorithm
and the optimal solution with respect to an objective function. In this paper, we
study the makespan objective, that is we aim at minimizing the completion time
of the last task. Extending the Graham notation, we will denote this problem as
(Pm,Pk) | prec | Cmax.

For this problem, a 6-approximation algorithm named HLP (Heterogeneous
Linear Program) has been proposed by Kedad-Sidhoum et al. [11]. This algo-
rithm has two phases. In the first phase a “good” allocation of each task either
on the CPU or on the GPU side is decided. This decision is based on an integer
linear program which uses a 0–1 decision variable xj for each task j: xj will be
equal to one if j is assigned to the CPU side, and to zero otherwise. This inte-
ger linear program does not model the whole scheduling problem but only the
allocation decision, trying to balance the average load on the CPUs and GPUs
as well as the critical path length. The fractional relaxation of this program is
solved and the allocation of each task j is determined by a simple rounding rule:
it is assigned to GPUs if xj < 1/2, and to CPUs otherwise. In the second phase,
the greedy List Scheduling algorithm is used to schedule the tasks respecting the
precedence constraints and the allocation defined in the first phase.

The authors in [11] prove that the value of 1/2 chosen is best possible with
respect to the linear program used in the first phase. In a sense, they prove that
the integrality gap of the linear program relaxation is 2. Furthermore, given this
simple rounding rule based on 1/2, Amaris et al. [1] present a tight example of
HLP which asymptotically attains an approximation ratio of 6, even if another

40 V. Fagnon et al.

scheduling algorithm is used in the second phase. Despite both previous negative
results, we show that HLP can achieve a better approximation ratio by using a
different rounding procedure. Indeed, even though we use a rounding which is
not the best possible with respect to the allocation problem solved in the first
phase, this rounding allows us to obtain stronger guarantees on the scheduling
phase and therefore improve the approximation ratio.

The main difference with HLP is that we allocate task j to the fastest pro-
cessor type if xj is close to 1/2 in the fractional relaxation solution. We then
achieve an approximation ratio smaller than 3 + 2

√
2 and that tends towards 3

when m/k is close to 1.
The best known lower bound on the approximation ratio is the same as

for identical machines, i.e., 4/3 [13], but can be improved to 2 by assuming
a variant of the unique games conjecture [15]. Our second contribution is to
improve this conditional lower bound to 3 for any value of m/k assuming a
stronger conjecture introduced by Bazzi and Norouzi-Fard [3]. This conditional
lower bound is therefore tight when m = k.

Organization of the Paper

In Sect. 2 we give a literature review by positioning our problem with respect
to closely related ones and by presenting several known approximability results.
In Sect. 3 we present our adapted algorithm for the problem of scheduling on
hybrid platforms as well as its analysis which leads to an approximation ratio of
5.83. In Sect. 4, we prove a conditional lower bound of 3 on the approximation
ratio. Finally, we conclude in Sect. 5.

2 Related Work

The problem of scheduling on hybrid platforms consisting of two sets of identical
processors is a generalization of the classical problem of scheduling on parallel
identical processors, denoted by P | prec | Cmax. On the other hand, our problem
is a special case of the problem of scheduling on unrelated processors (denoted
by R | prec | Cmax), where each task has a different processing time on each
processor. Moreover, in the case of scheduling on related processors (denoted
by Q | prec | Cmax), each processor has its specific speed and the processing
time of each task depends on the speed of the assigned processor. This problem
is more general than P | prec | Cmax in the sense that the processing time
of a task is different on each processor. However, in the former problem all
tasks are accelerated or decelerated by the same factor when using a specific
processor, while in our case two tasks do not necessarily have the same behavior
(acceleration or deceleration) if they are scheduled on a CPU or a GPU.

For P | prec | Cmax, the greedy List Scheduling algorithm proposed by Gra-
ham [10] achieves an approximation ratio of (2 − 1

m), where m is the number
of the processors. Svensson [15] proved that this is the best possible approx-
imation result that we can expect, assuming P �= NP and a variant of the

Scheduling on Hybrid Platforms: Improved Approximability Window 41

unique games conjecture introduced by Bansal and Khot [2]. Note that this neg-
ative result holds also for our more general problem. For Q | prec | Cmax, a
series of algorithms with logarithmic approximation ratios are known (see for
example [6,8]), while Li [14] has recently proposed a O(log(m)/ log(log(m)))-
approximation algorithm which is the current best known ratio. On the negative
side, Bazzi and Norouzi-Fard [3] show that it is not possible to have a constant
approximation ratio assuming the NP-hardness of some problems on k-partite
graphs. No result is actually known for R | prec | Cmax. However, there are
few approximation algorithms for special classes of precedence graphs (see for
example [12]).

For the problem (Pm,Pk) | prec | Cmax, targeting hybrid platforms, Kedad-
Sidhoum et al. [11] presented a 6-approximation algorithm as we reported before
by separating the allocation and the scheduling phases. Amaris et al. [1] proposed
small improvements on both phases, without improving upon the approximation
ratio. However, they show that using the rounding proposed in [11], any schedul-
ing policy cannot lead to an approximation ratio strictly smaller than 6. In the
absence of precedence constraints, a polynomial time approximation scheme has
been proposed by Bleuse et al. [4].

The problem of scheduling on hybrid platforms has been also studied in the
online case. If the tasks are not subject to precedence relations, then a 3.85-
competitive algorithm has been proposed in [7], while the authors show also
that no online algorithm can have a competitive ratio strictly less than 2. In the
presence of precedence constraints, Amaris et al. [1] consider that tasks arrive in
an online order respecting the precedence relations and they give a (4

√
m/k)-

competitive algorithm. This result has been improved by Canon et al. [5] who
provide a (2

√
m/k + 1)-competitive algorithm, while they show that no online

algorithm can have a competitive ratio smaller than
√

m/k.

3 A 5.83-Approximation Algorithm

In this section we present the improved approximation algorithm and its analysis
for the problem (Pm,Pk) | prec | Cmax. Although several ingredients of our
algorithm have been already presented in [11], we present here all the steps of
the algorithm for the sake of completeness.

3.1 The Algorithm HLP-b

As explained in introduction, the algorithm HLP-b has two phases: the allocation
phase and the scheduling one. The allocation phase is based on an integer linear
program. For each task j ∈ V , let xj be a decision variable which is equal to
1 if task j is assigned to the CPU side, and to 0 otherwise. Moreover, let Cj

be a variable corresponding to the completion time of task j. Finally, let Cmax

be a variable that indicates the maximum completion time over all tasks. For
the sake of simplicity, we add in G a fictive task 0 with p0 = p0 = 0 which

42 V. Fagnon et al.

precedes all other tasks. Consider the following integer linear program similarly
to Kedad-Sidhoum et al. [11].

Minimize Cmax

1
m

∑

j∈V

pjxj ≤ Cmax (1)

1
k

∑

j∈V

pj(1 − xj) ≤ Cmax (2)

Ci + pjxj + pj(1 − xj) ≤ Cj ∀(i, j) ∈ E (3)

0 ≤ Cj ≤ Cmax ∀j ∈ V (4)
xj ∈ {0, 1} ∀j ∈ V (5)

Constraints (1) and (2) imply that the makespan of any schedule cannot
be smaller than the average load on the CPU and GPU sides, respectively.
Constraints (3) and (4) build up the critical path of the precedence graph, i.e.,
the path of G with the longest total completion time. In any schedule, the critical
path length is a lower bound of the makespan. Note that the critical path of the
input instance cannot be defined before the allocation decision for all tasks since
the exact processing time of a task depends on this allocation. Constraint 5 is
the integrality constraint for the decision variable xj . In what follows, we relax
the integrality constraint and we replace it by xj ∈ [0, 1] for each task j in V , in
order to get a linear program which we can solve in polynomial time. The above
integer linear program is not completely equivalent to our scheduling problem,
but the objective value of its optimal solution is a lower bound of any optimal
schedule.

The rounding procedure of HLP-b is based on a parameter b ≥ 2. We will

show in Sect. 3.2 that the best choice is b = 1+
√

2+k/m
1−k/m . Let xR

j be the value of
the decision variable for task j in an optimal solution of the above linear program
relaxation. We define xA

j to be the value of the decision variable for task j in our
algorithm’s schedule, that is the value of the decision variable obtained by the
rounding procedure. The allocation phase of our algorithm rounds the optimal
relaxed solution {xR

j } to the feasible solution {xA
j } as follows:

– if xR
j ≥ 1 − 1

b , then xA
j = 1;

– if xR
j ≤ 1

b , then xA
j = 0;

– if 1
b < xR

j < 1 − 1
b and pj ≥ pj , then xA

j = 0;
– if 1

b < xR
j < 1 − 1

b and pj < pj , then xA
j = 1.

Intuitively, if the linear program solution is close to an integer (xj ≤ 1
b or

xj ≥ 1 − 1
b) then we follow its proposal, else we choose the processor type with

the smallest processing time: the task is allocated to a CPU (i.e., xA
j = 1), if

pj < pj and to a GPU otherwise.

Scheduling on Hybrid Platforms: Improved Approximability Window 43

Given the allocation obtained by the previous procedure, HLP-b proceeds to
the scheduling phase. The classical List Scheduling algorithm is applied respect-
ing the allocation {xA

j } and the precedence constraints: tasks are allocated to
the earliest available processor of the correct type in a topological order.

3.2 Analysis of the Algorithm HLP-b

We begin the analysis of HLP-b with two lemmas stating properties of the
rounding procedure.

Lemma 1. For each task j ∈ V we have (1 − xA
j)pj ≤ b · (1 − xR

j)pj.

Proof. Consider any task j ∈ V . Note first that if j is assigned to the CPU
side by the algorithm then xA

j = 1 and the lemma directly holds since xR
j ≤ 1.

Then, we assume that j is assigned to the GPU side, that is xA
j = 0. Hence,

xR
j ≤ (1 − 1

b). Therefore, we conclude as b · (1 − xR
j)pj ≥ pj = (1 − xA

j)pj . �	

Lemma 2. For each task j ∈ V we have:

xA
j pj + (1 − xA

j)pj ≤ b

b − 1
(xR

j pj + (1 − xR
j)pj).

Proof. Consider any task j ∈ V . We have the following three cases.

– If xR
j ≤ 1

b , then xA
j = 0 and we have:

(1 − xR
j)pj ≥ (1 − 1

b
)(1 − xA

j)pj

(1 − xR
j)pj + xR

j pj ≥ (1 − 1
b
)
(
(1 − xA

j)pj + xA
j pj

)
.

– If xR
j ≥

(
1 − 1

b

)
, then xA

j = 1 and we have:

xR
j pj ≥ (1 − 1

b
)xA

j pj

(1 − xR
j)pj + xR

j pj ≥ (1 − 1
b
)
(
(1 − xA

j)pj + xA
j pj

)
.

– If 1
b < xR

j < (1 − 1
b), then we have:

xR
j pj + (1 − xR

j)pj ≥ min(pj , pj) = xA
j pj + (1 − xA

j)pj .

Therefore, combining the three cases, we obtain the lemma as b/(b − 1) ≥ 1. �	

Based on the two previous lemmas, the following theorem gives the approxima-
tion ratio of our algorithm HLP-b.

Theorem 1. HLP-b achieves an approximation ratio of 3 + 2
√

2 − k
m − k

m

2
,

which is upper bounded by 3 + 2
√

2 ≤ 5.83.

44 V. Fagnon et al.

Proof. We first define CPA the value of the critical path length of G after the
allocation phase of HLP-b. Denoting by P the set of paths in G, this value
equals:

CPA = max
p∈P

{ ∑

j∈p

(pjx
A
j + pj(1 − xA

j))
}

.

Furthermore, let CA
max, CR

max and C∗
max be respectively the makespan of the

schedule created by HLP-b, the objective value in an optimal solution of the lin-
ear program relaxation and the makespan of an optimal solution for our problem.

Following the same arguments as in [1,11] and since HLP-b is a List Schedul-
ing algorithm, the total time during which there is at least one idle CPU and
one idle GPU is upper-bounded by CPA. Moreover, the total time during which
no CPU (resp. no GPU) is idle in our schedule is upper-bounded by the average
workload assigned to CPUs (resp. GPUs). So we have:

CA
max ≤ 1

m

∑

j∈V

(pjx
A
j) +

1
k

∑

j∈V

(pj(1 − xA
j)) + CPA

=
k

mk
·
∑

j∈V

(pjx
A
j + (pj(1 − xA

j)) +
m − k

mk

∑

j∈V

(pj(1 − xA
j)) + CPA

Using Lemmas 1 and 2, we obtain:

CA
max ≤ b

b − 1
1
m

∑

j∈V

(
xR

j pj + (1 − xR
j)pj

)
+ b

m − k

mk

∑

j∈V

(1 − xR
j)pj

+
b

b − 1
max
p∈P

{∑

j∈p

(
xR

j pj + (1 − xR
j)pj

) }

Now, the constraints (1) to (4) of the linear program relaxation give us:

CA
max ≤ b

b − 1
mCR

max + kCR
max

m
+ b

m − k

mk
kCR

max +
b

b − 1
CR

max

Since CR
max ≤ C∗

max we get:

CA
max

C∗
max

≤ b

b − 1
· m + k

m
+ b · m − k

m
+

b

b − 1
= b + 2 · b

b − 1
− k

m
(b − b

b − 1
).

The minimum of this ratio is reached by choosing b = 1 +
√

2+k/m
1−k/m > 1 +

√
2,

which gives:

CA
max

C∗
max

≤ 3 + 2

√

2 − k

m
− k

m

2

≤ 3 + 2
√

2 ≈ 5.83.

�	

Scheduling on Hybrid Platforms: Improved Approximability Window 45

4 Conditional Lower Bound on the Approximation Factor

In this section, we extend the results of Bazzi and Norouzi-Fard [3] in our setting.
Assuming Hypothesis 1 (see below), they show that it is NP-hard to approximate
Q | prec | Cmax within a constant factor. If we focus on only two types of
processors, their result implies a lower bound of 2 on the approximation ratio,
therefore not improving on Svensson’s result [15]. We improve their result to
obtain a conditional lower bound of 3 stated in Theorem 2, which therefore
also holds in our more restricted setting (Pm,Pk) | prec | Cmax in which the
processing times on both processor types can be arbitrary. Due to lack of space,
we do not discuss further the relevance of Hypothesis 1 or its link to the weaker
Unique Games Conjecture and refer the reader to [3] for more details.

Theorem 2. Assuming Hypothesis 1 and P �= NP , there exist no polynomial-
time (3 − α)-approximation, for any α > 0, for the problem (Pm,Pk) | prec |
Cmax, even if the processors are related.

Hypothesis 1 (q-partite problem). For every small ε, δ > 0, and every
integral constant q,Q > 1, the following problem is NP-hard: given a q-partite
graph Gq = (V1, . . . , Vq, E1, . . . , Eq−1) with |Vi| = n for all 1 ≤ i ≤ q and Ei

being the set of edges between Vi and Vi+1 for all 1 ≤ i < q, distinguish between
the two following cases:

– YES Case: every Vi can be partitioned into Vi,0, . . . Vi,Q−1, such that:
• there is no edge between Vi,j1 and Vi+1,j2 for all 1 ≤ i < q, j1 > j2.
• |Vi,j | ≥ 1−ε

Q n, for all 1 ≤ i ≤ q, 0 ≤ j ≤ Q − 1.
– NO Case: for every 1 ≤ i < q and every two sets S ⊆ Vi, T ⊆ Vi+1 such that

|S| = |T | = �δn, there is an edge between S and T .

We start by fixing several values: an integer q multiple of 3, an integer Q,
δ ≤ 1/(2Q) and ε ≤ 1/Q2. We consider the q-partite problem parameterized by
Q, ε, δ, which is assumed to be NP-hard under Hypothesis 1.

Reduction. We define a reduction from Gq = (V1, . . . , Vq, E1, . . . , Eq−1), a
q-partite graph where for each i, |Vi| = n > Q, to a scheduling instance I.
The instance consists of m =

⌈
(1 + Qε)n4

⌉
CPUs and k =

⌈
(1 + Qε)n2

⌉
GPUs

and uses two types of tasks: CPU tasks verifying pj = npj = 1, and GPU tasks
verifying pj = npj = n. The tasks and edges (i.e., precedence constraints) are
defined as follows. For each 0 ≤ z < q/3, and for each:

– vertex v ∈ V3z+1, create a set J3z+1,v of Qn − Q GPU tasks (type a).
– vertex v ∈ V3z+2, create a set J3z+2,v of Qn3 CPU tasks (type b).
– vertex v ∈ V3z+3, create a set J3z+3,v of Q − 2 GPU tasks (type c) indexed

J1
3z+3,v, . . . JQ−2

3z+3,v, and an edge from J�
3z+3,v to J�+1

3z+3,v for � from 1 to Q−3.
– edge (v, w) ∈ Ei, create all edges from the set Ji,v to the set Ji+1,w.

Intuitively, the tasks corresponding to each set Vi of Gq can be computed in Q
time slots. To achieve this, each set of type b requires almost all the CPUs, each

46 V. Fagnon et al.

set of type a requires almost all but n GPUs, and each set of type c requires
n GPUs. On a YES instance, it is possible to progress simultaneously on the
tasks corresponding to three consecutive sets Vi, by pipe-lining the execution,
thus obtaining a makespan close to qQ/3. For example, it is possible to execute
Vi,1 at some time step, and then to execute Vi+1,1 and Vi,2 in parallel. On a
NO instance, the tasks corresponding to each Vi have to be scheduled almost
independently, thus not efficiently using the processing power: there are too few
GPUs to process a significant amount of CPU tasks, and CPUs are too slow to
process GPU tasks. The minimum possible makespan is then close to qQ. The
two following lemmas state these results formally.

Lemma 3 (Completeness). If Gq corresponds to the YES case of the
q-partite problem, then instance I admits a schedule of makespan (q + 3)Q/3.

Proof. Suppose that Gq corresponds to a YES instance of the q-partite problem,
and let Vi,j for 1 ≤ i ≤ q and j < Q be the associated partition of the sets Vi.
Note that the size of any set Vi,j of the partition is at most (1 + Qε)n/Q,
since

∑Q−1
j=0 |Vi,j | = |Vi| = n and, by definition, in a YES instance it holds

that |Vi,j | ≥ 1−ε
Q n. We next partition the tasks of I into sets Si,j . For each z,

0 ≤ z < q/3, and j, 0 ≤ j ≤ Q − 1, we define:

– type A: SzQ+1,j =
⋃

v∈V3z+1,j
J3z+1,v, and thus

|SzQ+1,j | ≤ (Qn − Q)(1 + Qε)n/Q ≤ k(1 − 1/n).
– type B: SzQ+2,j =

⋃
v∈V3z+2,j

J3z+2,v, and thus
|SzQ+2,j | ≤ Qn3(1 + Qε)n/Q ≤ (1 + Qε)n4 ≤ m.

– type C: for 1 ≤ � ≤ Q − 2, SzQ+2+�,j =
⋃

v∈V3z+3,j
{J�

3z+3,v}, and thus
|SzQ+2+�,j | = (1 + Qε)n/Q ≤ k/(nQ).

Let Tt be the union of all Si,j with t = i+j, 1 ≤ i ≤ Qq/3 and 0 ≤ j ≤ Q−1.
We create a schedule for instance I as follows: at the time slot [t − 1, t), we
schedule the tasks of set Tt. A sketc.h of the beginning of this schedule is given
in Table 1. The type and the number of machines (CPUs or GPUs) for executing
each set of tasks Si,j is also given in this table. Note that the tasks of the second
triplet 〈V4, V5, V6〉 start executing from time slot [Q,Q + 1): specifically, SQ+1,0

contains tasks in V4. Moreover, the execution of some tasks of the first triplet
〈V1, V2, V3〉 takes place after time Q+1: specifically, the last tasks in this triplet
belong to the set SQ,Q−1 and they are executed in the time slot [2Q−2, 2Q−1).
However, there is no a time slot in which 3 triplets are involved.

In the last time slot of the created schedule we execute the tasks in Tt with
t = i + j, i = Qq/3 and j = Q − 1. Hence, the makespan is Qq/3 + Q −
1 < Qq/3 + Q. It remains to prove the feasibility of the created schedule: the
precedence constraints are satisfied and there are enough machines to perform
the assigned tasks at each time slot.

Consider first the precedence constraints inside each set J3z+3,v, 0 ≤ z < q/3
and v ∈ V3z+3, that is the arc from the task J�

3z+3,v to the task J�+1
3z+3,v, for all �,

1 ≤ � ≤ Q− 3. By construction, J�
3z+3,v ∈ SzQ+2+�,j and J�+1

3z+3,v ∈ SzQ+2+�+1,j .

Scheduling on Hybrid Platforms: Improved Approximability Window 47

Table 1. A sketch of the beginning of the schedule for the tasks in I.

CPU GPU

m k(1 − 1/n) k/(nQ) k/(nQ) k/(nQ) . . . k/(nQ) k/(nQ) k/(nQ)

[0, 1) S1,0

[1, 2) S2,0 S1,1

[2, 3) S2,1 S1,2 S3,0

[3, 4) S2,2 S1,3 S4,0 S3,1

[4, 5) S2,3 S1,4 S5,0 S4,1 S3,2

.

[Q − 1, Q) S2,Q−2 S1,Q−1 SQ,0 SQ−1,1 SQ−2,2 . . . S3,Q−3

[Q,Q + 1) S2,Q−1 SQ+1,0 SQ,1 SQ−1,2 . . . S4,Q−3 S3,Q−2

[Q + 1, Q + 2) SQ+2,0 SQ+1,1 SQ,2 . . . S5,Q−3 S4,Q−2 S3,Q−1

[Q + 2, Q + 3) SQ+2,1 SQ+1,2 . . . S6,Q−3 S5,Q−2 S4,Q−1

[Q + 3, Q + 4) SQ+2,2 SQ+1,3 SQ+3,0 . . . S7,Q−3 S6,Q−2 S5,Q−1

[Q + 4, Q + 5) SQ+2,3 SQ+1,4 SQ+4,0 SQ+3,1 . . . S8,Q−3 S7,Q−2 S6,Q−1

. . .

Thus, J�
3z+3,v is executed in the time slot zQ + 2 + � + j, while J�+1

3z+3,v in the
time slot zQ + 2 + � + 1 + j > zQ + 2 + � + j, and hence this kind of precedence
constraints are satisfied.

Consider now the precedence constraint from a task J ∈ Ji,v corresponding
to v ∈ Vi,j1 ⊂ Vi to a task J ′ ∈ Ji+1,w corresponding to w ∈ Vi+1,j2 ⊂ Vi+1. By
construction and due to the fact that Gq is a YES instance, an arc from J to J ′

exists only if j1 ≤ j2. Assume that J belongs to the set Si1,j1 , while J ′ belongs
to the set Si2,j2 . By the definition of the sets Si,j , we have that i1 < i2. Thus,
i1 + j1 < i2 + j2 which means that J is executed in a time slot before J ′, and
hence this kind of precedence constraints are also satisfied.

It remains to show that each set Tt is composed of at most m CPU tasks and
k GPU tasks, so can be computed in a single time slot. In a given set Tt, there
can be at most one set of type A, one set of type B and Q − 2 sets of type C.
As explained in the definition of the sets Si,j , each set of type B is composed
of at most m CPU tasks. Moreover, each set of type A is composed of at most
k(1 − 1/n) GPU tasks, while each of the Q − 2 sets of type C is composed of at
most k/nQ GPU tasks. In total, there are k(1 − 1/n) + (Q − 2)k/nQ < k GPU
tasks, and the lemma follows. �	

Lemma 4 (Soundness). If Gq corresponds to the NO case of the q-partite
problem, then all schedules of instance I have a makespan at least f(Q)qQ,
where f tends towards 1 when Q grows.

Proof. (Proof sketch, full version in [9]). Suppose that Gq corresponds to a NO
instance of the q-partite problem, and consider a schedule of I that minimizes
the makespan. Consider the tasks associated to Vi and Vi+1, for some i. The
execution of these two sets cannot significantly overlap: because of the precedence
constraints in a NO instance, we need to complete a fraction (1− δ) of the tasks
associated to Vi before starting more than a fraction δ of the tasks associated to
Vi+1.

48 V. Fagnon et al.

Moreover, because CPUs are slower than GPUs by a factor n > Q, and
because there are far fewer GPUs than CPUs (by a factor n2), executing the
tasks associated to a single set Vi on all processors takes a time close to Q.

Overall, we have to execute the q sets Vi nearly sequentially, and each one
needs almost Q time steps to be processed, so the total makespan tends towards
qQ when Q is large. �	

We are now ready to complete the proof.

Proof. (Proof of Theorem 2). Let α > 0 and choose q and Q such that
f(Q)qQ > (3 − α)(q + 3)Q/3. Consider an instance Gq of the corresponding
q-partite problem, with n > Q. Because of Lemmas 3 and 4, if Gq is a YES
instance, then its optimal makespan is at most (q + 3)Q/3, and otherwise, its
makespan is at least f(Q)qQ > (3 − α)(q + 3)Q/3.

Therefore, an algorithm approximating the scheduling problem within a fac-
tor 3−α also solves the q-partite problem in polynomial time, which contradicts
Hypothesis 1 and P �= NP . �	

We can furthermore adapt this proof to show the following result:

Corollary 1. Assuming Hypothesis 1 and P �= NP , the problem (Pm,Pk) |
prec |Cmax has no 3 − α-approximation, for any α > 0 and any value of m/k.

Proof (Proof sketch). Define CPU tasks as pj = 1 and pj = ∞, and GPU tasks
as pj = ∞ and pj = 1. The value of k is the same as before, but we now
consider any value of m ≥ k, and we define the sets of type b as containing
nb = �Qmn/k tasks instead of Qn3. The completeness lemma is still valid as
(1+Qε)n ·nb ≤ m and the soundness lemma holds as tasks cannot be processed
on the other resource type. �	

This result is interesting as the competitive ratio of the algorithms known

for (Pm,Pk) | prec | Cmax both in the offline (3 + 2
√

2 − k
m − k

m

2
) and in the

online (1+2
√

m/k [5]) setting tend towards 3 when m/k is close to 1, so there is
no gap between the conditional lower bound and the upper bound for this case.
Note that this hardness result also holds if an oracle provides the allocation
(CPU or GPU for each task), in which case List Scheduling is 3-competitive
[5, Theorem 7]. Therefore, the gap between the conditional lower bound and the
algorithm HLP-b is mainly due to the difficulty of the allocation.

5 Conclusion

We propose a (3 + 2
√

2)-approximation algorithm HLP-b for the (Pm,Pk) |
prec | Cmax problem. Our algorithm improves the approximation ratio upon the
previous 6-approximation algorithm known in the literature, by using a differ-
ent rounding procedure, which although is not optimal for the allocation phase,
leads to a better worst-case ratio for the whole problem. We also show a condi-
tional lower bound of 3 on the approximation ratio for this problem, assuming

Scheduling on Hybrid Platforms: Improved Approximability Window 49

a generalized variant of the unique games conjecture, improving over the previ-
ous result of 2. The approximation ratio of HLP-b actually decreases towards 3
when m and k are close, thus closing the gap with the lower bound for m = k.
The natural objective would be to close this gap for all values of m and k.

References

1. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 220–231. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 16

2. Bansal, N., Khot, S.: Optimal long code test with one free bit. In: Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp.
453–462. IEEE (2009)

3. Bazzi, A., Norouzi-Fard, A.: Towards tight lower bounds for scheduling prob-
lems. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 118–129.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3 11

4. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput. Pract.
Exp. 27(6), 1625–1638 (2015)

5. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of task graphs
on heterogeneous platforms. IEEE Trans. Parallel Distrib. Syst. 31, 721–732 (2020)

6. Chekuri, C., Bender, M.: An efficient approximation algorithm for minimizing
makespan on uniformly related machines. J. Algorithms 41(2), 212–224 (2001)

7. Chen, L., Ye, D., Zhang, G.: Online scheduling of mixed CPU-GPU jobs. Int. J.
Found. Comput. Sci. 25(6), 745–762 (2014)

8. Chudak, F.A., Shmoys, D.B.: Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different speeds.
J. Algorithms 30(2), 323–343 (1999)

9. Fagnon, V., Kacem, I., Lucarelli, G., Simon, B.: Scheduling on hybrid platforms:
improved approximability window. arXiv preprint: 1912.03088 (2019)

10. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

11. Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: Proceedings of the 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop, IPDPSW
2015, pp. 27–33 (2015)

12. Kumar, V.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Scheduling on
unrelated machines under tree-like precedence constraints. Algorithmica 55(1),
205–226 (2009)

13. Lenstra, J.K., Rinnooy Kan, A.: Complexity of scheduling under precedence con-
straints. Oper. Res. 26(1), 22–35 (1978)

14. Li, S.: Scheduling to minimize total weighted completion time via time-indexed
linear programming relaxations. In: Proceedings of the 58th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2017, pp. 283–294. IEEE (2017)

15. Svensson, O.: Hardness of precedence constrained scheduling on identical machines.
SIAM J. Comput. 40(5), 1258–1274 (2011)

https://doi.org/10.1007/978-3-319-64203-1_16
https://doi.org/10.1007/978-3-662-48350-3_11

Leafy Spanning Arborescences in DAGs

Cristina G. Fernandes1 and Carla N. Lintzmayer2(B)

1 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, Brazil
cris@ime.usp.br

2 Centro de Matemática, Computação e Cognição, Universidade Federal do ABC,
Santo André, Brazil

carla.negri@ufabc.edu.br

Abstract. Broadcasting in a computer network is a method of trans-
ferring a message to all recipients simultaneously. It is common in this
situation to use a tree with many leaves to perform the broadcast, as
internal nodes have to forward the messages received, while leaves are
only receptors. We consider the subjacent problem of, given a directed
graph D, finding a spanning arborescence of D, if one exists, with the
maximum number of leaves. In this paper, we concentrate on the class
of rooted directed acyclic graphs, for which the problem is known to be
MaxSNP-hard. A 2-approximation was previously known for this prob-
lem on this class of directed graphs. We improve on this result, present-
ing a 3/2-approximation. We also adapt a result for the undirected case
and derive an inapproximability result for the vertex-weighted version of
Maximum Leaf Spanning Arborescence on rooted directed acyclic
graphs.

Keywords: Maximum leaf spanning arborescence · Directed acyclic
graphs · Maximum leaf weighted spanning arborescence ·
Approximation algorithms

1 Introduction

The problem of, given a connected undirected graph, finding a spanning tree
with the maximum number of leaves is well known in the literature, appearing
as one of the NP-hard problems in [12]. With many applications in network
design problems, the best known result for it is a long standing 2-approximation
proposed by Solis-Oba [20,21]. In the literature, a directed version of this prob-
lem has also been considered.

For network broadcast, one looks for a directed spanning tree rooted at a
source node, in which all arcs are directed away from the source. Broadcast
trees with many leaves are preferable in this situation [16,18]. Internal nodes

This research was conducted while the authors were attending the 3rd WoPOCA:
“Workshop Paulista em Otimização, Combinatória e Algoritmos”. C. G. Fernandes
was partially supported by CNPq (Proc. 308116/2016-0 and 423833/2018-9).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 50–62, 2020.
https://doi.org/10.1007/978-3-030-61792-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_5&domain=pdf
http://orcid.org/0000-0002-5259-2859
http://orcid.org/0000-0003-0602-6298
https://doi.org/10.1007/978-3-030-61792-9_5

Leafy Spanning Arborescences in DAGs 51

have to forward the messages received, while leaves are only receptors. Also, in
some applications, it is interesting to build a more robust backbone tree, and
possibly less expensive links to reach the endpoint clients. The cost of such a
backbone tree is usually related to its number of arcs. By maximizing the number
of leaves in a rooted directed spanning tree, we are minimizing the number of
arcs in the tree obtained from removing the arcs incident to the leaves, which
can be seen as a backbone tree for the network. To define the directed version
of the problem precisely, we introduce some notation.

Let D be a directed graph. A vertex r in D is a root if there is a directed path
in D from r to every vertex in D. If r is a root in D, then we say D is r-rooted, or
simply rooted. We say D is acyclic if there is no directed cycle in D. A directed
acyclic graph is called a dag, for short. Note that any rooted dag has only one
root. An arborescence is an r-rooted dag T for which there is a unique directed
path from r to every vertex in T . The out-degree of a vertex in a directed graph
is the number of arcs that start in that vertex, while the in-degree of a vertex
is the number of arcs that end in that vertex. A vertex of out-degree 0 in an
arborescence is called a leaf.

The Maximum Leaf Spanning Arborescence is the problem of, given a
rooted directed graph D, finding a spanning arborescence of D with the max-
imum number of leaves. Let opt(D) denote the number of leaves in such an
arborescence.

Given an undirected graph G, one can consider the digraph D obtained by
substituting each edge by two arcs, one in each direction. With this construction,
it is easy to deduce that the Maximum Leaf Spanning Arborescence is
NP-hard, as its undirected version. Alon et al. [1] showed that the Maximum
Leaf Spanning Arborescence remains NP-hard on dags. They were in fact
investigating whether the Maximum Leaf Spanning Arborescence is fixed
parameter tractable [7], and they gave a positive answer for strongly connected
digraphs, as well as for dags. Fernau et al. [10] provided a cubic size kernel for the
Maximum Leaf Spanning Arborescence, and Daligault and Thomassé [8]
improved on this result, providing a quadratic size kernel. It is worth mentioning
that a linear size kernel is known for the undirected version of the problem.

As a byproduct, Daligault and Thomassé [8] derived a 92-approximation
for the Maximum Leaf Spanning Arborescence in general rooted directed
graphs. This turns into a 24-approximation when the digraph has no digon
(directed cycle of length two). More recently, Schwartges, Spoerhase, and
Wolff [19] described a 2-approximation for the case in which the digraph is
acyclic, and proved that this restricted version of the Maximum Leaf Span-
ning Arborescence is MaxSNP-hard. Their algorithm is inspired on a greedy
3-approximation by Lu and Ravi [17] for the undirected version of the problem.

Sections 2 and 3 present a 3
2 -approximation algorithm for the Maximum

Leaf Spanning Arborescence on rooted dags. Our algorithm is somehow
inspired on Solis-Oba’s algorithm, in the sense that it prioritizes certain expan-
sion rules. However, there is a key difference: in one of the rules, the number of
expansions can be optimized. Section 4 explores the relation of our algorithm

52 C. G. Fernandes and C. N. Lintzmayer

with matchings. Section 5 shows an inapproximability result for the vertex-
weighted version of Maximum Leaf Spanning Arborescence on rooted dags.

2 The Algorithm

A branching is a forest of arborescences. A vertex that is not a leaf in a branching
is called internal. For a positive integer t, a t-branching is a branching all of whose
internal vertices have out-degree at least t. See Fig. 1.

For a directed graph D, we denote by V (D) and A(D) the set of vertices and
arcs of D respectively. For a vertex v in V (D), we denote by d+D(v) its out-degree
in D and by d−

D(v) its in-degree in D. The out-neighbors of v are the extreme
vertices of arcs that start at v. We say a spanning t-branching is maximal if, for
any vertex of out-degree 0, its set of out-neighbors with in-degree 0 contains less
than t vertices. The spanning branchings in Fig. 1 are maximal.

(a) A 2-branching. (b) A 3-branching.

Fig. 1. The bold arcs show two different branchings in a rooted dag.

Algorithm 1 presents GreedyExpand(D, t, F), the heart of our approx-
imation. Given a rooted dag D, a positive integer t, and a spanning (t + 1)-
branching F of D, it returns a maximal spanning t-branching of D containing F .

Algorithm 1. GreedyExpand(D, t, F)
Input: rooted dag D, a positive integer t, and a spanning (t + 1)-branching F of D
Output: a maximal spanning t-branching of D containing F

F ′ ← F
for each v ∈ V (D) such that d+F ′(v) = 0 do

Uv ← {vu ∈ A(D) : d−
F ′(u) = 0}

if |Uv| ≥ t then F ′ ← F ′ + Uv

return F ′

Let us argue that the call GreedyExpand(D, t, F) produces a maximal
t-branching. Indeed, the returned F ′ is spanning because F ′ contains the span-
ning branching F . Besides, all internal vertices of F ′ have in-degree at most

Leafy Spanning Arborescences in DAGs 53

one and out-degree at least t. So F ′ is a t-branching and is clearly maximal.
For instance, the branchings in Fig. 1 would be possible outputs of the calls
GreedyExpand(D, 2, F) and GreedyExpand(D, 3, F), respectively, when
D is the depicted dag and F is the spanning branching of D with no arcs.

We observe that the GreedyExpand is an extension of the Expansion
algorithm by Schwartges, Spoerhase, and Wolff [19]. Particularly, if F is the
spanning branching of D with no arcs, then GreedyExpand(D, 2, F) behaves
as Expansion(D) on any rooted dag D.

Next we present our approximation for the Maximum Leaf Spanning
Arborescence on rooted dags, on Algorithm 2, named MaxLeaves. It uses
twice the GreedyExpand previously presented. Algorithm MaxLeaves also
uses an algorithm MaxExpand(D, F) that receives a rooted dag D and a
maximal spanning 3-branching F of D, and returns a maximum spanning
2-branching of D containing F . Algorithm MaxExpand(D, F) will be described
after MaxLeaves.

Algorithm 2. MaxLeaves(D)
Input: rooted acyclic directed graph D
Output: spanning arborescence with at least 3

2
opt(D) leaves

let F0 be the spanning branching with no arcs
F1 ← GreedyExpand(D, 3, F0)
F2 ← MaxExpand(D, F1)
T ← GreedyExpand(D, 1, F2)
return T

The call GreedyExpand(D, 1, F) returns a maximal 1-branching of the
rooted dag D containing F , that is, a spanning arborescence of D containing F .
So MaxLeaves(D) indeed produces a spanning arborescence of D. See Fig. 2. In
the next section, we will prove that algorithm MaxLeaves is a 3

2 -approximation
for the Maximum Leaf Spanning Arborescence on rooted dags.

(a) Branching F2. (b) Spanning arborescence T .

Fig. 2. In the left, the bold arcs represent a possible maximal 3-branching F1 and the
dashed arcs were added to obtain F2. In the right, the bold arcs represent F2 and the
dotted arcs were added to obtain T .

54 C. G. Fernandes and C. N. Lintzmayer

The MaxExpand(D, F) procedure, presented in Algorithm 3, is an opti-
mized version of GreedyExpand(D, 2, F). It uses an algorithm Maximum-
Matching that receives an undirected multigraph G and returns a maxi-
mum matching in G. Polynomial-time algorithms for this are known in the
literature [9].

Algorithm 3. MaxExpand(D, F)
Input: rooted dag D and a maximal spanning 3-branching F of D
Output: a maximum spanning 2-branching of D containing F

for each v ∈ V (D) such that d+F (v) = 0 do
Uv ← {vu ∈ A(D) : d−

F (u) = 0}
Candidates ← {v ∈ V (D) : d+F (v) = 0 and |Uv| = 2}
V ′ ← {u ∈ V (D) : d−

F (u) = 0}
E′ ← {ev = uw : v ∈ Candidates and Uv = {vu, vw}}
let G be the undirected multigraph (V ′, E′)
M ← MaximumMatching(G)
F ′ ← F
for each ev ∈ M do

F ′ ← F ′ + Uv

return F ′

The call MaxExpand(D, F) produces a maximum spanning 2-branching
of D containing F . It does this by constructing an undirected multigraph G
whose vertices are vertices of in-degree 0 in F and an edge uw exists in G if u
and w are the only out-neighbors of in-degree 0 in F of some vertex v of out-
degree 0 in F . Thus, edge uw of G represents an expansion that can be performed
on vertex v of D. The fact that more than one vertex of out-degree 0 in F may
have vertices u and w of in-degree 0 in F as their out-neighbors shows the need
for a multigraph. Independent edges in this undirected multigraph correspond
to compatible expansions, so a maximum matching gives the maximum number
of expansions that can be performed in D. See Fig. 3a.

Indeed, note that, for the returned F ′ to be a branching, the edges ev cor-
responding to expanded vertices v must form a matching in the multigraph G.
Otherwise, there would be vertices with in-degree greater than one. As F is a
maximal 3-branching and D is acyclic, the returned F ′ is also a branching, and
therefore a maximum 2-branching containing F . See Figure 3b.

We observe that, in the dag shown in Fig. 3, our algorithm produces the
best arborescence possible, with roughly half of the vertices of the dag as leaves.
Meanwhile, the algorithm due to Schwartges, Spoerhase, and Wolff [19] could
have produced an arborescence with only one forth of the vertices as leaves.

3 Approximation Ratio

Let F1, F2, and T be the branchings produced during the call MaxLeaves(D).
For i = 1, 2, let ki be the number of non-trivial components of Fi and Ni be the

Leafy Spanning Arborescences in DAGs 55

(a) The four bold arcs incident to the root of the dag are a maximal 3-branching. The
round vertices form the set V , and the corresponding multigraph G is in the right.

(b) On the left, a maximum matching in bold. On the right, the corresponding
expansions in bold.

Fig. 3. Example of an execution of MaxExpand.

number of vertices in such components. We denote by �(F) the number of leaves
in any branching F .

For example, if D is the dag depicted in Fig. 1, then F1 could be the spanning
3-branching depicted in Fig. 1b, F2 could be the spanning 2-branching depicted
in Fig. 2a, and T could be the arborescence in Fig. 2b. In this example, we
have k1 = 3, N1 = 25, k2 = 4, and N2 = 30.

Lemma 1. Let T be the arborescence produced by MaxLeaves(D). Then

�(T) ≥ N1 − k1
6

+
N2 − k2

2
+ 1 .

Proof. Let n be the number of vertices of D. Let T1, . . . , Tk1 be the non-trivial
arborescences in F1. Note that �(Tj) ≥ 1+2|V (Tj)|

3 because all internal vertices
of Tj have out-degree at least 3. Therefore,

�(F1) = n − N1 +
k1∑

j=1

�(Tj) ≥ n − N1 +
k1∑

j=1

1 + 2 |V (Tj)|
3

= n − N1 +
2N1

3
+

k1
3

= n − N1 − k1
3

.

The number of components in Fi is n−Ni+ki for i = 1, 2. Hence, the number
of leaves lost from F1 to F2 is exactly

(n − N1 + k1) − (n − N2 + k2)
2

=
N2 − k2

2
− N1 − k1

2
.

56 C. G. Fernandes and C. N. Lintzmayer

Also, the number of leaves lost from F2 to T is exactly n − N2 + k2 − 1 =
n − (N2 − k2) − 1. Thus

�(T) ≥ n − N1 − k1
3

−
(

N2 − k2
2

− N1 − k1
2

)
− (n − (N2 − k2) − 1)

=
N1 − k1

6
+

N2 − k2
2

+ 1 . �

For D, F1, F2, and T as in Figs. 1 and 2, we have that �(T) = 18 and
Lemma 1 gives as lower bound on �(T)

N1 − k1
6

+
N2 − k2

2
+ 1 =

25 − 3
6

+
30 − 4

2
+ 1 =

11
3

+ 14 = 17.666 . . .

Now we are going to present two upper bounds on opt(D). The following
upper bound holds because the branching F2 could be produced as output of
the Expansion algorithm from Schwartges, Spoerhase, and Wolff [19].

Lemma 2 (Lemma 5 [19]). It holds that opt(D) ≤ N2 − k2 + 1.

The next lemma is the key for the approximation ratio analysis.

Lemma 3. It holds that opt(D) ≤ N1 − k1
2

+
N2 − k2

2
+ 1.

Proof. We apply on F1 the same definition of witness that Schwartges, Spo-
erhase, and Wolff [19] used in their proof of Lemma 2. Let T ∗ be a spanning
arborescence of D with the maximum number of leaves. Call R the set of all
roots of non-trivial components of F1. Call L the set of leaves of T ∗ that are
isolated vertices of F1. Let Z := L∪R\{r}, where r is the root of D. See Fig. 4a.
The witness of a vertex z ∈ Z is the closest proper predecessor q(z) of z in T ∗

which is in a non-trivial component of F1. Note that each witness is an internal
vertex of T ∗. These witnesses will not necessarily be pairwise distinct, as in [19].
See Fig. 4b.

(a) The red and bold arcs show T ∗, and
blue and square vertices show the set Z.

(b) Path between each vertex in Z and
its witness in dashed arcs.

Fig. 4. The green triangular vertices are the witnesses for a vertex in Z and the green
big circles mark two vertices that are the witnesses for two vertices in Z. (Color figure
online)

Leafy Spanning Arborescences in DAGs 57

We will prove that the number w of distinct witnesses is

w ≥ |Z| − N2 − k2
2

+
N1 − k1

2
= k1 − 1 + |L| − N2 − k2

2
+

N1 − k1
2

. (1)

From this, because each witness lies in a non-trivial component of F1 and is
internal in T ∗, we deduce that

opt(D) ≤ N1 −
(

k1 − 1 + |L| − N2 − k2
2

+
N1 − k1

2

)
+ |L|

= N1 − k1 +
N2 − k2

2
− N1 − k1

2
+ 1 =

N1 − k1
2

+
N2 − k2

2
+ 1 .

It remains to prove (1).
For a witness s, let Zs := {z ∈ Z : q(z) = s}. Let T ∗

s be the subarborescence
of T ∗ induced by the union of all paths in T ∗ from s to each vertex in Zs. The
number of such arborescences T ∗

s is exactly w. Note that the only internal vertex
of T ∗

s that is in a non-trivial component of F1 is its root, which is necessarily
a leaf of F1 (because there is no arc from an internal vertex of F1 to vertices
in Z). Thus the maximum out-degree in T ∗

s is at most two.
First let us argue that no z in Zs is a predecessor in T ∗

s of another z′ in Zs.
Suppose by contradiction that z is in the path from s to z′. Then z is not a
leaf of T ∗ and therefore z is in R, and thus in a non-trivial component of F1.
This leads to a contradiction because z, and not s, would be the witness for z′.
Therefore T ∗

s has exactly |Zs| leaves.
Let B be the set of vertices v such that ev ∈ M , where M is the maxi-

mum matching in the multigraph G computed during the execution of Max-
Expand(D, F1). Observe that |M | is exactly the number of leaves lost from
branching F1 to F2, so

|M | = |B| =
N2 − k2

2
− N1 − k1

2
. (2)

Now let us argue that the vertices with out-degree two in T ∗
s are all in the

set Candidates. Let v be one such vertex. Either v is an isolated vertex or v
is a leaf of a non-trivial component of F1. Therefore d+F1

(v) = 0. As the two
children of v in T ∗

s have in-degree 0 in F1, the arcs from v to both are in Uv.
Hence v ∈ Candidates.

Let Cs be the set of vertices of Candidates with out-degree two in T ∗
s and

C = ∪sCs. Then the number of leaves in T ∗
s is |Zs| = |Cs|+1. The set of internal

vertices of T ∗
s and of T ∗

s′ are disjoint for distinct witnesses s and s′. Thus the
sets Cs and Cs′ are disjoint. Let MC be the set of edges of G corresponding to
the vertices in C. Note that MC is a matching, so |C| = |MC | ≤ |M | = |B|.
Hence

|Z| =
∑

s

|Zs| =
∑

s

(|Cs| + 1) = |C| + w ≤ |B| + w .

Therefore w ≥ |Z| − |B| = k1 − 1 + |L| − (N2−k2
2 − N1−k1

2), as in (1). ��
Continuing with our example, if D is the dag depicted in Fig. 1, then Lemma 2

implies that opt(D) ≤ 27, while Lemma 3 implies that opt(D) ≤ 25.

58 C. G. Fernandes and C. N. Lintzmayer

Theorem 1. Algorithm MaxLeaves is a 3
2 -approximation for the Maximum

Leaf Spanning Arborescence on rooted directed acyclic graphs.

Proof. For a rooted dag D, let T be the output of MaxLeaves(D). Then

�(T) ≥ N1−k1
6

+
N2−k2

2
+ 1 (3)

=
N1−k1

6
+

N2−k2
6

+
N2−k2

3
+ 1

≥ opt(D)−1
3

+
opt(D)−1

3
+ 1 (4)

> 2
opt(D)

3
,

where (3) holds by Lemma 1 and (4) holds by Lemmas 2 and 3. ��
The bound given in Theorem 1 is tight. Indeed, an example similar to the

one by Schwartges, Spoerhase, and Wolff [19] for their algorithm proves that
algorithm MaxLeaves can achieve ratios arbitrarily close to 3/2. See Fig. 5.

Fig. 5. A rooted dag with n = 3k + 2 vertices, for k = 4, where MaxLeaves can
produce an arborescence with 2k + 2 leaves and opt = 3k leaves.

4 Using Approximations for 3-Dimensional Matching

The problem known as 3D-Matching, from 3-dimensional matching, consists
in the following. Given a finite set U and a collection S of subsets of U with
three elements each, find a collection S ′ ⊆ S of pairwise disjoint sets with as
many sets as possible. The name of the problem comes from the fact that one
can define a 3-regular hypergraph on the vertex set U whose edges are the sets
in S, and the collection S ′ is a maximum matching in such hypergraph.

This problem is NP-hard [12], and there is a 4
3 -approximation for it [6,11] as

well as a (2 + ε)-approximation, for any ε > 0, for its weighted variant [2,3].
The strategy in MaxLeaves can be generalized by using an approxima-

tion algorithm for 3D-Matching. One possibility is, for a rooted dag D, to

Leafy Spanning Arborescences in DAGs 59

call GreedyExpand(D, 4, F0) with the empty spanning branching F0, obtain-
ing F1, then to use the 4

3 -approximation for 3D-Matching to expand F1 with a
good set of 3-expansions, resulting in a branching F2. Then we can proceed as in
MaxLeaves, that is, calling MaxExpand(D, F2) to obtain F3, and Greedy-
Expand(D, 1, F3) to obtain the final arborescence T . So far we have not been
able to analyze this algorithm. But, while trying to analyze it, we thought of
a weighted variant for it. This weighted variant does not give an improvement,
but it can have implications for Maximum Leaf Spanning Arborescence on
rooted dags if a better approximation for the weighted variant of 3D-Matching
is designed. So we briefly describe it ahead.

The second possibility we investigated makes use of weights. We start by call-
ing GreedyExpand(D, 4, F0) with the empty spanning branching F0, obtain-
ing F1. After that, we create an instance of the weighted 3D-Matching where
feasible 3-expansions turn into sets of weight two and feasible 2-expansions turn
into sets of weight one. We then use an approximation for the weighted 3D-
Matching to obtain a branching F2 from F1. We finish by calling Greedy-
Expand(D, 1, F2) to obtain an arborescence. Name the resulting algorithm
Maxleaves-W3DM. Due to the space restrictions, we omit the proof of the
next result.

Theorem 2. If the approximation used for the weighted 3D-Matching has
ratio α > 1, then MaxLeaves-W3DM is a max{ 4

3 , α}-approximation for the
Maximum Leaf Spanning Arborescence on rooted directed acyclic graphs.

At the moment, as the best approximation for the weighted 3D-Matching
has ratio greater than 2, this does not provide any improvement on the previ-
ously best known ratio for Maximum Leaf Spanning Arborescence. Now,
only a ratio better than 3/2 for the weighted 3D-Matching would provide an
improvement.

5 Inapproximability of the Vertex-Weighted Version

A vertex-weighted generalization of the maximum leaf spanning tree (the undi-
rected version of our problem) was considered in the literature. In such general-
ization, one is given a connected vertex-weighted graph and the goal is to find a
spanning tree whose sum of leaf weights is maximum.

Jansen [14] proved that, unless P = NP, this version of the problem does
not admit a polynomial-time factor O(n

1
2−ε) or a O(opt

1
3−ε)-approximation for

any ε > 0, where n is the number of vertices of the given graph. His reduction
is from the Independent Set problem. A straightforward modification of his
reduction shows the same inapproximability results for the vertex-weighted ver-
sion of Maximum Leaf Spanning Arborescence on rooted dags. Next we
describe his reduction adapted to produce rooted dags with binary weights.

The Independent Set problem consists of the following: given a graph G,
find an independent set in G with as many vertices as possible.

60 C. G. Fernandes and C. N. Lintzmayer

Let G be an instance of the Independent Set problem. Let D be the
rooted dag that has as vertices the vertices of G, a new vertex r as its root, and
a vertex e for each edge e of G. There is an arc from r to each vertex of G in D.
For each edge e = uv of G, there is an arc from u to e and an arc from v to e
in D. So, if G has n vertices and m edges, D has n + m + 1 vertices and n + 2m
arcs. See Fig. 6. Note that D is r-rooted and acyclic and that, in any spanning
arborescence in D, the vertices corresponding to edges of G are leaves, because
they have out-degree 0 in D. Because the complement of an independent set is
an edge cover, it is not hard to see that the following holds.

Fig. 6. An instance of the Independent Set problem and the corresponding rooted
dag. The white vertex is the root of the dag.

Lemma 4. Set S is an independent set in G if and only if there is a spanning
arborescence in D that has S ∪ E(G) as leaves.

So, we assign weights to the vertices of D as follows: vertices of G have
weight 1 while vertices corresponding to edges of G have weight 0. The root r may
have an arbitrary weight, because it will never be a leaf in a spanning arbores-
cence of D. For any ε > 0, there is no polinomial-time O(n1−ε)-approximation
for Independent Set unless P = NP [13], where n is the number of vertices of
the given graph G. Hence, using this and Lemma 4, we derive the following.

Theorem 3. The vertex-weighted Maximum Leaf Spanning Arborescence
on directed acyclic graphs with binary weights and maximum in-degree 2 does not
have a polinomial-time O(n1−ε)-approximation for any ε > 0, unless P = NP,
where n is the number of weight-one vertices of the given directed graph.

To avoid using weight zero, a similar result can be obtained by assigning
weights m and 1 instead of 1 and 0, respectively, where m is the number of
edges in G. For this case, Lemma 4 implies that an independent set of size t in
G corresponds to a spanning arborescence of leaf weight (t + 1)m, and a similar
inapproximability result holds, as Jansen [14] proved for the undirected version.

6 Future Directions

Improving on the 92-approximation for the general directed case would be very
interesting. A major difficulty is that greedy strategies do not apply so easily,

Leafy Spanning Arborescences in DAGs 61

because not every branching can be extended to a spanning branching in an arbi-
trary rooted digraph. The strategy used by Daligault and Thomassé [8] consists
of a series of reductions, and some of them end up with a dag. It is tempting
to try to use an approximation for dags within their algorithm to achieve an
improved ratio, however we did not succeed in doing that so far.

Directed acyclic graphs have directed tree width zero [15]. Is it possible to
extend our approximation or any greedy algorithm for Maximum Leaf Span-
ning Arborescence to address directed graphs with bounded directed tree
width?

It is natural to wonder if there is a way to optimize one of the expansions
used in Solis-Oba’s algorithm to achieve a better approximation ratio for the
undirected case. Also, for the undirected case, there are better approximations
for cubic graphs [4,5]. Maybe one can obtain better bounds on the approximation
ratio for dags with out-degree bounded by three or two.

References

1. Alon, N., Fomin, F., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed
trees with many leaves. SIAM J. Disc. Math. 23(1), 466–476 (2009)

2. Arkin, E.M., Hassin, R.: On local search for weighted k-set packing. Math. Oper.
Res. 23(3), 640–648 (1998)

3. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. Nord. J. Comput. 7(3), 178–184 (2000)

4. Bonsma, P., Zickfeld, F.: A 3/2-approximation algorithm for finding spanning trees
with many leaves in cubic graphs. SIAM J. Disc. Math. 25(4), 1652–1666 (2011)

5. Correa, J., Fernandes, C.G., Matamala, M., Wakabayashi, Y.: A 5/3-approximation
for finding spanning trees with many leaves in cubic graphs. In: Proceedings of the
5th International Workshop on Approximation and Online Algorithms, WAOA
2007. LNCS, vol. 4927, pp. 184–192 (2008)

6. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. In: Proceedings of the IEEE 54th Annual Symposium on Foun-
dations of Computer Science, FOCS 2013, pp. 509–518 (2013)

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Daligault, J., Thomassé, S.: On finding directed trees with many leaves. In: Chen,
J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 86–97. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-11269-0 7

9. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
10. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:

Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Proc. of
the 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009. LIPIcs, vol. 3, pp. 421–432 (2009)

11. Fürer, M., Yu, H.: Approximating the k-set packing problem by local improve-
ments. In: Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.)
ISCO 2014. LNCS, vol. 8596, pp. 408–420. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-09174-7 35

12. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co.,
New York (1979)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-11269-0_7
https://doi.org/10.1007/978-3-319-09174-7_35
https://doi.org/10.1007/978-3-319-09174-7_35

62 C. G. Fernandes and C. N. Lintzmayer

13. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999)

14. Jansen, B.M.P.: Kernelization for maximum leaf spanning tree with positive vertex
weights. J. Graph Algorithms Appl. 16(4), 811–846 (2012)

15. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J.
Combinat. Theory, Ser. B 82, 138–154 (2001)

16. Jüttner, A., Magi, A.: Tree based broadcast in ad hoc networks. Mobile Netw.
Appl. 10(5), 753–762 (2005)

17. Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear
time. J. Algorithms 29(1), 132–141 (1998)

18. Pope, J., Simon, R.: Efficient one-to-many broadcasting for resource-constrained
wireless networks. In: Proceedings of the 40th IEEE Conference on Local Computer
Networks, LCN 2015 (2015), 8 p.

19. Schwartges, N., Spoerhase, J., Wolff, A.: Approximation algorithms for the maxi-
mum leaf spanning tree problem on acyclic digraphs. In: Solis-Oba, R., Persiano,
G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 77–88. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29116-6 7

20. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with max-
imum number of leaves. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci,
G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-68530-8 37

21. Solis-Oba, R., Bonsma, P., Lowski, S.: A 2-approximation algorithm for finding a
spanning tree with maximum number of leaves. Algorithmica 77, 374–388 (2017)

https://doi.org/10.1007/978-3-642-29116-6_7
https://doi.org/10.1007/3-540-68530-8_37

Approximating Routing and Connectivity
Problems with Multiple Distances

Lehilton L. C. Pedrosa and Greis Y. O. Quesquén(B)

Institute of Computing, University of Campinas, Campinas, SP, Brazil
lehilton@ic.unicamp.br, greis.quesquen@students.ic.unicamp.br

Abstract. We consider routing and connectivity problems for which the
input includes a complete graph G and multiple edge-weight functions
d1, d2, . . . , dr. In each case, a solution is a minimum-cost subgraph H
satisfying the constraints of the particular problem. The cost of each
edge of H is determined by any chosen function di, but there is a ser-
vice fee g ≥ 0 for each maximal connected component formed by edges
associated with the same function. This is motivated by applications
for which a solution can be split between multiple providers, each cor-
responding to a distance di. One example is the Traveling Car Renter
Problem (CaRS), which is a generalization of the Traveling Salesman
Problem (TSP) whose goal is to visit a set of cities by renting cars from
multiple companies. In this paper, we give O(log n)-approximations for
the generalizations with multiple distances of several problems (Steiner
TSP, Profitable Tour Problem, and Constrained Forest Problem). This
factor is the best-possible unless P = NP.

Keywords: Approximation algorithm · Multiple distance functions

1 Introduction

Travel and tourism are two of the largest world economic sectors, as they com-
prise a large part the global economy, by generating jobs, driving imports and
exports, and stimulating the tourism growth [16]. Transportation is an important
and closely related sector, and, when considered from the perspectives of travel-
ing and tourism, it refers to carrying people from their place of living to points
of interest [15]. Among the most common means of transport, those based on car
rental play an important role. Indeed, the global car rental market is expected
to have annual growth rate of 13.55% over the next 5 years [14].

While the majority of the works in the literature focus on maximizing the
income of a rental company, car rental decisions also appear in the form of
challenging problems for the customers, be they tourists or tourism agencies.

Supported by grant #2015/11937-9, São Paulo Research Foundation (FAPESP), grants
#425340/2016-3, #313026/2017-3, #422829/2018-8, National Council for Scientific
and Technological Development (CNPq), and Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 63–75, 2020.
https://doi.org/10.1007/978-3-030-61792-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_6&domain=pdf
http://orcid.org/0000-0003-1001-082X
http://orcid.org/0000-0003-0112-8009
https://doi.org/10.1007/978-3-030-61792-9_6

64 L. L. C. Pedrosa and G. Y. O. Quesquén

One such a problem is the Traveling Car Renter Problem (CaRS) [7], which
can be illustrated as follows. A traveler wants to visit a set of cities by renting
one or more cars, and forming a closed route. The cost incurred by each rental
corresponds to the distance traveled by the car plus a return fee, both of which
depend on the selected car. The objective is to minimize the total cost.

Note that CaRS is a generalization of the Traveling Salesman Problem (TSP).
In fact, TSP is the case of CaRS in which there is only one car, and the return
fee is zero. The distinguishing feature of CaRS is that an instance is composed
of multiple distance functions, one for each car, thus the traveler not only has to
find a route, but has to decide which car to use in each part of the route. Pedrosa
et al. [12] observed that, if a solution is required to be a Hamiltonian cycle, or
if the distance functions are arbitrary, then CaRS cannot be approximated by
any computable function, unless P = NP. Then, they considered the Uniform
CaRS (UCaRS), that is the case in which the return fee is fixed and the distance
functions are metric, and presented an O(log n)-approximation algorithm. Even
for this version, no o(log n)-approximation exists, unless P = NP.

Unlike TSP, for which every city is visited by the same car, the main difficulty
of UCaRS appears to be selecting which car is used to visit each city. What
stops one from renting a distinct car in each city is that exchanging cars incurs
an additional cost corresponding to the return fee. Observe that, if a subset of
cities is visited sequentially in the route, then finding the best order to visit these
cities corresponds to the path version of TSP. This means that a solution of the
generalization of TSP with multiple distances corresponds to multiple solutions
of the classical path TSP. Many classical routing and connectivity problems fit
into this framework, such as Steiner TSP (STSP) [11], Profitable Tour Problem
(PTP) [2,5,6], Constrained Forest Problem (CFP) [4,6,8], and many others.

Contributions. In this paper, we discuss several generalizations of classical rout-
ing and connectivity problems whose instances are composed of multiple dis-
tance functions. More specifically, we consider three related problems: Steiner
UCaRS (SUCaRS), Profitable UCaRS (PUCaRS), and Multiple Constrained
Forest Problem (MCFP). The first two are routing problems and require a closed
walk as a solution; they generalize STSP and PTP, respectively. The last one is
a connectivity problem and asks for a spanning forest; it generalizes CFP.

The routing problems can be informally described as follows. In SUCaRS,
the goal is to visit only a given subset of cities of the graph, called terminals, by
renting one or more of the available cars. To this, the traveler can use interme-
diate connection cities, called Steiner cities, to minimize the route’s total cost.
The additional source of hardness in this problem is choosing one of the many
combinations of Steiner cities. In PUCaRS, any subset of cities may be visited,
but each city that is not visited incurs a penalty. The goal is to minimize the
route’s total cost plus the penalties associated with non-visited cities. Note that
SUCaRS is a special case of PUCaRS in which each terminal has infinite penalty
cost, and all other cities have zero penalty cost.

The describe the connectivity problem, we first need to define its classical
variant. In CFP, given a set of cities and an integer k, a solution is a minimum-

Approximating Routing and Connectivity Problems with Multiple Distances 65

weight spanning forest such that each tree of the forest contains at least k cities.
Each edge of the tree represents a cable connecting two cities, and the edge cost
is determined by a distance function given in the input. In MCFP, the cables
can have different types, each one corresponding to a distinct distance function,
but each vertex connecting cables of distinct types incurs additional switching
costs. The goal is to minimize the sum of cable and switching costs.

The ideas of the algorithms can be outlined as follows. For SUCaRS, we
consider a reduction to UCaRS which preserves the approximation factor,
and implies an O(log n)-approximation for SUCaRS. For PUCaRS, we cre-
ate instances of two distinct problems. The first is an instance of UCaRS
as before, but the second is an instance of PTP, which is the classical ver-
sion of the problem with a single distance function. Since UCaRS has an
O(log n)-approximation, and PTP has a constant-factor approximation, combin-
ing solutions of these instances leads to an O(log n)-approximation for PUCaRS.
Similarly, for MCFP, we create instances of UCaRS and CFP, which lead
to an O(log n)-approximation also for MCFP. We observe that a o(log n)-
approximation for any of the three problems implies an o(log n)-approximation
for UCaRS, thus our algorithms are asymptotically optimal unless P = NP.

These algorithms illustrate two main tools to solve problems with multi-
ple distance functions. The first is used for SUCaRS and consists of reducing
the problem to a particular case whose instance is still composed of multiple
distances. The second tool is used for PUCaRS and MCFP and consists of sep-
arating the problem of selecting which distance function is assigned to each city
from the problem of satisfying the connectivity constraints. The main assump-
tion of our techniques is having a constant-factor approximation to the classical
version of the problem, thus they can be used to design approximations for
generalizations of other similar routing and connectivity problems.

Related Works. TSP is among the most well-studied combinatorial optimization
problems. Karp showed that TSP is NP-hard [9]. For the case in which the
distance satisfies the triangle inequality, called Metric TSP, the so called Double-
MST algorithm is already a 2-approximation, and the best known factor is 3/2
due to Christofides [3].

In the Steiner TSP (STSP) [11], given a subset of cities, called terminals, the
goal is to find a minimum-cost route that visits each terminal at least once. Note
that STSP can be reduced to TSP, preserving the approximation factor [10].

A variant is the Profitable Tour Problem (PTP) [5], also known as the Prize-
Collecting TSP [2,6]. In this problem, each city is given a penalty, and a solution
is a route that visits any subset of cities. The goal is to minimize the route
cost plus the penalties of non-visited cities. Bienstock et al. [2] gave a 5/2-
approximation, and there is a

(
2 − 1

n−1

)
-approximation via primal-dual [6].

A related problem is the Prize-Collecting Steiner Tree Problem introduced
by Balas [1]. As in the case of PTP, each city has an associated penalty. The
goal is to find a tree which minimizes the cost of the edges plus the penalties
of non-visited cities. Bienstock et al. [2] gave an approximation with factor 3,
and Goemans and Williamson [6] obtained a

(
2− 1

n−1

)
-approximation. Another

66 L. L. C. Pedrosa and G. Y. O. Quesquén

connectivity problem is the Constrained Forest Problem (CFP) [8]. Given a
graph with positive edge weights and an integer k, the objective is to find a
minimum-weight spanning forest such that each of its trees contains at least k
vertices. This problem is NP-hard for k ≥ 4, and a greedy algorithm achieves
an approximation factor of 2 [8]. Couëtoux [4] improved this factor to 3/2 with
another greedy algorithm which run in O(nm).

Common Definitions. In each of the considered problems, we are given a set of
cities V = {1, 2, . . . , n}, a set of distance functions indexed by C = {1, 2, . . . , r},
and a service fee g ≥ 0. For each index i ∈ C, the distance between two cities u
and v according to i is denoted by di(u, v) ≥ 0. We assume that each distance
function is symmetric and satisfies the triangle inequality, i.e., di(u, v) = di(v, u)
and di(u, v) ≤ di(u,w)+ di(w, v) for every i ∈ C and u, v, w ∈ V . Also, given an
undirected graph G, we denote by E(G) the set of edges of G and by V (G) the
set of vertices of G.

2 Steiner UCaRS (SUCaRS)

An instance of SUCaRS consists of a set of cities V = {1, 2, . . . , n}; a subset of
cities T ⊆ V , called terminals; a set of cars C = {1, 2, . . . , r}; and a return fee
g ≥ 0. Each car i ∈ C is associated with a distance function di. A solution is a
closed walk P on V containing all cities in T and an assignment ϕ such that each
edge (u, v) of P is associated with car ϕ(u, v) ∈ C. Denote by M(P) the number
of vertices of P whose incident edges are associated with distinct cars. Note that
M(P) corresponds to the number of times which the used car is exchanged, and
that a city may be counted more than once. Also, denote by L(P) the length
of P , i.e., let L(P) =

∑
(u,v)∈E(P) dϕ(u,v)(u, v). The objective is to find a solution

which minimizes the value of P , which is defined as val(P) = M(P) · g + L(P).
UCaRS is the particular case in which T = V , and STSP is the particular case
in which |C| = 1 and g = 0.

As mentioned above, this problem asks for a closed walk over the terminals
as a solution. A natural question that arises is whether we may delete the non-
terminal cities and execute the UCaRS algorithm. This may lead to arbitrarily
bad solutions, because there are multiple distance functions. For example, given
two terminals u and v, it could be more costly going straight from u to v using
the same car than renting different cars at a non-terminal city on the way from
u to v. However, the cheapest way to go from a city u to a city v can be found
in polynomial time with the aid of an auxiliary graph, defined next.

Given a set of cities V and a set of cars C with corresponding distance
functions, the support graph of (V,C) is the graph H such that, for each v ∈ V
and i ∈ C, there is a vertex vi in V (H). The are two kinds of edges, horizontal
and vertical. For each pair u, v ∈ V and each i ∈ C, there is a horizontal edge
(ui, vi) with cost w(ui, vi) = di(u, v), and for each u ∈ V and each pair i, j ∈ C,
there is a vertical edge (ui, uj) with cost w(ui, uj) = g. In Fig. 1, we can see an
example of H for 3 vertices and 3 cars. For each pair u, v ∈ V and each pair

Approximating Routing and Connectivity Problems with Multiple Distances 67

i, j ∈ C, we denote by dist(ui, vj) the length of a shortest path from ui to vj .
Note that a walk in H induces a walk on V in which horizontal edges correspond
to moving between cities, and vertical edges corresponds to exchanging the car.

v1 w1 z1

v2 w2 z2

v3 w3 z3

d1(
v, z

)

d2(
v, z

)

d3(
v, z

)

d1(w, z)d1(v, w)

d2(v, w)

d3(v, w)

d2(w, z)

d3(w, z)

g g g

g g g

g gg

w

v z

Fig. 1. Support graph.

Using the support graph H, we can reduce an instance of SUCaRS to an
instance of UCaRS which contains only terminals and cars corresponds to pairs
(i, j) of C × C. A solution for the reduced instance corresponds to a walk on H,
which induces a solution for the instance of SUCaRS. This leads to the following.

Theorem 1. If there exists an α-approximation for UCaRS, then there exists
an α-approximation for SUCaRS.

3 Profitable UCaRS (PUCaRS)

An instance of PUCaRS consists of a set of cities V = {1, 2, . . . , n}; a set of
cars C = {1, 2, . . . , r}; a return fee g ≥ 0; and, for each city u ∈ V , a penalty
π(u) ≥ 0. Each car i ∈ C is associated with a distance function di. A solution is
a closed walk P on V containing any subset of cities and an assignment ϕ such
that each edge (u, v) of P is associated with car ϕ(u, v) ∈ C. Define M(P) and
L(P) as in the case of SUCaRS and, for some set U , let π(U) =

∑
u∈U π(u). The

objective is to find a solution which minimizes the value of P , which is defined
as val(P) = M(P) ·g+L(P)+π(V \V (P)). Note that PTP is the particular case
in which |C| = 1 and g = 0.

Given an instance I of PUCaRS, we create an instance I ′ of UCaRS as follows.
The instance I ′ is composed of cities V , return fee g, and cars C ′ = C ∪ {0},
where index 0 corresponds to a new car. For each car i ∈ C, we use the same
distance function as in the original instance, di. For the car 0, we let d0 be a
new distance function, which will account for penalties of non-visited cities. To
define d0, we create an auxiliary weighted graph Q on V . Assume, without loss
of generality, that there is an optimal solution of I for which a car exchange
occurs at a city s ∈ V . If a car exchange does not occur in s, then we could try
each city of V in polynomial time, and, if no car exchange occurs, then we can

68 L. L. C. Pedrosa and G. Y. O. Quesquén

simply use an approximation algorithm for PTP for each distance function. Let
Q be a star centered at s and connected to each city u ∈ V \{s} by an edge of
weight π(u)/2. Then, for each pair u, v ∈ V , d0(u, v) is the length of a shortest
path between u and v in Q. This completes the definition of I ′.

Denote by OPT(I) and OPT(I ′) the optimal values for instances I and I ′,
respectively. Next lemma shows that OPT(I ′) is bounded by a factor of OPT(I).

Lemma 1. OPT(I ′) ≤ 2OPT(I).

Proof. Let P be an optimal solution of I which spans city s. We create a solu-
tion P ′ of I ′ by concatenating

(a) the closed walk P starting and ending in s, whose cost is val(P);
(b) for each city v ∈ V \V (P), a closed walk Tv = (s, v, s) associated with car 0

whose length is L(Tv) = d0(s, v) + d0(v, s) = π(v).

Note that P ′ visits all the cities, then P ′ is a feasible solution for I ′. Since
each walk Tv uses the same car, after visiting all cities of P , only one car exchange
is necessary. Thus, the cost of P ′ can be bounded as

val(P ′) = M(P) · g + L(P) +
∑

v∈V \V (P) L(Tv) + g

= M(P) · g + L(P) +
∑

v∈V \V (P) π(v) + g

= val(P) + g ≤ OPT(I) + OPT(I),

where in the last inequality holds because val(P) = OPT(I) and g ≤ OPT(I), as
solution P exchanges car at s. Therefore, OPT(I ′) ≤ 2OPT(I). ��

Conversely, a solution of instance I ′ of UCaRS can contain many sub-walks
that are traveled using car 0. This entails paying return fees each time a car is
exchanged for car 0. So, we will construct a new solution for which we pay the
return fee for car 0 only once. To bound this new-solution cost, we will create
an instance of PTP, which is the corresponding problem with only one distance
function, and no exchange cost. We do this in the following lemma.

Lemma 2. Given a solution P ′ for I ′, one can construct, in polynomial time,
a solution P for I such that val(P) ≤ 2 val(P ′) + 4OPT(I).

Proof. Since the walk P ′ visits all cities, we have s ∈ V (P ′). Suppose that we are
given an edge (u, v) of E(P ′) such that ϕ(u, v) = 0. If such an edge is not incident
with s, then we can add (u, s) and (s, v) and remove (u, v) without changing the
solution cost, since d0(u, v) = d0(u, s) + d0(v, s). By doing this for every edge
associated with car 0, we can assume that each such an edge is incident with s.
Therefore, the edges associated with car 0 induce a connected component which
contains a star centered at s. By doubling the edges of this star, we build a
closed walk B whose edges are associated with car 0.

If we remove the vertices of B from P ′, then we obtain a set of walks,
W1,W2, . . . ,Wq. By doubling the edges of each such a walk W�, we construct a

Approximating Routing and Connectivity Problems with Multiple Distances 69

C2

C4

C3

s

BC1

C5
R

F

Fig. 2. Connecting components.

closed walk W ′
� . The union of all constructed closed walks induces a set of con-

nected components C1, C2, . . . , Ck, such that k ≤ q and each of which is a closed
walk itself. Note that the collection of components V (B), V (C1), . . . , V (Ck) par-
tition the set of cities. In Fig. 2, we can see an example of this partition.

We bound the overall cost of the closed walks. Each edge of P ′ appears at
most twice as an edge of a closed walk B or C�. Therefore,

∑k
�=1 L(C�)+L(B) ≤

2L(P ′). Note that the cities of distinct components C� and C�′ are connected
in P ′ only through edges associated with car 0, then P ′ has at least two car
exchanges for each of the k components, one for an edge entering the component,
and other for an edge leaving the component. Since no car exchange in some walk
W� involves an edge associated with car 0, we have 2k +

∑k
�=1 M(W�) ≤ M(P ′).

As we have doubled the number of car exchanges in each walk W�, it follows that
4k +

∑k
�=1 M(C�) ≤ 2M(P ′). Note that each city in V (B) is connected to s,

thus L(B) = 2
∑

u∈V (B) d0(s, u) = 2
∑

u∈V (B) π(u)/2 = π(V (B)). Combining
with the inequalities,

(4k +
∑k

�=1 M(C�)) · g +
∑k

�=1 L(C�) + π(V (B)) ≤ 2 val(P ′). (1)

Let H be the support graph of (V,C) as defined in Sect. 2, and let dist
be the distance function associated with graph H. We construct an instance J
of PTP. Start by creating a complete graph G on V \V (B), such that the weight
of each edge (u, v) ∈ E(G) is the cost of the shortest path to go from u to v, i.e.,
define dsp(u, v) = min{dist(ui, vj) : i, j ∈ C}. Then, for each 1 ≤ � ≤ k, contract
the vertices in V (C�), removing loops, but preserving parallel edges. The penal-
ties of each vertex w of G corresponding to a component C� for some 1 ≤ � ≤ k is
defined as π(w) =

∑
u∈C�

π(u). Next, we would like to bound the optimal value
of J , which is denoted by OPT(J).

Let P ∗ be an optimal solution of I, and note that it induces a closed walk
W on H with weight M(P ∗) · g + L(P ∗). This walk may contain vertices cor-
responding to B or to components C1, C2, . . . , Ck. Contract the vertices of each
component C� in W and remove loops. Now, each two vertices u and v of W cor-
responding to consecutive components are connected by a walk on H with weight
at least dsp(u, v). Therefore, W induces a closed walk F on a subset of V (G)
with length

∑
(u,v)∈E(F) dsp(u, v) ≤ M(P ∗) · g + L(P ∗). If a vertex u ∈ V (G)

corresponding to a component C� is not in V (F), then no vertex of C� is visited

70 L. L. C. Pedrosa and G. Y. O. Quesquén

by the optimal solution P ∗. It follows that
∑

u∈V (G)\V (F) π(u) ≤ π(V \V (P ∗)).
We conclude that F is a solution for instance J with value at most M(P ∗) · g +
L(P ∗) + π(V \V (P ∗)) = OPT(I), and thus OPT(J) ≤ OPT(I).

Now, find a solution R for J using a 2-approximation for PTP [6]. Assume,
without loss of generality, that R is a cycle on V (G), as otherwise one can modify
the solution by short-cutting repeated vertices without increasing the value. Let
(v, v′) be an edge of R, and suppose that v and v′ correspond to components C�

and C�′ . This edge induces a walk D′ on V starting at a vertex of C� and ending
at a vertex of C�′ with M(D′) · g + L(D′) ≤ dsp(v, v′). By doubling the edges
of D′, we construct a closed walk D such that M(D) · g + L(D) ≤ 2 dsp(v, v′).
Let D1,D2, . . . , Dm be the set of constructed closed walks for every edge of R,
and note that m ≤ k, since R is a cycle of G and V (G) = k. As the value of R
is at most 2OPT(J) ≤ 2OPT(I), and we have doubled the induced walks,

∑m
�=1 M(D�) · g +

∑m
�=1 L(D�) + π(V (G) \ V (R)) ≤ 4OPT(I). (2)

Finally, we create a solution P for I by joining the all connected compo-
nents C� which correspond to vertices of R, then inserting the closed walks
D1,D2, . . . , Dm which correspond to edges of R. Observe that P is a feasible
solution. Indeed, because R is cycle, P is connected, and because each con-
nected component C� is a closed walk, P is also a closed walk. Each closed walk
Dt connects a vertex v ∈ C� to some vertex v′ ∈ C�′ , with � 	= �′. Thus, intro-
ducing closed walk Dt adds four car exchanges, and therefore at most 4m ≤ 4k
exchanges are added in total. Besides theses, there are the car exchanges in inter-
nal vertices of each walk C� and D�. The length of P is simply the sum of the
lengths of walks C� and D�. Also, each vertex which is not visited by P is either
in B or is a component corresponding to a vertex not visited by R, thus the
incurred penalty of P corresponds to penalties of vertices in B and the penalty
for solution R. Adding up all costs and combining with inequalities (1) and (2),
we conclude that val(P) ≤ 2 val(P ′) + 4OPT(I).

Combining the previous lemma, we can derive an approximation for
PUCaRS.

Theorem 2. If there exists an α-approximation for UCaRS, then there exists
an O(α)-approximation for PUCaRS.

Proof. Recall that OPT(I ′) ≤ 2OPT(I) by Lemma 1. If P ′ is an α-approximation
for I ′, then, using Lemma 2, we compute a solution P whose value is

val(P) ≤ 2αOPT(I ′) + 4OPT(I) ≤ 4αOPT(I) + 4OPT(I). ��

4 Multiple Constrained Forest Problem (MCFP)

An instance of MCFP consists of a set of cities V = {1, 2, . . . , n}; a set of cable
types C = {1, 2, . . . , r}; a switch cost g ≥ 0; and an integer number k ≥ 1. Each
cable type i ∈ C is associated with a distance function di. A spanning forest is a

Approximating Routing and Connectivity Problems with Multiple Distances 71

collection of sub-trees T = {T1, T2, . . . , Ts} such that each city is in at least one
sub-tree. The join of these sub-trees can form disjoint-connected components.
We say that a spanning forest is constrained if each connected component has
at least k vertices. A solution of MCFP is a constrained spanning forest T
and an assignment ϕ such that each tree T in T is associated with cable type
ϕ(T) ∈ C. For each tree T ∈ T , denote by L(T) the length of T , i.e., let L(T) =∑

(u,v)∈E(T) dϕ(T)(u, v). The objective is to find a solution which minimizes the
cost of T defined as val(T) = |T |·g+

∑
T∈T L(T). Note that CFP is the particular

case in which |C| = 1 and g = 0.
Consider an instance I for MCFP, and let dmin(u, v) denote the cheapest

weight between two cities u and v among all cable types, i.e., for each u, v ∈ V ,
we define dmin(u, v) = min{di(u, v) : i ∈ C}. The bottleneck graph of I is the
graph on V , such that, for each pair u, v ∈ V , there is an edge between them if
dmin(u, v) ≤ g. Denote by OPT(I) the value of an optimal solution for I.

Lemma 3. Let G be the bottleneck graph of I, and S1, S2, . . . , Sh be the sets of
vertices corresponding to connected components of G. There exists a solution T
for I with val(T) ≤ 7OPT(I) and such that,

(i) vertices in S� are contained in a connected component which is induced by
joining trees in T , for each 1 ≤ � ≤ h; and

(ii) each tree in T is contained in a set S� for some � or has exactly one edge.

Proof. Consider an optimal solution T ∗ and denote by R the set of all edges
of trees in T ∗ which have extremes in two distinct sets S� and S′

�. Also, let C∗

be the collection of sets corresponding to the connected components which are
induced by joining the trees of T ∗. We say that a sub-component of a component
C in C∗ is a set of vertices which corresponds to a connected component of the
graph obtained from G[C] by removing edges R. Notice that a sub-component
is contained in some set S�.

In Fig. 3, we illustrate the sub-components corresponding to a bottleneck
graph G. A set S� is represented by a dashed circle and a sub-component is
represented by a solid circle. The circles corresponding to sub-components of
a component in C∗ are filled using a common pattern. Observe that the sub-
components of a single component are connected by edges of R. Also, each
edge (u, v) ∈ R is such that dmin(u, v) > g.

We will modify the solution T ∗ and construct the required solution T . To
satisfy property (i), we connect sub-components of the set S� for each 1 ≤ � ≤ h.
Let D1,D2, . . . , Dk be the sub-components contained in S�, and create a graph
H� as follows: start with the induced graph G[S�], then contract each set of
vertices Dt, for 1 ≤ t ≤ k. Since G[S�] is connected, so is H�, and we can find an
arbitrary spanning tree H ′

� whose edges connect all the sub-components in S�.
For each 1 ≤ � ≤ h, an edge (u, v) ∈ E(H ′

�) corresponds to an edge of G,
thus dmin(u, v) ≤ g. For each such an edge, let i ∈ C be a cable type with
di(u, v) = dmin(u, v), and create a new tree T consisting only of (u, v) and asso-
ciated with cable type i. Note that the cost of each created tree T is at most

72 L. L. C. Pedrosa and G. Y. O. Quesquén

e9

e8

e7e6
e5

e4

e3

e2

e1 S8

S7

S6S5

S4

S3S2S1

Fig. 3. Sub-components.

g + L(T) ≤ 2g. The total number of trees added is at most the number of sub-
components, and thus is bounded by the number of edges in R plus the number
of components of C∗. Then, the solution cost increases by at most (|R|+|C∗|)·2 g.

Now, to satisfy property (ii), we break trees containing edges in R. For each
edge (u, v) in R, find the tree T in T which contains this edge, and let i ∈ C be the
cable type associated with T . Note that the graph T −(u, v) is a forest composed
of two trees, T1 and T2. We remove T from T and replace it by other trees, all
associated with the same cable type i: T1, T2 and a new tree composed only of
(u, v). Note that the value of the solution increases by 2g, since the number of
trees increase by 2, but the total length of the solution has not changed. Then,
the solution cost increases by |R| · 2 g.

Finally, the solution T satisfy (i) and (ii). Since for each edge (u, v) ∈ R, we
have dmin(u, v) > g, the total increase is bounded by

(|R| + |C∗|) · 2 g + |R| · 2 g = 4|R| · g + 2|C∗| · g

≤ 4
∑

(u,v)∈R dmin(u, v) + 2|C∗| · g

≤ 4OPT(I) + 2OPT(I). ��

The solution given in Lemma 3 induces a solution of UCaRS for an instance
whose set of cities corresponds to S�. Thus, by solving UCaRS for each S�, we
are left with a spanning forest whose components may have less than k vertices.
To fix this, we create an instance of the Constrained Forest Problem (CFP).

Theorem 3. If there exists an α-approximation for UCaRS, then there exists
an O(α)-approximation for MCFP.

Proof. Consider an instance I of MCFP and let S1, S2, . . . , Sh and T be as
defined by Lemma 3. For each 1 ≤ � ≤ h, let T� be the set of trees in T whose
vertices are contained in S�. For each �, construct an instance I� of UCaRS whose
set of cities is S�, the set of cars is C, and the return fee is g.

We claim that OPT(I�) ≤ 2 val(T�). To show this, we note that trees in T�

induce a solution P for I�. For each T ∈ T�, construct a closed walk D on
the vertices of T by doubling the edges of T and finding an Eulerian tour.

Approximating Routing and Connectivity Problems with Multiple Distances 73

Each edge of D is associated with car ϕ(T). By joining all the closed walks,
we obtain a closed walk P which visits all cities in S� and whose length is
L(P) ≤ 2

∑
T∈T�

L(T). Note that, for each joined closed walk, we add at most
two car exchanges in P , and thus M(P) ≤ 2|T�|. Therefore, OPT(I�) ≤ val(P) =
M(P) · g + L(P) ≤ 2|T�| · g + 2

∑
T∈T�

L(T) = 2 val(T�).
Now, create an instance J of CFP with the same parameters V and k as the

instance I, i.e., the objective is to find a spanning forest on V such that each
connected component has at least k vertices. Instance J has switch cost zero and
only one cable type, whose corresponding distance function is d′, defined next.
For each pair u, v ∈ V , d′(u, v) = 0 if u, v ∈ S� for some 1 ≤ � ≤ h; otherwise,
d′(u, v) = dmin(u, v). This completes the description of J .

We claim that OPT(J) ≤ val(T). Let R be the set of trees T in T whose ver-
tices are not contained in S� for any �. Property (ii) of Lemma 3 implies that each
tree of R is an edge between two sets S� and S�′ . Let R be the set of all such edges.
Observe that, for each (u, v) ∈ R, we have dmin(u, v) > g, as (u, v) connects two
connected components of G. Thus, |R| ·g <

∑
(u,v)∈R dmin(u, v) ≤ val(T). More-

over, a feasible solution for J can be built joining R and edges with weight zero,
thus OPT(J) ≤

∑
(u,v)∈R dmin(u, v) ≤ val(T).

We execute the following algorithm to find a solution for I. First, build a set
of trees P which connect each set S�. To this, find a closed walk P� which is an
α-approximation for each instance I� of UCaRS. Recall that P� is a sequence of
M(P�) paths. Each such a path D is also a tree and is associated with a given
car i, thus define ϕ(D) = i and add D to P. Note that val(P) is bounded by

∑h
�=1(M(P�) · g + L(P�)) ≤

∑h
�=1 αOPT(I�) ≤ 2α

∑h
�=1 val(T�) ≤ 2α val(T).

The trees in P induce a spanning forest, but there may be components with
less than k vertices. Then, we find a complementary set of trees F to connect
small components. To this, obtain a solution F which is a 3/2-approximation
algorithm for the instance J of CFP [4]. Now, consider an each edge (u, v) of F .
If u, v ∈ S� for some �, then vertices u and v are already connected by the trees
in P, thus the edge is not necessary. Otherwise, d′(u, v) = dmin(u, v), thus there
is a cable type i such that dmin(u, v) = di(u, v). We create a tree D consisting of
edge (u, v), define ϕ(D) = i and add D to F . Let E′ be the set edges of F which
were not discarded. Note that for each (u, v) ∈ E′, d′(u, v) = dmin(u, v) > g.
Thus, val(F) is bounded by

∑
(u,v)∈E′(g + d′(u, v)) ≤ 2(

∑
(u,v)∈E′ d′(u, v)) ≤ 2(3/2OPT(J)) ≤ 3 val(T).

Since F is a feasible solution for J , we conclude that P∪F is a feasible solution
for I with value val(P) + val(F) ≤ 2α val(T) + 3 val(T) ≤ (2α + 3)7OPT(I). ��

5 Final Remarks

Since there is an O(log n)-approximation for UCaRS [12], the results above imply
that there is an O(log n)-approximation for SUCaRS, PUCaRS and MCFP.

74 L. L. C. Pedrosa and G. Y. O. Quesquén

These factors are asymptotically tight unless P = NP, because a o(log n)-
approximation for any of them would imply a o(log n)-approximation for UCaRS.
This is clear for SUCaRS and PUCaRS, as they generalize UCaRS. For MCFP,
note that a solution T for MCFP with k = |V | can be converted into a solution
for UCaRS whose value is within a constant factor of val(T).

The developed techniques can be extended to other routing and connectiv-
ity problems. As an example, an O(log n)-approximation can be obtained for
generalized versions of the Steiner Tree Problem or the Prize-Collecting Steiner
Tree Problem. However, the techniques seem insufficient to tackle the general-
ization of certain cardinality problems, such as k-MST [13], which asks for one
minimum-cost tree spanning k vertices. We left open whether the generalization
of k-MST with multiple distances admits an O(log n)-approximation.

References

1. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–
636 (1989)

2. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the
prize collecting traveling salesman problem. Math. Progr. 59(1–3), 413–420 (1993)

3. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon Univ Pittsburgh (1976)

4. Couëtoux, B.: A 3/2-approximation for a constrained forest problem. In: Proceed-
ings of 19th Annual European Symposium on Algorithms, vol. 6942, pp. 652–663
(2011)

5. Dell’Amico, M., Maffioli, F., Värbrand, P.: On prize-collecting tours and the asym-
metric travelling salesman problem. Int. Trans. Oper. Res. 2(3), 297–308 (1995)

6. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

7. Goldbarg, M.C., Asconavieta, P.H., Goldbarg, E.F.G.: Memetic algorithm for the
traveling car renter problem: an experimental investigation. Memetic Comput.
4(2), 89–108 (2011)

8. Imielińska, C., Kalantari, B., Khachiyan, L.: A greedy heuristic for a minimum-
weight forest problem. Oper. Res. Lett. 14(2), 65–71 (1993)

9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

10. Letchford, A.N., Nasiri, S.D., Theis, D.O.: Compact formulations of the Steiner
traveling salesman problem and related problems. Eur. J. Oper. Res. 228(1), 83–
92 (2013)

11. Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64
(1974)

12. Pedrosa, L.L.C., Quesquén, G.Y.O., Schouery, R.C.S.: An asymptotically optimal
approximation algorithm for the travelling car renter problem. In: Proceedings of
the 19th Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems, vol. 75, pp. 14:1–14:15. Schloss Dagstuhl (2019)

13. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning
trees—short or small. SIAM J. Discrete Math. 9(2), 178–200 (1996)

https://doi.org/10.1007/978-1-4684-2001-2_9

Approximating Routing and Connectivity Problems with Multiple Distances 75

14. Research, Markets: Car rental market – growth, trends, and forecast (2019–2024)
(2019). https://www.researchandmarkets.com/

15. Sorupia, E.: Rethinking the role of transportation in tourism. In: Proceedings of
the Eastern Asia Society for Transportation Studies, vol. 5, pp. 1767–1777 (2005)

16. Travel, W., (WTTC), T.C.: Travel & tourism economic impact 2019 world (2018).
https://www.wttc.org/

https://www.researchandmarkets.com/
https://www.wttc.org/

A 2-Approximation for the
k-Prize-Collecting Steiner Tree Problem

Lehilton L. C. Pedrosa and Hugo K. K. Rosado(B)

Institute of Computing, University of Campinas, Campinas, Brazil
{lehilton,hugo.rosado}@ic.unicamp.br

Abstract. We consider the k-prize-collecting Steiner tree problem. An
instance is composed of an integer k and a graph G with costs on edges
and penalties on vertices. The objective is to find a tree spanning at
least k vertices which minimizes the cost of the edges in the tree plus the
penalties of vertices not in the tree. This is one of the most fundamental
network design problems and is a common generalization of the prize-
collecting Steiner tree and the k-minimum spanning tree problems. Our
main result is a 2-approximation algorithm, which improves on the cur-
rently best known approximation factor of 3.96 and has a faster running
time. The algorithm builds on a modification of the primal-dual frame-
work of Goemans and Williamson, and reveals interesting properties that
can be applied to other similar problems.

Keywords: Approximation algorithm · Primal-dual ·
k-prize-collecting Steiner tree · k-MST · Prize-collecting steiner tree

1 Introduction

In many network design problems, the input consists of an edge-weighted graph,
and the output is a minimum-cost tree connecting a certain subset of vertices.
Two of the most fundamental NP-hard variants are the prize-collecting Steiner
tree (PCST) and the k-minimum spanning tree (k-MST). For PCST, a solution
may contain any subset of vertices, but any not spanned vertex incurs a penalty
which is added to the objective function. For k-MST, the output tree is required
to contain at least k vertices.

We consider the k-prize-collecting Steiner tree problem (k-PCST), which is a
common generalization of PCST and k-MST. An instance consists of a connected
undirected graph G = (V,E), a root vertex r, and a non-negative integer k ≤ |V |.
Each edge e ∈ E has a non-negative cost ce, and each vertex v ∈ V has a non-
negative penalty πv. A solution is a tree spanning at least k vertices, including r,
and minimizing the cost of edges of the tree plus the penalties of vertices not
spanned by the tree. Without loss of generality, we assume that πr = ∞.

Supported by São Paulo Research Foundation (FAPESP) grant #2015/11937-9
and National Council for Scientific and Technological Development (CNPq) grants
#425340/2016-3, #313026/2017-3, #422829/2018-8, and #140552/2019-7.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 76–88, 2020.
https://doi.org/10.1007/978-3-030-61792-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_7&domain=pdf
http://orcid.org/0000-0003-1001-082X
http://orcid.org/0000-0002-8881-9699
https://doi.org/10.1007/978-3-030-61792-9_7

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 77

The particular case in which k = 0 is PCST. This is the prize-collecting prob-
lem considered by Goemans and Williamson, who presented a 2-approximation
based on a seminal primal-dual scheme for constrained forest problems [6]. The
currently best-known factor is 1.96 + ε by Archer et al. [1]. The particular case
in which πv = 0 for every vertex v is k-MST, and the first constant-factor
approximation is a primal-dual algorithm by Blum et al. [2]. This algorithm has
been improved by a series of works, leading to a 2-approximation by Garg [5],
which is based on a sophisticated use of the primal-dual scheme.

To our knowledge, the first constant-factor approximation for k-PCST is due
to Han et al. [7] and has factor 5. They gave a primal-dual algorithm based on
the Lagrangean relaxation of a linear program. Later, Matsuda and Takahashi [9]
derived a 4-approximation by combining solutions for the underlying instances
of PCST and k-MST. The algorithm’s running time is O(|V |4|E| log |V |) and is
bottlenecked by Garg’s 2-approximation, which is used to solve k-MST. By using
the 1.96 + ε-approximation for PCST, the approximation factor for k-PCST can
be improved to 3.96 + ε, with a significant increase in the running time.

Our main contribution is a 2-approximation for k-PCST. More precisely, we
present an algorithm with running time O(|V |2|E|2 + |V |4 log2 |V |) that finds
a tree T such that

∑
e∈E(T) ce + 2 · ∑v∈V \V (T) πv ≤ 2 · opt, where opt is the

optimal value. This improves on both the approximation factor and the time
complexity of the previously best-known algorithms. Our 2-approximation is
based on a modified version of the Goemans and Williamson’s algorithm, and
our analysis reveals many interesting properties of the primal-dual scheme, which
might give insights to other problems with similar constraints.

Johnson et al. [8] also considered the quota version of k-MST, which asks for
a minimum-cost tree with any number of vertices, but whose vertex weight is
at least some given quota. A small modification of our algorithm also leads to a
2-approximation for the quota variant of k-PCST.

Algorithm’s Overview. Our algorithm successively executes a modified version
of the primal-dual scheme for PCST due to Goemans and Williamson [6]. Their
algorithm is divided into a growth-phase and a pruning-phase. In the growth-
phase, it computes a feasible dual solution y such that, for each subset of ver-
tices S, yS is a non-negative value. It also outputs a tree T and a collection B
of subsets of V , whose edges and subsets correspond to tight dual inequalities
of an LP formulation. In the pruning-phase, the algorithm deletes from T the
subsets of vertices in B which do not disconnect the graph, resulting in a pruned
tree T̂ . To derive a 2-approximation, they bound the value of T̂ by a factor of
the dual objective function; in our algorithm, we compare it with an optimal
solution directly.

In our modification, the growth-phase receives two new arguments, a poten-
tial λ and a tie-breaking list τ . The potential is a uniform increase on the penal-
ties of each vertex. For larger values of λ, the output tree T̂ spans more ver-
tices. During the growth-phase, there might be concurrent events, thus there are
multiple choices for the execution path. Usually, these choices are determined
by some fixed lexicographic order. Our algorithm, on the contrary, relies on a

78 L. L. C. Pedrosa and H. K. K. Rosado

tie-breaking list τ to control the priority among concurrent events. The i-th ele-
ment in this list dictates which event gets the highest priority in the i-th iteration
of the algorithm. This allows us to control the execution path of the algorithm.

The use of potential λ is built on Garg’s arguments for the 2-approximation
for k-MST [5], which can be described as follows. If, for some λ, the pruned
tree T̂ spans exactly k vertices, this leads to a 2-approximation by using the
Lagrangean relaxation strategy (see, e.g., [3]). However, it might be the case
that no such λ exists; thus, the idea is to find a particular value of λ such
that, for sufficiently small ε, using potential λ − ε leads to a pruned tree T̂−

spanning less than k vertices, and using potential λ+ ε leads to a pruned tree T̂+

spanning at least than k vertices. The tree T̂− is constructed by pruning a tree T−

using a collection B−. Similarly, T̂+ is constructed by pruning a tree T+ using
a collection B+. On the one hand, T̂+ is a feasible solution, but its cost cannot
be bounded in terms of vector y. On the other hand, the value of T̂− can be
bounded, but it is not a feasible solution.

In Garg’s algorithm, the trees T− and T+ and the collections B− and B+ might
be very different. Thus, to obtain a tree with k vertices and whose cost can be
bounded, his algorithm iteratively transforms T− into T+ and B− into B+ by replac-
ing one edge of T− or one subset in B− at a time. At some iteration, pruning the
current tree using the current collection must result in a tree spanning at least k
vertices. Before this step, instead of performing the operation, one augments the
current pruned tree by adding a sequence of edges whose corresponding dual
restrictions are tight, picking up to k vertices.

Our algorithm also considers similar trees T− and T+ and corresponding col-
lections B− and B+. However, both trees are constructed by executing the growth-
phase using a single potential λ. To differentiate between the cases, we take into
account a tie-braking list τ and its maximal proper prefix τ̃ . We show how to
compute a special tuple (λ, τ), called the threshold-tuple, such that executing the
growth-phase using τ results in a pruned tree with less than k vertices, while
using τ̃ results in a pruned tree with at least k vertices (or vice-versa).

We show that the trees and collections output by the two executions of the
growth-phase are only slightly different. Indeed, a key ingredient of our analysis
(given in Lemma 9) shows that one of the two following scenarios hold:

(i) B− and B+ are equal, and trees T− and T+ differ in exactly one edge; or
(ii) T− and T+ are equal, and collections B− and B+ differ in exactly one subset.

Moreover, we show that the vector y output in both executions of the growth-
phase are the same. This leads to a straightforward way of augmenting the
pruned tree T̂−, by picking a sequence of edges of T− or T+ whose corresponding
inequalities are tight, without the need for a step-by-step transformation.

Although the computed y satisfy a set of inequalities, these inequalities do
not correspond to an LP dual formulation for k-PCST, hence we cannot use
weak duality to bound the value of an optimal solution. Instead, we show (in
Lemma 15) that either our algorithm returns a 2-approximate solution, or it
identifies a non-empty subset of the vertices which are not spanned by any

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 79

optimal solution. Thus, we either find the desired solution, or can safely reduce
the size of the instance. Therefore, by running the algorithm at most |V | − k
times, we find a 2-approximation.

Text Organization. In Sect. 2, we introduce the terminology used in the text.
In Sect. 3, we detail the modified primal-dual scheme. In Sect. 4, we formally
define a threshold-tuple, and show how it can be computed. In Sect. 5, we show
that, given a threshold-tuple, one can build a tree spanning exactly k vertices. In
Sect. 6, we bound the cost of the computed tree and give our 2-approximation.

2 Definitions and Preliminaries

We say that a nonempty collection L ⊆ 2V is laminar if, for any L1, L2 ∈ L,
either L1 ∩ L2 = ∅, or L1 ⊆ L2, or L2 ⊆ L1. A laminar collection L is binary
if for every L ∈ L with |L| ≥ 2, there are non-empty disjoint L1, L2 ∈ L such
that L = L1 ∪ L2. We denote the collection of inclusion-wise maximal subsets of
a collection L by L∗. Observe that subsets in L∗ are disjoint if L is laminar.

Let P be a partition of V , and consider an edge e with extremes on V . If a
set of P contains an extreme of e, then we call this set an endpoint of e. We say
that an edge e is internal in P if e has only one endpoint, and we say that e is
external in P if e has two distinct endpoints. Also, two external edges are said
to be parallel in P if they have the same pair of endpoints.

Given a graph H and a subset L ⊆ V , we say that H is L-connected if
V (H) ∩ L = ∅ or if the induced subgraph H[V (H) ∩ L] is connected. For some
collection L of subsets of the vertices, we say that H is L-connected if H is
L-connected for every L ∈ L. Moreover, we denote by δH(L) the set of edges of
H with exactly one extreme in L, and say that L has degree |δH(L)| on H. For
the case in which H = G, we drop the subscript and write just δ(L).

For a subset L ⊆ V , its new penalty is defined as πλ
L =

∑
v∈L πv + λ|L|, where

λ is a non-negative value which we call potential. Note that, for any subset L
containing r, we have πλ

L = ∞. Let y be a vector such that, for each L ⊆ 2V ,
the entry yL is a non-negative variable. We say that y respects c and πλ if

∑
L:e∈δ(L) yL ≤ ce for every edge e ∈ E, and (1)

∑
S:S⊆L yS ≤ πλ

L for every subset L ⊆ V. (2)

We say that an edge e is tight for (y, λ) if the inequality corresponding to e
in (1) holds with equality. Analogously, a subset L ⊆ V is tight for (y, λ) if the
inequality corresponding to L in (2) is satisfied with equality. If the pair (y, λ)
is clear from context, we simply say that e and L are tight. The inequalities are
similar to the ones in the dual formulation for PCST [6], with the difference that
these include terms for subsets containing r. However, these inequalities do not
correspond to the dual of an LP formulation for k-PCST.

Denote by L(S) the collection of subsets in L which contain some, but not
all vertices of S. Moreover, let cE′ =

∑
e∈E′ ce for E′ ⊆ E, and πL =

∑
v∈L πe

for L ⊆ V . To bound the value of an optimal solution T ∗, we use next lemma.

80 L. L. C. Pedrosa and H. K. K. Rosado

Lemma 1. Let L∗ be the minimal subset containing V (T ∗) in a laminar collec-
tion L. If y respects c and πλ, then

∑
L∈L(L∗) yL − λ|L∗ \ V (T ∗)| ≤ cE(T ∗) + πL∗\V (T ∗).

3 Modified Growth and Pruning Phases

In the following we detail our modification of the primal-dual scheme due to
Goemans and Williamson for the prize-collecting Steiner tree problem [6]. The
algorithm is composed of two main routines: a clustering algorithm, also known
as the growth-phase, and a cleanup algorithm, known as the pruning-phase.

3.1 Modified Clustering Algorithm

The modified growth-phase is denoted by GP(λ, τ). The algorithm maintains a
binary laminar collection L ⊆ 2V , such that L∗ partitions V , and a vector y which
respects c and πλ. It iteratively constructs a forest F ⊆ G and a subcollection of
processed subsets B ⊆ L, such that edges of F and subsets in B are tight for (y, λ).
In each iteration, either an edge is added to F , or a subset is included in B.

The algorithm begins by defining L = {{v} : v ∈ V } and yS = 0, for each
S ⊆ V (implicitly), and by letting F = (V, ∅), and B = ∅. Once initialized, it
starts the iteration process. At a given moment, a maximal subset L ∈ L∗ is said
to be active if it has not been processed yet, i.e., if L ∈ L∗ \ B. In each iteration,
we increase the variable yL of every active subset L uniformly until one of the
following events occur:

� an external edge e with endpoints L1, L2 ∈ L∗ becomes tight, in which case
e is added to F , and the union L1 ∪ L2 is included in L; or

� an active subset L becomes tight, in which case L is included in B.

We note that multiple edges and subsets might become tight simultaneously.
In our modified algorithm, we use the tie-breaking list τ to decide the order in
which the events are processed. A tie-breaking list τ with size |τ | is a (possibly
empty) sequence of edges and subsets. For each i = 1, 2, . . . , |τ |, the i-th element
of the list is denoted by τi. In iteration i, the event to be processed is determined
according to the following order:

(i) if i ≤ |τ |, then the event corresponding to τi has the highest priority;
(ii) followed by events corresponding to edges;
(iii) and finally by events corresponding to subsets.

Priority between events of the same type is determined by a lexicographic order.
The algorithm stops when V is the only active subset in L∗, at which point

F is a tree. Then, it defines T = F and outputs the pair (T,B). Next lemma
collects basic invariants of the growth-phase.

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 81

Lemma 2. At the beginning of any iteration of GP(λ, τ), the following holds:

(gp1) L is a binary laminar collection,
⋃

L∈L∗ L = V , and ∅ /∈ L;
(gp2) y respects c and πλ;
(gp3) F is an L-connected forest and every edge e ∈ E(F) is tight for (y, λ);
(gp4) B ⊆ L, and every B ∈ B is tight for (y, λ), and no B ∈ B contains r.

3.2 Modified Pruning Algorithm

The modified pruning-phase is denoted by PP(H,B). The algorithm receives a
graph H and exhaustively deletes from it processed subsets B ∈ B with degree
one on H. We say that we prune H using B to mean that we execute algorithm
PP(H,B), and say that a graph H is pruned with B if |δH(B)|
= 1 for every
B ∈ B. We assume that H is connected and contains r, and that B is a laminar
collection of subsets of V \{r}. Thus, it outputs a connected graph containing r.

Lemma 3. At the beginning of any iteration of PP(H,B), the following holds:

(pp1) H is connected and r ∈ V (H); (pp2) H[V (H) ∩ B] is connected.

Next lemma implies that the algorithm behaves as a monotonic operation
over the input. As a consequence, pruning using a fixed collection B is mono-
tonic with respect to the subgraph relation, and pruning a fixed graph H is
monotonically reversing with respect to the subcolletion relation.

Lemma 4. Consider connected graphs D and H. Assume that D is pruned
with B and let H ′ be the graph output by PP(H,B). If D ⊆ H, then D ⊆ H ′.

Corollary 5. Let D′ and H ′ be the graphs output by PP(D,B) and PP(H,B),
respectively. If D ⊆ H, then D′ ⊆ H ′; and if H ′ ⊆ D ⊆ H, then H ′ = D′.

Corollary 6. Let H1 and H2 be the graphs output by PP(H,B1) and PP(H,B2),
respectively. If B1 ⊆ B2, then H2 ⊆ H1.

3.3 Modified Goemans-Williamson Algorithm

The modified Goemans-Williamson algorithm wraps up the growth and the
pruning-phases, and it is denoted by GW(λ, τ). First, the algorithm executes
GP(λ, τ) to obtain a pair (T,B). Then, it executes PP(T,B) and returns the
pruned tree T̂ . One important property of GW(λ, τ) is that, if λ > cE , then no
subset is ever processed, and the output tree T̂ spans the whole set of vertices V .

4 The Threshold-Tuple

We run the modified algorithm using potential zero and passing an empty
tie-breaking list, i.e., we run GW(0, ∅). Observe that the returned tree T̂ , is a
2-approximation for the corresponding PCST instance [4,8]. Thus, if T̂ spans at
least k vertices, it is also a 2-approximation for k-PCST.

82 L. L. C. Pedrosa and H. K. K. Rosado

Lemma 7. If executing GW(0, ∅) outputs a tree T̂ such that V (T̂) ≥ k, then
cE(̂T) + 2πV \V (̂T) ≤ 2

(
cE(T ∗) + πV \V (T ∗)

)
.

In the remaining of this section, we assume that executing GW(0, ∅) returns
a tree spanning less than k vertices. We would like to find λ and associated τ
such that the returned tree spans exactly k vertices, but it might be the case
that no such pair exists. Instead, our goal will be finding a special tuple (λ, τ),
called the threshold-tuple, which will be defined below.

First, we need to introduce some notation. Note that, in the i-th iteration of
GP(λ, τ), the edge or subset corresponding to τi is not necessarily tight. We say
that a tie-breaking list τ is respected by potential λ if the sequence of edges and
subsets of V processed in the first |τ | iterations of GP(λ, τ) corresponds to τ .
Also, we denote by τ̃ the prefix of τ with size |τ | − 1.

Definition 8. Let T̂ be the tree returned by GW(λ, τ), and T̂ ′ be the tree returned
by GW(λ, τ̃). We say that (λ, τ) is a threshold-tuple if

(i) τ is respected by λ, and (ii) |V (T̂)|≥k> |V (T̂ ′)| or |V (T̂)|<k≤|V (T̂ ′)|.
Next lemma summarizes the main properties of a threshold-tuple (λ, τ).

It states that, although the pruned trees span different numbers of vertices, the
difference in the outputs of growth-phases GP(λ, τ) and GP(λ, τ̃) is very small.

Lemma 9. Let (λ, τ) be a threshold-tuple, and let σ = τ|τ |. Also, let T , B and y
be the output computed by GP(λ, τ), and let T ′, B′ and y′ be the output computed
by GP(λ, τ̃). Then, y = y′, and

(i) if σ is an edge, then B = B′, σ /∈ E(T ′), and T ⊆ T ′ + σ;
(ii) if σ is a subset, then T = T ′, σ /∈ B′, and B = B′ ∪ {σ}.
Proof sketch. Assume σ is an edge and that a different edge σ′ is processed in
iteration |τ | of GP(λ, τ̃) (the other cases follow from similar arguments).

Since τ is respected by λ, so is τ̃ . This implies that at the start of the
|τ |-th iteration, F , L, B, and y are the same in both executions of the growth-
phase. Thus, the sets of tight external edges in these executions are also the
same, say Y. Because the priority of edges is higher, each edge in Y is either pro-
cessed or becomes internal before any subset is processed. Let (σ′ =e′

0, e
′
1, . . . , e

′
m)

and (σ = e0, e1, . . . , em) be the sequences of edges in Y which are processed by
GP(λ, τ̃) and by GP(λ, τ). Since edges are processed in a fixed lexicographic order,
there is some index 	 such that e′

i = ei+1 for each 0 ≤ i < 	, and such that e′
� is

parallel to e0 at iteration |τ | + 	 of GP(λ, τ̃). Thus, at the end of iteration |τ | + 	
of both executions, vector y has not changed, and the collections of maximal
subsets are the same. It follows that the succeeding iterations process the same
sequence of edges and subsets, and the lemma follows when σ and σ′ are distinct
edges.

Figure 1 illustrates the execution of GP(λ, τ̃) and GP(λ, τ). Solid contours rep-
resent subsets in L, and filled contours represent processed subsets in B. In (a),
we have the state at the beginning of iteration |τ |, where only tight external edges

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 83

are drawn and indices correspond to the lexicographic order. In (b), we show the
resulting state after GP(λ, τ̃) processed the sequence (σ′ =e0, e1, e2, e3, e4), and,
in (c), the state after GP(λ, τ) processed the sequence (σ=e5, e0, e1, e2, e3). ��

Fig. 1. Difference between the execution of GP(λ, τ̃) and of GP(λ, τ).

4.1 The Threshold-Tuple Search

To find a threshold-tuple, we run a search algorithm, denoted by TS. Start with
an empty tie-breaking list τ , and initialize variables a = 0 and b = cE + 1. We
will extend τ by adding one entry per iteration and maintaining two invariants:
(i) τ is respected by λ for every λ ∈ [a, b]; (ii) GW(a, τ) returns a tree spanning
less than k vertices, and GW(b, τ) returns a tree spanning at least k vertices.

At the beginning of iteration i of TS, τ has size i − 1. Since τ is respected
by λ for every λ ∈ [a, b], we know that, at the beginning of iteration i of GP(λ, τ),
the collection of maximal subsets and the set of external edges are the same for
every λ ∈ [a, b]. As a consequence, one can show that the increase on y variables
necessary for each such edge or subset σ to become tight is a function εσ(λ) linear
in λ ∈ [a, b]. We say that p ∈ (a, b) is a diverging potential if εσ(p) = εσ′(p) for
distinct εσ and εσ′ . Using line-intersection algorithms, we can identify an edge
or subset σ and consecutive diverging potentials a′, b′ such that GW(a′, τ) returns
less than k vertices, GW(b′, τ) returns at least k vertices, and σ becomes tight
at iteration i of GP(λ, τ) for every λ ∈ [a′, b′]. We extend τ by defining τi = σ
and, if either (a′, τ) or (b′, τ) is a threshold-tuple, then we are done. Otherwise,
updating a = a′ and b = b′ maintains both invariants, and we repeat the process.

Observe that this procedure ends. Otherwise, the same sequence of edges
and subsets is processed by GP(a, τ) and GP(b, τ), as the sequence is finite, and
GW(a, τ) and GW(b, τ) would return identical trees, contradicting the invariants.

Lemma 10. If executing GW(0, ∅) returns a tree spanning less than k vertices,
then TS finds a threshold-tuple.

5 Finding a Solution with a Threshold-Tuple

Assume that we are given a threshold-tuple (λ, τ). Then, by executing GW(λ, τ)
and GW(λ, τ̃), we obtain two trees, one which spans less than k vertices, and the

84 L. L. C. Pedrosa and H. K. K. Rosado

other, at least k vertices. Let T̂− and T̂+ be the trees with less than k vertices,
and at least k vertices, respectively, and let (T−,B−) and (T+,B+) denote the
corresponding pairs computed in the growth-phase.

Denote by L− and L+ the laminar collections computed in the growth-phase.
While these laminar collections might be (slightly) different, Lemma 9 states that
GP(λ, τ) and GP(λ, τ̃) compute identical vectors y. Moreover, each edge of T− ∪ T+

and each subset in B− ∪ B+ is tight. The objective of this section is to find a tree T
from T− ∪ T+ spanning at least k vertices.

Assume, for now, that V is the minimal subset in L− containing every vertex
of T ∗; we will relax this assumption when we present the 2-approximation. To
bound the cost of T ∗, one can use Lemma 1, which gives the lower bound

(∑
L∈L−(V) yL − λ|V \ V (T ∗)|

)
≤ cE(T ∗) + πV \V (T ∗).

To bound the cost of T , we need to prove an inequality analogous to the one
given by Goemans and Williamson’s analysis [6], i.e., we want to show that

cE(T) + 2πV \V (T) ≤ 2
(∑

L∈L−(V) yL − λ|V \ V (T)|
)

.

5.1 Selecting k Vertices

The previous inequalities suggest that it is sufficient to find a solution T such
that |V (T)| ≤ |V (T ∗)|. But, since a feasible solution spans at least k vertices,
our goal is restricted to computing a tree which spans exactly k vertices. Given
a threshold-tuple, such a tree is constructed by the picking-vertices algorithm,
denoted by PV(λ, τ). This algorithm follows some ideas due to Garg [5].

Let H = T− ∪T+ and Ĥ be the resulting tree obtained by pruning H using B+.
Let σ be the edge or subset processed at iteration |τ | of GP(λ, τ). If σ is a subset,
then Lemma 9 implies that H = T− = T+, and then T̂+ = Ĥ. Also, collections
B− and B+ differ in exactly one subset, which is σ. Since T̂− spans fewer vertices
than T̂+, collection B− must contain more subsets than collection B+, by the
monotonicity of the pruning operation. Thus, in this case, B− = B+ ∪ {σ}.

We would like to obtain a tree from H spanning exactly k vertices. To use
Goemans and Williamson’s analysis, this tree needs to be pruned with a collec-
tion of tight subsets. Pruning H using B+ results in Ĥ, which spans too many
vertices, but, if we prune Ĥ using B−, then the pruning algorithm would delete a
sequence of disjoint subsets D1, . . . , D�, until finding the tree T̂−. This sequence
induces a path on Ĥ, as illustrated in Fig. 2(a). Observe that each subset Di,
for 1 ≤ i ≤ 	, is contained in a corresponding subset Bi ∈ B−, and recall that
invariant (pp2) states that Di induces a connected subgraph of Ĥ.

When σ is an edge, Lemma 9 states that B− = B+ and trees T− and T+ differ in
exactly one edge. Thus, T+ has an edge e+ such that H = T− + e+. Notice that H
contains a unique cycle C, which includes e+. We note that Ĥ also contains C.

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 85

Fig. 2. Sequence of subsets computed in PV(λ, τ).

Lemma 11. If σ is an edge, then Ĥ contains the cycle C.

Since Ĥ − e+ is a subgraph of T−, pruning Ĥ − e+ using B− results in T̂−, by
monotonicity. In this case, however, the deleted subsets might not induce a path
on Ĥ. But Lemma 11 implies that no subset in B− contains all vertices of C, thus
these subsets induce a cycle on Ĥ. Therefore, we can find an edge e of C such
that pruning on Ĥ − e also results in the tree T̂−, and the sequence of deleted
subsets D1, . . . , D� induces a path on Ĥ. This is shown in Fig. 2(b).

Define D�+1 = V (T̂−) and notice that, since D�+1 covers less than k vertices,
but sequence D1, . . . , D�+1 covers at least k vertices, there is an index t such
that Dt+1, . . . , D�+1 covers less than k vertices and Dt, . . . , D�+1 covers at least
k vertices. If Dt+1, . . . , D�+1 covers exactly k − m vertices, then we would like
augment this sequence by iteratively picking subsets from Dt which add up to m
vertices. The goal is to find a sequence of subsets P1, P2, . . . , Ps in L− such that:
each subset Pi induces a connected subgraph in Ĥ; P1 is connected to Dt+1;
adjacent subsets are connected by an edge of Ĥ; and |Ps| = 1.

This can be done as follows. Suppose that we already have computed a
sequence P1, P2, . . . , Pi−1, and want to pick m vertices in S ∩Dt for some subset
S ∈ L−. Also, suppose there is an edge connecting Pi−1 to some vertex v ∈ S∩Dt.
To initialize the process, let P0 = Dt+1 and S = Bt, where Bt is the subset in
B− corresponding to Dt. Note that an edge connects Dt+1 to some v ∈ Dt.

If m = 1, then define Pi = {v}, and we are done. Otherwise, we have m ≥ 2,
thus S contains at least two vertices. Since L− is binary laminar, this implies that
there are disjoint subsets S1 and S2 with S = S1 ∪ S2, and such that v ∈ S1.

If |S1 ∩ Dt| ≥ m, then just make S = S1, and repeat the process. This does
not change the assumptions, except that it makes S smaller. Otherwise, we have
|S1 ∩ Dt| < m, but this implies |S2 ∩ Dt| ≥ m − |S1 ∩ Dt| because |S ∩ Dt| ≥ m.
It follows that Ĥ spans vertices in both S1 and S2, and, since Ĥ is S-connected,
there must be an edge connecting a vertex v1 ∈ S1 to a vertex v2 ∈ S2. In this
case, we define Pi = S1 ∩ Dt, update the variables by making m = m − |Pi|,
S = S2 and v = v2, and repeat the process for i + 1. Note that Pi induces a
connected subgraph in Ĥ because Ĥ is S1-connected.

86 L. L. C. Pedrosa and H. K. K. Rosado

Figure 2(c) exemplifies this process. Each solid contour represents a subset
S ∈ B− considered by the process, and each gray disk represents S ∩ Dt.

Now, the sequence Ps, . . . , P1,Dt+1, . . . , D�+1 covers exactly k vertices. Also,
adjacent subsets are connected by a tight edge of Ĥ, and each subset induces a
connected subgraph of Ĥ. Therefore, this sequence induces a tree T which spans
exactly k vertices and includes the root r. This tree is the output of PV(λ, τ).

We define W = Bt and let w ∈ W be the unique vertex in Ps. The subset W
and vertex w appear in the following lemmas, which are used to bound the cost
of T . It can be shown that T is pruned with {B ∈ B− : w /∈ B}.

Lemma 12. Let B ∈ B−. If |δT (B)| = 1, then w ∈ B.

Denote by Lw[W] the collection of S ∈ L such that w ∈ S and S ⊆ W .

Lemma 13. Consider the execution of GP which returned (T−,B−), and let A be
the collection of active subsets that contain some vertex of T at the beginning of
an iteration. Then,

∑
A∈A |δT (A)| ≤ 2(|A| − |Aw[W]|).

Proof sketch. Let I ⊆ B− be the collection of maximal subsets in L∗
− which are

not active and contain some vertex of T , then A∪I partitions V (T). Therefore,
at most one subset in A ∪ I contains w, which implies |Aw[W]| ≤ 1.

Let I1 be the collection of subsets in I with degree one on T , and consider the
graph T ′ obtained from T by contracting each subset in A ∪ I. If σ is a subset,
then T is L−-connected, thus T ′ is a tree. If σ is an edge, then each connected
component of T − e+ is L−-connected, and one can show that T ′ is either a tree
or it has at most one cycle whose edges are also in C (the unique cycle of H).

Assume T ′ is a tree. Note that |I1|+|Aw[W]|≤1, as w ∈ I for each I ∈ I1,
by Lemma 12. As a vertex of T ′ corresponding to a subset S has degree |δT (S)|,
∑

A∈A |δT (A)| + 2|I| − |I1| ≤ ∑
A∈A |δT (A)| +

∑
I∈I |δT (I)| = 2(|A| + |I| − 1)

≤ 2(|A| + |I| − |I1| − |Aw[W]|).
Assume T ′ has one cycle. Then, there is a maximal subset L in A ∪ I which

induces a disconnected subgraph of T . Since no maximal subset in A∪I contains
all the vertices of C, it can be shown that W is a proper subset of L, and thus
w ∈ L. Because L is not a subset of W , we have |Aw[W]| = 0, and, because L
has degree at least two on T , Lemma 12 implies |I1| = 0. It follows that

∑
A∈A |δT (A)| + 2|I| ≤ ∑

A∈A |δT (A)| +
∑

I∈I |δT (I)| = 2(|A| + |I| − |Aw[W]|).

In each of the cases, we have
∑

A∈A |δT (A)| ≤ 2(|A| − |Aw[W]|). ��

6 The 2-Approximation

We bound the tree output of PV. In this section, we take L to be the collection L−,
and denote by L[S] the collection of subsets in L which are subsets of S.

A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem 87

Lemma 14. If PV(λ, τ) outputs T , then cE(T) + 2πλ
V \V (T) ≤ 2

∑
L∈L(V) yL.

Proof sketch. The lemma follows by combining the bounds

cE(T) ≤ 2
∑

L∈L(V (T)) yL − 2
∑

L∈Lw[W] yL, and

2πλ
V \V (T) ≤ 2

∑
L∈L[V \V (T)] yL + 2

∑
L∈Lw[W] yL.

Since the edges of T are tight for (y, λ), the first bound is equivalent to
cE(T) =

∑
L∈L(V (T)) |δT (L)|yL ≤ 2

∑
L∈L(V (T)) yL − 2

∑
L∈Lw[W] yL. We prove

by induction. The inequality holds when the algorithm starts, thus, suppose it
is valid at the beginning of an iteration, and let A denote the active subsets
which contain a vertex of T . For each A ∈ A, the variable yA is increased by Δ.
If some subset A ∈ A contains V (T), then W � A, because L is laminar and
w ∈ V (T), thus neither side of the inequality changes. Otherwise, the left-hand
side increases by

∑
A∈A(V (T)) |δT (A)|Δ, and the right-hand side increases by

2(|A|−|Aw[W]|)Δ. By Lemma 13, the inequality holds at the end of the iteration.
Proving the second bound is more involved. One can show that, for each

v ∈ V \ V (T), either v is contained in a tight processed subset of V \ V (T); or
every subset in L[W] which contains v and a vertex of T also contains w. Vertices of
the former kind can be paid by y variables of subsets in L[V \ V (T)]; and vertices
of the latter kind can be paid by y variables of subsets in L[V \ V (T)] ∪ Lw[W]
which were not used to pay the vertices of the first kind. ��

As the tree output by PV(λ, τ) spans exactly k vertices and y
respects c and πλ, using Lemmas 1 and 14, we derive the final ingredient of
our 2-approximation.

Lemma 15. Let T be the output of PV(λ, τ) and L∗ be the minimal subset in L
containing V (T ∗). If L∗ = V , then cE(T) + 2πV \V (T) ≤ 2

(
cE(T ∗) + πV \V (T ∗)

)
.

We now present our 2-approximation, which is denoted by 2-APPROX. The
algorithm computes a series of trees, the best of which becomes the output. In
each iteration, start by computing a tree executing GW(0, ∅), and, if it spans at
least k vertices, then store this tree and stop the iteration process. Otherwise, a
threshold-tuple (λ, τ) can be computed by TS. Now, store the tree returned by
PV(λ, τ) and let L be the laminar collection used by PV(λ, τ) when computing this
tree. Let Lr ∈ L be the inclusion-wise maximal proper subset of V containing r.
If |Lr| < k, then stop; if not, repeat the iteration process with G[Lr].

Observe that at least one vertex is deleted in each iteration, and the reduced
graph is connected because it is L-connected. Thus, the algorithm stops, and the
output is the computed tree T which minimizes the cost with respect to the orig-
inal graph G. We argue why T is a 2-approximation. Consider the last iteration
which processed some subgraph G′ containing T ∗. If the algorithm stopped in
this iteration after computing a tree using GW(0, ∅), then this tree spans at least k
vertices, and Lemma 7 implies that this is a 2-approximate solution with respect
to G′. Otherwise, the inclusion-wise minimal subset containing T ∗ is V (G′), and
Lemma 15 implies that the tree computed by PV(λ, τ) is a 2-approximation with

88 L. L. C. Pedrosa and H. K. K. Rosado

respect to G′. Now, note that a 2-approximation with respect to G′ is also a
2-approximation with respect to G.

Theorem 16. Let T be the tree returned by 2-APPROX, then

cE(T) + 2πV \V (T) ≤ 2
(
cE(T ∗) + πV \V (T ∗)

)
.

References

1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algo-
rithms for prize-collecting Steiner tree and TSP. SIAM J. Comput. 40(2), 309–332
(2011)

2. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the
k-MST problem. J. Comput. Syst. Sci. 58(1), 101–108 (1999)

3. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-MSTs and
k-Steiner trees via the primal-dual method and Lagrangean relaxation. Math. Pro-
gram. 100(2), 411–421 (2004)

4. Feofiloff, P., Fernandes, C.G., Ferreira, C.E., de Pina, J.C.: A note on Johnson,
Minkoff and Phillips’ algorithm for the prize-collecting Steiner tree problem. arXiv
e-prints p. 1004.1437 (2010)

5. Garg, N.: Saving an epsilon: A 2-approximation for the k-MST problem in graphs.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp.
396–402 (2005)

6. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

7. Han, L., Xu, D., Du, D., Wu, C.: A 5-approximation algorithm for the k-prize-
collecting Steiner tree problem. Optim. Lett. 13(3), 573–585 (2017)

8. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem:
theory and practice. In: Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 760–769 (2000)

9. Matsuda, Y., Takahashi, S.: A 4-approximation algorithm for k-prize collecting
Steiner tree problems. Optim. Lett. 13(2), 341–348 (2018)

Parameterized Algorithms

Maximizing Happiness in Graphs of
Bounded Clique-Width

Ivan Bliznets and Danil Sagunov(B)

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of
Sciences, 27 Fontanka, St. Petersburg, Russia

iabliznets@gmail.com, danilka.pro@gmail.com

Abstract. Clique-width is one of the most important parameters that
describes structural complexity of a graph. Probably, only treewidth
is more studied graph width parameter. In this paper we study how
clique-width influences the complexity of the Maximum Happy Ver-
tices (MHV) and Maximum Happy Edges (MHE) problems. We
answer a question of Choudhari and Reddy ’18 about parameteriza-
tion by the distance to threshold graphs by showing that MHE is NP-
complete on threshold graphs. Hence, it is not even in XP when parame-
terized by clique-width, since threshold graphs have clique-width at most
two. As a complement for this result we provide a nO(�·cw) algorithm for
MHE, where � is the number of colors and cw is the clique-width of the
input graph. We also construct an FPT algorithm for MHV with run-
ning time O∗((� +1)O(cw)), where � is the number of colors in the input.
Additionally, we show O(�n2) algorithm for MHV on interval graphs.

1 Introduction

Clique-width is one of the most important parameters that describe structural
complexity of a graph. Probably, only treewidth is more studied graph width
parameter. We note that one can treat clique-width as some generalization of
treewidth as graphs of bounded treewidth have bounded clique-width. Hence, the
existence of an FPT algorithm parameterized by clique-width is a stronger result
than the existence of an FPT algorithm parameterized by treewidth. Complex-
ity of many problems were studied parameterized by the clique-width param-
eter, including Max-Cut [11], Edge Dominating Set [11], Hamiltonian
Path [10], Graph k-Colorability [12,16], computation of the Tutte polyno-
mial [13], Dominating Set [16,17], computation of chromatic polynomial [23],
and Target Set Selection [14]. In this paper, we continue the line of the
research and investigate computational and parameterized complexity of the
Maximum Happy Vertices and Maximum Happy Edges problems param-
eterized by clique-width of the input graph.

Before defining Maximum Happy Vertices and Maximum Happy Edges,
we need to define what a happy vertex or a happy edge is.

This research was supported by the Russian Science Foundation (project 16-11-10123-
Π).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 91–103, 2020.
https://doi.org/10.1007/978-3-030-61792-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_8&domain=pdf
http://orcid.org/0000-0003-2291-2556
http://orcid.org/0000-0003-3327-9768
https://doi.org/10.1007/978-3-030-61792-9_8

92 I. Bliznets and D. Sagunov

Definition 1. Let G be a graph and let c : V (G) → [�] be a coloring of its
vertices. We say that an edge uv ∈ E(G) is happy with respect to c (or simply
happy, if c is clear from the context) if its endpoints share the same color, i.e.
c(u) = c(v). We say that a vertex v ∈ V (G) is happy with respect to c if all its
neighbours have the same color as v, i.e. c(v) = c(u) for each neighbour u of v
in G.

We now give the formal definition of both problems.

Maximum Happy Vertices (MHV)
Input: A graph G, a partial coloring of vertices p : S → [�] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [�] extending partial color-

ing p such that the number of happy vertices with respect
to c is at least k?

Maximum Happy Edges (MHE)
Input: A graph G, a partial coloring of vertices p : S → [�] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [�] extending partial color-

ing p such that the number of happy edges with respect
to c is at least k?

Maximum Happy Vertices and Maximum Happy Edges were introduced
by Zhang and Li in 2015 [27], motivated by their study of algorithmic aspects
of homophyly law in large networks. These problems recently attracted a lot of
attention from different lines of reseach. From the parameterized point of view,
the problems were studied in [1–6,24]. Works [25–28] are devoted to approxima-
tion algorithms for MHV and MHE. Finally, Lewis et al. [19] study the problems
from experimental perspective.

Before we state our results we mention some previously known results under
different parameterizations. Aravind et al. [3] constructed O∗(�tw) and O∗(2nd)
algorithms for both MHV and MHE, where tw is the treewidth of the input
graph and nd is the neighbourhood diversity of the input graph. Misra and
Reddy [24] constructed O∗(vcO(vc)) algorithms for both problems, where vc is
the vertex cover number of the input graph.

Our Results: Below cw is the clique-width of the input graph, � is the number
of colors in the input precoloring and n is the number of vertices in the input
graph. In the paper we prove the following results for the Maximum Happy
Edges problem:

– MHE admits an XP-algorithm with running time nO(�·cw), if a cw-expression
of the input graph is given;

– MHE does not admit an XP-algorithm parameterized by clique-width alone,
unless P = NP (by showing that MHE is NP-complete on threshold graphs).

Note that the question of the complexity of MHE on the class of threshold
graphs was asked explicitly by Choudhari and Reddy in [6].

Maximizing Happiness in Graphs of Bounded Clique-Width 93

For the Maximum Happy Vertices problem we establish the following
results:

– MHV admits an FPT algorithm with O∗((� + 1)O(cw)) running time, if a
cw-expression of the input graph is given (note that MHV parameterized by
clique-width alone is W[2]-hard [5]);

– Additionally, MHV is solvable on the class of interval graphs in time O(�n2).

Our work shows that clique-width is a parameter under which computational
complexity of problems MHV and MHE differ most significantly. On graphs
of bounded clique-width, MHV admits an FPT algorithm with running time
O∗((� + 1)O(cw)), while MHE is NP-complete on graphs of clique-width two
and does not admit even an XP-algorithm when parameterized by cw, however,
we show that there is an XP-algorithm for the extended parameter cw + �.
Note that when parameterized by treewidth, neighbourhood diversity or vertex
cover, the problems are known to have similar complexity. We believe that the
FPT algorithm for MHV parameterized by cw + � is the most interesting result
of this paper. Unfortunately, due to the tight page limit, the proof of this result
is omitted to the full version for the sake of describing an answer to the open
question of Choudhari and Reddy from [6] almost completely.

After establishing existence of polynomial algorithms for problems on graphs
of bounded clique-width, it is natural to investigate complexity of problems on
minimal hereditary classes of unbounded clique-width. Unit interval graphs is
one of such graph classes [20]. We show that MHV is polynomially solvable
on the class of interval graphs, which is a wider graph class. So we think that
our result for interval graphs nicely complements our understanding of computa-
tional complexity of MHV parameterized by clique-width. We note that interval
graphs also separate MHV and MHE, as MHE is NP-complete on threshold
graphs, that are a subclass of interval graphs.

2 Preliminaries

Basic Notation. We denote the set of positive integer numbers by N. For each
positive integer k, by [k] we denote the set of all positive integers not exceeding
k, {1, 2, . . . , k}. We use � for the disjoint union operator, i.e. A�B equals A∪B,
with an additional constraint that A and B are disjoint.

We use the traditional O-notation for asymptotical upper bounds. We addi-
tionally use the O∗-notation that hides polynomial factors. We investigate
MHV and MHE mostly from the parameterized point of view. For a detailed
survey in parameterized algorithms we refer to the book of Cygan et al. [8].
Throughout the paper, we use standard graph notation and terminology, fol-
lowing the book of Diestel [9]. All graphs in our work are undirected simple
graphs.

Graph Colorings. When dealing with instances of MHV or MHE, we use a
notion of colorings. A coloring of a graph G is a function that maps vertices of

94 I. Bliznets and D. Sagunov

the graph to the set of colors. If this function is partial, we call such coloring
partial. If not stated otherwise, we use � for the number of distinct colors, and
assume that colors are integers in [�]. A partial coloring p is always given as
a part of the input for both problems, along with graph G. We also call p a
precoloring of the graph G, and use (G, p) to denote the graph along with the
precoloring. The goal of both problems is to extend this partial coloring to a
specific coloring c that maps each vertex to a color. We call c a full coloring (or
simply, a coloring) of G that extends p. We may also say that c is a coloring
of (G, p). For a full coloring c of a graph G by H(G, c) we denote the set of all
vertices in G that are happy with respect to c.

Clique-Width. In order to define cliquewidth we follow definitions presented by
Lackner et al. in their work on Multicut parameterized by clique-width [18].

To define clique-width, we need to define k-expressions first. For any k ∈ N,
a k-expression Φ describes a graph GΦ, whose vertices are labeled with inte-
gers in [k]. k-expressions and its corresponding graphs are defined recursively.
Depending on its topmost operator, a k-expression Φ can be of four following
types.

1. Introducing a vertex. Φ = i(v), where i ∈ [k] is a label and v is a vertex. GΦ

is a graph consisting of a single vertex v with label i, i.e. V (GΦ) = {v}.
2. Disjoint union. Φ = Φ′ ⊕Φ′′, where Φ′ and Φ′′ are smaller subexpressions. GΦ

is a disjoint union of the graphs GΦ′ and GΦ′′ , i.e. V (GΦ) = V (GΦ′)�V (GΦ′′)
and E(GΦ) = E(GΦ′) � E(GΦ′′). The labels of the vertices remain the same.

3. Renaming labels. Φ = ρi→j(Φ′). The structure of GΦ remains the same as the
structure of GΦ′ , but each vertex with label i receives label j.

4. Introducing edges. Φ = ηi,j(Φ′). GΦ is obtained from GΦ′ by connecting each
vertex with label i with each vertex with label j.

Clique-width of a graph G is defined as the smallest value of k needed to
describe G with a k-expression and is denoted as cw(G), or simply cw.

There is still no known FPT-algorithm for finding a k-expression of a given
graph G. However, there is an FPT-algorithm that decides whether cw(G) > k
or outputs (23k+2−1)-expression of G. For more details on clique-width we refer
to [15].

Due to the space restrictions, we omit proofs of some theorems and lemmata.
We mark such theorems and lemmata with the ‘�’ sign. Missing proofs can be
found in the full version of the paper.

3 Maximum Happy Edges

This section is dedicated to the Maximum Happy Edges problem parameter-
ized by clique-width. We start with showing that Maximum Happy Edges is
NP-complete on graphs of clique-width at most two.

In [6], Choudhari and Reddy proved that MHV is polynomially solvable
on the class of threshold graphs (that have clique-width at most two [21]) and

Maximizing Happiness in Graphs of Bounded Clique-Width 95

questioned the complexity of MHE on the same graph class. We answer their
question by showing that Maximum Happy Edges is NP-complete on thresh-
old graphs. To prove this, we require the following useful characterization of
threshold graphs.

Lemma 1 [22]. Threshold graphs are graphs that can be partitioned in a clique
K = {u1, u2, . . . , uk} and an independent set I, such that N [ui] ⊆ N [ui+1] holds
for every i ∈ [k − 1].

We now prove the abovementioned hardness of MHE.

Theorem 1. Maximum Happy Edges is NP-complete on the class of thresh-
old graphs.

Proof. We reduce from SAT, that is a classical NP-complete problem. Let F be a
boolean formula on n variables in conjunctive normal form F = C1∧C2∧. . .∧Cm.
Ci is a clause being a disjunction of distinct literals, so it can be represented as
Ci = li,1 ∨ li,2 ∨ . . . ∨ li,ki

, where each literal li,t is either a variable xj or its
negation xj for some j ∈ [n].

We show how to, given F , construct an instance (G, p, k) of Maximum
Happy Edges, such that F is satisfiable if and only if (G, p, k) is a yes-instance
of MHE. Moreover, G is a threshold graph and the construction can be done in
polynomial-time.

Let F be a boolean formula on n variables in CNF, consisting of m clauses.
We construct (G, p, k) as follows.

G will be a threshold graph. So it will consist of two parts: a clique K and
an independent set I. Firstly, we introduce the clique vertices in G. For each
clause Ci of F we introduce a new vertex ci in G. For each variable xj of F
we introduce m2 new vertices vj,1, vj,2, . . . , vj,m2 in G. We introduce all possible
edges between these m + nm2 vertices in G so these vertices form the clique K
in the partition of G.

Before we proceed, let us give an intuition of the further construction.
Each color we use in p corresponds to a literal in F , i.e. to an element in
L = {x1, x2, . . . , xn, x1, x2, . . . , xn}. Thus, we use 2n colors in p. For conve-
nience, we use corresponding literals to denote colors instead of the numbers in
[2n]. We want each clause vertex ci to be colored with a color corresponding to
one of its literals, i.e. one of the colors li,1, li,2, . . . , li,ki

in any optimal coloring.
Similarly, we want each variable vertex vj,t corresponding to the variable xj to
be colored with one of the colors corresponding to the literals of xj , i.e. either xj

or xj . For each vertex u ∈ K, we denote the set of required colors as L(u), i.e.
L(ci) = Ci = {li,1, li,2, . . . , li,ki

} for clause vertices, and L(vj,t) = {xj , xj} for
variable vertices. The purpose of the remaining independent set of G is exactly
to ensure that the vertices of the clique are colored with the required colors.

Our graph is a threshold graph. It means that it is possible to find an order
u1, u2, . . . , u|K| of the vertices in K such that N [ui] ⊆ N [ui+1] for each i ∈ [|K|−
1], i.e. satisfy the condition of Lemma 1. The order we obtain is the following:
ui = ci for every i ∈ [m], and um+jm2+t = vj+1,t for each j ∈ {0, 1, . . . , n − 1}

96 I. Bliznets and D. Sagunov

and each t ∈ [m2]. The condition of Lemma 1 is satisfied as we step by step add
vertices to I. The ith step will correspond to the vertex ui ∈ K. At this step
we introduce all neighbours of ui in I and their colors in the precoloring p. For
convenience we denote N(ui) ∩ I by Pi.

At first, we construct P1 in the following way. For each l ∈ L(u1), add exactly
m + nm2 vertices to P1 and color them with the color l. No more vertices are
added to P1, so |P1| = |L(u1)| · (m + nm2). Then, for each i ∈ [2,m + nm2], we
construct Pi by adding new vertices to Pi−1 and precoloring them. By doing so
we satisfy condition N [ui] ⊆ N [ui+1] for each i ∈ [m + nm2 − 1]. The process of
this construction is described below and illustrated in Fig. 1.

Fig. 1. Step i. That is addition of the vertex ui and construction of the set Pi. Let
L(ui) = {l1, l2, . . . lt}. Vertex ui is connected to all vertices in Pi−1. Moreover, for
each j ∈ {1, 2, . . . t} we introduce i(m + nm2) − |Np(Pi−1, lj)| vertices precolored in
color lj and connect them to ui. Recall that all bottom vertices, i.e. uq for q ∈ [i], are
also pairwise connected (this is not shown in the figure as well as edges from Pi−1 to
u1, u2, . . . , ui−1).

Let Np(Pi, l) be the number of vertices in Pi that are precolored with the
color l, i.e. Np(Pi, l) = |{u ∈ Pi | p(u) = l}| . For each i we require that the
vertices in Pi are precolored mostly with required colors for ui, that is, colors in
the set L(ui). Formally, for every l ∈ L, we require

Np(Pi, l) = i(m + nm2), if l ∈ L(ui),
Np(Pi, l) ≤ (i − 1) · (m + nm2), if l /∈ L(ui).

(∗)

Note that P1 satisfies (*).
Now let Pi−1 be constructed and satisfy (*). We construct Pi that also satis-

fies the constraint. We start with Pi = Pi−1. Then for each l ∈ L(ui) we introduce
i(m + nm2) − Np(Pi−1, l) new vertices precolored with color l to Pi. For every
l ∈ L(ui), Np(Pi, l) = Np(Pi−1, l)+ i(m+nm2)−Np(Pi−1, l) = i(m+nm2). On
the other hand, for every l /∈ L(ui), Np(Pi, l) = Np(Pi−1, l) ≤ (i−1) ·(m+nm2).
Hence, Pi also satisfies (*).

The construction of G is finished. Let us remark again that K forms a clique
in G and I = Pm+nm2 forms an independent set in G. We constructed graph
in a way that N [ui] ⊆ N [ui+1] (as Pi ⊆ Pi+1) for each i ∈ [m + nm2 − 1]

Maximizing Happiness in Graphs of Bounded Clique-Width 97

where K = {u1, u2, . . . , um+nm2}. Thus, by Lemma 1, G is a threshold graph.
Moreover, construction of G is done in polynomial time.

We finally set the number of required happy edges

k =
(
m + nm2

) ·
(

m + nm2 + 1
2

)
+ n ·

(
m2

2

)
+ m3

and argue that F is satisfiable if and only if (G, p, k) is a yes-instance of MHE.
Let F be satisfiable, that is, F has a satisfying assignment σ : xj → {0, 1}.

We construct coloring c of G extending p that yields at least k happy edges as
follows.

For each j ∈ [n] and t ∈ [m2], set the color of the vertex vj,t corresponding
to the variable xj with the color corresponding to the literal of xj that evaluates
to 1 with respect to σ, i.e. c(vj,t) = xj , if σ(xj) = 1, or c(vj,t) = xj , if σ(xj) = 0.

For each i ∈ [m], there is at least one variable satisfying clause Ci. In other
words, there exists j ∈ [n], such that either xj ∈ Ci and σ(xj) = 1, or xj ∈ Ci

and σ(xj) = 0. Choose any such j and color the corresponding clause vertex ci

with the color corresponding to the literal of xj that evaluates to true. That is,
c(ci) = xj if σ(xj) = 1, or c(ci) = xj if σ(xj) = 0. There is no any uncolored
vertex left, so the construction of c is finished.

Claim 1 (�). There are at least k happy edges in G with respect to c.

Hence, we showed that if F is satisfiable, then (G, p, k) is a yes-instance of
MHE. We now give a proof in the other direction.

Let c be a coloring of G extending p such that at least k edges of G are
happy with respect to c. We assume that c is optimal, i.e. it yields the maximum
number of happy edges in G. We make the following claims and then show how
to construct a satisfying assignment σ of F .

Claim 2 (�). In any optimal coloring c of G extending p, c(ui) ∈ L(ui) for
every ui ∈ K.

Claim 3. In any optimal coloring c of G extending p, all variable vertices
corresponding to the same variable are colored with the same color. Formally,
c(vj,t1) = c(vj,t2) for every j ∈ [n] and t1, t2 ∈ [m2].

Proof of the Claim. Suppose that c is an optimal coloring extending p, but
c(vj,t1) �= c(vj,t2) for some j ∈ [n], t1, t2 ∈ [m2]. By Claim 2, c(vj,t1) and
c(vj,t2) are distinct literals of variable xj , and vj,t1 = um+(j−1)m2+t1 and
vj,t2 = um+(j−1)m2+t2 are incident to exactly (m + (j − 1) · m2 + t1) · (m + nm2)
and (m + (j − 1) · m2 + t2) · (m + nm2) happy edges going in I respectively
according to (*).

Let h1 and h2 be the number of vertices in K that are colored with colors
c(vj,t1) and c(vj,t2), respectively. Thus, vj,t1 and vj,t2 are incident to exactly
h1 −1 and h2 −1 happy edges in G[K], respectively. Note that the edge between
vj,t1 and vj,t2 is not happy.

98 I. Bliznets and D. Sagunov

Without loss of generality, h1 ≥ h2. Change the color of vj,t2 in c to c(vj,t1).
Since c(vj,t2) is still a literal of xj , hence c(vj,t2) ∈ L(vj,t2), the number of happy
edges connecting vj,t2 and I does not change, even though the set of such happy
edges becomes different. Consider edges in G[K]. vj,t2 is now adjacent to h1

neighbours of the same color, as the edge between vj,t1 and vj,t2 also becomes
happy. Since h1 > h2 − 1, we have increased the total number of happy edges in
G with respect to c. This contradicts the optimality of c.

We now use the above claims to construct σ from an optimal coloring c
yielding at least k happy edges. By Claim 2, there are exactly (m + nm2) · (1 +
2 + . . . + (m + nm2)) = (m + nm2) · (

m+nm2+1
2

)
happy edges between K and I

with respect to c. By Claim 3, there are exactly n · (
m2

2

)
happy edges between

all variable vertices. There are exactly m clause vertices in G, hence there are
at most

(
m
2

)
happy edges between all clause vertices. The only edges left are the

edges between clause and variable vertices, hence there are at least

k − (m + nm2) ·
(

m + nm2 + 1
2

)
− n ·

(
m2

2

)
−

(
m

2

)
= m3 −

(
m

2

)

happy edges between clause and variable vertices.
Construct σ according to the colors of variable vertices, so that the literal

corresponding to c(vj,t) evaluates to 1 with respect to σ. Formally, for each
j ∈ [n], σ(xj) = 1 if c(vj,1) = xj , and σ(xj) = 0 if c(vj,1) = xj . We now argue
that each clause Ci ∈ F contains a literal that evaluates to 1 with respect to σ,
and that this literal is c(ci).

Suppose that it is not true, and there is a clause Ci so that c(ci) is a literal
that evaluates to 0 with respect to σ. By construction of σ, there are no happy
edges between ci and the variable vertices. ci corresponds to a literal evaluating
to 0, but all colors of variable vertices are literals that evaluates to 1 with respect
to σ. Moreover, any other clause vertex ci′ is adjacent to either 0 or m2 variable
vertices of color c(ci′). For each literal, there are either 0 or m2 variable vertices
colored correspondingly to this literal.

There are exactly m−1 clause vertices apart from ci, hence at most (m−1)·m2

edges between clause vertices and variable vertices are happy with respect to c.
But (m − 1) · m2 = m3 − m2 < m3 − (

m
2

)
for any m > 0, a contradiction. Thus,

each clause Ci contains a literal that evaluates to 1 with respect to σ, i.e. σ is a
satisfying assignment of F . We proved that if (G, p, k) is a yes-instance of MHE,
then F is satisfiable. The proof is complete. ��
Corollary 1. There is no XP-algorithm for Maximum Happy Edges param-
eterized by clique-width, unless P = NP.

Proof. Suppose there is an XP-algorithm for Maximum Happy Edges param-
eterized by clique-width, i.e. there is an algorithm with running time nf(cw) for
some function f for MHE. Threshold graphs are a subclass of cographs [21], that
is, graphs of clique-width at most two [7]. Hence, MHE on threshold graphs can
be solved in nf(2) = nO(1). Then, by Theorem 1, problem that is solvable in
polynomial time is NP-hard, hence P = NP. ��

Maximizing Happiness in Graphs of Bounded Clique-Width 99

We have shown that MHE parameterized by clique-width alone is hard. Fol-
lowing known results on the existence of O∗(�O(pw)) and O∗(�O(tw)) running time
algorithms for both MHV and MHE parameterized by pathwidth or treewidth
combined with the number of colors � [1,2,24], it is reasonable to ask the com-
plexity of MHE parameterized by cw+�. We now show that MHE parameterized
by cw + � admits an XP-algorithm.

Theorem 2. There is an algorithm for Maximum Happy Edges with nO(�·cw)

running time, if a cw-expression of G is given.

Proof. The algorithm is by standard dynamic programming on a given w-expres-
sion Ψ of G. We assume that Ψ is a nice w-expression of G, i.e. no edge is
introduced twice in Ψ . For each subexpression Φ of Ψ ,

OPT (Φ, n1,1, n1,2, . . . , n1,�, n2,1, n2,2, . . . , nw,�−1, nw,�)

denotes the maximum number of happy edges that can be obtained in GΦ simul-
taneously with respect to a coloring such that the number of vertices with a label
i in GΦ that are colored with a color a in GΦ is exactly ni,a. Formally,

OPT (Φ, n1,1, . . . , nw,�) = max

⎧
⎨

⎩
|E(GΦ, c)|

∣
∣
∣
∣
∣
∣

c : V (GΦ) → [�],
∀i ∈ [w], a ∈ [�] :

|c−1(a) ∩ Vi(Φ)| = ni,a

⎫
⎬

⎭
,

where E(GΦ, c) is the set of edges that are happy in GΦ with respect to c. If
there are no colorings corresponding to a cell OPT (Φ, n1,1, . . . , nw,�), we put its
value equal to −∞.

The algorithm computes the values of OPT in a bottom-up approach, starting
from the simplest subexpressions of Ψ up to Ψ itself. Thus, when the algorithm
starts computing the values ofOPT (Φ, ·) for a subexpressionΦ ofΨ , it has all values
of OPT computed for each subexpression of Φ. There are four possible cases of
computing values of OPT (Φ, ·) depending on the topmost operator in Φ.

1. Φ = i(v). Since GΦ contains a single vertex with label i and no edges, it is
enough to iterate over all possible colors of this vertex. If v is not precolored,
for each color a ∈ [�] put OPT (Φ, 0, . . . , 0, ni,a = 1, 0, . . . , 0) = 0. Otherwise,
the color of v can only be p(v), so do this only for a = p(v). Thus, exactly �
values (or exactly one value) of OPT (Φ, ·) are put equal to 0, and all other
values should equal −∞ by the definition of OPT .

2. Φ = Φ′ ⊕ Φ′′. Consider a cell OPT (Φ, n1,1, . . . , nw,�). Any coloring c corre-
sponding to this cell is split uniquely in the two colorings c′ = c|V (GΦ′) and
c′′ = c|V (GΦ′′) of GΦ′ and GΦ′′ respectively. In its order, these colorings cor-
respond to cells OPT (Φ′, n′

1,1, . . . , n
′
w,�) and OPT (Φ′′, n′′

1,1, . . . , n
′′
w,�), where

n′
i,a and n′′

i,a are unique for each choice of i ∈ [w], a ∈ [�]. As GΦ is the dis-
joint union of GΦ′ and GΦ′′ , the number of happy edges in GΦ with respect

100 I. Bliznets and D. Sagunov

to c can be found as a sum of happy edges with respect to c′ and c′′ in the
corresponding graphs. Hence,

OPT (Φ, n1,1, . . . , nw,�) =

max
n′

i,a+n′′
i,a=ni,a

{
OPT (Φ′, n′

1,1, . . . , n
′
w,�) + OPT (Φ′′, n′′

1,1, . . . , n
′′
w,�)

}
. (1)

3. Φ = ρi→jΦ
′. Consider again a coloring c corresponding to a cell OPT (Φ, n1,1,

. . . , nw,�). Note that Φ contains no vertices with label i, so ni,a = 0 for each
a ∈ [�]. Moreover, c is a coloring of GΦ′ , thus it corresponds to the unique
cell OPT (Φ, n′

1,1, . . . , n
′
w,�), where n′

i,a + n′
j,a = nj,a for each a ∈ [�] and

n′
k,a = nk,a for each choice of label k distinct from i and j, and for each color

a ∈ [�]. The number of happy edges in GΦ with respect to c is the same as
that in GΦ′ . Hence,

OPT (Φ, n1,1, . . . , nw,�) =
⎧
⎨

⎩

−∞, if ∃a ∈ [�] : ni,a �= 0,

max
{

OPT (Φ′, n′
1,1, . . . , n

′
w,�)

∣
∣
∣
∣

∀a ∈ [�] : n′
i,a + n′

j,a = nj,a

∀k ∈ [w] \ {i, j}, a ∈ [�] : n′
k,a = nk,a

}
.

(2)

4. Φ = ηi,jΦ
′. This is the only case where edges are introduced. Any coloring c of

GΦ is a coloring of G′
Φ. Moreover, if c corresponds to OPT (Φ, n1,1, . . . , nw,�)

then, clearly, c corresponds to OPT (Φ′, n1,1, . . . , nw,�) as well. Thus, one shall
only compute the number of newly-introduced edges that are happy with
respect to c. As Ψ is a nice w-expression, each edge between vertices with
label i and vertices with label j is newly-introduced. Each of such happy edge
should connect a vertex with the label i and a vertex with the label j that
are colored with the same color a for some a. The number of such edges for a
fixed a is ni,a·nj,a. Hence, OPT (Φ, n1,1, . . . , nw,�) = OPT (Φ′, n1,1, . . . , nw,�)+∑�

a=1 ni,a · nj,a.

The description of all possible cases for Φ and corresponding recurrence rela-
tions is finished. Note that there are at most |Ψ | · n�·w cells in the OPT table,
and each of them is computed in O(n�·w) time (computation in the case of dis-
joint union and the case of relabelling takes the most time) by the algorithm.
Thus, the whole computation of OPT takes O(|Ψ | ·n2�·w) running time. Clearly,
the maximum number of happy edges that can be obtained in G simultaneously
equals maxn1,1,...,nw,�

OPT (Ψ, n1,1, . . . , nw,�), which is found in O(n�·w) time.
This finishes the proof. ��
Corollary 2. Maximum Happy Edges parameterized by cw + � admits an
XP-algorithm.

The fixed-parameter tractability of MHE with respect to cw +� remains
unknown though. We note that Theorem 2 does not imply that no FPT-
algorithm exists for MHE parameterized by cw + � under P �= NP. But it

Maximizing Happiness in Graphs of Bounded Clique-Width 101

at least implies that no algorithm with running time O∗(poly(�)f(cw)) exists for
MHE, unless P = NP. We leave the FPT-membership of MHE parameterized
by cw + � as an open question.

4 Maximum Happy Vertices

We start this section by answering the complexity of Maximum Happy Ver-
tices parameterized by cw + �. We note that MHV is W[2]-hard when param-
eterized by the clique-width of the input graph alone [5]. In contrast to this,
we show that MHV is in FPT if the clique-width parameter is extended by the
number of colors �.

Theorem 3 (�). Maximum Happy Vertices can be solved in (�+1)O(w)·nO(1)

running time, if a w-expression of G is given.

Corollary 3. Maximum Happy Vertices parameterized by cw +� admits an
FPT-algorithm.

In the rest of this section we show that Maximum Happy Vertices is poly-
nomially solvable on the class of interval graphs, that is related to clique-width
in the following sense. Interval graphs have unbounded clique-width, moreover,
unit interval graphs are minimal hereditary graph class of unbounded clique-
width [20]. Since threshold graphs are a subclass of interval graphs, this result
also covers the result of Choudhari and Reddy in [6], where they showed that
MHV is polynomially solvable on the class of threshold graphs. We also note
that MHE, in contrast to MHV, is NP-hard on the class of interval graphs,
which is a corollary of Theorem 1.

Theorem 7 (�). There is O(�n2) running time algorithm for Maximum
Happy Vertices on interval graphs.

References

1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In:
Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp.
103–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8 9

2. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 22

3. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

4. Bliznets, I., Sagunov, D.: Lower bounds for the happy coloring problems. In: Du,
D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 490–502.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4 41

5. Bliznets, I., Sagunov, D.: On happy colorings, cuts, and structural parameteriza-
tions. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 148–161.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8 12

https://doi.org/10.1007/978-3-319-78825-8_9
https://doi.org/10.1007/978-3-319-44543-4_22
https://doi.org/10.1007/978-3-319-44543-4_22
http://arxiv.org/abs/1705.08282
https://doi.org/10.1007/978-3-030-26176-4_41
https://doi.org/10.1007/978-3-030-30786-8_12

102 I. Bliznets and D. Sagunov

6. Choudhari, J., Reddy, I.V.: On structural parameterizations of happy coloring,
empire coloring and boxicity. In: Rahman, M.S., Sung, W.-K., Uehara, R. (eds.)
WALCOM 2018. LNCS, vol. 10755, pp. 228–239. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75172-6 20

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1–3), 77–114 (2000)

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

9. Diestel, R.: Graph Theory. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-662-53622-3

10. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B.
(eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45477-2 12

11. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Almost optimal lower
bounds for problems parameterized by clique-width. SIAM J. Comput. 43(5),
1541–1563 (2014)

12. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theor. Comput. Sci. 299(1–3), 719–734 (2003)

13. Giménez, O., Hliněný, P., Noy, M.: Computing the tutte polynomial on graphs of
bounded clique-width. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 59–68.
Springer, Heidelberg (2005). https://doi.org/10.1007/11604686 6

14. Hartmann, T.A.: Target set selection parameterized by clique-width and maximum
threshold. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann,
J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 137–149. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73117-9 10

15. Hliněnỳ, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2007)

16. Kobler, D., Rotics, U.: Polynomial algorithms for partitioning problems on graphs
with fixed clique-width. In: Proceedings of the 12th Annual ACM-SIAM Sympo-
sium on Discrete algorithms, SODA 2001, pp. 468–476. SIAM (2001)

17. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126(2–3), 197–221 (2003)

18. Lackner, M., Pichler, R., Rümmele, S., Woltran, S.: Multicut on graphs of bounded
clique-width. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 115–126.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31770-5 11

19. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the max-
imum happy vertices problem. Comput. Oper. Res. 103, 265–276 (2019)

20. Lozin, V.V.: Clique-width of unit interval graphs. arXiv:0709.1935 preprint (2007)
21. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier,

Amsterdam (1995)
22. Mahadev, N., Peled, U.: Threshold Graphs and Related Topics. In: Annals of Dis-

crete Mathematics, vol. 56. North Holland (1995)
23. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing graph poly-

nomials on graphs of bounded clique-width. In: Fomin, F.V. (ed.) WG 2006.
LNCS, vol. 4271, pp. 191–204. Springer, Heidelberg (2006). https://doi.org/10.
1007/11917496 18

24. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. In:
Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp.
142–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8 12

https://doi.org/10.1007/978-3-319-75172-6_20
https://doi.org/10.1007/978-3-319-75172-6_20
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/3-540-45477-2_12
https://doi.org/10.1007/11604686_6
https://doi.org/10.1007/978-3-319-73117-9_10
https://doi.org/10.1007/978-3-642-31770-5_11
http://arxiv.org/abs/0709.1935
https://doi.org/10.1007/11917496_18
https://doi.org/10.1007/11917496_18
https://doi.org/10.1007/978-3-319-78825-8_12

Maximizing Happiness in Graphs of Bounded Clique-Width 103

25. Xu, Y., Goebel, R., Lin, G.: Submodular and supermodular multi-labeling, and
vertex happiness. arXiv e-prints p. 1606.03185 (2016)

26. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: Xu, D., Du, D., Du, D. (eds.) COCOON
2015. LNCS, vol. 9198, pp. 159–170. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21398-9 13

27. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593, 117–131 (2015)

28. Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation
algorithms for the maximum happy vertices and edges problems. Algorithmica
80(5), 1412–1438 (2018)

https://doi.org/10.1007/978-3-319-21398-9_13
https://doi.org/10.1007/978-3-319-21398-9_13

Graph Hamiltonicity Parameterized
by Proper Interval Deletion Set

Petr A. Golovach1, R. Krithika2(B), Abhishek Sahu3, Saket Saurabh3,
and Meirav Zehavi4

1 University of Bergen, Bergen, Norway
Petr.Golovach@uib.no

2 Indian Institute of Technology Palakkad, Palakkad, India
krithika@iitpkd.ac.in

3 The Institute of Mathematical Sciences, HBNI, Chennai, India
{asahu,saket}@imsc.res.in

4 Ben-Gurion University, Beersheba, Israel
meiravze@bgu.ac.il

Abstract. The Path Cover and Cycle Cover problems are well-
known generalizations of the classical Hamiltonian Path and Hamil-
tonian Cycle problems. Here, we are given an undirected graph on n
vertices and a positive integer r and the task is to check if there are r
vertex-disjoint paths (cycles) that together visit all the vertices of the
graph exactly once. Path Cover and Cycle Cover remain NP-hard
even when restricted to chordal graphs (Information Processing Let-
ters 1986) but are polynomial-time solvable on proper interval graphs
(Discrete Mathematics 1993 and Proceedings of WADS 2019). In this
paper, we study the complexity of Path Cover and Cycle Cover
with respect to a structural parameter, namely, distance to proper inter-
val graphs. In particular, we show that Path Cover and Cycle Cover
are fixed-parameter tractable (FPT) when parameterized by k, the size
of a proper interval deletion set (a set of vertices whose deletion results
in a proper interval graph). For this purpose, we design an algorithm
with O(2O(k log k)nO(1)) running time for each of these problems. Our
algorithms use several interesting properties of proper interval graphs
and a dynamic programming procedure over clique partitions to solve
these problems in the mentioned time. As a consequence, we get the
same fixed-parameter tractability results for Hamiltonian Cycle and
Hamiltonian Path problems with the same parameterization. Recently,
Chaplick et al. (Proceedings of WADS 2019) obtained polynomial ker-
nels and compression algorithms for Path Cover and Cycle Cover
parameterized by a different measure of similarity with proper interval
graphs. Our FPT algorithms also adds to this study of structural param-
eterizations for these classical problems.

The paper received support from the Research Council of Norway via the project
“MULTIVAL” (grant no. 263317). This project received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-

vation programme (grant agreement No 819416). .

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 104–115, 2020.
https://doi.org/10.1007/978-3-030-61792-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_9

Graph Hamiltonicity 105

1 Introduction

Given an undirected graph, a Hamiltonian path (cycle) is a path (cycle) that
visits every vertex exactly once. Determining whether such paths and cycles exist
in a graph are the classical NP-complete Hamiltonian Path and Hamiltonian
Cycle problems [11]. A path (cycle) cover of a graph is a set of vertex-disjoint
paths (cycles) such that every vertex of the graph appears in one path (cycle)
in the set. A minimum path (cycle) cover is a path (cycle) cover of minimum
size. By definition, the size of a minimum path (cycle) cover of a graph with a
Hamiltonian path (cycle) is 1. In the Path Cover and Cycle Cover problems,
we are given an undirected graph on n vertices and a positive integer r and the
task is to determine if there exist a path cover and cycle cover, respectively,
of size at most r. As both these problems are generalizations of Hamiltonian
Path and Hamiltonian Cycle, they are NP-hard.

In algorithm theory, an active research area is to efficiently find solutions
to otherwise NP-hard problems by restricting the class of admissible inputs. To
this end, over the years, many special graph classes have been described in an
attempt to deepen the understanding of fundamental properties of graphs and
to improve the ability to solve practical problems efficiently. Examples include
perfect graphs, bipartite graphs, chordal graphs, split graphs, interval graphs and
proper interval graphs. The set of perfect graphs includes bipartite graphs and
chordal graphs and the set of chordal graphs includes interval graphs (which in
turn includes proper interval graphs) and split graphs. Many problems NP-hard
on general graphs like Independent Set, Clique, Coloring and Clique
Cover [11] are polynomial-time solvable on these special graph classes [12].
However, Hamiltonian Path and Hamiltonian Cycle are known to be NP-
complete on chordal graphs (and even on split graphs) [19].

Another approach to solving NP-hard problems is to design efficient
exponential-time algorithms. Parameterized algorithms is one class of such algo-
rithms. In the parameterized algorithms and complexity framework, each prob-
lem instance is associated with a non-negative integer k called parameter, and
a problem is said to be fixed-parameter tractable (FPT) if it can be solved in
f(k)nO(1) time for some computable function f , where n is the input size. Algo-
rithms with such running times are called FPT algorithms or parameterized
algorithms. Note that any non-polynomial factor in the running time of a param-
eterized algorithm is required to be a function of only the parameter. Informally,
a problem is FPT if it can be solved efficiently (in polynomial-time) on instances
with small parameter values. For convenience, the running time f(k)nO(1) where
f grows superpolynomially with k is denoted as O∗(f(k)). Further details on
parameterized algorithms can be found in [7].

Parameterizations for Path Cover and Cycle Cover. A natural parameter
for Path Cover and Cycle Cover is the solution size, i.e., the size r of the
path cover or cycle cover that we are looking for. In order for an FPT algorithm
to exist for a parameterized problem, it is necessary that it must be solvable in
polynomial time when the parameter is a constant. However, for r = 1, Path

106 P. A. Golovach et al.

Cover is Hamiltonian Path and Cycle Cover is Hamiltonian Cycle.
Therefore, an O∗(f(r))-time algorithm (or even an O∗(nf(r))-time algorithm)
for either of the problems will imply P=NP. In other words, Path Cover and
Cycle Cover are paraNP-hard when parameterized by solution size.

In the early years of parameterized complexity and algorithms, problems
were almost always parameterized by the solution size. However, recent research
has focused on other parameterizations based on structural parameters in the
input. A parameter that has gained significant attention in this context is the
size of a modulator to a family of graphs. Let F be a family of graphs. Given a
graph H and a set S ⊆ V (H), we say that S is an F-modulator if H − S is in
F . For example, if F is the family of independent sets, forests, bipartite graphs,
interval graphs and chordal graphs, then the modulator corresponds to a vertex
cover, feedback vertex set, odd cycle transversal, interval deletion set and chordal
deletion set, respectively. The size of S is also called the vertex-deletion distance
to F . One of the earliest works in the realm of alternate parameterizations is by
Cai [4] who studied Coloring problems parameterized by the vertex-deletion
distance to various graph classes including bipartite graphs and split graphs.
Fellows et al. [10] studied alternate parameterizations for problems that were
proven to be intractable with respect to the standard parameterization. This led
to a whole new ecology program and opened up a floodgate of new and exciting
research. We refer to [15] for a detailed introduction to the whole program as well
as the thesis of Jansen [14]. There has also been an extensive study of structural
parameters for problems related to Path Cover and Cycle Cover such as
Cycle Packing, Longest Path and Longest Cycle [3,17].

Our Choice of Parameter and Our Result. Focusing on structural parame-
ters for Path Cover and Cycle Cover, the main topic of this paper, as these
problems are NP-complete on chordal graphs [2], we cannot hope to have an
algorithm with running time O∗(nf(k)), where k is the size of the given chordal
deletion set, unless P=NP. Therefore, a natural parameter in this context is
the size of the given modulator to a subclass of chordal graphs on which these
problems are polynomial-time solvable. This is the starting point of our work.
A popular graph class that is a subset of the class of chordal graphs (and even
interval graphs) is the one of proper interval graphs (also known as indifference
graphs and unit interval graphs in the literature). A graph is a proper inter-
val graph if its vertices can be assigned to intervals such that there is an edge
between two vertices if and only if their corresponding intervals have non-empty
intersection. Further, this set of intervals should satisfy the property that no
interval properly contains another. Proper interval graphs have a rich geometric
structure which makes them amenable to efficient algorithms for most classical
problems [12]. They have applications in several fields like scheduling, archaeol-
ogy, developmental psychology and DNA sequencing [12]. Also, proper interval
graphs are well studied in the framework of parameterized algorithms in the con-
text of vertex-deletion problems [5,13]. It is also known that Cycle Cover and
Path Cover can be solved in polynomial time on proper interval graphs [6,8].
In this paper, we study the complexity of Path Cover and Cycle Cover

Graph Hamiltonicity 107

parameterized by the size of a proper interval deletion set. A set of vertices is
called a proper interval deletion set if its deletion results in a proper interval
graph. We show that Path Cover and Cycle Cover parameterized by the
size of a proper interval deletion set are FPT and this is the main result of the
paper.

Theorem 1. Path Cover and Cycle Cover parameterized by the size k of
a proper interval deletion set can be solved in O∗(2O(k log k)) time.

We assume that the proper interval deletion set T is part of the input. This
assumption is reasonable as given a graph H and an integer k, there is an algo-
rithm that, in O∗(6k) time, outputs a proper interval deletion set of size at most
k (if one exists) [5,13]. Our algorithms use several interesting properties of proper
interval graphs and a dynamic programming procedure over clique partitions to
solve these problems in the mentioned time. As a consequence, we get the same
fixed-parameter tractability results for Hamiltonian Cycle and Hamilto-
nian Path problems with the same parameterization. By parameterizing Path
Cover and Cycle Cover with respect to the size of a proper interval dele-
tion set as parameter, we attempt to understand the complexity of the problem
on almost proper interval graphs. Recently, Chaplick et al. [6] obtained polyno-
mial kernels and compression algorithms for Path Cover and Cycle Cover
parameterized by a different measure of similarity with proper interval graphs.
Our FPT algorithms also add to this study of structural parameterizations for
these classical problems.

Overview of Our Algorithm and Techniques. Consider an instance I =
(H,T, r) of Path Cover or Cycle Cover. Let P be a minimum path cover of
H that we are looking for. We first guess the following properties of P. Intialize
the set of variables S to be the empty set. Let G denote H − T .

– We guess the number � of paths in P that have a vertex from T . Clearly,
� ≤ k and the number of choices for � is k. Let Pm = {P1, . . . , P�} denote the
set of these paths.

– For each Pi ∈ Pm, we guess if Pi has zero, one or two endpoints in T . The
number of possible choices in this step is 2O(k).

– For each Pi ∈ Pm, we guess the order λ(Pi) of the vertices of V (Pi) ∩ T on
Pi. The number of possible choices in this step is 2O(k log k).

– For each Pi ∈ Pm that starts at a vertex in G, we add Si($, t) to S where t
is the first vertex according to λ(Pi). The variable Si($, t) indicates that we
need to assign it a path in G that ends in a neighbour of t.

– For each Pi ∈ Pm that ends at a vertex in G, we add Si(t′, $) to S where t′

is the last vertex according to λ(Pi). The variable Si(t′, $) indicates that we
need to assign it a path in G that starts in a neighbour of t′.

– For each Pi ∈ Pm, for each pair of vertices t ∈ T and t′ ∈ T that are consec-
utive according to λ(Pi), we add Si(t, t′) to S indicating that Si(t, t′) should
be assigned a path in G that is between a neighbour of t and a neighbour of
t′.

108 P. A. Golovach et al.

Clearly, |S| = O(k) and the task of finding a minimum path cover of H reduces
to the problem of finding an assignment of vertex-disjoint paths in G to the
variables in S satisfying the appropriate endpoint constraints while minimizing
the size of a minimum path cover of G[X] where V (G) \ X is the set of vertices
that are on some path assigned to some variable in S. Similarly, the task of
finding a minimum cycle cover of H also boils down to the problem of finding
certain constrained paths in G which is a proper interval graph. We first show
that these paths are very structured due to the properties given by a proper
interval ordering. Then, we describe a dynamic programming procedure to find
such structured paths.

Preliminaries. For graph theoretic terms not defined here, refer to [9]. A path
P = (v1, . . . , v�) is a sequence of distinct vertices where every consecutive pair of
vertices are adjacent. We call P a (v1, v�)-path and say that P starts at v1 and
ends at v�. The length of P is defined as |V (P)|. A cycle (v1, . . . , v�) is a sequence
of vertices such that v1, . . . , v� is a path and v�v1 is an edge. For a collection P of
paths (or cycles), V (P) denotes the set

⋃
P∈P V (P). The concatenation of paths

P1 = (v1, · · · , vj−1, vj) and P2 = (vj , vj+1, · · · , v�) such that V (P1) ∩ V (P2) =
{vj} is defined as the path P3 = (v1, · · · , vj−1, vj , vj+1, · · · , v�). The vertices of
a proper interval graph G can be ordered by a permutation π : V (G) → [|V (G)|]
having the following property.

Proposition 1 ([18]). Let G be a proper interval graph with proper interval
ordering π. For every pair u, v of vertices with π(u) < π(v), if uv ∈ E(G), then
{w ∈ V (G) | π(u) ≤ π(w) ≤ π(v)} is a clique in G.

Given a subset S of vertices of a proper interval graph G with proper interval
ordering π, the leftmost vertex in S is the vertex v in S with least π(v) and
the rightmost vertex in S is the vertex u in S with greatest π(u). Given a
proper interval representation, the following result states that the vertex set of
the proper interval graph can be organized into a sequence of cliques satisfying
certain properties.

Proposition 2 ([16]). Given a proper interval graph G with proper interval
ordering π, there is a linear-time algorithm that outputs a partition of V (G)
into a sequence Q1, · · · , Qq of (pairwise vertex-disjoint) cliques satisfying the
following properties. (1) For each pair of vertices u ∈ Qi, v ∈ Qj with 1 ≤ i <
j ≤ q, π(v) > π(u). (2) For every edge uv ∈ E(G), there exists 1 ≤ i ≤ q such
that either u, v ∈ Qi or u ∈ Qi and v ∈ Qi+1.

Observe that this partition is different from the classical clique path decom-
position of (proper) interval graphs. We refer to the ordered set of cliques
Q = {Q1, · · · , Qq} as clique partition of G.

2 Structure of Path and Cycle Covers

Recall that a path cover P (cycle cover C) of a graph H is a set of vertex-
disjoint paths (cycles) in H such that V (P) = V (H) (V (C) = V (H)). Consider

Graph Hamiltonicity 109

an instance I = (H,T, r) of Path Cover or Cycle Cover. Let π and Q =
{Q1, · · · , Qq} denote the proper interval ordering and clique partition of G =
H − T , respectively, obtained in polynomial time [12,16]. Let T = {t1, . . . , tk}.

2.1 Paths and Cycles in Proper Interval Graphs

In this section, we list some fundamental properties of paths and cycles in proper
interval graphs.

Proposition 3 ([1]). Every connected proper interval graph has a Hamiltonian
path, and a proper interval graph has a Hamiltonian cycle if and only if it is 2-
connected with at least three vertices.

Definition 1 (Monotone path). Let G be a proper interval graph with proper
interval ordering π. A path P = (v1, . . . , vr) in G is called monotone if π(v1) <
π(v2) < · · · < π(vr) or π(v1) > π(v2) > · · · > π(vr).

Observation 2. If P is a path in a proper interval graph G with proper interval
ordering π, then there is a monotone path P ′ in G with V (P) = V (P ′).

Definition 2 (2-monotone cycle). Let G be a proper interval graph with
proper interval ordering π. A cycle C = (v1, v2, . . . , vi, vi+1, . . . , vr) in G is
called 2-monotone if there is an integer i ∈ [r] such that (v1, v2, . . . , vi) and
(v1, vr, . . . , vi) are monotone paths that are internally vertex-disjoint and start
and end at the same vertices.

Observation 3. If C is a cycle in a proper interval graph G with proper interval
ordering π, then there is a 2-monotone cycle C ′ in G such that V (C) = V (C ′).

Next, we define the notion of i-monotone paths in proper interval graphs.

Definition 3 (i-Monotone path). Let G be a proper interval graph with
proper interval ordering π. For a positive integer i, a path P is called i-monotone
if P is the concatenation of i monotone paths.

Proposition 4. If P is a path from a vertex s in a proper interval graph G with
proper interval ordering π, then there is an i-monotone path P ′ in G from s with
V (P) = V (P ′) for some i ∈ [2].

Proposition 5. If P is a (s, t)-path in a proper interval graph G with proper
interval ordering π, then there is an i-monotone (s, t)-path P ′ in G with V (P) =
V (P ′) for some i ∈ [3].

2.2 Canonical Minimum Path and Cycle Covers

For a path cover P of H, define the following sets.

– Po = {Pi ∈ P : V (Pi) ∩ T = ∅}, the set of paths in P that are completely
contained in G.

110 P. A. Golovach et al.

– Pm = P \ Po, the set of paths in P that have at least one vertex from T .
– M(P) is the set of maximal subpaths of paths in Pm that are contained in

G. That is, for each P in Pm, a subpath S of P with V (S) ⊆ V (G) is in
M(P) if and only if there is no subpath S′ of P such that V (S′) ⊆ V (G) and
V (S) ⊂ V (S′).

– S(P) is the set of maximal subpaths of paths in M(P) that are monotone.
That is, for each P in M(P), a subpath S of P is in S(P) if and only if S is
monotone and there is no monotone subpath S′ of P such that V (S) ⊂ V (S′).

We refer to elements of S(P) as segments of P. In the example shown
below, Pm contains a path P from t1 to t2 and M(P) = {S} where
S = (a, b, c, d, e, f, g, h, i, j, k, l). The set of segments is S(P) = {S1, S2, S3}
where S1 = (c, b, a), S2 = (c, d, e, f, g, h) and S3 = (l, k, j, i, h).

Definition 4 (Pseudo-consecutive vertices). Two vertices u, v ∈ T are said
to be pseudo-consecutive if u and v are in the same path P in P and there is no
other vertex of T that is in the subpath of P between u and v.

In the example shown above, t1 are t2 are pseudo-consecutive.

Definition 5 (Pseudo-adjacent vertices). Let y be a vertex in G that is an
endpoint of some path in P. A vertex x ∈ T is said to be pseudo-adjacent to y
if x and y are in the same path P in P and there is no other vertex of T that is
in the subpath of P between y and x.

Definition 6 (Relevant and irrelevant vertices in Qi). For a path S in
S(P)∪Po that contains at least one vertex from Qi, the set Ri(P, S) of relevant
vertices is V (S)∩Qi if |V (S)∩Qi| ≤ 2, otherwise Ri(P, S) consists of the leftmost
and the rightmost vertices of V (S)∩Qi. The collection Ri(P) of relevant vertices
contains the set Ri(P, S) of every path S in S(P)∪Po that contains at least one
vertex from Qi. A vertex in Qi that is not in Ri(P) called irrelevant.

An example is shown in the following figure.

Definition 7 (Nice path cover). A path cover P is said to be nice if the
following properties hold.

– Every path in Po is monotone.
– For any i ∈ [q], there is at most one path P in Po such that Qi ∩ V (P)
= ∅.

Graph Hamiltonicity 111

– For every path P in Pm, for every pair of pseudo-consecutive modulator ver-
tices t, t′ in P that are not consecutive in P , the maximal subpath of P between
t and t′ that is contained in G is i-monotone for some i ∈ [3].

– For every path P in Pm starting (or ending) at a vertex s in G whose pseudo-
adjacent modulator vertex is t, the maximal subpath of P contained in G that
is between s and the neighbour of t in P is i-monotone for some i ∈ [2].

– For any i ∈ [q], if |Qi| > 10k, then each segment S ∈ S(P) with V (S)∩Qi
= ∅
that neither starts nor ends at a vertex in Qi satisfies |V (S) ∩ Qi| ≥ 2.

Lemma 1. If P is a nice minimum path cover of H, then |S(P)| ≤ 4k and for
any i ∈ [q], |Ri(P)| ≤ 8k + 2.

Definition 8 (Leftmost and rightmost set of vertices). Consider a subset
S of vertices of G. If |S| > 10k, then let LM(S) denote the 10k leftmost vertices
of S and RM(S) denote the 10k rightmost vertices of S. Otherwise, LM(S) =
RM(S) = S.

Definition 9 (Boundary vertices of Qi). Consider the following sets.

– Li = LM(Qi) and Ri = RM(Qi).
– For each x ∈ T , Li

x = LM(Qi ∩ N(x)) and Ri
x = RM(Qi ∩ N(x)).

– For each x, y ∈ T , Li
xy = LM(Qi ∩N(x)∩N(y)) and Ri

xy = RM(Qi ∩N(x)∩
N(y)).

The set B(Qi) = Li ∪Ri ∪x∈T (Li
x ∪Ri

x)∪y,z∈T (Li
yz ∪Ri

yz) is called the boundary
vertices of Qi.

Notice that for any i ∈ [q], the size of B(Qi) is O(k3).

Definition 10. For every vertex v ∈ V (G), let ρ(v) denote the tuple (m1,m2)
defined as follows: m1 is the vertex in T that preceeds v in the path in P that
contains v. If no such vertex exists, then m1 = $. Similarly, m2 is the vertex in
T that succeeds v in the path in P that contains v. If no such vertex exists, then
m2 = $.

Definition 11 (Canonical path cover). A nice path cover P is said to be
canonical if for each i ∈ [q] and each S ∈ S(P), Ri(P, S) ⊆ B(Qi) and the
following properties are satisfied.

– For a segment S ∈ S(P) passing through Qi, its first and last vertex in Qi

are in Li ∪ Ri.
– For a segment S ∈ S(P) that ends in Qi, the following hold.

• If S ∩ Qi = (a) and ρ(a) = ($, $), then a ∈ Li. If S ∩ Qi = (a) and
ρ(a) = (m1,m2), then a ∈ Li

m1m2
∪ Ri

m1m2
. If S ∩ Qi = (a) and ρ(a) =

(m1, $), then a ∈ Li
m1

∪ Ri
m1

. If S ∩ Qi = (a) and ρ(a) = ($,m2), then
a ∈ Li

m2
∪ Ri

m2
.

• If Ri(P, S) = (a, b) and ρ(a) = (m1, $), ρ(b) = ($,m2), then a ∈ Li
m1

∪
Ri

m1
, b ∈ Ri

m2
∪ Li

m2
. If Ri(P, S) = (a, b) and ρ(a) = ($, $), ρ(b) =

($,m2), then a ∈ Li, b ∈ Ri
m2

∪ Li
m2

. If Ri(P, S) = (a, b) and ρ(a) =
(m1, $), ρ(b) = ($, $), then a ∈ Li

m1
∪Ri

m1
, b ∈ Ri∪Li. If Ri(P, S) = (a, b)

and ρ(a) = ($, $), ρ(b) = ($, $), then a ∈ Li, b ∈ Ri.

112 P. A. Golovach et al.

– For a segment S ∈ S(P) that starts in Qi, the following hold.
• If S ∩ Qi = (a) and ρ(a) = ($, $), then a ∈ Ri. If S ∩ Qi = (a) and

ρ(a) = (m1, $), then a ∈ Li
m1

∪ Ri
m1

. If S ∩ Qi = (a) and ρ(a) = ($,m2),
then a ∈ Ri

m2
∪ Li

m2
.

• If Ri(P, S) = (a, b) and ρ(a) = ($, $), ρ(b) = ($,m2), then a ∈ Li ∪
Ri, b ∈ Ri

m2
∪ Li

m2
. If Ri(P, S) = (a, b) and ρ(a) = (m1, $), ρ(b) = ($, $),

then a ∈ Li
m1

∪ Ri
m1

, b ∈ Ri. If Ri(P, S) = (a, b) and ρ(a) = ($, $),
ρ(b) = ($, $), then a ∈ Li, b ∈ Ri.

Lemma 2. Given a path cover P of H, a canonical path cover P∗ of H with
|P∗| ≤ |P| can be obtained in polynomial time.

We define a similar notion of canonical cycle covers and show that there
exists a minimum cycle cover of H that is canonical. The details are deferred to
the full version of the paper.

3 Finding Canonical Minimum Path and Cycle Covers

Let P denote a minimum canonical path cover of H. We define the following
functions to understand the relationship between the segments of a canonical
path cover P. The functions F : S(P) × S(P) → {0, 1} and L : S(P) × S(P) →
{0, 1} are defined such that F(S, S′) = 1 (L(S, S′) = 1) if and only if S and
S′ start (end) at the same vertex. The functions F1 : S(P) → T ∪ {0} and
L1 : S(P) → T ∪{0} are defined such that F1(S) = t if S starts immediately after
t, otherwise F1(S) = 0. Similarly, L1(S) = t if S ends just before t, otherwise
L1(S) = 0.

Given P, determining S(P) is easy and in turn given S(P), determining F ,
F1, L and L1 is easy. It is now natural to ask what choices of (F ,L,F1,L1) lead
to a set S(P) that in turn leads to a minimum canonical path cover P. Let us
first guess the size of S(P). From Lemma 1, it is at most 4k. For a correct choice
of this number, the choice (F ,L,F1,L1) that minimizes the size of a minimum
path cover of G[X] where V (G)\X is the set of vertices that are in some segment
assigned to a variable in S is the one the results in that minimum path cover.

The Guessing Phase. With this information, we proceed as follows. Let P
be a minimum canonical path cover that we are looking for. We first guess the
following properties of P. Intialize S to be the empty set. We guess the number
� of paths in Pm. Clearly, � ≤ k and let P1, . . . , P� denote the paths in Pm. For
each Pi ∈ Pm, we guess if Pi has zero, one or two endpoints in T . For each
Pi ∈ Pm, we guess the order of vertices of V (Pi) ∩ T . For each Pi ∈ Pm, for
each pair of pseudo-consecutive vertices t and t′ in Pi, we guess if t and t′ are
consecutive in Pi (in which case t and t′ must be adjacent) or not. It t and t′ are
not consecutive in Pi, then we guess if the maximal subpath P of the (t, t′)-path
that is contained in G is 1-monotone or 2-monotone or 3-monotone.

Graph Hamiltonicity 113

– If P is 1-monotone, then add Si to S and set F1(Si) = t, L1(Si) = t′.
– If P is 2-monotone, then add Si

1 and Si
2 to S and either set L1(Si

1) = t, F1(Si
1) =

0, F1(Si
2) = 0, L1(Si

2) = t′, F(Si
1, S

i
2) = 1, L(Si

1, S
i
2) = 0 or set F1(Si

1) = t,
L1(Si

1) = 0, F1(Si
2) = t′, L1(Si

2) = 0, L(Si
1, S

i
2) = 1, F(Si

1, S
i
2) = 0.

– If P is 3-monotone, then we add the variables Si
1, Si

2 and Si
3 to S. We set

L1(Si
1) = t, F1(Si

1) = 0, F1(Si
2) = 0, L1(Si

2) = 0, F1(Si
3) = t′, L1(Si

3) = 0,
F(Si

1, S
i
2) = 1, L(Si

2, S
i
3) = 1, F(Si

1, S
i
3) = 0, F(Si

2, S
i
3) = 0, L(Si

1, S
i
2) = 0,

L(Si
1, S

i
3) = 0.

For each Pi ∈ Pm, for each ordered pair of pseudo-adjacent vertices x ∈ T
and y ∈ V (G), we guess if the maximal subpath P of the (x, y)-path that is
contained in G is 1-monotone or 2-monotone. We also add variables to S as
mentioned earlier. For each pair S and S′ of variables in S such that F(S, S′)
(or L(S, S′)) is not yet set is set to 0. Similarly, for each variable S in S such
that F1(S) (or L1(S)) is not yet set is set to 0.

The total number of choices is 2O(k log k). Once a choice is fixed, the problem
of finding a mnimum path cover P now reduces to the problem of finding an
assignment of segments to variables in S that satisfy the relationships given by
(S,F ,L,F1,L1) while minimizing the size of a minimum path cover of G − X
where X is the set of vertices of H that are in a segment assigned to some
variable in S. In other words, we find an assignment of segments to variables in
S that satisfy the relationships given by (S,F ,L,F1,L1) resulting in a set of
paths Pm while minimizing the number of paths in Po. Note that not all choices
of (S,F ,L,F1,L1) may necessarily lead to a minimum path cover Po ∪ Pm of
H. However, at least one of the choices that we generate leads to one.

Consider a particular choice of (S,F ,L,F1,L1). This fixes how the paths in
Pm interact with T . That is, for any path P in Pm, the vertices of T that are in P
and their order in P are fixed. Furthernore, the paths between any two pseudo-
consecutive vertices and the paths between any two pseudo-adjacent vertices are
also fixed. This also fixes the number of segments and the relationship among
the segments. We will describe a dynamic programming algorithm that finds a
minimum canonical path cover respecting this choice ϑ = (S,F ,L,F1,L1).

Finding an Assignment of Segments for ϑ = (S,F ,L,F1,L1). Let Q0 = ∅.
For each i ∈ [q], let Gi denote the graph G[Q1 ∪· · ·∪Qi]. Let us first understand
the interaction of the solution (minimum canonical path cover with the proper-
ties given by (S,F ,L,F1,L1)) with Gi. Subsequently, we refer to S as segments
instead of variables that have to be assigned segments.

Index of an Entry: An entry in the table Ti is indexed by a tuple
(Sf ,X ,Xo,A, B) with the following interpretation.

– Sf ⊆ S denotes the segments that have no vertex from Qi+1 ∪ . . . ∪ Qq. That
is, these segments are completely contained in Gi.

– X denotes the set of relevant vertices of all segments from S in Qi. That is,
for every S ∈ S, XS in X is the set of relevant vertices of S in Qi. If XS is
the empty set, then the segment corresponding to S has no vertex from Qi.
Otherwise, XS has a single vertex or an ordered pair of vertices. If XS is an

114 P. A. Golovach et al.

ordered pair of vertices (v1, v2), we call v1 the first relevant vertex (denoted
by XS(1)) and v2 the last relevant vertex (denoted by XS(2)) of S in Qi. If
XS has a single vertex v, we call v first and last relevant vertex of S in Qi.

– Xo denotes the set of relevant vertices of the unique monotone path in Po

that has a vertex from Qi.
– A ∈ [0, 1, 2, 3, 4]|S| represents the interactions of segments from S with Qi.

• aS = 0 iff the segment S does not intersect Qi and aS = 1 iff the segment
S has at least one vertex from Qi but neither starts nor ends in Qi.

• aS = 2 (aS = 3) iff the segment S starts (ends) but does not end (start)
in Qi and aS = 4 iff the segment S starts and ends in Qi.

– Similarly, B ∈ {0, 1, 2, 3, 4} represents the interaction of the monotone path
P in Po with Qi.

We define the notion of valid indices and show that for each i ∈ [q], the maximum
number of valid indices is O∗(2O(k log k)).

(Optimum) Partial Solutions: For σ = (Sf ,X ,Xo,A, B), a collection of
paths Pd � Pu is a partial solution of Ti(σ) if the following conditions hold. Let
h : Sf � {S ∈ S : aS ∈ {1, 2}} → Pu denote the assignment of paths in Pu to
variables in Sf � {S ∈ S : aS ∈ {1, 2}}.

– |Pu| = |Sf | + |{S ∈ S : aS ∈ {1, 2}}| and h is injective. Further, every path
P in Pd ∪ Pu is monotone and satisfies V (P) ⊆ Q1 ∪ . . . Qi.

– Every vertex in Q1 ∪· · ·∪Qi is in a path in Pd ∪Pu. Further, the paths in Pu

take their respective relevant vertices in Qi according to the assignment X i.e.
the first and last vertices of XS are the first and last vertices V (h(S)) ∩ Qi.

– Every pair Pi, Pj of distinct paths in Pd ∪ Pu are internally vertex-disjoint.
Further, they are vertex-disjoint except when F(Pi, Pj) = 1 or L(Pi, Pj) = 1.

– For each S ∈ dom(h), h(S) starts at a vertex in N(m1) if F1(S) = m1 and
for each S ∈ Sf , h(S) ends at a vertex in N(m2) if L1(S) = m2.

– If F(Si, Sj) = 1 and Si ∈ dom(h), then Sj ∈ dom(h) and h(Si) and h(Sj)
start at the same vertex. Also, if L(Si, Sj) = 1 and Si ∈ Sf , then Sj ∈ Sf

and h(Si) and h(Sj) end at the same vertex.
– At most one path from Pd has relevant vertices in Qi and these vertices are

given by Xo. Any path P = h(S) with S ∈ dom(h) and at most one path
from Pd start and end in Qi iff aS (and/or B) is in {2, 4}. Any path P = h(S)
with S ∈ dom(h) and at most one path from Pd do not start but end in Qi

iff (and/or B) is in {1, 3}.

Let B∗ = 1 if B ∈ {3, 4}, 0 otherwise. Over all possible partial solutions Pd ∪Pu,
Ti(σ) stores the one that minimizes the value of |Pd| − (1 − B∗). Such a partial
solution is called an optimum partial solution. In other words, Ti(σ) stores a
partial solution that minimizes the number of paths contained inside Pd that
end in Gi. If there is a path in Pd with B value either 1 or 2 in Qi, it has a
vertex in Qi+1 and hence not counted. We also store the size of an optimum
solution denoted by |Ti(σ)|. An optimum solution for an entry in Tq where every
path in the solution has ended in Gq = G gives the required answer. We show

Graph Hamiltonicity 115

how to compute all the entries in T in O∗(2O(k log k)) time. This results in an
O∗(2O(k log k))-time algorithm for Path Cover.

A similar algorithm for Cycle Cover based on finding canonical minimum
cycle covers is described in the full version of the paper.

References

1. Bertossi, A.A.: Finding hamiltonian circuits in proper interval graphs. Inf. Process.
Lett. 17(2), 97–101 (1983)

2. Bertossi, A.A., Bonuccelli, M.A.: Hamiltonian circuits in interval graph general-
izations. Inf. Process. Lett. 23(4), 195–200 (1986)

3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle
problems. Theoret. Comput. Sci. 511, 117–136 (2013)

4. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math.
127(3), 415–429 (2003)

5. Cao, Y.: Unit interval editing is fixed-parameter tractable. Inf. Comput. 253(Part
1), 109–126 (2017)

6. Chaplick, S., Fomin, F.V., Golovach, P.A., Knop, D., Zeman, P.: Kerneliza-
tion of Graph Hamiltonicity: Proper H -Graphs. In: Friggstad, Z., Sack, J.-R.,
Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 296–310. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 22

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Damaschke, P.: Paths in interval graphs and circular arc graphs. Discrete Math.
112(1), 49–64 (1993)

9. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

10. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh,
S.: The complexity ecology of parameters: an illustration using bounded max leaf
number. Theory Comput. Syst. 45(4), 822–848 (2009)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H.Freeman and Company (1979)

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Second Edition.
Elsevier Science B.V. (2004)

13. van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4),
845–867 (2013)

14. Jansen, B.M.P.: The Power of Data Reduction: Kernels for Fundamental Graph
Problems. Ph.D. thesis, Utrecht University, The Netherlands (2013)

15. Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: parameter ecology and the deconstruction of computational complexity.
Eur. J. Combinat. 34(3), 541–566 (2013)

16. Ke, Y., Cao, Y., Ouyang, X., Wang, J.: Unit Interval Vertex Deletion: Fewer Ver-
tices are Relevant. arXiv e-prints p. 1607.01162 (2016)

17. Krithika, R., Sahu, A., Saurabh, S., Zehavi, M.: The parameterized complexity of
cycle packing: indifference is not an issue. Algorithmica 81(9), 3803–3841 (2019)

18. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Com-
put. Math. Appl. 25(7), 15–25 (1993)

19. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math.
156(1), 291–298 (1996)

https://doi.org/10.1007/978-3-030-24766-9_22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

Graph Square Roots of Small Distance
from Degree One Graphs

Petr A. Golovach1(B), Paloma T. Lima1, and Charis Papadopoulos2

1 Department of Informatics, University of Bergen, Bergen, Norway
{petr.golovach,paloma.lima}@uib.no

2 Department of Mathematics, University of Ioannina, Ioannina, Greece
charis@uoi.gr

Abstract. Given a graph class H, the task of the H-Square Root
problem is to decide, whether an input graph G has a square root H that
belongs to H. We are interested in the parameterized complexity of the
problem for classes H that are composed by the graphs at vertex deletion
distance at most k from graphs of maximum degree at most one, that
is, we are looking for a square root H such that there is a modulator
S of size k such that H − S is the disjoint union of isolated vertices
and disjoint edges. We show that different variants of the problems with
constraints on the number of isolated vertices and edges in H − S are
FPT when parameterized by k by providing algorithms with running time

22O(k) · nO(1). We further show that the running time of our algorithms
is asymptotically optimal and it is unlikely that the double-exponential
dependence on k could be avoided. In particular, we prove that the VC-k
Root problem, that asks whether an input graph has a square root with

vertex cover of size at most k, cannot be solved in time 22o(k) · nO(1)

unless the Exponential Time Hypothesis fails. Moreover, we point out
that VC-k Root parameterized by k does not admit a subexponential
kernel unless P=NP.

Keywords: Graph square root · Parameterized complexity ·
Structural parameterization.

1 Introduction

Squares of graphs and square roots constitute widely studied concepts in graph
theory, both from a structural perspective as well as from an algorithmic point of
view. A graph G is the square of a graph H if G can be obtained from H by the
addition of an edge between any two vertices of H that are at distance two. In
this case, the graph H is called a square root of G. It is interesting to notice that
there are graphs that admit different square roots, graphs that have a unique
square root and graphs that do not have a square root at all. In 1994, Motwani

The paper received support from the Research Council of Norway via the projects
“CLASSIS” (grant no. 249994) and “MULTIVAL” (grant no. 263317).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 116–128, 2020.
https://doi.org/10.1007/978-3-030-61792-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_10

Graph Square Roots of Small Distance from Degree One Graphs 117

and Sudan [24] proved that the problem of determining if a given graph G has
a square root is NP-complete. This problem is known as the Square Root
problem. The intractability of Square Root has been attacked in two different
ways. The first one is by imposing some restrictions on the input graph G. In
this vein, the Square Root problem has been studied in the setting in which
G belongs to a specific class of graphs [4,10,11,18,22,23,25].

Another way of coping with the hardness of the Square Root problem is by
imposing some additional structure on the square root H. That is, given the input
graph G, the task is to determine whether G has a square root H that belongs to
a specific graph class H. This setting is known as the H-Square Root problem
and it is the focus of this work. The H-Square Root problem has been shown
to be polynomial-time solvable for specific graph classes H [6,9,11,14–19,21]. It
is interesting to notice that the fact that H-Square Root can be efficiently
(say, polynomially) solved for some class H does not automatically imply that
H′-Square Root is efficiently solvable for every subclass H′ of H. On the
negative side, H-Square Root remains NP-complete on graphs of girth at
least 4 [7], split graphs [15], and chordal graphs [15]. The fact that all known
NP-hardness constructions involve dense graphs [7,15,24] and dense square roots,
raised the question of whether H-Square Root is polynomial-time solvable for
every sparse graph class H.

We consider this question from the Parameterized Complexity viewpoint for
structural parameterizations of H (we refer to the recent book of Cygan et al. [5]
for an introduction to Parameterized Complexity). More precisely, we are inter-
ested in graph classes H that are at small distance from a (sparse) graph class for
which H-Square Root can be solved in polynomial time. Within this scope,
the distance is usually measured either by the number of edge deletions, edge
additions or vertex deletions. This approach for the problem was first applied by
Cochefert et al. in [3], who considered H-Square Root, where H is the class of
graphs that have a feedback edge set of size at most k, that is, for graphs that
can be made forests by at most k edge deletions. They proved that H-Square
Root admits a compression to a special variant of the problem with O(k2) ver-
tices, implying that the problem can be solved in 2O(k4) + O(n4m) time, i.e.,
is fixed-parameter tractable (FPT) when parameterized by k. Herein, we study
whether the same complexity behavior occurs if we measure the distance by the
number of vertex deletions instead of edge deletions.

Towards such an approach, the most natural consideration for H-Square
Root is to ask for a square root of feedback vertex set of size at most k. The
approach used by Cochefert et al. [3] fails if H is the class of graphs that can be
made forests by at most k vertex deletions and the question of the parameter-
ized complexity of our problem for this case is open. In this context, we consider
herein the H-Square Root problem when H is the class of graphs of bounded
vertex deletion distance to a disjoint union of isolated vertices and edges. Our
main result is that the problem is FPT when parameterized by the vertex dele-
tion distance. Surprisingly, however, we conclude a notable difference on the
running time compared to the edge deletion case even on such a relaxed varia-

118 P. A. Golovach et al.

tion: a double-exponential dependency on the vertex deletion distance is highly
unavoidable. Therefore, despite the fact that both problems are FPT, the vertex
deletion distance parameterization for the H-Square Root problem requires
substantial effort. More formally, we are interested in the following problem.

Input: A graphG and nonnegative integers p, q, k such that p+2q+k = |V (G)|.
Task: Decide whether there is a square root H of G such that H − S is a

graph isomorphic to pK1 + qK2, for a set S on k vertices.

Distance-k-to-(pK1 + qK2) Square Root

Note that when q = 0, the problem asks whether G has a square root with a
vertex cover of size (at most) k and we refer to the problem as VC-k Root. If
p = 0, we obtain Distance-k-to-Matching Root. Observe also that, given an
algorithm solving Distance-k-to-(pK1 + qK2) Square Root, then by testing
all possible values of p and q such that p + 2q = |V (G)| − k, we can solve the
Distance-k-to-Degree-One Root problem, whose task is to decide whether
there is a square root H such that the maximum degree of H −S is at most one
for a set S on k vertices.

We show that Distance-k-to-(pK1 + qK2) Square Root can be solved in
22

O(k) ·nO(1) time, that is, the problem is FPT when parameterized by k, the size
of the deletion set. We complement this result by showing that the running time
of our algorithm is asymptotically optimal in the sense that VC-k Root, i.e.,
the special case of Distance-k-to-(pK1 + qK2) Square Root when q = 0,
cannot be solved in 22

o(k) · nO(1) time unless the Exponential Time Hypothesis
(ETH) of Impagliazzo, Paturi and Zane [12] (see also [5] for the introduction
to the algorithmic lower bounds based on ETH) fails. We also prove that VC-k
Root does not admit a kernel of subexponential in k size unless P=NP.

Motivated by the above results, we further show that the problem of testing
whether a given graph has a square root of bounded deletion distance to a clique
is also FPT parameterized by the size of the deletion set.

2 Preliminaries

We refer to the recent book of [5] for an introduction to Parameterized Com-
plexity and the textbook by Bondy and Murty [1] for any undefined graph ter-
minology. We denote by Kr the complete graph on r vertices. Given two graphs
G and G′, we denote by G+G′ the disjoint union of them. For a positive integer
p, pG denotes the disjoint union of p copies of G. The square of a graph H is
the graph G = H2 such that V (G) = V (H) and every two distinct vertices u
and v are adjacent in G if and only if they are at distance at most two in H.
If G = H2, then H is a square root of G. Two vertices u, v are said to be true
twins if NG[u] = NG[v]. A true twin class of G is a maximal set of vertices that
are pairwise true twins. Note that the set of true twin classes of G constitutes a
partition of V (G).

Graph Square Roots of Small Distance from Degree One Graphs 119

We will use integer linear programming as a subroutine in the proof of our
main result by translating part of our problem as an instance of the following:

Input: An m × p matrix A over Z and a vector b ∈ Z
m.

Task: Decide whether there is a vector x ∈ Z
p such that Ax ≤ b.

p-Variable Integer Linear Programming Feasibility

Lenstra [20] and Kannan [13] showed that the above problem is FPT parameter-
ized by p, while Frank and Tardos [8] showed that this algorithm can be made
to run also in polynomial space. We will make use of these results:

Theorem 2.1 ([8,13,20]). p-Variable Integer Linear Programming
Feasibility can be solved using O(p2.5p+o(p) ·L) arithmetic operations and space
polynomial in L, where L is the number of bits in the input.

3 FPT Algorithm for Distance-k-to-(pK1 + qK2) Square
Root

In this section we give an FPT algorithm for the Distance-k-to-(pK1 + qK2)
Square Root problem, parameterized by k. We use (G, p, q, k) to denote an
instance of the problem. Suppose that (G, p, q, k) is a Yes-instance and H is a
square root of G such that there is S ⊆ V (G) of size k and H − S is isomorphic
to pK1 + qK2. We say that S is a modulator, the p vertices of H −S that belong
to pK1 are called S-isolated vertices and the q edges that belong to qK2 are
called S-matching edges. Slightly abusing notation, we also use these notions
when H is not necessarily a square root of G but any graph such that H − S
has maximum degree one.

3.1 Structural Lemmas

We start by defining the following two equivalence relations on the set of ordered
pairs of vertices of G. Two pairs of adjacent vertices (x, y) and (z, w) are called
matched twins, denoted by (x, y) ∼mt (z, w), if the following conditions hold:

NG[x] \ {y} = NG[z] \ {w} and NG[y] \ {x} = NG[w] \ {z}.

A pair of vertices (x, y) is called comparable if NG[x] ⊆ NG[y]. Two comparable
pairs of vertices (x, y) and (z, w) are nested twins, denoted by (x, y) ∼nt (z, w),
if the following conditions hold:

NG(x) \ {y} = NG(z) \ {w} and NG[y] \ {x} = NG[w] \ {z}.

We use the following properties of matched and nested twins.

Lemma 3.1. Let (x, y) and (z, w) be two distinct vertex pairs (resp. comparable
pairs) of G that are matched twins (resp. nested twins). Then, the following
holds: (i) {x, y} ∩ {z, w} = ∅, (ii) xw, zy /∈ E(G), (iii) yw ∈ E(G), (iv) if
(x, y) ∼mt (z, w) then xz ∈ E(G), (v) if (x, y) ∼nt (z, w) then xz /∈ E(G), (vi)
G − {x, y} and G − {z, w} are isomorphic.

120 P. A. Golovach et al.

In particular, these properties allow us to classify pairs of vertices with respect
to ∼mt and ∼nt.

Observation 3.1. The relations ∼mt and ∼nt are equivalence relations on pairs
of adjacent vertices and comparable pairs of vertices, respectively.

Let H be a square root of a connected graph G with at least three vertices,
such that H is at distance k from pK1 + qK2, and let S be a modulator. Note
that S �= ∅, because G is connected and |V (G)| ≥ 3. Then an S-matching edge
ab of H satisfies exactly one of the following conditions:

1. NH(a) ∩ S = ∅ and NH(b) ∩ S �= ∅,
2. NH(a) ∩ S,NH(b) ∩ S �= ∅ and NH(a) ∩ NH(b) ∩ S = ∅,
3. NH(a) ∩ S,NH(b) ∩ S �= ∅ and NH(a) ∩ NH(b) ∩ S �= ∅.

We refer to them as type 1, 2 and 3 edges, respectively. We use the same notation
for every graph F that has a set of vertices S such that F − S has maximum
degree at most one.

In the following three lemmas, we show the properties of the S-matching
edges of types 1, 2 and 3 respectively that are crucial for our algorithm.

Lemma 3.2. Let H be a square root of a connected graph G with at least three
vertices such that H − S is isomorphic to pK1 + qK2 for S ⊆ V (G). If a1b1 and
a2b2 are two type 1 distinct edges such that NH(b1) ∩ S = NH(b2) ∩ S �= ∅, then
the following holds: (i) (a1, b1) and (a2, b2) are comparable pairs, (ii) (a1, b1) ∼nt

(a2, b2), (iii) (a1, b1) �mt (a2, b2).

Lemma 3.3. Let H be a square root of a connected graph G with at least three
vertices such that H − S is isomorphic to pK1 + qK2 for S ⊆ V (G). If a1b1
and a2b2 are two distinct type 2 edges such that NH(a1) ∩ S = NH(a2) ∩ S and
NH(b1) ∩ S = NH(b2) ∩ S, then the following holds: (i) (a1, b1) ∼mt (a2, b2), (ii)
(a1, b1) �nt (a2, b2).

Lemma 3.4. Let H be a square root of a connected graph G with at least three
vertices such that H − S is isomorphic to pK1 + qK2 for S ⊆ V (G). If a1b1
and a2b2 are two distinct type 3 edges such that NH(a1) ∩ S = NH(a2) ∩ S and
NH(b1) ∩ S = NH(b2) ∩ S, then the following holds: (i) (a1, b1) �mt (a2, b2), (ii)
(a1, b1) �nt (a2, b2), (iii) a1 and a2 (resp. b1 and b2) are true twins in G.

We need the following straightforward observation about S-isolated vertices.

Observation 3.2. Let H be a square root of a connected graph G with at least
three vertices such that H − S is isomorphic to pK1 + qK2 for S ⊆ V (G). Then
every two distinct S-isolated vertices of H with the same neighbors in S are true
twins in G.

The next lemma is used to construct reduction rules that allow to bound the
size of equivalence classes of pairs of vertices with respect to ∼nt and ∼mt. The
proof of the lemma is based on the properties of matched and nested twins given
in Lemma 3.1 and Lemmas 3.2–3.4.

Graph Square Roots of Small Distance from Degree One Graphs 121

Lemma 3.5. Let H be a square root of a connected graph G with at least three
vertices such that H − S is isomorphic to pK1 + qK2 for a modulator S ⊆ V (G)
of size k. Let Q be an equivalence class in the set of pairs of comparable pairs of
vertices with respect to ∼nt (an equivalence class in the set of pairs of adjacent
vertices with respect to ∼mt, respectively). If |Q| ≥ 2k +22k +1, then Q contains
two distinct pairs (a1, b1) and (a2, b2) such that a1b1 and a2b2 are S-matching
edges of type 1 in H satisfying NH(b1)∩S = NH(b2)∩S �= ∅ (S-matching edges
of type 2 in H satisfying NH(a1)∩S = NH(a2)∩S and NH(b1)∩S = NH(b2)∩S,
respectively).

3.2 The Algorithm for Distance-k-to-(pK1 + qK2) Square Root

In this section we prove our main result. First, we consider connected graphs.
For this, observe that if a connected graph G has a square root H then H is
connected as well.

Theorem 3.1. Distance-k-to-(pK1 + qK2) Square Root can be solved in
time 22

O(k) · nO(1) on connected graphs.

Proof (sketch). Let (G, p, q, k) be an instance of Distance-k-to-(pK1 + qK2)
Square Root with G being a connected graph. Recall that we want to deter-
mine if G has a square root H such that H − S is isomorphic to pK1 + qK2,
for a modulator S ⊂ V (G) with |S| = k, where p + 2q + k = n. If G has at
most two vertices, then the problem is trivial. Notice also that if k = 0, then
(G, p, q, k) may be a Yes-instance only if G has at most two vertices, because G
is connected. Hence, from now we assume that n ≥ 3 and k ≥ 1.

We exhaustively apply the following rule to reduce the number of type 1
edges in a potential solution. For this, we consider the set A of comparable pairs
of vertices of G and find its partition into equivalence classes with respect to
∼nt. Note that A contains at most 2m elements and can be constructed in time
O(mn). Then the partition of A into equivalence classes can be found in time
O(m2n) by checking the neighborhoods of the vertices of each pair.

Rule 3.1. If there is an equivalence class Q ⊆ A with respect to ∼nt such that
|Q| ≥ 2k + 22k + 2, delete two vertices of G that form a pair of Q and set
q := q − 1.

The safeness of the rule is proved by making use Lemmas 3.1 and 3.5, that
is, we show that the rule constructs an equivalent instance of the problem and
the obtained graph is connected.

We also want to reduce the number of type 2 edges in a potential solution.
Let B be the set of pairs of adjacent vertices. We construct the partition of B into
equivalence classes with respect to ∼mt. We have that |B| = 2m and, therefore,
the partition of B into equivalence classes can be found in time O(m2n) by
checking the neighborhoods of the vertices of each pair. We exhaustively apply
the following rule.

122 P. A. Golovach et al.

Rule 3.2. If there is an equivalence class Q ⊆ B with respect to ∼mt such
that |Q| ≥ 2k + 22k + 2, delete two vertices of G that form a pair of Q and set
q := q − 1.

Similarly to Rule 3.2, Rule 3.2 is safe by Lemmas 3.1 and 3.5.
After exhaustive application of Rules 3.2 and 3.2 we obtain the following

bounds on the number of edges of types 1 and 2 in a potential solution using
Lemmas 3.2 and 3.3.

Claim 3.1. Let (G′, p, q′, k) be the instance of Distance-k-to-(pK1 + qK2)
Square Root after exhaustive applications of Rules 3.2 and 3.2. Then G′ is a
connected graph and a potential solution H to the instance has at most 2k(2k +
22k + 1) S-matching edges of type 1 and 22k(2k + 22k + 1) S-matching edges of
type 2.

For simplicity, we call (G, p, q, k) the instance obtained after exhaustive appli-
cations of Rules 3.2 and 3.2. Note that G can be constructed in polynomial time.

By Claim 3.2, in a potential solution, the number of S-matching edges of
types 1 and 2 is bounded by a function of k. We will make use of this fact to
make further guesses about the structure of a potential solution. To do so, we
first consider the classes of true twins of G and show the following claim using
Observation 3.1 and Lemmas 3.2–3.4.

Claim 3.2. Let T = {T1, . . . , Tr} be the partition of V (G) into classes of true
twins. If (G, p, q, k) is a Yes-instance to our problem, then
r ≤ 2(2k + 22k)(2k + 22k + 1) + k + 2k + 2 · 22k.

Observe that the partition T = {T1, . . . , Tr} of V (G) into classes of true
twins can be constructed in time O(n2) by comparing the neighbors of vertices.
Using Claim 3.2, we apply the following rule.

Rule 3.3. If |T | > 2(2k + 22k)(2k + 22k + 1) + k + 2k + 2 · 22k, then return No
and stop.

From now on, we assume that we do not stop by Rule 3.2. This means that
|T | = O(24k).

Suppose that (G, p, q, k) is a Yes-instance to Distance-k-to-(pK1 + qK2)
Square Root and let H be a square root of G that is a solution to this instance
with a modulator S. We say that F is the skeleton of H with respect to S if F
is obtained from H be the exhaustive application of the following rules:

(i) if H has two distinct type 3 S-matching edges xy and x′y′ with NH(x)∩S =
NH(x′) ∩ S and NH(y) ∩ S = NH(y′) ∩ S, then delete x and y,

(ii) if H has two distinct S-isolated vertices x and y with NH(x) = NH(y), then
delete x.

In other words, we replace the set of S-matching edges of type 3 with the same
neighborhoods on the end-vertices in S by one representative and we replace the
set of S-isolated vertices with the same neighborhoods by one representative.

We say that a graph F is a potential solution skeleton with respect to a set
S ⊆ V (F) of size k for (G, p, q, k) if the following holds:

Graph Square Roots of Small Distance from Degree One Graphs 123

(i) F − S has maximum degree one, that is, F − S is isomorphic to sK1 + tK2

for some nonnegative integers s and t,
(ii) for every two distinct S-isolated vertices x and y of F , NF (x) �= NF (y),
(iii) for every two distinct S-matching edges xy and x′y′ of type 3, either NF (x)∩

S �= NH(x′) ∩ S or NF (y) ∩ S �= NH(y′) ∩ S,
(iv) for every A,B ⊆ S such that A ∩ B = ∅ and at least one of A and B is

nonempty, {xy ∈ E(F − S) | NF (x) ∩ S = A and NF (y) ∩ S = B} has size
at most 2k + 22k + 1.

Note that (iv) means that the number of type 1 and type 2 S-matched edges with
the same neighbors in S is upper bounded by 2k+22k+1. Since Rules 3.2 and 3.2
cannot be applied to (G, p, q, k), we obtain the following claim by Lemmas 3.2(ii)
and 3.3(ii).

Claim 3.3. Every skeleton of a solution to (G, p, q, k) is a potential solution
skeleton for this instance with respect to the modulator S.

We observe that each potential solution skeleton has bounded size.

Claim 3.4. For every potential solution skeleton F for (G, p, q, k),

|V (F)| ≤ k + 2k + 2 · 22k + 2 · 22k(2k + 22k + 1).

Moreover, we can construct the family F of all potential solution skeletons
together with their modulators.

Claim 3.5. The family F of all pairs (F, S), where F is a potential solu-
tion skeleton and S ⊆ V (F) is a modulator of size k, has size at most
2(k2) + 22

k

+ 22
2k

+ (2k + 22k + 2)2
2k

and can be constructed in time 22
O(k)

.
Using Claim 3.2, we construct F , and for every (F, S) ∈ F , we check whether

there is a solution H to (G, p, q, k) with a modulator S′, whose skeleton is isomor-
phic to F with an isomorphism that maps S to S′. If we find such a solution, then
(G, p, q, k) is a Yes-instance. Otherwise, Claims 3.2 guarantees that (G, p, q, k)
is a No-instance.

Assume that we are given (F, S) ∈ F for the instance (G, p, q, k). Recall that
we have the partition T = {T1, . . . , Tr} of V (G) into true twin classes of size
at most 2(2k + 22k)(2k + 22k + 1) + k + 2k + 2 · 22k by Rule 3.2. We define
the prime-twin graph G of G as the graph with the vertex set T such that two
distinct vertices Ti and Tj of G are adjacent if and only if uv ∈ E(G) for u ∈ Ti

and v ∈ Tj . Clearly, given G and T , G can be constructed in linear time. For an
induced subgraph R of G, we define τR : V (R) → T to be a mapping such that
τR(v) = Ti if v ∈ Ti for Ti ∈ T .

Let ϕ : V (F) → T be a surjective mapping. We say that ϕ is G-compatible if
every two distinct vertices u and v of F are adjacent in F 2 if and only if ϕ(u) and
ϕ(v) are adjacent in G. Then by the definition of F and Lemma 3.4 we obtain
the following.

Claim 3.6. Let F be the skeleton of a solution H to (G, p, q, k). Then
τF : V (F) → T is a G-compatible surjection.

124 P. A. Golovach et al.

Our next step is to reduce our problem to solving a system of linear integer
inequalities. Let ϕ : V (F) → T be a G-compatible surjective mapping. Let X1,
X2 and X3 be the sets of end-vertices of the S-matching edges of type 1, type 2
and type 3 respectively in F . Let Y be the set of S-isolated vertices of F . For
every vertex v ∈ V (F), we introduce an integer variable xv. Informally, xv is the
number of vertices of a potential solution H that correspond to a vertex v.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xv = 1 for v ∈ S ∪ X1 ∪ X2,

xv ≥ 1 for v ∈ Y ∪ X3,

xu − xv = 0 for every type 3 edge uv,
∑

v∈Y xv = p,
∑

v∈X1∪X2∪X3
xv = 2q,

∑
v∈ϕ−1(Ti)

xv = |Ti| for Ti ∈ T .

(1)

Using Claim 3.2 together with Lemma 3.4 and Observation 3.1 we show the
following crucial claim.

Claim 3.7. The instance (G, p, q, k) has a solutionH with a modulator S′ such
that there is an isomorphism Ψ: V (F) → V (F ′) for the skeleton F ′ of H mapping
S to S′ if and only if there is a G-compatible surjective mapping ϕ : V (F) → T
such that the system (1) has a solution.

By Claim 3.2, we can state our task as follows: verify whether there is a
G-compatible surjection ϕ : V (F) → T such that (1) has a solution. For this, we
consider all at most |V (F)||T | = 22

O(k)
surjections ϕ : V (F) → T . For each ϕ,

we verify whether it is G-compatible. Clearly, it can be done in time O(|V (F)|3).
If ϕ is G-compatible, we construct the system (1) with |V (F)| = 2O(k) variables
in time O(|V (F)|2). Then we solve it by applying Theorem 2.1 in 22

O(k)
log n

time. This completes the description of the algorithm and its correctness proof.
To evaluate the total running time, notice that the preprocessing step, that

is, the exhaustive application of Rules 3.2 and 3.2 is done in polynomial time.
Then the construction of T , G and the application of Rule 3.2 is polynomial
as well. By Claim 3.2, F is constructed in time 22

O(k)
. The final steps, that is,

constructing ϕ and systems (1) and solving the systems, can be done in time
22

O(k)
log n. Therefore, the total running time is 22

O(k) · nO(1). �

For simplicity, in Theorem 3.1, we assumed that the input graph is connected
but it is not difficult to extend the result for general case.

Corollary 3.1. Distance-k-to-(pK1 + qK2) Square Root can be solved in
time 22

O(k) · nO(1).

Corollary 3.1 gives the following statement for the related problems.

Corollary 3.2. VC-k Root, Distance-k-to-Matching Root and Dis-

tance-k-to-Degree-One Root can be solved in time 22
O(k) · nO(1).

Graph Square Roots of Small Distance from Degree One Graphs 125

4 Lower Bounds for Distance-k-to-(pK1 + qK2) Square
Root

In this section, we show that the running time of our algorithm for Distance-
k-to-(pK1 + qK2) Square Root given in Sect. 3 (see Theorem 3.1) cannot
be significantly improved and we cannot expect the existence of a polynomial
kernel. In fact, we show lower bounds for q = 0, that is, for the case of VC-k
Root. To provide our lower bounds, we will give a parameterized reduction from
the Biclique Cover problem. This problem takes as input a bipartite graph
G and a nonnegative integer k, and the task is to decide whether the edges of G
can be covered by at most k complete bipartite subgraphs. Chandran et al. [2]
showed the following result about the Biclique Cover problem that will be of
interest to us.

Theorem 4.1 ([2]). Biclique Cover cannot be solved in time 22
o(k) · nO(1)

unless ETH is false and does not admit a kernel of size 2o(k) unless P = NP .

Lemma 4.1. There exists a polynomial time algorithm that, given an instance
(B, k) for Biclique Cover, produces an equivalent instance (G, k+4) for VC-k
Root, with |V (G)| = |V (B)| + k + 6.

Proof (Sketch). Let (B, k) be an instance of Biclique Cover where (X,Y)
is the bipartition of V (B). Let X = {x1, . . . , xp} and Y = {y1, . . . , yq}. We
construct the instance (G, k + 4) for VC-k Root such that V (G) = X ∪ Y ∪
{z1, . . . , zk} ∪ {u, v, w, u′, v′, w′}. Denote by Z the set {z1, . . . , zk}. The edge set
of G is defined in the following way: G[X ∪ Z ∪ {u}], G[X ∪ {v}], {u, v, w},
G[Y ∪ Z ∪ {u′}], G[Y ∪ {v′}] and {u′, v′, w′} are cliques and xiyj ∈ E(G) if and
only if xiyj ∈ E(B).

For the forward direction, suppose (B, k) is a Yes-instance for Biclique
Cover. We will show that (G, k + 4) is a Yes-instance for VC-k Root. Note
that if B has a biclique cover of size strictly less than k, we can add arbitrary
bicliques to this cover and obtain a biclique cover for B of size exactly k. Let
C = {C1, . . . , Ck} be such a biclique cover. We construct the following square
root candidate H for G with V (H) = V (G). Add the edges uv, vw, u′v′ and
v′w′ to H, and also all the edges between u and X, all the edges between u′ and
Y and all the edges in G[Z]. Finally, for each 1 ≤ i ≤ k, add to H all the edges
between zi and the vertices of Ci. We show that the constructed graph H is
indeed a square root of G by checking the adjacencies in H2. We conclude that
(G, k +4) is a Yes-instance for VC-k Root using the fact that Z ∪{u, v, u′, v′}
is a vertex cover of H of size k + 4.

For the reverse direction, we state the next three claims.

(i) The edges uv, vw, u′v′ and v′w′ belong to any square root of G,
(ii) The edges {uxi, u

′yj | 1 ≤ i ≤ p, 1 ≤ j ≤ q} belong to any square root of G.
(iii) The edges {xiyj | 1 ≤ i ≤ p, 1 ≤ j ≤ q} do not belong to

any square root of G.

126 P. A. Golovach et al.

Now assume that G has a square root H that has a vertex cover of size at most
k + 4. By (iii), for every edge of G of the form xiyj , it holds that xiyj /∈ E(H).
This implies that, for every such edge, there exists an induced P3 in H having xi

and yj as its endpoints. Since NG(xi)∩NG(yj) = Z, only vertices of Z can be the
middle vertices of these paths. For 1 ≤ � ≤ k, let C� = NH(z�)∩(X ∪Y). We will
now show that C = {C1, . . . , Ck} is a biclique cover of B. First, note that since
for every edge xiyj , there exists zh ∈ Z such that zhxi, zhyj ∈ E(H), we conclude
that xiyj ∈ Ch, which implies that C is an edge cover of B. Furthermore, for a
given �, since every vertex of C� is adjacent to z� in H, G[C�] is a clique and,
therefore, B[C�] is a biclique. This implies that C is indeed a biclique cover of B
of size k, which concludes the proof of the theorem. �

Combining Theorem 4.1 and Lemma 4.1, we obtain the following.

Theorem 4.2. VC-k Root cannot be solved in time 22
o(k) · nO(1) unless ETH

is false and does not admit a kernel of size 2o(k) unless P = NP .

5 Conclusion

We believe that it would be interesting to further investigate the parameterized
complexity of H-Square Root for sparse graph classes H under structural
parameterizations. The natural candidates are the Distance-k-to-Linear-
Forest Root and Feedback-Vertex Set-k Root problems, whose tasks
are to decide whether the input graph has a square root that can be made a
linear forest, that is, a union of paths, and a forest respectively by (at most) k
vertex deletions. Recall that the existence of an FPT algorithm for H-Square
Root does not imply the same for subclasses of H. However, it can be noted
that our complexity lower bounds still hold and, therefore, we cannot expect
that these problems would be easier.

Parameterized complexity of H-Square Root is widely open for other, not
necessarily sparse, graph classes. As a step to this direction, we consider the
Distance-k-to-Clique Square Root problem in which the task is to decide
whether for a given graph G and a nonnegative integer k, there is a square root
H of G such that H − S is a complete graph for a set S on k vertices. We prove
that it is FPT when parameterized by k.

Theorem 5.1. Distance-k-to-Clique Square Root can be solved in time
22

O(k) · nO(1).

What can be said if we ask for a square root that is at deletion distance k
from a cluster graph (disjoint union of cliques)? We believe that our techniques
allows to show that this problem is FPT when parameterized by k if the number
of cliques is a fixed constant. Is the problem FPT without this constraint?

Graph Square Roots of Small Distance from Degree One Graphs 127

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)
2. Chandran, S., Issac, D., Karrenbauer, A.: On the parameterized complexity of

biclique cover and partition. In: Proceedings of the 11th International Symposium
on Parameterized and Exact Computation, IPEC 2016. LIPIcs, vol. 63, pp. 11:1–
11:13 (2017)

3. Cochefert, M., Couturier, J., Golovach, P.A., Kratsch, D., Paulusma, D.: Parame-
terized algorithms for finding square roots. Algorithmica 74(2), 602–629 (2016)

4. Cochefert, M., Couturier, J., Golovach, P.A., Kratsch, D., Paulusma, D., Stewart,
A.: Computing square roots of graphs with low maximum degree. Discrete Appl.
Math. 248, 93–101 (2018)

5. Cygan, M., et al.: Lower bounds for kernelization. Parameterized Algorithms, pp.
523–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3 15

6. Ducoffe, G.: Finding cut-vertices in the square roots of a graph. Discrete Appl.
Math. 257, 158–174 (2019)

7. Farzad, B., Lau, L.C., Le, V.B., Tuy, N.N.: Complexity of finding graph roots with
girth conditions. Algorithmica 62(1–2), 38–53 (2012)

8. Frank, A., Tardos, E.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7, 49–65 (1987)

9. Golovach, P.A., Heggernes, P., Kratsch, D., Lima, P.T., Paulusma, D.: Algorithms
for outerplanar graph roots and graph roots of pathwidth at most 2. Algorithmica
81, 2795–2828 (2019)

10. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: A linear kernel for finding
square roots of almost planar graphs. Theor. Comput. Sci. 689, 36–47 (2017)

11. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Finding cactus roots in
polynomial time. Theory Comput. Syst. 62, 1409–1426 (2018)

12. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

14. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algor. 2(2), 178–208 (2006)
15. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal

graph. SIAM J. Discrete Math. 18(1), 83–102 (2004)
16. Le, V.B., Oversberg, A., Schaudt, O.: Polynomial time recognition of squares of

ptolemaic graphs and 3-sun-free split graphs. Theor. Comput. Sc. 602, 39–49
(2015)

17. Le, V.B., Oversberg, A., Schaudt, O.: A unified approach for recognizing squares
of split graphs. Theor. Comput. Sc. 648, 26–33 (2016)

18. Le, V.B., Tuy, N.N.: The square of a block graph. Discr. Math. 310, 734–741 (2010)
19. Le, V.B., Tuy, N.N.: A good characterization of squares of strongly chordal split

graphs. Inf. Process. Lett. 111(3), 120–123 (2011)
20. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.

Res. 8, 538–548 (1983)

https://doi.org/10.1007/978-3-319-21275-3_15

128 P. A. Golovach et al.

21. Lin, Y.L., Skiena, S.: Algorithms for square roots of graphs. SIAM J. Discrete
Math. 8(1), 99–118 (1995)

22. Milanic, M., Oversberg, A., Schaudt, O.: A characterization of line graphs that are
squares of graphs. Discrete Appl. Math. 173, 83–91 (2014)

23. Milanic, M., Schaudt, O.: Computing square roots of trivially perfect and threshold
graphs. Discrete Appl. Math. 161, 1538–1545 (2013)

24. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math.
54(1), 81–88 (1994)

25. Nestoridis, N.V., Thilikos, D.M.: Square roots of minor closed graph classes. Dis-
crete Appl. Math. 168, 34–39 (2014)

Structural Parameterizations
for Equitable Coloring

Guilherme C. M. Gomes(B) , Matheus R. Guedes ,
and Vinicius F. dos Santos

Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
{gcm.gomes,matheusresende,viniciussantos}@dcc.ufmg.br

Abstract. An n-vertex graph is equitably k-colorable if there is a proper
coloring of its vertices such that each color is used either �n/k� or �n/k�
times. While classic Vertex Coloring is fixed parameter tractable
under well established parameters such as pathwidth and feedback ver-
tex set, equitable coloring is W[1]-hard. We prove that Equitable Col-
oring is fixed parameter tractable when parameterized by distance to
cluster or co-cluster graphs, improving on the FPT algorithm of Fiala
et al. (2011) parameterized by vertex cover. In terms of intractability,
we adapt the proof of Fellows et al. (2011) to show that Equitable
Coloring is W[1]-hard when simultaneously parameterized by distance
to disjoint paths and number of colors. We also revisit the literature
and derive other results on the parameterized complexity of the problem
through minor reductions or other simple observations.

Keywords: Equitable coloring · Parameterized complexity · Distance
to cluster · Distance to co-cluster · Distance to disjoint paths

1 Introduction

Equitable Coloring is a variant of the classical Vertex Coloring problem:
we want to partition an n vertex graph into k independent sets such that each
of these sets has either �n/k� or �n/k� vertices. The smallest integer k for which
G admits an equitable k-coloring is called the equitable chromatic number of G.
Equitable Coloring was first discussed in [18], with an intended application
for municipal garbage collection, and later in processor task scheduling [1], com-
munication control [14], and server load balancing [20]. Lih [17] presented an
extensive survey covering many of the results developed in the last 50 years. Its
focus, however, is not algorithmic, and most of the presented results are bounds
on the equitable chromatic number for various graph classes.

Many complexity results for Equitable Coloring arise from a related
problem, known as Bounded Coloring, as observed by Bodlaender and
Fomin [2]. On Bounded Coloring, we ask that the size of the independent sets
be bounded by an integer �. Among the positive results for Bounded Color-
ing, the problem is known to be solvable in polynomial time for: split graphs [7],
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 129–140, 2020.
https://doi.org/10.1007/978-3-030-61792-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_11&domain=pdf
http://orcid.org/0000-0002-5164-1460
http://orcid.org/0000-0003-1738-420X
http://orcid.org/0000-0002-4608-4559
https://doi.org/10.1007/978-3-030-61792-9_11

130 G. C. M. Gomes et al.

complements of interval graphs [3], complements of bipartite graphs [3], and
forests [1]. Baker and Coffman [1] present the first algorithm for Bounded Col-
oring on trees, while Jarvis and Zhou [16] show how to compute an optimal
�-bounded coloring of a tree through a novel characterization. For cographs,
bipartite and interval graphs, there are polynomial-time algorithms when the
number of colors k is fixed. In terms of parameterized complexity, in [2] an XP
algorithm is given for Equitable Coloring parameterized by treewidth, while
Fiala et al. [11] show that the problem is FPT parameterized by vertex cover.
Recently, Gomes et al. [13] proved that, when parameterized by the treewidth
of the complement graph, Equitable Coloring is FPT, and Reddy [19] did
the same when the parameter is the distance to threshold graphs.

The main contributions of this work are complexity results on Equitable
Coloring for parameterizations that are weaker than vertex cover, in the sense
that the parameters are upper bounded by the vertex cover number. In partic-
ular, we show that Equitable Coloring is fixed parameter tractable when
parameterized by distance to cluster or by distance to co-cluster. Not only are
the parameters weaker, but also in the first case, the algorithm is slightly faster
than the one previously known for vertex cover, as it does not rely on Integer
Linear Programming; the running time, however, is still super exponential.
On the negative side, we show that the combined parameterization distance
to disjoint paths and number of colors is insufficient to guarantee tractability.
Along with some of the works discussed here and in Sect. 2, our results cover
many branches of the known graph parameter hierarchy [21]. The proofs can be
found in the full version of the paper1.

Notation and Terminology. We use standard graph theory notation and
nomenclature for our parameters, following classical textbooks in the areas [4,9].
Define [k] = {1, . . . , k} and 2S the powerset of S. A k-coloring ϕ of a graph
G is a function ϕ : V (G) �→ [k]. Alternatively, a k-coloring is a k-partition
V (G) ∼ {ϕ1, . . . , ϕk} such that ϕi = {u ∈ V (G) | ϕ(u) = i}. A k-coloring is said
to be equitable if, for every i ∈ [k], �n/k� ≤ |ϕi| ≤ �n/k�; it is proper if every ϕi

is an independent set. Unless stated, all colorings are proper. The Equitable
Coloring problem asks whether or not G can be equitably k-colored. A graph
is a cluster graph if each of its connected components is a clique; a co-cluster
graph is the complement of a cluster graph. The distance to cluster (co-cluster)
of a graph G, denoted by dc(G) (dc(G)), is the size of the smallest set U ⊆ V (G)
such that G−U is a cluster (co-cluster) graph. Using the terminology of [6], a set
U ⊆ V (G) is an F-modulator of G if the graph G−U belongs to the graph class
F . When the context is clear, we omit the qualifier F . For cluster and co-cluster
graphs, one can decide if G admits a modulator of size k in time FPT on k [5].

2 Literature Corollaries and Minor Observations

The original NP-complete results of Bodlaender and Jansen [3], despite being
initially regarded as polynomial reductions for Bounded Coloring, are a nice
1 Permanently available at https://arxiv.org/abs/1911.03297.

https://arxiv.org/abs/1911.03297

Structural Parameterizations for Equitable Coloring 131

source of parameterized hardness. To adapt their proofs to show that Equitable
Coloring parameterized by the number of colors is W[1]-hard on cographs and
paraNP-hard on bipartite graphs, it suffices to consider the version of Bin-
Packing where each bin must be completely filled for the first case, while
the latter follows immediately since they prove that Bounded 3-Coloring
is NP-hard on bipartite graphs; these imply that adding the distance to theses
classes in the parameterization yields no additional power whatsoever. Fellows et
al. [10] show that Equitable Coloring parameterized by treewidth and num-
ber of colors is W[1]-hard, while an XP algorithm parameterized by treewidth
is given for both Equitable Coloring and Bounded Coloring by Bodlaen-
der and Fomin [2]. In fact, the reduction shown in [10] prove that, even when
simultaneously parameterized by feedback vertex set, treedepth, and number of
colors, Equitable Coloring remains W[1]-hard. Gomes et al. [13] show that
the problem parameterized by number of colors, maximum degree and treewidth
is W[1]-hard on interval graphs. However, their intractability statement can be
strengthened to number of colors and bandwidth, with no changes to the reduc-
tion. In [6], Cai proves that Vertex Coloring is W[1]-hard parameterized by
distance to split.

We also reviewed results on parameters weaker than distance to clique, since
both distance to cluster and co-cluster fall under this category. For minimum
clique cover, we resort to the classic result of Garey and Johnson [12] that Parti-
tion into Triangles is NP-hard. By definition, a graph G can be partitioned
into vertex-disjoint triangles if and only if its complement graph can be equitably
(n/3)-colored. The reduction given in [12] is from Exact Cover by 3-Sets,
and their gadget (which we reproduce in Fig. 1) has the nice property that the
complement graph G has a trivial clique cover of size nine: it suffices to pick one
gadget i and one clique for each aj

i . Thus, we have that Equitable Color-
ing is paraNP-hard parameterized by minimum clique cover. To see that when
also parameterizing by the number of colors there is an FPT algorithm, we first
look at the parameterization maximum independent set α and number of colors
k, both of which we assume to be given on the input. First, if kα < n, the
instance is trivially negative, so we may assume kα ≥ n; but, in this case, we
can spend exponential time on the number of vertices and still run in FPT time.
Finally, we reduce from Equitable Coloring parameterized by the number of
colors k to Equitable Coloring parameterized by k and minimum dominat-
ing set. If we take the source graph G and add n

k vertices D = vi, . . . , vn
k

with
N(vi) = V (G) for all vi ∈ D, the set {v1, u}, with u ∈ V (G), is a dominating set
of the resulting graph G′; moreover, G has an equitable k-coloring if and only
if G′ is equitably (k + 1)-colorable, thus proving that Equitable Coloring
parameterized by k and minimum dominating set is paraNP-hard. A summary
of the results discussed in this work is displayed in Fig. 2.

132 G. C. M. Gomes et al.

Fig. 1. Exact Cover by 3-Sets to Partition into Triangles gadget of [12] rep-
resenting the set Ci = {xi, yi, zi}.

Fig. 2. Hasse diagram of the parameterizations of Equitable Coloring and their
complexities. A single shaded box indicates that the problem is FPT; two solid boxes
represent W[1]-hard even if also parameterized by the number of colors; if the inner box
is dashed, the problem is paraNP-hard; if the outer box is solid and shaded, additionally
using the number of colors results in an FPT algorithm; if it is not shaded, it remains
W[1]-hard. Entries with a * are our main contributions. Ellipses mark open cases.

3 Equitable Coloring Parameterized by Distance to
Cluster

The goal of this section is to prove that Equitable Coloring can be solved
in FPT time when parameterized by the distance to cluster of the input graph.
As a corollary of this result, we show that unipolar graphs – the class of graphs
that have a clique as a modulator – can be equitably k-colored in polynomial
time. Throughout this section, we denote the modulator by U , the connected
components of G − U by C = {C1, . . . , Cr}, and define � =

⌊
n
k

⌋
.

The central idea of our algorithm is to guess one of the possible |U ||U | color-
ings of the modulator and extend this guess to the clique vertices using max-flow.
First, given U , C, and a coloring ϕ′ of U , we build an auxiliary graph H as fol-
lows: V (H) = {s, t} ∪ A ∪ W ∪ V (G) \ U , where A = {a1, . . . , ak} represents the
colors we may assign to vertices, W = {wij | i ∈ [k], j ∈ [r]} whose role is to

Structural Parameterizations for Equitable Coloring 133

maintain the property of the coloring, s is the source of the flow, t is the sink of
the flow, and V (G) = {v1, . . . , vn} are the vertices of G. For the arcs, we have
E(H) = S ∪F0 ∪F1 ∪R∪T , where S = {(s, ai) | i ∈ [k]}, F0 = {(ai, t) | i ∈ [k]},
F1 = {(ai, wij) | i ∈ [k], j ∈ [r]}, R = {(wij , vp) | vp ∈ Cj , N(vp) ∩ ϕ′

i = ∅},
and T = {(vi, t) | vi ∈ V (G) \ U}. As to the capacity of the arcs, we define
c : E(H) → N, with c(e ∈ S) = �, c((ai, t)) = |ϕ′

i ∩U | and c(e ∈ F1 ∪R∪T) = 1.
Semantically, the vertices of A correspond to the k colors, while each wij ensures
that cluster Cj has at most one vertex of color i. Regarding the arcs, F0 corre-
sponds to the initial assignment of colors to the vertices of the modulator, and
R encodes the adjacency between vertices of the clusters and colored vertices of
the modulator. Note that the arcs in F0 and R are the only ones affected by the
pre-coloring ϕ′. An example of the constructed graph can be found in Fig. 3.

Fig. 3. (left) The input graph with U = {v1, v2}; (right) Auxiliary graph constructed
from the precoloring of U . Solid arcs have unit capacity.

Now, let f : E(H) → N be the function corresponding to the max-flow from s
to t obtained using any of the algorithms available in the literature [8]. Our first
observation, as given by the following lemma, is that, if no (s, t)-flow saturates
the outbound arcs of s, then we cannot extend ϕ′ to equitably k-color G.

Lemma 1. If there is some e ∈ S with f(e) < �, then G does not admit an
equitable k-coloring that extends ϕ′.

We may now assume that f(e) = c(e) for every e ∈ S. Let c′(e /∈ S) = c(e),
c′(e ∈ S) = c(e)+1. We resume the search for augmenting paths on the network,
replacing c(·) with c′(·), until it stops and returns the maximum (s, t)-flow g.

Lemma 2. For every e ∈ S, g(e) ≥ f(e).

Lemma 3. The maximum (s, t)-flow F given by g is equal to the number of
vertices of G if and only if there is an equitable k-coloring of G that extends ϕ′.

At this point we are essentially done. Lemmas 1 and 3 guarantee that, if
the max-flow algorithm fails to yield a large enough flow, a fixed pre-coloring
of U cannot be extended; moreover, the latter also implies that, if an extension

134 G. C. M. Gomes et al.

is possible, max-flow correctly finds it. Now, given U , for each of the O
(
|U ||U |)

possible colorings of U , construct H and execute the above algorithm which, since
max-flow can be solved in polynomial time [8], results in an FPT algorithm. If
we are not given the modulator U , the same can be computed in FPT time.

Theorem 1. Equitable Coloring parameterized by distance to cluster can
be solved in FPT time.

It is worthy to note here that there is nothing special about the capacities of
the arcs in S; they act only as upper bounds to the number of vertices a color may
be assigned to. Thus, not surprisingly, the same algorithm applies to problems
where the size of each color class is only upper bounded. This will be particularly
useful in the next session. Looking at the proof of Theorem 1, the only non-
polynomial step is guessing the coloring of the modulator. A straightforward
corollary is that if there is a polynomial number of distinct colorings of U and
this family can be computed in polynomial time, we can apply the same ideas
and check if an equitable k-coloring of the input graph exists in polynomial time.
In particular, unipolar graphs satisfy the above condition. If we parameterize by
distance to unipolar the problem remains W[1]-hard due to the hardness for
split graphs. On the other hand, if we parameterize by distance to unipolar d
and the number of colors k we have an FPT algorithm: note that the central
clique of G−U has at most k vertices, so we can treat G as a graph with distance
to cluster at most k + d and apply Theorem 1.

Corollary 1. Equitable Coloring on unipolar graphs is in P. When param-
eterized by distance to unipolar, the problem remains W [1]-hard; if also param-
eterized by the number of colors, there is an FPT algorithm that solves it.

4 Equitable Coloring Parameterized by Distance to
Co-Cluster

Before proceeding to our hardness results, we discuss an FPT algorithm when
parameterized by distance to co-cluster. Interestingly, the key ingredient to our
approach is the algorithm presented in Sect. 3, which we use to compute the
transitions between states of our dynamic programming table. Much like in the
previous section, we denote by U the set of vertices such that G−U is a co-cluster
graph, and by I = {I1, . . . , Ir} the independent sets of G − U . The following
observation follows immediately from the fact that G−U is a complete r-partite
graph; it allows us to color the sets of I independently.

Observation 1. In any k-coloring ϕ of G, for every color i, there is at most
one j ∈ [r] such that ϕi ∩ Ij �= ∅.

Suppose we are already given U , a coloring ψ of U , and the additional restric-
tion that colors P ⊆ ψ(U) must be used on �+1 vertices. We index our dynamic
programming table by (S, p, q, j), where S ⊆ ψ(U) stores which colors of the

Structural Parameterizations for Equitable Coloring 135

modulator still need to be extended, p is the number of colors not in ψ(U) that
must still be used � + 1 times, q the number of colors not in ψ(U) that must
still be used on � vertices, and j ∈ [r] indicates which of the independent sets
we are trying to color. Our goal is to show that fψ,P (S, p, q, j) = 1 if and only
if there is a coloring of Gj = G[U

⋃r
i=j Ii] respecting the constraints given by

(S, p, q, j). Intuitively, guessing P allows us to index the table by the number
of colors not in ψ(U) according only to the capacity of each color, otherwise it
would be significantly harder to know, at any time in the algorithm, how many
colors should be used on �+1 vertices. To compute fψ,P (S, p, q, j), we essentially
test every possibility of extension of the colors in S that respects the constraint
imposed by P and allows the completion of the coloring of the j-th independent
set of G − U . Because of Observation 1, the colors not in ψ(U) are confined to a
single independent set and, thus, it suffices to consider only how many colors of
size � + 1 we are going to use in Ij . We implement this transitioning according
to Eq. 1:

fψ,P (S, p, q, j) = max
(R,x,y) ∈ ext(S,p,q,j)

fψ,P\R(S \ R, p − x, q − y, j + 1) (1)

where ext(S, p, q, j) is the set of all triples (R, x, y), with R ⊆ S, such that each
color i ∈ R can be extended to Ij , while x and y satisfy the system:

⎧
⎪⎨

⎪⎩

x(� + 1) + y� = |Ij | − αj

0 ≤ x ≤ p

0 ≤ y ≤ q

where αj is the number of vertices of Ij used to extend the colors of R to Ij .
Note that |ext(S, p, q, j)| ≤ 2|S|n, so it holds that, for each fixed ψ and P , our
dynamic programming table can be computed in O∗(3|U |) time if and only if we
can compute ext(S, p, q, j) in O∗(|ext(S, p, q, j)|) time.

Lemma 4. ext(S, p, q, j) can be computed in O∗(|ext(S, p, q, j)|) time.

Lemma 5. fψ,P (S, p, q, j) = 1 if and only if ψ can be extended to a coloring ϕ
of Gj using the colors of S, with each color in P used in � + 1 vertices, p extra
color classes of size � + 1, and q color classes of size �.

Finally, all that is left is to show that the number of colorings of U and the
constraint set P can both be computed in FPT time.

Theorem 2. Equitable Coloring can be solved in FPT time when parame-
terized by distance to co-cluster.

It is important to note that the above algorithm does not contradict the
NP -hardness of Equitable Coloring on bipartite graphs, since solving the
problem on complete bipartite graphs is in P. Moreover, if U = ∅, all steps of the
algorithm are performed in polynomial time, yielding the following corollary.

Corollary 2. Equitable Coloring of complete multipartite graphs is in P.

136 G. C. M. Gomes et al.

5 Distance to Disjoint Paths

The last parameterization we investigate for Equitable Coloring is distance
to disjoint paths, which is upper bounded by vertex cover and lower bounded
by feedback vertex set. Contrary to our expectations, we show that the problem
is W [1]-hard even if we also parameterize by the number of colors. To accom-
plish this, we make use of two intermediate problems, namely Number List
Coloring and Equitable List Coloring parameterized by the number of
colors. The latter is very similar to Equitable Coloring but to each vertex
v is assigned a list L(v) ⊆ [k] of admissible colors. Number List Coloring
generalizes it in the sense that now we are given a function h : [k] �→ N and
color i must be used exactly h(i) times. As a first step, we show that Number
List Coloring parameterized by the number of colors is W [1]-hard on paths.
By roughly doubling the number of colors and vertices used in the construction
of [10], we are able to use, essentially, the same arguments. The source problem
is Multicolored Clique parameterized by the solution size k: given a graph
H such that V (H) is partitioned in k color classes {V1, . . . , Vk}, we want to
determine if there is a k-colored clique in H. We denote the edges between Vi

and Vj by E(i, j), |V (H)| by n, and |E(H)| by m. We may assume that |Vi| = N
and |E(i, j)| = M for every i, j; to see why this is possible, we may take k! dis-
joint copies of H, each corresponding to a permutation of the color classes and,
for each edge uv ∈ E(H), we connect each copy of u to each copy of v. In our
reduction, we interpret a clique as a set of oriented edges between color classes,
i.e. an edge e ∈ E(i, j) is selected twice: once from Vi to Vj , and once from Vj

to Vi. As such, we have two gadgets for each edge of H.

Construction. Due to the list nature of the problem, we assign semantic values
to each set of colors. In our case, we separate them in four types:
Selection: The colors S = {σ(i, j) | (i, j) ∈ [k]2, i �= j} and S ′ = {σ′(i, j) |

(i, j) ∈ [k]2, i �= j} are used to select which edges must belong to the clique.
Helper: Y and X satisfy |Y| = |X | = |S|. These two sets of colors force the

choice made at the root of the edge gadgets to be consistent across the gadget.
Symmetry: The colors E = {ε(i, j) | (i, j) ∈ [k]2, i < j} and E ′ = {ε′(i, j) |

(i, j) ∈ [k]2, i < j} guarantee that, if edge e ∈ E(i, j) is picked from Vi to Vj ,
it must also be picked from Vj to Vi.

Consistency: Colors T = {τi(r, s) | i ∈ [k], r, s ∈ [k] \ {i}, r < s} and
T ′ = {τ ′

i(r, s) | i ∈ [k], r, s ∈ [k] \ {i}, r < s} ensure that if the edge uv is
chosen between Vi and Vj , the edge between Vi and Vr must also be incident
to u.

Before detailing the gadgets themselves, we define what is, in our perception,
one of the most important pieces of the proof. For each vertex v ∈ V (H), choose
an arbitrary but unique integer in the range [n2 +1, n2 +n] and, for each edge e,
a unique integer in the range [2n2 + 1, 2n2 + m]. These are the up-identification
numbers of vertex v and edge e, denoted by v↑ and e↑, respectively. Now, choose
a suitably huge integer Z, say n3, and define the down-identification number for

Structural Parameterizations for Equitable Coloring 137

v as v↓ = Z − v↑. These quantities play a key role on the numerical targets for
the symmetry and consistency colors; since they are unique, these identification
numbers tie together the choices between edge gadgets.

For each pair i, j ∈ [k], with i < j, the input graph G of Number List
Coloring has the groups of gadgets G(i, j) and G(j, i), each containing M edge
gadgets corresponding to the edges of E(i, j). We say that G(i, j) is the forward
group and that G(j, i) is the backward group. For the description of the gadgets,
we always assume i < j, e ∈ E(i, j) with u ∈ Vi and v ∈ Vj .

Forward Edge Gadget. The gadget G(i, j, e) has a root vertex r(i, j, e), with
list {σ(i, j), σ′(i, j)}, and two neighbors, both with the list {σ(i, j), y(i, j)}, which
for convenience we call a(i, j, e) and b(i, j, e). We equate membership of edge e in
the solution to Multicolored Clique to the coloring of r(i, j, e) with σ(i, j).
When discussing the vertices of the remaining vertices of the gadget, we say that
a vertex is even if its distance to r(i, j, e) is even, otherwise it is odd. To a(i, j, e),
we append a path with 2e↓+2(k−1)u↓ vertices. First, we choose e↓ even vertices
to assign the list {y(i, j), ε′(i, j)}. Next, for each r in j < r ≤ k, choose u↓ even
vertices to assign the list {y(i, j), τ ′

i(j, r)}. Similarly, for each s �= i satisfying
s < j, choose u↓ even vertices and assign the list {y(i, j), τi(s, j)}. All the odd
vertices - except a(i, j, e) and b(i, j, e) - are assigned the list {y(i, j), x(i, j)}.
The path appended to b(i, j, e) is similarly defined, except for two points: (i)
the length and number of chosen vertices are proportional to e↑ and u↑; and
(ii) when color ε(i, j) (resp. τi(s, r)) should be in the list, we add ε′(i, j) (resp.
τ ′
i(s, r)), and vice-versa. For an example of the edge gadget, please refer to Fig. 4.

Fig. 4. Example of a forward edge gadget G(1, 3, e) of group G(1, 3), with k = 4, Z = 3,
e↓ = 2, and u↓ = 1. Vertices with no explicit list have list equal to {y(1, 3), x(1, 3)}.

Backward Edge Gadget. Gadget G(j, i, e) has vertices r(j, i, e), a(j, i, e), and
b(j, i, e) defined similarly as to the forward gadget, with the root vertex having

138 G. C. M. Gomes et al.

the list {σ(j, i), σ′(j, i)}, while the other two have the list {σ(j, i), y(j, i)}. To
a(j, i, e), we append a path with 2e↓ + 2(k − 1)v↓ vertices. First, choose e↓ even
vertices to assign the list {y(j, i), ε(i, j)}. Now, for each r in j < r ≤ k, choose v↓
even vertices to assign the list {y(j, i), τ ′

j(i, r)}. Then, for each s �= i satisfying
s < j, choose v↓ even vertices and assign the list {y(j, i), τj(s, i)}. All the odd
vertices are assigned the list {y(j, i), x(j, i)}. The path appended to b(j, i, e) is
similarly defined, except that: (i) the length and number of chosen vertices are
proportional to e↑ and v↑; and (ii) when the color ε(i, j) (resp. τj(s, r)) is in
the list, we replace it with ε′(i, j) (resp. τ ′

j(s, r)), and vice-versa. Note that, for
every edge gadget, either forward or backward, the number of vertices is equal
to 3 + 2(e↑ + e↓) + 2(k − 1)(u↑ + u↓) = 3 + 2kZ. We say that G(i, j, e) is selected
if r(i, j, e) is colored with σ(i, j), otherwise it is passed.

Numerical Targets. Before defining the numerical targets, given by h(·), recall
that |E(i, j)| = M for every pair i, j and that, for every vertex u and edge e,
the identification numbers satisfy the identity v↑ + v↓ = Z and e↑ + e↓ = Z. We
present the numerical targets of our instance - and some intuition - below.

Selection: h(σ(i, j)) = 1 + 2(M − 1) and h(σ′(i, j)) = M − 1. Since only one
edge may be chosen from Vi to Vj , the non-selection color σ′(i, j) must be
used in M − 1 edges of G(i, j). Thus, exactly one G(i, j, e) is selected and, to
achieve the target of 1 + 2(M − 1), for every f ∈ E(i, j) \ {e}, both a(i, j, f)
and b(i, j, f) must also be colored with σ(i, j).

Helper: h(y(i, j)) = 2 + kMZ and h(x(i, j)) = kMZ − kZ. The goal here is
that, if G(i, j, e) is selected, all the odd positions must be colored with y(i, j),
otherwise every even position must be colored with it. In the latter case, the
odd positions of all but one gadget of G(i, j) must be colored with x(i, j).

Symmetry: h(ε(i, j)) = h(ε′(i, j)) = Z. If the previous condition holds and
r(i, j, e) is colored with σ(i, j), then ε(i, j) appears in e↑ vertices of the gadget
rooted at r(i, j, e). To meet the target Z, e↓ vertices of another gadget must
also be colored with it, as we show, the only way is if r(j, i, e) is colored with
σ(j, i).

Consistency: h(τi(s, r)) = h(τ ′
i(s, r)) = Z. Similar to symmetry colors.

Lemma 6. If H has a k-multicolored clique, then G admits a list coloring meet-
ing the numerical targets.

We now proceed to the proof of the converse. Lemma 7 guarantees that the
decision made at the root of a gadget propagates throughout the entire structure;
Lemma 8 ensures that the edge selected from Vj to Vi is the same as the edge
selected from Vi to Vj ; finally, Lemma 9 equates the vertex of Vi incident to the
edge between Vi and Vj to the vertex incident to the edge between Vi and Vs.

Lemma 7. In every list coloring of G satisfying h, exactly one gadget of each
G(i, j) is selected, each passed G(i, j, e) has all of its kZ even vertices colored
with y(i, j), and the selected G(i, j, f) has all of its 2 + kZ odd vertices colored
with y(i, j).

Structural Parameterizations for Equitable Coloring 139

Lemma 8. In every list coloring ϕ of G, if G(i, j, e) is selected, so is G(j, i, e).

Lemma 9. In every list coloring ϕ of G, if G(i, j, e) is selected and e = uv, then,
for every s �= i, the edge f of H corresponding to the selected gadget G(i, s, f)
must be incident to u.

Theorem 3. Number List Coloring on paths parameterized by the number
of colors that appear on the lists is W [1]-hard.

Corollary 3. Equitable List Coloring on paths parameterized by the num-
ber of colors that appear on the lists is W [1]-hard.

Corollary 4. Equitable Coloring parameterized by the number of colors
and distance to disjoint paths is W [1]-hard.

Theorem 3 and its corollaries follow from the previous lemmas. For the first
corollary, we add isolated vertices with lists of size one to the input of Number
List Coloring so as to make all colors have the same numerical target. For
the second, we add a clique of size r, the number of colors of the instance of
Equitable List Coloring, and label them using the integers [r]; afterwards,
for each vertex u of the input graph that does not have color i in its list, we add
an edge between the i-th vertex of the clique and u.

6 Final Remarks

In this work we presented an extensive study of multiple parameterizations for
the Equitable Coloring problem, obtaining both tractability and intractabil-
ity results. Specifically, we proved that it is fixed parameter tractable when
parameterized by distance to cluster and distance to co-cluster, and as corollar-
ies that there is an FPT algorithm when parameterized by distance to unipolar
and number of colors. Meanwhile, the problem remains W[1]-hard when simul-
taneously parameterized by distance to disjoint paths and number of colors. We
also revisited previous works in the literature and restated them in terms of
parameterized complexity. This review settled the complexity for some param-
eterizations weaker than distance to clique and show that our results are, in
a sense, optimal: searching for parameters weaker than distance to (co-)cluster
will most likely not yield FPT algorithms. Vertex Coloring is already notori-
ously hard to find polynomial kernels for, as shown by Jansen and Kratsch [15];
in fact, most of the parameterizations under which classical coloring admits a
polynomial kernel do not make Equitable Coloring tractable, painting a
quite bleak future for kernelization algorithms for Equitable Coloring. How-
ever, Reddy [19] does present a polynomial kernel parameterized by distance to
threshold and number of colors, so not all hope is lost. All things considered, we
believe that future work should be directed to the study of the parameterizations
max leaf number or feedback edge set, as these are the two main cases of the
graph parameter hierarchy we leave open. Another interesting direction would
be to improve the running times of known tractable cases and determining lower
bounds for parameters such as vertex cover and distance to clique, specially if
the super exponential dependency is necessary.

140 G. C. M. Gomes et al.

References

1. Baker, B.S., Coffman, E.G.: Mutual exclusion scheduling. Theoret. Comput. Sci.
162(2), 225–243 (1996)

2. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs.
Theoret. Comput. Sci. 349(1), 22–30 (2005)

3. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I.
Theoret. Comput. Sci. 148(1), 93–109 (1995)

4. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, vol. 290. Macmillan,
London (1976)

5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: Fast branching algorithm for
cluster vertex deletion. arXiv e-prints p. 1306.3877 (2013)

6. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math.
127(3), 415–429 (2003)

7. Chen, B.-L., Ko, M.-T., Lih, K.-W.: Equitable and m-bounded coloring of split
graphs. In: Deza, M., Euler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol.
1120, pp. 1–5. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61576-
8 67

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

9. Cygan, M., et al.: Parameterized Algorithms, vol. 3. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

10. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput. 209(2), 143–153 (2011)

11. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Parameterized complexity of coloring
problems: treewidth versus vertex cover. Theoret. Comput. Sci. 412(23), 2513–
2523 (2011)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

13. Gomes, G.d.C.M., Lima, C.V.G.C., Santos, V.F.D.: Parameterized Complexity of
Equitable Coloring. Discrete Math. Theoret. Comput. Sci. 21(1) (2019). ICGT
2018

14. Irani, S., Leung, V.: Scheduling with conflicts, and applications to traffic signal
control. In: Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 1996, pp. 85–94. SIAM, USA (1996)

15. Jansen, B.M., Kratsch, S.: Data reduction for graph coloring problems. Inf. Com-
put. 231, 70–88 (2013). FCT 2011

16. Jarvis, M., Zhou, B.: Bounded vertex coloring of trees. Discrete Math. 232(1–3),
145–151 (2001)

17. Lih, K.W.: Equitable coloring of graphs. In: Pardalos, P., Du, D.Z., Graham, R.
(eds.) Handbook of Combinatorial Optimization, pp. 1199–1248. Springer, New
York (2013). https://doi.org/10.1007/978-1-4419-7997-1 25

18. Meyer, W.: Equitable coloring. Am. Math. Monthly 80(8), 920–922 (1973)
19. Reddy, I.V.: Parameterized coloring problems on threshold graphs. arXiv e-prints

p. 1910.10364 (2019)
20. Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations. Cambridge University Press,
Cambridge (2004)

21. Sorge, M., Weller, M.: The graph parameter hierarchy (2019, unpublished
manuscript)

https://doi.org/10.1007/3-540-61576-8_67
https://doi.org/10.1007/3-540-61576-8_67
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4419-7997-1_25

Algorithms and Data Structures

Dynamically Optimal Self-adjusting
Single-Source Tree Networks

Chen Avin1, Kaushik Mondal2(B), and Stefan Schmid3

1 School of Electrical and Computer Engineering,
Ben Gurion University of the Negev, Beersheba, Israel

avin@cse.bgu.ac.il
2 Department of Mathematics,

Indian Institute of Technology Ropar, Rupnagar, India
kaushik.mondal@iitrpr.ac.in

3 Faculty of Computer Science, University of Vienna, Vienna, Austria
schmiste@gmail.com

Abstract. This paper studies a fundamental algorithmic problem
related to the design of demand-aware networks: networks whose topolo-
gies adjust toward the traffic patterns they serve, in an online man-
ner. The goal is to strike a tradeoff between the benefits of such adjust-
ments (shorter routes) and their costs (reconfigurations). In particular,
we consider the problem of designing a self-adjusting tree network which
serves single-source, multi-destination communication. The problem has
interesting connections to self-adjusting datastructures. We present two
constant-competitive online algorithms for this problem, one randomized
and one deterministic. Our approach is based on a natural notion of Most
Recently Used (MRU) tree, maintaining a working set. We prove that
the working set is a cost lower bound for any online algorithm, and then
present a randomized algorithm RANDOM-PUSH which approximates
such an MRU tree at low cost, by pushing less recently used communi-
cation partners down the tree, along a random walk. Our deterministic
algorithm MOVE-HALF does not directly maintain an MRU tree, but
its cost is still proportional to the cost of an MRU tree, and also matches
the working set lower bound.

1 Introduction

While datacenter networks traditionally rely on a fixed topology, recent optical
technologies enable reconfigurable topologies which can adjust to the demand
(i.e., traffic pattern) they serve in an online manner, e.g. [7,11,13,16]. Indeed,
the physical topology is emerging as the next frontier in an ongoing effort to
render networked systems more flexible.

In principle, such topological reconfigurations can be used to provide shorter
routes between frequently communicating nodes, exploiting structure in traffic
patterns [1,15,16], and hence to improve performance. However, the design of self-
adjusting networks which dynamically optimize themselves toward the demand
introduces an algorithmic challenge: an online algorithm needs to be devised which

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 143–154, 2020.
https://doi.org/10.1007/978-3-030-61792-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_12

144 C. Avin et al.

guarantees an efficient tradeoff between the benefits (i.e., shorter route lengths)
and costs (in terms of reconfigurations) of topological optimizations.

This paper focuses on the design of a self-adjusting complete tree (CT) net-
work: a network of nodes (e.g., servers or racks) that forms a complete tree, and
we measure the routing cost in terms of the length of the shortest path between
two nodes. Trees are not only a most fundamental topological structure of their
own merit, but also a crucial building block for more general self-adjusting net-
work designs: Avin et al. [2,3] recently showed that multiple tree networks (opti-
mized individually for a single source node) can be combined to build general
networks which provide low degree and low distortion. The design of a dynamic
single-source multi-destination communication tree, as studied in this paper, is
hence a stepping stone.

The focus on trees is further motivated by a relationship of our problem
to problems arising in self-adjusting datastructures [5]: self-adjusting datastruc-
tures such as self-adjusting search trees [21] have the appealing property that
they optimize themselves to the workload, leveraging temporal locality, but with-
out knowing the future. Ideally, self-adjusting datastructures store items which
will be accessed (frequently) in the future, in a way that they can be accessed
quickly (e.g., close to the root, in case of a binary search tree), while also account-
ing for reconfiguration costs. However, in contrast to most datastructures, in
a network, the search property is not required: the network supports routing.
Accordingly our model can be seen as a novel flavor of such self-adjusting binary
search trees where lookup is supported by a map, enabling shortest path routing
(more details will follow).

We present a formal model for this problem later, but a few observations are
easy to make. If we restrict ourselves to the special case of a line network (a
“linear tree”), the problem of optimally arranging the destinations of a given
single communication source is equivalent to the well-known dynamic list update
problem: for such self-adjusting (unordered) lists, dynamically optimal online
algorithms have been known for a long time [20]. In particular, the simple move-
to-front algorithm which immediately promotes the accessed item to the front of
the list, fulfills the Most-Recently Used (MRU) property: the ith furthest away
item from the front of the list is the ith most recently used item. In the list (and
hence on the line), this property is enough to guarantee optimality. The MRU
property is related to the so called working set property : the cost of accessing
item x at time t depends on the number of distinct items accessed since the last
access of x prior to time t, including x. Naturally, we wonder whether the MRU
property is enough to guarantee optimality also in our case. The answer turns
out to be non-trivial.

A first contribution of this paper is the observation that if we count only
access cost (ignoring any rearrangement cost, see Definition 1 for details), the
answer is affirmative: the most-recently used tree is what is called access opti-
mal. Furthermore, we show that the corresponding access cost is a lower bound
for any algorithm which is dynamically optimal. But securing this property, i.e.,
maintaining the most-recently used items close to the root in the tree, intro-
duces a new challenge: how to achieve this at low cost? In particular, assuming
that swapping the locations of items comes at a unit cost, can the property be

Dynamically Optimal Self-adjusting Single-Source Tree Networks 145

maintained at cost proportional to the access cost? As we show, strictly enforc-
ing the most-recently used property in a tree is too costly to achieve optimality.
But, as we will show, when turning to an approximate most-recently used prop-
erty, we are able to show two important properties: i) such an approximation
is good enough to guarantee access optimality; and ii) it can be maintained
in expectation using a randomized algorithm: less recently used communication
partners are pushed down the tree along a random walk.

While the most-recently used property is sufficient, it is not necessary: we
provide a deterministic algorithm which is dynamically optimal but does not even
maintain the MRU property approximately. However, its cost is still proportional
to the cost of an MRU tree (Definition 4).

Succinctly, we make the following contributions. First we show a working
set lower bound for our problem. We do so by proving that an MRU tree is
access optimal. In the following theorem, let WS(σ) denote the working set of
σ (a formal definition will follow later).

Theorem 1. Consider a request sequence σ. Any algorithm ALG serving σ
using a self-adjusting complete tree, has cost at least cost(ALG(σ)) ≥ WS(σ)/4,
where WS(σ) is the working set of σ.

Our main contribution is a deterministic online algorithm MOV E − HALF
which maintains a constant competitive self-adjusting Complete Tree (CT) net-
work.

Theorem 2. MOV E − HALF algorithm is dynamically optimal.

Interestingly, MOV E − HALF does not require the MRU property and hence
does not need to maintain MRU tree. This implies that maintaining a working
set on CTs is not a necessary condition for dynamic optimality, although it is a
sufficient one.

Furthermore, we present a dynamically optimal, i.e., constant competitive
(on expectation) randomized algorithm for self-adjusting CTs called RANDOM-
PUSH. RANDOM-PUSH relies on maintaining an approximate MRU tree.

Theorem 3. The RANDOM-PUSH algorithm is dynamically optimal on
expectation.

Due to space constraints, proofs and longer discussions appear in a technical
report [4].

2 Model and Preliminaries

Our problem can be formalized using the following simple model. We consider a
single source that needs to communicate with a set of n nodes V = {v1, . . . , vn}.
The nodes are arranged in a complete binary tree and the source is connected
the root of the tree. While the tree describes a reconfigurable network, we will
use terminology from datastructures, to highlight this relationship and avoid the
need to introduce new terms.

146 C. Avin et al.

Fig. 1. (a) Our complete tree model: a source with a map, a tree of servers that host
items (nodes) and a swap operation between neigboring items. (b) The node’s tree
network implied by the tree T from (a) and the set of swaps needed to interchange the
location of v6 and v4. (c) The tree network after the interchange and swap operations
of (b).

We consider a complete tree T connecting n servers S = {s1, . . . , sn}. We will
denote by s1(T) the root of the tree T , or s1 when T is clear from the context,
and by si.left (resp. si.right) the left (resp. right) child of server si. We assume
that the n servers store n items (nodes) V = {v1, . . . , vn}, one item per server.
For any i ∈ [1, n] and any time t, we will denote by si.guest(t) ∈ V the item
mapped to si at time t. Similarly, vi.host(t) ∈ S denotes the server hosting item
vi. Note that if vi.host(t) = sj then sj .guest(t) = vi.

The depth of a server si is fixed and describes the distance from the root; it is
denoted by si.dep, and s1.dep = 0. The depth of an item vi at time t is denoted
by vi.dep(t), and is given by the depth of the server to which vi is mapped at
time t. Note that vi.dep(t) = vi.host.dep(t).

To this end, we interpret communication requests from the source as accesses
to items stored in the (unordered) tree. All access requests (resp. communication
requests) to items (resp. nodes) originate from the root s1. If an item (resp. node)
is frequently requested, it can make sense to move this item (node) closer to the
root of T : this is achieved by swapping items which are neighboring in the tree
(resp. by performing local topological swaps).

Access requests occur over time, forming a (finite or infinite) sequence σ =
(σ(1), σ(2), . . .), where σ(t) = vi ∈ V denotes that item vi is requested, and needs
to be accessed at time t. The sequence σ (henceforth also called the workload)
is revealed one-by-one to an online algorithm ON . The working set of an item
vi at time t is the set of distinct elements accessed since the last access of vi

prior to time t, including vi. We define the rank of item vi at time t to be the
size of the working set of vi at time t and denote it as vi.rank(t). When t is clear
of context, we simply write vi.rank. The working set bound of sequence σ of m
requests is defined as WS(σ) =

∑m
t=1 log(σ(t).rank).

Both serving (i.e., routing) the request and adjusting the configuration comes
at a cost. We will discuss the two cost components in turn. Upon a request, i.e.,
whenever the source wants to communicate to a partner, it routes to it via the
tree T . To this end, a message passed between nodes can include, for each node
it passes, a bit indicating which child to forward the message next (requires
O(log n) bits). Such a source routing header can be built based on a dynamic
global map of the tree that is maintained at the source node. As mentioned, the

Dynamically Optimal Self-adjusting Single-Source Tree Networks 147

source node is a direct neighbor of the root of the tree, aware of all requests,
and therefore it can maintain the map. The access cost is hence given by the
distance between the root and the requested item, which is basically the depth
of the item in the tree.

The reconfiguration cost is due to the adjustments that an algorithm performs
on the tree. We define the unit cost of reconfiguration as a swap: a swap means
changing position of an item with its parent. Note that, any two items u, v
in the tree can be interchanged using a number of swaps equal to twice the
distance between them. This can be achieved by u first swapping along the path
to v and then v swapping along the same path to initial location of u. This
interchange operation results in the tree staying the same, but only u and v
changing locations. We assume that to interchange items, we first need to access
one of them. See Fig. 1 for an example of our model and interchange operation.

Definition 1 (Cost). The cost incurred by an algorithm ALG to serve a request
σ(t) = vi is denoted by cost(ALG(σ(t))), short cost(t). It consists of two parts,
access cost, denoted acc-cost(t), and adjustment cost, denoted adj-cost(t). We
define access cost simply as acc-cost(t) = vi.dep(t) since ALG can maintain a
global map and access vi via the shortest path. Adjustment cost, adj-cost(t), is
the total number of swaps, where a single swap means changing position of an
item with its parent or a child. The total cost, incurred by ALG is then

cost(ALG(σ)) =
∑

t

cost(ALG(σ(t))) =
∑

t

cost(t) =
∑

t

(acc-cost(t) + adj-cost(t))

Our main objective is to design online algorithms that perform almost as well
as optimal offline algorithms (which know σ ahead of time), even in the worst-
case. In other words, we want to devise online algorithms which minimize the
competitive ratio:

Definition 2 (Competitive Ratio ρ). We consider the standard definition of
(strict) competitive ratio ρ, i.e., ρ = maxσ cost(ON)/cost(OPT) where σ is
any input sequence and where OPT denotes the optimal offline algorithm.

If an online algorithm is constant competitive, independently of the problem
input, it is called dynamically optimal.

Definition 3 (Dynamic Optimality). An (online) algorithm ON achieves
dynamic optimality if it asymptotically matches the offline optimum on every
access sequence. In other words, the algorithm ON is O(1)-competitive.

We also consider a weaker form of competitivity (similarly to the notion of
search-optimality in related work [6]), and say that ON is access-competitive if
we consider only the access cost of ON (and ignore any adjustment cost) when
comparing it to OPT (which needs to pay both for access and adjustment). For
a randomized algorithm, we consider an oblivious online adversary which does
not know the random bits of the online algorithm a priori.

148 C. Avin et al.

The Self-adjusting Complete Tree Problem considered in this paper can
then be formulated as follows: Find an online algorithm which serves any (finite
or infinite) online request sequence σ with minimum cost (including both access
and rearrangement costs), on a self-adjusting complete binary tree.

3 Access Optimality: A Working Set Lower Bound

For fixed trees, it is easy to see that keeping frequent items close to the root,
i.e., using a Most-Frequently Used (MFU) policy, is optimal (cf. the technical
report [4]). The design of online algorithms for adjusting trees is more involved.
In particular, it is known that MFU is not optimal for lists [20]. A natural
strategy could be to try and keep items close to the root which have been frequent
“recently”. However, this raises the question over which time interval to compute
the frequencies. Moreover, changing from one MFU tree to another one may
entail high adjustment costs.

This section introduces a natural pendant to the MFU tree for a dynamic
setting: the Most Recently Used (MRU) tree. Intuitively, the MRU tree tries to
keep the “working set” resp. recently accessed items close to the root. In this
section we show a working set lower bound for any self-adjusting complete binary
tree.

While the move-to-front algorithm, known to be dynamically optimal for
self-adjusting lists [20], naturally provides such a “most recently used” property,
generalizing move-to-front to the tree is non-trivial. We therefore first show that
any algorithm that maintains an MRU tree is access-competitive. With this in
mind, let us first formally define the MRU tree.

Definition 4 (MRU Tree). For a given time t, a tree T is an MRU tree if
and only if,

vi.dep = �log vi.rank� (1)

Accordingly the root of the tree (level zero) will always host an item of rank
one. More generally, servers in level i will host items that have a rank between
(2i, 2i+1 − 1). Upon a request of an item, say vj with rank r, the rank of vj

is updated to one, and only the ranks of items with rank smaller than r are
increased, each by 1. Therefore, the rank of items with rank higher than r do
not change and their level (i.e., depth) in the MRU tree remains the same (but
they may switch location within the same level).

Definition 5 (MRU algorithm) . An online algorithm ON has the MRU
property (or the working set property) if for each time t, the tree T (t) that ON
maintains, is an MRU tree.

The working set lower bound will follow from the following theorem which
states that any algorithm that has the MRU property is access competitive.

Theorem 4. Any online algorithm ON that has the MRU property is 4 access-
competitive.

Dynamically Optimal Self-adjusting Single-Source Tree Networks 149

Recall that an analogous statement of Theorem 4 is known to be true for a
list [20]. As such, one would hope to find a simple proof that holds for complete
trees, but it turns out that this is not trivial, since OPT has more freedom in
trees. We therefore present a direct proof based on a potential function, similar
in spirit to the list case.

Based on Theorem 4 we can now show our working set lower bound:

Theorem 5. Consider a request sequence σ. Any algorithm ALG serving σ
using a self-adjusting complete tree, has cost at least cost(ALG(σ)) ≥ WS(σ)/4,
where WS(σ) is the working set of σ.

Proof. The sum of the access costs of items from an MRU tree is exactly WS(σ).
For the sake of contradiction assume that there is an algorithm ALG with cost
cost(ALG(σ)) < WS(σ)/4. If follows that Theorem 4 is not true. A contradiction.

��

4 Deterministic Algorithm

4.1 Efficiently Maintaining an MRU Tree

It follows from the previous section that if we can maintain an MRU tree at the
cost of accessing an MRU tree, we will have a dynamically optimal algorithm.
So we now turn our attention to the problem of efficiently maintaining an MRU
tree. To achieve optimality, we need that the tree adjustment cost will be pro-
portional to the access cost. In particular, we aim to design a tree which on one
hand achieves a good approximation of the MRU property to capture temporal
locality, by providing fast access (resp. routing) to items; and on the other hand
is also adjustable at low cost over time.

Let us now assume that a certain item σ(t) = u is accessed at some time t.
In order to re-establish the (strict) MRU property, u needs to be promoted to
the root. This however raises the question of where to move the item currently
located at the root, let us call it v. A natural idea to make space for u at the
root while preserving locality, is to push down items from the root, including
item v. However, note that simply pushing items down along the path between
u and v (as done in lists) will result in a poor performance in the tree. To
see this, let us denote the sequence of items along the path from u to v by
P = (u,w1, w2, . . . , w�, v), where � = u.dep, before the adjustment. Now assume
that the access sequence σ is such that it repeatedly cycles through the sequence
P , in this order. The resulting cost per request is in the order of Θ(�), i.e., could
reach Θ(log n) for � = Θ(log n). However, an algorithm which assigns (and then
fixes) the items in P to the top log � levels of the tree, will converge to a cost of
only Θ(log �) ∈ O(log log n) per request: an exponential improvement.

Another basic idea is to try and keep the MRU property at every step. Let
us call this strategy Max-Push. Consider a request to item u which is at depth
u.dep = k. Initially u is moved to the root. Then the Max-Push strategy chooses
for each depth i < u.dep, the least recently accessed (and with maximum rank)

150 C. Avin et al.

Algorithm 1: Upon request to u in MOV E − HALF ’s Tree

1: access u = s.guest along the tree branches (cost: u.dep)
2: let v be the item with the highest rank at depth �u.dep/2�
3: swap u along tree branches to node v (cost: 3

2
u.dep)

4: swap v along tree branches to server s (cost: 3
2
u.dep)

item from level i: formally, wi = arg maxv∈V :v.dep=i v.rank. We then push wi to
the host of wi+1. It is not hard to see that this strategy will actually maintain
a perfect MRU tree. However, items with the maximum rank in different levels,
i.e., wi.host and wi+1.host, may not be in a parent-child relation. So to push wi

to wi+1.host, we may need to travel all the way from wi.host to the root and
then from the root to wi+1.host, resulting in a cost proportional to i per level i.
This accumulates a rearrangement cost of

∑k
i=1 i > k2/2 to push all the items

with maximum rank at each layer, up to layer k. This is not proportional to the
original access cost k of the requested item and therefore, leads to a non-constant
competitive ratio as high as Ω(log n).

Later, in Sect. 5, we will present a randomized algorithm that maintains a
tree that approximates an MRU tree at a low cost. But first, we will present
a simple deterministic algorithm that does not directly maintain an MRU tree,
but has cost that is proportional to the MRU cost and is hence dynamically
optimal.

4.2 The MOV E − HALF Algorithm

In this section we propose a simple deterministic algorithm, MOV E − HALF ,
that is proven to be dynamically optimal. Interestingly MOV E − HALF does
not maintain the MRU property but its cost is shown to be competitive to the
access cost on an MRU tree, and therefore, to the working set lower bound.

MOV E − HALF is described in Algorithm 1. Initially, MOV E − HALF
and OPT start from the same tree (which is assumed w.l.o.g. to be an MRU
tree). Then, upon a request to an item u, MOV E − HALF first accesses u
and then interchanges its position with node v that is the highest ranked item
positioned at half of the depth of u in the tree. After the interchange the tree
remains the same, only u and v changed locations. See Fig. 1 (b) for an example
of MOV E − HALF operation where v6 at depth 3 is requested and is then
interchanged with v4 at depth 1 (assuming it is the highest rank node in level
1).

The access cost of MOV E − HALF is proportional to the access cost of an
MRU tree.

Theorem 6. Algorithm MOV E − HALF is 4 access-competitive to an MRU
algorithm.

Proof (Proof of Theorem 2). Using Theorem 4 and Theorem 6, MOV E − HALF
is 16-access competitive. It is easy to see from Algorithm 1 that total cost

Dynamically Optimal Self-adjusting Single-Source Tree Networks 151

of MOV E − HALF ’s tree is 4 times the access cost. Considering these,
MOV E − HALF is 64-competitive. ��

In the coming section we show techniques to maintain MRU trees cheaply.
This is another way to maintain dynamic optimality.

5 Randomized MRU Trees

The question of how, and if at all possible, to maintain an MRU tree determin-
istically (where for each request σ(t), σ(t).depth = �log σ(t).rank�) at low cost is
still an open problem. But, in this section we show that the answer is affirma-
tive with two relaxations: namely by using randomization and approximation.
We believe that the properties of the algorithm we describe next may also find
applications in other settings, and in particular data structures like skip lists [9].

At the heart of our approach lies an algorithm to maintain a constant approx-
imation of the MRU tree at any time. First we define MRU(β) trees for any
constant β.

Definition 6 (MRU(β) Tree). A tree T is called an MRU(β) tree if it holds for
any item u and any time that, u.dep = �log u.rank� + β.

Note that, any MRU(0) tree is also an MRU tree. In particular, we prove in the
following that a constant additive approximation is sufficient to obtain dynamic
optimality.

Theorem 7. Any online MRU(β) algorithm is 4(1 + �β
2) access-competitive.

To efficiently achieve an MRU(β) tree, we propose the RANDOM-PUSH
strategy (see Algorithm 2). This is a simple randomized strategy which selects
a random path starting at the root, and then steps down the tree to depth
k = u.dep (the accessed item depth), by choosing uniformly at random between
the two children of each server at each step. This can be seen as a simple k-step
random walk in a directed version of the tree, starting from the root of the tree.
Clearly, the adjustment cost of RANDOM-PUSH is also proportional to k and
its actions are independent of any oblivious online adversary. The main technical
challenge of this section is proving the following theorem.

Theorem 8. RANDOM-PUSH maintains an MRU(4) (Definition 6) tree in
expectation, i.e., the expected depth of the item with rank r is less than log r+3 <
�log r� + 4 for any sequence σ and any time t.

It now follows almost directly from Theorems 7 and 8 that RANDOM-PUSH
is dynamically optimal.

Theorem 9. The RANDOM-PUSH algorithm is dynamically optimal on expec-
tation.

152 C. Avin et al.

Algorithm 2: Upon access to u in Push-Down Tree

1: access s = u.host along tree branches (cost: u.dep)
2: let v = s1.guest be the item at the current root
3: move u to the root server s1, setting s1.guest = u (cost: u.dep)
4: employ RANDOM-PUSH to shift down v to depth s.dep (cost: u.dep)
5: let w be the item at the end of the push-down path, where w.dep = s.dep
6: move w to s, i.e., setting s.guest = w (cost: u.dep × 2)

Proof. Let the t-th requested item have rank rt, then the access cost is D(rt).
According to the RANDOM-PUSH (Algorithm 2), the total cost is 5D(rt) which
is five times the access cost on the MRU(4) tree. Formally, using Theorem 7
and Theorem 8, the expected total cost is:

E [cost(RANDOM − PUSH)] = E

[
t∑

i=1

5D(ri)

]
= 5

t∑

i=1

E [D(ri)] ≤ 5

t∑

i=1

(log(ri) + 3)

≤ 5

t∑

i=1

(�log(ri)� + 4) ≤ 5

t∑

i=1

cost(t)(MRU(4))

≤ 5 · cost(MRU(4)) = 60 · cost(OPT)

��

6 Related Work

The work most closely related to ours arises in the context of self-adjusting
datastructures. However, while datastructures need to be searchable, networks
come with routing protocols: the presence of a map allows us to trivially access
a node (or item) at distance k from the front at a cost k. Interestingly, while we
have shown in this paper that dynamically optimal algorithms for tree networks
exist, the quest for constant competitive online algorithms for binary search trees
remains a major open problem [21]. Nevertheless, there are self-adjusting binary
search trees that are known to be access optimal [6], but their rearrangement
cost it too high.

In the following, we first review most related work on datastructures and then
discuss literature in the context of networks. A more detailed discussion appears
in the technical report[4]. In contrast to CTs, self-adjustments in Binary Search
Trees (BSTs) are based on rotations (which are assumed to have unit cost). While
BSTs have the working set property, we are missing a matching lower bound:
the Dynamic Optimality Conjecture, the question whether splay trees [21] are
dynamically optimal, continues to puzzle researchers. We are also not the first to
consider Unordered Trees (UTs) and it is known that existing lower bounds for
(offline) algorithms on BSTs also apply to UTs that use rotations [12]. However,
it is also known that this correspondance between ordered and unordered trees

Dynamically Optimal Self-adjusting Single-Source Tree Networks 153

no longer holds under weaker measures such as key independent processing costs
and in particular Iacono’s measure [14]: the expected cost of the sequence which
results from a random assignment of keys from the search tree to the items
specified in an access request sequence. Iacono’s work is also one example of
prior work which shows that for specific scenarios, working set and dynamic
optimality properties are equivalent. Regarding the current work, we note that
the reconfiguration operations in UTs are more powerful than the swapping
operations considered in our paper: a rotation allows to move entire subtrees at
unit costs, while the corresponding cost in CTs is linear in the subtree size. We
also note that in our model, we cannot move freely between levels, but moves
can only occur between parent and child. In contrast to UTs, CTs are bound to
be balanced.

Intriguingly, although Skip Lists (SLs) and BSTs can be transformed to each
other, Bose et al. [8] were able to prove dynamic optimality for (a restricted
kind of) SLs as well as B-Trees (BTs). However, the quest for proving dynamic
optimality for general skip lists remains an open problem: two restricted types of
models were considered in [8], bounded and weakly bounded. Due to the relation-
ship between SLs and BSTs, a dynamically optimal SL would imply a working
set lower bound for BST. Moreover, while both in their model and ours, proving
the working set property is key, the problems turn out to be fundamentally dif-
ferent. In contrast to SLs, CTs revolve around unordered (and balanced) trees
(that do not provide a simple search mechanism), rely on a different reconfigu-
ration operation (i.e., swapping or pushing an item to its parent comes at unit
cost), and, as we show in this paper, actually provide dynamic optimality for
their general form. Finally, we note that [8] (somewhat implicitly) also showed
that a random walk approach can achieve the working set property; in our paper,
we show that the working set property can even be achieved deterministically
and without maintaining MRU.

Finally, little is known about self-adjusting networks. While there exist sev-
eral algorithms for the design of static demand-aware networks, e.g. [2,3,10,19],
online algorithms which also minimize reconfiguration costs are less explored.
The most closely related work to ours are SplayNets [17,18], which are also
based on a tree topology (but a searchable one). However, SplayNets do not
provide any formal guarantees over time, besides convergence properties in case
of certain fixed demands.

Acknowledgments. Research supported by the ERC Consolidator grant AdjustNet
(agreement no. 864228).

References

1. Avin, C., Ghobadi, M., Griner, C., Schmid, S.: On the complexity of traffic traces
and implications. In: Proceedings of the International Conference on Measurement
and Modeling of Computer Systems, ACM SIGMETRICS, pp. 47–48 (2020)

2. Avin, C., Mondal, K., Schmid, S.: Demand-aware network designs of bounded
degree. Distrib. Comput., 311–325 (2019). https://doi.org/10.1007/s00446-019-
00351-5

https://doi.org/10.1007/s00446-019-00351-5
https://doi.org/10.1007/s00446-019-00351-5

154 C. Avin et al.

3. Avin, C., Mondal, K., Schmid, S.: Demand-aware network design with minimal
congestion and route lengths. In: Proceedings of the 38th IEEE International Con-
ference on Computer Communications, IEEE INFOCOM, pp. 1351–1359 (2019)

4. Avin, C., Mondal, K., Schmid, S.: Push-down trees: optimal self-adjusting complete
trees. In: Technical Report arXiv 1807.04613 (2020)

5. Avin, C., Schmid, S.: Toward demand-aware networking: a theory for self-adjusting
networks. ACM SIGCOMM Comput. Commun. Rev. 48(5), 31–40 (2019)

6. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-optimality
in lists and trees. In: Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (2002)

7. Bojja Venkatakrishnan, S., Alizadeh, M., Viswanath, P.: Costly circuits, submodu-
lar schedules and approximate carathéodory theorems. In: Proceedings of the 2016
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Science, pp. 75–88 (2016)

8. Bose, P., Doüıeb, K., Langerman, S.: Dynamic optimality for skip lists and b-
trees. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1106–1114 (2008)

9. Dean, B.C., Jones, Z.H.: Exploring the duality between skip lists and binary search
trees. In: Proceedings of the 45th Annual Southeast Regional Conference, ACM-
SE, New York, NY, USA, vol. 45, pp. 395–399. ACM (2007)

10. Foerster, K.T., Ghobadi, M., Schmid, S.: Characterizing the algorithmic complexity
of reconfigurable data center architectures. In: Proceedings of ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems (ANCS)
(2018)

11. Foerster, K.T., Schmid, S.: Survey of reconfigurable data center networks: enablers,
algorithms, complexity. SIGACT News 50(2), 62–79 (2019)

12. Fredman, M.L.: Generalizing a theorem of Wilber on rotations in binary search
trees to encompass unordered binary trees. Algorithmica 62(3–4), 863–878 (2012)

13. Hamedazimi, N., et al.: Firefly: a reconfigurable wireless data center fabric using
free-space optics. Proc. ACM SIGCOMM Comput. Commun. Rev. (CCR) 44,
319–330 (2014)

14. Iacono, J.: Key-independent optimality. Algorithmica 42(1), 3–10 (2005)
15. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of

data center traffic: measurements and analysis. In: Proceedings of the 9th ACM
Internet Measurement Conference (IMC), pp. 202–208 (2009)

16. M. Ghobadi et al.: Projector: Agile reconfigurable data center interconnect. In:
Proceedings of the 2016 ACM SIGCOMM Conference, pp. 216–229 (2016)

17. Peres, B., Otavio, A.D.O., Goussevskaia, O., Avin, C., Schmid, S.: Distributed self-
adjusting tree networks. In: Proceedings of the 38th IEEE International Conference
on Computer Communications, IEEE INFOCOM, pp. 145–153 (2019)

18. Schmid, S., Avin, C., Scheideler, C., Borokhovich, M., Haeupler, B., Lotker, Z.:
SplayNet: towards locally self-adjusting networks. IEEE/ACM Trans. Networks
24(3), 1421–1433 (2016)

19. Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y.: Proteus: a topology
malleable data center network. In: Proceedings of the 9th ACM Workshop on Hot
Topics in Networks (HotNets), pp. 1–6 (2010)

20. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

21. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

Batched Predecessor and Sorting
with Size-Priced Information

in External Memory

Michael A. Bender1, Mayank Goswami2(B), Dzejla Medjedovic3,
Pablo Montes4, and Kostas Tsichlas5

1 Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794, USA
bender@cs.stonybrook.edu

2 Department of Computer Science, Queens College, CUNY, NY 11367, USA
mayank.goswami@qc.cuny.edu

3 International University of Sarajevo, 71210 Sarajevo, Bosnia and Herzegovina
dzmedjedovic@ius.edu.ba

4 Google Inc, Mountain View, CA 94043, USA
pabmont@gmail.com

5 Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
tsichlas@csd.auth.gr

Abstract. The fundamental problems of sorting and searching, tradi-
tionally studied in the unit-cost comparison model, have been generalized
to include priced information, where different pairs of items have differ-
ent comparison costs. These costs can be arbitrary (Charikar et al. STOC
2000), structured (Gupta et al. FOCS 2001), or stochastic (Angelov
et al. LATIN 2008). Motivated by the database setting where the com-
parison cost depends on the sizes of the records, we consider the problems
of sorting and batched predecessor where two non-uniform sets of items
A and B are given as input. In the RAM model, pairwise comparisons
(A-A, A-B and B-B) have respective comparison costs a, b and c. We
give upper and lower bounds for the case a ≤ b ≤ c, which serves as
a warmup for the generalization to the external-memory model. In the
Disk-Access Model (DAM), where transferring elements between disk
and RAM is the main bottleneck, we consider the scenario where ele-
ments in B are larger than elements in A. All items are required in their
entirety for comparisons in RAM. A key observation is that the complex-
ity of sorting depends on the interleaving of the small and large items in
the final sorted order, and with a high degree of interleaving, the lower
bound is dominated by an associated batched predecessor problem. We
give output-sensitive bounds on the batched predecessor and sorting; our
bounds are tight in most cases. Our lower bounds require novel general-
izations of lower bound techniques in external memory to accommodate
non-uniform keys.

This work was supported in part by NSF grants CCF-1725543, CSR-1763680, CCF-
1716252, CCF-1617618, CNS-1938709, and by Sandia National Laboratories.
Supported by NSF grants CRII-1755791 and CCF-1910873.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 155–167, 2020.
https://doi.org/10.1007/978-3-030-61792-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_13

156 M. A. Bender et al.

Keywords: Priced information · Sorting · Batched predecessor ·
External memory · Output-sensitive algorithms

1 Introduction

In most published literature on sorting and other comparison-based problems
(e.g., searching and selection), the traditional assumption is that a comparison
between any two elements costs one unit, and the efficiency of an algorithm
depends on the total number of comparisons required to solve the problem.
In this paper, we study a natural extension to sorting, where the cost of a
comparison between a pair of elements can vary, and the comparison cost is
the function of the elements being compared. We derive worst-case lower and
upper bounds in the random-access-machine (RAM) and the disk-access-machine
(DAM) [1] models for sorting and the batched predecessor problems.

In the RAM model, we assume that comparisons between a pair of keys have
an associated cost that depends on the type of keys involved. As a toy problem,
consider n red and n blue keys, where a comparison between a pair of red keys
costs a, between a red key and a blue key costs b, and between a pair of blue
keys costs c. Without loss of generality we can assume a < c, which gives rise to
three cases to be considered, a < b < c, a < c < b, and b < a < c (when b = 1
but a = c = ∞ corresponds to the well-known nuts and bolts problem [2].) In
this paper we consider the setting of [16], where the comparison cost depends
on the length of the keys being compared. However, our analysis considers the
worst-case cost parameterized by the specific distribution (or the “interleaving”)
of the elements in the final sorted order.

Then we turn to the disk access machine (DAM) model (also called the
external-memory model or the I/O model) [1], designed to capture the key aspect
of data-intensive applications, where transferring data is the main bottleneck,
as oppose to CPU computation. In this simplified model of modern memory
hierarchy, data is transferred from an external disk of infinite capacity to the
main memory of size M in blocks of size B, where M > B and input size
N >> M ; the cost of the algorithm is measured by the number of block transfers
(I/Os) that it needs; once data is in memory, all computation comes for free.

In the DAM model, the notion of the comparison cost naturally comes into
play when elements have different sizes (or lengths) because the larger the ele-
ments are, the fewer of them can fit in a block transfer. Specifically, if a key
has length w, where w ≤ B, then up to B/w keys can be fetc.hed with one
I/O; similarly, if w ≥ B, then it takes w/B I/Os to bring that key into mem-
ory. Moreover, a long element, when brought into RAM, will displace a larger
volume of keys than a short element, thus reducing the parallelism that many

Sorting with Size-Priced Information 157

external-memory algorithms such as external merge sort benefit from.1 In the
DAM model, we are given two sets of keys, S keys of unit size (short keys) and
L/w (long) keys of size w each (total volume L). We express our results param-
eterized by the interleaving of the elements in their final sorted order. Let the
interleaving parameter k denote the number of consecutive runs of large keys
(i.e., stripes) in the final sorted order. Our goal is to express the performance of
the sorting algorithm, as a function of S, L, w, and k.

Sorting with two key lengths illustrates a special connection between sort-
ing and the batched searching problem that we call PLE (Placement of Large
Elements). Given S keys of unit size (short keys) in the sorted order, and L/w
(long) keys of size w each, the objective in the PLE is to find the short key
that is the immediate predecessor of each long key. The PLE problem is a lower
bound on sorting because it starts off with more information than the original
sorting and asks to do less; in many cases, it dominates the sorting cost.

However, obtaining lower bounds on the PLE presents several challenges.
First, having records of different sizes implies that standard information-
theoretic lower bounds on the unit-sized case do not apply, because now different
types of I/Os can contribute different amounts of information. Second, depend-
ing on the interleaving of the small and large elements, expressed in our bounds
with the interleaving parameter k, and the size of the large element w, the PLE
bounds substantially change. And lastly, PLE is a batched searching problem
with a nontrivial preprocessing-query tradeoff [9], an interesting problem on its
own.

Related Work. In RAM, algorithms for inputs with priced information have
been studied in the context of competitive analysis [3,11,12,16]. Another exam-
ple of varying comparison costs is the well-known nuts-and-bolts problem [2].
Interleaving-sensitive lower bounds and batched searching are related to lower
bounds for sorting multisets [19] and distribution-sensitive set-partitioning [14].

Aggarwal and Vitter [1] introduced the external-memory (DAM) model. The
fundamental lower bounds were further generalized in [6] and [15] to the external
algebraic decision tree model. Prominent examples studying lower bounds on
batched and predecessor searching are found in [4,7,9].

Most previous work that considers variable-length keys does so in the con-
text of B-trees [8,13,17,18,20], and string sorting [5], where in the latter, authors
derive upper and lower bounds under different models of key divisibility. Strings
are divisible, and that brings down the complexity of sorting, but the lower
bounds in our paper also imply the worst-case bounds for the string scenario
where the tie is broken at the last character. Indivisible keys are found in prac-
tical settings, where sorting and searching libraries such as GNU Sort [21] or

1 DAM model can represent any two levels of memory, which is related to the record
size in our problem. If the two levels are the disk and the main memory, elements
could be larger than B but are much smaller than M . If the levels are cache and
main memory, then the elements could have a length that is a nontrivial fraction
of M .

158 M. A. Bender et al.

Oracle Berkeley DB [10] allow the developer to pass in a comparison function as
a parameter.

Organization. In Sect. 2 we present the RAM version of our problem. We present
the sorting problem in external-memory in Sect. 3 and relate it to the batched
predecessor problem. We then derive lower and upper bounds on the batched
predecessor problem in Sect. 5 and end with open problems in Sect. 6

2 Warmup: The RAM Version

Two Types, RAM Version (2RAMSORT). The input is n red and n blue
keys, and the output is the sorted sequence of all keys. A comparison between a
pair of red keys costs a, between a red key and a blue key costs b, and between
a pair of blue keys costs c. Without loss of generality we can assume that a < c.

The optimal sorting cost in RAM depends on the final interleaving of the
elements in the final sorted order. If in the final sorted order all red keys come
before all blue keys, then Θ(an log n + cn log n) is the optimal total comparison
cost, and the algorithm that separately sorts the two sets, and uses only one
red-blue comparison to concatenate is optimal. However, if the red and blue
keys alternate in the final sorted order, then no blue-blue comparisons are ever
required to sort, rendering the previous algorithm suboptimal.

Stripes and the Interleaving Parameter k. A consecutive run of red or
blue keys in the final sorted order is called a stripe. For simplicity we assume
we have as many red stripes as blue. Define k to be the number of stripes, and
let �i (respectively si) be the number of blue (respectively red) keys in stripe i.
The notation � and s are chosen to correspond with the later sections when red
elements will be small and blue elements will be large.

Below we prove the tight bounds for the case a < b < c: this is the most
natural case to serve as a warmup for the I/O-model, because if we consider
the red elements small, blue elements large, then the comparisons involving red
elements cost less than those involving blue elements, thus a < b < c.

Theorem 1. 2RAMSORT has the following comparison cost complexity for the
comparison-cost case a < b < c:

Θ(an log n + b(k log n + n log k) + c
k∑

i=1

�i log �i)

Proof. The lower bounds follow by counting the number of permutations needed
to solve the following subproblems of 2RAMSORT:

1. The total number of permutations any algorithm for 2RAMSORT must
achieve is at least n!. A binary comparison reduces the number of permuta-
tions by a factor of at most 2, and the cheapest comparison cost is a, thus giving
a lower bound a log n! = Ω(an log n), our first term.

Sorting with Size-Priced Information 159

2. Consider the following instance of the problem, where the red elements are
given as sorted, and the locations and the contents of stripes of blue elements
are also provided but stripes are unsorted inside. This gives us a lower bound of
Ω(c

∑k
i=1 �i log �i), our third term.

3. Proving the second term as a lower bound involves addressing the following
instance: the red elements are given sorted, and the algorithm is just required
to discover the contents and the locations of k blue stripes. Once the algorithm
solves this batched predecessor problem, the stripes are individually sorted for
free.

There are at least P =
(
n
k

)
S(n, k) permutations to consider, first term corre-

sponding to finding k positions for stripes, and the second term, S(n, k) is the
Stirling number of the second kind, i.e., the number of ways to partition a set
of size n into k non-empty, disjoint subsets, which corresponds to distributing
contents among the k blue stripes. Considering that S(n, k) ≥ kn−k, we obtain
that P ≥ (n/k)kkn−k. Since red elements are already sorted, comparisons of
cost a are useless, and the cheapest available comparisons are those costing b.
Thus we get a lower bound of Ω(b(k log(n/k) + (n − k) log k)), which equals
Ω(b(k log n + n log k − 2k log k)). One can then show by a case analysis that
the last −2k log k term can be removed from the above expression, a detail we
allocate to the full version.

Since we derived the lower bound on a constant number of instances of
2RAMSORT, we can claim a lower bound of the maximum complexity of these
instances, that in turn equals the sum of the complexities in Ω(.) notation.

Due to space constraints, we refer the reader to the full version of the paper
for the description of the upper bound. The steps in the upper bound match
the respective lower-bound terms, by 1) sorting the red elements, 2) using two
balanced binary trees, one for discovering new stripes of blue elements, and the
other for assigning blue elements to existing stripes, and lastly, 3) sorting the
stripes of blue elements.

3 Sorting and Batched Predecessor in External Memory
with Size-Priced Information

The input to the two-sized sorting and batched predecessor problems are S =
{s∗} (the small records) and L = {�∗} (the large records, each of size 1 < w ≤
M/2). A set of large elements forms a stripe if for each pair of large elements �i

and �j in the stripe, there does not exist a small element between �i and �j in
the final sorted order. Let k be the number of large-element stripes, and let the
large-element stripes be L1,L2, . . . ,Lk, as they are encountered in the ascending
sorted order. The parameters in the complexity analysis of sorting and batched
predecessor are thus S = |S|, L = |L|, w, k, and {Li}k

i=1, where Li = |Li|.

Definition 1 (Two-Sized Sorting Sort (S,L)). The input is an (unsorted) set
of elements N = S ∪L. Set S consists of S unit-size elements, and L consists of

160 M. A. Bender et al.

L/w elements, each of size w.2 The output comprises the elements in N , sorted
and stored contiguously in external memory.

Definition 2 (PLE-Placement of Large Elements): The input is the sorted set
of small elements S = {s1, s2, . . . , sS}, and the unsorted set of large elements
L = {�1, �2, . . . , �L/w}. In the output, elements in S are sorted, and elements
in L are sorted according to which stripe they belong to, but arbitrarily ordered
within their stripe.

Theorem 2 (Sorting complexity). Denote by PLE (S,L) the complexity of
the PLE problem. Then the I/O complexity of Two-Sized Sorting Sort (S,L) is

Θ

(
S

B
logM/B

S

B
+ PLE (S,L) +

(
k∑

i=1

(
Li

B
logM/w

Li

w

)
+

L

B

))
.

The first term refers to the sorting the short elements, and the third term
refers to sorting the individual stripes of large elements. The first term is identical
to the conventional O(N

B logM/B
N
B) bound by Aggarwal and Vitter [1]. The third

term requires a slight generalization of that bound, because large elements are
larger than a block, a proof we include in our full version.

As in the RAM setting, since we have three subproblems, their maxi-
mum complexity, and hence the complexity of their sum, is a lower bound on
Sort (S,L). We have thus reduced the sorting problem to the batched predecessor
problem, which will occupy the rest of this article.

3.1 Main Challenges in the Batched Predecessor Problem

To solve the PLE (S,L), we need the notion of a fan-out, which measures the
efficiency of an I/O. Before an I/O, a large element has a set of candidate posi-
tions where it might land, and this interval gets reduced by a certain factor
(possibly 1) after an I/O. The fan-out of an I/O is defined to be the product of
all such factors for all large elements that reduce their search intervals during
this I/O. Some of the challenges involved in adapting the RAM results (and
classical DAM results) to the DAM model include:

1. Non-uniformity of Record Sizes: In the unit-sized setting, the transfer of
a block to main memory can decrease the number of permutations by a factor
of at most3 B!

(
M
B

)
. In our setting, the number of comparisons performed by an

2 We overload notation for convenience of presentation. We assume w ≥ B also for
the convenience of presentation. Our bounds hold for any 1 < w ≤ M/2 and are
presented in the full version of the paper.

3 The proof of the lower bound for sorting N unit-sized keys in [15] proceeds in the fol-
lowing fashion: assuming that all blocks are sorted (using a linear scan costing N/B
I/Os), there are N !/(B!)(N/B) permutations required to achieve, and the transfer of
a block of B sorted elements into the main memory containing M − B sorted ele-
ments reduce the number of permutations by at most a factor

(
M
B

)
(the “fan-out,”

since this is the degree of the node in the decision tree). Standard algebra gives a
lower bound of Ω(N

B
logM/B

N
B

).

Sorting with Size-Priced Information 161

I/O varies depending on whether the block transfer carries large records or small
records, and what the contents of RAM are at the time of the I/O, which yields
following possibilities:

– The transfer of a large element into main memory full of large elements gives
only

(
M/w

1

)
per w/B I/Os as a large-element transfer costs w/B.

– The transfer of B small records into main memory filled with small records
gives

(
M
B

)
.

– The transfer of a large element into a memory full of M small elements gives
a fan-out of M + 1.

– While the above three cases are tight, the main issue is in getting an upper
bound on how much a small block I/O can achieve. The main memory can
hold p = (M −B)/w large elements, and an incoming small block has B small
elements. Naively the maximum fan-out can be upper bounded by Bp, which
is not tight. Our main aim is to get a better bound on this fan-out.

Both our upper and lower bounds are a minimum of two terms, where one
dominates the other depending on how large the large elements are.

2. Requiring Output-Sensitive Lower Bound Limits Adversarial Argu-
ments: Lower bounds on the unit-sized batched predecessor problem in external
memory were recently obtained in [9]. In our setting, a more complicated adver-
sarial analysis is required, that forms exactly k stripes at the end. Using this,
we can argue a fan-out of at most 2B on most small block I/Os.

4 Complexity of the Batched Predecessor Problem:
Lower Bounds

The following theorem presents the PLE (S,L) lower bound:

Theorem 3 (PLE Lower Bound) .

PLE (S,L) = Ω
(

min
{

kw

B
logM S +

L

B
logM k,

k

B
log S +

L

wB
log k +

L

B

})
.

In order to prove Theorem 3, we first divide the PLE (S,L) problem further
into three subproblems for which we develop a common adversary argument
framework:

1. S-k: An instance with only one large element in each large-element stripe.
– Input: Set S of unit-sized elements s1, . . . , sS (sorted), where s1 = −∞

and sS = ∞, and large elements �1, . . . , �k (volume kw) unsorted.
– Output: For each �i output sj such that sj ≤ �i ≤ sj+1. It is guaranteed

that no other �k satisfies sj ≤ �k ≤ sj+1 (one large element per stripe).
2. k-k̃: An instance with only one small element in each small-element stripe.

– Input: Unit-sized elements s1, . . . , sk+1 sorted, where s1 = −∞ and
sk+1 = ∞, and large elements �1, . . . , �k̃ (volume k̃w) unsorted.

162 M. A. Bender et al.

– Output: For each �i, output its predecessor and successor in S.
3. k-k: An instance with only one element in each stripe, large or small.

– Input: Unit-sized elements s1, . . . , sk+1 sorted, where s1 = −∞ and
sk+1 = ∞, and large elements �1, . . . , �k (volume kw) unsorted.

– Output: The entire set in the sorted order.

The format of lower bounds for S-k, k-k̃ and k-k is as follows: let X be the
logarithm of the total number of permutations that an algorithm needs to achieve
in order to solve the problem. As is easily observed, the values of X (modulo
constant factors) for these three subproblems are k log(S/k), k̃ log k, and k log k,
respectively. Lemma 1 below is the most technical part of this paper, and it
helps us quantify the behavior of the adversary during small-block and large-
element inputs for all three subproblems. We use this lemma to prove the lower
bounds for the individual three subproblems (found in Lemma 2, Lemma 3, and
Lemma 4). Then we put the three lemmas together to obtain the expression
from Theorem 3.

Lemma 1. Consider any algorithm for the S-k, k-k̃, or the k-kproblem. There
exists an adversary such that:

– On the input of any block of B short elements, the adversary answers com-
parisons between all elements in main memory such that the fan-out of this
I/O is at most 2B. In other words, the number of permutations the algorithm
needs to check is reduced by a factor at most 2B.

– On the input of any large element (costing w/B I/Os), the adversary answers
comparisons between all elements in main memory such that the fan-out of
this I/O is at most O(M). In other words, the number of permutations the
algorithm needs to check is reduced by a factor at most O(M).

Proof of Lemma 1: We prove this lemma by describing the adversary. We
capture the information learned at every point of the algorithm by assigning a
search interval R(�) = (si, sj) for a large element � at step t as the narrowest
interval of small elements where � can possibly land in the final sorted order,
given the information the algorithm has learned so far. Bits of information is the
logarithm of the search interval (e.g., halving the search interval means learning
one bit of information.)

It will be useful to consider the binary tree T on the set S. The search
interval of any large element at any point during the execution of the algorithm
is a contiguous collection of leaves in T .

For simplicity we will assume that the size of S is a power of 2, and hence
T is perfectly balanced. Also, if R(�) = (si, sj) is the range of a large element,
we will make sure the adversary “rounds off” the search space so that the new
range corresponds exactly to a subtree of some node in T . This is accomplished
by first finding the least common ancestor lca of si and sj , and then shrinking
the search space of � to either the search space in the left subtree of lca or to
the search space in the right subtree of lca, whichever is larger. Thus each large
element � at any time has an associated node in T , which we denote by v(�).

Sorting with Size-Priced Information 163

We also denote the interval corresponding to v(�) (this is just the interval of its
subtree) as I(v(�)).

Mechanics of the Adversary’s Strategy: Our adversary will try to maintain
the following invariant at all times during the execution of the algorithm.

Invariant: The search intervals of large elements in main memory are disjoint.
We denote by {�p−1

i }M/w
i=1 the set of at most M/w large elements in mem-

ory before the pth I/O. By hypothesis, the nodes in T belonging to the set
{v(�p−1

i)}M/w
i=1 have no ancestor-descendant relationships between them. We

write Sp−1
i to denote I(v(�p−1

i)), the search interval of large element �p−1
i at

step p − 1.

Small-Block Input. Consider the incoming block. We denote np,i as the num-
ber of incoming small elements that belong to Sp−1

i . These elements divide Sp−1
i

into np,i +1 parts {P1, . . . , Pnpi+1}, some of them possibly empty. The largest of
these parts (say Pj) is of size at least 1/(np,i +1) times the size of Sp−1

i . The new
search interval of �p

i is defined to be the highest node in T such that I(v) ⊂ Pj .

Large Element Input. On an input of a large element �p
new (with search interval

Sp−1
new), the adversary uses a strategy similar to that one on a small-block input

to compare �p
new with the (at most) M small elements present in memory. These

M small elements divide Sp−1
new into at most M parts, and the new search interval

of �p
new corresponds to the highest node in T that contains the largest part. This

is the temporary search interval Snew, with the corresponding node vnew. Snew

can be related to the search intervals of large elements in memory in three ways:

– Case 1: The element �p
new shares a node with another large element �p

i . The
conflict is resolved by sending �p

new and �p
i to the left and right children of

vnew, respectively.
– Case 2: The element �p

new has an ancestor in memory. The ancestor is sent
one level down, to the child that does not contain vnew in its subtree. Thus
the conflict is resolved while giving at most O(1) bit.

– Case 3: The element �p
new has descendants in memory. Denote the nodes

that are descendants of vnew in T as v1, . . . , vM/w. Let the correspond-
ing search intervals be Sp−1

1 , . . . , Sp−1
M/w, respectively. Let X = ∪M/w

i=1 Sp−1
i

and Y = Snew\X. The set Y is a union of at most M/w + 1 intervals,
each of which we denote by Yi. Let Z be the largest interval from the set
{Sp−1

1 , . . . , Sp−1
M/w, Y1, . . . , YM/w}. Hence, |Z| ≥ |Snew|/(2M/w).

There are two cases to consider. The first case is when Z = Sp−1
i for some

i. In this case, Snew = Sp−1
i . In doing this we have given at most O(log M)

bits. Now we proceed as in Case 1 to resolve the conflict with at most O(1)
extra bits. Otherwise, if Z = Yi for some i, then the adversary allots �p

new to
the highest node v in T such that I(v) ⊆ Z.

We show that the above strategy produces the following guarantees (proof
in full version):

164 M. A. Bender et al.

1. On a small-block input, the adversary gives at most O(log(np,i + 1)) bits to
�p
i .

2. On a small-block input, the adversary gives at most O(B) bits.
3. On the input of a large element, the adversary gives at most O(log M) bits.

4.1 Putting It All Together: Lower Bounds for S-k, k-k̃ and k-k

1) S-kLower Bound. The proof rests on the following action of the adversary:
in the very beginning, the adversary gives the algorithm the extra information
that the ith largest large element lies somewhere between s(i−1)α and siα, where
α = S/k. In other words, the adversary tells the algorithm that the large elements
are equally distributed across S, one in each chunk of size S/k in S. This deems
the invariant of large elements in main memory having disjoint search inter-
vals automatically satisfied. Since any algorithm that solves S-k must achieve
Ω(k log(S/k)) bits of information, we have that

Lemma 2. S−k = Ω
(
min

(
kw
B logM

S
k , k

B log S
k + kw

B

))
.

2) k-k̃Lower Bound. To solve k-k̃, an algorithm needs to learn k log k̃ bits of
information. Using the adversary strategy we described, we observe:

Lemma 3. k-k̃= Ω
(
min

(
k̃w
B logM k, k̃

B log k + k̃w
B

))
.

3) k-kLower Bound. To solve k-k, an algorithm needs to learn k log k bits of
information. In the k-k problem, we expect to produce the perfect interleaving
of the small and large elements in the final sorted order. That is, each element
lands in its own leaf of T . Therefore, the adversary does not posses the freedom
to route elements down the tree at all times using the strategy we described.
Instead, the strategy is used for a fraction of total bits the algorithm learns, and
the remaining fraction is used to make up for the potential imbalance created
by sending more elements to the left or to the right. We call these type one and
type two bits, respectively. Type two bits are effectively given away for free by
the adversary.

More formally, we define the node capacity (cT (v)) as the number of large
elements that pass through v during the execution of an algorithm. If the
k-k algorithm runs in T I/Os, then the node capacity of v at a level h of T
is designated by cT (v) = k/2h.

Definition 3 (type one and type two bits). A bit gained by a large element
� is an type one bit if, when � moves from v to one of v’s children, at most
cT (v)/4 − 1 other large elements have already passed through v. The remainder
of the bits are type two bits.

Because a small-block input gives O(B) bits and a large-element input gives
O(log M) bits, and we need to achieve all type one bits to solve the problem
(there are (k log k)/4 of them), we obtain the following lower bound:

Sorting with Size-Priced Information 165

Lemma 4 k−k= Ω
(
min

(
kw
B logM k, k

B log k + kw
B

))
.

Proof of Theorem 3. The lower bounds for k-k, k-k̃ and S-k are each a mini-
mum of two terms; it is safe to add the respective terms as the transition between
which term dominates occurs at exactly the same value of w for each of the sub-
problems. Adding the terms for the lower bounds of k-k and S-k provides the
k
B log S and kw

B logM S terms in Theorem 3. Adding the terms for the lower
bounds of k-k and k-k̃, and using that k + k̃ = L/w provides the L

wB log S

and L
B logM S terms in Theorem 3. The theorem also holds for other item sizes

(w1 ≤ w2 ≤ B) and we prove the generalized result in the full version.

5 Upper Bounds

Our algorithm for Sort (S,L) works in three steps: 1) sort the short elements
using traditional multi-way external memory merge-sort [1], 2) solve the asso-
ciated PLE (S,L) problem, and 3) sort the long stripes obtained again using
multi-way mergesort. The first and third steps give the first and third terms in
the sorting complexity in Theorem 2.

We give two algorithms to solve PLE (S,L): PLE-DFS and PLE-BFS. The
final upper bound is the minimum of the two terms, as presented in Theorem 4.

PLE-DFS: PLE-DFS builds a static B-tree T on S, and searches for large
elements in T one by one. This approach is preferred in the case of really large
elements, and it is better to input them fewer times.

We dynamically maintain a smaller B-tree T ′ that contains only border ele-
ments (the two small elements sandwiching each large element in the final sorted
order) and has depth at most logB k. All large elements first travel down T ′ to
locate their stripe. Only those elements for which their stripe has not yet been
discovered need to travel down T . After a new stripe is discovered in T , it is
then added to T ′. The total cost becomes

O

(
L

w
logB k + k logB S +

L

B
+

S

B

)
. (1)

PLE-BFS: Our second algorithm for PLE uses a batch-searching tree with
fanout Θ(M). When a node of the tree is brought into memory, we route all
large elements via the node to the next level. We process the nodes of the
M -tree level by level so all large elements proceed at an equal pace from the
root to leaves. This technique is helpful when large elements are sufficiently
small so that bringing them many times into memory does not hurt while they
benefit from a large fanout.

The analysis is as follows: at each level of M-tree, the algorithm spends
Θ(L/B) I/Os in large-element inputs. Every node of the tree is brought in at
most once, which results in total O(S/B) I/Os in small-element inputs. The total
number of memory transfers for PLE-BFS then becomes O

(
L
B logM S + S

B

)
.

Our final upper bound is the better of the two algorithms:

166 M. A. Bender et al.

Theorem 4 (PLE Upper Bound).

PLE (S,L) = O

(
min

(
L

B
logM S +

S

B
,
L

w
logB k + k logB S +

L

B
+

S

B

))
.

Substituting the lower and upper bounds of the batched predecessor problem
(PLE (S,L)) derived in Theorems 3 and 4 into the complexity of sorting in
Theorem 2 gives us lower and upper bounds on the sorting problem Sort (S,L).

Remark 1: One observes that in Theorem 4 (PLE (S,L) lower bound), the
transition between the two terms in the minimum happens at w = B log M .
This is because when large elements are very large, the bound obtained by algo-
rithms that do not input the large elements too often (PLE-DFS) is smaller than
algorithms that input large elements multiple times (e.g., PLE-BFS).

Remark 2: The upper and lower bounds on PLE (S,L) are tight for a wide
range of parameters. Moreover, if the first and third terms in the complexity
of sorting (Theorem 2) dominate the complexity of the associated PLE (S,L)
problem, our sorting algorithms are tight.

6 Conclusion and Open Problems

We derived upper and lower bounds on sorting and batched predecessor in the
RAM and DAM models, when comparison or I/O costs depend on the length of
the items being compared. In many settings, we show that the optimal sorting
algorithm involves the optimal batched predecessor problem as a subroutine, and
develop algorithms for the batched predecessor problem.

While our results are for the two-size setting, we would like to point out that
our algorithms generalize to the multiple-sizes setting. However, generalizing our
lower bound techniques to the multiple-size setting requires more ideas.

References

1. Aggarwal, A., Vitter, J.: The input/output complexity of sorting and related prob-
lems. Commun. ACM 31, 1116–1127 (1988)

2. Alon, N., Blum, M., Fiat, A., Kannan, S., Naor, M., Ostrovsky, R.: Matching nuts
and bolts. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 690–696 (1994)

3. Angelov, S., Kunal, K., McGregor, A.: Sorting and selection with random costs.
In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 48–59. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78773-0 5

4. Arge, L.: The buffer tree: a technique for designing batched external data struc-
tures. Algorithmica 37(1), 1–24 (2003)

5. Arge, L., Ferragina, P., Grossi, R., Vitter, J.: On sorting strings in external memory
(extended abstract). In: Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, STOC, pp. 540–548 (1997)

https://doi.org/10.1007/978-3-540-78773-0_5
https://doi.org/10.1007/978-3-540-78773-0_5

Sorting with Size-Priced Information 167

6. Arge, L., Knudsen, M., Larsen, K.: A general lower bound on the I/O-complexity of
comparison-based algorithms. In: Proceedings of the 3rd Workshop on Algorithms
and Data Structures, WADS, pp. 83–94 (1993)

7. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.: Theory and practice
of I/O-efficient algorithms for multidimensional batched searching problems. In:
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA (1998)

8. Bender, M.A., Hu, H., Kuszmaul, B.C.: Performance guarantees for B-trees with
different-sized atomic keys. In: Proceedings of the 29th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS, pp. 305–316
(2010)

9. Bender, M.A., Farach-Colton, M., Goswami, M., Medjedovic, D., Montes, P., Tsai,
M.-T.: The batched predecessor problem in external memory. In: Schulz, A.S.,
Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 112–124. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44777-2 10

10. Berkeley DB C API Reference. http://www.berkeleydb.com/
11. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.P., Raghavan, A.S.: Query

strategies for priced information. In: Proceedings of the 32nd Annual ACM Sym-
posium on Theory of Computing, STOC, pp. 582–591 (2000)

12. Cicalese, F., Laber, E.: A new strategy for querying priced information. In: Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, STOC,
pp. 674–683 (2005)

13. Diehrand, G., Faaland, B.: Optimal pagination of B-trees with variable-length
items. Commun. ACM 27(3), 241–247 (1984)

14. Elmasry, A.: Distribution-sensitive set multi-partitioning. In: 1st International
Conference on the Analysis of Algorithms (2005)

15. Erickson, J.: Lower bounds for external algebraic decision trees. In: Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
755–761 (2005)

16. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS, pp.
416–425. IEEE (2001)

17. Larmore, L., Hirschberg, D.: Efficient optimal pagination of scrolls. Commun. ACM
28(8), 854–856 (1985)

18. McCreight, E.: Pagination of B*-trees with variable-length records. Commun. ACM
20(9), 670–674 (1977)

19. Munro, J., Spira, P.: Sorting and searching in multisets. SIAM J. Comput. 5(1),
1–8 (1976)

20. Pinchuk, A.P., Shvachko, K.V.: Maintaining dictionaries: space-saving modifica-
tions of B-trees. In: Biskup, J., Hull, R. (eds.) ICDT 1992. LNCS, vol. 646, pp.
421–435. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56039-4 57

21. The GNU C Library: qsort. http://www.gnu.org/software/libc/manual/

https://doi.org/10.1007/978-3-662-44777-2_10
http://www.berkeleydb.com/
https://doi.org/10.1007/3-540-56039-4_57
http://www.gnu.org/software/libc/manual/

Probabilistically Faulty
Searching on a Half-Line

(Extended Abstract)

Anthony Bonato1, Konstantinos Georgiou1(B), Calum MacRury2,
and Pawe�l Pra�lat1

1 Department of Mathematics, Ryerson University, Toronto, ON M5B 2K3, Canada
{abonato,konstantinos,pralat}@ryerson.ca

2 Department of Computer Science,
University of Toronto, Toronto, ON M5S 2E4, Canada

cmacrury@cs.toronto.edu

Abstract. We study p-Faulty Search, a variant of the classic cow-path
optimization problem, where a unit speed robot searches the half-line
(or 1-ray) for a hidden item. The searcher is probabilistically faulty, and
detection of the item with each visitation is an independent Bernoulli
trial whose probability of success p is known. The objective is to mini-
mize the worst case expected detection time, relative to the distance of
the hidden item to the origin. A variation of the same problem was first
proposed by Gal [29] in 1980. Alpern and Gal [3] proposed a so-called
monotone solution for searching the line (2-rays); that is, a trajectory
in which the newly searched space increases monotonically in each ray
and in each iteration. Moreover, they conjectured that an optimal trajec-
tory for the 2-rays problem must be monotone. We disprove this conjec-
ture when the search domain is the half-line (1-ray). We provide a lower
bound for all monotone algorithms, which we also match with an upper
bound. Our main contribution is the design and analysis of a sequence
of refined search strategies, outside the family of monotone algorithms,
which we call t-sub-monotone algorithms. Such algorithms induce per-
formance that is strictly decreasing with t, and for all p ∈ (0, 1). The
value of t quantifies, in a certain sense, how much our algorithms devi-
ate from being monotone, demonstrating that monotone algorithms are
sub-optimal when searching the half-line.

Keywords: Linear search · Online algorithms · Competitive analysis ·
Faulty robot · Probabilistic faults

1 Introduction

The problem of searching for a hidden item in a specified continuous domain
dates back to the early 1960’s and to the early works of Beck [8] and Bellman [9].

A. Bonato, K. Georgiou and P. Pra�lat—Research supported in part by NSERC.
C. MacRury—Research supported by a NSERC USRA, held at Ryerson University,
Dept. of Mathematics.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 168–180, 2020.
https://doi.org/10.1007/978-3-030-61792-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_14

Probabilistically Faulty Searching on a Half-Line 169

In its simplest form, a unit speed robot (that is, a mobile agent) starts at a known
location, the origin, in a known search-domain. An item, sometimes called the
treasure or the exit, is located (hidden) at an unknown distance d away from the
origin, and it can be located by the robot only if it walks over it. What is the
robot’s trajectory that minimizes the worst case relative time that the treasure
is located, compared to d? This worst case measure of efficiency is known as
the competitive ratio of the trajectory. Interestingly, numerous variations of the
problem admit trajectories inducing constant competitive ratios. In certain cases,
for example, in the so-called linear-search problem where the domain is the line,
tight lower bounds are known that require elaborate arguments.

We consider p-Faulty Search (FSp), a probabilistic version of the classic
linear-search problem in which the hidden item lies in a half-line (or 1-ray), and
the item is detected with constant probability p (with independent Bernoulli
trials) every time the robot walks over the item. This is a special case of a prob-
lem first proposed by Gal [29], where the search-domain is the line (or 2-rays).
Natural solutions to the problem are so-called cyclic and monotone search pat-
terns; that is, trajectories that process each direction periodically and where
the searched space in each direction expands monotonically. In [3], Alpern and
Gal proposed such a solution for searching 2-rays and they conjectured that an
optimal trajectory must be cyclic and monotone. Angelopoulos in [5] extended
the upper bound results using cyclic and monotone trajectories for searching m-
rays. We prove that monotone trajectories are sub-optimal for searching a 1-ray.
We do so first by establishing a lower bound for all monotone algorithms to the
problem (which we also match with an upper bound), and second by designing a
sequence of non-monotone trajectories inducing increasingly better performance
(and deviating increasingly from being monotone).

Related Work: Search-type problems are concerned with finding a specific type
of information placed within a well specified discrete or continuous domain. As a
topic, it spans various sub-fields of Theoretical Computer Science and has given
rise to a number of book-length treatments [1,3,21,41]. Applications range from
data structures and mobile agent computing, to foraging and evolution, among
others, for example, see [2,16,34,36,40].

The problem of searching for a hidden item in one-dimensional domains was
first proposed more than 50 years ago by Beck [8] and Bellman [9] in a Bayesian
context. In the 1990’s, solutions to basic problem’s variations were rediscov-
ered, for example, see [7,35]. Since then, several studies of various search-type
problems have resulted in an extensive literature. Below we give representa-
tive and selective examples, with an attempt to cite relatively recent results.
Variations of search-type problems that share many similarities range from the
type of search domain (for example, 1 or 2-dimensional [27,33], d-dimensional
grid [18], cycle [38], polygons [23], graphs [6], grid [15], m-rays [13]), to the num-
ber of searchers (1 or more [37]), to the criterion for termination (for example,
search, evacuation [14], priority evacuation [20], fetching [31]) to the communi-
cation model (for example, wireless or face-to-face [19]) to the type of the objec-
tive (for example, minimize worst case or average case [17]) to cost specs (for
example, turning costs [26], cost for revisiting [11]), to the measure of efficiency

170 A. Bonato et al.

(for example, time, energy [24]) to the knowledge of the input (none or par-
tial [12]) and to other robots’ specs (for example, speeds [22], faults [32], mem-
ory [39]), just to name a few. More recently, Fraigniaud et al. considered in [28]
a Bayesian search problem in a discrete space, where a set of searchers are trying
to locate a treasure placed, according to some distribution, in one of the boxes
indexed by positive integers. Since it is outside the scope of this work to provide
a comprehensive list of the large related literature, we further refer the interested
reader to [3,4,25,30].

The version of linear search that we study, where the searcher is probabilis-
tically faulty, was presented as an open problem by Gal in [29]. Later in [3]
(see Chap. 8.6.2), Alpern and Gal provided a search strategy when the search
domain is a line. In particular, they considered cyclic search trajectories where
the robot alternates between searching each of the two directions, and each time
monotonically increasing the searched space. Among the same family of algo-
rithms that moreover expand the searched space in each direction geometrically,
the authors provided the optimal trajectory. In addition, they conjectured that
cyclic and monotone trajectories are in fact optimal. Along the same lines, [5]
studied cyclic and monotone trajectories for searching m-rays. In a variation
of the problem where the hidden item detections are not Bernoulli trials, [5]
showed also that cyclic trajectories are in fact sub-optimal. For this and many
other variations of probabilistically searching, where the probability of success
is not known, optimal strategies remain open.

Main Contributions: We introduce and study p-Faulty Search (FSp), a variation
of the classic linear-search (cow-path) problem, in which the search space is the
half-line, and detection of the hidden item (treasure) happens with known prob-
ability p. We are interested in designing search strategies that induce small com-
petitive ratio, as a function of p; that is, that minimize the worst case expected
detection time of the hidden item, with respect to its placement d, relative to
the optimal performance of an algorithm that knows in advance the location of
the item (so we normalize the expected performance both by d and p).

We focus on two families of search algorithms, which indicate that optimal
solutions to FSp may be particularly challenging to find. First, we study a natu-
ral family of algorithms, that we call monotone algorithms, which intuitively are
determined by non-decreasing turning points xi where searcher returns to the
origin before expanding the searched space. Given that turning points increase
geometrically; that is, when xi = bi, relatively straightforward calculations deter-
mine the optimal expansion factor b = b(p). In fact, a simplified argument shows
that in the cow-path problem (that is, when the search space consists of 2-rays
and p = 1) the optimal expansion factor is b = 2. A more tedious argument (and
one of our technical contributions), as in the cow-path problem, shows that the
aforementioned choice of geometrically increasing xi’s for FSp is in fact opti-
mal among the family of monotone algorithms. Our main technical contribution
pertains to the design and analysis of a family of algorithms that we call t-sub-
monotone, which provide a sequence of refined search strategies which induce
competitive ratios that strictly decrease with t, for every p ∈ (0, 1). Somehow

Probabilistically Faulty Searching on a Half-Line 171

surprisingly, our findings show that plain-vanilla, and previously considered,
algorithms for FSp are sub-optimal. All omitted proofs from this extended
abstract can be found in the full version of the paper [10].

2 Problem Definition and Preliminary Observations

In p-Faulty Searching on a Halfline (FSp) a speed-1 searcher (or robot) is located
at the origin of the infinite half-line. At unknown distance d bounded away from
the origin, which bound we set arbitrarily to 1, there is an item (or treasure)
which is located/detected by the robot with constant and known probability p
every time the robot passes over it (that is, detection trials are mutually inde-
pendent and each has probability of success p). Also, for the sake of simplifying
the analysis, we assume that the probability of detection becomes 1 if the trea-
sure is placed exactly at a point where the robot changes direction. As we will
see later, the worst placements of the treasure will be proven to be arbitrarily
close to the turning points.

Given a robot’s trajectory T , probability p and distance d, the termination
time ET (d) is defined as the expected time that the robot detects the treasure
for the first time. Feasible solution to FSp are robot’s trajectories that induce
bounded termination time (as a function of p, d) for all p ∈ (0, 1) and for all
d ≥ 1.

Note that p is part of the input to an algorithm for FSp, while d is unknown.
Hence, trajectories may depend on p but not on d. It is also evident that for
a robot’s trajectory to induce bounded termination time for all treasure place-
ments, the robot needs to visit every point of the half-line, past point 1, infinitely
many times. As it is also common in competitive analysis, we measure the per-
formance of a search strategy relative to the optimal offline algorithm; that is,
an algorithm that knows where the treasure is. Since such an algorithm needs
to travel for time d to reach the treasure, as well as one would need 1/p trials,
in expectation, before detecting it, we are motivated to introduce the following
measure of efficiency for search trajectories.

Definition 1. The competitive ratio of search strategy T for FSp is defined as

CT
p := supd≥1

{
pET (d)

d

}
.

Trajectory solutions (or search strategies) to problem FSp are in correspon-
dence with infinite sequences {ti}i≥0 of turning points, satisfying t0 = 0, ti ≥ 0,
t2i+1 > t2i and t2i < t2i−1, for all i ≥ 0. Indeed such a sequence {ti}i≥0 corre-
sponds to the trajectory in which robot moves from t2i to t2i+1 (moving away
from the origin), and from t2i−1 to t2i (moving toward the origin), each time
changing direction of movement, where i = 1, 2,

For search strategy T and treasure location d (except from the turning points
of T), let fi denote the time till the robot passes over the treasure for the i’th
time. Since the probability of successfully detecting the treasure is p, we have
ET (d) =

∑∞
i=1 p(1−p)i−1fi. In what follows, we express the expected termination

time with respect to the additional time between two visitations of the treasure.

172 A. Bonato et al.

Lemma 1. Let f0 = 0, and let gi = fi − fi−1. We then have that ET (d) =∑∞
i=1(1 − p)i−1gi.

3 Monotone Trajectories

We explore the simplest possible trajectories for FSp in which the searcher
repeatedly returns to the origin every time she changes direction during explo-
ration and before exploring new points in the half-line. More formally, mono-
tone trajectories for FSp are search algorithms T = {ti}i≥1, defined as1 t2i =
0, t2i+1 = xi, i = 1, 2, . . . , where {xi}i≥1 is a strictly increasing sequence with
xi → ∞. Note that, in particular, we allow xi = xi(p). The present section is
devoted into determining the best monotone algorithm for FSp. More specifi-
cally, we prove the following.

Theorem 1. The optimal monotone algorithm for FSp has competitive ratio
4+4

√
1−p

2−p − p.

3.1 An Upper Bound Using Monotone Trajectories

In this section we propose a specific monotone algorithm with the performance
promised by Theorem 1. In particular, we consider “restricted” trajectories deter-
mined by increasing sequences {xi}i≥1, where xi = bi and b = b(p) > 1. Within
this sub-family, we determine the optimal choice of b that induces the smallest
competitive ratio. For this, we first determine the placements of the treasure that
induce the worst competitive ratio, given a search trajectory. As stated before,
in the following analysis we make the assumption that the treasure is not placed
at any turning point.

Lemma 2. Consider a monotone algorithm T , determined by the strictly increas-
ing sequence {xi}i≥1. If the treasure appears in interval (xr, xr+1), then the com-
petitive ratio is no more than 2 p

xr

∑r
i=1 xi + 2 p

xr

∑
i≥1(1 − p)2i−1xr+i + p2

2−p .

We are now ready to prove the promised upper bound.

Lemma 3. The monotone trajectory T = {xi}≥1, where xi = bi and
b := 1√

1−p(2−p−√
1−p) has competitive ratio 4+4

√
1−p

2−p − p.

3.2 Lower Bounds for Monotone Trajectories

This section is devoted to proving the following lemma.

Lemma 4. Every monotone trajectory has competitive ratio at least
4+4

√
1−p

2−p − p.

1 Alternatively, we could have defined monotone trajectories so as to return to location
1, instead of the origin, since we know that d ≥ 1. Our analysis next shows that such
a modification would not improve the competitive ratio.

Probabilistically Faulty Searching on a Half-Line 173

Consider an arbitrary monotone algorithm T = {fi}i≥0, where fi is a mono-
tone sequence tending to infinity, and which determines the turning points of
the algorithm. Without loss of generality, we set f0 = 1, as otherwise we may
scale all turning points by f0. Our lower bound will be obtained by restricting
the placement of the treasure arbitrary close to (and ε > 0 away after) turn-
ing points fk (this may only result in a weaker lower bound). Taking ε → 0,
we obtain that gk

1 = 2
∑k

i=0 fi + fk, gk
2i = 2(fk+i − fk), gk

2i+1 = 2fk, where the
superscript k of gk

i indicates exactly the placement of the treasure at fk. In what
follows, and for a fixed integer �, we define

α :=
1
2

+
1

2 − p
− c

2p
, βi,k := (1 − p)2(i−k)−1, for k + 1 ≤ i ≤ �,

γ�,k :=
(1 − p)2(�−k)+1

p(2 − p)
.

We have the following lemma.

Lemma 5. Let c be the optimal competitive ratio that can be achieved by mono-
tone trajectory T . For every integer � and for every 0 ≤ k ≤ � we have that

k−1∑
i=0

fi + αfk +
�∑

i=k+1

βi,kfi + γ�,kf� ≤ 0. (1)

Recall that f0 = 1. Our lower bound derived in the proof of Lemma 4 is
obtained by finding the smallest c satisfying constraints (1), and in particular,
inducing a strictly increasing sequence of fi in i. Note that minimizing c subject
to constraints (1) in variables f1, . . . , f�, c is a non-linear program. To obtain a
lower bound for c, we observe that the only negative coefficients of variables fi

are those on the diagonal; that is, the coefficient of fk in the k’th constraint.
This allows us to apply repeatedly back substitution to obtain a lower bound for
all fi and hence, c as well, assuming that the visiting points fi are increasing in
i. Equivalently, for the optimal c that an algorithm can achieve, we may treat
(for the sake of the analysis) all inequalities (1) as being tight, giving rise to the
linear system A�f = a in variables fT = (f1, . . . , f�), where

A� :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1,0 β2,0 β3,0 . . . γ�,0 + β�,0

α β2,1 β3,1 . . . γ�,1 + β�,1

1 α β3,2 . . . γ�,2 + β�,2

1 1 α . . . γ�,3 + β�,3

...
...

... . . .
...

1 1 1 . . . γ�,�−1 + β�,�−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, a :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−α
−1
−1
−1
...

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Constraints A�f = a may be thought as the defining linear system on fi’s that
give the optimal turning strategies, assuming that the treasure can only be placed
arbitrarily close and after any of the � first turning points of a search trajectory.
In other words, given that any monotone algorithm is defined by a sequence of

174 A. Bonato et al.

turning points, these points can be chosen so as to minimize the competitive
ratio with the assumption that the hidden item will be nearly missed after each
turning point. Having the competitive ratio be independent of the treasure’s
placement gives a lower bound to the competitive ratio of the algorithm. The
proof of Lemma 4 follows directly from the following technical lemma.

Lemma 6. Linear system A�f = a, in variables fi, defines a monotone sequence
of turning points only if c ≥ 4+4

√
1−p

2−p − p.

4 Sub-monotone Trajectories

For a fixed integer t, we consider a t-sub-monotone trajectory that is defined by
a strictly increasing sequence {xi}i≥1, where xi = βi for some β = β(p) > 1,
and {γi}i=1,...,t (where γi = γi(p)) satisfying 1 < γ1 < γ2 < . . . < γt < β.
For convenience, we introduce abbreviations γ0 = 1 and γt+1 = β. For the for-
mal description of the trajectory, we introduce the notion of a t-hop between
consecutive points xr, xr+1, see Algorithm 1, which is a sub-trajectory of the
robot starting from xr and finishing at xr+1. Given parameters γi and β, the
t-suborigin trajectory is defined in Algorithm 2.

Algorithm 1. t-Hop between
xr, xr+1

1: for j = 1, . . . , t do
2: Move from γj−1xr to γjxr

3: Move from γjxr to γj−1xr

4: Move from γj−1xr to γjxr

5: end for
6: Move from γtxr to xr+1

Algorithm 2. t-Sub-Monotone Tra-
jectory
1: Move from the origin to x1, then to

the origin and then to x1.
2: for r = 1, . . . , ∞ do
3: Perform a t-hop between

xr, xr+1.
4: Move from xr+1 to the origin
5: Move from the origin to xr+1

6: end for

4.1 Performance Analysis of t-Sub-monotone Trajectories

For the remainder of the paper, we introduce the following expressions: A = 2(1−
p), B = 2

β−1 + 2(1−p)3

1−β(1−p)2 , C = 2p(1−p)3(2−p)β
1−β(1−p)2 ,D = −2p4+12p3−26p2+23p−4

2−p , E =
2p(1−p)(2−p)β

1−β(1−p)2 , F = p
(
2

(
β(1−p)+1

(β−1)(1−β(p−1)2)

)
+ 5−2p

2−p

)
, where, in particular, A =

A(p), B = B(β, p), C = C(β, p),D = D(p), E = E(β, p), F = F (β, p).
The purpose of this section is to prove the following theorem.

Theorem 2. For any i = 1, . . . , t+1 and given that the treasure lies in interval
Ai := (γi−1xr, γixr), the worst case induced competitive ratio Ri is given by the
formula

Ri =

⎧
⎨
⎩

p
(

Aγi+Bγt+C
γi−1

+ D
)

, if i = 1, . . . , t

p
(

E
γt

+ F
)

, if i = t

Probabilistically Faulty Searching on a Half-Line 175

An immediate consequence of Theorem 2 is that the best t-sub-monotone
algorithm with expansion factor β within consecutive t-hops and intermediate
turning points γ1, γ2, . . . , γt is the solution (if it exists) to optimization problem

min
β,γ1,...,γt

max {R1, R2, . . . , Rt, Rt+1} (2)

s.t. 1 < γ1 < . . . < γt < β < 1
(1−p)2 .

Alternatively, any solution β, γ1, . . . , γt which is feasible to (2) has competitive
ratio maxi=1,...,t+1 Ri.

4.2 Choosing Efficient t-Sub-Monotone Trajectories

The purpose of this section is to propose a method for choosing parameters
β, γ1, . . . , γt of a t-sub-monotone algorithm which are feasible to (2), hence,
inducing competitive ratio maxi=1,...,t+1 Ri. The main idea of our approach is to
treat the induced competitive ratio as an unknown R, and then impose, for all
i = 1, . . . , t + 1, that Ri = R. The choices of γi are solutions to a recurrence rela-
tion. From numerical calculations, we know that our method proposes optimal
solutions to (2), where in particular, all strict inequality constraints are satisfied
with slack. However, a proof of optimality is not evident.

For the values of A(p), B(p, β), C(p, β),D(p), E(p, β), F (p, β), we provide a
way of obtaining t-sub-monotone algorithms by solving one non-linear equation.

To this end, we also introduce abbreviations: x := R/p−D
A , y :=

B E
R/p−F

+C

A , where
in particular x = x(p,R) and y = (p, β,R) (the fact that x is independent of β
will be used later). Moreover, we introduce the concept of the t-characteristic
polynomial of a pair (p,R), which is the degree-2 polynomial q0 + q1β + q2β

2

where q0 = q0(p,R, t), q1 = q1(p,R, t), q2 = q2(p,R, t) are defined as

q0 =
(
p2(2p((p − 6)p + 12) − 17) − (p − 2)R

) (
p2 + (p − 2)R

)
xt (3)

q1 =2(p − 2)4(p − 1)p3(R − p) + xt× (4)
(
(p(p(2p(p(2p − 19) + 74) − 297) + 308) − 134)p4

−2(p − 2)(p(p((p − 8)p + 25) − 35) + 20)p2R − (p − 2)2((p − 2)p + 2)R2)

q2 =(p − 1)
(
2(p − 2)4p3(3p − R) (5)

−(p − 1)
(
p2(2p − 5) − (p − 2)R

) (
(2(p − 4)p + 9)p2 + (p − 2)R

)
xt)

Note that the discriminant of the t-characteristic polynomial of a pair (p,R) is a
rational function of p,R (where the numerator and denominator are polynomials
of degree Θ(t)), and hence, a function exclusively of R, for every fixed p.

Given p ∈ (0, 1), we say that pair (β,R) is feasible if

x − y − 1 > 0, (6)

β − E

R/p − F
> 0. (7)

176 A. Bonato et al.

As we shall see, constraints above guarantee that β is a valid expansion factor,
and that the last turning point of a sub-monotone algorithm happens before a
t-hop is completed. We will also require that

(
1 − y

x − 1

)
xt +

y

x − 1
− E

R/p − F
= 0. (8)

As the treasure could be located in any of the t+1 sub-intervals associated with
a t-hop, constraint (8) will guarantee that the competitive ratio is independent
of that placement. Our main theorem is the following.

Theorem 3. Fix p ∈ (0, 1), and let R ≥ 3 be such that the discriminant of the
t-characteristic polynomial of pair (p,R) is equal to 0. Let β = −q1/2q2 and sup-
pose that pair (β,R) is feasible. We also set γi =

(
1 − y

x−1

)
xi+ y

x−1 , i = 1 . . . , t.
We then have that β, γ1, . . . , γt is a t-sub-monotone algorithm with competitive
ratio R for problem FSp.

4.3 Numerical Computation of t-Sub-Monotone Trajectories, t ≤ 10

We summarize the numerical results we obtain by invoking Theorem 3 for t =
1, . . . , 10, obtaining t-sub-monotone algorithms that induce better and better
competitive ratios. For each t and (enough many) p ∈ (0, 1) we compute the
smallest root R = R(p, t) at least 3 of the t-characteristic polynomial, and the
associated value of the expansion factor β = β(p, t). For every pair (β,R) we
verify that the induced values of γi do define a feasible search trajectory by
showing that pair (β,R) is feasible. Note that constraints (6) and (7) guarantee
that β is a valid expansion factor, and that the intermediate turning points of
a t-hop are well defined, assuming that the worst case competitive ratio is the
same in all subintervals of a t-hop, as required by constraint (8).

The improvement in the competitive ratio, when t = 1, . . . , 4 is apparent
from a plot of the competitive ratio as a function of p, see Fig. 1. Finally, it can
be shown that the proposed solution is valid (by checking constraints (6) and
(7)), or in other words that the reported competitive ratio of Fig. 1 is correct.
The horizontal axis in all figures is probability p. The vertical axis is explained
in detail in each of the captions.

For values t = 5, . . . , 10 we need to deploy heuristic comparisons in order
to display the behavior of the achieved competitive ratio, along with the corre-
sponding expansion factor (this is due to that improvements are negligible, even
though strictly positive). Figure 2 compares the achieved competitive ratios.

Probabilistically Faulty Searching on a Half-Line 177

Fig. 1. The vertical axis shows the
behavior of the achieved competitive
ratio Rt = Rt(p) of various t-sub-
monotone algorithms. Purple line cor-
responds to the monotone algorithm
of Lemma 3; that is, when t = 0.
The subsequent improvements for t =
1, 2, 3, 4 are shown in colors blue, yel-
low, green and red, respectively. (Color
figure online)

Fig. 2. Figure summarizes the behav-
ior of t-sub-monotone algorithms for
t = 5, 6, 7, 8, 9, 10, see colors blue,
yellow, green, red, purple and brown,
respectively. For each t = 5, . . . , 10, the
vertical axis corresponds to the scaled
marginal improvements 4t−5(Rt−1 −
Rt) between two consecutive values of
t, which show that the competitive
ratio does improve with t, still the
improvement is increasingly negligible.
(Color figure online)

4.4 Some Closed Formulae

As already discussed, we conjecture that the t-sub-monotone algorithms derived
by Theorem 3 are optimal solutions to optimization problem (2), even though our
conjecture does not compromise the correctness of our algorithms for problem
FSp. Nevertheless, a disadvantage of our approach, and in general of t-sub-
monotone algorithms, is that our choices of parameters β, γ1, . . . , γt do not admit
closed form descriptions as functions of p. In this section, we deviate from our
goal to determine the best possible t-sub-monotone algorithms, and we present
specific choices of parameters β, γ1, . . . , γt with closed formulas which induce
nearly optimal competitive ratios.

Apart from our monotone trajectories, all our positive results were summarized
in Sect. 4.3 and were based on numerical, and computer assisted, calculations. In
light of Theorem 3, it is immediate that closed formulas for the achieved compet-
itive ratios of t-sub-monotone algorithms do not exist. An exception, apart from
the degenerate case t = 0, is the case t = 1. In particular, the discriminant of the
1-characteristic polynomial of pair (p,R) can be factored in two polynomials in R
of degree 4 and of degree 2. One of the roots to the degree-4 polynomial is the com-
petitive ratio of the 1-sub-monotone algorithm (as also per Theorem 3). Hence, the
achieved competitive ratio R of the 1-sub-monotone algorithm, along with the cor-
responding expansion factor β admit closed formulas, even though they are enor-
mous. Nevertheless, we show in the next theorem how to obtain an 1-sub-monotone
and nearly optimal algorithm with performance and expansion factor that admit
elegant closed formulas. Note that Theorem 1 combined with Theorem 4 below

178 A. Bonato et al.

show provably, and not (computer-assisted and) numerically, that monotone algo-
rithms are strictly sub-optimal for FSp, for all p ∈ (0, 1).

Theorem 4. There is a 1-sub-monotone algorithm for FSp with competitive
ratio R =

√
(p − 2)(p − 1)(p(p(4p − 3) + 5) + 2)+ 4

2−p − (2−p)p, and expansion
factor β = 1/(1 − p).

Similar to Theorem 4, it is possible to identify a 2-sub-monotone algorithm
with nearly optimal solution. Moreover, using similar techniques, one can com-
pute the best competitive ratio possible by t-sub-monotone algorithms if we
allow t to grow. We omit the details of this extended abstract.

5 Discussion and Open Problems

We studied p-Faulty Search (FSp), a search problem on a 1-ray, where the
searcher is probabilistically faulty with known probability 1 − p. Our main con-
tribution pertains to the disproof of a conjecture that optimal trajectories for
such problems are monotone. Whether the same conjecture is wrong for search-
ing m-rays, and in particular, the line (m = 2) remains an open problem. When
it comes to searching the half-line, all our algorithms have competitive ratio at
least 4 when p → 0 and at least 3 when p → 1. The value of 3 is provably
a lower bound to any search strategy since the searcher has to return at least
once close to the origin before attempting for a second time an expansion of the
searched space. No other general lower bound is known for the problem, whereas
all our algorithms have competitive ratio at least 4 − p. Is 4 − p a lower bound
to any algorithm for FSp, and if yes can this be matched by an upper bound?
We conjecture that the lower bound is valid, as well as that our t-sub-monotone
algorithms are sub-optimal.

Acknowledgements. The authors would like to thank Huda Chuangpishit, Sophia
Park, Bhargav Parsi and Benjamin Reiniger for many fruitful discussions.

References

1. Ahlswede, R., Wegener, I.: Search problems. Wiley-Interscience (1987)
2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.

29(4), 1164–1188 (2000)
3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Springer, Berlin

(2003)
4. Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., Subrahmanian, V. (eds.):

Search Theory: A Game Theoretic Perspective, pp. 223–230. Springer NY, New
York (2013)

5. Angelopoulos, S.: Further connections between contract-scheduling and ray-
searching problems. In: 0001, Q.Y., Wooldridge, M.J. (eds.) Proceedings of the
24th International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, 25–31 July 2015, pp. 1516–1522. AAAI Press (2015)

Probabilistically Faulty Searching on a Half-Line 179

6. Angelopoulos, S., Dürr, C., Lidbetter, T.: The expanding search ratio of a graph.
Discrete Appl. Math. 260, 51–65 (2019)

7. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.
106(2), 234–252 (1993)

8. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
9. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)

10. Bonato, A., Georgiou, K., MacRury, C., Pralat, P.: Probabilistically faulty search-
ing on a half-line (2020). arXiv e-prints p. 2002.07797

11. Bose, P., De Carufel, J.L.: A general framework for searching on a line. Theor.
Comput. Sci. 703, 1–17 (2017)

12. Bose, P., De Carufel, J.L., Durocher, S.: Searching on a line: a complete charac-
terization of the optimal solution. Theor. Comput. Sci. 569, 24–42 (2015)

13. Brandt, S., Foerster, K.T., Richner, B., Wattenhofer, R.: Wireless evacuation on
m rays with k searchers. In: Proceedings of the 24th International Colloquium on
Structural Information and Communication Complexity, SIROCCO, pp. 140–157
(2017)

14. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration with-
out communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis,
A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 10

15. Brandt, S., Uitto, J., Wattenhofer, R.: A tight lower bound for semi-synchronous
collaborative grid exploration. In: Proceedings of the 32nd International Sympo-
sium on Distributed Computing, DISC, pp. 13:1–13:17 (2018)

16. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot
exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)

17. Chuangpishit, H., Georgiou, K., Sharma, P.: Average case - worst case tradeoffs
for evacuating 2 robots from the disk in the face-to-face model. In: Gilbert, S.,
Hughes, D., Krishnamachari, B. (eds.) ALGOSENSORS 2018. LNCS, vol. 11410,
pp. 62–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14094-6 5

18. Cohen, L., Emek, Y., Louidor, O., Uitto, J.: Exploring an infinite space with finite
memory scouts. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 207–224. SIAM (2017)

19. Czyzowicz, J., et al.: Evacuating robots via unknown exit in a disk. In: Kuhn,
F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45174-8 9

20. Czyzowicz, J., et al.: Priority Evacuation from a Disk Using Mobile Robots. In:
Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7 32

21. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and Evacuation. Distrib.
Comput. Mob. Entities Curr. Res. Moving Comput. 11340, 335–370 (2019)

22. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende,
S.: Linear search with terrain-dependent speeds. In: Fotakis, D., Pagourtzis, A.,
Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 430–441. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57586-5 36

23. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.:
Wireless autonomous robot evacuation from equilateral triangles and squares. In:
Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp.
181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6 13

24. Czyzowicz, J., et al.: Energy consumption of group search ona line. In: Proceedings
of the 46th International Colloquium on Automata, Languages, and Programming,
ICALP. LIPIcs, vol. 132, pp. 1–15 (2019)

https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-030-14094-6_5
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-030-01325-7_32
https://doi.org/10.1007/978-3-319-57586-5_36
https://doi.org/10.1007/978-3-319-19662-6_13

180 A. Bonato et al.

25. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Floc-
chini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Enti-
ties; Current Research in Moving and Computing, pp. 335–370. Springer (2019)

26. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2), 342–355 (2006)

27. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search on the
plane without communication. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, pp. 77–86 (2012)

28. Fraigniaud, P., Korman, A., Rodeh, Y.: Parallel Bayesian search with no coordi-
nation. J. ACM (JACM) 66(3), 1–28 (2019)

29. Gal, S.: Search Games. Academic Press, New York (1980)
30. Gal, S.: Search Games. Wiley Encyclopedia for Operations Research and Manage-

ment Science (2011)
31. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on

a disk: Wireless and face-to-face communication models. Discrete Math. Theor.
Comput. Sci. 21(3) (2019)

32. Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Opti-
mal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler,
C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34405-4 11

33. Jeż, A., �Lopuszański, J.: On the two-dimensional cow search problem. Inf. Process.
Lett. 109(11), 543–547 (2009)

34. Kagan, E., Ben-Gal, I.: Search and Foraging: Individual Motion and Swarmdy-
namics. CRC Press, Boca Raton (2015)

35. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-
mal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79
(1996)

36. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In:
Proc. of the 23rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP, pp. 280–289. Springer (1996)

37. Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless
communication. In: DISC, pp. 1–15 (2016)

38. Pattanayak, D., Ramesh, H., Mandal, P., Schmid, S.: Evacuating two robots from
two unknown exits on the perimeter of a disk with wireless communication. In:
Proceedings of the 19th International Conference on Distributed Computing and
Networking, ICDCN, pp. 20:1–20:4 (2018)

39. Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, STOC, pp. 376–385 (2005)

40. Schwefel, H.P.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons Inc., Hoboken (1993)

41. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

https://doi.org/10.1007/978-3-030-34405-4_11

Query Minimization Under Stochastic
Uncertainty

Steven Chaplick1,2, Magnús M. Halldórsson3, Murilo S. de Lima4(B),
and Tigran Tonoyan5

1 Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
2 Department of Data Science and Knowledge Engineering, Maastricht University,

Maastricht, The Netherlands
s.chaplick@maastrichtuniversity.nl

3 ICE-TCS, Department of Computer Science, Reykjavik University,
Reykjavik, Iceland

mmh@ru.is
4 School of Informatics, University of Leicester, Leicester, UK

mslima@ic.unicamp.br
5 Computer Science Department, Technion Institute of Technology, Haifa, Israel

ttonoyan@gmail.com

Abstract. We study problems with stochastic uncertainty data on
intervals for which the precise value can be queried by paying a cost. The
goal is to devise an adaptive decision tree to find a correct solution to the
problem in consideration while minimizing the expected total query cost.
We show that sorting in this scenario can be performed in polynomial
time, while finding the data item with minimum value seems to be hard.
This contradicts intuition, since the minimum problem is easier both in
the online setting with adversarial inputs and in the offline verification
setting. However, the stochastic assumption can be leveraged to beat
both deterministic and randomized approximation lower bounds for the
online setting. Although some literature has been devoted to minimizing
query/probing costs when solving uncertainty problems with stochastic
input, none of them have considered the setting we describe. Our app-
roach is closer to the study of query-competitive algorithms, and it gives
a better perspective on the impact of the stochastic assumption.

Keywords: Stochastic optimization · Query minimization · Sorting ·
Selection · Online algorithms

1 Introduction

Consider the problem of sorting n data items that are updated concurrently by
different processes in a distributed system. Traditionally, one ensures that the
data is strictly consistent, e.g., by assigning a master database that is queried by

Partially supported by Icelandic Research Fund grant 174484-051 and by EPSRC grant
EP/S033483/1. This work started while M.S.L. and T.T. were at Reykjavik University,
during a research visit by S.C.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 181–193, 2020.
https://doi.org/10.1007/978-3-030-61792-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_15

182 S. Chaplick et al.

the other processes, or by running a distributed consensus algorithm. However,
those operations are expensive, and we wonder if we could somehow avoid them.
One different approach has been proposed for the TRAPP distributed database
by Olston and Widom [15], and is outlined as follows. Every update is sent to the
other processes, and each process maintains an interval on which each data item
may lie. Whenever the precise value is necessary, a query on the master database
can be performed. Some computations (e.g., sorting) can be performed without
knowing the precise value of all data items, so one question that arises is how to
perform these while minimizing the total query cost. Another scenario in which
this type of problem arises is when market research is required to estimate the
data input: a coarser estimation can be performed for a low cost, and more precise
information can be obtained by spending more effort in research. The problem of
sorting under such conditions, called the uncertainty sorting problem with
query minimization, was recently studied by Halldórsson and de Lima [12].

The study of uncertainty problems with query minimization dates back to
the seminal work of Kahan [13] and the TRAPP distributed database system by
Olston and Widom [15], which dealt with simple problems such as computing
the minimum and the sum of numerical data with uncertainty intervals. More
recently, more sophisticated problems have been studied in this framework, such
as geometric problems [1], shortest paths [6], minimum spanning tree and min-
imum matroid base [5,14], linear programming [16,19], and NP-hard problems
such as the knapsack [8] and scheduling problems [3]. See [4] for a survey.

The literature describes two kinds of algorithms for this setting. Though
the nomenclature varies, we adopt the following one. An adaptive algorithm
may decide which queries to perform based on results from previous queries. An
oblivious algorithm, however, must choose the whole set of queries to perform
in advance; i.e., it must choose a set of queries that certainly allow the problem
to be solved without any knowledge of the actual values.

Two main approaches have been proposed to analyze both types of algo-
rithms. In the first, an oblivious (adaptive) algorithm is compared to a hypo-
thetical optimal oblivious (adaptive) strategy; this is the approach in [6,13,15].
However, for more complex problems, and in particular for adaptive algorithms,
it usually becomes more difficult to understand the optimal adaptive strategy. A
second (more robust) approach is competitive analysis, which is a standardized
metric for online optimization. In this setting, both oblivious and adaptive algo-
rithms are compared to an optimum query set, a minimum-cost set of queries
that a clairvoyant adversary, who knows the actual values but cannot disclose
them without performing a query, can use to prove the obtained solution to be
correct. An algorithm (either adaptive or oblivious) is α-query-competitive if
it performs a total query cost of at most α times the cost of an offline optimum
query set. This type of analysis is performed in [1,5,11–14]. For NP-hard prob-
lems, since we do not expect to find the “correct” solution in polynomial time,
there are two approaches in the literature: either we have an objective function
which combines query and solution costs (this is how the scheduling problem is
addressed in [3]), or we have a fixed query budget and the objective function is
based only on the solution cost (as for the knapsack problem in [8]).

Query Minimization Under Stochastic Uncertainty 183

Competitive analysis is, however, rather pessimistic. In particular, many
problems such as minimum, sorting and spanning tree have a deterministic
lower bound of 2 and a randomized lower bound of 1.5 for adaptive algo-
rithms, and a simple 2-competitive deterministic adaptive algorithm, even if
queries are allowed to return intervals [5,11,12,14]. For the sorting problem,
e.g., Halldórsson and de Lima [12] showed that there is essentially one structure
preventing a deterministic adaptive algorithm from performing better than 2.

One natural alternative to competitive analysis is to assume stochastic
inputs, i.e., that the precise value in each interval follows a known probability
distribution, and we want to build a decision tree specifying a priority ordering
for querying the intervals until the correct solution is found, so that the expected
total query cost is minimized.1 In this paper, we show that the adaptive sorting
problem in this setting can be solved exactly in polynomial time. Very surpris-
ingly, however, we have evidence that the problem of finding the data item with
minimum value is hard, though it can be approximated very well.

Some literature is devoted to a similar goal of this paper, but we argue
that there are some essential differences. One first line of work consists of the
stochastic probing problem [7,9,10,17], which is a general stochastic opti-
mization problem with queries. Even though those works presented results for
wide classes of constraints (such as matroid and submodular), they differ in
two ways from our work. First, they assume that a solution can only contain
elements that are queried, or that the objective function is based on the expec-
tation of the non-queried elements. Second, the objective function is either a
combination of the solution and query costs, or there is a fixed budget for per-
forming queries. Since most of these variants are NP-hard [7], some papers [9,17]
focused on devising approximation algorithms, while others [7,10] on bounding
the ratio between an oblivious algorithm and an optimal adaptive algorithm (the
adaptive gap). Another very close work is that of Welz [18, Section 5.3] and
Yamaguchi and Maehara [19], who, like us, assume that a solution may con-
tain non-queried items. Welz presented some results for the minimum spanning
tree and traveling salesman problems, but they make strong assumptions on the
probability distributions, while Yamaguchi and Maehara devised algorithms for
a wide class of problems, which also yield improved approximation algorithms
for some classical stochastic optimization problems. However, both works focus
on obtaining approximate solutions, while we wish to obtain an exact one, and
they only give asymptotic bounds on the number of queries performed, but do
not compare this to the expected cost of an optimum query set. To sum up, our
work gives a better understanding on how the stochastic assumption differs from
the competitive analysis, since other assumptions are preserved and we use the
same metric to analyze the algorithms: minimizing query cost while finding the
correct solution.

Our Results. We prove that, for the sorting problem with stochastic uncertainty,
we can construct an adaptive decision tree with minimum expected query cost

1 Note that, unless some sort of nondeterminism is allowed, the stochastic assumption
cannot be used to improve the oblivious results, so we focus on adaptive algorithms.

184 S. Chaplick et al.

in polynomial time. We devise a dynamic programming algorithm which runs
in time O(n3d3) = O(n6), where d is the clique number of the interval graph
induced by the uncertainty intervals. We then discuss why simpler strategies fail,
such as greedy algorithms using only local information, or relying on witness
sets, which is a standard technique for solving query-minimization problems
with adversarial inputs [1,5]. We also discuss why we believe that the dynamic
programming algorithm cannot be improved to something better than O(n3).

Surprisingly, on the other hand, we present evidence that finding an adap-
tive decision tree with minimum expected query cost for the problem of finding
the data item with minimum value is hard, although the online version (with
adversarial inputs) and the offline (verification) version of the problem are rather
simple. If the leftmost interval is the first one to be queried, we know how to
compute the decision tree with minimum expected query cost easily. This also
implies that, for any other decision tree, one branch can be calculated easily.
However, if the leftmost interval is not the first to be queried, we prove that
it should be the last one to be considered in the decision tree. The hard part,
then, is to find the order in which the other intervals are considered in the “hard
branch” of the decision tree. We discuss why various heuristics fail to this case.
A simple approximation result with factor 1 + 1/d1 for uniform query costs,
where d1 is the degree of the leftmost interval in the interval graph, follows from
the online version with adversarial inputs [13]. For arbitrary query costs, we
show that the stochastic assumption can be used to beat both deterministic and
randomized lower bounds for the online version with adversarial inputs.

Organization of the Paper. Section 2 is devoted to the sorting problem with
stochastic uncertainty, and Sect. 3 to the problem of finding the minimum data
item. We conclude the paper with future research questions in Sect. 4.

2 Sorting

The problem is to sort n numbers v1, . . . , vn ∈ R whose actual values are
unknown. We are given n intervals I1, . . . , In such that vi ∈ Ii = [�i, ri]. We
can query interval Ii by paying a cost wi, and after that we know the value of vi.
We want to find a permutation π : [n] → [n] such that vi ≤ vj if π(i) < π(j)
by performing a minimum-cost set of queries. We focus on adaptive algorithms,
i.e., we can make decisions based on previous queries. We are interested in a
stochastic variant of this problem in which vi follows some known probability
distribution on Ii. The only constraints are that (1) values in different intervals
have independent probabilities, and (2) for any subinterval (a, b) ⊆ Ii, we can
calculate Pr[vi ∈ (a, b)] in constant time. The goal is to devise a strategy (i.e., a
decision tree) to query the intervals so that the expected query cost is minimized.
More precisely, this decision tree must tell us which interval to query first and,
depending on where its value falls, which interval to query second, and so on.

Definition 1. Two intervals Ii and Ij such that ri > �j and rj > �i are depen-
dent. Two intervals that are not dependent are independent.

Query Minimization Under Stochastic Uncertainty 185

The following lemma and proposition are proved in [12]. The lemma tells us
that we have to remove all dependencies in order to be able to sort the numbers.

Lemma 1 ([12]). The relative order between two intervals can be decided with-
out querying either of them if and only if they are independent.

Proposition 1 ([12]). Let Ii and Ij be intervals with actual values vi and vj.
If vi ∈ Ij (and, in particular, when Ii ⊆ Ij), then Ij is queried by every solution.

Note that the dependency relation defines an interval graph. Proposition 1
implies that we can immediately query any interval containing another interval,
hence we may assume a proper interval graph. We may also assume the graph is
connected, since the problem is independent for each component, and that there are
no single-point intervals, as they would give a non-proper or disconnected graph.

An Optimal Algorithm. We describe a dynamic programming algorithm to solve
the sorting problem with stochastic uncertainty. Since we have a proper interval
graph, we assume intervals are in the natural total order, with �1 ≤ · · · ≤ �n
and r1 ≤ · · · ≤ rn. We also pre-compute the regions S1, . . . , St defined by the
intervals, where t ≤ 2n − 1. A region is the interval between two consecutive
points in the set

⋃n
i=1{�i, ri}; we assume that the regions are ordered. We write

Sx = (ax, bx) with ax < bx, and we denote by Ix(y, z) := {i : Sx ⊆ Ii ⊆ (ay, bz)}
the indices of the intervals contained in (ay, bz) that contain Sx. For simplicity
we assume that, for any interval Ii and any region Sx, Pr[vi = ax] = Pr[vi =
bx] = 0; this is natural for continuous probability distributions, and for discrete
distributions we may slightly perturb the distribution support so that this is
enforced. Since the dependency graph is a connected proper interval graph, we
can also assume that each interval contains at least two regions.

Before explaining the recurrence, we first examine how Proposition 1 limits
our choices with an example. In Fig. 1(a), suppose we first decide to query I3 and
its value falls in region S5. Due to Proposition 1, all intervals that contain S5,
namely I2 and I4, have to be queried as well. In Fig. 1(b), we assume that v2
falls in S3 and v4 falls in S6. This forces us to query I1 but also results in a
solution without querying I5. Therefore, each time we approach a subproblem
by first querying an interval Ii whose value falls in region Sx, we are forced to
query all other intervals that contain Sx, and so on in a cascading fashion, until
we end up with subproblems that are independent of current queried values. To
find the best solution, we must pick a first interval to query, and then recursively
calculate the cost of the best solution, depending on the region in which its value
falls. Here, the proper interval graph can be leveraged by having the cascading
procedure follow the natural order of the intervals.

We solve the problem by computing three tables. The first table, M , is
indexed by two regions y, z ∈ {1, . . . , t}, and M [y, z] is the minimum expected
query cost for the subinstance defined by the intervals contained in (ay, bz).
Thus, the value of the optimum solution for the whole problem is M [1, t]. To
compute M [y, z], we suppose the first interval in (ay, bz) that is queried by the
optimum solution is Ii. Then, for each region Sx ⊆ Ii, when vi ∈ Sx, we are

186 S. Chaplick et al.

Fig. 1. A simulation of the querying process for a fixed realization of the values.
(a) Querying I3 first and assuming v3 ∈ S5. (b) Assuming v2 ∈ S3 and v4 ∈ S6.

forced to query every interval Ij with j ∈ Ix(y, z) and this cascades, forcing
other intervals to be queried depending on where vj falls. So we assume that,
for all j ∈ Ix(y, z), vj falls in the area defined by regions z′, z′ + 1, . . . , y′ − 1, y′,
with z′ ≤ x ≤ y′, and that this area is minimal (i.e., some point is in Sz′ , and
some point is in Sy′). We call this interval (az′ , by′) the cascading area of Ii
in Ix(y, z). In Fig. 1(b), we have i = 3, x = 5, z′ = 3 and y′ = 6. As the
dependency graph is a proper interval graph, the remaining intervals (which do
not contain Sx) are split in two independent parts, whose value is computed by
two tables, L and R, which we describe next. So the recurrence for M [y, z] is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if (ay, bz) contains less than 2 intervals; otherwise,

min
Ii⊆(ay,bz)
︸ ︷︷ ︸

first interval

to query

∑

Sx⊆Ii

Pr[vi ∈ Sx]

︸ ︷︷ ︸
where point vi falls

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cost of cascading
︷ ︸︸ ︷∑

j∈Ix(y,z)

wj +
∑

z′≤x
y′≥x

cascading area
︷ ︸︸ ︷
p(y, z, i, x, z′, y′) ·

·
(

L[y, z′,min Ix(y, z)]+
+R[y′, z,max Ix(y, z)]

)

︸ ︷︷ ︸
cost of left/right subproblems

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where p(y, z, i, x, z′, y′) is the probability that (az′ , by′) is the cascading area of Ii
in Ix(y, z). We omit the description of how to calculate this probability.

The definitions of L and R are symmetric, so we focus on L. For region
indices y, z, z′ with z ≥ z′, let Ij′ be the leftmost interval contained in (ay, bz).
Now, L[y, z′, j] is the minimum expected query cost of solving the subproblem
consisting of intervals Ij′ , Ij′+1, . . . , Ij−1, assuming that a previously queried
point lies in the region Sz′ . We ensure that z′ is the leftmost region in (ay, bz)
that contains a queried point so that we query all intervals that contain some
point. For example, in Fig. 1(b), after querying I2, I3 and I4, the left subproblem
has z′ = 3 and j = 2. It holds that L can be calculated in the following way.
If no interval before Ij contains Sz′ , then the cascading is finished and we can
refer to table M for regions y, y +1, . . . , z′ −1. Otherwise Ij−1 must contain Sz′ ,

Query Minimization Under Stochastic Uncertainty 187

Fig. 2. An illustration of the definition of table L. (a) L[y, z′, j]. (b) If k ≥ z′, we
recurse on L[y, z′, j − 1]. (c) If k < z′, we recurse on L[y, k, j − 1].

we query it, and either vj−1 falls to the right of �z′ and we proceed to the next
interval, or vj−1 falls in a region Sk with k < z′, and we proceed to the next
interval with the leftmost queried point now being in Sk. Thus, we have

L[y, z′, j] =

⎧
⎨

⎩

M [y, z′ − 1], if j ≤ 1 or �j−1 < ay or Ij−1 �⊇ Sz′

wj−1 +
∑

Sk⊆Ij−1

Pr[vj−1 ∈ Sk] · L[y,min(k, z′), j − 1], otherwise.

We illustrate this in Fig. 2. In Fig. 2(a), the subproblem contains Ij−1, Ij−2, . . .,
and the leftmost queried point is in Sz′ . Since Sz′ ⊆ Ij−1, we query Ij−1 and
assume vj−1 falls in a region Sk. In Fig. 2(b), we have that k ≥ z′, so we recurse
on L[y, z′, j − 1]; this will recurse on M [y, z′ − 1] in its turn, since Sz′ �⊆ Ij−2. In
Fig. 2(c), we have that k < z′, so we recurse on L[y, k, j − 1], which in its turn
will have to query Ij−2.

At this point it is not hard to see that the next theorem follows by a standard
optimal substructure argument; we omit the proof.

Theorem 1. M [1, t] is the value of the minimum expected query cost to solve
the stochastic sorting problem with uncertainty.

The recurrences can be implemented in a bottom-up fashion that consumes
time O(n6): if we precompute p(y, z, i, x, z′, y′), then each entry of M is computed
in O(n4), and each entry of L and R can be computed in linear time. It is possible
to precompute p(y, z, i, x, z′, y′) in time O(n4) (we omit how). A more careful
analysis shows that the time consumption is O(n3d3), where d is the clique
number of the interval graph. Note that, in a proper interval graph, an interval
contains at most 2d − 1 regions. Another simple fact is that Ix(y, z) contains at
most d intervals, since every such interval contains Sx.

It seems difficult to improve this dynamic programming algorithm to some-
thing better than O(n3 ·poly(d)). Note that the main information that the deci-
sion tree encodes is which interval should be queried first in a given independent
subproblem (and there are Ω(n2) such subproblems). We could hope to find an
optimal substructure that would not need to test every interval as a first query,
and that this information could somehow be inferred from smaller subproblems.
However, consider I1 = (0, 100), I2 = (6, 105), and I3 = (95, 198), with uniform
query costs and uniform probability distributions. The optimum solution for the

188 S. Chaplick et al.

first two intervals is to first query I1, but the optimum solution for the whole
instance is to start with I2. Thus, even though I2 is a suboptimal first query
for the smaller subproblem, it is the optimal first query for the whole instance.
This example could be adapted to a larger instance with more than d intervals,
so that we need at least a linear pass in n to identify the best first query.

Simpler Strategies that Fail. It may seem that our dynamic programming strat-
egy above is overly complex, and that a simpler algorithm may suffice to solve
the problem. Below, we show sub-optimality of two such strategies.

We begin by showing that any greedy strategy that only takes into consid-
eration local information (such as degree in the dependency graph or overlap
area) fails. Consider a 5-path abcde, in which each interval has query cost 1 and
an overlap of 1/3 with each of its neighbors, and the exact value is uniformly
distributed in each interval. It can be shown by direct calculation that if we
query Ib (or, equivalently, Id) first, then we get an expected query cost of at
most 29/9 = 3.22̄, while querying Ic first yields an expected query cost of at
least 11/3 = 3.66̄. However, a greedy strategy that only takes into consideration
local information cannot distinguish between Ib and Ic.

One technique that has been frequently applied in the literature of uncer-
tainty problems with query minimization is the use of witness sets. A set
of intervals W is a witness if a correct solution cannot be computed unless
at least one interval in W is queried, even if all other intervals not in W are
queried. Witness sets are broadly adopted because they simplify the design of
query-competitive adaptive algorithms. If, at every step, an algorithm queries
disjoint witness sets of size at most α, then this algorithm is α-query-competitive.
This concept was proposed in [1]. For the sorting problem, by Lemma 1,
any pair of dependant intervals constitute a witness set. However, we cannot
take advantage of witness sets for the stochastic version of the problem, even
for uniform query costs and uniform probability distributions, and even if we
take advantage of the proper interval order. Consider the following intervals:
(0, 100), (95, 105), (98, 198). The witness set consisting of the first two intervals
may lead us to think that either of them is a good choice as the first query. How-
ever, the unique optimum solution first queries the third interval. (The costs are
843/400 = 2.1075 if we first query the first interval, 277/125 = 2.216 if we first
query the second interval, and 4182/2000 = 2.0915 if we first query the third
interval).

3 Finding the Minimum

We also consider the problem of finding the minimum (or, equivalently, the
maximum) of n unknown values v1, . . . , vn. Assume that the intervals are sorted
by the left endpoint, i.e., �1 ≤ �2 ≤ · · · ≤ �n. We may assume without loss of
generality that �1 < �2 < · · · < �n. Let I = {I1, . . . , In}. We begin by discussing
some assumptions we can make. First, we can assume that the interval graph is
a clique: with two independent intervals, we can remove the one on the right.

Query Minimization Under Stochastic Uncertainty 189

(However, we cannot assume a proper interval graph, as we did for sorting.) The
second assumption is based on the following remark, whose proof we omit.

Remark 1. If I1 contains some Ij , then I1 is queried in every solution.

Thus we can assume that I1 does not contain another interval; this implies
that r1 = mini ri. It is also useful to understand how to find an optimum query
set, i.e., to solve the problem assuming we know v1, . . . , vn.

Lemma 2 ([13]). The offline optimum solution either

(a) queries interval Ii with minimum vi and each interval Ij with �j < vi; or
(b) queries all intervals except for I1, if v1 is the minimum, vj > r1 for all j > 1,

and this is better than option (a).

Option (b) can be better not only due to a particular non-uniform query cost
configuration, but also with uniform query costs, when v1 ∈ I2, . . . , In. Note also
that I1 is always queried in option (a). We omit the proof of this lemma.

We first discuss what happens if the first interval we query is I1. In Fig. 3(a),
we suppose that v1 ∈ S3. This makes I2 become the leftmost interval, so it must
be queried, since it contains v1 and I3. At this point we also know that we do not
need to query I4, since v1 < �4. After querying I2, we have two possibilities. In
Fig. 3(b), we suppose that v2 ∈ S2, so we already know that v2 is the minimum
and no other queries are necessary. In Fig. 3(c), we suppose that v2 ∈ S6, so we
still need to query I3 to decide if v1 or v3 is the minimum. Note that, once I1
has been queried, we do not have to guess which interval to query next, since
any interval that becomes the leftmost interval will either contain v1 or will be
to the right of v1. Since this is an easy case of the problem, we formalize how to
solve it. The following claim is clear: if we have already queried I1, . . . , Ii−1 and
v1, . . . , vi−1 ∈ Ii, then we have to query Ii. (This relies on Ii having minimum �i
among Ii, . . . , In.) If we decide to first query I1, then we are discarding option (b)
in the offline solution, so all intervals containing the minimum value must be
queried. The expected query cost is then

∑n
i=1 wi ·Pr[Ii must be queried]. Given

an interval Ii, it will not need to be queried if there is some Ij with vj < �i, thus
the former probability is the probability that no value lies to the left of Ii. Since
the probability distribution is independent for each interval, the expected query
cost will be

∑n
i=1 wi · ∏

j<i Pr[vj > �i]. This can be computed in O(n2) time.
Now let us consider what happens if the optimum solution does not start

by querying I1, but by querying some Ik with k > 1. When we query Ik, we
have two cases: (1) if vk falls in I1, then we have to query I1 and proceed as
discussed above, querying I2 if v1 > �2, then querying I3 if v1, v2 > �3 and so
on; (2) if vk /∈ I1, then vk falls to the right of �i, for all i �= k, so essentially the
problem consists of finding the optimum solution for the remaining intervals, and
this value will be independent of vk. Therefore, the cost of first querying Ik is
wk +Pr[vk /∈ I1] ·opt(I \{Ik})+Pr[vk ∈ I1] ·

∑
i�=k wi ·

∏
j<i Pr[vj > �i|vk ∈ I1].

Thus, we can see that a decision tree can be specified simply by a permutation of
the intervals, since the last term in the last equation is fixed. More precisely, let
a(1), . . . , a(n) be a permutation of the intervals, where a(k) = i means that Ii

190 S. Chaplick et al.

Fig. 3. A simulation of the querying process when we decide to first query I1. (a) If
v1 ∈ S3, I2 must be queried, but not I4. (b) If v2 ∈ S2, then v2 is the minimum. (c) If
v2 ∈ S6, then we still have to query I3.

is the k-th interval in the permutation. We have two types of subtrees. Given a
subset Xk = {a(k), . . . , a(n)} that contains 1, let T̂k be the tree obtained by first
querying I1, then querying the next leftmost interval in Xk if it contains v1 and
so on. The second type of subtree Tk is defined by a suffix a(k), . . . , a(n) of the
permutation. If a(k) �= 1, then Tk is a decision tree with a root querying Ia(k)
and two branches. One branch, with probability Pr[va(k) ∈ I1], consists of T̂k+1;
the other branch, with probability Pr[va(k) /∈ I1], consists of Tk+1. If a(k) = 1,
then Tk = T̂k, unless k = n, in which case Tn will be empty: I1 does not need
to be queried, because all other intervals have already been queried and their
values fall to the right of I1. We have that cost(Tk)

=

⎧
⎨

⎩

0, if a(k) = a(n) = 1
cost(T̂k), if a(k) = 1 but k �= n; otherwise,
Pr[va(k) ∈ I1] · cost(T̂k|va(k) ∈ I1) + Pr[va(k) /∈ I1] · (wa(k) + cost(Tk+1)).

Note that in the last case we need to condition cost(T̂k) to the fact that va(k) ∈ I1.
The cost of T̂k conditioned to E is

∑n
i=k wi · ∏

j≥k
a(j)<a(i)

Pr[va(j) > �a(i)|E].

It holds that, if I1 is not the last interval in a decision tree permutation, then
it is always better to move I1 one step towards the beginning of the permutation.
(We omit the proof due to space limitations.) Thus, by induction, the optimum
solution either first queries I1, or has I1 at the end of the permutation. If I1 is
the last interval to be queried, then it does not have to be queried if all other
values fall to its right. Thus it may be that, in expectation, having I1 as the last
interval is optimal.

We do not know, however, how to efficiently find the best permutation ending
in I1. Simply considering which interval begins or ends first, or ordering by
Pr[vi ∈ I1] is not enough. To see this, consider the following two instances with
uniform costs and uniform probabilities. In the first, I1 = (0, 100), I2 = (5, 305)
and I3 = (6, 220); the best permutation is I2, I3, I1 and has cost 2.594689. If we
just extend I2 a bit to the right, making I2 = (5, 405), then the best permutation
is I3, I2, I1, whose cost is 2.550467.

If there was a way to determine the relative order in the best permutation
between two intervals Ij , Ik �= I1, simply by comparing some value not depending

Query Minimization Under Stochastic Uncertainty 191

on the order of the remaining intervals (for example, by comparing the cost
of IjIkI1 · · · and IkIjI1 · · ·), then we could find the best permutation easily.
Unfortunately, the ordering of the permutations is not always consistent, i.e.,
given a permutation, consider what happens if we swap Ij and Ik: it is not
always best to have Ij before Ik, or Ik before Ij . Consider intervals I1 = (0, 1000),
I2 = (3, 94439), I3 = (8, 6924), and I4 = (9, 2493), with uniform query cost and
uniform probability distributions. The best permutation is I4, I3, I2, I1, and the
costs of the permutations ending in I1 are as follows. Note that it is sometimes
better that I2 comes before I3, and sometimes the opposite.

cost(4, 2, 3, 1) = 3.48611 cost(2, 4, 3, 1) = 3.48715 cost(2, 3, 4, 1) = 3.48889
cost(4, 3, 2, 1) = 3.48593 cost(3, 4, 2, 1) = 3.48770 cost(3, 2, 4, 1) = 3.48859

This issue also seems to preclude greedy and dynamic programming algorithms
from succeeding. It seems that it is not possible to find an optimal substructure,
since the ordering is not always consistent among subproblems and the whole
problem. We have implemented various heuristics and performed experiments
on random instances, and could always find instances in which the optimum was
missed, even for uniform query costs and uniform probabilities.

Another reason to expect hardness is that the following similar problem is
NP-hard [7]. Given stochastic uncertainty intervals I1, . . . , In, costs w1, . . . , wn,
and a query budget C, find a set S ⊆ {1, . . . , n} with w(S) ≤ C that mini-
mizes E[mini∈S vi].

To conclude, we note that there are good approximation algorithms, which
have been proposed for the online version [13]. If query costs are uniform, then
first querying I1 costs at most opt+1, which yields a factor 1+1/d1, where d1 is
the degree of I1 in the interval graph. For arbitrary costs, there is a randomized
1.5-approximation algorithm using weighted probabilities in the two solutions
stated in Lemma 2. Those results apply to the stochastic version of the problem
simply by linearity of expectation.

Theorem 2. The minimum problem admits a (1+1/d1)-approximation for uni-
form query costs, and a randomized 1.5-approximation for arbitrary costs.

Those results have matching lower bounds for the online setting, and for
arbitrary query costs there is a deterministic lower bound of 2. We show that
the stochastic assumption can be used to beat those lower bounds for arbitrary
costs. First, the randomized 1.5-approximation algorithm can be derandomized,
simply by choosing which solution has smaller expected query cost: either first
querying I1, or first querying all other intervals and if necessary querying I1.
We know how to calculate both expected query costs; the latter is

∑
i>1 wi +

w1 · (1 − ∏
i>1 Pr[vi > r1]

)
. We omit the proof of the following theorem and the

description of the randomized algorithm.

Theorem 3. There is a deterministic 1.5-approximation algorithm and a ran-
domized 1.45-approximation algorithm for arbitrary query costs.

192 S. Chaplick et al.

4 Further Questions

Can we extend our approach for sorting so as to handle a dynamic setting, as
in [2]? E.g., where some intervals can be inserted/deleted from the initial set.
Updating the dynamic program should be faster than building it again from
scratch.

Is the minimum problem NP-hard or can it be solved in polynomial time? If
it is NP-hard, then so are the median and the minimum spanning tree problems.
Can we devise polynomial time algorithms with better approximation guarantees
than the best respective competitive online results?

References

1. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423
(2005). https://doi.org/10.1007/s00224-004-1180-4

2. Busto, D., Evans, W., Kirkpatrick, D.: Minimizing interference potential among
moving entities. In: Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 2400–2418 (2019). http://dl.acm.org/citation.
cfm?id=3310435.3310582

3. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable uncer-
tainty. In: Proceedings of the 9th Innovations in Theoretical Computer Science
Conference, ITCS, LIPIcs, vol. 94, pp. 30:1–30:14 (2018). https://doi.org/10.4230/
LIPIcs.ITCS.2018.30

4. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. EATCS 116, 22–39 (2015). http://bulletin.eatcs.org/index.php/
beatcs/article/view/335

5. Erlebach, T., Hoffmann, M., Krizanc, D., Mihal’ák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: STACS, pp. 277–288 (2008). https://
doi.org/10.4230/LIPIcs.STACS.2008.1358

6. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. J. Algorithms 62(1), 1–18 (2007). https://doi.
org/10.1016/j.jalgor.2004.07.005

7. Goel, A., Guha, S., Munagala, K.: Asking the right questions: model-driven opti-
mization using probes. In: Proceedings of the 25th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS, pp. 203–212
(2006). https://doi.org/10.1145/1142351.1142380

8. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The robust knapsack problem
with queries. Comput. Oper. Res. 55, 12–22 (2015). https://doi.org/10.1016/j.cor.
2014.09.010

9. Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In:
Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 205–216. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9 18

10. Gupta, A., Nagarajan, V., Singla, S.: Algorithms and adaptivity gaps for stochas-
tic probing. In: Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete algorithms, SODA, pp. 1731–1747 (2016). https://doi.org/10.1137/1.
9781611974331.ch120

https://doi.org/10.1007/s00224-004-1180-4
http://dl.acm.org/citation.cfm?id=3310435.3310582
http://dl.acm.org/citation.cfm?id=3310435.3310582
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
http://bulletin.eatcs.org/index.php/beatcs/article/view/335
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1145/1142351.1142380
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1007/978-3-642-36694-9_18
https://doi.org/10.1137/1.9781611974331.ch120
https://doi.org/10.1137/1.9781611974331.ch120

Query Minimization Under Stochastic Uncertainty 193

11. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. Theory Comput. Syst. 59(1), 112–132 (2016). https://doi.org/10.1007/
s00224-015-9664-y

12. Halldórsson, M.M., de Lima, M.S.: Query-competitive sorting with uncertainty. In:
Proceedings of the 44th International Symposium on Mathematical Foundations of
Computer Science, MFCS, LIPIcs, vol. 138, pp. 7:1–7:15 (2019). https://doi.org/
10.4230/LIPIcs.MFCS.2019.7

13. Kahan, S.: A model for data in motion. In: Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, STOC, pp. 265–277 (1991). https://doi.org/
10.1145/103418.103449

14. Megow, N., Meißner, J., Skutella, M.: Randomization helps computing a mini-
mum spanning tree under uncertainty. SIAM J. Comput. 46(4), 1217–1240 (2017).
https://doi.org/10.1137/16M1088375

15. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. In: Proceedings of the 26th International Conference
on Very Large Data Bases, VLBD, pp. 144–155 (2000). http://ilpubs.stanford.edu:
8090/437/

16. Ryzhov, I.O., Powell, W.B.: Information collection for linear programs with uncer-
tain objective coefficients. SIAM J. Optim. 22(4), 1344–1368 (2012). https://doi.
org/10.1137/12086279X

17. Singla, S.: The price of information in combinatorial optimization. In: Proceedings
of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
2523–2532 (2018). https://doi.org/10.1137/1.9781611975031.161

18. Welz, W.A.: Robot Tour Planning with High Determination Costs. Ph.D. the-
sis, Technischen Universität Berlin (2014). https://www.depositonce.tu-berlin.de/
handle/11303/4597

19. Yamaguchi, Y., Maehara, T.: Stochastic packing integer programs with few queries.
In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pp. 293–310 (2018). https://dl.acm.org/doi/abs/10.5555/3174304.
3175288

https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.1145/103418.103449
https://doi.org/10.1145/103418.103449
https://doi.org/10.1137/16M1088375
http://ilpubs.stanford.edu:8090/437/
http://ilpubs.stanford.edu:8090/437/
https://doi.org/10.1137/12086279X
https://doi.org/10.1137/12086279X
https://doi.org/10.1137/1.9781611975031.161
https://www.depositonce.tu-berlin.de/handle/11303/4597
https://www.depositonce.tu-berlin.de/handle/11303/4597
https://dl.acm.org/doi/abs/10.5555/3174304.3175288
https://dl.acm.org/doi/abs/10.5555/3174304.3175288

Suffix Trees, DAWGs and CDAWGs
for Forward and Backward Tries

Shunsuke Inenaga1,2(B)

1 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. The suffix tree, DAWG, and CDAWG are fundamental
indexing structures of a string, with a number of applications in bioinfor-
matics, information retrieval, data mining, etc. An edge-labeled rooted
tree (trie) is a natural generalization of a string, which can also be seen
as a compact representation of a set of strings. Kosaraju [FOCS 1989]
proposed the suffix tree for a backward trie, where the strings in the trie
are read in the leaf-to-root direction. In contrast to a backward trie, we
call a usual trie as a forward trie. Despite a few follow-up works after
Kosaraju’s paper, indexing forward/backward tries is not well under-
stood yet. In this paper, we show a full perspective on the sizes of index-
ing structures such as suffix trees, DAWGs, and CDAWGs for forward
and backward tries. In particular, we show that the size of the DAWG
for a forward trie with n nodes is Ω(σn), where σ is the number of dis-
tinct characters in the trie. This becomes Ω(n2) for an alphabet of size
σ = Θ(n). Still, we show that there is a compact O(n)-space implicit
representation of the DAWG for a forward trie, whose space requirement
is independent of the alphabet size. This compact representation allows
for simulating each DAWG edge traversal in O(log σ) time, and can be
constructed in O(n) time and space over any integer alphabet of size
O(n).

1 Introduction

Text indexing is a fundamental problem in theoretical computer science that
dates back to 1970’s when suffix trees were invented [26]. Here the task is to
preprocess a given text string S so that subsequent patten matching queries on
S can be answered efficiently. Suffix trees have numerous other applications e.g.
sequence comparisons [26], lossless data compression [2], data mining [23], and
bioinformatics [15,21].

A trie is a rooted tree where each edge is labeled with a single character. A
backward trie is an edge-reversed trie. Kosaraju [19] was the first to consider the
trie indexing problem, and he proposed the suffix tree of a backward trie that
takes O(n) space, where n is the number of nodes in the backward trie. Kosaraju
also claimed an O(n log n)-time construction. Breslauer [7] showed how to build
the suffix tree of a backward trie in O(σn) time and space, where σ is the
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 194–206, 2020.
https://doi.org/10.1007/978-3-030-61792-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_16

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 195

Table 1. Summary of the numbers of nodes and edges of the suffix tree, DAWG, and
CDAWG for a forward/backward trie with n nodes over an alphabet of size σ. The new
bounds obtained in Sect. 5 of this paper are highlighted in bold. All the bounds here
are valid with any alphabet size σ ranging from Θ(1) to Θ(n). Also, all these upper
bounds are tight in the sense that there are matching lower bounds (see Sect. 5).

Forward trie Backward trie

Indexing structure # of nodes # of edges # of nodes # of edges

Suffix tree O(n2) O(n2) O(n) O(n)

DAWG O(n) O(σn) O(n2) O(n2)

CDAWG O(n) O(σn) O(n) O(n)

alphabet size. Shibuya [25] presented an O(n)-time and space construction for
the suffix tree of a backward trie over an integer alphabet of size O(n). This line
of research has been followed by the invention of XBWTs [11], suffix arrays [11],
enhanced suffix arrays [18], and position heaps [24] for backward tries.

This paper considers the suffix trees, the directed acyclic word graphs
(DAWGs) [5,9], and the compact DAWGs (CDAWGs) [6] built on a backward
trie or on a forward (ordinary) trie. While all these indexing structures support
linear-time pattern matching queries on tries, their sizes can significantly differ.
We present tight lower and upper bounds on the sizes of all these indexing struc-
tures, as summarized in Table 1. Probably the most interesting result in our size
bounds is the Ω(n2) lower bound for the size of the DAWG for a forward trie
with n nodes over an alphabet of size Θ(n) (Theorem 6), since this reveals that
Mohri et al.’s algorithm [22] that constructs the DAWG for a forward trie with
n nodes must take at least Ω(n2) time and space in the worst case. We show
that, somewhat surprisingly, there exists an implicit compact representation of
the DAWG for a forward trie that occupies only O(n) space independently of
the alphabet size, and allows for simulating traversal of each DAWG edge in
O(log σ) time. We also present an algorithm that builds this implicit represen-
tation of the DAWG for a forward trie in O(n) time and space for any integer
alphabet of size O(n).

DAWGs for strings have important applications to pattern matching with
don’t cares [20], online Lempel-Ziv factorization in compact space [27], finding
minimal absent words [13], etc. CDAWGs for strings can be regarded as grammar
compression of input strings and can be stored in space linear in the number of
right-extensions of maximal repeats [3]. It is known that the number of maxi-
mal repeats can be much smaller than the string length, particularly in highly
repetitive strings. Hence, studying and understanding DAWGs/CDAWGs for
tries are very important and are expected to lead to further research on efficient
processing of tries.

Omitted proofs and supplemental figures can be found in a full version [16].

196 S. Inenaga

2 Preliminaries

Let Σ be an ordered alphabet. Any element of Σ∗ is called a string. For any
string S, let |S| denote its length. Let ε be the empty string, namely, |ε| = 0.
Let Σ+ = Σ∗ \ {ε}. If S = XY Z, then X, Y , and Z are called a prefix, a
substring, and a suffix of S, respectively. For any 1 ≤ i ≤ j ≤ |S|, let S[i..j]
denote the substring of S that begins at position i and ends at position j in S.
For convenience, let S[i..j] = ε if i > j. For any 1 ≤ i ≤ |S|, let S[i] denote
the ith character of S. For any string S, let S denote the reversed string of S,
i.e., S = S[|S|] · · · S[1]. Also, for any set S of strings, let S denote the set of the
reversed strings of S, namely, S = {S | S ∈ S}.

A trie T is a rooted tree (V,E) such that (1) each edge in E is labeled by a
single character from Σ and (2) the character labels of the out-going edges of
each node begin with mutually distinct characters. In this paper, a forward trie
refers to an (ordinary) trie as defined above. On the other hand, a backward trie
refers to an edge-reversed trie where each path label is read in the leaf-to-root
direction. We will denote by Tf = (Vf ,Ef) a forward trie and by Tb = (Vb,Eb) the
backward trie that is obtained by reversing the edges of Tf . We denote by a triple
(u, a, v)f an edge in a forward trie Tf , where u, v ∈ V and a ∈ Σ. Each reversed
edge in Tb is denoted by a triple (v, a, u)b. Namely, there is a directed labeled
edge (u, a, v)f ∈ Ef iff there is a reversed directed labeled edge (v, a, u)b ∈ Eb.

For a node u of a forward trie Tf , let anc(u, j) denote the jth ancestor of
u in Tf if it exists. Alternatively, for a node v of a backward Tb, let des(v, j)
denote the jth descendant of v in Tb if it exists. We use a level ancestor data
structure [4] on Tf (resp. Tb) so that anc(u, j) (resp. des(v, j)) can be found in
O(1) time for any node and integer j, with linear space.

For nodes u, v in a forward trie Tf s.t. u is an ancestor of v, let strf(u, v)
denote the string spelled out by the path from u to v in Tf . Let r denote the
root of Tf and Lf the set of leaves in Tf . The sets of substrings and suffixes of
the forward trie Tf are respectively defined by Substr(Tf) = {strf(u, v) | u, v ∈
Vf , u is an ancestor of v} and Suffix(Tf) = {strf(u, l) | u ∈ Vf , l ∈ Lf}.

For nodes v, u in a backward trie Tb s.t. v is a descendant of u, let strb(v, u)
denote the string spelled out by the reversed path from v to u in Tb. The sets
of substrings and suffixes of the backward trie Tb are respectively defined by
Substr(Tb) = {strb(v, u) | v, u ∈ Vb, v is a descendant of u} and Suffix(Tb) =
{strb(v, r) | v ∈ Vb, r is the root of Tb}.

In what follows, let n be the number of nodes in Tf (or equivalently in Tb).

Fact 1. (a) For any Tf and Tb, Substr(Tf) = Substr(Tb). (b) For any forward
trie Tf , |Suffix(Tf)| = O(n2). For some forward trie Tf , |Suffix(Tf)| = Ω(n2).
(c) |Suffix(Tb)| ≤ n − 1 for any backward trie Tb.

Fact 1-(a), Fact 1-(c) and the upper bound of Fact 1-(b) should be clear
from the definitions. To see the lower bound of Fact 1-(b) in detail, consider a
forward trie Tf with root r such that there is a single path of length k from r to
a node v, and there is a complete binary tree rooted at v with k leaves. Then,

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 197

for all nodes u in the path from r to v, the total number of strings in the set
{strf(u, l) | l ∈ Lf} ⊂ Suffix(Tf) is at least k(k+1), since each strf(u, l) is distinct
for each path (u, l). By setting k ≈ n/3 so that the number |Vf | of nodes in Tf

equals n, we obtain Fact 1-(b). The lower bound is valid for alphabets of size σ
ranging from 2 to Θ(k) = Θ(n).

3 Maximal Substrings in Forward/Backward Tries

Blumer et al. [6] introduced the notions of right-maximal, left-maximal, and
maximal substrings in a set S of strings, and presented clean relationships
between the right-maximal/left-maximal/maximal substrings and the suffix
trees/DAWGs/CDAWGs for S. Here we give natural extensions of these notions
to substrings in our forward and backward tries Tf and Tb, which will be the
basis of our indexing structures for Tf and Tb.

Maximal Substrings on Forward Tries: For any substring X in a forward
trie Tf , X is said to be right-maximal on Tf if (i) there are at least two distinct
characters a, b ∈ Σ such that Xa,Xb ∈ Substr(Tf), or (ii) X has an occurrence
ending at a leaf of Tf . Also, X is said to be left-maximal on Tf if (i) there are at
least two distinct characters a, b ∈ Σ such that aX, bX ∈ Substr(Tf), or (ii) X
has an occurrence beginning at the root of Tf . Finally, X is said to be maximal on
Tf if X is both right-maximal and left-maximal in Tf . For any X ∈ Substr(Tf), let
r-mxmlf(X), l-mxmlf(X), and mxmlf(X) respectively denote the functions that
map X to the shortest right-maximal substring Xβ, the shortest left-maximal
substring αX, and the shortest maximal substring αXβ that contain X in Tf ,
where α, β ∈ Σ∗.

Maximal Substrings on Backward Tries: For any substring Y in a backward
trie Tb, Y is said to be left-maximal on Tb if (i) there are at least two distinct
characters a, b ∈ Σ such that aY, bY ∈ Substr(Tb), or (ii) Y has an occurrence
beginning at a leaf of Tb. Also, Y is said to be right-maximal on Tb if (i) there are
at least two distinct characters a, b ∈ Σ such that Y a, Y b ∈ Substr(Tb), or (ii) Y
has an occurrence ending at the root of Tb. Finally, Y is said to be maximal on Tb

if Y is both right-maximal and left-maximal in Tb. For any Y ∈ Substr(Tb), let
l-mxmlb(Y), r-mxmlb(Y), and mxmlb(Y) respectively denote the functions that
map Y to the shortest left-maximal substring γY , the shortest right-maximal
substring Y δ, and the shortest maximal substring γY δ that contain Y in Tb,
where γ, δ ∈ Σ∗.

Clearly, the afore-mentioned notions are symmetric over Tf and Tb, namely:

Fact 2. String X is right-maximal (resp. left-maximal) on Tf iff X is left-
maximal (resp. right-maximal) on Tb. Also, X is maximal on Tf iff X is maximal
on Tb.

198 S. Inenaga

4 Indexing Forward/Backward Tries and Known Bounds

A compact tree for a set S of strings is a rooted tree such that (1) each edge
is labeled by a non-empty substring of a string in S, (2) each internal node is
branching, (3) the string labels of the out-going edges of each node begin with
mutually distinct characters, and (4) there is a path from the root that spells
out each string in S, which may end on an edge. Each edge of a compact tree
is denoted by a triple (u, α, v) with α ∈ Σ+. We call internal nodes that are
branching as explicit nodes, and we call loci that are on edges as implicit nodes.
We will sometimes identify nodes with the substrings that the nodes represent.

In what follows, we will consider DAG or tree data structures built on a
forward trie or backward trie. For any DAG or tree data structure D, let |D|#Node

and |D|#Edge denote the numbers of nodes and edges in D, respectively.

4.1 Suffix Trees for Forward Tries

The suffix tree of a forward trie Tf , denoted STree(Tf), is a compact tree which
represents Suffix(Tf). All non-root nodes in STree(Tf) represent right-maximal
substrings on Tf . Since now all internal nodes are branching, and since there
are at most |Suffix(Tf)| leaves, the numbers of nodes and edges in STree(Tf)
are proportional to the number of suffixes in Suffix(Tf). The following (folklore)
quadratic bounds hold due to Fact 1-(b).

Theorem 1. For any forward trie Tf with n nodes, |STree(Tf)|#Node = O(n2)
and |STree(Tf)|#Edge = O(n2). These upper bounds hold for any alpha-
bet. For some forward trie Tf with n nodes, |STree(Tf)|#Node = Ω(n2) and
|STree(Tf)|#Edge = Ω(n2). These lower bounds hold for a constant-size or larger
alphabet.

4.2 Suffix Trees for Backward Tries

The suffix tree of a backward trie Tb, denoted STree(Tb), is a compact tree which
represents Suffix(Tb). Since STree(Tb) contains at most n−1 leaves by Fact 1-(c)
and all internal nodes of Suffix(Tb) are branching, the following precise bounds
follow from Fact 1-(c), which were implicit in the literature [7,19].

Theorem 2. For any backward trie Tb with n ≥ 3 nodes, |STree(Tb)|#Node ≤
2n − 3 and |STree(Tb)|#Edge ≤ 2n − 4, independently of the alphabet size.

The above bounds are tight since the theorem translates to the suffix tree with
2m−1 nodes and 2m−2 edges for a string of length m (e.g., am−1b), which can
be represented as a path tree with n = m + 1 nodes. By representing each edge
label α by a pair 〈v, u〉 of nodes in Tb such that α = strb(u, v), STree(Tb) can
be stored with O(n) space.

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 199

Suffix Links and Weiner Links: For each explicit node aU of the suffix tree
STree(Tb) of a backward trie Tb with a ∈ Σ and U ∈ Σ∗, let slink(aU) = U .
This is called the suffix link of node aU . For each explicit node V and a ∈ Σ, we
also define the reversed suffix link Wa(V) = aV X where X ∈ Σ∗ is the shortest
string such that aV X is an explicit node of STree(Tb). Wa(V) is undefined if
aV /∈ Substr(Tb). These reversed suffix links are also called as Weiner links (or
W-link in short) [8]. A W-link Wa(V) = aV X is said to be hard if X = ε, and
soft if X ∈ Σ+. The suffix links, hard and soft W-links of nodes in the suffix
tree STree(Tf) of a forward trie Tf are defined analogously.

4.3 DAWGs for Forward Tries

The directed acyclic word graph (DAWG) of a forward trie Tf is a (partial)
DFA that recognizes all substrings in Substr(Tf). Hence, the label of every edge
of DAWG(Tf) is a single character from Σ. DAWG(Tf) is formally defined as
follows: For any substring X from Substr(Tf), let [X]E,f denote the equivalence
class w.r.t. l-mxmlf(X). There is a one-to-one correspondence between the nodes
of DAWG(Tf) and the equivalence classes [·]E,f , and hence we will identify the
nodes of DAWG(Tf) with their corresponding equivalence classes [·]E,f . By the
definition of equivalence classes, every member of [X]E,f is a suffix of l-mxmlf(X).
If X,Xa are substrings in Substr(Tf) and a ∈ Σ, then there exists an edge labeled
with character a ∈ Σ from node [X]E,f to node [Xa]E,f in DAWG(Tf). This edge
is called primary if |l-mxmlf(X)| + 1 = |l-mxmlf(Xa)|, and is called secondary
otherwise. For each node [X]E,f of DAWG(Tf) with |X| ≥ 1, let slink([X]E,f) = Z,
where Z is the longest suffix of l-mxmlf(X) not belonging to [X]E,f . This is the
suffix link of this node [X]E,f .

Mohri et al. [22] introduced the suffix automaton for an acyclic DFA G,
which is a small DFA that represents all suffixes of strings accepted by G. They
considered equivalence relation ≡ of substrings X and Y in an acyclic DFA G
such that X ≡ Y iff the following paths of the occurrences of X and Y in G
are equal. Mohri et al.’s equivalence class is identical to our equivalence class
[X]E,f when G = Tf . To see why, recall that l-mxmlf(X) = αX is the shortest
substring of Tf such that αX is left-maximal, where α ∈ Σ∗. Therefore, X is a
suffix of l-mxmlf(X) and the following paths of the occurrences of X in Tf are
identical to the following paths of the occurrences of l-mxmlf(X) in Tf . Hence,
in case where the input DFA G is in form of a forward trie Tf such that its leaves
are the accepting states, then Mohri et al.’s suffix automaton is identical to our
DAWG for Tf . Mohri et al. [22] showed the following:

Theorem 3 (Corollary 2 of [22]). For any forward trie Tf with n ≥ 3 nodes,
|DAWG(Tf)|#Node ≤ 2n − 3, independently of the alphabet size.

We remark that Theorem 3 is immediate from Theorem 2 and Fact 2.
This is because there is a one-to-one correspondence between the nodes of
DAWG(Tf) and the nodes of STree(Tb), which means that |DAWG(Tf)|#Node =
|STree(Tb)|#Node. Recall that the bound in Theorem 3 is only on the number of

200 S. Inenaga

nodes in DAWG(Tf). We shall show later that the number of edges in DAWG(Tf)
is Ω(σn) in the worst case, which can be Ω(n2) for a large alphabet.

4.4 DAWGs for Backward Tries

The DAWG of a backward trie Tb, denoted DAWG(Tb), is a (partial) DFA that
recognizes all strings in Substr(Tb). The label of every edge of DAWG(Tb) is a sin-
gle character from Σ. DAWG(Tb) is formally defined as follows: For any substring
Y from Substr(Tb), let [Y]E,b denote the equivalence class w.r.t. l-mxmlb(Y).
There is a one-to-one correspondence between the nodes of DAWG(Tb) and the
equivalence classes [·]E,b, and hence we will identify the nodes of DAWG(Tb) with
their corresponding equivalence classes [·]E,b. The notions of primary edges, sec-
ondary edges, and the suffix links of DAWG(Tb) are defined in similar manners
to DAWG(Tf), but using the equivalence classes [Y]E,b for substrings Y in the
backward trie Tb.

Symmetries Between Suffix Trees and DAWGs: The well-known symme-
try between the suffix trees and the DAWGs (refer to [5,6,10]) also holds in our
case of forward and backward tries. Namely, the suffix links of DAWG(Tf) (resp.
DAWG(Tb)) are the (reversed) edges of STree(Tb) (resp. STree(Tf)). Also, the
hard W-links of STree(Tf) (resp. STree(Tb)) are the primary edges of DAWG(Tb)
(resp. DAWG(Tf)), and the soft W-links of STree(Tf) (resp. STree(Tb)) are the
secondary edges of DAWG(Tb) (resp. DAWG(Tf)).

4.5 CDAWGs for Forward Tries

The compact directed acyclic word graph (CDAWG) of a forward trie Tf , denoted
CDAWG(Tf), is the edge-labeled DAG where the nodes correspond to the equiv-
alence class of Substr(Tf) w.r.t. mxmlf(·). In other words, CDAWG(Tf) can be
obtained by merging isomorphic subtrees of STree(Tf) rooted at internal nodes
and merging leaves that are equivalent under mxmlf(·), or by contracting non-
branching paths of DAWG(Tf).

Theorem 4 ([17]). For any forward trie Tf with n nodes over a constant-size
alphabet, |CDAWG(Tf)|#Node = O(n) and |CDAWG(Tf)|#Edge = O(n).

We emphasize that the above result by Inenaga et al. [17] states size bounds
of CDAWG(Tf) only in the case where σ = O(1). We will later show that this
bound does not hold for the number of edges, in the case of a large alphabet.

4.6 CDAWGs for Backward Tries

The compact directed acyclic word graph (CDAWG) of a backward trie Tb,
denoted CDAWG(Tb), is the edge-labeled DAG where the nodes correspond to
the equivalence class of Substr(Tb) w.r.t. mxmlb(·). Similarly to its forward trie
counterpart, CDAWG(Tb) can be obtained by merging isomorphic subtrees of
STree(Tb) rooted at internal nodes and merging leaves that are equivalent under
mxmlf(·), or by contracting non-branching paths of DAWG(Tb).

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 201

5 New Size Bounds on Indexing Forward/Backward Tries

To make the analysis simpler, we assume each of the roots, the one of Tf and
the corresponding one of Tb, is connected to an auxiliary node ⊥ with an edge
labeled by a unique character $ that does not appear elsewhere in Tf or in Tb.

5.1 Size Bounds for DAWGs for Forward/Backward Tries

Theorem 5. For any backward trie Tb with n nodes, |DAWG(Tb)|#Node =
O(n2) and |DAWG(Tb)|#Edge = O(n2). These upper bounds hold for any alpha-
bet. For some backward trie Tb with n nodes, |DAWG(Tb)|#Node = Ω(n2) and
|DAWG(Tb)|#Edge = Ω(n2). These lower bounds hold for a constant-size or larger
alphabet.

Theorem 6. For any forward trie Tf with n nodes, |DAWG(Tf)|#Edge = O(σn).
For some forward trie Tf with n nodes, |DAWG(Tf)|#Edge = Ω(σn) which is
Ω(n2) for a large alphabet of size σ = Θ(n).

Proof. Since each node of DAWG(Tf) can have at most σ out-going edges, the
upper bound |DAWG(Tf)|#Edge = O(σn) follows from Theorem 3.

To obtain the lower bound |DAWG(Tf)|#Edge = Ω(σn), we consider Tf which
has a broom-like shape such that there is a single path of length n − σ − 1
from the root to a node v which has out-going edges with σ distinct characters
b1, . . . , bσ. Since the root of Tf is connected with the auxiliary node ⊥ with an
edge labeled $, each root-to-leaf path in Tf represents $an−σ+1bi for 1 ≤ i ≤ σ.
Now ak for each 1 ≤ k ≤ n − σ − 2 is left-maximal since it is immediately
preceded by a and $. Thus DAWG(Tf) has at least n−σ −2 internal nodes, each
representing ak for 1 ≤ k ≤ n − σ − 2. On the other hand, each ak ∈ Substr(Tf)
is immediately followed by bi with all 1 ≤ i ≤ σ. Hence, DAWG(Tf) contains
σ(n − σ − 2) = Ω(σn) edges when n − σ − 2 = Ω(n). By choosing e.g. σ ≈ n/2,
we obtain DAWG(Tf) that contains Ω(n2) edges. ��
Mohri et al. (Proposition 4 of [22]) claimed that one can construct DAWG(Tf)
in time proportional to its size. The following corollary is immediate from The-
orem 6:

Corollary 1. The DAWG construction algorithm of [22] applied to a forward
trie with n nodes must take at least Ω(n2) time in the worst case for an alphabet
of size σ = Θ(n).

5.2 Size Bounds for CDAWGs for Forward/Backward Tries

Theorem 7. For any backward trie Tb with n nodes, |CDAWG(Tb)|#Node ≤
2n − 3 and |CDAWG(Tb)|#Edge ≤ 2n − 4. These bounds are independent of the
alphabet size.

202 S. Inenaga

Proof. Since any maximal substring in Substr(Tb) is right-maximal in
Substr(Tb), by Theorem 2 we have |CDAWG(Tb)|#Node ≤ |STree(Tb)|#Node ≤
2n − 3 and |CDAWG(Tb)|#Edge ≤ |STree(Tb)|#Edge ≤ 2n − 4. ��
The bounds in Theorem 7 are tight: Consider an alphabet {a1, . . . , a�log2 n�,
b1, . . . , b�log2 n�, $} of size 2log2 n� + 1 and a binary backward trie Tb with
n nodes where the binary edges at each depth d ≥ 2 are labeled by the sub-
alphabet {ad, bd} of size 2. Because every suffix S ∈ Suffix(Tb) is maximal in
Tb, CDAWG(Tb) for this Tb contains n − 1 sinks. Also, since for each suffix S in
Tb there is a unique suffix S′ �= S that shares the longest common prefix with
S, CDAWG(Tb) for this Tb contains n − 2 internal nodes (including the source).
This also means CDAWG(Tb) is identical to STree(Tb) for this backward trie Tb.

Theorem 8. For any forward trie Tf with n nodes, |CDAWG(Tf)|#Node ≤ 2n −
3 and |CDAWG(Tf)|#Edge = O(σn). For some forward trie Tf with n nodes,
|CDAWG(Tf)|#Edge = Ω(σn) which is Ω(n2) for a large alphabet of size σ =
Θ(n).

Proof. It immediately follows from Fact 1-(a), Fact 2, and Theorem 7 that
|CDAWG(Tf)|#Node = |CDAWG(Tb)|#Node ≤ 2n−3. Since a node in CDAWG(Tf)
can have at most σ out-going edges, the upper bound |CDAWG(Tf)|#Edge =
O(σn) of the number of edges trivially holds. To obtain the lower bound, we
consider the same broom-like forward trie Tf as in Theorem 6. In this Tf , ak for
each 1 ≤ k ≤ n − σ − 2 is maximal and thus CDAWG(Tf) has at least n − σ − 2
internal nodes each representing ak for 1 ≤ k ≤ n−σ−2. By the same argument
to Theorem 6, CDAWG(Tf) for this Tf contains at least σ(n − σ − 2) = Ω(σn)
edges, which accounts to Ω(n2) for a large alphabet of size e.g. σ ≈ n/2. ��
The upper bound of Theorem 8 generalizes the bound of Theorem 4 for constant-
size alphabets. Remark that CDAWG(Tf) for the broom-like Tf is almost identical
to DAWG(Tf), except for the unary path $a that is compacted in CDAWG(Tf).

6 Constructing O(n)-size Representation of DAWG(Tf)
in O(n) Time

We have seen that DAWG(Tf) for any forward trie Tf with n nodes contains
only O(n) nodes, but can have Ω(σn) edges for some Tf over an alphabet of
size σ ranging from Θ(1) to Θ(n). Thus some DAWG(Tf) can have Θ(n2) edges
for σ = Θ(n) (Theorem 3 and Theorem 6). Hence, in general it is impossible
to build an explicit representation of DAWG(Tf) within linear O(n)-space. By
an explicit representation we mean an implementation of DAWG(Tf) where each
edge is represented by a pointer between two nodes.

We show that there exists an O(n)-space implicit representation of DAWG(Tf)
for any alphabet of size σ ranging from Θ(1) to Θ(n), that allows us O(log σ)-
time access to each edge of DAWG(Tf). This is trivial in case σ = O(1), and hence
in what follows we consider an alphabet of size σ such that σ ranges from ω(1)

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 203

to Θ(n). Also, we suppose that our alphabet is an integer alphabet Σ = [1..σ]
of size σ. Then, we show that such an implicit representation of DAWG(Tf) can
be built in O(n) time and working space.

Based on the property stated in Sect. 4, constructing DAWG(Tf) reduces to
maintaining hard and soft W-links over STree(Tb). Our data structure explicitly
stores all O(n) hard W-links, while it only stores carefully selected O(n) soft W-
links. The other soft W-links can be simulated by these explicitly stored W-links,
in O(log σ) time each.

Our algorithm is built upon the following facts which are adapted from [12]:

Fact 3. Let a be any character from Σ.

(a) If there is a (hard or soft) W-link Wa(V) for a node V in STree(Tb), then
there is a (hard or soft) W-link Wa(U) for any ancestor U of V in STree(Tb).

(b) If two nodes U and V have hard W-links Wa(U) and Wa(V), then the LCA
Z of U and V also has a hard W-link Wa(Z).

In the following statements (c), (d), and (e), let V be any node of STree(Tb)
such that V has a soft W-link Wa(V) for a ∈ Σ.

(c) There is a descendant U of V s.t. U �= V and U has a hard W-link Wa(V).
(d) The highest descendant of V that has a hard W-link for character a is unique.

This fact follows from (b).
(e) Let U be the unique highest descendant of V that has a hard W-link Wa(U).

For every node Z in the path from V to U , Wa(Z) = Wa(U), i.e. the W-links
of all nodes in this path for character a point to the same node in STree(Tb).

We construct a micro-macro tree decomposition [1] of STree(Tb) in a similar
manner to [14], such that the nodes of STree(Tb) are partitioned into O(n/σ)
connected components (called micro-trees), each of which contains O(σ) nodes.
Such a decomposition always exists and can be computed in O(n) time. The
macro tree is the induced tree from the roots of the micro trees, and thus the
macro tree contains O(n/σ) nodes.

In every node V of the macro tree, we explicitly store all soft and hard W-
links from V . Since there can be at most σ W-links from V , this requires O(n)
total space for all nodes in the macro tree. Let mt denote any micro tree. We
compute the ranks of all nodes in a pre-order traversal in mt. Let a ∈ Σ be any
character such that there is a node V in mt that has a hard W-link Wa(V).
Let Pmt

a denote an array that stores a sorted list of pre-order ranks of nodes V
in mt that have hard W-links for character a. Hence the size of Pmt

a is equal to
the number of nodes in mt that have hard W-links for character a. For all such
characters a, we store Pmt

a in mt. The total size of these arrays for all the micro
trees is O(n).

Let a ∈ Σ be any character, and V any node in STree(Tb) which does not
have a hard W-link for a. We wish to know if V has a soft W-link for a, and
if so, we want to retrieve the target node of this link. Let mt denote the micro-
tree that V belongs to. Consider the case where V is not the root R of mt, since

204 S. Inenaga

otherwise Wa(V) is explicitly stored. If Wa(R) is nil, then by Fact 3-(a) no nodes
in the micro tree has W-links for character a. Otherwise (if Wa(R) exists), then
we can find Wa(W) as follows:

(A) If the predecessor P of V exists in Pmt
a and P is an ancestor of V , then we

follow the hard W-link Wa(P) from P . Let Q = Wa(P), and c be the first
character in the path from P to V .
(i) If Q has an out-going edge whose label begins with c, the child of Q below

this edge is the destination of the soft W-link Wa(V) from V for a.
(ii) Otherwise, then there is no W-link from V for a.

(B) Otherwise, Wa(R) from the root R of mt is a soft W-link, which is explicitly
stored. We follow it and let U = Wa(R).
(i) If Z = slink(U) is a descendant of V , then U is the destination of the soft

W-link Wa(V) from V for a.
(ii) Otherwise, then there is no W-link from V for a.

The correctness of this algorithm follows from Fact 3-(e). Since each micro-tree
contains O(σ) nodes, the size of Pmt

a is O(σ) and thus the predecessor P of V in
Pmt

a can be found in O(log σ) time by binary search. We can check if one node is
an ancestor of the other node (or vice versa) in O(1) time, after standard O(n)-
time preprocessing over the whole suffix tree. Hence, this algorithm simulates
soft W-link Wa(V) in O(log σ) time.

Lemma 1. Given a backward trie Tb with n nodes, we can compute STree(Tb)
with all hard W-links in O(n) time and space.

Lemma 2. We can compute, in O(n) time and space, all W-links of the macro
tree nodes and the arrays Pmt

a for all the micro trees mt and characters a ∈ Σ.

Proof. We perform a pre-order traversal on each micro tree mt. At each node V
visited during the traversal, we append the pre-order rank of V to array Pmt

a iff
V has a hard W-link Wa(V) for character a. Since the size of mt is O(σ) and
since we have assumed an integer alphabet [1..σ], we can compute Pmt

a for all
characters a in O(σ) time. It takes O(n

σ · σ) = O(n) time for all micro trees.
The preprocessing for the macro tree consists of two steps. Firstly, we need

to compute soft W-links from the macro tree nodes (recall that we have already
computed hard W-links from the macro tree nodes by Lemma 1). For this sake,
in the above preprocessing for micro trees, we additionally pre-compute the
successor of the root R of each micro tree mt in each non-empty array Pmt

a . By
Fact 3-(d), this successor corresponds to the unique descendant of R that has a
hard W-link for character a. As above, this preprocessing also takes O(σ) time for
each micro tree, resulting in O(n) total time. Secondly, we perform a bottom-up
traversal on the macro tree. Our basic strategy is to “propagate” the soft W-
links in a bottom up fashion from lower nodes to upper nodes in the macro tree
(recall that these macro tree nodes are the roots of micro trees). In so doing,
we first compute the soft W-links of the macro tree leaves. By Fact 3-(c) and
-(e), this can be done in O(σ) time for each leaf using the successors computed

Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries 205

above. Then we propagate the soft W-links to the macro tree internal nodes.
The existence of soft W-links of internal nodes computed in this way is justified
by Fact 3-(a), however, the destinations of some soft W-links of some macro tree
internal nodes may not be correct. This can happen when the corresponding
micro trees contain hard W-links (due to Fact 3-(e)). These destinations can be
modified by using the successors of the roots computed in the first step, again
due to Fact 3-(e). Both of our propagation and modification steps take O(σ)
time for each macro tree node of size O(σ), and hence, it takes a total of O(n)
time. ��
Theorem 9. Given a forward trie Tf of size n over an integer alphabet
Σ = [1..σ] with σ = O(n), we can construct an O(n)-space representation of
DAWG(Tf) in O(n) time and working space.

References

1. Alstrup, S., Secher, J.P., Spork, M.: Optimal on-line decremental connectivity in
trees. Inf. Process. Lett. 64(4), 161–164 (1997)

2. Apostolico, A., Lonardi, S.: Off-line compression by greedy textual substitution.
Proc. IEEE 88(11), 1733–1744 (2000)

3. Belazzougui, D., Cunial, F.: Fast label extraction in the CDAWG. In: Fici, G.,
Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 161–175.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 14

4. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

5. Blumer, A., et al.: The smallest automaton recognizing the subwords of a text.
Theor. Comput. Sci. 40, 31–55 (1985)

6. Blumer, A., Blumer, J., Haussler, D., Mcconnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

7. Breslauer, D.: The suffix tree of a tree and minimizing sequential transducers.
Theor. Comput. Sci. 191(1–2), 131–144 (1998)

8. Breslauer, D., Italiano, G.F.: Near real-time suffix tree construction via the fringe
marked ancestor problem. J. Discrete Algorithms 18, 32–48 (2013)

9. Crochemore, M.: Transducers and repetitions. Theor. Comput. Sci. 45(1), 63–86
(1986)

10. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Cam-
bridge (1994)

11. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 4:1–4:33 (2009)

12. Fischer, J., Gawrychowski, P.: Alphabet-dependent string searching with wexpo-
nential search trees. In: Proceedings of the 26th Annual Symposium on Combi-
natorial Pattern Matching, CPM, pp. 160–171 (2015). Full version: https://arxiv.
org/abs/1302.3347

13. Fujishige, Y., Tsujimaru, Y., Inenaga, S., Bannai, H., Takeda, M.: Computing
DAWGs and minimal absent words in linear time for integer alphabets. In: Pro-
ceedings of the 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS, pp. 38:1–38:14 (2016)

14. Gawrychowski, P.: Simple and efficient LZW-compressed multiple pattern match-
ing. J. Discrete Algorithms 25, 34–41 (2014)

https://doi.org/10.1007/978-3-319-67428-5_14
https://arxiv.org/abs/1302.3347
https://arxiv.org/abs/1302.3347

206 S. Inenaga

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

16. Inenaga, S.: Suffix trees, DAWGs and CDAWGs for forward and backward tries.
arXiv e-prints p. 1904.04513 (2019). http://arxiv.org/abs/1904.04513

17. Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: Construction of
the CDAWG for a trie. In: Proceedings of the Prague Stringology Conference, PSC
2001, pp. 37–48 (2001)

18. Kimura, D., Kashima, H.: Fast computation of subpath kernel for trees. In: Pro-
ceedings of the 29th International Conference on Machine Learning, ICML (2012)

19. Kosaraju, S.R.: Efficient tree pattern matching (preliminary version). In: Proceed-
ings of the 30th Annual Symposium on Foundations of Computer Science, FOCS,
pp. 178–183 (1989)

20. Kucherov, G., Rusinowitch, M.: Matching a set of strings with variable length don’t
cares. Theor. Comput. Sci. 178(1–2), 129–154 (1997)

21. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, Cambridge (2015)

22. Mohri, M., Moreno, P.J., Weinstein, E.: General suffix automaton construction
algorithm and space bounds. Theor. Comput. Sci. 410(37), 3553–3562 (2009)

23. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 657–666 (2002)

24. Nakashima, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: The position heap of a
Trie. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.)
SPIRE 2012. LNCS, vol. 7608, pp. 360–371. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34109-0 38

25. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE
Trans. E86-A(5), 1061–1066 (2003)

26. Weiner, P.: Linear pattern-matching algorithms. In: Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)

27. Yamamoto, J., Tomohiro, I., Bannai, H., Inenaga, S., Takeda, M.: Faster compact
on-line Lempel-Ziv factorization. In: Proceedings of the 31st International Sympo-
sium on Theoretical Aspects of Computer Science, STACS, pp. 675–686 (2014)

http://arxiv.org/abs/1904.04513
https://doi.org/10.1007/978-3-642-34109-0_38
https://doi.org/10.1007/978-3-642-34109-0_38

Towards a Definitive
Measure of Repetitiveness

Tomasz Kociumaka1 , Gonzalo Navarro2,3 , and Nicola Prezza4(B)

1 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

2 Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile
3 Department of Computer Science, University of Chile, Santiago, Chile

4 Department of Business and Management, Luiss Guido Carli, Rome, Italy
nprezza@luiss.it

Abstract. Unlike in statistical compression, where Shannon’s entropy
is a definitive lower bound, no such clear measure exists for the compress-
ibility of repetitive sequences. Since statistical entropy does not capture
repetitiveness, ad-hoc measures like the size z of the Lempel–Ziv parse
are frequently used to estimate repetitiveness. Recently, a more princi-
pled measure, the size γ of the smallest string attractor, was introduced.
The measure γ lower bounds all the previous relevant ones (including
z), yet length-n strings can be represented and efficiently indexed within
space O(γ log n

γ
), which also upper bounds most measures (including z).

While γ is certainly a better measure of repetitiveness than z, it is NP-
complete to compute, and no o(γ log n)-space representation of strings is
known. In this paper, we study a smaller measure, δ ≤ γ, which can be
computed in linear time. We show that δ better captures the compress-
ibility of repetitive strings. For every length n and every value δ ≥ 2, we
construct a string such that γ = Ω(δ log n

δ
). Still, we show a represen-

tation of any string S in O(δ log n
δ
) space that supports direct access to

any character S[i] in time O(log n
δ
) and finds the occ occurrences of any

pattern P [1. .m] in time O(m log n + occ logε n) for any constant ε > 0.
Further, we prove that no o(δ log n)-space representation exists: for every
length n and every value 2 ≤ δ ≤ n1−ε, we exhibit a string family whose
elements can only be encoded in Ω(δ log n

δ
) space. We complete our char-

acterization of δ by showing that, although γ, z, and other repetitiveness
measures are always O(δ log n

δ
), for strings of any length n, the small-

est context-free grammar can be of size Ω(δ log2 n/ log log n). No such
separation is known for γ.

Part of this work was carried out during the Dagstuhl Seminar 19241, “25 Years of the
Burrows–Wheeler Transform”.
T. Kociumaka—Supported by ISF grants no. 1278/16, 824/17, and 1926/19, a BSF
grant no. 2018364, and an ERC grant MPM (no. 683064) under the EU’s Horizon 2020
Research and Innovation Programme.
G. Navarro—Supported in part by Fondecyt grant 1-170048, Chile; Millennium Insti-
tute for Foundational Research on Data (IMFD), Chile.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 207–219, 2020.
https://doi.org/10.1007/978-3-030-61792-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_17&domain=pdf
http://orcid.org/0000-0002-2477-1702
http://orcid.org/0000-0002-2286-741X
http://orcid.org/0000-0003-3553-4953
https://doi.org/10.1007/978-3-030-61792-9_17

208 T. Kociumaka et al.

Keywords: Data compression · Lempel–Ziv parse · Repetitive
sequences

1 Introduction

The recent rise in the amount of data we aim to handle [41] is driving research
into compressed data representations that can be used directly in compressed
form [32]. Interestingly, much of today’s fastest-growing data is highly repetitive,
which enables space reductions of orders of magnitude [19]: genome collections,
versioned text and software repositories, periodic sky surveys, and other sources
produce data where each element in the collection is very similar to others.

Since a significant fraction of the data of interest consists of sequences, text
indexes are important actors in this research. These are data structures that offer
fast pattern matching (and possibly other more sophisticated capabilities) over
a collection of strings. Though compressed text indexes are already mature [33]
and offer fast pattern searching within space close to the statistical entropy
of the string collection, such kind of entropy is unable to capture repetitive-
ness [28,32]. Achieving orders-of-magnitude space reductions requires instead to
resort to other kinds of compressors, such as Lempel–Ziv [29], grammar compres-
sion [26], run-length compressed Burrows–Wheeler transform [19], and others.
Various compressed indexes build on those methods; see a thorough review [19].

Unlike statistical compression, where Shannon’s notion of entropy [40] is a
clear lower bound to what compressors can achieve, a similar notion capturing
repetitiveness has been elusive. Beyond Kolmogorov’s complexity [27], which is
uncomputable, repetitiveness is measured in ad-hoc terms, as the results of what
specific compressors achieve. A list of such measures on a string S[1. .n] follows:

Lempel–Ziv compression [29] parses S into a sequence of phrases, with each
phrase defined as the longest string that has appeared previously in S. The
associated measure is the number z of phrases produced. The measure can
be computed in O(n) time [38].

Bidirectional macro schemes [42] extend Lempel–Ziv so that the source of
each phrase may precede or follow it, as long as no circular dependencies are
introduced. The associated measure b is the number of phrases of the smallest
parsing. It holds b ≤ z = O(b log n

b) [18], but computing b is NP-complete [20].
Grammar-based compression [26] builds a context-free grammar that gen-

erates S and only S. The associated measure is the size g of the smallest
grammar (i.e., the total length of the right-hand sides of the rules). It holds
z ≤ g = O(z log n

z) and, while it is NP-complete to compute g, grammars of
size O(z log n

z) can be constructed in linear time [11,21,39].
Run-length grammar compression [35] allows in addition rules A → Bt (t

repetitions of B) of constant size. The measure is the size grl of the smallest
run-length grammar, and it holds z

2 ≤ grl ≤ g and grl = O(b log n
b) [18].

Collage systems [25] extend run-length grammars by allowing truncation: in
constant space we can refer to a prefix or a suffix of another nonterminal.
The associated measure c satisfies c ≤ grl and c = O(z) [31].

Towards a Definitive Measure of Repetitiveness 209

Burrows–Wheeler transform (BWT) [10] is a permutation of S that tends
to have long runs of equal letters if S is repetitive. The number r of maximal
equal-letter runs in the BWT can be found in linear time. It is known that
grl = O(r log n

r) [19] and b
2 ≤ r = O(b log2 n) = O(z log2 n) [18,23].

CDAWGs [9] are automata that recognize every substring of S. The associ-
ated measure of repetitiveness is e, the size of the smallest such automaton
(compressed by dissolving states of in-degree and out-degree one), which is
built in linear time [9]. The measure e is always larger than r, g, and z [3,4].

An improvement to this situation is the recent introduction of the con-
cept of string attractor [24]. An attractor Γ is a set of positions in S such
that any substring of S has an occurrence covering a position in Γ . The size
γ of the smallest attractor asymptotically lower bounds all the repetitiveness
measures listed above. Recent results [13,24,34,36] show that efficient queries
can be supported within O(γ log n

γ) space1 and that grl = O(γ log n
γ). Previous

solutions support random access to S, or indexed searches on S, within space
O(z log n

z) [5,6,12,17], O(g) [1,8,14–16], O(grl) [19], O(r) or O(r log n
r) [4,19,30],

and O(e) [2,3], none improving in general upon the space O(γ log n
γ) within which

one can offer efficient access [24] and indexing [13,34]. Using indexes based on γ
is not exempt of problems, however. Computing γ is NP-hard [24], and therefore
one has to resort to approximations like z, in which case the representation is
only guaranteed to be of size O(z log n

z). While this problem has been recently
sidestepped [13], it is still unclear whether γ is the definitive measure of repeti-
tiveness. In particular, it is unknown whether one can always represent S within
O(γ) space (while this is possible in O(b) space) or even within o(γ log n) space.

Our Contributions. In this paper, we study a new measure of repetitiveness,
δ, which arguably captures better the concept of compressibility in repeti-
tive strings and is more convenient to deal with. Although this measure was
already introduced in a stringology context [37] and used to build indexes of size
O(γ log n

γ) without knowing γ [13], its properties and full potential have not been
explored. It always holds that δ ≤ γ, and δ can be computed in O(n) time [13].
First, we show that δ can be asymptotically strictly smaller than γ: for every
length n and every value δ ≥ 2, there exist a string such that γ = Ω(δ log n

δ).
Still, we develop a representation of S of size O(δ log n

δ) that allows accessing
any character S[i] in time O(log n

δ) and finds the occ occurrences of any pattern
P [1. .m] in time O(m log n+occ logε n) for any constant ε > 0. For this, we reduce
the size of block trees [5] to O(δ log n

δ). Therefore, we obtain improved space and
the same time performance compared to previous results based on γ [24,34,36].2

Further, we show that, for every length n and every value 2 ≤ δ ≤ n1−ε (where
ε > 0 is an arbitrary constant), there exists a string family whose elements can
only be represented in Ω(δ log n

δ) space. Thus, o(δ log n) space is unreachable
in general; no such limit is known for γ. We complete our characterization of

1 Throughout the paper, the size of data structures is measured in machine words.
2 The most recent index [13] locates patterns in O(m + (occ + 1) logε n) time and

O(γ log n
γ
) space (being thus faster but still using more space).

210 T. Kociumaka et al.

δ by proving that, although γ, b, z, and c are always O(δ log n
δ), the smallest

context-free grammar can be of size g = Ω(δ log2 n/ log log n) for strings of any
length n. Again, no such lower bound is known to hold on γ.

2 Measure δ

The measure δ has recently been defined by Christiansen et al. [13, Section 5.1],
though it is based on the expression dk(S)/k, introduced by Raskhodnikova
et al. [37] to approximate z. Below we summarize what is known about it.

Definition 1. Let dk(S) be the number of distinct length-k substrings in
S. Then

δ = max{dk(S)/k : k ∈ [1. .n]}.

Lemma 1 (Based on [[37], Lemma 3]). It always holds that z = O(δ log n
δ).

Proof. Raskhodnikova et al. [37] prove that if d�(S) ≤ m · � for every � ≤ �0,
then z ≤ 4(m log �0 + n

�0
). Plugging �0 = n

δ and m = δ, we conclude that
z ≤ 4(δ log n

δ + δ) = O(δ log n
δ). ��

Since b, c, and γ are O(z), these three measures are all upper bounded by
O(δ log n

δ). Additionally, we conclude that grl ≤ g = O(z log n
z) = O(δ log2 n

δ),
and note that r = O(δ log2 n) has been proved recently [23].

Before we proceed, let us recall the concept of an attractor.

Definition 2 (Kempa and Prezza [24]). An attractor of a string S[1. .n] is
a set of positions Γ ⊆ [1. .n] such that every substring S[i. .j] has at least one
occurrence S[i′. .j′] = S[i. .j] that covers an attractor position p ∈ Γ ∩ [i′. .j′].

Lemma 2 ([[13], Lemma 5.6]). Every string S satisfies δ ≤ γ.

Proof. Every length-k substring has an occurrence covering an attractor posi-
tion, so there can be at most kγ distinct substrings, i.e., dk(S)/k ≤ γ for all
k ≤ n. ��
Lemma 3. ([[13], Lemma 5.7]). The measure δ can be computed in O(n) time
and space given S[1. .n].

Proof One can use the suffix tree or the LCP table of S to retrieve dk(S) for all
k ∈ [1. .n] in O(n) time, and then compute δ from this information. ��

3 Lower Bounds in Terms of δ

In this section, we prove lower bounds in terms of the measure δ. First, we show
that there exist string families where δ = o(γ); in fact, δ can be smaller by up to
a logarithmic factor. Second, we prove that there are string families that cannot
be encoded in o(δ log n) space: for every length n and every value 2 ≤ δ ≤ n1−ε

(where ε > 0 is an arbitrary constant), there is a string family whose elements
require Ω(δ log n

δ) space to represent. Third, although in the next section we
give an O(δ log n

δ)-space representation, below we construct a family of strings
which cannot be represented using context-free grammars of size O(δ log n

δ); a
nearly logarithmic-factor separation exists.

Towards a Definitive Measure of Repetitiveness 211

3.1 Lower Bounds on Attractors

Consider an infinite string S∞[1. .], where S∞[i] = b if i = 2j for some integer
j ≥ 0, and S∞[i] = a otherwise. For n ≥ 1, let Sn be the length-n prefix of S.
We shall prove that the strings in this family satisfy δ = O(1) and γ = Ω(log n).

Lemma 4. For every n ≥ 1, the string Sn satisfies δ ≤ 2 and γ ≥ 1
2
log n�.

Proof. For each j ≥ 1, every pair of consecutive bs in S∞[2j−1 + 1. .] is at
distance at least 2j . Therefore, the only distinct substrings of length k ≤ 2j

in S∞[2j−1 + 1. .] are of the form ak or aibak−i−1 for i ∈ [0. .k − 1]. Hence,
the distinct length-k substrings of S∞ are those starting up to position 2j−1,
S∞[i. .i + k − 1] for i ∈ [1. .2j−1], and the k + 1 already mentioned strings,
for a total of dk(S∞) ≤ 2j−1 + k + 1. Plugging j = �log k, we get dk(S∞) ≤
2�log k�−1 + k + 1 ≤ 2log k + k ≤ 2k, concluding that δ(Sn) ≤ 2 holds for every n.

Next, observe that for each j ≥ 0, the substring ba2
j−1b has its unique occur-

rence in S∞ at S∞[2j . .2j+1]. The covered regions are disjoint across even integers
j, so each one requires a distinct attractor element. Consequently, γ(Sn) ≥ j

2 for
n ≥ 2j . Plugging j =
log n�, we get γ(Sn) ≥ 1

2
log n�. ��
We can also show that there are strings with δ = o(γ) as long as 2 ≤ δ ≤ o(n).

Theorem 1. For every length n and value δ ∈ [2. .n], there is a string S[1. .n]
with γ = Ω(δ log n

δ).

Proof. Let us first fix an integer m ≥ 1 such that n ≥ 4m − 1 and decompose
n − m + 1 =

∑m
i=1 ni roughly equally (so that ni ≥ 3 and ni = Ω(n

m)). We shall
build a string S over an alphabet consisting of 3m − 1 characters: ai and bi for
i ∈ [1. .m] and $i for i ∈ [1. .m − 1]. For this, we take S(i) to be the string Sni

built for Lemma 4, with alphabet {a, b} replaced by {ai, bi}, and we define S to
be the concatenation of the strings S(i) interleaved with sentinels $i.

Notice that, for each k, we have dk(S) ≤ (m − 1)k +
∑m

i=1 dk(S(i)) because
every substring contains $i or is contained in S(i) for some i. Hence, δ(S) ≤
3m − 1. (In fact, δ(S) = 3m − 1 because d1(S) = 3m − 1.) Furthermore, γ(S) ≥∑m

i=1 γ(S(i)) = Ω(m log n
m) = Ω(δ log n

δ) since the alphabets of S(i) are disjoint.
This construction proves the theorem for δ = 3m − 1 and n ≥ 4m − 1. If

δ mod 3 �= 2, we pad the string with O(1) additional sentinels. Each one increases
δ(S), γ(S), and n by 1. Finally, we note that the claim for δ = Ω(n) reduces to
γ = Ω(δ), and the latter relation follows directly from Lemma 2. ��

3.2 Lower Bounds on Text Entropy and Grammar Size

We now show that there are string families that cannot be encoded in o(δ log n)
space, that is, o(δ log2 n) bits. It is not known if the same occurs with γ.

Consider a family S∗ consisting of variants of the infinite string S∞ con-
structed in the previous section, where the positions of bs are further apart and

212 T. Kociumaka et al.

slightly perturbed. More specifically, for each S ∈ S∗, the first b is placed at posi-
tion S[1] and then, for j ≥ 2, the jth b is placed anywhere in S[2·4j−2+1. .4j−1].
The family S∗

n consists of length-n prefixes of the infinite strings of the
family S∗.

Lemma 5. For every n ≥ 1, the family S∗
n needs Ω(log2 n) bits to be encoded.

Proof. In our definition of S∗, the location of the jth b can be chosen among
2 · 4j−2 positions, and each combination of these choices generates a different
string in S∗

n as long as n ≥ 4j−1. Hence, |S∗
n| =

∏i+1
j=2 2 ·4j−2 = 2Ω(i2) for n ≥ 4i.

To distinguish strings in S∗
n, any encoding needs log |S∗

n| = Ω(log2 n) bits. ��
Theorem 2. For every length n and value δ ∈ [2. .n], there exists a family of
length-n strings of common measure δ that needs Ω(δ log2 n

δ) bits to be encoded.

Proof. By Lemma 5, encoding S∗
n requires Ω(log2 n) bits. Below, we prove that

the measure δ for any string in S∗
n is at most 2. Starting from position 4j−1 + 1,

the distances between two consecutive bs are at least 4j . Therefore, the distinct
substrings of length k ≤ 4j are either those that start at position i ∈ [1. .4j−1]
or those of the form ak or aibak−i−1 for i ∈ [0. .k − 1], which yields a total of
dk(S) ≤ 4j−1+k+1. Plugging j = � 1

2 log k, we get dk(S) ≤ 4� 1
2 log k�−1+k+1 ≤

4
1
2 log k +k ≤ 2k. By definition of δ, we conclude that δ(S) ≤ 2 for every S ∈ S∗

n.
As in the proof of Theorem 1, one can generalize this result to larger δ. ��
The family S∗

n also gives strings that do not satisfy g = O(δ log n).

Theorem 3. For every length n, there is a string with g = Ω(δ log2 n/ log log n).

Proof. Consider the same family S∗
n, which needs Ω(log2 n) bits to be repre-

sented. If we could encode it with a grammar of size g, each grammar ele-
ment would be a nonterminal that could be encoded with O(log g) bits. There-
fore, our grammar representation would require O(g log g) bits. Since this must
be Ω(log2 n), it follows that g = Ω(log2 n/ log log n) for any grammar of size
g encoding S∗

n. Since δ = O(1) for every string S ∈ S∗
n, it follows that

g = Ω(δ log2 n/ log log n). ��

4 Block Trees in δ-Bounded Space

The block tree [5] is a data structure designed to represent repetitive strings
S[1. .n] in O(z log n

z) space while offering efficient access. In this section, we
show that the block tree is easily tuned to use O(δ log n

δ) space while retaining
its functionality. Note that, given the lower bounds of Sect. 3, we cannot hope
for a representation of size o(δ log n

δ).

Towards a Definitive Measure of Repetitiveness 213

4.1 Block Trees

Given integer parameters r and s, the root of the block tree divides S into s equal-
sized (that is, with the same number of characters) blocks (assume for simplicity
that n = s · rt for some integer t).3 Blocks are then classified into marked and
unmarked. If two adjacent blocks B1, B2 form the leftmost occurrence of the
underlying substring B1B2, then both B1 and B2 are marked. Blocks B that
remain unmarked are replaced by a pointer to the pair of adjacent blocks B1, B2

that contains the leftmost occurrence of B, and the offset ε ≥ 0 where B starts
inside B1. Marked blocks are divided into r equal-sized sub-blocks, which form
the children of the current block tree’s level, and processed similarly in a recursive
fashion. Let σ be the alphabet size. The level where the blocks become of length
below logσ n corresponds to the leaves of the block tree, and its blocks store
their plain string content using O(log n) bits. The height of the block tree is
then h = O(logr

n/s
logσ n) = O(logr

n log σ
s log n) ⊆ O(log n

s).
The block tree construction guarantees that the blocks B1 and B2 to which

any unmarked block points exist and are marked. Therefore, any access to a
position S[i] can be carried out in O(h) time, by descending from the root to a
leaf and spending O(1) time in each level: To obtain B[i] from a marked block
B, we simply compute to which sub-block B[i] belongs among the children of B.
To obtain B[i] from an unmarked block B pointing to B1, B2 with offset ε, we
switch either to B1[ε + i] or to B2[ε + i − |B1|], which are marked blocks.

By storing further data associated with marked and unmarked blocks, the
block tree offers the following functionality [5]:

Access: any substring S[i. .i + � − 1] is extracted in time O(h��/ logσ n).
Rank: ranka(S, i) is the number of times symbol a occurs in S[1. .i]. It is com-

puted in time O(h) by multiplying the space by O(σ).
Select: selecta(S, j) is the position of the jth occurrence of symbol a in S. It is

computed in time O(log log n
s +h log log r) by multiplying the space by O(σ).

It is shown that there are only O(zr) blocks in each level of the block tree (except
the first, which has s); therefore its size is O(s + zr logr

n log σ
s log n).

4.2 Bounding the Space in Terms of δ

We now prove that there are only O(δr) blocks in each level of the block tree,
and therefore, choosing s = δ yields a structure of size O(δr logr

n log σ
δ log n) with

height O(logr
n log σ
δ log n). For r = O(1), the space is O(δ log n

δ) and the height is
O(log n

δ).
Let us call level k of the block tree the one where blocks are of length rk.

In level k, then, S is covered regularly with blocks B = S[rk(i − 1) + 1. .rki]
of length rk (though not all of them are present in the block tree). Note that
3 If not, we simply pad S with spurious symbols at the end; whole spurious blocks are

not represented. The extra space incurred is only O(rh) for a block tree of height h.
The actual construction [5] uses instead blocks of sizes �n/s� and �n/s�.

214 T. Kociumaka et al.

k reaches its maximum in the root (where we have the largest blocks) and the
minimum in the leaves of the block tree.

Lemma 6. The number of marked blocks of length rk in the block tree is O(δ).

Proof. Any marked block B must belong to a sequence of three blocks, B− · B ·
B+, such that B is inside the leftmost occurrence of B− · B or B · B+, or both
(B− and B+ do not exist for the first and last block, respectively).

For the sake of computing our bound, let # be a symbol not appearing in
S and let us add 2 · rk characters equal to # at the beginning of S and rk

characters equal to # at the end of S. We index the added prefix in negative
positions (up to index 0), so that S[−2 · rk + 1. .0] = #2·rk

. Now consider all
the rk text positions p belonging to a marked block B. The long substring
E = S[p− 2 · rk. .p+2 · rk − 1] centered at p, of length 4rk, contains B− ·B ·B+,
and thus E contains the leftmost occurrence L of B− ·B or B ·B+. All those long
substrings E must then be distinct: if two long substrings E and E′ are equal,
and E′ appears after E in S, then E′ does not contain the leftmost occurrence
of any substring L.

Since we added a prefix of length 2 · rk and a suffix of length rk consisting
of character # to S, the number of distinct substrings of length 4rk is at most
d4rk(S) + 3rk. Therefore, there can be at most d4rk(S) + 3rk long substrings E
as well, because they must all be distinct. Since each position p inside a block
B induces a distinct long substring E, and each marked block B contributes
rk distinct positions p, there are at most (d4rk(S) + 3rk)/rk marked blocks B
of length rk. The total number of marked blocks of length rk is thus at most
(d4rk(S) + 3rk)/rk = 4 · d4rk(S)/(4rk) + 3rk/rk ≤ 4δ + 3. ��

Since the block tree has at most 4δ + 3 marked blocks per level, it has O(δr)
blocks across all the levels except the first. This yields the following result.

Theorem 4. Let S[1. .n], over alphabet [1. .σ], have compressibility measure δ.
Then the block tree of S, with parameters r and s, is of size O(s+ δr logr

n log σ
s log n)

words and height h = O(logr
n log σ
s log n).

Note that n
δ = O(n

z log n
δ) = O(n

z

√
n
δ) due to Lemma 1, so log n

δ = O(log n2

z2)
= O(log n

z) = O(log n
γ). Hence, the query time we obtain using O(δ log n

δ) space
is asymptotically the same as the O(log n

γ) time obtained in O(γ log n
γ) space [34,

36] or the O(log n
z) time obtained in O(z log n

z) space [5].

5 Text Indexing in δ-Bounded Space

We now show that not only efficient access of S can be supported within
O(δ log n

δ) space, but also text indexing, that is, efficiently listing all the positions
in S where a pattern P [1. .m] appears. For consistency with previous works, in
this section we speak of a text T [1. .n] instead of a string S[1. .n].

Towards a Definitive Measure of Repetitiveness 215

Our index builds on top of a slight variant of the block tree of the previous
sections, with r = 2, s = δ, and stopping only when the leaves are of length 1.
This block tree is of size O(δ log n

δ) and of height O(log n
δ).

To build the index, we follow the same ideas of the “universal index” [34],
whose space will be improved without affecting its search time complexities.
That index builds on a variant of block trees designed for attractors: the Γ -tree
has a first level with γ equal-sized blocks, and at any other level k, it marks the
blocks that are at distance < 2k from an attractor position. Unmarked blocks
B then point to some copy of B that crosses an attractor position (the blocks
overlapping that copy are marked by definition). In the Γ -tree pointers can
go leftward or rightward, not necessarily to a leftmost occurrence. The space
of the Γ -tree is Θ(γ log n

γ), which we now know, by Theorem 4, that is never
asymptotically smaller than that of block trees with parameters r = 2 and s = δ.

Karp–Rabin fingerprinting [22] assigns a string S[1. .�] the signature κ(S) =
(
∑�

i=1 S[i] · ci−1) mod μ for suitable integers c > 1 and prime μ. It is possible to
build a signature formed by a pair of functions 〈κ1, κ2〉 guaranteeing no collisions
between substrings of S[1. .n], in O(n log n) expected time [7]. Our index will
need to compute Karp–Rabin fingerprints κ(T [i. .j]) in time O(log n

δ). This is
done on block trees by using the same algorithm described for the Γ -tree.

Lemma 7. Let T [1. .n] have compressibility measure δ, and let κ be a Karp–
Rabin function. Then we can store a data structure of size O(δ log n

δ) supporting
the computation of κ on any substring of T in O(log n

δ) time.

Proof. The structure is the described block tree variant, with some further fields.
We store κ(T [1. .2ki]) at the ith top-level block, for all i and k = �log n

δ . We
also store κ(B) for each block B stored in the tree and, for the unmarked blocks
B pointing to B1, B2 with offset ε, we also store κ(B1[1 + ε. .]). Navarro and
Prezza [34, Lem. 1] show that this suffices to compute κ(T [i. .j]) within O(1)
time per level of the Γ -tree; their proof holds verbatim for the block tree. ��

Let us say that a block is explicit if it is stored in the block tree. Thus, a
block is explicit if and only if it is marked or it is the child of a marked block.

Lemma 8. (See [[34], Lem. 2]) Any substring T [i. .j] of length at least 2 either
overlaps two consecutive explicit blocks or is completely inside an unmarked
block.

Proof. The leaves of the block tree, read left to right, partition T into a sequence
of explicit blocks. The leaves are either unmarked blocks or blocks of length 1.
Since |T [i. .j]| ≥ 2, if it is not completely inside an unmarked block, it cannot be
contained in a leaf, so it must cross a boundary between two explicit blocks. ��

We now divide the possible occurrences of P [1. .m] in T into primary (those
overlapping two consecutive explicit blocks) and secondary (those inside an
unmarked block). The technique used on Γ -trees [34, Sec. 3] applies verbatim
here: Primary occurrences are found using a grid of (s − 1) × (s − 1), where

216 T. Kociumaka et al.

s = O(δ log n
δ) is the number of leaves in the block tree, which finds the occp

primary occurrences in time O((m + occp) logε s), for any constant ε > 0. The
ranges to search in the grid are obtained using their following result [34, Lem. 3].

Lemma 9. Let X be a sorted set of suffixes of T , and κ a Karp–Rabin function.
If one can extract a substring of length � from T in time fe(�) and compute κ on
it in time fh(�), then one can build a data structure of size O(|X |) that obtains
the lexicographic ranges in X of the m−1 suffixes of a given pattern P in worst-
case time O(m(fh(m) + log m) + fe(m)), provided that κ is collision-free among
substrings of T whose lengths are powers of two.

Since in our case fe(m) = O(m log n
δ) and fh(m) = O(log n

δ), we can find all
the ranges to search for in time O(m log nm

δ). The occs secondary occurrences
are obtained as on Γ -trees [34, Sec. 3.2], within O((occp + occs) log log n

δ) time.

Theorem 5. Let T [1. .n] have measure δ. Then there exists a data structure of
size O(δ log n

δ) such that the occurrences of any pattern P [1. .m] in T can be
located in time O(m log n + occ logε n), for any constant ε > 0.

6 Conclusions

We have made a step towards establishing the right measure of repetitiveness for
a string S[1. .n]. Compared with the most principled prior measure, the size γ of
the smallest attractor, the proposed measure δ has several important advantages:

1. It lower bounds the previous measure, δ ≤ γ, and can be computed in linear
time, while finding γ is NP-hard.

2. We can always encode S in O(δ log n
δ) space, and this is worst-case optimal

in terms of δ: for any length n and any value 2 ≤ δ ≤ n1−ε (where ε > 0 is an
arbitrary constant), there are text families needing Ω(δ log n

δ) space. Thus,
o(δ log n) space is unreachable. Instead, no text family is known to require
ω(γ) space, nor it is known if o(γ log n) space can be reached.

3. Measures γ, b, c, and z are upper bounded by O(δ log n
δ), and g = O(δ log2 n

δ),
but there are text families where the smallest context-free grammar is of size
g = Ω(δ log2 n/ log log n). This lower bound is not known to hold on γ.

4. The encodings using O(δ log n
δ) space support direct access and indexed

searches, with the same complexities obtained within attractor-bounded
space, O(γ log n

γ). An exception is a very recent faster index [13].

An ideal compressibility measure for repetitive sequences should be always
reachable and string-wise optimal, apart from being practical to compute. Mea-
sure δ log n

δ is reachable and fast to compute, though optimal only in a coarse
sense (i.e., not string-wise but within the class of all the strings with the same δ
value).

Note that we do not know if one can always encode a string within O(γ)
space. If this was the case, then γ would be a better measure than δ log n

δ ,

Towards a Definitive Measure of Repetitiveness 217

except for being hard to compute. Otherwise, a good alternative could be b,
which is always reachable and might be string-wise optimal within some broad
class of representations that exploit repetitiveness, yet NP-hard to compute. It
is not known, however, if b or γ are monotone, that is, smaller on T than on
TT ′, whereas δ clearly is. This fascinating quest is then still open.

On the more practical side, it would be interesting to obtain faster indexes
of size O(δ log n

δ). Our index requires O(m log n + occ logε n) search time, while
in O(γ log n

γ) space, it is possible to search in O(m + (occ + 1) logε n) time [13].

References

1. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and select in
grammar-compressed strings. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 142–154. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48350-3 13

2. Belazzougui, D., Cunial, F.: Fast label extraction in the CDAWG. In: Fici, G.,
Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 161–175.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 14

3. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In: Pro-
ceedings of 28th Annual Symposium on Combinatorial Pattern Matching, CPM,
pp. 7:1–7:13 (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.7

4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

5. Belazzougui, D., et al.: Queries on LZ-bounded encodings. In: Proceedings of the
2015 Data Compression Conference, DCC, pp. 83–92 (2015). https://doi.org/10.
1109/DCC.2015.69

6. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for
Lempel-Ziv compressed indexing. Theor. Comput. Sci. 713, 66–77 (2018). https://
doi.org/10.1016/j.tcs.2017.12.021

7. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest
common extensions. J. Discrete Algorithms 25, 42–50 (2014). https://doi.org/10.
1016/j.jda.2013.06.003

8. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015). https://doi.org/10.1137/130936889

9. Blumer, A., Blumer, J., Haussler, D., McConnell, R.M., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987).
https://doi.org/10.1145/28869.28873

10. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994). https://www.hpl.hp.
com/techreports/Compaq-DEC/SRC-RR-124.pdf

11. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005). https://doi.org/10.1109/TIT.2005.850116

12. Christiansen, A.R., Ettienne, M.B.: Compressed indexing with signature gram-
mars. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018.
LNCS, vol. 10807, pp. 331–345. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77404-6 25

https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1007/978-3-319-67428-5_14
https://doi.org/10.4230/LIPIcs.CPM.2017.7
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1137/130936889
https://doi.org/10.1145/28869.28873
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1007/978-3-319-77404-6_25
https://doi.org/10.1007/978-3-319-77404-6_25

218 T. Kociumaka et al.

13. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. arXiv e-prints p. 1811.12779 (2019).
https://arxiv.org/abs/1811.12779

14. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundam.
Inform. 111(3), 313–337 (2011). https://doi.org/10.3233/FI-2011-565

15. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34109-0 19

16. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28332-1 21

17. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54423-1 63

18. Gagie, T., Navarro, G., Prezza, N.: On the approximation ratio of Lempel-Ziv
parsing. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018.
LNCS, vol. 10807, pp. 490–503. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77404-6 36

19. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 1–54 (2020). https://doi.
org/10.1145/3375890

20. Gallant, J.K.: String Compression Algorithms. Ph.D. thesis, Princeton Univ.
(1982)

21. Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141–150 (2016). https://doi.org/10.1016/j.tcs.2015.12.032

22. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987). https://doi.org/10.1147/rd.312.0249

23. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjec-
ture. arXiv e-prints p. 1910.10631 (2019). https://arxiv.org/abs/1910.10631

24. Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors.
In: Proceedings of the 50th Annual ACM Symposium on the Theory of Computing,
STOC, pp. 827–840 (2018). https://doi.org/10.1145/3188745.3188814

25. Kida,T.,Matsumoto,T.,Shibata,Y.,Takeda,M.,Shinohara,A.,Arikawa,S.:Collage
system: a unifying framework for compressed pattern matching. Theor. Comput. Sci.
298(1), 253–272 (2003). https://doi.org/10.1016/S0304-3975(02)00426-7

26. Kieffer, J.C., Yang, E.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000). https://doi.org/10.
1109/18.841160

27. Kolmogorov, A.N.: Three approaches to the quantitative definition of informa-
tion. Int. J. Comput. Math. 2(1–4), 157–168 (1968). https://doi.org/10.1080/
00207166808803030

28. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013). https://doi.org/10.1016/j.tcs.2012.02.006

29. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976). https://doi.org/10.1109/TIT.1976.1055501

30. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010). https://
doi.org/10.1089/cmb.2009.0169

https://arxiv.org/abs/1811.12779
https://doi.org/10.3233/FI-2011-565
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-28332-1_21
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1016/j.tcs.2015.12.032
https://doi.org/10.1147/rd.312.0249
https://arxiv.org/abs/1910.10631
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1016/S0304-3975(02)00426-7
https://doi.org/10.1109/18.841160
https://doi.org/10.1109/18.841160
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1089/cmb.2009.0169

Towards a Definitive Measure of Repetitiveness 219

31. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
arXiv e-prints p. 1803.09517 (2019). https://arxiv.org/abs/1803.09517

32. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge Uni-
versity Press, New York (2016). https://doi.org/10.1017/cbo9781316588284

33. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39,
1 (2007). https://doi.org/10.1145/1216370.1216372

34. Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41–50 (2019). https://doi.org/10.1016/j.tcs.2018.09.007

35. Nishimoto, T., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic
data structure for LCE queries in compressed space. In: Proceedings of the 41st
International Symposium on Mathematical Foundations of Computer Science,
MFCS, pp. 72:1–72:15 (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.72

36. Prezza, N.: Optimal rank and select queries on dictionary-compressed text. In:
Proceedings of the 30th Annual Symposium on Combinatorial Pattern Matching,
CPM, pp. 4:1–4:12 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.4

37. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65(3), 685–709 (2013). https://
doi.org/10.1007/s00453-012-9618-6

38. Rodeh, M., Pratt, V.R., Even, S.: Linear algorithm for data compression via string
matching. J. ACM 28(1), 16–24 (1981). https://doi.org/10.1145/322234.322237

39. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
398–403 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

41. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLOS Biol. 13(7),
e1002195 (2015). https://doi.org/10.1371/journal.pbio.1002195

42. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982). https://doi.org/10.1145/322344.322346

https://arxiv.org/abs/1803.09517
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1016/j.tcs.2018.09.007
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.4230/LIPIcs.CPM.2019.4
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1145/322234.322237
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1145/322344.322346

Computational Geometry

Flips in Higher Order Delaunay
Triangulations

Elena Arseneva1, Prosenjit Bose2, Pilar Cano2,3(B), and Rodrigo I. Silveira3

1 St. Petersburg State University, St. Petersburg, Russia
e.arseneva@spbu.ru

2 Carleton University, Ottawa, Canada
jit@scs.carleton.ca

3 Universitat Politècnica de Catalunya, Barcelona, Spain
m.pilar.cano@upc.edu, rodrigo.silveira@upc.edu

Abstract. We study the flip graph of higher order Delaunay triangu-
lations. A triangulation of a set S of n points in the plane is order-k
Delaunay if for every triangle its circumcircle encloses at most k points
of S. The flip graph of S has one vertex for each possible triangulation of
S, and an edge connecting two vertices when the two corresponding tri-
angulations can be transformed into each other by a flip (i.e., exchanging
the diagonal of a convex quadrilateral by the other one). The flip graph is
an essential structure in the study of triangulations, but until now it had
been barely studied for order-k Delaunay triangulations. In this work
we show that, even though the order-k flip graph might be disconnected
for k ≥ 3, any order-k triangulation can be transformed into some other
order-k triangulation by at most k − 1 flips, such that the intermediate
triangulations are of order at most 2k − 2, in the following settings: (1)
for any k ≥ 0 when S is in convex position, and (2) for any k ≤ 5 and any
point set S. Our results imply that the flip distance between two order-k
triangulations is O(kn), as well as an efficient enumeration algorithm.

1 Introduction

Triangulations are one of the most important geometric objects studied in dis-
crete and computational geometry. Given a set S of points in the plane, a tri-
angulation of S is a decomposition of the convex hull of S into triangles, such
that each triangle has its three vertices in S. Triangulations are important not
only from a theoretical point of view, but also due to their many applications
in areas like mesh generation, computer aided geometric design, and geographic
information science [3,7,10].

E.A. was supported by RFBR, project number 20-01-00488. P.B. was partially sup-
ported by NSERC. P.C. was supported by CONACYT, MX. R.S. was supported by
MINECO through the Ramón y Cajal program. P.C. and R.S. were also supported
by projects MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. This project
has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk�lodowska-Curie grant agreement No 734922.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 223–234, 2020.
https://doi.org/10.1007/978-3-030-61792-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_18

224 E. Arseneva et al.

A point set S in the plane can have many different triangulations. More pre-
cisely, there are point sets with n points that have Ω(8.65n) triangulations [12],
while the best upper bound is currently 30n [24]. Despite all the different pos-
sible triangulations, in practice, most of the time the Delaunay triangulation is
used. A Delaunay triangulation of S, denoted DT (S), is a triangulation where
each triangle satisfies the empty circle property : the circumcircle of each triangle
does not enclose points of S. When no four points of S are co-circular, DT (S) is
unique. The Delaunay triangulation has many good properties, including max-
imizing the minimum interior angle in its triangles among all triangulations of
any fixed point set. For this reason its triangles are considered “well-shaped”,
and this is one of the main explanations for its popularity. For a survey see [4,13].

However, the fact that the DT is unique becomes an issue in certain applica-
tion domains where extra flexibility is needed. For instance, triangulations are
often used to model terrains. In this case, the points in S are samples of a 3D
surface, thus have also an elevation. But the Delaunay triangulation neglects
the elevation information, potentially resulting in poor models where important
terrain features, such as valley or ridge lines, are ignored [10,15]. This motivated
Gudmundsson et al. [14] to propose higher order Delaunay triangulations, a gen-
eralization of the DT that intends to provide well-shaped triangles, while giving
flexibility to choose from a larger set of triangulations. A triangulation T of S
is an order-k Delaunay triangulation—or, simply, order-k—if the circumcircle1

of each triangle of T contains at most k points of S in its interior. Note that an
order-0 triangulation is a standard Delaunay triangulation. As soon as k > 0,
one obtains a class of triangulations that for small values of k are expected to
have well-shaped triangles, but with potentially many triangulations to choose
from. Order-k triangulations have been used for terrain modeling, minimum
interference networks and triangulation of polygons [6,11,23,26].

A similar generalization, but based on edges instead of triangles, was pro-
posed by Abellanas et al. [2]. In their work, an order-k (Delaunay) edge e is
defined as an edge for which there exists a circle through the endpoints of e that
encloses at most k points of S. All edges in an order-k triangulation are order-k.
But the converse is not true: a triangle composed of three order-k edges can
have order greater than k. In fact, the lowest order triangulation containing an
order-k edge can have order up to 2k − 2 [15].

A fundamental operation to work with triangulations is the edge flip. It con-
sists in removing an edge, shared by two triangles that form a convex quadri-
lateral, and inserting the other diagonal of the quadrilateral. A flip transforms
a triangulation T into another triangulation T ′ that differs by exactly one edge
and two triangles. The flip operation leads naturally to the definition of the flip
graph of S. Each triangulation of S is represented by a vertex in this graph, and
two vertices are adjacent if their corresponding triangulations differ by exactly
one flip.

1 We refer to the interior of a circumcircle as the interior of the disk defined by such
a circle, in order to comply with terminology of earlier papers on the subject.

Flips in Higher Order Delaunay Triangulations 225

The importance of flips in triangulations comes from the fact, first proved
by Lawson [18], that the flip graph is connected. Moreover, the sequence of
edge flips connecting any two triangulations has length O(n2). In fact, it was
later shown [19,25] that any triangulation of S can be converted into DT (S)
by performing O(n2) flips. Each flip in this transformation also results in an
increase of the angle vector of the triangulation, i.e., the vector of all angles of
each of its triangles in increasing order. It is also known that the quadratic upper
bound on the diameter of the flip graph is tight in general [13,16], although it
goes down to Θ(n) if the points in S are in convex position [28]. In general,
computing the distance in the flip graph between two given triangulations is a
difficult problem, whose complexity was open until recently, when it was shown
to be APX-hard [20,22]. This has drawn considerable attention to the study of
certain subgraphs of the flip graph, which define the flip graph of certain classes
of triangulations. We refer to [9] for a survey.

In this paper we study the flip graph of higher order Delaunay triangulations.
Most previous work on such triangulations focused on algorithmic questions
related to finding order-k triangulations that are optimal with respect to extra
criteria [17,26,27], or on evaluating their effectiveness in practical settings [8,11].
One of the few theoretical aspects studied is the asymptotic number of order-
k triangulations [21]. In that work, the authors showed that for points drawn
uniformly at random, already for k = 1 one can expect an exponential number
of different order-k triangulations. However, almost nothing is known about the
flip graph of order-k triangulations, except that it is connected only for k ≤ 2 [1].
Similarly, Abellanas et al. [2] showed that the flip graph of triangulations of point
sets with edges of order k is connected for k ≤ 1, but might be disconnected for
k ≥ 2. On the other hand, they proved that for point sets in convex position the
flip graph is always connected [2]. However, their proof implies an exponential
bound in the diameter of the flip graph. The only previous work on the flip
graph of order-k triangulations is by Abe and Okamoto [1], in the context of
enumeration algorithms. They observed that for k ≤ 2, the fact that the flip
graph is connected implies that the reverse enumeration framework by Avis and
Fukuda [5] can be applied to enumerate all order-k triangulations, spending
polynomial time on each of them.

Our Work. We present several structural properties of the flip graph of order-k
triangulations. For points in convex position, we show that for any k > 2 there
exists a point set in convex position for which the flip graph is not connected.
However, we prove that no order-k triangulation is too far from all the other
order-k triangulations, in the sense that for any order-k triangulation T there
exists another order-k triangulation T ′ at distance at most k − 1 in the flip
graph of order-(2k − 2) triangulations. It is noteworthy that each flip on the
path from T to T ′ increases the angle vector of the triangulation. The bottom
line is that while order-k triangulations are not connected via the flip operation,
they become connected if a slightly relaxed condition on the order is considered.
For points in generic (non-convex) position, we prove the same result for up to
k ≤ 5, although we conjecture that it holds for all k. Our results have several

226 E. Arseneva et al.

implications on the flip distance between order-k triangulations , as well as on
their efficient algorithmic enumeration. Due to space limitations, most of the
proofs are omitted.

2 Preliminaries and General Observations

In this section we give some definitions and observations that will be useful for
the rest of the paper.

Let S be a point set in the plane. We assume that set S is in general position,
i.e., that no three points of S lie on a line and no four points of S lie on a circle.
Let T be a triangulation of S, and let �uyv be a triangle in T with vertices
u,y,v. We will denote by ©uyv the open disk defined by the enclosed area of the
circumcircle of �uyv (i.e., the unique circle through u, y, and v). Thus, ∂ ©uyv
denotes the circumcircle of �uyv. Triangle �uyv is a triangle of order k, also
called an order-k triangle, if ©uyv contains at most k points of S. A triangulation
where all triangles are order-k is an order-k (Delaunay) triangulation. Hence, a
triangulation T is not order-k if ©uvy contains more than k points of S for some
�uyv in T . The set of all order-k triangulations of S will be denoted Tk(S).

Let e = uv be an edge in T . Edge e is flippable if e is incident to two triangles
�uxv and �uyv of T and uxvy is a convex quadrilateral. The edge e is called
illegal if ©uxv contains y. Note that this happens if and only if ©uyv contains x.
See Fig. 1b. Otherwise, the edge uv is called legal. It is easy to see that an illegal
edge is flippable. The angle vector α(T) of a triangulation T is the vector whose
components are the angles of each triangle in T ordered in increasing order. Let
T ′ �= T be another triangulation of S. We say that α(T) > α(T ′) if α(T) > α(T ′)
in lexicographic order. It is well-known that if T ′ is the triangulation obtained
by flipping an illegal edge of T , then α(T ′) > α(T) [13]. Moreover, since DT (S)
maximizes the minimum angle, it follows that DT (S) is the only triangulation
where all the edges are legal [25]. This property leads to a simple algorithm for
computing the DT (S): start from an arbitrary triangulation of S, and flip illegal

Fig. 1. (a) An illegal edge uv, with region
uv

y in gray. (b) The union of the dashed
filled disks ©uxy and ©xvy is contained in the union of the gray disks ©uxv and
©uyv.

Flips in Higher Order Delaunay Triangulations 227

edges until none is left. This also implies that the flip graph of all triangulations
of S is connected, since any triangulation can be transformed into DT (S) by a
finite number of flips. Let G(Tk(S)) denote the flip graph of Tk(S).

Next we present several important facts. We start with a well-known obser-
vation, illustrated in Fig. 1b.

Observation 1. Let �uxv and �uyv be two adjacent triangles in a triangula-
tion of S. If edge uv is illegal, then (©uxy ∪ ©xyv) ⊂ (©uxv ∪ ©uvy).

In the context of order-k triangulations, Observation 1 implies the following.

Lemma 1 (Abe and Okamoto [1]). Let T be a triangulation of S, let uv
be an illegal edge of T , and let �uvx and �uyv be the triangles incident to uv
in T . If �uxv is of order k, and �uyv is of order l, then triangles �uxy and
�xyv are of order k′ and l′, respectively, for some k′, l′ with k′ + l′ ≤ k + l − 2.

Now we need an extra piece of notation, which we will use extensively. For a

triangle �uyv, we let
uv

y denote the open region bounded by edge uv and the
arc of ∂ © uyv that does not contain y. See Fig 1a.

In what remains of this section we will consider a triangulation T of order
k ≥ 3, and an illegal edge uv adjacent to triangles �uxv and �uyv of T .

Throughout this work we will often refer to points of S that are contained—
or not—in a certain region. For brevity, we will sometimes omit “of S”, and
simply refer to points in a certain region, as we do in the next observation.

Observation 2. If
uv

y does not contain points, then

uxy xyv
uv

y) (uxv
uv

y does not contain points.

Consider the triangulation T ′ resulting from flipping uv in T . For the sake of
simplicity, for any region R in the plane, we denote by |R| the number of points
of S in the interior of R. Using that |©uxv \{y}| ≤ k −1, |©uyv \{x}| ≤ k −1
and | © uxy| ≥ k + 1, a rather simple counting argument implies the following.

Observation 3. Each of
ux

y uxv and
uy

x uyv contains at least two
points.

The next two observations concern the case where the region uxy
ux

y

contains the maximum possible number of points, i.e., k − 1. As shown next, in

this case the intersection
ux

y uxv does not contain any points of S.

Observation 4. If uxy
ux

y contains k − 1 points, then
ux

y uxv does
not contain any point.

Let p1 �= y in S be such that �up1x is in T . The next lemma implies that
ux is an illegal edge.

Lemma 2. If uxy
ux

y contains k − 1 points, then ©up1x contains point y,

but does not contain any point of
ux

y .

228 E. Arseneva et al.

3 Points in Convex Position

In this section we show that k − 1 flips are sufficient to transform any order-k
triangulation of a convex point set into some other order-k triangulation, such
that all the intermediate triangulations are of order 2k − 2.

Before that, we show that our result is tight in how large the flip distance
between two order-k triangulations can be.

Theorem 5. For any k > 2 there is a set Sk of 2k +2 points in convex position
such that G(Tk(Sk)) is not connected. Moreover, there is a triangulation Tk in
Tk(Sk) such that in order to transform Tk into any other triangulation in Tk(Sk)
one needs to perform at least k − 1 flips.

Proof (sketc.h). We construct set Sk and the triangulation Tk as follows,
see Fig. 2a. Start with a horizontal line segment uv and add points S′ =
p1, . . . , pk above it and points S′′ = q1, . . . , qk below it, such that each point
qi is the reflection of the point pi with respect to the line through uv. Point p1
is placed close enough to uv, and each next point pi+1 for i = 2, . . . , k − 1 is: (1)
inside ©(uqipi), (2) below the line through pi−1pi, (3) above the line through
uv, and (4) outside ©(upi−1pi) (we set p0 = v). The set Sk is {u, v} ∪ S′ ∪ S′′.
Triangulation Tk of Sk is formed by all the triangles �upipi+1 and �uqiqi+1

(where p0 = q0 = v). It turns out that any ©(upipi+1) (resp., ©uqiqi+1) con-
tains exactly the k points of S′′ (resp., of S′) and no other point of Sk. Thus,
Tk is in Tk(Sk). We observe that a triangulation of Sk containing edge pipt with
k ≥ i > t+1 cannot be order-k (the case for qiqt is symmetric). Consider T ′ �= Tk

in Tk(Sk). Each edge in T ′ \ Tk must have one endpoint in S′ and one in S′′.
Thus, edge uv has to be flipped in order to transform Tk to T ′. Triangle �uq1p1
is of order 2k−2. The second part of the statement follows from the observation
that for any i, j with k ≥ i > 0 and k ≥ j > 0, the triangle �upiqj is of order
2k−i−j. Thus, k−1 flips are needed to get T ′, since some �upiqj with i+j = k
has to be in T ′. Otherwise uv is in T ′, a contradiction. 	

Fig. 2. (a) An order-k triangulation at distance at least k − 1 from any other order-k
triangulation (k=4). (b) The gray area corresponds to T x

uv.

Flips in Higher Order Delaunay Triangulations 229

We now proceed to prove the upper bound. Let S be a point set in convex
position. Let T be an order-k triangulation of S. We say that T is minimal if
flipping any illegal edge in T results in a triangulation that is not order-k. Let uv
be a diagonal in T and let �uxv and �uyv be the triangles incident to it. Since
S is in convex position, the diagonal uv partitions T into two sub-triangulations
that only share edge uv. Let T x

uv (respectively, T y
uv) denote the sub-triangulation

that contains triangle �uxv (respectively, �uyv). See Fig. 2b.

Theorem 6. For a point set S in convex position and k ≥ 2, let T �= DT (S)
be a triangulation in Tk(S). Then, there exists T ′ in Tk(S) such that there is a
path between T and T ′ in G(T2k−2(S)) of length at most k − 1, where each edge
of the path corresponds to flipping an illegal edge.

Proof (sketch). For k = 2 the statement is trivial, since G(T2(S)) is connected.
Assume k ≥ 3. If T is not minimal, then T contains an illegal edge e such that
flipping e results in an order-k triangulation. Thus, we assume that triangulation
T is minimal. Observe first that there must be an illegal edge uv in T incident
to triangle �uxv such that all edges of T x

uv are legal. Indeed, since T is not an
order-0 triangulation, T contains an illegal edge. Any triangulation of S has at
least two ears, i. e., triangles with two edges in the convex hull of S, and for any
ear in T all three of its edges are legal, otherwise T is not minimal.

Let uv be an illegal edge incident to triangle �uxv such that all edges in
T x
uv are legal. Let �uyv be the other triangle in T incident to uv. Consider

triangulation T1 = (T \ {uv})∪ {xy}. Since T is minimal, T1 is not order-k. The
only triangles in T1 that could be not order-k are the new triangles �uxy and
�xyv. Without loss of generality assume that �uxy is not order-k. By Lemma 1,
it follows that �uxy is the only one that is not order-k. In addition, �uxy is

order-(2k − 2). By Observation 3 it follows that 2
ux

y k 1 .

By induction on the number of points in
ux

y we show that T1 can be trans-
formed into an order-k triangulation T ′ by flipping at most k − 2 illegal edges.
Moreover, in the sequence of triangulations from T1 to T ′ every triangulation is
of order 2k − 2. The claim follows. 	

The above theorem has two implications. First, due to the known property
of illegal edges, each flip in the path from T to T ′ increases the angle vector of
the triangulation. The second implication is as follows. Each edge of an order-k
triangulation T is also order-k; there are O(kn) such edges [2,14]. Theorem 6
implies that T can be transformed into DT (S) by a sequence of O((2k − 2)n) =
O(kn) flips, since only illegal edges are flipped and thus no edge can be flipped
twice.

4 General Point Sets

In this section we consider a general point set S. We show that a triangulation
of order k = 3, 4 or 5 of S can be transformed into some other order-k trian-
gulation of S by flipping at most k − 1 illegal edges, and that the intermediate

230 E. Arseneva et al.

triangulations are of order 2k−2. Moreover, since we flip only illegal edges, after
each flip that transforms a triangulation T to T ′, we have that α(T ′) > α(T).
Thus, if we keep applying this procedure, we will eventually reach DT (S).

Theorem 7. Let S be a point set in general position and let T be a triangulation
in Tk(S) for 2 ≤ k ≤ 5. There exists T ′ in Tk(S) such that there is a path from
T to T ′ in G(T2k−2(S)) of length at most k − 1, where each edge of the path
corresponds to flipping an illegal edge.

In order to prove Theorem 7, we consider whether T is minimal. If not, the
statement follows trivially. If T is minimal, then k > 2. Also, for any illegal edge
uv in T , flipping uv produces a new and unique triangle �uxy that is not order-
k. Since k = 3, 4, 5, we notice that there are only two cases to consider for the
number of points in each region of ©uxy. For k = 3, 4, since �uxy is not of order

k, by Observation 3 it follows that one of uxy
ux

y and uxy
uy

x contains

k − 1 points. For k = 5, if none of uxy
ux

y and uxy
uy

x contains k − 1
points of S then by Observation 3 and the fact that T is of order k, it follows

that each of
ux

y and
uy

x contains 3 points of S.
Therefore, in order to show that with at most k − 1 flips the triangulation T

can be transformed into some other triangulation T ′ of order k such that only
illegal edges are flipped, for k = 3, 4, 5, we consider two cases:

A) [k = 3, 4, 5] There are exactly k − 1 points in uxy
ux

y or exactly k − 1

points in uxy
uy

x . See Fig 3a.

B) [k = 5] There are exactly k − 2 = 3 points in
ux

y and exactly k − 2 = 3

points in
uy

x . See Fig 3b.

Case A Since the case when there are exactly k−1 points in uxy
ux

y is

symmetric to the one in uxy
uy

x , without loss of generality we assume that

there are exactly k − 1 points in uxy
ux

y .
We consider the resulting triangulation T1 after flipping the illegal edge uv

with the following properties: (1) �uxy is not of order k, (2) there are k − 1

points in uxy
ux

y .
We show that there exists an order-k triangulation T ′ that can be reached

from T in G(T2k−2(S)) after flipping at most k − 1 illegal edges.
Next we summarize the main ideas behind the proof. By Observation 3 there

are at least two points in
ux

y . Consider p1 �= y such that �up1x ∈ T . By

Lemma 2, ux is an illegal edge and ©up1x does not contain points of
ux

y .
We consider the triangulation T2 = (T1 \ {ux}) ∪ {p1y}. By Observation 1,

Flips in Higher Order Delaunay Triangulations 231

Fig. 3. In both cases, k = 5. (a) There are four points in the gray region uxy
ux

y .

(b) There are exactly three points in
ux

y and exactly three points in
uy

x .

Fig. 4. In both cases: k = 5, the gray filled disk is
ux

y and
uy

x contain 4 points. (a)

Disk ©p1xy does not contain the 4 points in uxy
ux

y . (b) The blue disk ©up1y

contains the 4 points in uxy
ux

y .

(©up1y ∪ ©p1xy) ⊂ (©uxy ∪ ©up1x). Then, �up1y and �p1xy are order-
(2k − 3) triangles. Thus, for k = 3 the statement follows. For k = 4, 5, we

consider T2 that is not of order k. Since up1x
ux

y does not contain points,
it follows from Observation 2 that exactly one triangle � of �up1y and �p1xy
is of order greater than k. So, for k = 4 such triangle is an instance of Case
A. So, using analogous arguments, we show that with 3 flips T is transformed
into another order-k triangulation T ′, by flipping only illegal edges. Similarly,
the statement follows for k = 5, when is an instance of Case A. Otherwise, we

show that
ux

y =
uy

x = k 1 and that the triangle � with order 6 (since

� ux

y < k 1 = 4)) is �p1xy. See Fig 4. Moreover, we show that p1x
is an illegal edge and that the triangulation T3 obtained after flipping p1x is of
order 6. In addition, if T3 is not of order 5, then we get again a Case A and we
apply the same arguments as before and show that with 4 flips, the statement
follows for k = 5.

Case B We consider the resulting triangulation T1 after flipping uv such
that Case B occurs: (1) �uxy is of order greater than 5, (2) there are exactly

three points in both
ux

y and
uy

x .

232 E. Arseneva et al.

Fig. 5. (a) Triangle �a1p1b1 is not order-5. (b) Triangle �up1b2 is not order-5.
(c) Triangle �a2q1y is not order-5. (d) Triangles �up1b1 and �a2q1y are order-5.

We show that there exists an order-5 triangulation T ′ that can be reached
from T in the flip graph of T2k−2(S) by flipping at most four illegal edges.

Next we summarize the main ideas behind the proof. We consider two cases
depending on whether one of ux or uy are illegal, or not. If one of ux or uy is an
illegal edge, say ux, then we consider the triangulation T2 = (T1 \{ux}) ∪ {p1x}
where p1

ux

y . Using Observation 2 and counting arguments, we conclude
that T2 is of order 2k − 4 = 6. Moreover, exactly one of the triangles �up1y or
�p1xy is of order 6 and that it is an instance of Case A. Thus, using analogous
arguments as in Case A, the statement follows. If none of ux and uy are illegal
edges, then we show that there exists an illegal edge ub1 in �ub1x and �up1b1
such that b1 is in either ©uxv \©uxy or ©uyv \©uxy, say ©uxv \©uxy, and

ux

y . See Fig. 5d. Otherwise T is not of order 5, a contradiction. See Fig. 5 for
all possible cases. Hence, we consider T2 = (T1 \ {ub1}) ∪ {p1x} and show that
T2 is of order 6. If T2 is not of order 5, then we consider T3 = (T2 \{ux})∪{p1y}
since

ux

y . Therefore, T3 is again an order-6 triangulation and if T3 is not of
order 5 then we are again in an instance of Case A. Using similar arguments as
in Case A, the statement follows. Therefore, Theorem 7 holds.

Finally, since flipping illegal edges always increases the angle vector and there
are O(kn) order-k edges (see [2,14]), it follows from Theorem 7 that for k ≤ 5,
any order-k triangulation can be transformed into DT (S) by a sequence of at
most O(kn) triangulations of order 2k − 2.

Flips in Higher Order Delaunay Triangulations 233

5 Conclusions

In this paper we presented the first general results on the flip graph of order-k
Delaunay triangulations. We showed that already for points in convex position,
the flip graph may not be connected. This is in contrast to the flip graph of
triangulations that consist of order-k edges, for which the flip graph is always
connected [2]. Our main result is that k − 1 flips are sometimes necessary and
always sufficient to transform an order-k triangulation into some other order-
k triangulation, for any k ≥ 2 if the points are in convex position. Moreover,
we proved that these k − 1 flips go through triangulations of order 2k − 2.
This is a noteworthy result, and one of the first results on order-k Delaunay
triangulations proven for any value of k. In the setting of general point sets , we
also showed that for k = 3, 4, 5, the order-k triangulations are at flip distance at
most k − 1 from some other order-k triangulation within the flip graph of order-
(2k − 2) triangulations. This result also implies that the flip distance between
any two order-k triangulations is O(kn), which is consistent with the fact that
the diameter of the flip graph of all triangulations is Θ(n2).

Our results imply an enumeration algorithm using the Avis and Fukuda
framework [5], generalizing the results that Abe and Okamoto obtained for k ≤ 2
[1]. For the case of convex position this is not of practical importance, as in that
case one can obtain a more efficient method by first pre-computing all order-k
triangles, and then recursively enumerating all order-k triangulations. However,
our results imply the first non-trivial enumeration results for points in generic
position for 3 ≤ k ≤ 5. It should be mentioned that small values of k are the
most important ones in practice, since for small orders the triangle shape is still
close to Delaunay, but at the same time they are enough to obtain significantly
better triangulations [23].

Clearly, the main question left open is what happens in general when k ≥ 6.
For larger orders our techniques present issues due to a large increase in the
number of cases that need to be considered. However, we conjecture that the
same results obtained for convex position hold in general, and in particular, that
any order-k triangulation is at flip distance at most k − 1 from another order-k
triangulation.

References

1. Abe, Y., Okamoto, Y.: On algorithmic enumeration of higher-order Delaunay trian-
gulations. In: Proceedings of the 11th Japan-Korea Joint Workshop on Algorithms
and Computation, Seoul, Korea, pp. 19–20 (2008)

2. Abellanas, M., Bose, P., Garćıa, J., Hurtado, F., Nicolás, C.M., Ramos, P.: On
structural and graph theoretic properties of higher order Delaunay graphs. Int. J.
Comput. Geom. Appl. 19(06), 595–615 (2009)

3. Aichholzer, O., et al.: Triangulations intersect nicely. Discrete Comput. Geom.
16(4), 339–359 (1996). https://doi.org/10.1007/BF02712872

4. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific Publishing Company, River Edge (2013)

https://doi.org/10.1007/BF02712872

234 E. Arseneva et al.

5. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–
3), 21–46 (1996)

6. Benkert, M., Gudmundsson, J., Haverkort, H., Wolff, A.: Constructing interference-
minimal networks. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller,
J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 166–176. Springer, Heidelberg (2006).
https://doi.org/10.1007/11611257 14

7. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. Comput.
Euclid. Geom. 1, 23–90 (1992)

8. Biniaz, A., Dastghaibyfard, G.: Slope fidelity in terrains with higher-order Delau-
nay triangulations. In: Proc. of the 16th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision, pp. 17–23
(2008)

9. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)
10. De Floriani, L.: Surface representations based on triangular grids. Vis. Comput.

3(1), 27–50 (1987)
11. De Kok, T., Van Kreveld, M., Löffler, M.: Generating realistic terrains with higher-

order Delaunay triangulations. Comput. Geom. 36(1), 52–65 (2007)
12. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum

multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2),
802–826 (2013)

13. Fortune, S.: Voronoi Diagrams and Delaunay Triangulations, pp. 225–265. World
Scientific (1995)

14. Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangu-
lations. Comput. Geom. 23(1), 85–98 (2002)

15. Gudmundsson, J., Haverkort, H.J., Van Kreveld, M.: Constrained higher order
Delaunay triangulations. Comput. Geom. 30(3), 271–277 (2005)

16. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Com-
put. Geom. 22(3), 333–346 (1999)

17. van Kreveld, M.J., Löffler, M., Silveira, R.I.: Optimization for first order Delaunay
triangulations. Comput. Geom. 43(4), 377–394 (2010)

18. Lawson, C.L.: Transforming triangulations. Discrete Math. 3(4), 365–372 (1972)
19. Lawson, C.L.: Software for C1 surface interpolation. In: Mathematical Software,

pp. 161–194. Elsevier (1977)
20. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is

NP-complete. Comput. Geom. 49, 17–23 (2015)
21. Mitsche, D., Saumell, M., Silveira, R.I.: On the number of higher order Delaunay

triangulations. Theor. Comput. Sci. 412(29), 3589–3597 (2011)
22. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard.

Comput. Geom. 47(5), 589–604 (2014)
23. Rodŕıguez, N., Silveira, R.I.: Implementing data-dependent triangulations with

higher order Delaunay triangulations. ISPRS Int. J. Geo-Inf. 6(12), 390 (2017)
24. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electr. J.

Comb. 18(1) (2011)
25. Sibson, R.: Locally equiangular triangulations. Comput. J. 21(3), 243–245 (1978)
26. Silveira, R.I., van Kreveld, M.: Optimal higher order Delaunay triangulations of

polygons. Comput. Geom. 42(8), 803–813 (2009)
27. Silveira, R.I., van Kreveld, M.J.: Towards a definition of higher order constrained

Delaunay triangulations. Comput. Geom. 42(4), 322–337 (2009)
28. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and

hyperbolic geometry. J. Amer. Math. Soc. 1(3), 647–681 (1988)

https://doi.org/10.1007/11611257_14

An Ω(n3) Lower Bound on the Number
of Cell Crossings for Weighted Shortest

Paths in 3-Dimensional Polyhedral
Structures

Frank Bauernöppel1(B) , Anil Maheshwari2 , and Jörg-Rüdiger Sack2

1 Hochschule für Technik und Wirtschaft, Computer Engineering, Berlin, Germany
frank.bauernoeppel@htw-berlin.de

2 Carleton University, School of Computer Science, Ottawa, Canada
{anil,sack}@scs.carleton.ca

Abstract. A new lower bound of Ω(n3) on the maximum number of
cell crossings for weighted shortest paths in 3-dimensional polyhedral
structures consisting of a linear number of O(n) polyhedral cells and cell
faces is derived. This is a generalization and sharpening of the formerly
known Ω(n2) lower bound on the maximum number of cell crossings for
weighted shortest path in 2-dimensional polyhedral structures and has
been a long-standing open problem for the 3-dimensional case.

Keywords: Computational geometry · Algorithms · Computational
complexity · Weighted shortest path · Lower bound

1 Introduction

1.1 Motivation

Shortest path problems and their practical solutions are of significant interest
not only in computer science but also in areas such as optimization, geo-sciences,
and robotics. They are also omnipresent in today’s routing appliances. Already
in ancient times, Hero of Alexandria (Heron) formulated a “Principle of the
Shortest Path of Light” stating that light follows a shortest path when reflected
on flat mirrors [9]. This was later generalized to paths passing through different
media (Snell’s law of refraction).

Efficient shortest path algorithms for graph having weighted edges like Dijk-
stra’s Algorithm [8] or the A∗ algorithm [13] are well studied and practical
implementations are readily available in many software libraries like the Boost
C++ library [4].

In many geometric shortest path problems however, the path is not restricted
to use the edges of a finite graph but may freely travel along 2-dimensional
surfaces or pass through 3-dimensional bodies. In addition to dimensionality,
the problem gets more complex when the domains are not homogeneous. In
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 235–246, 2020.
https://doi.org/10.1007/978-3-030-61792-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_19&domain=pdf
http://orcid.org/0000-0002-2641-4506
http://orcid.org/0000-0002-1274-4598
http://orcid.org/0000-0001-5936-1319
https://doi.org/10.1007/978-3-030-61792-9_19

236 F. Bauernöppel et al.

such applications, weighted shortest paths provide much more meaningful results
than Euclidean distance. Such problems include e.g., path finding in terrains
exhibiting different features (e.g. rock, water, forest), planning optimum routes
for new streets or power lines in rural areas (2D, 2.5D), or for accessing new
geological deposits and reservoirs (3D). Other examples include optimum path-
planning in robotics and minimally invasive surgery. The class of weighted region
shortest path problems has first been investigated by [10].

For the weighted region problem, a number of NP-hardness instances have
been identified see e.g., [6,11]. More recently, an unsolvability result was estab-
lished by Carufel et al. [7]. (For a survey article see e.g., Bose et al. [5].) Therefore,
approximation algorithms have been devised, such as the (1 + ε)-approximation
schemes developed by Aleksandrov et al. for the 2-dimensional case [3] or by Sun
and Reif [17], in query mode [1], as well as for the 3-dimensional case [2].

Euclidean and weighted problems also exhibit very interesting structural
differences; these are also of importance for the complexity analysis. In the
Euclidean setting, paths may cross a convex cell (e.g., triangle) at most once.
At first glance it might be surprising that there exist 2-dimensional polyhedral
structures consisting of n convex cells and having weighted shortest paths con-
sisting of as many as Θ(n2) straight line segments. For these, Θ(n) convex cells
will be crossed Θ(n) times each. Such polyhedral structures were first described
by Mitchell and Papadimitriou [10].

This raises the question about the maximum possible number of straight
line segments in the 3-dimensional case. This question remained open since 1991
until now. In the remainder of this paper we establish a lower bound for the 3-
dimensional case by constructing novel 3-dimensional polyhedral structures Q(n)
consisting of O(n) convex cells in which a weighted shortest path has Θ(n3) cell
crossings and straight line path segments.

1.2 Previous Work

For the 2-dimensional case, a construction of weighted planar subdivisions with
weighted shortest paths consisting of Θ(n2) cell crossings has been presented in
1991 by Mitchell and Papadimitriou [10].

Fig. 1. A 2-dimensional polyhedral structure with a weighted shortest path (yellow)
from a point of the left facet to a point of the right facet for n = 4. The polyhedral
structure consists of n central polyhedral cells (red) and n satellite cells (green) of
lesser weight. The weighted shortest path crosses the n red cells n2 times in total.

An Ω(n3) Lower Bound on the Number of Cell Crossings 237

Figure 1 resembles the construction by Mitchell and Papadimitriou [10] for
the 2-dimensional case and n = 4. The weighted shorted path (yellow) starts on
the facet F−

2 (C) and terminates on the facet F+
2 (C) of the central rectangular

area C (red). The central red area is partitioned into n horizontal slices, each
having a weight of 1. In contrast, the n green satellite areas have a lower weight
of 1/4 only. If the width of the central area (along e2) is sufficiently large and its
height (along e1) is sufficiently small, a weighted shortest path will use all the
green satellite areas thereby crossing the red slices Θ(n2) times in total. Detailed
measures and proofs are derived for the 3-dimensional case in Sect. 4.

Although the Ω(n2) lower bound trivially extends to higher dimensions, up to
now no higher bound has been derived for the 3-dimensional case.

1.3 Example of the New 3-Dimensional Construction for n = 6

Figure 2 shows an approximate weighted shortest path in the novel 3-dimensional
polyhedral structure Q(n) for n = 6. An approximate weighted shortest path
(yellow) from a point of the front facet to a point of the rear facet was computed
using the wsp3dovm [19] software. The weighted shortest path crosses each of
the n red slices at least n2 times which makes a total of Θ(n3) cell crossings.
The wsp3dovm [19] software has been made available by the authors under
an open source software license and uses the OpenVolumeMesh [12] library for
representing 3D polyhedral structures. For calculating the approximate weighted
shortest path, a tetrahedralization of Q(6) was used. The tetrahedralization was
generated automatically from an initial concise description of the cells of Q(6)
by using the tetgen software [15], [16]. The results were visualized by using
ParaView [14] from the Visualization Toolkit [18]. Again, detailed measures and
proofs are derived in Sect. 4.

Fig. 2. Polyhedral structure Q(n) for n = 6 with a zig-zagging weighted shortest path
(yellow) from a point of the front facet (shown left) to a point of the rear facet (shown
right). The front and rear facets resemble the 2-dimensional case shown in Fig. 1. Six
new blue cuboids were attached to the top and bottom facets, having the least weight
and a sufficient length to attract the weighted shortest path. Thus, this path has Θ(n3)
cell crossings of the O(n) red cells in total. (Color figure online)

238 F. Bauernöppel et al.

2 Preliminaries

2.1 Polyhedral Cells and Polyhedral Structures

The basic definitions and concepts are introduced in this subsection which loosely
follow those of [3] and [2]. Let IR3 denote the 3-dimensional Euclidean vector
space and let E = {e1, e2, e3} be its standard basis. A polyhedral cell C ⊂ IR3

is the convex hull of a finite number of points in IR3. The points which are
not contained in the relative interior of C are called the vertices of C. The
1-dimensional boundary elements of C are called the edges of C, and the 2-
dimensional boundary elements of C are called the facets of C. The facets, edges,
and vertices of a polyhedral cell C are commonly called the faces of C.

A 3-dimensional polyhedral structure P ⊂ IR3 is the union of a finite number
of polyhedral cells P = ∪k

i=1Ci where the intersection of any pair of different
polyhedral cells is either empty or a common face. All cells and the polyhedral
structure P itself are assumed to be bounded, closed, and connected.

An axis-parallel cuboid C is a special polyhedral cell which has for each
dimension i = 1, 2, 3 exactly one pair of parallel facets F−

i (C) and F+
i (C)

orthogonal to basis vector ei. The six facets are commonly called the left/right,
bottom/top, and front/rear facet of the cuboid cell C. An axis-parallel cuboid
can be defined by one point v = F−

1 (C) ∩ F−
2 (C) ∩ F−

3 (C), the origin of cuboid
C, and a size triple (s1, s2, s3), where si denotes the distance between F−

i (C)
and F+

i (C).

2.2 Weighted Shortest Paths in Polyhedral Structures

A positive real number, the weight, w(C) is associated with each cell C of a
polyhedral structure P . For a single polyhedral cell C, the shortest path between
two points p ∈ C and q ∈ C is, because C is convex, a straight line segment
denoted by pq. The weighted length w(pq) of that straight line segment is the
product of the weight of the cell and the Euclidean length of the straight line
segment: w(pq) = w(C)‖pq‖. Depending on the location of p and q, the following
cases for pq can be identified:

cell avoiding: pq has no point in common with the cell
cell visiting: pq has at least one point in common with the cell

cell crossing: pq runs through the interior of the cell
facet using: pq lies entirely in a boundary facet of the cell

In a polyhedral structure P , the faces of one cell C are, in general, incident
to more cells than just C. Therefore, the weight of a face is defined as the
minimum weight among all its incident cells. When a straight line segment pq ⊆
C runs along such a face, the minimum weight of all cells incident to pq is
used to calculate the weight contribution of that straight line segment w(pq) =
min{w(Ci)‖pq‖ : pq ⊆ Ci}. Commonly, the straight line segment ‖pq‖ inherits
the weight from an incident cell Ci of minimum weight.

An Ω(n3) Lower Bound on the Number of Cell Crossings 239

A piece-wise linear path p1p2...pk in a polyhedral structure P is a sequence
of points p1, p2, ..., pk ∈ P where each consecutive pair of points pi and pi+1 lies
on the boundary of a common cell Ci of P . The weighted length of a piece-wise
linear path is defined as the sum of the weighted lengths of the straight line
segments involved: w(p1p2...pk) =

∑k−1
i=1 w(pipi+1).

A general path p̃ = ṽw in polyhedral structure P is a rectifiable (finite
length) curve ṽw ⊆ P starting at some point v ∈ P and terminating at point
w ∈ P . The intersection of a general path p̃ with all boundaries of the cells
of polyhedral structure P partitions p̃ into a finite sequence of consecutive
subpaths p̃ = p̃1p̃2...p̃m. The weighted length (cost) of p̃ is now defined by
w(p̃) =

∑m
i=1 wi‖p̃i‖, where wi is the weight of a cell of minimum weight among

all cells containing subpath p̃i and ‖p̃i‖ denotes its Euclidean length.
Finally, a weighted shortest path in P from a point p ∈ P to a point q ∈ P

is defined as a general path starting at p and terminating at q having minimum
weighted length among all such paths.

2.3 Properties of Weighted Shortest Paths in Polyhedral Structures

A few useful properties of weighted shortest paths in polyhedral structures can
be observed which follow from the convexity of the polyhedral cells. The proofs
are omitted here.

Lemma 1. Every weighted shortest general path in a polyhedral structure is a
piece-wise linear path.

Because of Lemma 1, we can restrict ourselves to searching for piece-wise linear
paths having minimum weighted length.

Lemma 2. Let ṽw be a weighted shortest path in a polyhedral structure P . Let
C be a polyhedral cell of weight w(C) in polyhedral structure P that is visited by
ṽw more than once. I.e., the path ṽw leaves C at some point p and re-enters the
cell C later at some other point q �= p. Then, the subpath p̃q visits at least one
cell of P with lower weight.

Lemma 3. Let C be a cell of minimum weight w(C) among all cells of the
polyhedral structure P . Then, a weighted shortest path ṽw in P visits C at most
once.

3 A Property of Weighted Shortest Paths Crossing
a Cuboid

In this section, a sufficient condition for the structure of certain weighted shortest
paths crossing a cuboid is derived in Theorem 1. This condition is the founda-
tion for the construction of the novel 3-dimensional polyhedral structures Q(n)
presented in Sect. 4. We illustrate the following Theorem 1 in Fig. 3.

240 F. Bauernöppel et al.

Fig. 3. Illustration of Theorem 1.

Theorem 1. Let C be a 3-dimensional axis-parallel cuboid, let F−
x (C) and

F+
x (C) be a pair of parallel facets of C, and let Fy(C) be another facet of C. Let

h denote the Euclidean distance between the facets F−
x (C) and F+

x (C), and let
d denote the maximum Euclidean distance from a point in C to the facet Fy(C).
Let wmin, respectively wmax = 1, be the minimum, respectively maximum, weight
in C including its borders, except for the facet Fy(C) having the smallest weight,
wy. If the condition

d/h ≤ wy < wmin/3 (1)

is met, then every weighted shortest path p̃q ⊂ C between a point p ∈ F−
x (C)

and a point q ∈ F+
x (C) is using the facet Fy(C).

Proof. Suppose, by contradiction, that the statement is not true. Then, p̃q
entirely avoids Fy(C) and the following lower bound holds for the weighted
length w(p̃q) of path p̃q

wmin‖pq‖ ≤ w(p̃q). (2)

Now, a better upper bound for the weighted length of a certain piece-wise linear
path w(pp′q′q) using Fy(C) can be derived, which yields a contradiction.

Let p′ be the projection of point p onto the facet Fy(C), and let q′ be the
projection of point q onto the same facet. The Euclidean distances ‖pp′‖ and
‖q′q‖ are both bounded from above by d

‖pp′‖ ≤ d (3)

‖q′q‖ ≤ d. (4)

Since straight line segments pp′ and qq′ run entirely in C and have a weight of
at most wmax = 1 and because of the left side of Eq. 1

w(pp′) ≤ wyh. (5)

w(q′q) ≤ wyh. (6)

The Euclidean distance of the straight line segment ‖p′q′‖ is bounded from above
by

‖p′q′‖ ≤ ‖pq‖. (7)

An Ω(n3) Lower Bound on the Number of Cell Crossings 241

Because of p′q′ ⊂ Fy(C) having weight wy

w(p′q′) ≤ wy‖pq‖. (8)

Summing up and considering h ≤ ‖pq‖, one gets

w(pp′q′q) ≤ 3wy‖pq‖. (9)

Now, because of the right side of Eq. 1, we get the contradiction

w(pp′q′q) < w(p̃q) (10)

which completes the proof. �

Note, that for the special case that p and q lie on the same facet, say Fz(C),
orthogonal to F−

x (C), F+
x (C), and Fy(C), Theorem 1 yields a sufficient condition

for the 2-dimensional case as well. Therefore, this construction applies to the 2−d
and 3 − d problem settings.

4 Construction of the Polyhedral Structure Q(n)

In this section, the novel polyhedral structure Q(n) is constructed as the union
of several axis-parallel cuboids:

– n central cuboids C1,1, C1,2, ..., C1,n

– n satellite cuboids of rank 2 S2,1, S2,2, ..., S2,n

– n satellite cuboids of rank 3 S3,1, S3,2, ..., S3,n

– two shims T−
2 and T+

2

We first observe that the total number of cells in Q(n) is O(n). The construction
is illustrated for n = 4 in Fig. 4.

For the construction, a weight value wi and a length value li are defined for
each dimension i = 1, 2, 3 by

wi =

{
1 i = 1
wi−1/4 i = 2, 3

(11)

li =

{
1 i = 1
n · li−1/wi i = 2, 3.

(12)

4.1 Construction of the Central Cuboids

For j = 1, 2, ..., n, the central cuboid C1,j has its origin at point ((j − 1)l1, 0, 0)
and sizes (l1, nl2, nl3). Therefore, each consecutive pair of central cuboids C1,j

and C1,j+1 is adjacent, sharing one common facet: F+(C1,j) = F−(C1,j+1). The
weight, w1, of C1,j is set to 1.

The union of all central cuboids is denoted by C = ∪n
j=1C1,j . C has a cuboid

like shape by itself with a size triple of (nl1, nl2, nl3).

242 F. Bauernöppel et al.

Fig. 4. Illustration of Q(4) showing the four central cuboids (red), the four satellite
cuboids of rank 2 (green) and rank 3 (blue), and the two shims (orange). (Color figure
online)

4.2 Adding the Satellite Cuboids of Rank 2

The n satellite cuboids of rank 2 will be attached in zig-zag order to the facets
F−(C1,1) and F+(C1,n) as shown in Fig. 4.

More formally, for j = 1, 2, ..., n, if j is odd, S2,j has its origin at point
(nl1, (j − 1)l2, 0), or, if j is even, at point (−1, (j − 1)l2, 0). The size of each S2,j

is (1, l2, nl3) and the weight of each S2,j is set to w2 = 1/4.
By construction, the S2,j are adjacent to C1,1 if j even, and adjacent to

C1,n if j odd. Because the height of the satellite cuboids is by a factor of n
smaller than the height of the central cuboids, the facets F−(C1,1), respectively
F+(C1,n), need to be partitioned into n congruent pieces of height l2 each, in
order to match the F+(S2,j), respectively F−(S2,j).

Strictly speaking, C1,1 and C1,n are no cuboids but cuboid-like shaped poly-
hedral cells. But, since only two central cuboids are affected, the total number
of facets, edges, and vertices remains O(n).

The union of all central cuboids and satellite cuboids of rank 2 is denoted by
R = C ∪ S2,1 ∪ S2,2 ∪ ... ∪ S2,n. R will be a subset of Q.

4.3 Weighted Shortest Paths in Polyhedral Structure R

The front facet F−
3 (C) of the 3-dimensional polyhedral structure R resembles

the 2-dimensional construction of Mitchell and Papadimitriou [10], cf. Fig. 1.
Now, weighted shortest paths starting on the top facet F+

2 (C) and terminating
on the bottom facet F−

2 (C), or vice versa, are considered. It will be shown that
such paths visit all the satellite cuboids of rank 2. As a consequence, such paths
will consist of Θ(n2) cell crossings.

In the following, let v be a point on F−
2 (C), let w be a point on F+

2 (C), and
let ṽw be a weighted shortest path from v to w in the polyhedral structure R.

An Ω(n3) Lower Bound on the Number of Cell Crossings 243

Lemma 4. Let v, w, and ṽw be as defined above. Then, the weighted shortest
path ṽw is visiting all n satellite cuboids S2,j of rank 2.

Proof. Let S2,j be a satellite cuboid of rank 2. Let C2,j denote the intersection
of the central cuboid C with a cuboid with its origin at point (0, (j −1)l2, 0) and
sizes (nl1, l2, nl3), i.e. C2,j and S2,j share a common facet C2,j ∩ S2,j , which is
either F+

1 (S2,j) or F−
1 (S2,j), depending on j.

Since ṽw runs from v ∈ F−
2 (C) and terminates in w ∈ F+

2 (C), it must cross
C2,j . Let p be the point where ṽw enters C2,j , and let q be the point where ṽw
exits C2,j . As one cannot exclude yet that there are more than one such p and
q, the last possible entry point is chosen for p and the first exit point after p is
chosen for q.

Now, Theorem 1 can be applied to cuboid C2,j and facet C2,j ∩S2,j , because
the sufficient condition is met with d = nl1, h = l2 = nl1/w2, wmin = wmax =
w1 = 1 and wy = w2 = 1/4. �

Lemma 5. Let v, w, and ṽw be as defined above. Then, ṽw is visiting every
satellite cuboid S2,j of rank 2 exactly once.

Proof. Every satellite cuboid S2,j is visited because of Lemma 4. The same
satellite cuboid S2,j cannot be visited more than once in R because it is a cell
of minimum weight in R, see Lemma 3. �

Lemma 6. Let v, w, and ṽw be as defined above. Then, ṽw is visiting all n
satellite cuboids S2,j of rank 2 in R in their natural order 1, 2, ..., n.

Proof. Suppose, by contradiction, that the Lemma does not hold. Then, there
exist two satellite cuboids S2,j and S2,k such that j < k but S2,k is visited before
S2,j . Because ṽw ends on facet F+

2 (C), it then must re-visit satellite cuboid S2,k,
which contradicts Lemma 5. �

Because each pair of consecutive satellite cuboids of rank 2 is situated on
opposite facets of C, the central cuboid C is crossed by ṽw Θ(n) times and, since
C = ∪n

j=1C1,j , each crossing of C implies Θ(n) cell crossings; this is captured in
the following Theorem.

Theorem 2. Let v, w, and ṽw be as defined above. Then, the weighted shortest
path ṽw has a total of Θ(n2) cell crossings.

4.4 Adding the Satellite Cuboids of Rank 3

Similarly to the satellite cuboids S2,j , n satellite cuboids S3,j will be attached in
zig-zag order to the facets F−

2 (C) and F+
2 (C) of R; this is illustrated in Fig. 5.

More formally, for j = 1, 2, ..., n, if j is odd, at point (0, nl2, (j − 1)l3), or, if
j is even, S3,j has its origin at point (0,−1, (j − 1)l3). The size of each S3,j is
(nl1, 1, l3) and the weight of each S3,j is set to w3 = 1/16.

The union of R and all the satellite cuboids of rank 3 is denoted by Q′ =
R ∪ S3,1 ∪ S3,2 ∪ ... ∪ S3,n.

244 F. Bauernöppel et al.

Fig. 5. Illustration of Q’(4) showing the central cuboid C (red) and the four satellite
cuboids S2,j of rank 2 (green) and the four satellite cuboids S3,j of rank 3 (blue). (Color
figure online)

4.5 Weighted Shortest Paths in Polyhedral Structure Q′

Now, a weighted shortest path ṽw starting at a point v on the front facet F−
3 (C)

and terminating at a point w on the rear facet F+
3 (C) is considered. Analogously

to Subsect. 4.3, it can be shown that this path visits all satellite cuboids of rank
3 exactly once and in their natural order. This is, because Theorem 1 can be
applied to cuboid C3,j and facet S3,j ∩ C3,j with d = nl2, h = l3 = nl2/w3,
wmin = w2 = 1/4, wmax = w1 = 1, and wy = w3 = 1/16. Here C3,j denotes a
cuboid with its origin at point (0, 0, (j − 1)l3) and sizes (nl1, nl2, l3).

Now, let S3,j and S3,j+1 be a pair of consecutive satellite cuboids of rank 3,
let p be the last point on the weighted shortest path ṽw visiting S3,j and let q
be the first point on the weighted shortest path ṽw visiting S3,j+1. Then, from
Subsect. 4.3 it follows that the subpath p̃q of the weighted shortest path ṽw has
Θ(n2) cell crossings.

Because there are n − 1 pairs of consecutive satellite cuboids of rank 3, the
weighted shortest path ṽw has Θ(n3) cell crossings in total.

4.6 Adding the Shims

The drawback of Q′ is the prohibitively large number of boundary elements,
which is O(n2). This is, because the top and bottom facets F+

2 (C) and F−
2 (C)

were already split into n parts F+
2 (C1,j) and F−

2 (C1,j) in the direction of e1 and
are split again in the direction of e3 when adding the satellite cuboids of rank 3.

In order to avoid this, the satellite cuboids of rank 3 will now be shifted
away from the central cuboid C by a sufficiently small value δ > 0 to their final
positions in Q(n). For j = 1, 2, ..., n, if j is even, the origin of S3,j is set to
(0,−1−δ, jl3), or, if j is odd, to (0, nl2+δ, jl3), see Fig. 4. The sizes and weights
of the satellite cuboids of rank 3 remain unchanged.

The gaps between C and the satellite cuboids of rank 3 are now filled with
two cuboid shaped polyhedral cells T−

2 and T+
2 , called the shims. The shims T−

2

An Ω(n3) Lower Bound on the Number of Cell Crossings 245

and T+
2 have their origins at the points (0,−δ, 0) and (0, nl2, 0) and have sizes

of (nl1, δ, nl3) and a weight of w1 = 1.
The union of R, all the shifted satellite cuboids of rank 3, and the shims is

denoted by Q.
By adding the shims, the number of boundary elements in Q remains O(n).

Furthermore, if δ > 0 is sufficiently small, Theorem 1 still holds, and the topology
of the above weighted shortest path will not be altered. Thus, the main result
of the paper can be stated as follows:

Theorem 3. Let n ∈ IN and Q(n) the polyhedral structure constructed above.
Then, Q(n) consists of O(n) polyhedral cells and faces and a weighted shortest
path in Q(n) starting at a point p on the front facet F−

3 (C) and terminating at
a point q on the rear facet F+

3 (C) has Θ(n3) cell crossings.

5 Conclusions

A new lower bound of Ω(n3) for the number of cell crossings of a weighted
shortest path in a 3-dimensional polyhedral structure consisting of O(n) cells
has been devised. This generalizes and sharpens the lower bound know for the
2-dimensional case. This generalization had been open.

When using a cell weight of w′
1 = 1 − ε for all odd numbered C1,j and a

sufficiently small ε > 0, Theorem 1 still holds and the topology of the considered
weighted shortest paths is not altered. But, by Snell’s law, each crossing of C is
then refracted into n individual straight line segments. Therefore, Theorem 2,
respectively Theorem 3, can be reformulated, stating that the weighted shortest
paths consist of Θ(n2), respectively Θ(n3), straight line segments.

Finally, polyhedral structure Q can be made convex, without altering the
complexity of the construction, by adding O(n) additional cuboid cells filling
the gaps.

We believe that our techniques generalize to d dimensions, but, due to space
consideration, the extension falls outside the scope of this work.

Acknowledgement. The authors would like to thank the referees for valuable com-
ments made. The third author would like to thank Erik van Leeuwen, Ioana Bercea,
Karl Bringmann, and Michael Sagraloff for fruitful initial discussions which took place
while that author was visiting Max-Planck Institute, Algorithms, Saarbrücken.

References

1. Aleksandrov, L., Djidjev, H.N., Guo, H., Maheshwari, A., Nussbaum, D., Sack,
J.-R.: Algorithms for approximate shortest path queries on weighted polyhedral
surfaces. Discrete Comput. Geom. 44(4), 762–801 (2009). https://doi.org/10.1007/
s00454-009-9204-0

2. Aleksandrov, L., Djidjev, H., Maheshwari, A., Sack, J.-R.: An approximation algo-
rithm for computing shortest paths in weighted 3-D domains. Discrete Comput.
Geom. 50(1), 124–184 (2013). https://doi.org/10.1007/s00454-013-9486-0

https://doi.org/10.1007/s00454-009-9204-0
https://doi.org/10.1007/s00454-009-9204-0
https://doi.org/10.1007/s00454-013-9486-0

246 F. Bauernöppel et al.

3. Aleksandrov, L., Maheshwari, A., Sack, J.: Determining approximate shortest
paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005). https://doi.
org/10.1145/1044731.1044733

4. The Boost C++ Library. http://www.boost.org/
5. Bose, P., Maheshwari, A., Shu, C., Wuhrer, S.: A survey of geodesic paths on

3D surfaces. Comput. Geom. 44(9), 486–498 (2011). https://doi.org/10.1016/j.
comgeo.2011.05.006

6. Canny, J.F., Reif, J.H.: New lower bound techniques for robot motion planning
problems. In: Proceedings of the 28th Annual Symposium on Foundations of Com-
puter Science, Los Angeles, California, USA, 27–29 October 1987, pp. 49–60. IEEE
Computer Society (1987). https://doi.org/10.1109/SFCS.1987.42

7. Carufel, J.D., Grimm, C., Maheshwari, A., Owen, M., Smid, M.H.M.: A note on
the unsolvability of the weighted region shortest path problem. Comput. Geom.
47(7), 724–727 (2014). https://doi.org/10.1016/j.comgeo.2014.02.004

8. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

9. Leonhardt, U., Philbin, T.: Geometry and Light: The Science of Invisibility. Courier
Dover Publications (2012)

10. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: finding short-
est paths through a weighted planar subdivision. J. ACM 38(1), 18–73 (1991).
https://doi.org/10.1145/102782.102784

11. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions.
In: Proceedings of the 20th Annual Symposium on Computational Geometry,
SCG 2004, pp. 124–133. ACM, New York (2004). https://doi.org/10.1145/997817.
997839

12. OpenVolumeMesh - A Generic and Versatile Index-Based Data Structure for Poly-
topal Meshes. https://www.openvolumemesh.org/

13. P. E. Hart, N.J.N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC 4(2), 100–107 (1968)

14. ParaView - An Open-Source, Multi-Platform Data Analysis and Visualization
Application. http://www.paraview.org/

15. Si, H.: TetGen - A Quality Tetrahedral Mesh Generator and a 3D Delaunay Tri-
angulator. http://www.tetgen.org/

16. Si, H.: TetGen - A Quality Tetrahedral Mesh Generator and a 3D Delaunay Trian-
gulator. Technical report, Karl-Weierstraß-Institut für Angewandte Analysis und
Stochastik, Berlin, Germany (2013)

17. Sun, Z., Reif, J.H.: On finding approximate optimal paths in weighted regions. J.
Algorithms 58(1), 1–32 (2006). https://doi.org/10.1016/j.jalgor.2004.07.004

18. Visualization Toolkit Website. http://www.vtk.org/
19. wsp3dovm - Weighted Shortest Paths with OpenVolumeMesh. https://github.

com/FrankBau/wsp3dovm/

https://doi.org/10.1145/1044731.1044733
https://doi.org/10.1145/1044731.1044733
http://www.boost.org/
https://doi.org/10.1016/j.comgeo.2011.05.006
https://doi.org/10.1016/j.comgeo.2011.05.006
https://doi.org/10.1109/SFCS.1987.42
https://doi.org/10.1016/j.comgeo.2014.02.004
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/102782.102784
https://doi.org/10.1145/997817.997839
https://doi.org/10.1145/997817.997839
https://www.openvolumemesh.org/
http://www.paraview.org/
http://www.tetgen.org/
https://doi.org/10.1016/j.jalgor.2004.07.004
http://www.vtk.org/
https://github.com/FrankBau/wsp3dovm/
https://github.com/FrankBau/wsp3dovm/

Computing Balanced Convex Partitions
of Lines

Sergey Bereg(B)

University of Texas at Dallas, Richardson, TX, USA
besp@utdallas.edu

Abstract. Dujmović and Langerman (2013) proved a ham-sandwich cut
theorem for an arrangement of lines in the plane. Recently, Xue and
Soberón (2019) generalized it to balanced convex partitions of lines in
the plane. In this paper, we study the computational problems of com-
puting a ham-sandwich cut balanced convex partitions for an arrange-
ment of lines in the plane. We show that both problems can be solved in
polynomial time.

Keywords: Ham-sandwich theorem · Arrangement of lines · Balanced
convex partitions.

1 Introduction

Dujmović and Langerman [5] proved a ham-sandwich cut theorem for an arrange-
ment of lines in the plane. For a set L of lines in the plane, we denote by I(L)
the set of pairwise intersection points of L.

Theorem 1 (Dujmović and Langerman [5]). For any arrangements A1 and
A2 of lines in R

2, there exists a line � bounding closed halfplanes �+ and �− and
sets Aσ

i , i ∈ 1, 2, σ ∈ +,− such that Aσ
i ⊆ Ai, |Aσ

i | ≥ |Ai|1/2, and I(Aσ
i) ∈ �σ.

We show that the ham-sandwich line can be computed in polynomial time.
The ham sandwich theorem has been generalized to convex partitions of the
plane. The following theorem was proven independently by Bespamyatnikh,
Kirkpatrick, and Snoeyink [1], by Ito, Uehara, and Yokoyama [9] and by
Sakai [14].

Theorem 2 ([1, Theorem 10]). Given rn red and rm blue points in the plane
in general position, there exists a subdivision of the plane into r convex regions
each of which contains n red and m blue points.

A subdivision of the plane satisfying Theorem 2 is called equitable [1]. The
main tool in the proof of Theorem 2 is equitable k-cuttings for k = 2, 3. A 2-
cutting is simply a partition of the plane by a line. A 3-cutting is a partition of
the plane into 3 wedges by 3 rays starting from the same point.

Recently, Xue and Soberón [16] generalized Theorem 1 as follows. We use
the notation [k] = {1, 2, . . . , k}.

The research is supported in part by NSF award CCF-1718994.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 247–257, 2020.
https://doi.org/10.1007/978-3-030-61792-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_20

248 S. Bereg

Theorem 3 (Xue and Soberón [16]). Let A,B be two finite sets of lines in
R

2 such that A ∪ B is in general position, and let r be a fixed positive integer.
Then, there is a convex partition (C1, . . . , Cr) of R2 into r parts such that for
all j ∈ [r] there exist sets Aj ⊂ A, Bj ⊂ B such that I(Aj) ⊂ Cj , I(Bj) ⊂ Cj

and
|Aj | ≥ rln(2/3)|A|1/r − 2r, |Bj | ≥ rln(2/3)|B|1/r − 2r.

In this paper a convex partition satisfying the conditions of Theorem 3 is
called an equitable partition of sets A and B.

The proof of Theorem 3 is similar to the proof of Theorem 2 [1]. For this, we
need a measure μ defined as follows. For a set of lines L in the plane and a set
K ⊆ R

2, we define

μL(K) = max{|L′| : L′ ⊆ L, I(L′) ⊆ K}.

The main idea is to apply equitable k-cuttings for k = 2, 3 to obtain the
desired partition.

Definition 1. Let A,B be two finite sets of lines in R
2 such that A ∪ B is in

general position, and let r be a fixed positive integer. A 2-cutting of the plane
into two parts (C1, C2) is called equitable if there exist two positive integers r1, r2
such that r1 + r2 = r and

μA(Ci) ≥
(

2A|
3

)ri/r

− 2, μB(Ci) ≥
(

2|B|
3

)ri/r

− 2 for i = 1, 2.

Definition 2. Let A,B be two finite sets of lines in R
2 such that A ∪ B is in

general position, and let r be a fixed positive integer. A 3-cutting of the plane
into three parts (C1, C2, C3) is called equitable if there exist three positive integers
r1, r2, r3 such that r1 + r2 + r3 = r and

μA(Ci) ≥
(

2A|
3

)ri/r

− 2, μB(Ci) ≥
(

2|B|
3

)ri/r

− 2 for i = 1, 2, 3.

A k-cutting is called convex if its parts are convex. Theorem 3 follows from
the following lemma [16].

Lemma 1. Let A,B be two finite sets of lines in the plane, each in general
position, and r ≥ 2 be a positive integer. Then, there exists an equitable k-cutting
for some k ∈ {2, 3}.

Our results are the following.

– We show that the ham-sandwich line for two sets of lines in the plane can be
computed in O(n2 log2 n) time (Theorem 4 in Sect. 3).

– An equitable partition of two sets of lines in the plane into r convex regions
can be computed in O(n6 log2 n log r) time (Sects. 4–7).

Computing Balanced Convex Partitions of Lines 249

2 Preliminaries

The key lemma in the proof of Theorem 1 (and Theorem 3) is the following
lemma [5].

Lemma 2. For any two open halfplanes H1 and H2 in the plane and any finite
set L of lines

μL(H1 ∪ H2) ≤ μL(H1) · μL(H2).

Xue and Soberón [16] proved a key lemma for 3-cuttings.

Lemma 3. For any convex partition of the plane into three wedges C1, C2, C3

and any set A of n lines in general position in the plane

μA(C1)μA(C2)μA(C3) ≥ 2n

3
.

3 Computing Ham-Sandwich Cuts

Let h−(t) denote the set {(x, y) | x ≤ t} and let h+(t) = {(x, y) | x ≥ t}. The
following problem is the basis of our algorithms.

Problem P1. Given a set L of lines in the plane and an integer n0 ≤ n, find
smallest x0 such that μL(h−(x0)) ≥ n0.

Lemma 4. Problem P1 can be solved in O(n log2 n) time.

Proof. For a given t, we can compute μL(h−(t)) in O(n log n) time as follows.
Let L = {l1, . . . , ln}. For each line li in L, compute its slope si and intercept ri.
Therefore, the equation of the line li is y = si(x − t) + ri. We sort the line by
the intercept and assume that l1, . . . , ln is the sorted order, i.e. r1 ≤ r2, . . . , rn.
Compute l(t), the length of the longest increasing subsequence of s1, s2, . . . , sn

in O(n log n) time [8,15].
To compute x0, we use an algorithm for slope selection [2–4,10,13]. In the

dual setting this problem is the following. Given a set L of n non-vertical lines
and an integer number k ∈ [

(
n
2

)
], we want to find two lines from L such that

their intersection point has the kth smallest x-coordinate. This problem can be
solved in O(n log n) time. We apply binary search on the values of k and compute
smallest x0 such that μL(h−(x0)) ≥ n0 using log

(
n
2

)
= O(log n) tests. The total

running time is O(n log2 n). �	
Theorem 4. Let A and B be two finite sets of lines each in the plane such that
no two lines of A ∪ B are parallel. A ham-sandwich line for the arrangement of
A ∪ B can be computed in O(n2 log2 n) time where n = |A| + |B|.
Proof. Using the algorithm for problem P1, we can compute

– x0, the smallest t such that μA(h−(t)) ≥ √|A|, and
– x1, the largest t such that μA(h+(t)) ≥ √|A|.

250 S. Bereg

The value x0 is computed by applying the algorithm to the set A and the value
x1 is computed by applying the algorithm to the set A′ that is symmetric to A,
i.e. if a line with the equation y = ax + b is in A then the line with the equation
y = −ax− b is in A′. Then x1 = −t where t is the output value of the algorithm
applied to set A′.

The interval [x0, x1] is not empty because μA(h−(t))·μA(h+(t)) ≥ |A| for any
value of t ∈ R by Lemma 2. In other words, μA(h−(t)) ≥ √|A| or μA(h+(t)) ≥√|A|. The running time for computing [x0, x1] is O(n log2 n).

We also compute an interval [x′
0, x

′
1] for set B using μB . If the intervals [x0, x1]

and [x′
0, x

′
1] intersect then the line with equation x = t is a ham-sandwich line

for any t ∈ [x0, x1] ∩ [x′
0, x

′
1]. Suppose that the intervals [x0, x1] and [x′

0, x
′
1] do

not intersect. Wlog the interval for A is to the left of the interval for B, i.e.
x1 < x′

0.
Let A(φ) (resp. B(φ)) be the set of lines A rotated clockwise by an angle φ

about the origin. Let X(φ) = [x0(φ), x1(φ)] and X ′(φ) = [x′
0(φ), x′

1(φ)] be the
corresponding intervals. We want to find an angle φ such that the intervals X(φ)
and X ′(φ) intersect.

For a set of lines L, we denote by A(L) be the arrangement of lines L.
Consider the arrangement A(A ∪ B). Let V be the set of

(|A|+|B|
2

)
vertices of

the arrangement A(A ∪ B). Let L be the set of all lines that contain at least
two points of V . Let φ1, φ2, . . . , φ|L| be the sorted sequence of the slopes of
lines in L. Consider an interval I = (φi, φi+1). For any φ ∈ I, the numbers
x0(φ), x1(φ), x′

0(φ), x′
1(φ) preserve the order since each of them corresponds to

a vertex of V rotated clockwise by angle φ. Therefore the intervals X(φ) and
X ′(φ) preserve the relation for all φ ∈ I, i.e. either (i) they intersect or (ii) X(φ)
is to the left of X ′(φ) or (iii) X(φ) is to the right of X ′(φ), for all φ ∈ I.

We want to find an interval I = (φi, φi+1) such that X(φ) and X ′(φ) intersect
for all φ ∈ I. Note that, for all φ in the first interval φ ∈ (−∞, φ1) the interval
X(φ) is to the left of the interval X ′(φ) since 0 ∈ (−∞, φ1). Also for all φ in the
last interval φ ∈ (φ|L|,∞) the interval X(φ) is to the right of the interval X ′(φ)
since π ∈ (φ|L|,∞). We apply binary search on the sequence φ1, φ2, . . . , φ|L|. For
any interval I = (φi, φi+1), we pick φ ∈ I and compute the intervals X(φ) and
X ′(φ) in O(n log2 n) time (the rotation of the lines A ∪ B by φ can be done in
linear time). The total time for computing these intervals is O(n log3 n). For binary
search we use the slope selection for the set of points V . Each slope selection takes
O(|V | log |V |) time [2–4,10,13]. Then the total time is O(n2 log2 n). �	

4 Computing an Equitable Partition

Our algorithm for computing an equitable partition of the plane is based on equi-
table 2- and 3-cuttings. In this section we show how 2-cuttings can be computed.
In particular, we need to find the pair (r1, r2) for an equitable 2-cutting.

For convenience, let M(X, i) =
⌈(

2|X|
3

)i/r
⌉

− 2 for i ∈ [r − 1].

Computing Balanced Convex Partitions of Lines 251

We define the sign σ(i) for i ∈ [r−1] as follows. As in the proof of Theorem4,
we compute

– x0, the smallest t such that μA(h−(t)) ≥ M(A, i), and
– x1, the largest t such that μA(h+(t)) ≥ M(A, r − i).

We also compute an interval [x′
0, x

′
1] for set B using μB and the lower bounds

M(B, i),M(B, r − i). If the intervals [x0, x1] and [x′
0, x

′
1] intersect then, for any

t ∈ [x0, x1] ∩ [x′
0, x

′
1], the line with equation x = t is an equitable 2-cutting for

(r1, r2) = (i, r − i). We assign σ(i) = 0 in this case. Suppose that the intervals
[x0, x1] and [x′

0, x
′
1] do not intersect. If x1 < x′

0, we set σ(i) = 1; otherwise
x0 > x′

1 and we set σ(i) = −1.
We apply the algorithm from Lemma 4 to compute the sign sequence σ(1),

σ(2), . . . , σ(r−1) in O(rn log2 n) time. If there is a sign σ(i) = 0 then an equitable
2-cutting (by a vertical line) is found. Suppose that σ(i) = ±1 for all i ∈ [r − 1].
We apply the following theorem from [1].

Theorem 5 ([1]). For any sequence of signs σ(1), σ(2), . . . , σ(r−1) with σ(i) =
±1, there is a pair (r1, r2) or a triple (r1, r2, r3) with sum r and the same signs
such that any 1 ≤ ri ≤ 2r/3.

The proof of Theorem 5 [1] implies that a pair (r1, r2) or a triple (r1, r2, r3)
can be computed in O(r) time if the sequence of signs is known. If it is a pair
(r1, r2) then we can compute an equitable 2-cutting for (r1, r2) as follows.

As in the proof of Theorem 4, we use the rotated sets A(φ) and B(φ)). We
can also define, for the sets A(φ) and B(φ)) and any i ∈ [r − 1],

(i) the corresponding intervals X(φ, i) = [x0(φ, i), x1(φ, i)] and X ′(φ) = [x′
0(φ, i),

x′
1(φ, i)], and

(ii) the signs σ(φ, i).
Suppose that σ(φ, i) �= σ(0, i) for some angle φ and i ∈ [r − 1]. Then an

equitable 2-cutting for (i, r − i) can be found using binary search in the set of
slopes φ1, φ2, . . . as in the proof of Theorem 4.

Fig. 1. The intervals for φ = 0, i = r1 and φ = π, i = r2 projected on the x-axis.

Note that X(0, i) = X(π, r − i) and X ′(0, i) = X ′(π, r − i) for i ∈ [r − 1].
Then σ(π, r − i) = −σ(0, i). Then σ(π, r2) = −σ(0, r1) = −σ(0, r2), see Fig. 1.
Thus, we can find an equitable 2-cutting for (r1, r2).

252 S. Bereg

Lemma 5. If there is a pair (r1, r2) with sum r such that σ(r1) = σ(r2), then
an equitable 2-cutting for (r1, r2) can be computed in O(n2 log2 n) time.

Note that a ham-sandwich cut for two point sets in the plane can be computed
in linear time [12] and an equitable subdivision of two point sets in the plane
can be computed in subquadratic time [1].

In the subsequent sections we will deal with 3-cuttings. We also may assume
that, for any i ∈ [r − 1], the sign function σ(π, i) is invariant for all θ as an
equitable 2-cutting can be found otherwise.

5 Computing the Measure of a Wedge

In this section we present an algorithm for computing μL(W) for any set of lines
L and a wedge W in the plane. We can assume that W = {(x, y) | x, y ≥ 0} by
using affine transformations. Lines in L intersect both the x- and the y-axis. Let
x1, . . . , xk and y1, . . . , ym be the sorted coordinates of the intersection points,
see Fig. 2.

x1

y1

y2

y3

y4
y5

y6

y1

x2 x3 x4 x5 x6 x7

Fig. 2. 8 lines crossing the wedge W = {(x, y) | x, y ≥ 0}. μL(W) = 5 and the
corresponding 5 lines are shown in bold.

The wedge W is between two rays RX = {(x, 0) | x > 0} and RX =
{(0, y) | y > 0}. There are three types of lines intersecting W . Let LX be the set
of lines intersecting RX but not RY and let LY be the set of lines intersecting
RY but not RX . Let LXY be the set of lines intersecting both RX and RY .

Lemma 6. Let L′ be a subset of L such that I(L′) ⊂ W . There exists a pair
(i, j) such that
(i) any line in L′ ∩ LXY intersects the x-axis at xi′ ≥ xi and the y-axis at
yj′ ≥ yj,
(ii) any line in L′ ∩ LX intersects the x-axis at xi′ < xi and
(iii) any line in L′ ∩ LY intersects the y-axis at yj′ < yj.

Computing Balanced Convex Partitions of Lines 253

Proof. Let xi be the smallest x-intercept of a line in L′ ∩ LXY and let l1 be
this line. Let yj be the smallest y-intercept of a line in L′ ∩ LXY and let l2 be
this line. Clearly, the condition (i) holds. The condition (ii) holds too; otherwise
line l1 does not intersect all the lines in LX . Similarly, the condition (iii) holds;
otherwise line l2 does not intersect all the lines in LY . �	

We call a set of lines L′ satisfying the conditions (i)-(iii) of Lemma 6, (i, j)-set
of lines. For every (i, j), we compute L∗

i,j , a largest (i, j)-set of lines. By Lemma 6,
μL(W) = |L∗

i,j |.
Let x(l) and y(l) denote the x- and the y-intercept of a line, i.e. the equation

of l can be expressed as y = ax + y(l) and y = a(x − x(l)). For every pair
(i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ m, we show how to compute the largest
set L′ ⊆ LXY such that I(L′) ⊂ W . Let L′ = {l1, . . . , ls} be a set of lines
in LXY with x(l1) ≥ x(l2) ≥ . . .x(ls) ≥ xi and y(l1),y(l2), . . . ,y(ls) ≥ yj .
Then I(L′) ⊂ W if and only if y(l1) ≤ y(l2) ≤ · · · ≤ y(ls), for example three
lines with x-intercepts x6, x4, and x3 in Fig. 2 have y-intercepts y3, y4, and
y6, respectively. Therefore, we can use an algorithm for computing the longest
increasing subsequence of y(l1),y(l2), . . . ,y(ls) in O(n log n) time [8,15].

For every pair (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ m, we show how to compute
the largest set L′ ⊆ LX ∪ LY such that I(L′) ⊂ W . Let L′ = {l1, . . . , ls} be
a set of lines in LX ∪ LY satisfying (i) and (ii). Suppose that they are sorted
as follows. The lines from LX first, then the lines from LY . The lines from LX

are sorted by x-intercept in decreasing order. The lines from LY are sorted by
y-intercept in increasing order. Then I(L′) ⊂ W if and only if the slopes of he
lines in L′ are decreasing. Therefore, we can use an algorithm for computing the
longest decreasing subsequence in O(n log n) time.

Therefore |L∗
i,j | = |A∗

i,j |+|B∗
i,j | where |A∗

i,j | is the maximum size of L′ ⊆ LXY

for (i, j) and |B∗
i,j | is the maximum size of L′ ⊆ LX ∪ LY for (i, j). If we use the

longest increasing/decreasing subsequence for all pairs (i, j), the total running
time will be O(n3 log n). We show that it can be reduced to O(n2 log n).

We compute |A∗
i,j | using |A∗

i+1,j |. Consider line lt with x(lt) = xi. If
y(lt) < yj , line lt can be ignored. If y(lt) ≥ yj , we add it to the sequence
y(l1),y(l2), . . . ,y(ls) and compute the length of the longest increasing subse-
quence (LIS) of the new sequence. Since we add a new element to it, the length
of LIS can be updated in O(log n) time. Similarly, the values of |B∗

i,j | can be
computed. Then the total running time is O(n2 log n).

Theorem 6. For any set L of n lines in the plane and any wedge W , the mea-
sure μL(W) can be computed in O(n2 log n) time.

6 Computing Canonical Cuttings

Let (r1, r2, r3) be the triple provided by Theorem 5 (we assume that a pair
(r1, r2) does not exist).

254 S. Bereg

Similar to [1,16] we define a canonical cutting. For a point p, construct three
rays r0, r1 and r2 starting from p. The first ray r0 is pointing downwards. Let
Ci, i = 1, 2 be the region defined by rays r0 and ri as shown in Fig. 3. Let
αi, i = 1, 2 be the angle rays r0 and ri. The canonical cutting is defined by
choosing αi, i = 1, 2 to be the smallest angle such that μA(Ci) ≥ M(A, ri). We
also denote these angles αi(p), i = 1, 2. Let C3 be the region between rays r1
and r2, see Fig. 3. By Lemma 3, μA(C3) ≥ M(A, r3).

α1

α2

C1

C2

C3

I(A′)

I(A′′)

r0

r1

r2

p

Fig. 3. Canonical 3-cutting.

Lemma 7. For any point p in the plane, the canonical 3-cutting can be computed
in O(n2 log2 n) time.

Proof. First, we compute I(A) in O(n2) time. For every point q ∈ I(A), compute
the slope of the vector pq. Sort I(A) by slope. Compute ray r1 of the canonical
3-cutting at p by using binary search in the sorted set I(A). For any slope s in the
binary search, compute the measure μA(C1) using the algorithm from Theorem6.
Similarly the ray r2 can be computed. The total time is O(n2 log2 n). �	

The locus of all points p defining a convex canonical 3-cutting is

R = {p ∈ R
2 | x0 ≤ px ≤ x1 and α1(p) + α2(p) ≥ π}.

The region R contains an apex of an equitable 3-cutting [16]. It can be proven
using a coloring: a point p ∈ R has color i ∈ [3] if μB(Ci) ≥ M(B, ri). Note that

Computing Balanced Convex Partitions of Lines 255

a point may have more than one color and a point with three colors is an apex
of the equitable 3-cutting. It exists by the following theorem which is applied to
region R. The sides of the triangle correspond to the left/right and top sides of
R, see Fig. 4.

Theorem 7 (Knaster, Kuratowski, Mazurkiewicz [11]). Let Δ be a trian-
gle with vertices 1, 2, 3. Suppose that Δ is colored with colors {1, 2, 3} such that
every vertex i has color i, and every point on a side ij has at least one of the
colors i or j. If every color class is a closed set, then there is a point with all
three colors.

Fig. 4. Region R.

7 Computing an Equitable 3-Cutting

In this section we show that an equitable 2- or 3-cutting can be computed
efficiently.

Theorem 8. Let A,B be two finite sets of points in the plane, each in general
position, and r ≥ 2 be a positive integer. An equitable k-cutting for some k ∈
{2, 3} can be computed in O(n6 log2 n) time.

256 S. Bereg

Proof. Let V be the set of vertices of the arrangement of lines L = A ∪ B. Let
L be the union of
(i) the set lines passing through two points of V , and
(ii) the vertical lines passing through V .
Then the arrangement L contains O(n2) lines and O(n4) faces.

We apply the topological sweep method of Edelsbrunner and Guibas [6,7] to
traverse the faces of the arrangement of L. For each face F of the arrangement,
we can check the boundary conditions of the region R using angles αi, i ∈ [3]
computed for some point p ∈ F . If the canonical 3-cutting is convex, we compute
the coloring of the face. The algorithm stops if all three colors are used for p.
Note that all the points in F have the same coloring. When we reach the top
boundary of region R, we also check the sign of C3. If it is opposite of σ(r3)
we apply the algorithm for computing an equitable 2-cutting from Sect. 4. The
total running time is O(n6 log2 n). �	

Using the partition of r from Sect. 4, we conclude

Corollary 1. Let A,B be two finite sets of lines in R
2 such that A ∪ B is in

general position, and let r be a positive integer. Then, an equitable partition of
R

2 into r convex regions can be computed in O(n6 log2 n log r) time.

References

1. Bespamyatnikh, S., Kirkpatrick, D., Snoeyink, J.: Generalizing ham sandwich cuts
to equitable subdivisions. Discrete Comput. Geom. 24(4), 605–622 (2000)

2. Brönnimann, H., Chazelle, B.: Optimal slope selection via cuttings. Comput.
Geom. Theory Appl. 10(1), 23–29 (1998)

3. Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for
slope selection. SIAM J. Comput. 18(4), 792–810 (1989)

4. Dillencourt, M.B., Mount, D.M., Netanyahu, N.S.: A randomized algorithm for
slope selection. Internat. J. Comput. Geom. Appl. 2, 1–27 (1992)

5. Dujmovic, V., Langerman, S.: A center transversal theorem for hyperplanes and
applications to graph drawing. Discrete Comput. Geom. 49(1), 74–88 (2013)

6. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Com-
put. Syst. Sci. 38, 165–194 (1989). Corrigendum in 42 (1991), 249–251

7. Edelsbrunner, H., Souvaine, D.L.: Computing median-of-squares regression lines
and guided topological sweep. J. Am. Statist. Assoc. 85, 115–119 (1990)

8. Fredman, M.L.: On computing the length of longest increasing subsequences. Dis-
crete Math. 11(1), 29–35 (1975)

9. Ito, H., Uehara, H., Yokoyama, M.: 2-dimension ham sandwich theorem for par-
titioning into three convex pieces. In: Akiyama, J., Kano, M., Urabe, M. (eds.)
JCDCG 1998. LNCS, vol. 1763, pp. 129–157. Springer, Heidelberg (2000). https://
doi.org/10.1007/978-3-540-46515-7 11

10. Katz, M.J., Sharir, M.: Optimal slope selection via expanders. Inform. Process.
Lett. 47, 115–122 (1993)

11. Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein beweis des fixpunktsatzes für
n-dimensionale simplexe. Fundamenta Mathematicae 14(1), 132–137 (1929)

https://doi.org/10.1007/978-3-540-46515-7_11
https://doi.org/10.1007/978-3-540-46515-7_11

Computing Balanced Convex Partitions of Lines 257

12. Lo, C.Y., Matoušek, J., Steiger, W.L.: Algorithms for ham-sandwich cuts. Discrete
Comput. Geom. 11, 433–452 (1994)

13. Matoušek, J.: Randomized optimal algorithm for slope selection. Inform. Process.
Lett. 39, 183–187 (1991)

14. Sakai, T.: Balanced convex partitions of measures in R2. Graphs Combinat. 18(1),
169–192 (2002)

15. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13,
179–191 (1961)

16. Xue, A., Soberón, P.: Balanced convex partitions of lines in the plane. arXiv e-
prints p. 1910.06231 (2019). https://arxiv.org/abs/1910.06231

https://arxiv.org/abs/1910.06231

Ordered Strip Packing

K. Buchin1, D. Kosolobov2, W. Sonke1(B), B. Speckmann1, and K. Verbeek1

1 TU Eindhoven, Eindhoven, The Netherlands
{k.a.buchin,w.m.sonke,b.speckmann,k.a.b.verbeek}@tue.nl

2 Ural Federal University, Yekaterinburg, Russia
dkosolobov@mail.ru

Abstract. We study an ordered variant of the well-known strip packing
problem, which is motivated by applications in visualization and typog-
raphy. Our input consists of a maximum width W and an ordered list
of n blocks (rectangles). The goal is to pack the blocks into rows (not
exceeding W) while obeying the given order and minimizing either the
number of rows or the total height of the drawing. We consider two vari-
ants: (1) non-overlapping row drawing (NORD), where distinct rows can-
not share y-coordinates, and (2) overlapping row drawing (ORD), where
consecutive rows may overlap vertically. We present an algorithm that
computes the minimum-height NORD in O(n) time. Further, we study
the worst-case tradeoffs between the two optimization criteria—number
of rows and total height—for both NORD and ORD. Surprisingly, we
show that the minimum-height ORD may require Ω(log n/log log n)
times as many rows as the minimum-row ORD. The proof of the match-
ing upper bound employs a novel application of information entropy.

Keywords: Linear layouts · Packing

1 Introduction

Packing problems arise in many practical applications and have hence been stud-
ied extensively in the literature. Two well-known classes of 2D packing problems
are bin packing and strip packing. In both problems, the aim is to pack (without
rotation) a set of blocks (rectangles) into a shape such that they are internally
disjoint. The goal of bin packing is to pack the blocks into rectangular bins of
the same (given) size while minimizing the number k of bins used. The goal of
strip packing is to pack the blocks into a strip of fixed width W and infinite
height while minimizing the height H of the strip used.

In this paper we introduce a new ordered variant of strip packing where we are
also given an order on the blocks which the packing must obey. Such orders arise
naturally in applications such as typography or visualization: When dividing the

W. Sonke, B. Speckmann and K. Verbeek—Partially supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 639.023.208 (W.S. and
B.S.) and no. 639.021.541 (K.V.).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 258–270, 2020.
https://doi.org/10.1007/978-3-030-61792-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_21

Ordered Strip Packing 259

text in a paragraph into lines, it is obviously necessary to retain the word order
(see, for example, the word wrapping algorithm by Knuth and Plass still used in
TEX [4]). Or consider the visual layout of linear sequences such as time lines or
industrial processes: to make better use of the available screen space the linear
layouts need to be “folded” into a strip (the screen) while keeping the sequence
intact (see Fig. 1).

Fig. 1. Process visualization [9].

Problem Statement. Our input consists
of an ordered list B of n blocks and a max-
imum width W . Each block b = (wb, h

↑
b , h

↓
b)

is specified by its width wb, its top height
h↑

b , and its bottom height h↓
b . The goal is to

place the blocks on rows. Each row consists
of a horizontal line called the spine, on which
blocks are aligned vertically (see Fig. 2a).
The top and bottom heights h↑

b and h↓
b spec-

ify how much block b sticks out above and
below the spine, respectively. A solution consists of a set of y-coordinates for
the spines, and, for every block, a row and an x-coordinate. More precisely, the
placement (drawing) of the blocks must follow these rules:

1. All blocks are interior disjoint.
2. All blocks lie completely in the x-range [0,W].
3. The height of a block b above (below) the assigned spine is h↑

b (h↓
b).

4. The interior of a block may not overlap with the spine of another row.
5. The order of the blocks from top to bottom, and then from left to right, must

coincide with the specified order in the input (see Fig. 2b).

We consider two natural optimization questions: (1) minimizing the total height
of the drawing, and (2) minimizing the number of rows. Furthermore, we dis-
tinguish two versions: In a non-overlapping rows drawing (NORD), blocks on
different rows may not share the same y-coordinates (see Fig. 2b). In an overlap-
ping rows drawing (ORD) this restriction is omitted (see Fig. 2c). Minimizing the
total height of an ORD is NP-hard, while a NORD of minimum total height can
be computed in O(n2) time [9]. Furthermore, NORDs and ORDs that minimize
the number of rows can easily be computed greedily in polynomial time.

(b) NORD. (c) ORD.(a) List of blocks.

Fig. 2. Minimum-height NORD and ORD of a list of blocks.

260 K. Buchin et al.

Related Work. 2D bin packing and strip packing have been widely studied.
Both problems are NP-hard, since 1D bin packing is already NP-hard [5]. Hence,
research has focused on approximation algorithms. See, for example, the surveys
by Coffman et al. [1] and Lodi et al. [7]. Some online approximation algorithms
for strip packing are level-based, that is, they layout blocks on horizontal levels,
akin to rows in our problem. For example, the next-fit algorithm [3] greedily puts
blocks on a level in the input order, until the next block does not fit anymore.
This algorithm therefore produces minimum-row NORDs.

The ordered strip packing problem for NORDs is related to the word wrap
problem, where the aim is to split a list of words into lines such that some quality
measure, usually defined in terms of line lengths, is maximized. Knuth and Plass
proposed an algorithm for word wrapping, which is still in use in TEX [4].

Ordered strip packing for NORDs can be considered a special case of the
least-weight subsequence problem, which was introduced by Hirschberg and Lar-
more [2] as a generalization of the word wrap problem. Given a weight function
f : {1, . . . , n} × {1, . . . , n} → R, they ask for a minimum-weight subsequence S
of [1, 2, . . . , n], starting with 1 and ending with n. Here the weight of a sequence
{si}n

i=0 is given by
∑n

i=1 f(si−1, si). Hirschberg and Larmore present a straight-
forward O(n2)-time algorithm, which can be improved to O(n log n) time if f is
concave (that is, f(i, k) + f(j, l) ≤ f(i, l) + f(j, k) for all i ≤ j < k ≤ l), and
to O(n) time if the weight function satisfies an additional condition. Wilber [10]
improved this to an O(n)-time algorithm without requiring the additional condi-
tion. However, the weight function for minimum-height NORDs is not concave,
and this method thus cannot be used.

Results and Organization. In Sect. 2 we present a new algorithm that can
compute a minimum-height NORD with n blocks in O(n) time, improving upon
the best known existing algorithm [9] that runs in O(n2) time. In Sect. 3 we
study the tradeoffs between the two optimization criteria: how is the height of
the drawing affected if we minimize the number of rows, and how is the number
of rows affected if we minimize the height. We present upper and lower bounds
for these tradeoffs. The most interesting and most surprising bound shows that a
minimum-height ORD may require Ω(log n/log log n) times as many rows as the
minimum-row ORD. We prove that this bound is tight using a novel application
of the information entropy function. We believe that this new way of using
entropy is of independent interest, and may have further applications in packing
problems. Omitted proofs can be found in the full version of the paper.

2 Computing NORDs

We first present a basic quadratic-time algorithm for computing minimum-height
NORDs (Sect. 2.1). We improve the running time to linear, first for vertically-
centered blocks (Sect. 2.2), and then for the general case (Sect. 2.3).

Ordered Strip Packing 261

2.1 Basic Algorithm

We need to determine for each block whether it starts a new row or not. To do
this efficiently, we use the following observation. In a k-row drawing, we call the
last block on row k − 1 the separating block.

Fig. 3. Illustration of Lemma 1, which allows us to consider only a subset of the blocks
to end row k − 1. Blocks in K↑

i and K↓
i are marked here as k↑

j and k↓
j , respectively.

Lemma 1. Let B be a list of blocks. A minimum-height NORD for B exists
such that the separating block either (1) has larger top height than all blocks on
the last row, or (2) has larger bottom height than all blocks on the last row, or
(3) together with the blocks on the last row, has total width larger than W .

We process the blocks in order, incrementally creating minimum-height NORDs
for the first 1, . . . , n blocks. Assume that we are constructing a minimum-height
NORD for the first i blocks. By Lemma 1 we only consider drawings in which the
separating block satisfies conditions (1), (2), or (3). Let k∗ be the smallest integer
such that blocks k∗ + 1, . . . , i have total width at most W . Blocks 1, . . . , k∗ − 1
cannot serve as the separating block, because that would overfill the last row.
The blocks k after k∗ that satisfy condition (1) are those with successively larger
top heights (starting at block i going backwards to k∗); they form a “staircase”
pattern. We call the set of these blocks the top candidate set K↑

i for blocks
1, . . . , i. Similarly, the blocks k after k∗ that satisfy condition (2) form a staircase
of increasing bottom heights; we call this the bottom candidate set K↓

i (see
Fig. 3). After computing K↑

i , K↓
i , and k∗, we compute

T [i] = min
k∈K↑

i ∪K↓
i ∪{k∗}

(
T [k] + hrow(k + 1, i)

)
,

where hrow(k + 1, i) := h↑
row(k + 1, i) + h↓

row(k + 1, i), h↑
row(k + 1, i) = max{h↑

j |
j = k + 1, . . . , i}, and h↓

row(k + 1, i) = max{h↓
j | j = k + 1, . . . , i} are the height,

top height, and bottom height of a row with blocks k + 1, . . . , i. It follows from
Lemma 1 that T [i], for i = 1, . . . , n, is the height of a minimum-height NORD
for the blocks 1, . . . , i, provided T [0] = 0. As sets K↑

i and K↓
i may have linear

size, computing T [i] takes O(i) time, resulting in a total running time of O(n2).

262 K. Buchin et al.

2.2 Algorithm for Vertically Centered Blocks

Next we consider the special case when all blocks are vertically centered, i.e.,
h↑

i = h↓
i for all blocks i. We denote the total height of block i by hi (= h↑

i + h↓
i).

Since the top and bottom candidate sets K↑
i and K↓

i coincide in this case, we
denote them simply as Ki.

Fix i and the corresponding k∗ defined as before. Let k1, . . . , ks denote all
blocks from Ki in the right-to-left order, so that k∗ < ks < · · · < k1 < i.
Recall that Ki consists exactly of all blocks k between k∗ and i such that
hk > max{hk+1, hk+2, . . . , hi} and, thus, hks

> . . . > hk1 . Therefore, the value
hrow(k + 1, i), for k ∈ Ki ∪ {k∗}, can be determined as follows:

hrow(k1 + 1, i) = hi;
hrow(kj + 1, i) = hkj−1 , for 1 < j ≤ s;
hrow(k∗ + 1, i) = hks

.

Instead of a näıve linear computation of the minimum as in the quadratic algo-
rithm, we store Ki in a so-called mindeque [6]: a deque that supports the standard
insertions and deletions in constant amortized time and that can compute the
minimum of the values assigned to its elements in constant time. We assign to
each kj ∈ Ki the value T [kj] + hkj−1 , for j > 1, and T [k1] + hi, for j = 1.
Therefore, one can calculate T [i] = mink∈Ki∪{k∗}(T [k] + hrow(k + 1, i)) as the
minimum of T [k∗] + hks

and all values assigned to the deque blocks. Thus, T [i]
can be calculated in O(1) time.

It remains to show that the mindeque storing Ki can be maintained with O(n)
insertions and deletions. For this, we describe how to modify k∗ and transform Ki

into Ki+1. First, k∗ is updated by consecutive increments until hk∗+1 + · · · +
hi+1 ≤ W . From Ki we have to remove the blocks that are to the left of the new
k∗. Thus, we dequeue the leftmost blocks ks, ks+1, . . . , kt with ks < · · · < kt ≤
k∗ < kt+1 for the new k∗ (or kt = k1 if k1 ≤ k∗). Denote by K ′

i the updated set
Ki. As k∗ does not decrease, in total at most O(n) such deletions are performed.

A block k belongs to Ki+1 iff hk > maxk<j≤i+1 hj and k∗ < k < i + 1.
However, K ′

i contains exactly all k such that hk > maxk<j≤i hj and k∗ < k < i.
To obtain Ki+1 from K ′

i we still need to remove all k ∈ K ′
i with hk ≤ hi+1

and then insert the block i if hi > hi+1. Now since hks
> · · · > hk1 , the blocks

to be removed are rightmost in K ′
i. Thus, we can dequeue blocks kp, . . . , k1

until hkp+1 > hi+1 ≥ hkp
. Thus, all modifications can be performed by deque

operations.
As described above, any block is added at most once to the mindeque, and

therefore any block is removed at most once. Thus, we perform O(n) mindeque
operations in total and the overall running time is linear. Since the mindeque
data structure can identify an element on which the minimum is attained, a
minimum-height NORD can be reconstructed via standard backtracking.

Theorem 1. A minimum-height NORD of n vertically-centered blocks can be
computed in O(n) time using a mindeque.

Ordered Strip Packing 263

2.3 General Linear Algorithm

Consider the general case where h↑
i and h↓

i can differ. Fix i and k∗ and denote
by k↑

1 , . . . , k
↑
s and k↓

1 , . . . , k
↓
t all blocks of K↑

i and K↓
i in the right-to-left order.

By definition, K↑
i contains exactly all blocks k such that k∗ < k < i and h↑

k >

maxk<j≤i h↑
j ; similarly, k ∈ K↓

i iff k ∈ (k∗, i) and h↓
k > maxk<j≤i h↓

j . Therefore,
as in Sect. 2.2, K↑

i can be maintained in a deque and transformed into K↑
i+1

by removing the leftmost blocks ‘swept’ by k∗ and the rightmost blocks k with
h↑

k ≤ h↑
i+1, and by inserting i if h↑

i > h↑
i+1. In total, this requires O(n) operations

when i passes from 1 to n; K↓
i can be processed analogously. It is unclear,

however, how to efficiently use these two deques, since maintaining the row
heights associated with the blocks in K↑

i and K↓
i requires a more subtle approach.

We split K↑
i into maximal contiguous subsequences that do not interleave K↓

i :
(k↑

j�+1, k
↑
j�+2, . . . , k

↑
j�+1

)p
�=0, where for all k ∈ K↓

i either k > k↑
j�+1 or k↑

j�+1
≥ k

and 0 = j0 < · · · < jp = s. Likewise, K↓
i is split into (k↓

j′
�+1, k

↓
j′
�+2, . . . , k

↑
j′
�+1

)q
�=0

non-interleaving with K↑
i , where 0 = j′

0 < · · · < j′
q = t. The subsequences are

arranged from right to left and each of them is stored in a separate mindeque d�

(the values assigned to the blocks for d� are defined below) in this order:

k↑
1 , k

↑
2 , . . . , k

↑
j1︸ ︷︷ ︸

d1

, k↓
1 , k

↓
2 , . . . , k

↓
j′
1︸ ︷︷ ︸

d2

, k↑
j1+1, k

↑
j1+2, . . . , k

↑
j2︸ ︷︷ ︸

d3

, k↓
j′
1+1, k

↓
j′
1+2, . . . , k

↓
j′
2︸ ︷︷ ︸

d4

, . . .

The sequence is non-increasing and only adjacent blocks k↑
j�

, k↓
j′
�−1+1 or k↓

j′
�
, k↑

j�+1

can coincide in it (such blocks belong to both top and bottom candidate sets).
When i increases, some rightmost and leftmost blocks from K↑

i and K↓
i are

removed and, in the process, some d� might be deleted entirely. To retain max-
imality of the subsequences, we then have to join some d�. In order to do this
efficiently, we store d� as catenable mindeques [6] that can be concatenated in
O(1) amortized time. Thus, all the d� are maintained in O(n) overall time.

For any block k, we have maxk<j≤i h↓
j = h↓

b for b = min{b ∈ K↓
i ∪{i} : k < b}.

Hence, given a deque d� whose blocks are from K↑
i , all its blocks k yield the same

value maxk<j≤i h↓
j , which we denote a�: if � = 1, a� = h↓

i ; otherwise, a� = h↓
m,

where m is the leftmost block in d�−1 that is not in d� (observe that d� and d�−1

can share a block only if d� contains only one block). Analogously, for d� ⊆ K↓
i

the maximum maxk<j≤i h↑
j is the same for all k ∈ d� and we denote it a�.

Each mindeque d� can compute the minimum, denoted min d�, of the values
assigned to its blocks. We assign to each k↑

r ∈ K↑
i (resp., k↓

r ∈ K↓
i) the value

T [k↑
r]+h↑

k↑
r−1

(resp., T [k↓
r]+h↓

k↓
r−1

), for r > 1, and T [k↑
1]+h↑

i (resp., T [k↓
1]+h↓

i), for

r = 1. We store pointers to d1, d2, . . . in a mindeque D and assign a� +min d� to
the pointer to d�; D is easy to maintain along with the deques d� in O(n) overall
time. Recall that T [i] = min{T [k]+hrow(k+1, i) : k ∈ K↑

i ∪K↓
i ∪{k∗}}. For each

k↑
r with r > 1, we have T [k↑

r] + hrow(k↑
r + 1, i) = T [k↑

r] + h↑
r−1 + maxk↑

r<j≤i hj .

264 K. Buchin et al.

Observe that for the deque d� containing k↑
r , maxk↑

r<j≤i hj = a� and the value

T [k↑
r] + h↑

r−1 is assigned to k↑
r ; we analogously analyze T [k] + hrow(k + 1, i) for

k equal to k↑
1 , k↓

1 , and k↓
r with r > 1. Therefore, one can compute T [i] as the

minimum of minD and T [k∗] + hrow(k∗ + 1, i), where hrow(k∗ + 1, i) = h↑
s + h↓

t .

Theorem 2. A minimum-height NORD of n blocks can be found in O(n) time.

Table 1. All tradeoffs between minimizing rows and height for NORDs and ORDs.

Type α(n) β(n)

Lower Upper Lower Upper

NORD ≥2 ≤2 ≥3/2 ≤2

ORD ≥4 ≤4 Ω(log n/log log n) O(log n/log log n)

3 Optimization Tradeoffs

Depending on the application, we may want to either minimize the number of
rows of the drawing, minimize the total height, or a combination. To study
the effect of the two optimization criteria, we analyze the worst-case tradeoffs
between them. More precisely, we consider the worst-case ratio α(n) between
the heights of minimum-row and minimum-height drawings (ORD and NORD):

α(n) := sup
list B of n blocks

height of minimum-row drawing of B

height of minimum-height drawing of B
.

Secondly we consider the worst-case ratio β(n) between the number of rows of
minimum-height and minimum-row drawings:

β(n) := sup
list B of n blocks

rows of minimum-height drawing of B

rows of minimum-row drawing of B
.

We assume that the two criteria are optimized lexicographically, for example
the minimum-height drawing has the fewest rows among all drawings with the
minimum height. All bounds are summarized in Table 1. Proofs for the simple
cases can be found in the full version of the paper. Next we analyze the most
interesting case, namely the number of rows of a minimum-height ORD.

3.1 Lower Bound for Minimum-Height ORDs

In this section we prove a lower bound on the number of rows of a minimum-
height ORD compared to the minimum-row ORD. For any integer k > 2, we
construct a list of n = Θ(kk) blocks such that a minimum-row ORD uses 2 rows,
and a minimum-height ORD requires at least k + 1 rows (see Fig. 4). Let the

Ordered Strip Packing 265

Fig. 4. Construction (here for k = 4) of a minimum-height ORD with k + 1 rows
(above), whose minimum-row ORD (below) has 2 rows. (Not to scale vertically; dis-
tances between rows given on the left.)

width of the drawing be W = kk. Row k contains one block of width kk−1. Row
k−1 contains k blocks, each of width kk−2. Generally, row i (1 ≤ i ≤ k) contains
kk−i blocks of width ki−1. Hence, for each row, the sum of its block widths is
exactly kk−1, and the sum of all block widths on rows 1, . . . , k is kk.

The top height of the blocks on row i is 2k−i+1. The bottom height of the
blocks on row i is 2k−i, that is, equal to the top height of the blocks on the
next row. However, every k-th block (starting with the first) on each row is
truncated : it has bottom height 0. This ensures that the top and bottom heights
of adjacent rows can fully overlap, so the vertical distance between the spines
of rows i and i + 1 in the minimum-height ORD D is exactly 2k−i. We add an
additional row of 2 · kk−1 blocks on top of the drawing (the blue area in Fig. 4)
that perfectly surround the kk−1 blocks on row 1. These blocks have top height
2k+1 and occupy the entire width of the row. Specifically, for every block on row
1 there is a corresponding block on row 0 with width 1 and bottom-height 0,
and between two blocks of row 1 (and at the end) there is a block on row 0 with
width k − 1 and bottom-height 2k. Therefore the total width of all blocks in the
drawing is 2kk, and the height of the drawing is 2k+2 − 1.

Lemma 2. The ORD D constructed above has minimum height, and any other
ORD D′ with fewer rows is higher.

Proof (sketch). It is easy to see that D has optimal height if the assignment of
blocks to rows is fixed. Consider the first block b in D′ that is assigned to a
different row than in D. If b is in row i in D and in row i + 1 in D′, then D′ is

266 K. Buchin et al.

higher than D, as the height of D below row i is
∑k

j=i 2k−j = 2k−i+1 − 1 and
the top height of b is already 2k−i+1. If b is in row i + 1 in D and in row i in D′,
then one of the blocks on row i cannot be placed below a truncated block of row
i − 1. Thus, the distance between row i − 1 and i is 2k+2−i instead of 2k+1−i.
Since the height of D below row i is only 2k−i+1 − 1, D′ must be higher than D.

Finally note that the total width of the blocks is exactly 2W , and we can place
the blocks on two rows. Thus, the minimum-row ORD has only 2 rows.

Theorem 3. For ORDs, β(n) = Ω(log n/log log n).

3.2 Upper Bound for Minimum-Height ORDs

We now prove that the bound in Theorem3 is tight. That is, we show that the
minimum-height ORD always has at most O(log n/log log n) times the number
of rows of the minimum-row ORD. To this end we show that, given a minimum-
height ORD D with “too many” rows, we can merge two rows into one. Since a
block on one row influences where blocks on adjacent rows can be placed, local
modification may not allow us to merge two rows, unless we can guarantee that
the merged rows have enough flexibility to move blocks horizontally.

The flexibility we have to move blocks on a given row depends on how the
blocks on adjacent rows are arranged. If all blocks on a row r are placed consecu-
tively (they form one megablock), then on the next row there is enough flexibility
to move blocks to merge (assuming the rows are not too full). However, if all
blocks on r are regularly spaced, then on the next row there may not be enough
space to move blocks at all. Hence, we move blocks on a sequence of consecutive
rows until we create a row with a single megablock. This cannot always be done
in a constant number of rows: we might need Ω(log n/log log n) rows. To measure
how close we are to a single megablock, we use an entropy-like function H on
the free space between the blocks. We say a row r is δ-dense if the total width
of the blocks on r is at most δW , where δ is the density of the row. We aim to
show that H is always reduced by some term depending on δ.

Fig. 5. Merge step: the two blue blocks are merged into a megablock.

Consider a set of k rows of the minimum-height ORD D, numbered row
1, . . . , k. Let δi be the density of row i. We first move and merge the blocks to
obtain a canonical placement of the ORD. The blocks on row 1 are fixed. We
then repeat the following operations until the ORD does not change anymore:

Ordered Strip Packing 267

1. Merge steps: merge two consecutive megablocks b1 and b2 on the same row i
into a larger megablock (see Fig. 5). A merge step is possible if and only if on
rows i − 1 and i + 1, between b1 and b2, there is a large enough gap for the
newly created megablock. There are virtual megablocks of width 0 on the left
and right side of each row. That is, the leftmost megablock will jump into
the leftmost available gap, and, if the row has more than one megablock, the
rightmost megablock will jump into the rightmost available gap.

2. Move steps: move all blocks on row 2 to the left as much as possible. If a block
starts hitting a block on row 3 below it, this block (and any other blocks on
rows i > 3 further down) are moved along until a fixed block on a higher
row is hit (possibly indirectly). The rightmost block on a row is moved to
the right instead of to the left (unless there is only one megablock). After all
blocks on row 2 are stuck, we fix the blocks on row 2 (only for this iteration
of move steps) and repeat the process for the next row, and so on.

Fig. 6. Removing x-coordinates with blocks in them to obtain the free space partition-
ing. The rows in the drawing on the right represent F1, . . . , F4.

As each merge step decreases the number of megablocks by one, we reach a
canonical placement after a finite number of steps. In the remainder of this
section we assume that we have a canonical placement of k rows. We say that
a sequence of k rows is Δ-dense if the total width of all blocks is at most ΔW
(typically, we use Δ < 1). Clearly, for a set of Δ-dense rows, δi ≤ Δ for all i.
In the following we assume w.l.o.g. that W = 1. Starting with the interval [0, 1],
we can obtain the free space partitioning of a set of rows by removing all x-
coordinates occupied by any block (see Fig. 6). The free space partitioning is
essentially a set of contiguous intervals of x-coordinates not used by any block.
Note that the total length of the free space partitioning of a set of Δ-dense rows
is at least 1 − Δ. Between two intervals of the free space partitioning there is an
interval of x-coordinates occupied by blocks. We refer to such a set of blocks as
a separator, and define the index of a separator S by the largest index of a row
with a block in S (the leftmost and rightmost separator always have index k).

Lemma 3. For a canonical placement, every internal separator S of index i
contains a block for all rows j with j ≤ i.

We define the i-th free space partitioning Fi as the partitioning that includes
only the separators with index at least i (see the right of Fig. 6), so Fi denotes
gaps on row i. Further note that Fi is always a refinement of Fi+1 by definition.

268 K. Buchin et al.

We define the entropy [8] of Fi as Hi = −∑
j xj log xj , where xj is the length

of the j-th interval of Fi. We aim to show via the entropy that, if the number of
rows k is large enough, then Fk contains at most two intervals.

Lemma 4. For a canonical placement of a Δ-dense set of rows (Δ ≤ 1/2) with
width W = 1, either Fi+1 consists of at most two intervals, or Hi − Hi+1 ≥
(1 − Δ) log((1 − Δ)/(2δi+1)), where δi+1 is the density of row i + 1.

Proof. Consider an interval I of length y in Fi+1, where Fi+1 has more than two
intervals. Since Fi is a refinement of Fi+1, I is covered by r intervals with lengths
x1, . . . , xr in Fi (see Fig. 7). Because the drawing is in canonical placement,
x1, . . . , xr each must be smaller than the sum of the widths of the two megablocks
in the separators surrounding I in Fi+1, which exist due to Lemma 3. (Otherwise
these megablocks could have merged into that gap.) We denote the sum of the
widths of the megablocks around I by z.

Fig. 7. Sketch of the free space partitionings Fi and Fi+1.

For this interval, the contribution to Hi+1 is −y log y, and the contribution
to Hi is

∑
j −xj log xj . Since xj < z for all j and

∑
j xj = y, the contribution

to Hi is at least −y log z. Thus, the contribution to the difference Hi − Hi+1 in
this interval is at least y log(y/z).

Next, we sum up these differences over all intervals of Fi+1. Let Z be the
sum of all values z, and let Y be the sum of all values y. Y is the total length
of the free space, which is at least 1 − Δ, while Z counts every block on row
i+1 at most twice, thus Z ≤ 2δi+1. Using the log sum inequality we obtain that
Hi − Hi+1 ≥ Y log Y/Z. The claim follows from the bounds on Y and Z.

The next step is to use Lemma 4 to show that we can merge two rows with-
out increasing height if we have sufficiently many rows. We first establish the
conditions under which we can merge two consecutive rows.

Lemma 5. Let D be an ORD with width W , 3 rows, and blocks of total width at
most W . Then an ORD D′ with only two rows exists which is not higher than D.

Lemma 6. Consider a Δ-dense set R of 2k + 7 consecutive rows of an ORD
D with n blocks where Δ ≤ 1/5. If (k/2)k/2 > 2n, then we can obtain another
ORD D′ for which all rows not in R and the first and last row of R are the same
as in D, D′ has one fewer rows, and the height of D′ is at most the height of D.

Ordered Strip Packing 269

Proof (sketch). First, we compute a canonical placement for the first k +1 rows,
and, rotated by 180◦, also for the last k + 1 rows (see Fig. 8). Using the log sum
inequality, the entropy of row 1 is bounded by H1 ≤ (1 − Δ) log(n/(1 − Δ)) ≤
log(2n), since Δ ≤ 1/2. By applying Lemma4 repeatedly, we obtain that both
Fk+1 and Fk+7 have only two intervals. Place the blocks on row k + 2 together
(as one megablock) as far to the left as possible; note that there is at most Δ free
space to the left of this megablock. Similarly, place the blocks on row k+6 as far
to the right as possible. For rows k+3 to k+5, the interval between [2Δ, 1−2Δ]
is free. Since the remaining width is 1 − 4Δ, and the total width of the blocks
on these 3 rows is at most Δ, we can apply Lemma 5 to the restricted interval
[2Δ, 1−2Δ] if Δ ≤ 1/5. This reduces the number of rows without increasing the
height and thus completes the proof.

Fig. 8. Sketch of the proof of Lemma 6.

Lemma 7. The minimum-height ORD D of an instance with n blocks has at
most O(r log n/log log n) rows, where r is the number of rows of the minimum-
row ORD.

Proof. Assume w.l.o.g. that W = 1. Then the total width of all blocks is at
most r. Now let k be the smallest integer such that (k/2)k/2 > 2n. Assume for
the sake of contradiction that D has more than Crk rows for some large constant
C. We partition the rows of D into consecutive groups of (2k + 7) rows. If none
of these groups are Δ-dense for Δ = 1/5, then we get that r(Ck/(2k +7))/5 < r
or Ck/(10k + 35) < 1. We can easily choose C large enough (e.g. C > 45) such
that this does not hold. Thus there must exist a Δ-dense group of (2k + 7) rows
for Δ = 1/5. We then apply Lemma 6 to obtain a contradiction. Thus, D has at
most O(rk) rows. To complete the proof, observe that k = O(log n/log log n).

Theorem 4. For ORDs, β(n) = O(log n/log log n).

270 K. Buchin et al.

References

1. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-
Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 35

2. Hirschberg, D.S., Larmore, L.L.: The least weight subsequence problem. SIAM J.
Comput. 16(4), 628–638 (1987)

3. Hofri, M.: Two-dimensional packing: expected performance of simple level algo-
rithms. Inf. Control 45, 1–17 (1980)

4. Knuth, D.E., Plass, M.F.: Breaking paragraphs into lines. Softw.-Pract. Exp. 11,
1119–1184 (1981)

5. Korte, B., Vygen, J.: Bin-Packing. In: Combinatorial Optimization, pp. 426–441.
Springer, Heidelberg (2005)

6. Kosaraju, S.R.: An optimal RAM implementation of catenable min double-ended
queues. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 195–203 (1994)

7. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey.
Eur. J. Oper. Res. 141, 241–252 (2002)

8. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
379–423 (1948)

9. Sonke, W., Verbeek, K., Meulemans, W., Verbeek, E., Speckmann, B.: Optimal
algorithms for compact linear layouts. In: Proceedings of the 11th IEEE Pacific
Visualization Symposium (PacificVis), pp. 1–10 (2018)

10. Wilber, R.: The concave least-weight subsequence problem revisited. J. Algorithms
9(3), 418–425 (1988)

https://doi.org/10.1007/978-1-4419-7997-1_35

Shortest Rectilinear Path Queries
to Rectangles in a Rectangular Domain

Mincheol Kim1, Sang Duk Yoon2, and Hee-Kap Ahn1(B)

1 Department of Computer Science and Engineering, Graduate School of Artificial
Intelligence, Pohang University of Science and Technology, Pohang, Korea

{rucatia,heekap}@postech.ac.kr
2 Department of Service and Design Engineering, SungShin Women’s University,

Seoul, Korea
sangduk.yoon@sungshin.ac.kr

Abstract. Given a set of open axis-aligned disjoint rectangles in the
plane, each of which behaves as both an obstacle and a target, we seek
to find shortest obstacle-avoiding rectilinear paths from a query to the
nearest target and the farthest target. In our problem, the distance to a
target is determined by the point on the target achieving the minimum
or maximum geodesic distance among all points on the boundary of the
target. This problem arises in facility location and robot motion planning
problems. We show how to construct a data structure for such shortest
path queries to the nearest and farthest neighbors efficiently.

Keywords: Shortest path query · Rectangular domain · Nearest
neighbor · Farthest neighbor

1 Introduction

Computing the nearest and farthest neighbors has been studied extensively in
computational geometry and has applications in machine learning, data mining,
computer vision, and many more fields. Given a set P of points in a space,
we preprocess the points in P and construct a data structure such that given
any query point the point in P nearest or farthest to the query point can be
reported efficiently. One natural and efficient technique for points in the plane is
to decompose the plane into regions with respect to the distances to the points
and construct a search structure on the decomposition for point location queries.
For instance, the nearest-site and farthest-site Voronoi diagrams of points in the
plane serve as such a decomposition [5].

M. Kim and H.-K. Ahn were supported by the Institute of Information & commu-
nications Technology Planning & Evaluation(IITP) grant funded by the Korea gov-
ernment(MSIT) (No. 2017-0-00905, Software Star Lab (Optimal Data Structure and
Algorithmic Applications in Dynamic Geometric Environment)) and (No. 2019-0-01906,
Artificial Intelligence Graduate School Progra (POSTECH)). S.D. Yoon was supported
by “Cooperative Research Program for Agriculture Science & Technology Development
(Project No. PJ01526903)” Rural Development Administration, Republic of Korea.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 271–282, 2020.
https://doi.org/10.1007/978-3-030-61792-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_22&domain=pdf
http://orcid.org/0000-0001-7177-1679
https://doi.org/10.1007/978-3-030-61792-9_22

272 M. Kim et al.

Fig. 1. Five gray rectangles H1, . . . , H5, each behaves as both an obstacle and a site. (a)
The nearest rectangle of q under minimum distance is determined by p1. The farthest
rectangle of q under minimum distance is determined by p2 (and p′

2). (b) The nearest
rectangle of q under maximum distance is determined by p3. The farthest rectangle of
q under maximum distance is determined by p4.

The problem has also been considered in the presence of obstacles in the
plane. In general, the obstacles are pairwise-disjoint polygons and the plane
minus the interior of the obstacles is called the polygonal domain. The nearest
or farthest point of a given query point can still be computed efficiently once
we construct the geodesic nearest-site or geodesic farthest-site Voronoi diagram.
However, there can be an exponential number of locally shortest simple paths
between two points in the polygonal domain. It requires some additional work,
possibly using data structures, to report a shortest path among them efficiently.

The problem becomes much more challenging when the sites are objects other
than points. The distance from a query point q to an object X in the polygonal
domain is then measured to the point in X whose geodesic distance is minimum or
maximum among all points in X. Since such a point in X may vary with respect
to query points, it is nontrivial for a given query to find a shortest path to such a
point in X in the polygonal domain. The problem becomes even more complicated
if each object behaves as an obstacle. Then the point in X whose geodesic distance
is minimum or maximum from a query point always lies on the boundary of X and
a shortest path to the point must avoid the interior of X.

In this paper, we consider nearest and farthest queries under the L1 dis-
tance in the polygonal domain where each polygonal obstacle is an axis-aligned
rectangle and it is also regarded as a site. We seek to find a shortest obstacle-
avoiding rectilinear path to the nearest rectangle or to the farthest rectangle,
where the distance to a rectangle is determined by a point on the rectangle
achieving the minimum or the maximum geodesic L1 distances among all points
on its boundary. A rectilinear path is a path that consists only of horizontal and
vertical segments. Figure 1 illustrates the problems we consider in the polygonal
domain.

The problem arises typically in facility location and motion planning appli-
cations. The wire interconnects between chips in a VLSI circuit and PCB is a
disjoint packing of rectilinear paths that avoid the interiors of chips. Since the

Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain 273

pinouts of a chip are splayed out to its boundary, a path to a chip is connected
to one of the pinouts. A challenge in the design is to locate VIAs or power con-
nectors in the board such that the maximum path (wire) length is minimized to
maintain low clock skew [8].

Related Works. There are two types of approaches for solving the shortest path
queries, wavefront approaches and path-preserving structures. In the wavefront
approach, we use a curve consisting of points at equal geodesic distance from the
query, which is called the geodesic circle, that propagates continuously, taking the
boundaries of the obstacles into account. Mitchell [14] constructs a Shortest Path
Map with O(n log n) preprocessing time and O(n) space, supporting O(log n)
query time for the length of a shortest path.

In the path-preserving approach, we construct a structure (or a graph) that
represents some geometric information and then solve the shortest path prob-
lem using the structure. Under the Euclidean distance, one-point and two-point
shortest path queries in a polygonal domain with total n vertices have been stud-
ied extensively. Hershberger and Suri [12] gave a data structure with O(n log n)
preprocessing time and O(n log n) space, supporting O(log n) query time for one-
point shortest path queries. Chiang and Mitchell [4] gave a data structure with
O(n11) preprocessing time and O(n11) space, supporting O(log n) query time for
two-point queries. Later Guo et al. [10] gave a data structure using O(n2) space,
supporting O(h log n) query time, where h is the number of holes.

Under the L1 distance, Chen et al. [3] gave a data structure support-
ing O(log n) query time for two-point queries. Later Wang [16] reduced the
preprocessing time to O(n + (h2 log4 h/log log h)) and the space to O(n +
(h2 log3 h/log log h)) with O(log n) query time, where h is the number of holes in
the polygonal domain. When all obstacles are rectangles, Elgindy and Mitra [7]
gave a data structure with O(n2) preprocessing time and O(n2) space, support-
ing two-point L1 shortest path query in O(log n) time. They used a planar sub-
division and graph structure to store the distances and the shortest rectilinear
geodesic paths between a finite number of junctions efficiently.

The nearest or farthest neighbor among m points from a query point in a
polygonal domain can be found efficiently using the Voronoi diagrams [12,13].
Ben-Moshe et al. [2] gave a data structure with O(nm log(n+m)) preprocessing
time and O(nm) space that supports O(log(n + m)) query time. Later, Ben-
Moshe et al. [1] proposed a time-space trade-off data structure.

However, we are not aware of any result on shortest path queries when the
polygonal obstacles behave as both obstacles and targets.

Our Results. Our main result is to give data structures with efficient query
algorithms for the shortest path queries to the nearest and farthest rectangles
under minimum and maximum distances in a polygonal domain.

Given n axis-aligned disjoint rectangular obstacles in the plane, we construct
a data structure in O(n2) time using O(n2) space such that for a query consisting
of a point q and an obstacle Q in the domain, the minimum or the maximum
L1 geodesic distance from q to Q can be computed in O(log n) time. A shortest

274 M. Kim et al.

rectilinear geodesic path from q to Q achieving the distance can be reported in
O(log n + K) time, where K is the number of line segments of the path.

We then present data structures for the nearest-site and farthest-site L1 short-
est path queries. We consider four versions of the problem depending on the
nearest and farthest neighbors and on the minimum and maximum distance
points of an object. We construct a data structure in O(n log n) time using O(n)
space such that for a query point q, the shortest rectilinear path from q to the
nearest-min point can be computed in O(log n) time. For the nearest-max query,
we construct a data structure in O(n2) time using O(n2) space such that for a
query point q, the shortest rectilinear path from q to the nearest-max point can
be computed in O(log n + K) time. For the farthest-min/farthest-max queries,
we construct a data structure in O(n2 log n) time using O(n2) space such that
for a query point q, the shortest rectilinear path to the corresponding point in
O(log n + K) time. Again, K is the number of line segments of the path.

Finally, we present data structures for a query consisting of a horizontal
segment and an obstacle in the domain. The data structures can be constructed
in O(n2 log n) time and O(n2 log n) space such that given a query of a horizontal
segment h and an obstacle Q, the minimum (or the maximum) L1 geodesic
distance from h to Q can be computed in O(log n) time. A shortest rectilinear
geodesic path from the point in h to the point in Q achieving the minimum (or
the maximum) distance can also be reported in O(log n + K) time, where K is
the number of line segments of the path.

The details and the omitted proofs will be found in the full version.

1.1 Notation and Preliminaries

Let P be a set of n disjoint axis-aligned (open) rectangles in R
2. Each rectangle

H ∈ P is open and plays as both an obstacle and a target in computing shortest
paths in the plane. Let D := R

2 − ∪H∈PH and call it a rectangular domain. A
point p in D is represented by its x-coordinate x(p) and y-coordinate y(p). We
use ∂H to denote the boundary of H.

The L1 distance between two points a ∈ R
2 and b ∈ R

2 is defined to be
|x(a) − x(b)| + |y(a) − y(b)|. A rectilinear path π consisting of k segments can
be represented by a sequence of k + 1 points, called bends, at which the path
switches between vertical and horizontal, except at the endpoints of the path.
The length of π is the sum of the segment lengths of π. The geodesic L1 distance
between any two points p, q ∈ D, denoted by d(p, q), is the length of a shortest
rectilinear geodesic path connecting p and q. A path π is x-monotone (and y-
monotone) if the intersection of π with any line perpendicular to the x-axis (and
to the y-axis) is connected or empty. If π is x-monotone and y-monotone, π is
xy-monotone.

We use dmin(p,H) := minx∈∂H d(p, x) to denote the minimum distance
from a point p ∈ D to a rectangle H ∈ P. Likewise, we use dmax(p,H) :=
maxx∈∂H d(p, x) to denote the maximum distance from p to H. Let pmin(p,H) :=
arg minx∈∂Hd(p, x) and pmax(p,H) := arg maxx∈∂Hd(p, x).

Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain 275

Carrier Graphs. A carrier graph is a directed acyclic graph constructed from
P [7]. The carrier graph of n axis-aligned disjoint rectangles has O(n) vertices and
edges. Since the carrier graph is directed and acyclic, the distances of all pairs
of vertices can be computed in O(n2) time. Moreover, the graph can encode
information on shortest paths between vertices using O(n2) space. Using the
carrier graph together with the information on the distances and shortest paths
in O(n2) space, the distance between any two query points can be computed in
O(log n) time and a shortest rectilinear path between them can be reported in
O(log n + K) time, where K is the number of line segments of the path.

2 Point-to-Rectangle Shortest Path Queries

We construct a data structure that given a query consisting of a point q and a
rectangle Q ∈ P finds the shortest paths and its distance from q to Q in D. We
report two shortest paths from q to Q, one under minimum distance and one
under maximum distance.

2.1 Wake of a Side of a Rectangle

We define the wake of a side of a rectangle H ∈ P. Let � = vtvb be the left side
of H with y(vt) > y(vb). We construct two unbounded xy-monotone paths π(vt)
and π(vb) as the boundary chains of the wake of �. Consider the horizontal ray
from vt = π0 going rightwards. The ray stops when it hits another rectangle
H ′ ∈ P. Let π1 be the point where the ray stops and π2 be the top-left corner of
H ′. We repeat this process by taking the horizontal ray from π2 going rightwards
and so on until the ray goes to infinity. Then we obtain an xy-monotone path
π(vt) = (π0, π1, π2, . . .). Likewise, we can obtain another xy-monotone path π(vb)
from the bottom-left corner of H, by repeating the process with the bottom-left
corners of the rectangles hit by the rays. We call the region bounded by π(vt),
π(vb), and � in D that is incident to the side of H opposite to � the wake of �
and denote it by W�(H). W�(H) contains π(vt), π(vb) and �. See Fig. 2(a). The
following lemma states the properties of shortest paths.

Lemma 1 (Rezende et al. [6]). Every shortest path between any two points
in a rectangular domain is x-monotone, y-monotone, or xy-monotone. Also, a
shortest path from a point s ∈ � to any point t ∈ W�(H) is x-monotone.

The wakes of the other sides of H can be defined similarly, using rays going
vertically upwards for the bottom side, rays going vertically downwards for the
top side, and rays going horizontally leftwards for the right side of H.

We use the wakes in computing the distance and a shortest path from a query
point q to a target point t in D as follows. We first identify the rectangles hit
first by each of the two vertical rays (one upwards and one downwards) and two
horizontal rays (one leftwards and one rightwards) from q. See Fig. 2(b). For each
such rectangle, we use the wake of the side hit first by the ray. If t is contained

276 M. Kim et al.

Fig. 2. (a) The wake W�(H) of the left side � of H. (b) Four sides of rectangles hit by
they rays from q, and their wakes. (c) There is a shortest path from q to t ∈ W�(H)
containing either vt or vb as the first bend. They are x-monotone.

in none of the four wakes, every shortest path from q to t is xy-monotone and
d(q, t) is simply the sum of the differences of their coordinates.

If t is contained in one of the wakes, d(q, t) = min{d(q, vt)+d(vt, t), d(q, vb)+
d(vb, t)}, where vt and vb are the endpoints of the side defining the wake. Without
loss of generality, assume that the ray from q going rightwards hits a rectangle
H ∈ P first its left side �, and that t is contained in W�(H). If t /∈ �, there is a
shortest path from q to t that contains either vt or vb as a bend. See Fig. 2(c) for
an illustration. Thus, we use the carrier graph G for the positive x direction to
compute the distance and a shortest path from vt or vb to t. This is the basically
same method applied to find a shortest path between two points in [7].

2.2 Minimum Distance Between a Point and a Rectangle

A shortest rectilinear geodesic path π from q to pmin(q,Q) consists of one or
more line segments. We determine whether π is a line segment or not in O(log n)
time using ray shooting query structures with O(n log n) preprocessing time and
O(n) space [9]. If the horizontal or vertical ray from q hits Q first among the
rectangles in P, π is the line segment qp, where p is the point the ray hits Q.

Thus, we consider the case that π consists of more than one line segment.
We denote by H the rectangle in P hit first by the horizontal ray from q going
rightwards and by � the left side of H. Note that H �= Q. We show how to deal
with the case that Q is incident to W�(H). The other cases that Q is incident to
one of three remaining wakes can be handled analogously.

Lemma 2. For any two points a, b ∈ W�(H) satisfying x(a) < x(b) and y(a) =
y(b), we have d(q, a) < d(q, b).

From Lemma 2, pmin(q,Q) lies on the left side of Q. We can specify the
location of pmin(q,Q) by the following lemma.

Lemma 3. Let q ∈ D be a point and Q ∈ P be a rectangle. If a shortest path
from q to pmin(q,Q) consists of more than one line segment, then pmin(q,Q)
must be a vertex of the carrier graph lying on the boundary of Q.

Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain 277

By Lemma 2 and Lemma 3, pmin(q,Q) is a vertex of the carrier graph G for
the positive x direction that lies on the left side (and its endpoints) of Q. Let
� be the left side of a rectangle H ∈ P which a rightward horizontal ray from q
hits first. Let vt and vb be the top and bottom endpoints of �, respectively.

To achieve O(log n) query time, we compute the minimum distance from any
point a ∈ � to each rectangle incident to W�(H) in advance. In specific, for each
rectangle H ′ ∈ P\{H} such that ∂H ′ ∈ W�(H), we compute dt = minη∈F d(vt, η)
and db = minη∈F d(vb, η) in W�(H), where F is the set of the vertices of G lying
on the left side of H ′. Let f(y) = (y − b) + db and g(y) = (t − y) + dt, where
t, b are the y-coordinates of the top and bottom sides of H and y denotes y(a).
Observe that f(y) denotes the length of a shortest path from a to H ′ that goes
through vb and g(y) denotes the length of a shortest path from a to H ′ that goes
through vt. Thus, dmin(a,H ′) = min{f(y), g(y)}. That is, the lower envelope L
of f(y) and g(y) for y ∈ [b, t] shows the length of a shortest path from a ∈ � to H ′

together with the information of whether the path goes through vb or vt. Note
that the complexity of L is O(1). If the horizontal ray from q going rightwards
hits a rectangle first at the point a on its left side, dmin(q,Q) = |qa|+dmin(a,Q).
We compute such envelopes for each side of all rectangles in total O(n2) time.

Given point q ∈ D and rectangle Q ∈ P, we use ray shooting query from
q in O(log n) time to identify the four sides and their wakes. We check if Q is
incident to one of the four wakes in constant time by maintaining for each wake
the indices of the rectangles incident to the wake in a table. If Q is incident to
one of the four wakes, we can compute the distance from the lower envelope for
Q in constant time. If Q is incident to none of the four wakes, π is xy-monotone.
If Q is contained in the first quadrant of q, pmin(q,Q) is the bottom-left corner
of Q. Thus, we just return the sum of differences of coordinates between q and
pmin(q,Q) as the distance in constant time. A shortest path from q to pmin(q,Q)
can be computed using the carrier graph [7].

Theorem 1. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n2) time
and O(n2) space such that given a pair of a point q ∈ D and a rectangle Q ∈ P,
the minimum L1 geodesic distance from q to Q can be computed in O(log n)
time. A shortest rectilinear geodesic path from q to the point in Q achieving the
distance can be reported in O(log n + K) time, where K is the number of line
segments of the path.

2.3 Maximum Distance Between a Point and a Rectangle

Unlike the minimum distance case, a shortest rectilinear geodesic path π from q
to pmax(q,Q) always consists of more than one line segment.

We denote by H the rectangle in P hit first by the horizontal ray from q
going rightwards and by � the left side of H. We show how to deal with the case
that Q is incident to W�(H). It is possible that H = Q. The other cases that Q
is incident to one of three remaining wakes can be handled analogously.

Let wt and wb be the top and bottom endpoints of the right side of Q,
respectively. We can get the following Corollary from Lemma 2.

278 M. Kim et al.

Corollary 1. pmax(q,Q) lies on the right side wtwb of Q. Moreover, there is
a shortest rectilinear geodesic path from q to pmax(q,Q) going through wt as a
bend and a shortest rectilinear geodesic path from q to pmax(q,Q) going through
wb as a bend.

We compute pmax(q,Q) when Q is incident to W�(H) as follows. Let vt and
vb be the top and bottom endpoints of �, respectively. By Corollary 1, pmax(q,Q)
is determined by d(q, wt) and d(q, wb). wt and wb are in W�(H), so d(q, wi) =
min{d(q, vj)+d(vj , wi)} for i = t, b and j = t, b. The horizontal ray from q going
rightwards hits ∂H at the left side of H, and thus d(q, vj) = |x(q) − x(vj)| +
|y(q)− y(vj)|. Since d(u, v) for every pair (u, v) of vertices of the carrier graph is
computed during the preprocessing phase, d(vj , wi) can be reported in constant
time. Thus, we have d(q, wt) and d(q, wb). We can obtain pmax(q,Q) on the right
side of Q.

Given point q ∈ D and rectangle Q ∈ P, we use ray shooting query from q in
O(log n) time to identify the four sides and their wakes. If Q is incident to one
of the four wakes, we compute dmax(q,Q) using d(q, wt) and d(q, wb) in constant
time. Otherwise, π is xy-monotone. If Q is contained in the first quadrant of q,
pmax(q,Q) is the top-right corner of Q. We just return the sum of differences of
coordinates between q and pmax(q,Q) as dmax(q,Q). A shortest path from q to
pmax(q,Q) can be computed using the carrier graph.

Theorem 2. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n2) time
and O(n2) space such that given a pair of a point q ∈ D and a rectangle Q ∈ P,
the maximum L1 geodesic distance from q to Q can be computed in O(log n)
time. A shortest rectilinear geodesic path from q to the point in Q achieving the
distance can be reported in O(log n + K) time, where K is the number of line
segments of the path.

3 Queries to the Nearest and Farthest Rectangles

We construct data structures such that given a point query q in D a rect-
angle in P satisfying the following criteria can be computed in O(log n)
time: minH∈P dmin(q,H) (Nearest-min query), maxH∈P dmin(q,H) (Farthest-
min query), minH∈P dmax(q,H) (Nearest-max query), and maxH∈P dmax(q,H)
(Farthest-max query). A shortest rectilinear path from q to the rectangle can
also be returned in O(log n + K) time, where K is the number of line segments
of the path.

3.1 Nearest-Min Query

Given a query point q, we find a rectangle H∗ = arg minH∈Pdmin(q,H), and
report pmin(q,H∗) together with dmin(q,H∗) and a shortest rectilinear geodesic
path from q to pmin(q,H∗). Observe that an L1 geodesic circle centered at q with
radius dmin(q,H∗) in D forms a rhombus with all internal angles 90◦ at corners

Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain 279

and that the boundary of H∗ is incident to the rhombus. See the rhombus
incident to p1 in Fig. 1(a).

So we can find H∗ from the L1 nearest-site Voronoi diagram of the rectangles
in P. Papadopoulou and Lee [15] show that the L∞ Voronoi diagram of polygonal
objects with total complexity n can be constructed in O(n log n) time. Thus, we
can construct the L1 Voronoi diagram of the rectangles in the same time. The
resulting L1 Voronoi diagram has O(n) complexity, and a point location query
for q can be answered in O(log n) time. Since a shortest rectilinear geodesic path
from q to pmin(q,H∗) consists of at most two segments, it can be computed in
constant time.

Theorem 3. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n log n)
time and O(n) space such that given a query point q ∈ D, the nearest rectangle
H of P from q under minimum L1 geodesic distance and its distance from q can
be found in O(log n) time. A shortest rectilinear geodesic path from q to the point
in H achieving the distance can be reported in O(log n) time.

3.2 Farthest-Min Query

Given a query point q, we find a rectangle H∗ = arg maxH∈Pdmin(q,H), and
report pmin(q,H∗) together with dmin(q,H∗) and a shortest rectilinear geodesic
path from q to pmin(q,H∗). See the geodesic circle incident to p2 in Fig. 1(a).

Consider W�(H) of the left side � of a rectangle H ∈ P. Let vt and vb denote
the top and bottom endpoints of �, respectively. Lemma 3 implies that for any
point q′ ∈ � and any rectangle H ′ ∈ P incident to W�(H) such that H �= H ′,
pmin(q′,H ′) is a vertex of the carrier graph for the positive x direction lying
on H. We can compute the lower envelope for � defined in Sect. 2.2 in time
linear to the number of vertices of the carrier graph lying on the rectangle, that
represents the minimum geodesic distance from any point a ∈ � to a rectangle
in P incident to W�(H). Thus, the lower envelope for � for each rectangle in
P incident to W�(H) can be computed in total O(n) time since the number of
vertices of the carrier graph is O(n). Then we compute the upper envelope of
the lower envelopes for �, which represents the farthest rectangle from any point
a ∈ � among all rectangles of P incident to W�(H). For each rectangle in P,
we compute such an upper envelope for each of its sides. Each upper envelope
can be computed in O(n log n) time and O(n) space [11]. So, we compute and
maintain O(n) upper envelopes with O(n2 log n) preprocessing time and O(n2)
space. In case that there is no rectangle of P\{H} incident to W�(H), we simply
do not compute the envelope because H is obviously the farthest rectangle.

Given a query point q, we use ray shooting query from q in O(log n) time to
identify the four sides and their wakes. Using the upper envelopes corresponding
to the sides, we can find a rectangle H∗ = arg maxH∈Pdmin(q,H) for rectan-
gles H incident to one of the four wakes, and report pmin(q,H∗) together with
dmin(q,H∗) in O(log n) time. A shortest rectilinear path from q to pmin(q,H∗)

280 M. Kim et al.

can also be reported in O(log n+K) time, where K is the number of line segments
of the path.

Now we handle the case that H∗ is incident to none of the four wakes of q.
Without loss of generality, assume that H∗ is contained in the first quadrant Q1

of q. We observe that the bottom left corner c of H∗ should have the largest sum
x(c) + y(c) among all bottom-left corners of the rectangles in P. The rectangle
H ′ with the largest sum can be obtained in O(n) time in preprocessing and
whether H ′ is incident to none of the four wakes and also contained in Q1 of q
can be determined in O(1) time. Again, a shortest path from q to the bottom
left corner of H∗ can be computed using the carrier graph.

Theorem 4. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n2 log n)
time and O(n2) space such that given a query point q ∈ D, the farthest rectangle
H from q under minimum L1 geodesic distance and its distance from q can be
found in O(log n) time. A shortest rectilinear geodesic path from q to the point
in H achieving the distance can be reported in O(log n + K) time, where K is
the number of line segments of the path.

3.3 Nearest-Max Query

Given a query point q, we find a rectangle H∗ = arg minH∈Pdmax(q,H), and
report pmax(q,H∗) together with dmax(q,H∗) and a shortest rectilinear geodesic
path from q to pmax(q,H∗). See the geodesic circle incident to p3 in Fig. 1(b).

Consider W�(H) of the left side � = vtvb of a rectangle H ∈ P with y(vt) >
y(vb). By Corollary 1, pmax(q,H∗) lies on the right side of H∗. Thus, we can
define a function for � that represents the geodesic distance from any point a ∈ �
to the top-right corner, denoted by wt, of a rectangle H ′ ∈ P incident to W�(H).
More precisely, f(y) = (y − b) + db and g(y) = (t − y) + dt, where db = d(vb, wt)
and dt = d(vt, wt), where t, b are the y-coordinates of the top and bottom sides
of H and y denotes y(a) for point a ∈ �. Then the lower envelope Lt of f(y) and
g(y) represents the geodesic distance from any point a ∈ � to wt. Similarly, let
Lb be the lower envelope for � that represents the geodesic distance from any
point a ∈ � to the bottom-right corner, denoted by wb, of H ′.

Using Lt and Lb, we can define a function j(�,H ′) that represents pmax(a,H ′)
for points a ∈ �. Observe that j(�,H ′) a piecewise linear function whose graph
consists of at most three line segments, one of slope +1, one of slope 0, and one
of slope −1, in the order. There is a (possibly empty) range r in � such that
dmax(a,H ′) is constant for every point a ∈ r (corresponding to the segment of
slope 0). Moreover, a shortest rectilinear path from a point a ∈ r to pmax(a,H ′)
through vt and a shortest rectilinear path from a to pmax(a,H ′) through vb have
the same length dmax(a,H ′). Observe that the lower envelope L� of the j(�,H ′)
functions for every rectangle H ′ ∈ P incident to W�(H) represents the nearest
rectangle from any point a ∈ � among all rectangles of P incident to W�(H).

In the preprocessing phase, we compute for each rectangle in P the lower
envelope Ls for each side s of the rectangle. Since there are O(n) rectangles

Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain 281

in the wake of s and each of the distance functions (lower envelopes) defined
on s consists of at most three segments of slopes {+1, 0,−1} in the order, we
can compute Ls in O(n) time. Therefore, we compute and maintain O(n) lower
envelopes with O(n2) preprocessing time and O(n) space.

Given a query point q, we use ray shooting query from q to identify the
four sides and their wakes. Using the lower envelope corresponding to each of
the sides, we can find H∗ and report pmax(q,H∗) together with dmax(q,H∗) in
O(log n) time. A shortest rectilinear geodesic path from q to pmax(q,H∗) can
also be reported in O(log n + K) time, where K is the number of line segments
of the path.

Theorem 5. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n2)
time and O(n2) space such that given a query point q ∈ D, the nearest rectangle
H from q under maximum L1 geodesic distance and its distance from q can be
found in O(log n) time. A shortest rectilinear geodesic path from q to the point
in H achieving the distance can be reported in O(log n + K) time, where K is
the number of line segments of the path.

3.4 Farthest-Max Query

Given a query point q, we find a rectangle H∗ = arg maxH∈Pdmax(q,H), and
report pmax(q,H∗) together with dmax(q,H∗) and a shortest rectilinear geodesic
path from q to pmax(q,H∗). See the geodesic circle incident to p4 in Fig. 1(b).

Theorem 6. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n2 log n)
time and O(n2) space such that given a query point q ∈ D, the farthest rectangle
H from q under maximum L1 geodesic distance and its distance from q can be
found in O(log n) time. A shortest rectilinear geodesic path from q to the point
in H achieving the distance can be reported in O(log n + K) time, where K is
the number of line segments of the path.

4 Line Segment Queries

We construct a data structure such that given a horizontal line segment query
h ⊂ D and a rectangle Q ∈ P the shortest rectilinear geodesic path from h to Q
and its length can be found efficiently.

Theorem 7. We can construct a data structure for the rectangular domain D
induced by a set P of n axis-aligned disjoint rectangles in the plane in O(n2 log n)
time and O(n2 log n) space such that given a pair of a horizontal line segment
h ∈ D and a rectangle Q ∈ P, the minimum (or maximum) L1 geodesic distance
from h to Q (and the corresponding points on h and Q) can be computed in
O(log n) time. A shortest rectilinear geodesic path from the point in h to the
point in Q achieving the minimum (or maximum) distance can also be reported
in O(log n + K) time, where K is the number of line segments of the path.

282 M. Kim et al.

References

1. Ben-Moshe, B., Bhattacharya, B., Shi, Q.: Farthest neighbor Voronoi diagram in
the presence of rectangular obstacles. In: Proceedings of the 13th Canadian Con-
ference on Computational Geometry (CCCG), pp. 243–246 (2005)

2. Ben-Moshe, B., Katz, M., Mitchell, J.: Farthest neighbors and center points in the
presence of rectangular obstacles. In: Proceedings of the 17th Annual Symposium
on Computational Geometry (SoCG), pp. 164–171 (2001)

3. Chen, D., Inkulu, R., Wang, H.: Two-point L1 shortest path queries in the plane. In:
Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG),
pp. 406–415 (2014)

4. Chiang, Y.J., Mitchell, J.: Two-point Euclidean shortest path queries in the plane.
In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 215–224 (1999)

5. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Santa Clara (2008). https://
doi.org/10.1007/978-3-540-77974-2

6. De Rezende, P., Lee, D.T., Wu, Y.F.: Rectilinear shortest paths with rectangular
barriers. In: Proceedings of the 1st Annual Symposium on Computational Geome-
try (SoCG), pp. 204–213 (1985)

7. Elgindy, H., Mitra, P.: Orthogonal shortest route queries among axes parallel rect-
angular obstacles. Int. J. Comput. Geom. Appl. 4(1), 3–24 (1994)

8. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: BonnRoute:
Algorithms and data structures for fast and good VLSI routing. ACM Trans. Des.
Autom. Electron. Syst. 18(2), 32:1–32:24 (2013)

9. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Trans. Algorithms 5(3), 28:1–28:51 (2009)

10. Guo, H., Maheshwari, A., Sack, J.-R.: Shortest path queries in polygonal domains.
In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 200–211. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8 20

11. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.
Inf. Process. Lett. 33(4), 169–174 (1989)

12. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

13. Liu, C.H., Lee, D.: Higher-order geodesic Voronoi diagrams in a polygonal domain
with holes. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1633–1645 (2013)

14. Mitchell, J.: L1 shortest paths among polygonal obstacles in the plane. Algorith-
mica 8(1–6), 55–88 (1992). https://doi.org/10.1007/BF01758836

15. Papadopoulou, E., Lee, D.: The L∞ Voronoi diagram of segments and VLSI appli-
cations. Int. J. Comput. Geom. Appl. 11(05), 503–528 (2001)

16. Wang, H.: A divide-and-conquer algorithm for two-point L1 shortest path queries
in polygonal domains. In: Proceedings of the 35th International Symposium on
Computational Geometry (SoCG), pp. 59:1–59:14 (2019)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-68880-8_20
https://doi.org/10.1007/BF01758836

Farthest Color Voronoi Diagrams:
Complexity and Algorithms

Ioannis Mantas1, Evanthia Papadopoulou1(B), Vera Sacristán2,
and Rodrigo I. Silveira2

1 Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
{ioannis.mantas,evanthia.papadopoulou}@usi.ch

2 Department de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain

{vera.sacristan,rodrigo.silveira}@upc.edu

Abstract. The farthest-color Voronoi diagram (FCVD) is a farthest-
site Voronoi structure defined on a family P of m point-clusters in the
plane, where the total number of points is n. The FCVD finds applica-
tions in problems related to color spanning objects and facility location.
We identify structural properties of the FCVD, refine its combinato-
rial complexity bounds, and list conditions under which the diagram
has O(n) complexity. We show that the diagram may have complexity
Ω(n + m2) even if clusters have disjoint convex hulls. We present con-
struction algorithms with running times ranging from O(n log n), when
certain conditions are met, to O((n+s(P)) log3 n) in general, where s(P)
is a parameter reflecting the number of straddles between pairs of clus-
ters in P (s(P) ∈ O(mn)). A pair of points q1, q2 ∈ Q is said to straddle
p1, p2 ∈ P if the line segment q1q2 intersects (straddles) the line through
p1, p2 and the disks through (p1, p2, q1) and (p1, p2, q2) contain no points
of P, Q. The complexity of the diagram is shown to be O(n + s(P)).

Keywords: Farthest color · MaxMin · Voronoi diagram · Point
clusters

1 Introduction

The Voronoi diagram is a versatile and well-known geometric partitioning struc-
ture defined by a set of simple geometric objects in a space, called sites. The
ordinary (nearest-neighbor) Voronoi diagram of a set of points in the plane is a
subdivision into maximal regions such that all points in one region share the same

A preliminary version of this work was presented at EuroCG 2019. I. M. and E. P. were
supported in part by the Swiss National Science Foundation, project SNF 200021E-
154387. V. S. and R. S. were supported by projects MINECO MTM2015-63791-R and
Gen. Cat. 2017SGR1640. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No 734922.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 283–295, 2020.
https://doi.org/10.1007/978-3-030-61792-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_23

284 I. Mantas et al.

Fig. 1. (a) NCVD(P) and (b) FCVD(P) of a family P, with dc(x, P) illustrated.

nearest site. In the farthest-site Voronoi diagram points in a single region have
the same farthest site. Many generalizations of this simple concept have been
considered, including generalized sites, metrics and spaces. For a comprehensive
list of results and some of the many applications of Voronoi diagrams see [5,22].

We are interested in color Voronoi diagrams, where each site is a set of
points in R

2, referred to as a cluster. Conceptually, we identify a distinct color
with each cluster and all points in a cluster have the same color. The distance
between a point x ∈ R

2 and a cluster P is realized by the nearest point in P ,
i.e., dc(x, P) = minp∈P d(x, p). The nearest color Voronoi diagram (NCVD) of a
family P of clusters is a min-min diagram that can be easily derived from the
ordinary Voronoi diagram of all points in P: the region of a cluster P is the union
of the Voronoi regions of points belonging to P (see Fig. 1a). In this paper we
focus on the farthest counterpart, the farthest color Voronoi diagram (FCVD), a
max-min diagram generalizing both the nearest and farthest Voronoi diagrams
of points, and whose properties are still not well understood (see Fig. 1b).

Motivation. Farthest problems involving point clusters appear in several differ-
ent situations. Clusters may represent locations of facilities of the same type that
can be accessed interchangeably, while the farthest distance allows to give worst-
case scenario bounds on the distance to reach an object of each type. For
instance, consider the following typical facility location problem: given loca-
tions of multiple types of facilities (e.g., hospitals, schools, etc.), each type rep-
resented by a cluster, find a location such that the distance to all services is
minimized. This can be found using the minimum color spanning disk [1], which
can be extracted efficiently from the FCVD. Such problems arise also in spatial
databases [26]. Many other minimum color spanning objects have been consid-
ered in the literature, see e.g., [2,14,18]. Similar problems also appear when con-
sidering imprecision in geometric data, as point clusters are a natural way to rep-
resent the possible locations of an object, whose exact location is unknown [17].
In this setting, the FCVD encodes proximity information, allowing to efficiently
solve problems involving pairs of points [3] or larger clusters [12]. The diagram
is also useful in shape matching [25], finding the translation that minimizes the
Hausdorff distance between two point sets [15]. Finally, the FCVD has been used
to solve variants of the Steiner tree problem [7], sensor deployment problems in
wireless sensor networks [20] and to find stabbing circles for line segments [10].

Farthest Color Voronoi Diagrams: Complexity and Algorithms 285

Related Work. The FCVD was first studied by Huttenlocher et al. [15], show-
ing that the combinatorial complexity of the diagram is Ω(mn) in the worst
case and O(mnα(mn)), where m is the number of clusters and n is the overall
number of points. The worst case complexity was latter settled to Θ(mn) by
Abellanas et al. [1]. Using a geometric transformation in 3 dimensions, the dia-
gram can be computed in O(mn log n) time by computing the upper envelope of
m Voronoi surfaces [15], one for each input cluster.

Closely related to the FCVD is the Hausdorff Voronoi diagram (HVD) of
point clusters. The HVD is a min-max diagram: the distance from a point x ∈ R

2

to a cluster P is the farthest distance, df = maxp∈P d(x, p), and the plane is
subdivided into regions with the same nearest cluster. The HVD has been exten-
sively studied [13,23], and many algorithmic paradigms have been considered for
its construction, see e.g. [4,9,11,13,23,24]. Interestingly, the algorithm presented
in [13] for the HVD can also be used to obtain an O(n2)-time algorithm for the
FCVD. This has already been remarked in [10] for 2-point clusters. In the worst
case, this algorithm is optimal as the diagram may have complexity Θ(n2). How-
ever, it remains Θ(n2) even if the complexity of the diagram is O(n).

A central question in the study of the FCVD is under what conditions the
diagram has O(n) complexity, and when it can be computed in subquadratic
time. Some restricted instances of linear-size diagrams have already been con-
sidered by Bae [6], Claverol et al. [10] and Iacono et al. [16].

Contribution. We present structural properties of the FCVD and refine its
combinatorial complexity bounds. We show that the complexity of the diagram
is O(n + s(P)), where s(P) is a parameter reflecting the number of straddles
between clusters (s(P) = O(mn), see Definition 5). Based on this, we list con-
ditions under which the FCVD has O(n) structural complexity and show that
linear separability is not such a condition. Indeed, we establish that FCVD(P)
may have complexity Ω(n + m2) for a family P of linearly separable clusters.
Finally, we present an O((n + s(P)) log3 n)-time construction algorithm for the
FCVD, which is considerably more efficient than existing approaches when the
straddling number is small. Due to lack of space, some proofs have been omitted.

2 Preliminaries

Let P = {P1, ..., Pm} be a family of m clusters of points in R
2, m > 1, where no

two clusters share a common point. Let the set of all points be P∗ =
⋃

Pi∈P Pi,
with |P∗| = n. We assume that P∗ is in general position, i.e., no three points
are collinear and no four points are cocircular.

Let Vor(P) denote the ordinary (nearest-neighbor) Voronoi diagram of a set
of points P in R

2 and let vreg(p, P) denote the Voronoi region of a point p ∈ P
in Vor(P), i.e., vreg(p, P) = {x ∈ R

2 | d(x, p) < d(x, q) ∀q ∈ P, q �= p}.
We use the following additional notation. The line through two points p and

q is denoted by L(p, q). Let C(p, q, r) denote the circle through points p, q and
r and let D(p, q, r) denote the corresponding disk. The bisector of two points p

286 I. Mantas et al.

and q is denoted by b(p, q). The line segment with endpoints p and q is denoted
by pq. The convex hull of a set of points P is denoted by CH(P).

The distance of a point x ∈ R
2 to a cluster Pi is dc(x, Pi) = minp∈Pi

d(x, p).
We define the following two color Voronoi diagrams.

Definition 1. The nearest color Voronoi diagram of P, denoted NCVD(P), is
the subdivision of R

2 into nearest color regions. The nearest color region of a
cluster Pi ∈ P is ncreg(Pi,P) = {x ∈ R

2 | dc(x, Pi) < dc(x, Pj) ∀Pj ∈ P, j �= i}.
The NCVD(P) can be directly derived from the ordinary Voronoi diagram

Vor(P∗), as ncreg(Pi,P) =
⋃

p∈Pi
vreg(p,P∗). Thus, it immediately follows that

it has complexity O(n) and it can be computed in O(n log n) time.

Definition 2. The farthest color Voronoi diagram of P, denoted FCVD(P), is
the subdivision of R2 into farthest color regions. The farthest color region of a
cluster Pi ∈ P is fcreg(Pi,P) = {x ∈ R

2 | dc(x, Pi) > dc(x, Pj) ∀Pj ∈ P, j �= i}.
Region fcreg(Pi,P) may consist of several connected components, called

faces. The faces of fcreg(Pi,P) are further subdivided into finer parts by the
skeleton of Vor(Pi), which is called the internal skeleton of fcreg(Pi,P). For
p ∈ Pi, let fcreg(p,P) = {x ∈ fcreg(Pi,P) | d(x, p) < d(x, q), ∀q ∈ Pi\{p}}.
The FCVD(P), augmented with the internal skeletons of its faces, is denoted by
FCVDa(P).

Definition 3. Given two clusters P and Q, their color bisector, denoted
bc(P,Q), is the locus of points equidistant from P and Q, i.e., bc(P,Q) = {x ∈
R

2 | dc(x, P) = dc(x,Q)}.
The color bisector bc(P,Q) is a subgraph of Vor(P ∪ Q). It is a collection

of disjoint unbounded chains and cycles of total complexity O(|P | + |Q|). By
ordinary Voronoi diagram it easily follows that if P and Q have disjoint convex
hulls then bc(P,Q) is a single unbounded, monotone chain. Moreover, bc(P,Q)
contains only bounded chains if and only if CH(P) ⊂ CH(Q) or CH(Q) ⊂ CH(P).

The augmented FCVD contains different types of Voronoi edges and vertices.
To distinguish them we use the following conventions (see Fig. 2a): Voronoi edges
that are subsets of color bisectors are called color Voronoi edges , while the edges
of the internal skeletons are called internal. Voronoi vertices that are incident to
three color bisectors are called color Voronoi vertices, while vertices incident to
two color bisectors and one internal edge are called mixed vertices. Vertices of
the internal skeletons are called internal vertices.

The farthest color disk of a point x ∈ R
2, such that x lies in the closure of

fcreg(p,P) and p ∈ Pi, is the disk centered at x of radius d(x, p) (see Fig. 1b).
Such a disk contains no point of Pi in its interior and its closure contains at least
one point from every cluster in P.

In our algorithms, we use a refinement of FCVD derived from the visibil-
ity decomposition, similarly to [24]: For each region fcreg(p,P), and for each
color or mixed vertex u on ∂fcreg(p,P), draw L(p, u)∩fcreg(p,P) (see Fig. 2a).
The intersection L(p, u) ∩ fcreg(p,P) is connected due to the following visibility

Farthest Color Voronoi Diagrams: Complexity and Algorithms 287

Fig. 2. (a) Features of the FCVD illustrated on a bounded face. (b) CLH(P) of the
family of Fig. 1. The rays at infinity coincide with the unbounded faces of FCVDa(P).

property [6]: Given points p ∈ Pi, x ∈ fcreg(p,P), and a ray r emanating from
x in the direction away from p, the intersection r ∩ vreg(p, Pi) lies entirely in
fcreg(p,P).

The cluster hull of P is a closed (non-simple) polygonal chain which charac-
terizes the unbounded faces of the HVD. As shown in the sequel it also charac-
terizes the unbounded faces of the FCVD (see Fig. 2b). We review its definition:

Definition 4 [24]. Given a family of clusters P, a point p ∈ Pi is a hull vertex
if p admits a supporting line � such that Pi lies entirely in one halfplane defined
by � while every other cluster Pj �= Pi in P intersects the other halfplane. A hull
edge e = (p, q) connects two hull vertices p ∈ Pi, q ∈ Pj if the line � through p, q
leaves Pi and Pj entirely on one side and every other cluster in P intersects the
halfplane at the opposite side of �. The edge e is associated with a unit vector
that is normal to �, pointing in the direction away from Pi, Pj. The hull edges
sorted by the circular ordering of their normal vectors define a closed polygonal
chain, called the cluster hull of P and denoted CLH(P).

3 Structural Properties and Complexity

Lemma 1. A face f of fcreg(Pi,P) satisfies:

1. If f is bounded, it must contain a non-empty internal skeleton, which is a
tree incident to the mixed vertices of ∂f .

2. If f is unbounded, its internal skeleton is a (possibly empty) forest; each tree
of the internal forest has exactly one unbounded edge.

The following lemma shows that the cluster hull CLH(P) characterizes the
unbounded faces of the FCVD(P). It is derived by establishing a one-to-one cor-
respondence between the unbounded faces of the FCVD and the HVD. This also
implies that the unbounded faces are O(n), since the cluster hull has complexity
O(n) as shown in [24].

Lemma 2. A region fcreg(p,P) is unbounded if and only if p is a vertex of
CLH(P). A counterclockwise traversal of CLH(P) derives the clockwise ordering
of the unbounded edges of FCVDa(P).

288 I. Mantas et al.

Fig. 3. Illustration of (a) a straddle and the proof of Lemma 4 and (b) the proof of
Lemma 6 with the sequence of consecutive pairs of mixed vertices along b(p1, p2).

Lemma 3. FCVD(P) has O(n) unbounded faces.

To derive the total complexity of the diagram we need to consider its bounded
faces, which in turn are determined by the mixed vertices incident to their non-
empty internal skeleton. To this aim we define the notion of straddles.

Definition 5. A cluster Q, and in particular a pair of points q1, q2 ∈ Q, is
said to straddle points p1, p2 ∈ P if the disks D(p1, p2, q1) and D(p1, p2, q2)
contain no points of P and Q in their interior. Let s(p1, p2) denote the number
of clusters that straddle p1, p2. The straddling number of a family P is s(P) =∑

Pi∈P
∑

(pj ,pk)∈Pi
s(pj , pk).

The condition of Definition 5 implies that the line segment q1q2 must intersect
(straddle) the line L(p1, p2) (see Fig. 3a and Lemma 4), hence, the name of the
parameter s(P). Note that segments q1q2 and p1p2 may or may not intersect.

Lemma 4. Suppose that disks D(p1, p2, q1) and D(p1, p2, q2) contain no points
of P and Q in their interior, i.e., their centers are mixed vertices of bc(P,Q).
Then the segment q1q2 intersects (straddles) the line L(p1, p2).

Proof. The disks D(p1, p2, q1) and D(p1, p2, q2) are empty. Thus, point q1 lies on
C(p1, p2, q1)\D(p1, p2, q2) and point q2 lies on C(p1, p2, q1)\D(p1, p2, q2). Hence,
line L(p1, p2) separates them and so q1q2 ∩ L(p1, p2) �= ∅. Refer to Fig. 3a. 	

Lemma 5. The straddling number s(P) is O(mn).

Proof. A pair (p1, p2) inducing vertices on bisector bc(P,Q), as in Definition 5,
is incident to an edge in Vor(P ∪ Q), which is subset of the bisector b(p1, p2).
Bisector b(p1, p2) can have only one occurrence as a Voronoi edge in Vor(P ∪Q),
so Q straddles (p1, p2) at most once, and hence s(pj , pk) ≤ m − 1. Only pairs
(pj , pk) inducing Voronoi edges in Vor(P) can be straddled. Overall, there are∑

Pi∈P O(|Pi|) = O(n) Voronoi edges, so O(n) pairs may be straddled. 	

In the following lemma, we show a property of consecutive mixed vertices.

We then use it to bound the total number of mixed vertices in Lemma7.

Farthest Color Voronoi Diagrams: Complexity and Algorithms 289

Lemma 6. Let v1, v2 be two mixed vertices on the same bisector, incident to
fcreg(Pi,P), such that the segment v1v2 ∩ fcreg(Pi,P) = ∅ (see Fig. 3b). Then
v1 and v2 are induced by the same cluster Q.

Lemma 7. FCVD(P) has O(n + s(P)) bounded faces.

Proof. For any Pi ∈ P and for any pair (pj , pk) inducing an edge e in Vor(Pi),
we count the number of mixed vertices appearing along e. There are at most two
vertices not resulting from a straddle, the outermost from each side. Any other
pair of vertices, by Lemma 6, is the result of a straddle. Thus, there at most 2 ·
s(pj , pk)+2 mixed vertices incident to e. Such vertices appear consecutively along
e (see Fig. 3b). Each pair of consecutive mixed vertices may create one bounded
face incident to e, so there are at most s(pj , pk) + 1 bounded faces incident to e.
Overall, there are O(n) pairs, inducing Voronoi edges, concluding the proof. 	

We conclude in Theorem 1 refining the O(mn) upper bound for
FCVD(P). This implies a sufficient condition for FCVD(P) to have O(n) size,
which is s(P) = O(n).

Theorem 1. FCVD(P) has O(n + s(P)) combinatorial complexity.

4 Conditions for Linear-Size Diagrams

We derive conditions for the FCVD to have linear complexity. To this aim we first
consider its relation to abstract Voronoi diagrams. These diagrams are defined
in terms of bisecting curves satisfying some simple combinatorial properties,
called axioms [19]. In the context of color Voronoi diagrams, these axioms can
be interpreted as follows. For every subset P ′ ⊆ P:

(A1) Each region ncreg(Pi,P ′) is non-empty and connected.
(A2) Each point in the plane belongs to the closure of a region ncreg(Pi,P ′).
(A3) Each color bisector is an unbounded Jordan curve.
(A4) Any two color bisectors intersect transversally in a finite number of points.

A family of clusters is called admissible if the underlying system of bisectors
satisfies axioms (A1)–(A4). By the structural properties of farthest abstract
Voronoi diagrams [8,21] we derive the following.

Lemma 8. If P is admissible, then the skeleton of FCVD(P) is a tree of com-
binatorial complexity O(n).

Next we give a necessary and sufficient condition under which P is admissible.

Theorem 2. A family P is admissible if and only if the following two conditions
hold: (1) No cluster is entirely enclosed within the convex hull of any other cluster
in P; and (2) for every Pi ∈ P, region ncreg(Pi,P) is connected.

290 I. Mantas et al.

Fig. 4. (a) Two color bisectors (red/green & blue/green) intersecting linearly many
times. (b) A disk-separable family P with NCVD(P) and (c) FCVD(P).

Proof (sketch). The bisector bc(Pi, Pj) contains no unbounded components if
and only if Pi is entirely enclosed within CH(Pj), or vice versa. Thus, if P is
admissible then the axioms imply that both conditions hold. Next, we show that
if bc(Pi, Pj) consists of more than one connected component then ncreg(Pi,P) is
also disconnected. Thus, if both conditions of the lemma hold, then each bisector
bc(Pi, Pj) is an unbounded Jordan curve, satisfying axiom (A3). Finally, we show
that it suffices to check connectivity of axiom (A1) only for P without examining
every subset P ′ ⊂ P separately. 	

Two clusters are called linearly separable if they have disjoint convex hulls. A
family of pairwise linearly separable clusters is called linearly separable. Linear
separability alone does not imply an admissible family. In particular, the bisec-
tors of three linearly separable clusters, bc(Pi, Pj) and bc(Pj , Pk), may intersect
Θ(|Pi| + |Pj | + |Pk|) times, and thus (A1) need not be satisfied (see Fig. 4a).

A linearly separable family P satisfies condition (1) of Theorem 2. So, decid-
ing if P is admissible can be done by checking region connectivity in NCVD(P).

Theorem 3. For a linearly separable family of clusters P, we can decide if P
is admissible in O(n log n) time.

Disk-separability is another sufficient condition for a family to be admissible.
A family P is called disk-separable if for every cluster Pi ∈ P there exists a disk
that contains Pi and no point from another cluster Pj (see Fig. 4b).

Theorem 4. If a family P is disk-separable then it is admissible.

5 A Lower Bound for Linearly Separable Clusters

Linear separability is a natural property to investigate when characterizing prop-
erties of the FCVD. In this section we show that the FCVD may have complexity
Ω(n + m2) even if the clusters are linearly separable. To this aim, we define a
family P of m linearly separable 2-point clusters P = {Pi = {li, ui}, 1 ≤ i ≤ m}
whose FCVD contains Θ(m2) mixed vertices.

We construct the family P as follows, refer to Fig. 5. Let l1 = (0, 0) and
u1 = (0, 2m). Let Ci, 2 ≤ i ≤ m, be a family of concentric circles centered at u1,

Farthest Color Voronoi Diagrams: Complexity and Algorithms 291

Fig. 5. (a) Placement of P1, P2 and (b) Placement of P3. For any Pi, with i ≥ 3, the
placement is analogous. (c) The relation between two clusters Pi and Pj .

each of radius 2−(m−i+2). Each upper point ui is placed on circle Ci. Each lower
point li is placed on bisector b(li−1, ui−1). We control the placement of all points
using a parameter w, 0 ≤ w 2−m. In particular, u2 is placed at the upper
intersection point of C2 and the vertical line x = w. Each lower point li is placed
at the intersection of line L(ui−1, ui) and bisector b(li−1, ui−1). Each upper point
ui, i ≥ 3, is placed on the upper intersection of Ci and circle C(li−2, ui−2, li−1).

As defined, the family P does not satisfy the general position assumption
as every four points (li−2, ui−2, li−1, ui) are cocircular and every three points
(li, ui, ui−1) are collinear. However, general position can be easily enforced during
the construction by infinitesimally translating ui, for i ≥ 3, on Ci towards the
interior of C(li−2, ui−2, li−1), and li, for i ≥ 2, on b(li−1, ui−1) towards the y-axis.

For w = 0, all points lie on the y-axis. As w increases lower points are
translated up and left, while upper points are translated down and right. The
quantity w needs to be sufficiently small so that lj lies within the disk DDi whose
diameter is defined by li, ui, for every i < j. Refer to our Geogebra applet1 for
an interactive visualization of P and the effect of changing w.

The following lemma points out properties of the family P, see Fig. 5c. Let
x(p) (resp. y(p)) denote the x-coordinate (resp. y-coordinate) of a point p. We
assume that line L(a, b) is oriented from a to b.

Lemma 9. Assuming that lj ∈ DDi, for any i < j, the following hold:

(a) Point lj is to the left of line L(li, ui) and point uj is to its right.
(b) 0 < slope(L(lj , uj)) < slope(L(li, ui)).
(c) y(li) < y(lj) < y(ui) < y(uj) and x(ui) < x(uj).
(d) Cluster Pi is below L(lj , uj).

1 http://compgeom.inf.usi.ch/FCVD/lowerbound.

http://compgeom.inf.usi.ch/FCVD/lowerbound
http://compgeom.inf.usi.ch/FCVD/lowerbound

292 I. Mantas et al.

From Lemma 9 we infer that P is linearly separable and that cluster Pj

straddles Pj ∀i < j, thus, the straddling number is s(P) = Θ(m2).

Lemma 10. For any m, there exists w > 0 such that lj ∈ DDi, ∀i < j.

From now on we assume that w is sufficiently small so that lj ∈ DDi, for any
i < j. In Lemma 11 we show how disks through a cluster Pi are ordered with
respect to the radii. This gives an ordering of their centers along bisector b(li, ui),
as for example in Fig. 3b. In Lemma 12 below we prove that these disks are all far-
thest color disks and so their centers correspond to mixed vertices in FCVD(P).

Lemma 11. For any i < j < k, the radii of the disks through li, ui are ordered
as follows: r(D(li, ui, uj)) > r(D(li, ui, lj)) ≥ r(D(li, ui, uk)).

Proof (sketch). We show separately that (1) r(D(li, ui, uj)) > r(D(li, ui, lj)) and
(2) r(D(li, ui, lj)) ≥ r(D(li, ui, uk)). For (1) we use the properties of Lemma 9.
For (2) we first prove that r(D(li, ui, lj)) > r(D(li, ui, uj+1)). This is equivalent
to showing that Ii, the upper intersection point of C(li, ui, lj) ∩ C(lj−1, uj−1, lj),
lies in the interior of Cj+1. We prove a simplified version of the statement using the
coordinates of the points when w = 0, and we argue that the distance of Ii to Cj+1

in that version, serves as an upper bound for the distance between Ii and Cj+1, as
w increases. This statement combined with (1), then implies (2). 	

Lemma 12. Disks D(li, ui, lj) and D(li, ui, uj) are farthest color disks ∀i < j.
They contain contain one point of cluster Pk, ∀Pk ∈ P\{Pi, Pj}. In particular:

(i) if k < i < j, then uk ∈ D(li, ui, lj) and uk ∈ D(li, ui, uj),
(ii) if i < k < j, then lk ∈ D(li, ui, lj) and lk ∈ D(li, ui, uj),
(iii) if i < j < k, then uk ∈ D(li, ui, lj) and uk ∈ D(li, ui, uj).

Since the disks of Lemma 12 are farthest color disks, they induce mixed ver-
tices in FCVD(P). Thus, FCVD(P) has Θ(m2) mixed vertices appearing in pairs
along bisectors. Each pair delimits a bounded face, hence, FCVD(P) has Θ(m2)
bounded faces.

Combining with the trivial Ω(n) bound, we conclude as follows.

Theorem 5. FCVD(P) may have combinatorial complexity Ω(n+m2), even if
P is linearly separable.

6 Construction Algorithms

We consider the divide & conquer paradigm. Split P into two sets PL and PR of
roughly equal size. Recursively compute FCVD(PL) and FCVD(PR), and then
merge them to obtain FCVD(P).

Merging FCVD(PL) and FCVD(PR) requires constructing the merge curve
which is the set of color Voronoi edges in FCVD(PL ∪ PR) belonging to bisectors
bc(Pi, Pj) with Pi ∈ PL and Pj ∈ PR. The merge curve may consist of several
connected components, both unbounded and bounded. To construct it, a starting

Farthest Color Voronoi Diagrams: Complexity and Algorithms 293

point needs to be identified on each component, and then each component has
to be traced.

Given a starting point on a component, we can efficiently trace it in O(n) time
by adapting standard tracing methods and exploiting the visibility decomposi-
tion, similarly to [24]. Moreover, due to Lemma 2, we can identify starting points
on the unbounded components of the merge curve in O(n) time, by merging the
respective cluster hulls prior to the two diagrams, also similar to [24].

It remains to identify starting points on the bounded components of the
merge curve. Bounded components enclose pieces of internal skeletons, due to
Lemma 1. Hence, to identify starting points, we can search for the portions of
the internal skeletons that are enclosed in such components. If an internal vertex
is enclosed in a bounded component, it can be easily identified by point location
in O(log n) time. However, no such vertex may be present and thus we need to
identify an internal edge. To identify an internal edge, we use the data structure
of Iacono et al. [16], which allows for efficient searches of intersections between
two plane graphs. This has been also used in a similar way for the HVD [16].
Details are given in the following theorem.

Theorem 6. FCVD(P) can be constructed in O((n + s(P)) log3 n) time.

Proof. We use the data structure of [16] as follows. At each recursive step, for
each internal edge e of FCVDa(PL) not entirely contained in the traced compo-
nents we build a search tree, which is a balanced binary tree of depth O(log n),
that implicitly stores the intersections of e with the skeleton of FCVDa(PR).
Identifying a portion of e requires a traversal of the search tree. An analogous
procedure is done for every internal edge of FCVDa(PR). The set of all search
trees can be constructed in O(n log n).

Deciding which child to follow while navigating the search tree is done by
point location at each node, which takes O(log n) time. Thus, a single traversal
from the root to a leaf requires O(log2 n) time. When traversing the tree, at
some nodes the search might continue to both children, as portions of e may
appear in more than one components, but this has to be a result of a straddle,
from Lemma 6, Moreover, a single straddle occurs in at most one recursive step,
since a pair of clusters can be considered at most once. By Lemma 7, there are
O(n + s(P)) bounded faces. This bounds the portions to be identified and the
time all search trees are traversed, resulting in O((n + s(P)) log3 n) time. 	

If P is admissible, FCVD(P) can be computed using the randomized algo-
rithm of Mehlhorn et al. [21]. Color bisectors, however, may have Θ(n) complex-
ity, and a direct application would give time complexity O(n2 log n). When P
is admissible, by Lemma 8, all regions of FCVD(P) are unbounded, and thus,
this is true for all components of the merge curve. So, each recursive step in our
algorithm takes O(n) time and we derive the following theorem.

Theorem 7. If P is admissible, FCVD(P) can be constructed in O(n log n) time.

Concluding, we remark that although the straddling number s(P) is Θ(mn)
in the worst case, this number could be small in ordinary instances of linearly

294 I. Mantas et al.

separable clusters. In fact, configurations of linearly separable clusters, which can
actually realize a quadratic straddling number are quite degenerate. In instances
of clusters where the straddling number is small, our algorithm outperforms the
existing O(mn log n)-time [15] and O(n2)-time [13] algorithms. This includes
families of clusters that may or not be linearly separable.

References

1. Abellanas, M., et al.: The farthest color Voronoi diagram and related problems.
In: Proceedings of the 17th European Workshop on Computational Geometry, pp.
113–116 (2001)

2. Acharyya, A., Nandy, S.C., Roy, S.: Minimum width color spanning annulus. Theor.
Comput. Sci. 725, 16–30 (2018)

3. Arkin, E.M., et al.: Bichromatic 2-center of pairs of points. Comput. Geom. 48(2),
94–107 (2015)

4. Arseneva, E., Papadopoulou, E.: Randomized incremental construction for the
Hausdorff Voronoi diagram revisited and extended. J. Comb. Optim. 37(2), 579–
600 (2018). https://doi.org/10.1007/s10878-018-0347-x

5. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, Singapore (2013)

6. Bae, S.W.: On linear-sized farthest-color Voronoi diagrams. IEICE Trans. Inf. Syst.
95(3), 731–736 (2012)

7. Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner
tree problem. Inf. Process. Lett. 110(16), 672–678 (2010)

8. Bohler, C., Cheilaris, P., Klein, R., Liu, C.H., Papadopoulou, E., Zavershynskyi,
M.: On the complexity of higher order abstract Voronoi diagrams. Comput. Geom.
48(8), 539–551 (2015)

9. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized
incremental algorithm for the Hausdorff Voronoi diagram of non-crossing clusters.
Algorithmica 76(4), 935–960 (2016). https://doi.org/10.1007/s00453-016-0118-y

10. Claverol, M., Khramtcova, E., Papadopoulou, E., Saumell, M., Seara, C.: Stab-
bing circles for sets of segments in the plane. Algorithmica 80(3), 849–884 (2018).
https://doi.org/10.1007/s00453-017-0299-z

11. Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for
Hausdorff Voronoi diagrams. In: Proceedings of the 35th International Conference
on Parallel Processing, ICPP, pp. 497–504. IEEE (2006)

12. Ding, H., Xu, J.: Solving the chromatic cone clustering problem via minimum
spanning sphere. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6755, pp. 773–784. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22006-7 65

13. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear
functions: algorithms and applications. Discrete Comput. Geom. 4(1), 311–336
(1989). https://doi.org/10.1007/BF02187733

14. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Lee,
D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14553-7 27

15. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces
and its applications. Discrete Comput. Geom. 9(3), 267–291 (1993). https://doi.
org/10.1007/BF02189323

https://doi.org/10.1007/s10878-018-0347-x
https://doi.org/10.1007/s00453-016-0118-y
https://doi.org/10.1007/s00453-017-0299-z
https://doi.org/10.1007/978-3-642-22006-7_65
https://doi.org/10.1007/978-3-642-22006-7_65
https://doi.org/10.1007/BF02187733
https://doi.org/10.1007/978-3-642-14553-7_27
https://doi.org/10.1007/BF02189323
https://doi.org/10.1007/BF02189323

Farthest Color Voronoi Diagrams: Complexity and Algorithms 295

16. Iacono, J., Khramtcova, E., Langerman, S.: Searching edges in the overlap of two
plane graphs. WADS 2017. LNCS, vol. 10389, pp. 473–484. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62127-2 40

17. Jørgensen, A., Löffler, M., Phillips, J.M.: Geometric computations on indecisive
points. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol.
6844, pp. 536–547. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22300-6 45

18. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the small-
est color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
ISAAC 2013. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45030-3 59

19. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-52055-4

20. Lee, C., Shin, D., Bae, S.W., Choi, S.: Best and worst-case coverage problems for
arbitrary paths in wireless sensor networks. Ad Hoc Netw. 11(6), 1699–1714 (2013)

21. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int.
J. Comput. Geom. Appl. 11(06), 583–616 (2001)

22. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, vol. 501. Wiley, Hoboken (2009)

23. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane.
Algorithmica 40(2), 63–82 (2004). https://doi.org/10.1007/s00453-004-1095-0

24. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects:
a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(06), 421–452
(2004)

25. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S.
(ed.) Principles of Visual Information Retrieval. ACVPR, pp. 87–119. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-3702-3 4

26. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search
in spatial databases: towards searching by document. In: Proceedings of the 25th
International Conference on Data Engineering, pp. 688–699. IEEE (2009)

https://doi.org/10.1007/978-3-319-62127-2_40
https://doi.org/10.1007/978-3-642-22300-6_45
https://doi.org/10.1007/978-3-642-22300-6_45
https://doi.org/10.1007/978-3-642-45030-3_59
https://doi.org/10.1007/978-3-642-45030-3_59
https://doi.org/10.1007/3-540-52055-4
https://doi.org/10.1007/s00453-004-1095-0
https://doi.org/10.1007/978-1-4471-3702-3_4

Rectilinear Convex Hull of Points in 3D

Pablo Pérez-Lantero1 , Carlos Seara2(B) , and Jorge Urrutia3

1 Departamento de Matemática y Ciencia de la Computación, USACH,
Santiago, Chile

pablo.perez.l@usach.cl
2 Departament de Matemàtiques, Universitat Politècnica de Catalunya,

Barcelona, Spain
carlos.seara@upc.edu

3 Instituto de Matemáticas, Universidad Nacional Autónoma de México,
Mexico City, Mexico

urrutia@matem.unam.mx

Abstract. Let P be a set of n points in R
3 in general position, and let

RCH(P) be the rectilinear convex hull of P . In this paper we obtain an
optimal O(n log n)-time and O(n)-space algorithm to compute RCH(P).
We also obtain an efficient O(n log2 n)-time and O(n log n)-space algo-
rithm to compute and maintain the set of vertices of the rectilinear con-
vex hull of P as we rotate R

3 around the z-axis. Finally we study some
properties of the rectilinear convex hulls of point sets in R

3.

1 Introduction

Let P be a set of n points in the plane. An open quadrant in the plane is the
intersection of two open half-planes whose supporting lines are parallel to the x
and y-axes. An open quadrant is called P -free if it contains no points of P . The
rectilinear convex hull of P is the set

RCH(P) = R
2 \

⋃

W (P)∈W
W (P),

where W denotes the set of all P -free open quadrants; see Fig. 1, left.
The rectilinear convex hull of point sets has been studied mostly in the plane;

e.g., see Ottmann et al. [9], Alegŕıa et al. [1], and Bae et al. [3].
An open θ-quadrant is the intersection of two open half-planes whose sup-

porting lines are orthogonal, one of which when rotated clockwise by θ degrees
becomes horizontal.

P. Perez-Lantero—Partially supported by projects CONICYT FONDECYT/Regular
1160543 (Chile), DICYT 041933PL Vicerrectoŕıa de Investigación, Desarrollo e Inno-
vación USACH (Chile), and Programa Regional STICAMSUD 19-STIC-02.
C. Seara—Research supported by projects MTM2015-63791-R MINECO/FEDER and
Gen. Cat. DGR 2017SGR1640.
J. Urrutia—Research supported by PAPIIT IN105221 Programa de Apoyo a la Inves-
tigación e Innovación Tecnológica, UNAM.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 296–307, 2020.
https://doi.org/10.1007/978-3-030-61792-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_24&domain=pdf
http://orcid.org/0000-0002-8703-8970
http://orcid.org/0000-0002-0095-1725
http://orcid.org/0000-0002-4158-5979
https://doi.org/10.1007/978-3-030-61792-9_24

Rectilinear Convex Hull of Points in 3D 297

We define the θ-rectilinear convex hull RCHθ(P) of a point set P as the set

RCHθ(P) = R
2 \

⋃

W (P)∈Wθ

W (P),

where Wθ denotes the set of all P -free open θ-quadrants.
Note that RCHθ(P) changes as θ changes. In fact, as θ changes from 0 to

π
2 there are O(n) combinatorially different rectilinear convex hulls; see [1,3].
Figure 1 right shows an example of a θ-rectilinear convex hull which happens to
be disconnected.

Fig. 1. Left: RCH(P). Right: RCHπ/6(P) of the same point set.

An open octant in R
3 is the intersection of the three half-spaces, one per-

pendicular to the x-axis, one perpendicular to the y-axis, and another one per-
pendicular to the z-axis. As for the planar case, an octant is called P -free if it
contains no elements of P . The rectilinear convex hull of a set of points in R

3 is
defined as

RCH3(P) = R
3 \

⋃

W (P)∈W
W (P),

where W denotes the set of all P -free open octants. In fact, in this paper and
as an abuse of language, by RCH3(P) we will also denote the boundary of
RCH3(P), and analogously for the similar definitions above. Thus, the rectilin-
ear convex layers of a point set in R

3 are defined recursively, as follows: calculate
RCH3(P), and remove the elements of P in RCH3(P).

Results. In this paper we consider the rectilinear convex hull RCH3(P) of point
sets in R

3. We obtain an O(n log n) time and O(n) space algorithm to calculate
RCH3(P). We also give an O(n log2 n) time and O(n log n) space algorithm to
maintain the set of vertices of RCH3(P) as we rotate R

3 around the z-axis.
We present some results on the combinatorics of rectilinear convex hulls in R

3

which are related to our algorithmic results, and interesting in their own right.
In particular, we show that the rectilinear convex hull of a point set can change
a quadratic number of times while its vertex set remains unchanged. Finally we
present some open problems.

298 P. Pérez-Lantero et al.

To avoid cumbersome terminology, from now on we will refer to RCH3(P)
simply as RCH(P).

1.1 Previous Work

The study of the rectilinear convex hull of point sets in the plane is closely related
to that of finding the set of maximal points of point sets under vector dominance.
This problem was introduced by Kung et al. [8], see also [11]. They obtained
an optimal O(n log n) time and O(n) space algorithm to solve this problem
in the plane and in the three-dimensional space. They also found algorithms
to solve the maxima problem in higher dimensions whose time complexity is
O(n logd−2 n) for dimensions d ≥ 3; however, it is not known whether their
algorithm is optimal. Buchsbaum and Goodrich [4] obtained an algorithm to
solve the three-dimensional layers of maxima problem in O(n log n) time and
O(n log n/ log log n) space in R

3. Their algorithm is time optimal.
The rectilinear convex hull of a point set in the plane was first studied by

Ottmann et al. [9] where they obtain an optimal O(n log n) time algorithm to cal-
culate them. The reader may also consult the monograph Restricted-Orientation
Geometry [5], where they study topics related to the problems we study here.
Other variants of the problems studied here were also treated [5,6].

The rectilinear convex layers of a point set P in Euclidean spaces are defined
recursively, as follows: calculate the rectilinear convex hull of P , remove its ele-
ments from P , and proceed recursively until P becomes empty. The rectilinear
convex layers of point sets were first studied in Peláez et al. [10], where an
optimal O(n log n) time algorithm to calculate them was obtained.

Variants of the RCH(P) that were considered in the plane are: computing
and maintaining RCHθ(P) when we rotate the coordinate axes around the ori-
gin, or determining the angle of rotation θ such that the area of RCHθ(P) is
minimized or maximized [1,3].

A point set is a rectilinear convex set if all of its elements lie on the boundary
of their rectilinear convex hull. Erdős-Szekeres type problems for finding recti-
linear convex subsets of point sets were studied by González-Aguilar et al. [7].
They obtained algorithms to find the largest rectilinear convex subset of a point
set, as well as finding their largest rectilinear convex hole, that is, subsets of
points of P such that their rectilinear convex hull contains no element of P in
the interior.

1.2 Notation and Preliminaries

For a point p ∈ R
3, we refer to xp, yp, and zp as the x-, y-, and z-coordinates

of p, respectively. A point p satisfies a sign pattern; e.g., (+,−,+) if xp ≥ 0,
yp ≤ 0, and zp ≥ 0. There are eight possible sign patterns that a point can
satisfy, namely: (+,+,+), (−,+,+), (−,−,+), (+,−,+), (+,+,−), (−,+,−),
(−,−,−), and (+,−,−). The first sign pattern corresponds to all of the points in
the first octant of R3. Similarly, we will say that the points satisfying the second
pattern, (−,+,+), correspond to points in the second octant, . . . , and those

Rectilinear Convex Hull of Points in 3D 299

satisfying (+,−,−) correspond to the eighth octant of R
3. The open octants

are defined in a similar way, except that we require strict inequalities; e.g., the
first open octant corresponds to points for which xp > 0, yp > 0, and zp > 0.
Given a point p ∈ R

3, the octants with respect to p are the octants induced by
a translation of the origin to p.

In addition, each of the eight sign patterns defines a partial order on the ele-
ments of R3 as follows: consider two points p, q ∈ R

3. We say that p is dominates
q according to the sign pattern (+,+,+) if

(xq ≤ xp) ∧ (yq ≤ yp) ∧ (zq ≤ zp).

We refer to this as q �1 p. In a similar way, we define the domination relations
with respect to the other seven sign patterns, which we denote as p �2 q, p �3 q,
p �4 q, p �5 q, p �6 q, p �7 q, and p �8 q. For example, the dominance relation
with respect to the second sign pattern is:

q �2 p ⇐⇒ (xq ≥ xp) ∧ (yq ≤ yp) ∧ (zq ≤ zp).

These dominance relations define partial orders in P , and they can be extended
to any dimension d > 3 in a straightforward way.

Definition 1. A point p ∈ P is a maximal element of P with respect to a partial
order if there is no q ∈ P that dominates p.

The partial order �1 defined by (+,+,+) is usually known as vector domi-
nance [8].

2 Computing RCH(P)

In this section we show how to calculate the rectilinear convex hull of point sets
in R

3. The problem of finding the maximal elements of a point set in R
2 and R

3

with respect to vector dominance is called the maxima problem. The next result
is well known.

Theorem 1 [8]. The maxima problem in R
d, d = 2, 3, can be solved in optimal

O(n log n) time and O(n) space.

In fact, when solving the maxima problem, we obtain the set of faces and
vertices of the orthogonal polyhedron, i.e., the faces meet at right angles and
edges are parallel to the axes; call it P1 as shown in Fig. 2 left. In the right part
of Fig. 2 we show the top view of P1. Observe that if we intersect a horizontal
plane Qc with equation z = c with P1, we obtain an orthogonal polygon C1

c that
will change as we move Qc up or down; i.e., as we increase or decrease c.

In Fig. 3 we show how C1
c changes as we scan it from top to bottom starting

at the top vertex of P1. We show the intersection of P1 with Qc as Qc sweeps
through the first four top vertices of P1. It is easy to see that when Qc moves
from one vertex of P1 to the next, C1

c changes in the following way: a new vertex

300 P. Pérez-Lantero et al.

Fig. 2. Left: Maxima points in the first octant with the topmost antenna in p1, and
an extremal first open octant in blue. Right: The projection on the XY plane of the
first octant maxima point set.

Fig. 3. How C1
c changes as Qc moves down from point 1 to point 4.

appears, which is the vertex of an elbow from which two rays emanate, one
horizontal and one vertical, that extend until they hit C1

c or go to infinity; see
Fig. 3.

Analogously, we can define Pi, Ci
c, i = 2, . . . , 8. Since RCH(P) =⋂

i=1,...,8 Pi, we have the following.

Theorem 2. For each constant c, the intersection of RCH(P) with Qc is the
intersection of the orthogonal polygons Ci

c, i = 1, . . . , 8.

To compute RCH(P) we will sweep a plane Qc from top to bottom, stop-
ping at each point of P on RCH(P). Each time we stop, we need to update
RCH(P) =

⋂
i=1,...,8 Pi. We claim that we can do this in O(log n) time. To

prove this, observe that when we move Qc from a point p of P to the next point,
say q, the only curves Ci

c, i = 2, . . . , 8 that change are those containing q, and
these can be recomputed in O(log n) time.

As a consequence of the discussion above we have the following result.

Theorem 3. Given a set P of n points in 3D, the rectilinear convex hull of P ,
RCH(P), can be computed in optimal O(n log n) time and O(n) space.

Rectilinear Convex Hull of Points in 3D 301

3 Maintaining RCHθ(P)

In the plane, the problem of maintaining RCHθ(P) as θ changes from 0 to 2π
has been studied [1,3]. In this section we will study this problem in R

3 restricted
to rotations of R3 around the z-axis. Thus, in the rest of this section we will use
octants defined as intersections of three mutually orthogonal semi-spaces whose
supporting planes are orthogonal to three mutually orthogonal lines through
the origin, one of which is the z-axis. Thus, two of these three lines lie on the
XY -plane, and correspond to rotations of the x- and y-axis by an angle θ in
the clockwise direction. We call such octants θ-octants, and the corresponding
rectilinear convex hulls generated RCHθ(P). In the rest of this section we will
assume that elements of P are labeled {p1, . . . , pn} from top to bottom according
to their z-coordinate.

For every p ∈ R
3 there are eight θ-octants having p as their apex; we will

call them pθ-octants. Exactly four pθ-octants contain points in R
3 above the

horizontal plane λp through p, and the other four have points below λp. We call
the first four up pθ-octants, and the other down pθ-octants. Note that if an up
pθ-octant is no-P -free, it contains elements of P above λp, and that non-P -free
down pθ-octants contain points in P below λp.

Observe that a point p ∈ P is a vertex of RCHθ(P) if there is a P -free pθ-
octant. In this case we will say that p is a θ-active point, otherwise p is θ-inactive.
Furthermore, if there is a P -free up pθ-octant, we call p an up θ-active vertex.
We define down θ-active vertices in a similar way.

We first analyze the set of angles for which points in P are up θ-active.
Let pi be a point of P , and consider the orthogonal projection onto λpi

of the
points p1, . . . , pi−1 (the points in P above λpi

), and let P ′
i be the point set thus

obtained; see Fig. 4 left. If for some θ, pi is up θ-active, then there is a wedge
of angular size θpi

at least π
2 on λpi

whose apex is pi, that is P ′
i -free; see Fig. 4

right. Clearly, no more than three such disjoint wedges can exist. In a similar
way, we can prove that pi is down active in at most three angular intervals.
Thus, the following result, equivalent to a result in Avis et al. [2] for points on
the plane, follows.

Theorem 4. The set of angles θ for which a point pi ∈ P is active consists of
at most six disjoint intervals in the set of directions [0, 2π].

Finding the angle intervals at which pi is up-active is now reduced to finding,
if they exist, P ′

i -free wedges in λpi
whose apex is pi of angular size at least π

2 .
We solve this as follows: note first that if one such wedge exists, it has to contain
at least one of the four rays emanating from pi parallel to the x- or y-axis. Let
those rays be X+

i , X−
i , Y +

i , and Y −
i ; see Fig. 4 right. For X+

i , we will solve the
following problem.

Rotate X+
i clockwise until it hits a point in P ′

i . Next, rotate X+
i clockwise

until it hits another point in P ′. Measure the angle α formed by the two rays thus
obtained. If α ≥ π

2 then we have found a set of intervals at which pi is active,
else discard X+

i . Proceed in the same way with X−
i , Y +

i , and Y −
i . We will have

302 P. Pérez-Lantero et al.

Fig. 4. Checking whether the point pi is maximal with respect to the first octant for
some angular interval: project the set of points {p1, p2, . . . , pi−1} on the plane parallel
to the XY plane passing through pi, and obtain the projected points (red points in
figure). (Color figure online)

to repeat this process for all of the points pi ∈ P from top to bottom. We now
show how to process all the points in P in O(n log2 n) time and O(n log n) space.

The main difficulty in finding the wedges in the above discussion is that as
we process the points of P from top to bottom, the number of points in λpi

increases one by one, and thus, we need a dynamic data structure to solve the
following problem.

Problem 1. Let Q = {q1, . . . , qn} be a set of points in the plane, and let Qi−1 =
{q1, . . . , qi−1}. For each i we want to solve the following problem: let ri be the
vertical ray that starts at qi and points up. Find the first point ai (respectively,
bi) of Qi−1 that ri meets when we rotate it in the clockwise (respectively, counter-
clockwise) direction around qi.

One last point before proceeding with our results; instead of projecting the
points of P on the planes λpi

, we will project them one by one on the XY -plane.
Everything else remains unchanged. The next observation on binary trees will
be useful.

Observation 1. Let T be a balanced binary tree. For each node of v ∈ T let
Sv be the set of leaves of T that are descendants of v. Let u be a leaf of T , and
consider the path pu that joins u to the root of T , and let Δu be the set of nodes
of T that are direct descendants of a node in pu. Then, the sets Sv, v ∈ Δu

induce a partition of the set of leaves of T \ {u}. Moreover if a node w in Δu

is the right (left) descendant of a node in pu, then the elements of Sw lie to the
right (respectively, left) of v; see Fig. 5.

Theorem 5. Problem 1 can be solved in O(n log2 n) time and O(n log n) space.

Proof. Assume without loss of generality that no two points of Q lie on a hor-
izontal line, and let left i and right i be the set of points in P lying to the left
(respectively, right) of the vertical line through qi. If we know the convex hulls

Rectilinear Convex Hull of Points in 3D 303

Fig. 5. Balanced binary tree T .

of left i and right i, then the points we are seeking, ai and bi, can be computed
by calculating the supporting lines of the convex hull of left i and right i passing
through qi. It is well known that we can compute these lines in O(log n) time.

Furthermore, if left i and right i have been decomposed into k disjoint sets
Wi, . . . ,Wk where each Wi is contained in left i or in right i, and we have the
convex hull conv(Wi) of all of these point sets, then we can find the supporting
lines through qi for all of them in overall O(log |W1|+ · · ·+log |Wk|) = O(log2 n)
time; see Fig. 6. This will now allow us to obtain ai and bi in O(log n) time. This
is the main idea that will enable us to design a data structure to solve Problem 1
in O(n log2 n) time.

Fig. 6. Processing p6. At this point, p7 and p8 are inactive, so they are in black.

Let D(Q) be a balanced binary tree whose leaves are the elements of Q sorted
in order from left to right according to their x-coordinate. Note that this order
does not necessarily coincide with the labeling q1, . . . , qn of the elements of Q.
Initially, every leaf of D(Q) is considered inactive. For each vertex of D(Q) we
maintain the convex hull of W (q), where W (q) is the set of descendant leaves
(points of Q) that are active.

For each i, from i = 1, . . . , n we execute the following algorithm:

– Consider the nodes of D(Q) that are direct descendants of nodes in the path
pqi

connecting qi to the root of D(Q). By Observation 1, the active descen-
dants of these nodes form a partition Wi, . . . ,Wk of the set of active leaves

304 P. Pérez-Lantero et al.

of D(Q) \ {qi}, and each of these sets is contained to the left or the right of
the vertical line through qi. Moreover we know the convex hulls of each of
Wi, . . . ,Wk. Thus, we can calculate their supporting lines passing through qi

in overall O(log2 n) time.
– Make qi active, and update the convex hulls stored at the vertices of the path

joining qi to the root of D(Q). This can be done in logarithmic time per node
of the path, and overall O(log2 n) time.

Observe that the convex polygon associated with the root of D(Q) can be
of size n. For the vertices in the next level of D(Q), the sum of the sizes of the
convex polygons associated to them is n, and in general, the sum of the polygons
associated to the vertices of D(Q) is n. Since the number of levels of D(Q) is
O(log n), the space used is O(n log n). 	

By using the results in Theorem 5 we can calculate the set of intervals at
which all of the points in P are up-active. In a similar way we can determine the
intervals for which the points in P are down-active; thus we have the following.

Theorem 6. The set of intervals at which the points of P are θ-active can be
computed in O(n log2 n) time and O(n log n) space.

Observe that the set of intervals at which two points of P are active define
intervals in the unit circle C, where the points on C correspond to angles in
[0, 2π]. Thus, if an angle θ belongs to an interval at which a point of P is active,
this point is a vertex of RCHθ(P). As θ goes from 0 to 2π, the vertices of
RCHθ(P) are those for which one of its active angular intervals contains θ.

As a consequence of the above discussion we have the following result.

Theorem 7. Given a set P of n points in 3D, maintaining the elements of P
that belong to the boundary of RCHθ(P) as θ ∈ [0, 2π] can be done in O(n log2 n)
time and O(n log n) space.

Note that if we store the set of angular intervals at which the points of P are
active, then we can, for any angle θ retrieve the points in P that are θ active
in linear time. In case that we want to compute the RCHθ(P) for a particular
value of θ, all we have to do is to retrieve that θ-active points of P in linear time,
and use the algorithm presented in Theorem 3.

4 The Combinatorics of Rectilinear Convex Hulls in R
3

In the previous section, we studied the problem of maintaining the set of points
of P that are vertices of RCHθ(P). The problem of maintaining RCHθ(P) does
not follow from our previous results. As we shall see, there are examples of point
sets P ⊂ R

3 such that the number of combinatorially different rectilinear convex
hulls of P can be at least Ω(n2) while the set of vertices of RCHθ(P) remains
unchanged.

Rectilinear Convex Hull of Points in 3D 305

To begin, we notice that RCHθ(P) is not necessarily connected; this is easy
to see, as for point sets in the plane this property does not hold; e.g., see Fig. 1
right. What is a bit more interesting is that even when RCHθ(P) is connected
and has non-empty interior, it is not necessarily simply connected. In Fig. 7 we
show a rectilinear convex hull of a point set whose rectilinear convex hull is a
torus. The elements of P are the vertices of the cubes glued together to obtain
the figure. The reader will notice immediately that the points in P are not in
general position. A slight perturbation of the elements of P , that would bring
them to a point set in general position, will also yield a rectilinear convex hull
whose interior is a torus. Evidently, we can construct similar examples to that
shown in Fig. 7 in which we obtain oriented surfaces of arbitrarily large genus.

Fig. 7. The rectilinear convex hull of a point set that is not simply connected.

We now construct a point set such that for an angular interval [α, β] while
θ ∈ [α, β], RCHθ(P) will maintain the same vertices while it changes a quadratic
number of times.

Consider a circular cylinder C that is perpendicular to the XY -plane, and
consider a geodesic curve H on C that joins two points p and q on C. Choose a set
of n points P ′ = {p′

1, . . . , p
′
n} on H such that their projection on the XY -plane

is a set of equidistant points on a small interval of the circle in which C and the
XY -plane intersect, and such that if i < j the z-coordinate of pi is smaller than
the z-coordinate of pj ; see Fig. 8.

Observe that there is a P ′-free up octant Q1,n whose bottom, left, and back
faces contain p′

1, p′
n−1 and p′

n. Observe now that there is a translation of Q1 up
and to the left so as to produce a second octant Q1,n−1 whose bottom, left and
back faces contain p′

2, p′
n−1, and p′

n−2. We can iterate this process n−1
2 times

to obtain a set of n−1
2 P ′-free octants that have on their bottom, left and back

faces p′
1, p′

i and p′
i+1, i = �n−1

2 , . . . , n − 1; see Fig. 8.
Rotating Q2 slightly in the clockwise direction and moving it up we can obtain

a P -free octant Q2,n containing on its bottom, left, and back faces p′
2, p′

n, and

306 P. Pérez-Lantero et al.

Fig. 8. A configuration of points that illustrates a point set for which its set of vertices
remains unchanged while its rectilinear convex hull changes a quadratic number of
times.

p′
n−1. We can now repeat the same process as we did with {p′

1, . . . , p
′
n}, and with

{p′
2, . . . , p

′
n}, starting with p′

2 and Q2,n to obtain a new set of P ′-free extremal
octants. Repeat this process with {p′

3, . . . , p
′
n},. . . , {p′

n−3, . . . , p
′
n}, to obtain a

quadratic number of P ′-free extremal P ′-octants. Let α and β be the angles of
rotation of the XY -plane such that the x-axis becomes parallel to the line at
which the back faces of Q1,n and Qn−3,n intersect the XY -plane. Observe that all
of p′

1, . . . , p
′
n are active points and on the boundary of RCHθ for all θ ∈ [α, β]. In

the meantime, all of the P -free octants we obtained above become active during
an angular interval contained in [α, β]. To complete our construction, we add a
few points to the set {p′

1, . . . , p
′
n}. These points are located behind the circular

cylinder C, placed appropriately to ensure that the rectilinear convex hull of the
point set P thus obtained has non-empty interior, and all of {p′

1, . . . , p
′
n} are on

its boundary. Thus, the rectilinear convex hull of P changes a quadratic number
of times while its vertex set remains unchanged.

Theorem 8. There are configurations of points in R
3 such that for an angular

interval [α, β] while θ ∈ [α, β], RCHθ(P) will maintain the same vertices while
it changes a quadratic number of times.

5 Final Remarks and Future Lines of Research

We have shown how to calculate the rectilinear convex hull of a point set in
O(n log n) time. The rectilinear convex layers of a point set in R

3 are defined in
a recursive way as follows: calculate RCH3(P), and remove the elements of P
in RCH3(P). It is clear that the rectilinear convex layers of P can be computed
in a recursive way by removing the rectilinear convex hull of the point set until
P becomes empty. If P has k rectilinear convex layers, this can be done in
O(kn log n) time and O(n) space. We conjecture that there exists an algorithm
to find the rectilinear convex layers of P in better than O(kn log n) time and
O(n) space.

Rectilinear Convex Hull of Points in 3D 307

We proved that the number of times that the set of vertices of the rectilinear
convex hull of a point set P changes while R

3 is rotated around the z-axis is
linear; however, the rectilinear convex hull of P may change a quadratic number
of times. A future line of research is that of obtaining efficient algorithms to
maintain the rectilinear convex hull of P in time proportional to the number of
times it changes times a logarithmic factor.

Finally, we remark that obtaining the rectilinear convex hull of a point set,
when we rotate R

3 around any line through the origin, can be done trivially
in O(n log n) time, as any such rotation can be achieved as a composition of a
rotation around the z-axis followed by a rotation around the x-axis.

Acknowledgement. This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
the Marie Sk�lodowska-Curie grant agreement No. 734922.

References

1. Alegŕıa-Galicia, C., Orden, D., Seara, C., Urrutia, J.: On the O-hull of planar point
sets. In: Proceedings of the 30th European Workshop on Computational Geometry
(2014)

2. Avis, D., et al.: Unoriented Θ-maxima in the plane: complexity and algorithms.
SIAM J. Comput., 28(1), 278–296 (1999)

3. Bae, S.W., Lee, Ch., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Computing minimum-
area rectilinear convex hull and L-shape. Comput. Geometry Theory Appl. 42(9),
903–912 (2009)

4. Buchsbaum, A.L., Goodrich, M.T.: Three-dimensional layers of maxima. Algorith-
mica 39(4), 275–286 (2004)

5. Fink, E., Wood, D.: Restricted-orientation Convexity. Monographs in Theoretical
Computer Science (An EATCS Series), Springer-Verlag (2004). https://doi.org/
10.1007/978-3-642-18849-7

6. Franěk, V., Matoušek, J.: Computing D-convex hulls in the plane. Comput. Geom-
etry Theory Appl. 42(1), 81–89 (2009)

7. González-Aguilar, H., Orden, D., Pérez-Lantero, P., Rappaport, D., Seara, C.,
Tejel, J., Urrutia, J.: Maximum rectilinear convex subsets. In: G ↪asieniec, L.A.,
Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 274–291.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0 19

8. Kung, H.-T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

9. Ottmann, T., Soisalon-Soininen, E., Wood, D.: On the definition and computation
of rectilinear convex hulls. Inf. Sci. 33(3), 157–171 (1984)

10. Peláez, C., Ramı́rez-Vigueras, A., Seara, C., and Urrutia, J.: On the rectilinear
convex layers of a planar set. In: Proceedings of the Mexican Conference on Discrete
Mathematics and Computational Geometry, 60th birthday of Jorge Urrutia (2013)

11. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

https://doi.org/10.1007/978-3-642-18849-7
https://doi.org/10.1007/978-3-642-18849-7
https://doi.org/10.1007/978-3-030-25027-0_19
https://doi.org/10.1007/978-1-4612-1098-6

Complexity Theory

Monotone Circuit Lower Bounds
from Robust Sunflowers

Bruno Pasqualotto Cavalar1(B), Mrinal Kumar2, and Benjamin Rossman3

1 Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
brunopc@ime.usp.br

2 IIT Bombay, Mumbai, India
mrinalkumar08@gmail.com

3 University of Toronto, Toronto, Canada
ben.rossman@utoronto.ca

Abstract. Robust sunflowers are a generalization of combinatorial sun-
flowers that have applications in monotone circuit complexity [14], DNF
sparsification [6], randomness extractors [8], and recent advances on the
Erdős-Rado sunflower conjecture [3,9,12]. The recent breakthrough of
Alweiss, Lovett, Wu and Zhang [3] gives an improved bound on the
maximum size of a w-set system that excludes a robust sunflower. In
this paper, we use this result to obtain an exp(n1/2−o(1)) lower bound
on the monotone circuit size of an explicit n-variate monotone function,
improving the previous record exp(n1/3−o(1)) of Harnik and Raz [7]. We
also show an exp(Ω(n)) lower bound on the monotone arithmetic circuit
size of a related polynomial. Finally, we introduce a notion of robust
clique-sunflowers and use this to prove an nΩ(k) lower bound on the
monotone circuit size of the CLIQUE function for all k � n1/3−o(1),
strengthening the bound of Alon and Boppana [1].

1 Introduction

A monotone Boolean circuit is a Boolean circuit with AND and OR gates but
no negations (NOT gates). Although a restricted model of computation, mono-
tone Boolean circuits seem a very natural model to work with when computing
monotone Boolean functions, i.e., Boolean functions f : {0, 1}n → {0, 1} such
that for all pairs of inputs (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ {0, 1}n where ai � bi

for every i, we have f(a1, a2, . . . , an) � f(b1, b2, . . . , bn). Many natural and well-
studied Boolean functions such as Clique and Majority are monotone.

Monotone Boolean circuits have been very well studied in Computational
Complexity over the years, and continue to be one of the few seemingly largest
natural sub-classes of Boolean circuits for which we have exponential lower
bounds. This line of work started with a very influential paper of Razborov
[13] who proved a super-polynomial nΩ(log n) lower bound on the size of mono-
tone circuits computing the Cliquek,n function for k � log n. Prior to Razborov’s
result, we didn’t even have super-linear lower bounds for monotone circuits, with
the best bound being a lower bound of 4n due to Tiekenheinrich [15]. Further
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 311–322, 2020.
https://doi.org/10.1007/978-3-030-61792-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_25

312 B. P. Cavalar et al.

progress in this line of work included the results of Andreev [4] who proved an
exponential lower bound for another explicit function. Alon and Boppana [1]
extended Razborov’s result by proving an nΩ(

√
k) lower bound for Cliquek,n for

all k � n2/3−o(1). These state of art monotone circuit lower bounds saw a fur-
ther quantitative improvement in a work of Harnik and Raz [7] who proved a
lower bound of 2Ω((n/ log n)1/3) for an explicit n-variate function defined using a
small probability space of random variables with bounded independence. How-
ever, to this day, the question of proving truly exponential lower bounds for
monotone circuits (of the form 2Ω(n)) for an explicit n-variate function) remains
open! (Truly exponential lower bounds for monotone formulas were obtained
only recently [11]).

In the present paper, we are able to improve the best known lower bound
for monotone circuits by proving the first 2Ω(n1/2/(log n)3/2) lower bound for an
explicit monotone Boolean function (Sect. 2). The function is based on the same
construction first considered by Harnik and Raz [7], but our argument employs
the approximation method of Razborov with recent improvements on robust
sunflower bounds [3,12]. In the full paper, by applying the same technique with
a variant of robust sunflowers that we call robust clique-sunflowers, we are able
to prove an nΩ(k) lower bound for the Cliquek,n function when k � n1/3−o(1),
thus improving the result of Alon and Boppana when k is in this range. Finally,
we are able to prove truly exponential lower bounds in the monotone arithmetic
setting to a fairly general family of polynomials, which shares some similarities
to the Harnik and Raz function (also in the full paper).

1.1 Monotone Circuit Lower Bounds and Sunflowers

The original lower bound for Cliquek,n due to Razborov employed a technique
which came to be known as the approximation method. Given a monotone circuit
C of “small size”, it consists into constructing gate-by-gate, in a bottom-up
fashion, another circuit ˜C that approximates C on most inputs of interest. One
then exploits the structure of this approximator circuit to prove that it differs
from Cliquek,n on most inputs of interest, thus implying that no “small” circuit
can compute this function. This technique was leveraged to obtain lower bounds
for a host of other monotone problems [1].

A crucial step in Razborov’s proof involved the sunflower lemma due to Erdős
and Rado. A family F of subsets of [n] is called a sunflower if there exists a set
Y such that F1 ∩ F2 = Y for every F1, F2 ∈ F . The sets of F are called petals
and the set Y =

⋂ F is called the core. We say that the family F is �-uniform if
every set in the family has size �.

Theorem 1 (Erdős and Rado [5]). Let F be a �-uniform family of subsets
of [n]. If |F| � �!(r − 1)�, then F contains a sunflower of r petals.

Informally, the sunflower lemma allows one to prove that a monotone function
can be approximated by one with fewer minterms by means of the “plucking”
procedure: if the function has too many (more than �!(r − 1)�) minterms of size

Monotone Circuit Lower Bounds from Robust Sun Flowers 313

�, then it contains a sunflower with r petals; remove all the petals, replacing
them with the core. One can then prove that this procedure does not introduce
many errors.

The notion of robust sunflowers was introduced by the third author in [14],
to achieve better bounds via the approximation method on the monotone circuit
size of Cliquek,n when the negative instances are Erdős-Rényi random graphs
Gn,p below the k-clique threshold.1 A family F ⊆ 2[n] is called a (p, ε)-robust
sunflower if

P
W ⊆p[n]

[∃F ∈ F : F ⊆ W ∪ Y] > 1 − ε,

where Y :=
⋂ F and W is a p-random subset of [n]. Henceforth, we consistently

write random objects using boldface symbols (such as W , Gn,p, etc.).
As remarked in [14], every �-uniform sunflower of r petals is a (p, e−rp�

)-
robust sunflower. Moreover, as observed in [9], every (1/r, 1/r)-robust sunflower
contains a sunflower of r petals. A corresponding bound for the appearance of
robust sunflowers in large families was also proved in [14].

Theorem 2 [14]. Let F be a �-uniform family such that |F| � �!(2 log(1/ε)/p)�.
Then F contains a (p, ε)-robust sunflower.

For many choice of parameters p and ε, this bound is better than the one
by Erdős and Rado, thus leading to better approximation bounds. In a recent
breakthrough, this result was significantly improved in [3].

Theorem 3 (Theorem 2.5 of [3]). Let F be a �-uniform family such that
|F| � (log �)� · (log log � · log(1/ε)/p)O(�). Then F contains a (p, ε)-robust sun-
flower.

Because of the connection between robust sunflowers and sunflowers
explained above, this result was used by the authors to significantly improve
the standard sunflower bounds of Erdős and Rado. Soon afterwards, Rao [12]
provided an alternative proof which slightly improved the bound. It is this bound
we are going to use, which we introduce in the next section.2

1.2 Slice Sunflowers

In what follows, let m be a positive integer such that m < n.

Definition 1. Let F be a family of subsets of [n] and let Y :=
⋂ F . Let al.so

W ⊆ [n] be a set of size m chosen uniformly at random. The family F is called
a (m, ε)-slice-sunflower if

P
W

[∃F ∈ F : F ⊆ W ∪ Y] > 1 − ε.

1 Robust sunflowers were called quasi-sunflowers in [6,8,9,14] and approximate sun-
flowers in [10]. Following Alweiss et al. [3], we adopt the new name robust sunflower.

2 Crucially for our application, the O(�) exponent in the bound of Theorem 3 is only
2� when ε = 2−Ω(�). To get any improvement over the Harnik-Raz bound, we require
� + o(�), which is given by the result of Rao [12].

314 B. P. Cavalar et al.

Theorem 4 [12]. There exists an universal constant B > 0 such that the follow-
ing holds. Let p ∈ (0, 1) and let F ⊆ (

[n]
�

)

be such that |F| � (Bx log x)�, where
x = log(�/ε)/p. Then F contains a (m, ε)-slice-sunflower, where m = �np	.

The theorem above is implicit in Rao [12]. In the full paper, we include
an explicit proof of this theorem, closely following the argument and notation
of [12].

2 Harnik-Raz Function

The strongest lower bound known for monotone circuits computing an explicit
n-variate monotone Boolean function is exp

(

Ω
(

(n/ log n)1/3
))

, and it was
obtained by Harnik and Raz [7]. In this section, we will prove a lower bound
of exp(Ω(n1/2/(log n)3/2)) for the same Boolean function they considered.
We apply the method of approximations [13] and the new robust sunflower
bound [3,12]. We do not expect that a lower bound better than exp(n1/2−o(1))
can be obtained by this technique, even with better sunflower bounds.

We start by giving a high level outline of the proof. We define the Harnik-
Raz function fHR : {0, 1}n → {0, 1} and find two distributions Y and N with
support in {0, 1}n satisfying the following properties:

– fHR outputs 1 on Y with high probability (Lemma 1);
– fHR outputs 0 on N with high probability (Lemma 2).

Because of these properties, the distribution Y is called the positive test dis-
tribution, and N is called the negative test distribution. We also define a set of
monotone Boolean functions called approximators, and we show that:

– every approximator commits many mistakes on either Y or N with high
probability (Lemma 8);

– every Boolean function computed by a “small” monotone circuit agrees with
an approximator on both Y and N with high probability (Lemma 9).

Together these suffice for proving that “small” circuits cannot compute fHR. The
crucial part where the robust sunflower result comes into play is in the second
item.

2.1 Technical Preliminaries

For A ⊆ [n], let xA ∈ {0, 1}n be the binary vector with support in A. For a set
A ∈ 2[n], let
A� be the indicator function satisfying

A�(x) = 1 ⇐⇒ xA � x.

Define also {0, 1}n
=m :=

{

xA : A ∈ (

n
m

)}

. For a monotone Boolean function f :
{0, 1}n → {0, 1}, let M(f) denote the set of minterms of f , and let M�(f) :=
M(f)∩{0, 1}n

=�. Elements of M�(f) are called �-minterms of f . In what follows,
we will mostly ignore ceilings and floors for the sake of convenience, since these
do not make any substantial difference in the final calculations.

Monotone Circuit Lower Bounds from Robust Sun Flowers 315

2.2 The Function

We now describe the construction of the function fHR : {0, 1}n → {0, 1} consid-
ered by Harnik and Raz [7]. First observe that, for every n-bit monotone Boolean
function f , there exists a family S ⊆ 2[n] such that

f(x1, . . . , xn) = fS(x1, . . . , xn) :=
∨

S∈S

∧

j∈S

xj .

Indeed, S can be chosen to be the family of the coordinate-sets of minterms
of f . Now, in order to construct the Harnik-Raz function, we will suppose n
is a prime power and let Fn be the field of n elements. Moreover, we fix two
positive integers c and k with c < k. For a polynomial P ∈ Fn[x], we let SP be
the set of the valuations of P in each element of {1, 2, . . . , k} (in other words,
SP = {P (1), . . . , P (k)}). Observe that it is not necessarily the case that |SP | = k,
since it may happen that P (i) = P (j) for some i, j such that i �= j. Finally, we
consider the family SHR defined as

SHR := {SP : P ∈ Fn[x], P has degree at most c − 1 and |SP | � k/2} .

We thus define fHR as fHR := fSHR .
We now explain the choice of SHR. First, the choice for valuations of poly-

nomials with degree at most c − 1 is explained by a fact observed in [2]. If a
polynomial P ∈ Fn[x] with degree c − 1 is chosen uniformly at random, they
observed that the random variables P(1), . . . ,P(k) are c-wise independent, and
are each uniform in [n]. This allows us to define a distribution on the inputs
(the positive test distribution) that has high agreement with fHR and is easy
to analyze. Observe further that, since |SHR| � nc, the monotone complexity of
fHR is at most 2c log n. Later we will chose c to be roughly n1/2, and prove that
the monotone complexity of fHR is 2Ω(c).

Finally, the restriction |SP | � k/2 is a truncation made to ensure that no
minterm of fHR is very small. Otherwise, if fHR had small minterms, it might
have been a function that almost always outputs 1. Such functions have very few
maxterms and are therefore computed by a small CNF. Since we desire fHR to
have high complexity, this is an undesirable property. The fact that fHR doesn’t
have small minterms is important in the proof that fHR almost surely outputs 0
in the negative test distribution (Lemma 2).

We now define the positive and negative test distributions. Let Y ∈ {0, 1}n

be the random variable which chooses a polynomial P ∈ Fn[x] with degree at
most c−1 uniformly at random, and maps it into the binary input xSP

∈ {0, 1}n.
Let

p := n−4c/k and m := �np	.
Let also N be the distribution which chooses an input from {0, 1}n

=m uniformly
at random. For a Boolean function f and a probability distribution µ on the
inputs on f , we write f(µ) to denote the random variable which evaluates f on
a random instance of µ. Harnik and Raz proved that fHR outputs 1 on Y with
high probability.

316 B. P. Cavalar et al.

Lemma 1 (Claim 4.2 in [7]). We have P[fHR(Y) = 1] � 1 − k/n.

We now claim that fHR also outputs 0 on N with high probability.

Lemma 2. We have P[fHR(N) = 0] � 1 − n−c.

Proof. Let xA be an input sampled from N . Observe that fHR(xA) = 1 only if
there exists a minterm x of fHR such that x � xA. Since all minterms of fHR

have Hamming weight at least k/2 and fHR has at most nc minterms, we have

P[fHR(N) = 1] � nc ·
(

n−k/2
m−k/2

)

(

n
m

) � nc ·
(m

n

)k/2

� n−c.

As a consequence of Lemmas 1 and 2, we obtain the following result.

Lemma 3. For large enough n, we have P[fHR(Y) = 1]+P[fHR(N) = 0] � 9/5.

2.3 A Closure Operator

In this section, we describe a closure operator in the lattice of monotone Boolean
functions. We prove that the closure of a monotone Boolean function f is a good
approximation for f on the negative test distribution (Lemma 4), and we give
a bound on the size of the set of minterms of closed monotone functions. This
bound makes use of the robust sunflower lemma (Theorem 4), and is crucial to
bounding errors of approximation (Lemma 7). Throughout this section, we let

ε := n−3c.

Definition 2. We say that a monotone function f : {0, 1}n → {0, 1} is ε-closed
if, for every A ∈ (

[n]
�c

)

, we have

P[f(N ∨ xA) = 1] � 1 − ε =⇒ f(xA) = 1.

This means that for, an ε-closed function, we always haveP[f(N ∨xA) = 1] /∈ [1−
ε, 1) when |A| � c. Note morever that if f, g are both ε-closed monotone Boolean
functions, then so is f∧g. Therefore, there exists a uniqueminimumclosed function
cl(f) satisfying f � cl(f). We call cl(f) the closure of f . We now give a bound on
the error of approximating f by cl(f) under the distribution N .

Lemma 4. For every monotone f : {0, 1}n → {0, 1}, we have

P [f(N) = 0 and cl(f)(N) = 1] � n−2c.

Proof. We first prove that there exists a positive integer t and sets A1, . . . , At

and monotone functions h0, h1, . . . , ht : {0, 1}n → {0, 1} such that

1. h0 = f ,
2. hi = hi−1 ∨
Ai�,

Monotone Circuit Lower Bounds from Robust Sun Flowers 317

3. P[hi−1(N ∪ xAi
) = 1] � 1 − ε,

4. ht = cl(f).

Indeed, if hi−1 is not closed, there exists Ai ∈ (

[n]
�c

)

such that P[hi−1(N ∪xAi
) =

1] � 1 − ε but hi−1(xAi
) = 0. We let hi := hi−1 ∨
Ai�. Clearly, we have that ht

is closed, and that the value of t is at most the number of subsets of [n] of size
at most c. Therefore, we get t �

∑c
j=0

(

n
j

)

. Moreover, by induction we obtain
that hi � cl(f) for every i ∈ [t]. It follows that ht = cl(f). Now, observe that

P [f(N) = 0 and cl(f)(N) = 1] �
t

∑

i=1

P [fi−1(N) = 0 and fi(N) = 1]

=
t

∑

i=1

P [fi−1(N) = 0 and xAi
⊆ N]

�
t

∑

i=1

P [fi−1(N ∪ xAi
) = 0]

� ε
c

∑

j=0

(

n

j

)

� n−2c.

We now bound the size of the set of �-minterms of an ε-closed function. This
bound is dependent on the robust sunflower theorem (Theorem 4).

Lemma 5. Let B > 0 be as in Theorem 4. If a monotone function f : {0, 1}n →
{0, 1} is ε-closed, then, for all � ∈ [c], we have

|M�(f)| �
(

B
log(�/ε)

p
log

(

log(�/ε)
p

))�

.

Proof. Fix � ∈ [c]. Suppose we have |M�(f)| > (Clog(�/ε)/p log (log(�/ε)/p))�
.

Consider also the family F :=
{

A ∈ (

[n]
�

)

: xA ∈ M�(f)
}

. Observe that |F| =
|M�(f)|. By Theorem 4, there exists a (m, ε)-slice-sunflower F ′ ⊆ F . Let Y :=
⋂ F ′ and let W ∈ (

[n]
m

)

be chosen uniformly at random. We have

P[f(N ∨ xY) = 1] � P[∃x ∈ M�(f) : x � N ∨ xY]
= P[∃F ∈ F : F ⊆ W ∪ Y]
� P[∃F ∈ F ′ : F ⊆ W ∪ Y]
� 1 − ε.

Therefore, since f is ε-closed, we get that f(xY) = 1. However, since Y =
⋂ F ′,

there exists F ∈ F ′ such that Y � F . This is a contradiction, because xF is a
minterm of f .

318 B. P. Cavalar et al.

2.4 Trimmed Monotone Functions

In this section, we define a trimming operation for Boolean functions. We will
bound the probability that a trimmed function gives the correct output on the
distribution Y , and we will give a bound on the error of approximating a Boolean
function f by the trimming of f on that same distribution.

Definition 3. We say that a monotone function f ∈ {0, 1}n → {0, 1} is
trimmed if all the minterms of f have size at most c/2. We define the trim-
ming operation trim(f) as follows:

trim(f) :=
c/2
∨

�=1

∨

A∈M�(f)

A�.

That is, the trim operation takes out from f all the minterms of size larger than
c/2, yielding a trimmed function. We will first prove the following claim.

Claim. For every monotone function f : {0, 1}n → {0, 1} and � � c, we have
P[∃x ∈ M�(f) : x � Y] � (k/n)� |M�(f)| .
Proof. Recall (Sect. 2.2) that the distribution Y takes a polynomial P ∈ Fn[x]
with degree at most c − 1 uniformly at random and returns the binary vector
x{P (1),P (2),...,P (k)} ∈ {0, 1}n. Let A ∈ (

[n]
�

)

for � � c. Observe that xA � Y
if and only if A ⊆ {P (1),P (2), . . . ,P (k)}. Therefore, if xA � Y , then there
exists indices {j1, . . . , j�} such that {P (j1),P (j2), . . . ,P (j�)} = A. Since � � c,
we get by the c-wise independence of P(1), . . . ,P(k) that the random variables
P(j1),P(j2), . . . ,P(j�) are independent. It follows that

P[{P (j1),P (j2), . . . ,P (j�)} = A] =
�!
n�

.

Therefore, we have

P[xA � Y] = P[A ⊆ {P (1),P (2), . . . ,P (k)}] �
(

k

�

)

�!
n�

�
(

k

n

)�

.

The claim now follows by an union bound.

Lemma 6. If a monotone function f ∈ {0, 1}n → {0, 1} is trimmed and f �= 1
(i.e., f is not identically 1), then

P [f(Y) = 1] �
c/2
∑

�=1

(

k

n

)�

|M�(f)| .

Proof. It suffices to see that, since f is trimmed, if f(Y) = 1 and f �= 1 then
there exists a minterm x of f with Hamming weight between 1 and c/2 such
that x � Y . The result follows by the claim above.

Monotone Circuit Lower Bounds from Robust Sun Flowers 319

Lemma 7. Let f ∈ {0, 1}n → {0, 1} be a monotone function, all of whose
minterms have Hamming weight at most c. We have

P [f(Y) = 1 and trim(f)(Y) = 0] �
c

∑

�=c/2

(

k

n

)�

|M�(f)| .

Proof. If we have f(Y) = 1 and trim(f)(Y) = 0, then there was a minterm x
of f with Hamming weight larger than c/2 that was removed by the trimming
process. Therefore, since |x| � c by assumption, the result follows by the claim.

2.5 The Approximators

Let A := {trim(cl(f)) : f : {0, 1}n → {0, 1} is monotone}. Functions in A will
be called approximators. We define the approximating operations �,� : A×A →
A as follows: for f, g ∈ A, let

f � g := trim(cl(f ∨ g)),
f � g := trim(cl(f ∧ g)).

Observe that every input function xi is an approximator. Therefore, we can
replace each gate of a monotone {∨,∧}-circuit C by its corresponding approxi-
mating gate, thus obtaining a {�,�}-circuit CA computing an approximator.

The rationale for choosing this set of approximators is as follows. By letting
approximators be the trimming of a closed function, we are able to plug the
bound on the set of �-minterms given by the robust sunflower lemma (Lemma 5)
on Lemmas 6 and 7, since the trimming operation can only reduce the set of
minterms. Moreover, since trimmings can only help to get a negative answer on
the negative test distribution, we can safely apply Lemma 4 when bounding the
errors of approximation.

2.6 The Lower Bound

In this section, we will prove that the function fHR requires monotone cir-
cuits of size 2Ω(c). By properly choosing c and k, this will imply the promised
exp(Ω(n1/2−o(1))) lower bound for the Harnik-Raz function. First, we fix some
parameters. Choose B as in Lemma 5. We also let

c :=
1

6Be1/B

(

n

(log n)3

)1/2

, k :=
(

n

log n

)1/2

.

For simplicity, we assume these values are integers. We clearly have c < k.
Moreover, observe that, because of this choice of parameters, we have p = Ω(1).
Indeed, we have

p = n−4c/k = n−2/(3Be1/B log n) = e−2/(3Be1/B) � e−1/B .

320 B. P. Cavalar et al.

We will now show that, when f is an approximator, the bound of Lemma 6 can
be replaced by 1/2, and also that, when f is an ε-closed function, the bound of
Lemma 7 can be replaced by 2−Ω(c). We will first need to bound the sequence
s�, defined as follows. For every 1 � � � c, let

s� :=
(

k

n

)�

·
(

B
log(c/ε)

p
log

(

log(c/ε)
p

))�

.

Note that, when f is a n-bit ε-closed monotone function, we get by Lemma 5 that
(

k
n

)� |M�(f)| � s�. In other words, the summands of Lemma 6 and Lemma 7
can be replaced by s� in some applications. Observe moreover that s� = (s1)�.
Now we are going to show that, for n sufficiently large, we have s1 � 1/3, which
implies s� � 3−�. First, observe that

log(c/ε)/p = log(n3cc)/p � log(n4c)/p =
4c

p
log n.

Moreover, we have

log (log(c/ε)/p) = log
(

4c

p
log n

)

=
1
2

log n − 1
2

log log n + O(1) � 1
2

log n,

for n sufficiently large. From the previous two inequalities, we obtain for n suf-
ficiently large that

s1 = B · k

n
· log(c/ε)

p
log

(

log(c/ε)
p

)

� 2B

p
· ck(log n)2

n
� 1/3,

as desired.

Lemma 8 (Approximators make many errors). For every approximator
f ∈ A, we have P[f(Y) = 1] + P[f(N) = 0] � 3/2.

Proof. Let f ∈ A. By definition, there exists an ε-closed function h such that
f = trim(h). Observe that M�(f) ⊆ M�(h) for every � ∈ [c]. Hence, applying
Lemma 6 and the bounds for s�, we obtain that, if f �= 1, we have

P[f(Y) = 1] �
c/2
∑

�=1

(

k

n

)�

|M�(h)| �
c/2
∑

�=1

s� �
c/2
∑

�=1

3−� � 1/2.

Therefore, for every f ∈ A we have P[f(Y) = 1]+P[f(N) = 0] � 1+1/2 � 3/2.

Lemma 9 (C is well-approximated by CA). Let C be a monotone circuit.
We have

P[C(Y) = 1 and CA(Y) = 0]+P[C(N) = 0 and CA(N) = 1] � size(C) ·2−Ω(c).

Monotone Circuit Lower Bounds from Robust Sun Flowers 321

Proof. We begin by bounding the approximation errors under the distribution
Y . We will show that, for two approximators f, g ∈ A, if f ∨ g accepts an input
from Y , then f � g rejects that input with probability at most 2−Ω(c), and that
the same holds for the approximation f � g.

First note that, if f, g ∈ A, then all the minterms of both f ∨g and f ∧g have
Hamming weight at most c, since f and g are trimmed. Let now h = cl(f ∨ g).
We have (f � g)(x) < (f ∨ g)(x) only if trim(h)(x) < h(x). Since h is closed, we
obtain the following inequality by Lemma 7 and the bounds on s�:

P [(f ∨ g)(Y) = 1 and (f � g)(Y) = 0] �
c∑

�=c/2

(
k

n

)�

|M�(h)| �
c∑

�=c/2

s� = 2−Ω(c).

The same argument shows P [(f ∧ g)(Y) = 1 and (f � g)(Y) = 0] = 2−Ω(c).
Since there are size(C) gates in C, this implies that P[C(Y) = 1 and CA(Y) =
0] � size(C) · 2−Ω(c).

To bound the approximation errors under N , note that (f ∨ g)(x) = 0 and
(f �g)(x) = 1 only if cl(f ∨g)(x) �= (f ∨g)(x), since trimming a Boolean function
cannot decrease the probability that it rejects an input. Therefore, by Lemma 4
we obtain

P [(f ∨ g)(N) = 0 and (f � g)(N) = 1] � n−2c � 2−Ω(c).

The same argument shows P [(f ∧ g)(N) = 0 and (f � g)(N) = 1] = 2−Ω(c).
Once again, doing this approximation for every gate in C implies P[C(N) =
0 and CA(N) = 1] � size(C) · 2−Ω(c). This finishes the proof.

Theorem 5. Any monotone circuit computing fHR has size 2Ω(c) =
2Ω(n1/2/(log n)3).

Proof. Let C be a monotone circuit computing fHR. For large n, we have

9/5 � P[fHR(Y) = 1] + P[fHR(N) = 0]

� P[C(Y) = 1 and CA(Y) = 0] + P[CA(Y) = 1]

+ P[C(N) = 0 and CA(N) = 1] + P[CA(N) = 0]

= 3/2 + size(C)2−Ω(c).

This implies size(C) = 2Ω(c).

2.7 Discussion

In this application, we chose the values of c and k to be roughly
√

n. We expect
that, if c were chosen to be closer to n, the implied Harnik-Raz function would
still have 2Ω(c) complexity, and thus one would be able to improve our bound.
However, we do not think that the present technique would work for any c >

√
n,

as it seems to require that ck � n. Therefore, in order to obtain a stronger bound
to the Harnik-Raz function, we think a different technique has to be considered.

322 B. P. Cavalar et al.

Acknowledgements. Bruno Pasqualotto Cavalar was supported by São Paulo
Research Foundation (FAPESP), grants #2018/22257-7 and #2018/05557-7, and he
acknowledges CAPES (PROEX) for partial support of this work. A part of this work
was done during a research internship of Bruno Pasqualotto Cavalar and a postdoctoral
stay of Mrinal Kumar at the University of Toronto. Benjamin Rossman was supported
by NSERC, Ontario Early Researcher Award and Sloan Research Fellowship.

References

1. Alon, N., Boppana, R.B.: The monotone circuit complexity of Boolean functions.
Combinatorica 7(1), 1–22 (1987). https://doi.org/10.1007/BF02579196

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986).
https://doi.org/10.1016/0196-6774(86)90019-2

3. Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower
lemma. arXiv:1908.08483 (2019). https://arxiv.org/abs/1908.08483

4. Andreev, A.E.: A method for obtaining lower bounds on the complexity of indi-
vidual monotone functions. Dokl. Akad. Nauk SSSR 282(5), 1033–1037 (1985)

5. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. London Math.
Soc. 35, 85–90 (1960). https://doi.org/10.1112/jlms/s1-35.1.85

6. Gopalan, P., Meka, R., Reingold, O.: DNF sparsification and a faster deterministic
counting algorithm. Comput. Complex. 22(2), 275–310 (2013). https://doi.org/10.
1007/s00037-013-0068-6

7. Harnik, D., Raz, R.: Higher lower bounds on monotone size. In: Proceedings of the
32nd Annual ACM Symposium on Theory of Computing, pp. 378–387. ACM, New
York (2000). https://doi.org/10.1145/335305.335349

8. Li, X., Lovett, S., Zhang, J.: Sunflowers and quasi-sunflowers from randomness
extractors. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM. LIPIcs, vol. 116, pp. 51:1–51:13
(2018)

9. Lovett, S., Solomon, N., Zhang, J.: From DNF compression to sunflower theorems
via regularity. arXiv preprint p. 1903.00580 (2019)

10. Lovett, S., Zhang, J.: DNF sparsification beyond sunflowers. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 454–460.
ACM (2019)

11. Pitassi, T., Robere, R.: Strongly exponential lower bounds for monotone compu-
tation. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 1246–1255. ACM (2017)

12. Rao, A.: Coding for sunflowers (2019). arXiv preprint arXiv:1909.04774
13. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean func-

tions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)
14. Rossman, B.: The monotone complexity of k-clique on random graphs. SIAM J.

Comput. 43(1), 256–279 (2014). https://doi.org/10.1137/110839059
15. Tiekenheinrich, J.: A 4n-lower bound on the mononotone network complexity of a

oneoutput Boolean function. Inf. Process. Lett. 18, 201 (1984)

https://doi.org/10.1007/BF02579196
https://doi.org/10.1016/0196-6774(86)90019-2
http://arxiv.org/abs/1908.08483
https://arxiv.org/abs/1908.08483
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1007/s00037-013-0068-6
https://doi.org/10.1007/s00037-013-0068-6
https://doi.org/10.1145/335305.335349
http://arxiv.org/abs/1909.04774
https://doi.org/10.1137/110839059

Tight Bounds on Sensitivity and Block
Sensitivity of Some Classes of Transitive

Functions

Siddhesh Chaubal(B) and Anna Gál

Department of Computer Science, University of Texas, Austin, TX, USA
{siddhesh,panni}@cs.utexas.edu

Abstract. Nisan and Szegedy [16] conjectured that block sensitivity is
at most polynomial in sensitivity for any Boolean function. Until a recent
breakthrough of Huang [14], the conjecture had been wide open in the
general case, and was proved only for a few special classes of Boolean
functions. Huang’s result [14] implies that block sensitivity is at most
the 4th power of sensitivity for any Boolean function. It remains open
if a tighter relationship between sensitivity and block sensitivity holds
for arbitrary Boolean functions; the largest known gap between these
measures is quadratic [3,8,9,11,18,21].

We prove tighter bounds showing that block sensitivity is at most
3rd power, and in some cases at most square of sensitivity for subclasses
of transitive functions, defined by various properties of their DNF (or
CNF) representation. Our results improve and extend previous results
regarding transitive functions. We obtain these results by proving tight
(up to constant factors) lower bounds on the smallest possible sensitivity
of functions in these classes.

In another line of research, it has also been examined what is the
smallest possible block sensitivity of transitive functions. Our results
yield tight (up to constant factors) lower bounds on the block sensitivity
of the classes we consider.

Keywords: Sensitivity · Block sensitivity · Transitive functions

1 Introduction

The sensitivity s(f) of a Boolean function f is the maximum over all inputs x of
the number of coordinate positions i such that changing the value of the i-th bit
of x changes the value of the function. The block sensitivity bs(f) of a Boolean
function f is the maximum over all inputs x of the number of disjoint blocks of
positions such that changing the value of all bits of x in any given block changes
the value of the function. (See Sect. 2 for more formal definitions.) Nisan and
Szegedy [16] conjectured that block sensitivity is at most polynomial in sensi-
tivity for any Boolean function. A number of important complexity measures
(such as CREW PRAM complexity, certificate complexity, decision tree depth
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 323–335, 2020.
https://doi.org/10.1007/978-3-030-61792-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_26

324 S. Chaubal and A. Gál

in various models and degree) are polynomially related to block sensitivity, and
therefore to each other. See [7,12] for a survey. Until a recent breakthrough by
Huang [14], the best upper bounds on any of these measures were exponential in
terms of sensitivity. The previous best upper bounds on block sensitivity in terms
of sensitivity were by Ambainis et al. [2] giving bs(f) ≤ s(f)2s(f)−1, and by He
et al. [13] who gave a constant factor improvement to this bound. Huang’s result
[14] implies that bs(f) ≤ s(f)4 for any Boolean function f . The best separation
between sensitivity and block sensitivity remains quadratic [3,8,9,11,18,21].

Despite a lot of attention to the problem, until Huang’s result, the conjec-
ture was verified only for a few special classes of Boolean functions, including
some special classes of transitive functions, such as symmetric functions, graph
properties and minterm-transitive functions. The following questions have been
raised in connection to sensitivity and block sensitivity of transitive functions.

1. An intriguing aspect of transitive functions is that no examples of transitive
functions are known on n input bits with o(n1/3) sensitivity. Chakraborty [8]
constructed a transitive function on n variables with sensitivity Θ(n1/3). It is
implicit in a paper by Sun [20] that for a transitive function f on n variables,
bs(f) · s(f)2 ≥ n. Together with Huang’s result this gives that any transitive
function f on n variables has s(f) ≥ Ω(n1/6). Previously, Chakraborty [8]
proved that every minterm-transitive function f on n variables has s(f) ≥
Ω(n1/3). It remains open if the sensitivity of every transitive function is at
least Ω(n1/3).

2. Another intriguing question is that considering transitive functions with
f(0n) �= f(1n), we don’t even have any examples with o(n1/2) sensitivity.
A remark in the survey [12] in combination with Huang’s result [14] implies
that any transitive function f on n variables where n is a prime power
and f(0n) �= f(1n) has sensitivity s(f) ≥ Ω(

√
n). However, this does not

seem to directly imply a similar consequence for transitive functions with
f(0n) �= f(1n) when n is not a prime power, because for a transitive function,
a subfunction obtained by fixing a subset of its bits is no longer necessarily
transitive.

3. While it is still open if every transitive function has sensitivity Ω(n1/3), Sun
[20] proved that every transitive function has block sensitivity at least n1/3.
This resulted in further studies of what is the smallest possible block sen-
sitivity of transitive functions. Drucker [10] showed that minterm-transitive
functions must have block sensitivity at least Ω(n3/7). This bound is tight
for the class of minterm-transitive functions: Amano [1] constructed minterm-
transitive functions with block sensitivity O(n3/7), improving constructions of
Sun [20] and Drucker [10] by logarithmic factors. It remains open if transitive
functions with block sensitivity o(n3/7) exist.

1.1 Our Results

In this paper we settle the above questions for some special classes of transitive
functions, significantly extending previous results about subclasses of transitive

Sensitivity and Block Sensitivity of Transitive Functions 325

functions. For the classes we consider, we show that for functions f on n variables
s(f) ≥ Ω(n1/3) which implies bs(f) ≤ O(s(f)3). In addition, we prove that the
block sensitivity of functions on n variables in all the classes we consider is
at least Ω(n3/7). Furthermore, under the additional assumption that f(0n) �=
f(1n), we show that s(f) ≥ Ω(

√
n) for transitive functions f represented by

DNF (or CNF) such that the number of positive literals per term is the same
up to constant factors. Previously this was not known to hold for arbitrary values
of n, even for the special case of minterm-transitive functions.

Our lower bounds on both sensitivity and block sensitivity are tight up to
constant factors for the corresponding classes.

We consider the following three subclasses of transitive functions.

Transitive Functions with Sparse DNF (or CNF). We consider transitive

functions that can be represented by DNFs with up to 2n
1
2−ε

terms, or by CNFs
with up to 2n

1
2−ε

clauses, for constant ε > 0. For any non-constant function f of
this form we prove that s(f) ≥ Ω(min{n1/3, n2ε}). In particular, setting ε = 1/6
gives the bound s(f) ≥ Ω(n1/3) for transitive functions represented by DNFs
(or CNFs) of size up to 2n1/3

.
Comparing with previous results, we note that any DNF with at most t

terms is also a read-t DNF. Thus, the results of [6] imply that non-constant
functions represented by DNFs with at most n

1
3−ε terms have sensitivity Ω(nε).

Our results significantly improve this to DNFs with up to an exponential 2n
1
2−ε

number of terms, in the case of transitive functions.

Transitive Functions Represented by DNF (or CNF) with a Not-Too-
Frequent Variable. We further extend these results to transitive functions
represented by DNFs (or CNFs) of arbitrary sizes, as long as there exists a

variable that appears at most 2n
1
2−ε

times, for constant ε > 0. As above, setting
ε = 1/6 gives s(f) ≥ Ω(n1/3).

Transitive Functions Represented by DNF (or CNF) with Approxi-
mately the Same Number of Positive Literals per Term. Next we con-
sider transitive functions represented by DNF (or CNF) where the number of
terms as well as the size of the terms (i.e. the width of the DNF) are arbitrary,
but the number of positive literals in each term is the same up to constant fac-
tors. We prove for transitive functions f on n variables with this property that
s(f) ≥ Ω(n1/3).

This class significantly extends the previously studied class of minterm-
transitive functions. Roughly speaking, minterm-transitive functions have the
property that all their 1-inputs are consistent with minterms that are equiva-
lent to just one minterm, under permutations from the invariance group of the
function. Chakraborty [8] proved that minterm-transitive functions f on n vari-
ables have s(f) ≥ Ω(n1/3), and he noted that his argument extends to the case
when the number of positive literals as well as the sizes of each term are the
same up to constant factors. Our contribution is to further extend the argument
without making any assumptions about the sizes of the terms.

326 S. Chaubal and A. Gál

Tightness of Our Bounds. As noted above, Chakraborty [8] gave an example
of a transitive function on n variables with sensitivity Θ(n1/3), and Amano [1]
gave an example of a transitive function on n variables with block sensitivity
Θ(n3/7). Both functions are minterm-transitive, thus they can be represented
by DNFs where each term has the same number of positive literals. On the
other hand, both functions can be represented by DNFs with n terms, thus they
also belong to the other two classes of transitive functions that we consider.
This shows that our bounds s(f) ≥ Ω(n1/3) and bs(f) ≥ Ω(n3/7) are the best
possible for these classes, up to constant factors.

We give a simple example of a minterm-transitive function f on n variables,
with sensitivity Θ(

√
n) such that f(0n) �= f(1n). This shows that our Ω(

√
n)

lower bound on sensitivity is tight up to constant factors for the corresponding
class. We describe this example in the full version of the paper.

1.2 Our Techniques

First, we note that our arguments are independent of Huang’s proof [14]. Instead,
our results are based on new upper bounds on the minimum certificate size, that
hold for arbitrary Boolean functions, not just transitive functions. We give two
such bounds: one upper bounds the minimum certificate size by the sensitivity of
the function and by the logarithm of the number of terms of the DNF (Lemma5),
the other relates the minimum certificate size to the number of occurrences
of any given variable and the influence of that variable (Lemma 6). We note
that relating the minimum certificate size to influence has been also used in
[5] in a different context. These upper bounds allow us to take advantage of
a result of Chakraborty [8] (see Corollary 1) which shows that for transitive
functions, upper bounds on the minimum certificate size imply lower bounds on
the sensitivity of the function.

We emphasize that our upper bounds on minimum certificate size hold for
arbitrary Boolean functions, not just transitive functions. The part of our argu-
ments that is specific to transitive functions, is using the fact that for transitive
functions, upper bounds on minimum certificate size imply lower bounds on
sensitivity, and the relationship between the influences of different variables of
transitive functions.

We also provide a new, stronger tradeoff between sensitivity and the certifi-
cate size on two special inputs, (0n and 1n), that holds for arbitrary transitive
functions (Lemma 8). This allows us to obtain tight, Ω(

√
n) lower bounds on the

sensitivity of functions f on n variables in our third class, when f(0n) �= f(1n).
Finally, we observe that upper bounds on the minimum certificate size

also provide lower bounds on block sensitivity of arbitrary transitive functions,
(Lemma 9), with a stronger tradeoff than what follows from tradeoffs between
sensitivity and minimum certificate size. This allows us to obtain tight, Ω(n3/7)
lower bounds on the block sensitivity of functions in all the classes we consider.

Due to page limits, some of our proofs are left to the full version of the paper.

Sensitivity and Block Sensitivity of Transitive Functions 327

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and i ∈ [n] we
denote by xi the input obtained by flipping the i-th bit of x. More generally,
for S ⊆ [n] we denote by xS the input obtained by flipping the bits of x in all
coordinates in the subset S.

Definition 1 Sensitivity. The sensitivity s(f, x) of a Boolean function f on
input x is the number of coordinates i ∈ [n] such that f(x) �= f(xi). The
0-sensitivity and 1-sensitivity of f are defined as s0(f) = max{s(f, x) : f(x) = 0}
and s1(f) = max{s(f, x) : f(x) = 1}, respectively. The sensitivity of f is defined
as s(f) = max{s(f, x) : x ∈ {0, 1}n} = max{s0(f), s1(f)}.
Definition 2 Block Sensitivity. The block sensitivity bs(f, x) of a Boolean
function f on input x is the maximum number of pairwise disjoint subsets
S1, . . . , Sk of [n] such that for each i ∈ [k] f(x) �= f(xSi). The 0-block sensitivity
and 1-block sensitivity of f are defined as bs0(f) = max{bs(f, x) : f(x) = 0}
and bs1(f) = max{bs(f, x) : f(x) = 1}, respectively. The block sensitivity of f is
defined as bs(f) = max{bs(f, x) : x ∈ {0, 1}n} = max{bs0(f), bs1(f)}.

It is convenient to refer to coordinates i ∈ [n] such that f(x) �= f(xi) as
sensitive bits for f on x. Similarly, a subset S ⊆ [n] is called a sensitive block for
f on x if f(x) �= f(xS).

Definition 3 Partial Assignment. Given an integer n > 0, a partial assign-
ment α is a function α : [n] → {0, 1, �}. A partial assignment α corresponds
naturally to a setting of n variables (x1, x2, . . . , xn) to {0, 1, �} where xi is set
to α(i). The variables set to � are called unassigned or free, and we say that
the variables set to 0 or 1 are fixed. We say that x ∈ {0, 1}n agrees with α if
xi = α(i) for all i such that α(i) �= �. The size of a partial assignment α is
defined as the number of fixed variables of α.

Definition 4 Certificate. For a function f : {0, 1}n → {0, 1} and input x ∈
{0, 1}n a partial assignment α is a certificate of f on x if x agrees with α and any
input y agreeing with α satisfies f(y) = f(x). A certificate α is a 1-certificate
(resp. 0-certificate) if f(x) = 1 (resp. f(x) = 0), on inputs x that agree with α.

Definition 5 Minterms and Maxterms. A certificate α is called minimal, if
after changing any of its fixed variables to a free variable, the resulting partial
assignment α′ is not a certificate, that is the function is not constant on inputs
agreeing with α′. A minimal 1-certificate is called a minterm, and a minimal
0-certificate is called a maxterm.

Definition 6 Size and Weight of Certificates. The size of a certificate α,
denoted by size(α) is defined as the size of the partial assignment α. The weight
of a certificate α, denoted by wt(α), is the number of bits fixed to 1 by α.

328 S. Chaubal and A. Gál

Definition 7 Certificate Complexity. The certificate complexity C(f, x) of
a Boolean function f on input x is the size of the smallest certificate of f on
x. The 0-certificate complexity and 1-certificate complexity of f are defined as
C0(f) = max{C(f, x) : f(x) = 0} and C1(f) = max{C(f, x) : f(x) = 1},
respectively. The certificate complexity of f is defined as C(f) = max{C(f, x) :
x ∈ {0, 1}n} = max{C0(f), C1(f)}.

It is also useful to consider the following definition of the smallest certificate
size over all inputs. Note that this can be rephrased as the co-dimension of the
largest subcube of the Boolean cube {0, 1}n where f is constant.

Definition 8 Minimum Certificate Size. The minimum certificate size of a
Boolean function f : {0, 1}n → {0, 1} is defined as Cmin(f) = min{C(f, x) : x ∈
{0, 1}n}.
We will use the following lemma of Simon [19].

Lemma 1. [19] (see also [4]) Let f : {0, 1}n → {0, 1} be a non-constant Boolean
function. Then |f−1(1)| ≥ 2n−s1(f) and |f−1(0)| ≥ 2n−s0(f).

2.1 Transitive Functions

Definition 9 Invariance Group. A Boolean function f : {0, 1}n → {0, 1} is
invariant under a permutation σ : [n] → [n], if for any x ∈ {0, 1}n, f(x1, . . . , xn)
= f(xσ(1), . . . , xσ(n)). The set of all permutations under which f is invariant
forms a group, called the invariance group of f.

Definition 10 Transitive Function. A Boolean function is transitive if its
invariance group Γ is transitive, that is, for each i, j ∈ [n], there is a σ ∈ Γ such
that σ(i) = j.

For example, the set of all permutations on n bits, denoted by Sn is a
transitive group of permutations. Another example of a transitive group of
permutations is the set of all cyclic shifts on n bits, denoted by Shiftn =
{ξ0, ξ1, . . . , ξn−1}, where the permutation ξj cyclically shifts the string by j
positions.

We will use the following observations of Chakraborty about transitive func-
tions. Recall that Sn denotes the group of all permutations on n bits.

We use the following notation: for a set S ⊆ [n] and a permutation σ ∈ Sn

we denote by σ(S) the set {σ(i)|i ∈ S}.

Lemma 2 (4.3 in [8]). Let Γ ⊆ Sn be a transitive group of permutations on n
bits. Then, for any ∅ �= S ⊆ [n] with |S| = k, there exists Γ̂ ⊆ Γ with |Γ̂ | ≥ n

k2

such that for any two permutations σ1, σ2 ∈ Γ̂ their images on S are disjoint,
that is σ1(S) ∩ σ2(S) = ∅.
Lemma 3 (4.4 in [8]). Let f : {0, 1}n → {0, 1} be a non-constant transitive
function. Let α be a 1-certificate (resp. 0-certificate) for some x ∈ {0, 1}n, with
size(α) = k > 0. Then, s0(f) ≥ n

k2 (resp. s1(f) ≥ n
k2).

Sensitivity and Block Sensitivity of Transitive Functions 329

Corollary 1. For a non-constant transitive function f : {0, 1}n → {0, 1} we
have:

s(f)(Cmin(f))2 ≥ n .

We will also use the following observation of Sun [20].

Lemma 4. [20] Let Γ ⊆ Sn be a transitive group of permutations on n bits. For
any x, y ∈ {0, 1}n, if wt(x) · wt(y) < n, then there exists some σ ∈ Γ , such that
σ(x) and y do not have any 1-s in the same position.

3 Lower Bounds on Sensitivity of Transitive Functions

3.1 Sparse DNF (or CNF)

In this section we prove lower bounds on the sensitivity of transitive functions
that can be represented by DNFs with up to 2n

1
2−ε

terms, or by CNFs with
up to 2n

1
2−ε

clauses, for constant ε > 0.
We start with a lemma that holds for any Boolean function, transitivity is

not required.

Lemma 5. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function. If f
can be represented by a DNF with t terms, then Cmin(f) ≤ s1(f) + log t , and if
f can be represented by a CNF with t clauses, then Cmin(f) ≤ s0(f) + log t .

Proof. We prove the statement about DNFs, the proof for CNFs is analogous.
Let f : {0, 1}n → {0, 1} be a non-constant Boolean function that can be repre-
sented by a DNF with t terms. Notice that for each term of the DNF, we get a
1-certificate by fixing the variables that appear in the given term, to a value so
that the term is satisfied, and leaving the remaining variables free. This means
that the number of variables that participate in any given term must be at least
Cmin(f). Thus, the number of different inputs that satisfy a given term is at
most 2n−Cmin(f). This means that |f−1(1)| ≤ t2n−Cmin(f) . On the other hand,
by Simon’s Lemma (see Lemma 1 in Sect. 2) |f−1(1)| ≥ 2n−s1(f). Combining
these two inequalities implies the statement of the lemma. ��

We obtain the following theorem.

Theorem 1. Let ε > 0 and let f : {0, 1}n → {0, 1} be a non-constant transitive

function that can be represented by a DNF with up to 2n
1
2−ε

terms, or by a CNF
with up to 2n

1
2−ε

clauses. Then s(f) ≥ Ω(min{n1/3, n2ε}).

Remark 1. Setting ε = 1/6 gives s(f) ≥ Ω(n1/3) for transitive functions repre-
sented by DNFs (or CNFs) of size up to 2n1/3

.

330 S. Chaubal and A. Gál

3.2 DNF (or CNF) with a Not-Too-Frequent Variable

In this section we further extend the results of the previous section. We show that
the same lower bounds for sensitivity hold for transitive functions represented
by DNFs with an arbitrary number of terms, as long as there exists a variable
that appears in no more than 2n

1
2−ε

terms, for constant ε > 0. An analogous
result holds considering CNFs.

We once again start with an observation that holds for arbitrary Boolean
functions, not just transitive functions.

For a Boolean function f : {0, 1}n → {0, 1}, the influence of the i-th vari-
able, denoted by Infi(f) is defined as: Infi(f) = Prx[f(x) �= f(xi)] where the
probability is taken over the uniform distribution on {0, 1}n.

Lemma 6. Let f : {0, 1}n → {0, 1} be a Boolean function that can be rep-
resented by a DNF (or CNF) such that its i-th variable appears in at most
k terms (resp. clauses) of the formula, for some i ∈ [n]. Then we have:
Cmin(f) ≤ log k + 1 − log Infi(f)

Proof. We prove the statement about DNFs, the proof for CNFs is analogous.
As we noted in the proof of Lemma 5, for each term of the DNF, we get a

1-certificate by fixing the variables that appear in the given term, to a value so
that the term is satisfied, and leaving the remaining variables free. This means
that the number of variables that participate in any given term must be at least
Cmin(f). Thus, the number of different inputs that satisfy a given term is at
most 2n−Cmin(f).

Consider only those k terms that include the variable xi. The number of
inputs satisfying at least one of these terms is at most k2n−Cmin(f). Also, notice
that each of the 1-inputs that are sensitive to the i-th bit must satisfy one of the
terms that include the variable xi. (Each 1-input must satisfy at least one term,
and an input that is sensitive to xi cannot satisfy a term that does not depend
on xi.) Therefore, the number of 1-inputs that are sensitive to the i-th bit is at
most k2n−Cmin(f). On the other hand, the number of 1-inputs that are sensitive
to the i-th bit equals Infi(f) · 2n−1. Thus, we get Infi(f) · 2n−1 ≤ k2n−Cmin(f),
and this gives the statement of the lemma. ��

We are ready to prove the following theorem for transitive functions.

Theorem 2. Let ε > 0 and let f : {0, 1}n → {0, 1} be a non-constant transitive
function that can be represented by a DNF (or CNF) such that one of its variables

appears in at most 2n
1
2−ε

terms (resp. clauses) of the formula. Then s(f) ≥
Ω(min{n1/3, n2ε}).

Proof. We prove the statement about DNFs, the proof for CNFs is analogous.
As before, it is enough to prove the statement for 0 < ε ≤ 1/6, since this will
imply that s(f) ≥ Ω(n1/3) whenever ε ≥ 1/6.

Let xi be a variable that appears in at most k = 2n
1
2−ε

terms of the DNF. It
is known (see e.g. [17]) that for transitive f , Infi(f) = Infj(f) for any j ∈ [n],

Sensitivity and Block Sensitivity of Transitive Functions 331

and thus Infi(f) = maxj∈[n] Infj(f). By a theorem of Kahn, Kalai and Linial
[15], maxj∈[n] Infj(f) ≥ Ω(p(1−p) log n/n) , where p is the probability that the
function f equals 1. Then, by Lemma 6 we get Cmin(f) ≤ log k+1−log Infi(f) ≤
O(log k + 1 + log n + log 1

p(1−p)) .

Notice that 1
p(1−p) ≥ 2n

1
2−ε

implies thatmin{|f−1(1)|, |f−1(0)|} ≤ 2n+1−n
1
2−ε

.

Then by Lemma 1, s(f) ≥ Ω(n
1
2−ε), which is at least Ω(n2ε) when ε ≤ 1/6.

Otherwise, 1
p(1−p) < 2n

1
2−ε

, and we get Cmin(f) ≤ O(n
1
2−ε) . Then, Corollary

1 implies that s(f) ≥ Ω(n2ε). ��
Remark 2. Setting ε = 1/6 gives s(f) ≥ Ω(n1/3) for transitive functions repre-
sented by DNFs (or CNFs) such that one of the variables appears no more than
2n1/3

times.

3.3 DNF (or CNF) with Approximately the Same Number of
Positive Literals per Term

In this section we consider transitive functions represented by DNFs where the
number of terms as well as the size of the terms (i.e. the width of the DNF) are
arbitrary, but the number of positive literals in each term is approximately the
same. In other words, we consider transitive functions f such that the 1-inputs of
f can be covered by subcubes that correspond to minterms with approximately
equal weights.

Note that minterm-transitive functions have this property, since all their
minterms have exactly the same weight. However, a minterm-transitive function
f must have a single minterm α such that every 1-input of f agrees with either
α or σ(α) for some σ in the invariance group of f . Our condition allows f to
have a set Λ = {α1, α2, . . .} of an arbitrary number of different minterms, as
long as they have approximately the same weight, and every 1-input of f agrees
with some αi ∈ Λ.

Note also that we allow the different minterms in Λ to have different sizes,
we only require that they have approximately equal weight. That is, we require
that they each set approximately the same number of bits to 1 but they can set
different numbers of bits to 0.

Remark 3. Our arguments would also work if we require the number of bits fixed
to 0 to be approximately the same in each minterm. Analogous results hold for
maxterms and CNFs as well.

First we prove a simple lemma that holds for arbitrary Boolean functions,
not just for transitive functions.

Lemma 7. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function. Let
Λ = {α1, α2, . . .} be a set of minterms of f such that every 1-input of f agrees
with some αi ∈ Λ. Let λ1 denote the smallest number of 1-s fixed by any αi ∈ Λ,
and let λ0 denote the smallest number of 0-s fixed by any αi ∈ Λ. Then, s1(f) ≥
max{λ1, λ0}.

332 S. Chaubal and A. Gál

Note that the number of minterms in the set Λ can be arbitrarily large. An
analogous statement considering sets of maxterms covering the 0-inputs of f
gives a lower bound on s0(f). We obtain the following theorem.

Theorem 3. Let f : {0, 1}n → {0, 1} be a non-constant transitive function.
Assume that there is a set Λ = {α1, α2, . . .} of minterms of f such that every
1-input of f agrees with some αi ∈ Λ. Let w be the weight of the smallest weight
minterm in Λ, and assume that for some constant c, wt(αi) ≤ c·w for all αi ∈ Λ.
Then s(f) = Ω(n1/3).

A Stronger Tradeoff between Certificate Size and Sensitivity
Our bounds in the previous sections are based on using the tradeoff between
minimum certificate size and sensitivity proved by Chakraborty (see Corollary 1).
Next we observe that considering the certificate size of a transitive function
on either the all 0 or all 1 string, one can obtain a stronger tradeoff between
certificate size and sensitivity. More precisely, we prove the following lemma.

Lemma 8. For a non-constant transitive function f : {0, 1}n → {0, 1},
C(f, 0n) · s(f) ≥ n and C(f, 1n) · s(f) ≥ n .

Proof. We prove the first statement, the proof of the second statement is analo-
gous. Let B be a minimal block such that f(0n) �= f((0n)B). Since B is minimal,
s(f) ≥ |B|.

Let α be a certificate of f on the all zero input 0n. If size(α) · |B| < n,
then, we apply Lemma 4 to the characteristic vectors of the set of bits that α
fixes and the set B. This gives that there is a σ ∈ Γ where Γ is the invariance
group of f , such that σ(α) and B do not have any indices in common. But this
gives a contradiction, since every certificate of f on 0n must intersect B. Thus,
size(α) · |B| ≥ n, which implies the statement. ��

Lower Bound on Sensitivity when f(0n) �= f(1n)
We use Lemma 8 to obtain stronger lower bounds on the sensitivity of tran-

sitive functions with approximately equal weight minterms in their DNF repre-
sentation, under the additional condition that f(0n) �= f(1n).

Theorem 4. Let f : {0, 1}n → {0, 1} be a non-constant transitive function, such
that f(0n) �= f(1n). Assume that there is a set Λ = {α1, α2, . . .} of minterms
of f such that every 1-input of f agrees with some αi ∈ Λ. Let w be the weight
of the smallest weight minterm in Λ, and assume that for some constant c,
wt(αi) ≤ c · w for all αi ∈ Λ. Then s(f) = Ω(

√
n).

Proof. First we consider the case when f(0n) = 0. Then, f(1n) = 1, and any
DNF representing f must include a term with only positive literals. For a given
DNF representing f , let w denote the smallest number of positive literals in any
term. Then, by the condition of the Theorem, C(f, 1n) ≤ c ·w for some constant
c, and combining Lemma 8 with Lemma 7 we get that s(f) ≥ Ω(

√
n).

Sensitivity and Block Sensitivity of Transitive Functions 333

In the case when f(0n) = 1, any DNF for f must include a term with only
negative literals, and then our condition implies that the DNF uses only negative
literals. That is, in this case the function must be anti-monotone, which implies
that s(f, x) = bs(f, x) = C(f, x) for every input x. Thus, s(f) ≥ C(f, 0n). Since
f(1n) �= f(0n), f is not constant, and we can apply Lemma 8, which now directly
gives s(f) ≥ √

n. ��

4 Lower Bounds on Block Sensitivity of Transitive
Functions

We obtain the following tradeoff between the minimum certificate size and the
block sensitivity of transitive functions.

Lemma 9. For any non-constant transitive function f : {0, 1}n → {0, 1}, and
an integer 5 ≤ r ≤ 15, if Cmin(f) ≤ O(n3/r), then bs(f) ≥ Ω(n1− 4

r).

Combining Lemma 9 with our arguments in the previous sections, we prove
Ω(n3/7) lower bounds on the block sensitivity of functions on n bits in each of
the classes we considered.

Theorem 5. Let f : {0, 1}n → {0, 1} be a non-constant transitive function. If
f can be represented by a DNF with at most 2n3/7

terms, or with a CNF with at
most 2n3/7

clauses, then bs(f) ≥ Ω(n3/7).

As before, we can extend this theorem to DNFs (or CNFs) with an arbitrary
number of terms (resp. clauses) as long as there is at least one variable that is
not used too many times.

Theorem 6. Let f : {0, 1}n → {0, 1} be a transitive function that can be rep-
resented by a DNF (or CNF) such that its i-th variable appears in at most
2n3/7

terms (resp. clauses) of the formula, for some i ∈ [n]. Then we have:
bs(f) ≥ Ω(n3/7)

Finally, we consider the class of transitive functions represented by DNFs
(or CNFs) where the number of positive literals in each term (resp. clause) is
approximately equal.

Theorem 7. Let f : {0, 1}n → {0, 1} be a non-constant transitive function.
Assume that there is a set Λ = {α1, α2, . . .} of minterms of f such that every
1-input of f agrees with some αi ∈ Λ. Let w be the weight of the smallest weight
minterm in Λ, and assume that for some constant c, wt(αi) ≤ c·w for all αi ∈ Λ.
Then bs(f) = Ω(n3/7).

334 S. Chaubal and A. Gál

Acknowledgements. We thank the anonymous referees for helpful comments.

References

1. Amano, K.: Minterm-transitive functions with asymptotically smallest block sensi-
tivity. Inf. Process. Lett. 111(23–24), 1081–1084 (2011). https://doi.org/10.1016/
j.ipl.2011.09.008

2. Ambainis, A., Bavarian, M., Gao, Y., Mao, J., Sun, X., Zuo, S.: Tighter relations
between sensitivity and other complexity measures. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 101–113.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7 9

3. Ambainis, A., Sun, X.: New separation between s(f) and bs(f). Electron. Collo-
quium Comput. Complex. (ECCC) 18, 116 (2011). http://eccc.hpi-web.de/report/
2011/116

4. Ambainis, A., Vihrovs, J.: Size of sets with small sensitivity: a generalization of
Simon’s Lemma. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 122–133. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 12

5. Arunachalam, S., Chakraborty, S., Koucký, M., Saurabh, N., de Wolf, R.: Improved
bounds on Fourier entropy and Min-entropy. arXiv e-prints p. 1809.09819 (2018).
http://arxiv.org/abs/1809.09819

6. Bafna, M., Lokam, S.V., Tavenas, S., Velingker, A.: On the sensitivity conjec-
ture for read-k formulas. In: Proceedings of the 41st International Symposium on
Mathematical Foundations of Computer Science (MFCS), pp. 16:1–16:14 (2016).
https://doi.org/10.4230/LIPIcs.MFCS.2016.16

7. Buhrman, H., De Wolf, R.: Complexity measures and decision tree complexity:
a survey. Theoret. Comput. Sci. 288(1), 21–43 (2002). https://doi.org/10.1016/
S0304-3975(01)00144-X

8. Chakraborty, S.: On the sensitivity of cyclically-invariant Boolean functions. Discr.
Math. Theor. Comput. Sci. 13(4), 51–60 (2011). http://dmtcs.episciences.org/552

9. Chaubal, S., Gál, A.: New constructions with quadratic separation between sensitiv-
ity and block sensitivity. In: Proceedings of the 38th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
pp. 13:1–13:16 (2018). https://doi.org/10.4230/LIPIcs.FSTTCS.2018.13

10. Drucker, A.: Block Sensitivity of minterm-transitive functions. Theor. Comput.
Sci. 412(41), 5796–5801 (2011). https://doi.org/10.1016/j.tcs.2011.06.025

11. Gopalan, P., Servedio, R.A., Tal, A., Wigderson, A.: Degree and sensitivity: tails of
two distributions. arXiv e-prints p. 1604.07432 (2016), http://arxiv.org/abs/1604.
07432

12. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture.
Theory Comput. Graduate Surv. 4, 1–27 (2011). https://doi.org/10.4086/toc.gs.
2011.004

13. He, K., Li, Q., Sun, X.: A tighter relation between sensitivity complexity and
certificate complexity. Theoret. Comput. Sci. 762, 1–12 (2019)

14. Huang, H.: Induced subgraphs of hypercubes and a proof of the sensitivity con-
jecture. arXiv e-prints arXiv:1907.00847, July 2019. https://arxiv.org/abs/1907.
00847

15. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 68–80 (1988). https://doi.org/10.1109/SFCS.1988.21923

https://doi.org/10.1016/j.ipl.2011.09.008
https://doi.org/10.1016/j.ipl.2011.09.008
https://doi.org/10.1007/978-3-662-43948-7_9
http://eccc.hpi-web.de/report/2011/116
http://eccc.hpi-web.de/report/2011/116
https://doi.org/10.1007/978-3-319-17142-5_12
https://doi.org/10.1007/978-3-319-17142-5_12
http://arxiv.org/abs/1809.09819
https://doi.org/10.4230/LIPIcs.MFCS.2016.16
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
http://dmtcs.episciences.org/552
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.13
https://doi.org/10.1016/j.tcs.2011.06.025
http://arxiv.org/abs/1604.07432
http://arxiv.org/abs/1604.07432
https://doi.org/10.4086/toc.gs.2011.004
https://doi.org/10.4086/toc.gs.2011.004
http://arxiv.org/abs/1907.00847
https://arxiv.org/abs/1907.00847
https://arxiv.org/abs/1907.00847
https://doi.org/10.1109/SFCS.1988.21923

Sensitivity and Block Sensitivity of Transitive Functions 335

16. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials.
Comput. Complex. 4(4), 301–313 (1994). https://doi.org/10.1007/BF01263419

17. O’Donnell, R.: Analysis of Boolean functions. Cambridge University Press, Cam-
bridge (2014)

18. Rubinstein, D.: Sensitivity vs block sensitivity of Boolean functions. Combinatorica
15(2), 297–299 (1995). https://doi.org/10.1007/BF01200762

19. Simon, H.U.: A tight Ω(loglog n)-bound on the time for parallel RAM’s to compute
nondegenerated Boolean functions. Inf. Control 55(1), 102–107 (1982). https://doi.
org/10.1016/S0019-9958(82)90477-6

20. Sun, X.: Block sensitivity of weakly symmetric functions. In: Proceedings of the 3rd
International Conference on Theory and Applications of Models of Computation
(TAMC), pp. 339–344 (2006). https://doi.org/10.1007/11750321 32

21. Virza, M.: Sensitivity versus block sensitivity of Boolean functions. Inf. Process.
Lett. 111(9), 433–435 (2011). https://doi.org/10.1016/j.ipl.2011.02.001

https://doi.org/10.1007/BF01263419
https://doi.org/10.1007/BF01200762
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1007/11750321_32
https://doi.org/10.1016/j.ipl.2011.02.001

Sherali-Adams and the Binary Encoding
of Combinatorial Principles

Stefan Dantchev, Abdul Ghani, and Barnaby Martin(B)

Department of Computer Science, Durham University, Durham, UK
barnabymartin@gmail.com

Abstract. We consider the Sherali-Adams (SA) refutation system
together with the unusual binary encoding of certain combinatorial prin-
ciples. For the unary encoding of the Pigeonhole Principle and the Least
Number Principle, it is known that linear rank is required for refutations
in SA, although both admit refutations of polynomial size. We prove that
the binary encoding of the Pigeonhole Principle requires exponentially-
sized SA refutations, whereas the binary encoding of the Least Number
Principle admits logarithmic rank, polynomially-sized SA refutations.
We continue by considering a refutation system between SA and Lasserre
(Sum-of-Squares). In this system, the unary encoding of the Least Num-
ber Principle requires linear rank while the unary encoding of the Pigeon-
hole Principle becomes constant rank.

Keywords: Proof Complexity · Lift-and-project methods · Binary
encoding

1 Introduction

It is well-known that questions on the satisfiability of propositional CNF formu-
lae may be reduced to questions on feasible solutions for certain Integer Linear
Programs (ILPs). In light of this, several ILP-based proof (more accurately, refu-
tation) systems have been suggested for propositional CNF formulae, based on
proving that the relevant ILP has no solutions. Typically, this is accomplished
by relaxing an ILP to a continuous Linear Program (LP), which itself may have
(non-integral) solutions, and then modifying this LP iteratively until it has a
solution iff the original ILP had a solution (which happens at the point the LP
has no solution). Among the most popular ILP-based refutation systems are
Cutting Planes [6,11] and several proposed by Lovász and Schrijver [18].

Another method for solving ILPs was proposed by Sherali and Adams [22],
and was introduced as a propositional refutation system in [7]. Since then it has
been considered as a refutation system in the further works [1,9]. The Sherali-
Adams system (SA) is of significant interest as a static variant of the Lovász-
Schrijver system without semidefinite cuts (LS). It is proved in [15] that the
SA rank of a polytope is less than or equal to its LS rank; hence we may claim

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 336–347, 2020.
https://doi.org/10.1007/978-3-030-61792-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_27

Sherali-Adams and the Binary Encoding of Combinatorial Principles 337

that SA is at least as strong as LS (though it is unclear whether it is strictly
stronger).

Various fundamental combinatorial principles used in Proof Complexity may
be given in first-order logic as sentences ϕ with no finite models and in this
article we will restrict attention to those in Π2-form. Riis discusses in [21] how
to generate from prenex ϕ a family of CNFs, the nth of which encodes that
ϕ has a model of size n, which are hence contradictions. Following Riis, it is
typical to encode the existence of the witnesses to an existentially quantified
variable in longhand with a big disjunction, of the form Sa,1 ∨ . . .∨Sa,n, that we
designate the unary encoding. Here the arity of a is the number of universally
quantified variables preceding the existentially quantified variable, on which it
might depend.

As recently investigated in the works [3,4,8,10,13,17], it may also be possi-
ble to encode the existence of such witnesses succinctly by the use of a binary
encoding. Essentially, the existence of the witness is now given implicitly as any
propositional assignment to the relevant variables Sa,1, . . . , Sa,log n, which we
call S for Skolem, gives a witness; whereas in the unary encoding a solitary true
literal tells us which is the witness. Combinatorial principles encoded in binary
are interesting to study for Resolution-type systems since they still preserve
the hardness of the combinatorial principle while giving a more succinct propo-
sitional representation. In certain cases this leads to obtain significant lower
bounds in an easier way than for the unary case [4,8,10,17].

The binary encoding also implicitly enforces an at-most-one constraint at the
same time as it does at-least-one. When some big disjunction Sa,1 ∨ . . .∨Sa,n of
the unary encoding is translated to constraints for an ILP it enforces Sa,1+ . . .+
Sa,n ≥ 1. Were we to insist that Sa,1+. . .+Sa,n = 1 then we encode immediately
also the at-most-one constraint. We paraphrase this variant as being (the unary)
encoding with equalities or “SA-with-equalities”.

The Pigeonhole Principle (PHP), which essentially asserts that n pigeons
may not be assigned to n − 1 holes such that no hole has more than one pigeon,
and the Least Number Principle (LNP), which asserts that a partially-ordered
n-set possesses a minimal element, are ubiquitous in Proof Complexity. Typically
(and henceforth) we work under the same name with their negations, which are
expressible in (Π2) first-order logic as formulae with no finite models.

In [9] we have proved that the SA rank of (the polytopes associated with)
(the unary encoding of) each of the Pigeonhole Principle and Least Number
Principles is n − 2 (where n is the number of pigeons and elements in the
poset, respectively). It is known that SA polynomially simulates Resolution
(see e.g. [9]) and it follows there is a polynomially-sized refutation in SA of
the Least Number Principle. That there is a polynomially-sized refutation in
SA of the Pigeonhole Principle is noted in [20].

In this paper we consider the binary encodings of the Pigeonhole Principle
and the Least Number Principle as ILPs. We additionally consider their (unary)
encoding with equalities. We first prove that the binary encoding of the Pigeon-
hole Principle requires exponential size in SA. We then prove that the (unary)

338 S. Dantchev et al.

encoding of the Least Number Principle with equalities has SA rank 2 and
polynomial size. This allows us to prove that the binary encoding of the Least
Number Principle has SA rank at most 2 log n and polynomial size.

The divergent behaviour of these two combinatorial principles is tantalising
– while the Least Number Principle becomes easier for SA in the binary encod-
ing (in terms of rank), the Pigeonhole Principle becomes harder (in terms of
size). Such variable behaviour has been observed for the Pigeonhole Principle in
Resolution, where the binary encoding makes it easier for treelike Resolution (in
terms of size) [8].

We continue by considering a refutation system SA+ Squares which is
between SA and Lasserre (Sum-of-Squares) [14] (see also [15] for comparison
between these systems). SA+ Squares appears as Static LS+ in [12]. In this
system one can always assume the non-negativity of (the linearisation of) any
squared polynomial. In contrast to our system SA-with-equalities, we see that
the rank of the unary encoding of the Pigeonhole Principle is 2, while the rank
of the Least Number Principle is linear. We prove this by showing a certain
moment matrix in positive semidefinite. Our rank results for the unary encoding
can be contrasted in Table 1. Owing to space restrictions, many of our proofs
are omitted.

Table 1. Rank based complexity for the unary encoding in different systems (on the
left) and size based complexity for the binary encoding (on the right). The lower table
shows where the corresponding result is proved.

Unary case SA SA-with-equalities SA+Squares

PHP linear linear constant

LNP linear constant linear

Binary case SA

PHP exponential

LNP polynomial

Unary case SA SA-with-equalities SA+Squares

PHP [9] [9] Theorem 3 [12]

LNP [9] Theorem 2 Theorem 4

Binary case SA

PHP Theorem 1

LNP Corollary 2

2 Preliminaries

Let [m] be the set {1, . . . , m}. Let us assume, without loss of much generality,
that n is a power of 2. Cases where n is not a power of 2 are handled in the
binary encoding by explicitly forbidding possibilities.

If P is a propositional variable, then P 0 = P indicates the negation of P ,
while P 1 indicates P . A term is a conjunction of propositional literals.

From a CNF formula F := C1 ∧ . . . ∧ Cr in variables v1, . . . , vm we generate
an ILP in 2m variables Zvλ

, Z¬vλ
(λ ∈ [m]). For literals l1, . . . , lt s.t. (l1∨ . . .∨ lt)

is a clause of F we have the constraining inequality

(2.1) Zl1 + . . . + Zlt ≥ 1.

Sherali-Adams and the Binary Encoding of Combinatorial Principles 339

We also have, for each λ ∈ [m], the equalities of negation

(2.2) Zvλ
+ Z¬vλ

= 1

together with the bounding inequalities

(2.3) 0 ≤ Zvλ
≤ 1 and 0 ≤ Z¬vλ

≤ 1.

Let PF
0 be the polytope specified by these constraints on the real numbers. It is

clear that this polytope contains integral points iff the formula F is satisfiable.
In general, PF

0 is non-empty; in fact, if F is a contradiction that does not admit
refutation by unit clause propagation, this is the case (we may use unit clause
propagation to assign 0 − 1 values to some variables, thereafter assigning 1/2
to those variables remaining). Note that it follows that any unsatisfiable Horn
CNF F (i.e., where each clause contains at most one positive variable) has SA
rank 0, since F must then admit refutation by unit clause propagation (which
may be used to demonstrate PF

0 empty).
Sherali-Adams (SA) provides a static refutation method that takes the

polytope PF
0 defined by (2.1)–(2.3) and r-lifts it to another polytope PF

r in
∑r+1

λ=0

(
2m
λ

)
dimensions. Specifically, the variables involved in defining the poly-

tope PF
r are Zl1∧...∧lr+1 (l1, . . . , lr+1 literals of F) and Z∅. Let us say that the

term Zl1∧...∧lr+1 has rank r. Note that we accept commutativity and idempo-
tence of the ∧-operator, e.g. Zl1∧l2 = Zl2∧l1 and Zl1∧l1 = Zl1 . Also ∅ represents
the empty conjunct (boolean true); hence we set Z∅ := 1. For literals l1, . . . , lt,
s.t. (l1 ∨ . . . ∨ lt) is a clause of F , we have the constraining inequalities

(2.1′) Zl1∧D + . . . + Zlt∧D ≥ ZD,

for D any conjunction of at most r literals of F . We also have, for each λ ∈ [m]
and D any conjunction of at most r literals, the equalities of negation

(2.2′) Zvλ∧D + Z¬vλ∧D = ZD

together with the bounding inequalities

(2.3′) 0 ≤ Zvλ∧D ≤ ZD and 0 ≤ Z¬vλ∧D ≤ ZD.

For r′ ≤ r, the defining inequalities of PF
r′ are consequent on those of PF

r .
Equivalently, any solution to the inequalities of PF

r gives rise to solutions of the
inequalities of PF

r′ , when projected on to its variables. If D′ is a conjunction of
r′ literals, then ZD∧D′ ≤ ZD follows by transitivity from r′ instances of (2.3′).
We refer to the property ZD∧D′ ≤ ZD as monotonicity. Finally, let us note that
Zv∧¬v = 0 holds in PF

1 and follows from a single lift of an equality of negation.
The SA rank of the polytope PF

0 (formula F) is the minimal i such that PF
i

is empty. Thus, the notation rank is overloaded in a consistent way, since PF
i is

specified by inequalities in variables of rank at most i. The largest r for which
PF

r need be considered is 2m − 1, since beyond that there are no new literals
to lift by. Even that is somewhat further than necessary, largely because, if the

340 S. Dantchev et al.

conjunction D contains both a variable and its negation, it may be seen from
the equalities of negation that ZD = 0. In fact, it follows from [15] that the SA
rank of PF

0 is always ≤ m − 1 (for a contradiction F).
The number of defining inequalities of the polytope PF

r is exponential in r;
hence a naive measure of SA size would see it grow more than exponentially
in rank. However, not all of the inequalities (2.1′) − (2.3′) may be needed to
specify the empty polytope. We therefore define the SA size of the polytope PF

0

(formula F) to be the size (of an encoding) of a minimal subset of the inequalities
(2.1′) − (2.3′) of PF

2m that specifies the empty polytope.
Let us now consider principles which are expressible as first-order formulae,

with no finite models, in Π2-form, i.e. as ∀x∃wϕ(x,w) where ϕ(x,w) is a for-
mula built on a family of relations R. For example the Least Number Principle,
which states that a finite partial order has a minimal element is one of such
principles. Its negation can be expressed in Π2-form as:

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧ R(y, z) → R(x, z)) ∧ R(x,w).

This can be translated into a unsatisfiable CNF using a unary encoding of the
witness, as shown below alongside the binary encoding.

LNPn : Unary encoding

P i,i ∀i ∈ [n]

P i,j ∨ P j,k ∨ Pi,k ∀i, j, k ∈ [n]

Si,j ∨ Pi,j ∀i, j ∈ [n]
∨

i∈[n] Si,j ∀j ∈ [n]

LNPn : Binary encoding

P i,i ∀x ∈ [n]

P i,j ∨ P j,k ∨ Pi,k ∀i, j, k ∈ [n]
∨

i∈[log n] S
1−ai
i,j ∨ Pj,a ∀j, a ∈ [n]

where a1 . . . alog n = bin(a)

Note that we placed the witness in the Skolem variables Si,x as the first argument
and not the second, as we had in the introduction. This is to be consistent with
the Pi,j and the standard formulation of LNP as the least, and not greatest,
number principle. A more traditional form of the (unary encoding of the) LNPn

has clauses
∨

i∈[n] Pi,j which are consequent on
∨

i∈[n] Si,j and Si,j ∨Pi,j (for all
i ∈ [n]).

Indeed, one can see how to generate a binary encoding of C from any combi-
natorial principle C expressible as a first order formula in Π2-form with no finite
models. Exact details can be found in Definition 4 in [8].

As a second example we consider the Pigeonhole Principle which states that
a total mapping from [m] to [n] has necessarily a collision when m and n are
integers with m > n. The negation of its relational form for m = n + 1 can be
expressed as a Π2-formula as

∀x, y, z∃w ¬R(x, 0) ∧ (R(x, z) ∧ R(y, z) → x = y) ∧ R(x,w)

Sherali-Adams and the Binary Encoding of Combinatorial Principles 341

where 0 represents the object that is among the [n + 1] but not among the [n].
Its usual unary and binary propositional encoding are:

PHPm
n : Unary encoding

∨n
j=1 Pi,j ∀i ∈ [m]

P i,j ∨ P i′,j ∀i �= i′ ∈ [m], j ∈ [n]

PHPm
n : Binary encoding

∨log n
j=1 P

1−aj

i,j ∨ ∨log n
j=1 P

1−aj

i′,j

∀a ∈ [n], i �= i′ ∈ [m]
where a1 . . . alog n = bin(a)

where 0 no longer appears now m and n are explicit. Properly, the Pigeonhole
Principle should also admit S variables (as with the LNP) but one notices
that the existential witness w to the type pigeon is of the distinct type hole.
Furthermore, pigeons only appear on the left-hand side of atoms R(x, z) and
holes only appear on the right-hand side. For the Least Number Principle instead,
the transitivity axioms effectively enforce the type of y appears on both the left-
and right-hand side of atoms R(x, z). This accounts for why, in the case of
the Pigeonhole Principle, we did not need to introduce any new variables to
give the binary encoding, yet for the Least Number Principle a new variable S
appears. However, our results would hold equally were we to have chosen the
more complicated form of the Pigeonhole Principle. Note that our formulation
of the Least Number Principle is symmetric in the elements and our formulation
of the Pigeonhole Principle is symmetric in each of the pigeons and holes.

When we consider the Sherali-Adams r-lifts of, e.g., the Least Number Prin-
ciple, we will identify terms of the form ZPi,j∧Si′,j′∧... as Pi,jSi′,j′ Thus, we
take the subscript and use overline for negation and concatenation for conjunc-
tion. This prefigures the multilinear notation we will revert to in Sect. 5, but
one should view for now Pi,jSi′,j′ . . . as a single variable and not a multilinear
monomial.

Finally, we wish to discuss the encoding of the Least Number Principle and
Pigeonhole Principle as ILPs with equality. For this, we take the unary encoding
but instead of translating the wide clauses (e.g. from the LNP) from

∨
i∈[n] Si,x

to S1,x + . . . + Sn,x ≥ 1, we instead use S1,x + . . . + Sn,x = 1. This makes the
constraint at-least-one into exactly-one (which is a priori enforced in the binary
encoding). A reader who doesn’t wish to consult the long version of this paper
should consider the Least Number Principle as the combinatorial principle of
the following lemma.

Lemma 1. Let C be any combinatorial principle expressible as a first order
formula in Π2-form with no finite models. Suppose the unary encoding of C with
equalities has an SA refutation of rank r and size s. Then the binary encoding
of C has an SA refutation of rank at most r log n and size at most s.

Proof. We take the SA refutation of the unary encoding of C with equalities of
rank r, in the form of a set of inequalities, and build an SA refutation of the
binary encoding of C of rank r log n, by substituting terms Sx,a in the former

342 S. Dantchev et al.

with Sa1
x,1 . . . S

alog n

x,log n, where a1 . . . alog n = bin(a), in the latter. Note that the
equalities of the form

∑

a1...alog n=bin(a)

Sa1
x,1 · · · Salog n

x,log n = 1

follow from the inequalities (2.2’) and (2.3’). Further, inequalities of the form
Sa1

x,1 . . . S
alog n

x,log n ≤ Px,a follow since Sx,jSx,j = 0 for each j ∈ [log n].

3 The Lower Bound for the Binary Pigeonhole Principle

In this section we study the inequalities derived from the binary encoding of the
Pigeonhole principle. We first prove a certain SA rank lower bound for a version
of the binary PHP, in which only a subset of the holes is available.

Lemma 2. Let H ⊆ [n] be a subset of the holes and let us consider binary
PHPm

|H| where each pigeon can go to a hole in H only. Any SA refutation of
binary PHPm

|H| involves a term that mentions at least |H| pigeons.
The proof of the size lower bound for the binary PHPn+1

n then is by a stan-
dard random-restriction argument combined with the rank lower bound above.
Assume w.l.o.g that n is a perfect power of two. For the random restrictions
R, we consider the pigeons one by one and with probability 1/4 we assign the
pigeon uniformly at random to one of the holes still available. We first need to
show that the restriction is “good” w.h.p., i.e. neither too big nor too small. The
former is needed so that in the restricted version we have a good lower bound,
while the latter will be needed to show that a good restriction coincides well
any reasonably big term, in the sense that they have in common a sufficiency of
pigeons. A simple application of a Chernoff bound gives the following

Fact 1. If |R| is the number of pigeons (or holes) assigned by R,

1. the probability that |R| < n
8 is at most e−n/32, and

2. the probability that |R| > 3n
8 is at most e−n/48.

So, from now on, we assume that n
8 ≤ |R| ≤ 3n

8 . We first prove that a given
wide term, i.e. a term that mentions a constant fraction of the pigeons, survives
the random restrictions with exponentially small probability.

Lemma 3. Let T be a term that mentions at least n
2 pigeons. The probability

that T does not evaluate to zero under the random restrictions is at most
(
5
6

)n/16.

Proof. An application of a Chernoff bound gives the probability that fewer than
n
16 pigeons mentioned by T are assigned by R is at most e−n/64. For each of these
pigeons the probability that a single bit-variable in T belonging to the pigeon is
set by R to zero is at least 1

5 . This is because when R sets the pigeon, and thus
the bit-variable, there were at least 5n

8 holes available, while at most n
2 choices

set the bit-variable to one. The difference is n
8 which divided by 5n

8 gives 1
5 . Thus

T survives under R with probability at most e−n/64 +
(
4
5

)n/16
<

(
5
6

)n/16.

Sherali-Adams and the Binary Encoding of Combinatorial Principles 343

Finally, we can prove that

Theorem 1. Any SA refutation of the binary PHPn+1
n has to contain at least

(
6
5

)n/16 − 1 terms.

We now consider the so-called weak binary PHP, PHPm
n , where m is poten-

tially much larger than n. The weak unary PHPm
n is interesting because it admits

(significantly) subexponential-in-n refutations in Resolution when m is suffi-
ciently large [5]. It follows that this size upper bound is mirrored in SA. How-
ever, as proved in [8], the weak binary PHPm

n remains almost-exponential-in-n
for minimal refutations in Resolution. We will see here that the weak binary
PHPm

n remains almost-exponential-in-n for minimally sized refutations in SA.
In this weak binary case, the random restrictions R above do not work, so we
apply quite different restrictions R′ that are as follows: for each pigeon select
independently a single bit uniformly at random and set it to 0 or 1 with proba-
bility of 1/2 each.

We can easily prove the following

Lemma 4. A term T that mentions n′ pigeons does not evaluate to zero under
R′ with probability at most e−n′/2 log n.

Proof. For each pigeon mentioned in T , the probability that the bit-variable
present in T is set by the random restriction is 1

log n , and if so, the probability
that the bit-variable evaluates to zero is 1

2 . Since this happens independently
for all n′ mentioned pigeons, the probability that they all survive is at most
(
1 − 1

2 log n

)n′

.

Now, we only need to prove that in the restricted version of the pigeon-hole
principle, there is always a big enough term.

Lemma 5. The probability that an SA refutation of the binary PHPm
n , for

m > n, after R′ does not contain a term mentioning n
2 log n pigeons is at most

e−n/32 log2 n.

We now proceed as in the proof of Theorem 1 to deduce that any SA refuta-
tion of the binary PHPm

n must have size exponential in n.

Corollary 1. Any SA refutation of the binary PHPm
n , m > n, has to contain

at least en/32 log2 n terms.

Proof. Assume for a contradiction, that there is a refutation with fewer terms of
rank at most n

2 log n . By Lemma 4 and a union-bound, there is a specific restriction
that evaluates all these terms to zero. However, this contradicts Lemma 5 .

344 S. Dantchev et al.

4 The Least Number Principle with Equality

Recall that the unary Least Number Principle (LNPn) with equality has the
following set of SA axioms:

self : Pi,i = 0 ∀ i ∈ n
trans : Pi,k − Pi,j − Pj,k + 1 ≥ 0 ∀ i, j, k ∈ [n]

impl : Pi,j − Si,j ≥ 0 ∀ i, j ∈ [n]
lower :

∑
i∈[n] Si,j − 1 = 0 ∀ j ∈ [n]

Strictly speaking Sherali-Adams is defined for inequalities only. An equality
axiom a = 0 is simulated by the two inequalities a ≥ 0,−a ≥ 0, which we
refer to as the positive and negative instances of that axiom, respectively. Also,
note that we have used Pi,j + P i,j = 1 to derive this formulation. We call two
terms isomorphic if one term can be gotten from the other by relabelling the
indices appearing in the subscripts by a permutation.

Theorem 2. For n large enough, the SA rank of the LNPn with equality is at
most 2 and SA size at most polynomial in n.

Corollary 2. The binary encoding of LNPn has SA rank at most 2 log n and
SA size at most polynomial in n.

Proof. Immediate from Lemma 1.

5 SA+Squares

In this section we consider a proof system, SA+ Squares, based on inequalities
of multilinear polynomials. We now consider axioms as degree-1 polynomials in
some set of variables and refutations as polynomials in those same variables.
Then this system is gotten from SA by allowing addition of (linearised) squares
of polynomials. In terms of strength this system will be strictly stronger than
SA and at most as strong as Lasserre (also known as Sum-of-Squares), although
we do not at this point see an exponential separation between SA+ Squares and
Lasserre. See [2,14,15] for more on the Lasserre proof system and [16] for tight
degree lower bound results.

Consider the polynomial Si,jPi,j − Si,jPi,k. The square of this is

Si,jPi,jSi,jPi,j + Si,jPi,kSi,jPi,k − 2Si,jPi,jSi,jPi,k.

Using idempotence this linearises to Si,jPi,j + Si,jPi,k − 2Si,jPi,jPi,k. Thus we
know that this last polynomial is non-negative for all 0/1 settings of the variables.
A degree-d SA+ Squares refutation of a set of linear inequalities (over terms)
q1 ≥ 0, . . . , qx ≥ 0 is an equation of the form

− 1 =
x∑

i=1

piqi +
y∑

i=1

r2i (1)

Sherali-Adams and the Binary Encoding of Combinatorial Principles 345

where the pi are polynomials with nonnegative coefficients and the degree of the
polynomials piqi, r

2
i is at most d. We want to underline that we now consider a

term like Si,jPi,jPi,k as a product of its constituent variables. This is opposed
to the preceding sections in which we viewed it as a single variable ZSi,jPi,jPi,k

.
The translation from the degree discussed here to SA rank previously introduced
may be paraphrased by “rank = degree − 1”.

We show that the unary PHP becomes easy in this stronger proof system
while the LNP remains hard. The following appears as Example 2.1 in [12].

Theorem 3 ([12]). The unary PHPn+1
n has an SA + Squares refutation of

degree 2.

We give our lower bound for the unary LNPn by producing a linear function
v (which we will call a valuation) from terms into R such that

1. for each axiom p ≥ 0 and every term X with deg(Xp) ≤ d we have v(Xp) ≥ 0,
and

2. we have v(r2) ≥ 0 whenever deg(r2) ≤ d.
3. v(1) = 1.

The existence of such a valuation clearly implies that a degree-d SA+ Squares
refutation cannot exist, as it would result in a contradiction when applied to
both sides of Eq. (1).

To verify that v(r2) ≥ 0 whenever deg(r2) ≤ d we show that the so-called
moment-matrix Mv is positive semidefinite. The degree-d moment matrix is
defined to be the symmetric square matrix whose rows and columns are indexed
by terms of size at most d/2 and each entry is the valuation of the product of
the two terms indexing that entry. Given any polynomial σ of degree at most
d/2 let c be its coefficient vector. Then if Mv is positive semidefinite:

v(σ2) =
∑

deg(T1),deg(T2)≤d/2

c(T1)c(T2)v(T1T2) = c�Mvc ≥ 0.

(For more on this see e.g. [14], Sect. 2.)
Recall that the unary Least Number Principle (LNPn) has the set of SA

axioms self, trans, impl but where the last axiom lower now has the form∑
i∈[n] Si,j − 1 ≥ 0, for all j ∈ [n].

Theorem 4. There is no SA + Squares refutation of the unary LNPn with
degree at most (n − 3)/2.

An alternative formulation of the Least Number Principle asks that the order
be total, and this is enforced with axioms anti-sym of the form Pi,j ∨ Pj,i, or
Pi,j + Pj,i ≥ 1, for i �= j ∈ [n]. Let us call this alternative formulation TLNP.
Ideally, lower bounds should be proved for TLNP, because they are potentially
stronger. Conversely, upper bounds are stronger when they are proved on the
ordinary LNP, without the total order. Looking into the last proof, one sees that
the lifts of anti-sym are satisfied as we derive our valuation exclusively from total

346 S. Dantchev et al.

orders. This is interesting because an upper bound in Lasserre of order
√

n is
known for TLNPn [19]. It is proved for a slightly different formulation of TLNPn

from ours, but we believe it is straightforward to translate it to our formulation.
Thus, Theorem 4, together with [19], shows a quadratic rank separation between
SA+ Squares and Lasserre.

6 Conclusion

Our result that the unary encoding of the Least Number Principle with equalities
has SA rank 2 contrasts strongly with the fact that the unary encoding of the
Least Number Principle has SA rank n−2 [9]. Now we know the unary encoding
of the Pigeonhole Principle has SA rank n − 2 also. This leaves one wondering
about the unary encoding of the Pigeonhole Principle with equalities, which does
appear in Table 1. In fact, the valuation of [9] witnesses this still has SA rank
n − 2 (and we give the argument in the long version of this paper). That is,
the Pigeonhole Principle does not drop complexity in the presence of equalities,
whereas the Least Number Principle does.

Acknowlegements. We thank Nicola Galesi for collaboration on the binary encoding
in Resolution-type systems. In particular, some of our definitions come from joint work
with him in [8]. We thank several anonymous reviewers for careful reading of our paper
and their insights.

References

1. Atserias, A., Lauria, M., Nordström, J.: Narrow proofs may be maximally long.
ACM Trans. Comput. Log. 17(3), 19:1–19:30 (2016). https://doi.org/10.1145/
2898435

2. Barak, B., Steurer, D.: Sum-of-squares proofs and the quest toward optimal algo-
rithms. In: Proceedings of the International Congress of Mathematicians (ICM),
vol. IV, pp. 509–533 (2014)

3. Bonacina, I., Galesi, N.: A framework for space complexity in algebraic proof sys-
tems. J. ACM 62(3), 23:1–23:20 (2015). https://doi.org/10.1145/2699438

4. Bonacina, I., Galesi, N., Thapen, N.: Total space in resolution. SIAM J. Comput.
45(5), 1894–1909 (2016). https://doi.org/10.1137/15M1023269

5. Buss, S., Pitassi, T.: Resolution and the weak pigeonhole principle. In: Nielsen, M.,
Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 149–156. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028012

6. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Math. 4, 305–337 (1973)

7. Dantchev, S.S.: Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof
systems. In: Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting, New York, NY, USA, pp. 311–317. ACM Press (2007). https://doi.org/10.
1145/1250790.1250837

8. Dantchev, S.S., Galesi, N., Martin, B.: Resolution and the binary encoding of
combinatorial principles. In: Proceedings of the 34th Computational Complexity
Conference, CCC 2019, New Brunswick, NJ, USA, 18–20 July 2019, pp. 6:1–6:25
(2019). https://doi.org/10.4230/LIPIcs.CCC.2019.6

https://doi.org/10.1145/2898435
https://doi.org/10.1145/2898435
https://doi.org/10.1145/2699438
https://doi.org/10.1137/15M1023269
https://doi.org/10.1007/BFb0028012
https://doi.org/10.1145/1250790.1250837
https://doi.org/10.1145/1250790.1250837
https://doi.org/10.4230/LIPIcs.CCC.2019.6

Sherali-Adams and the Binary Encoding of Combinatorial Principles 347

9. Dantchev, S.S., Martin, B., Rhodes, M.N.C.: Tight rank lower bounds for the
Sherali-Adams proof system. Theor. Comput. Sci. 410(21-23), 2054–2063 (2009).
https://doi.org/10.1016/j.tcs.2009.01.002

10. Filmus, Y., Lauria, M., Nordström, J., Ron-Zewi, N., Thapen, N.: Space complexity
in polynomial calculus. SIAM J. Comput. 44(4), 1119–1153 (2015). https://doi.
org/10.1137/120895950

11. Gomory, R.E.: Solving linear programming problems in integers. In: Bellman, R.,
Hall, M. (eds.) Combinatorial Analysis, Proceedings of Symposia in Applied Math-
ematics. Providence, RI, vol. 10 (1960)

12. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 419–430. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7 34

13. Hrubes, P., Pudlák, P.: Random formulas, monotone circuits, and interpolation.
In: Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp. 121–131. IEEE
Computer Society (2017). https://doi.org/10.1109/FOCS.2017.20

14. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 23

15. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre
relaxations for 0 − 1 programming. Technical report PNA-R0108, Amsterdam
(2001)

16. Lauria, M., Nordström, J.: Tight size-degree bounds for sums-of-squares proofs.
Comput. Complex. 26(4), 911–948 (2017). https://doi.org/10.1007/s00037-017-
0152-4

17. Lauria, M., Pudlák, P., Rödl, V., Thapen, N.: The complexity of proving that a
graph is Ramsey. Combinatorica 37(2), 253–268 (2017). https://doi.org/10.1007/
s00493-015-3193-9

18. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim. 1(2), 166–190 (1991)

19. Potechin, A.: Sum of squares bounds for the total ordering principle. arXiv e-prints,
p. 1812.01163 (2018)

20. Rhodes, M.: Rank lower bounds for the Sherali-Adams operator. In: Cooper, S.B.,
Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 648–659. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73001-9 67

21. Riis, S.: A complexity gap for tree resolution. Comput. Complex. 10(3), 179–209
(2001). https://doi.org/10.1007/s00037-001-8194-y

22. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3(3), 411–430 (1990)

https://doi.org/10.1016/j.tcs.2009.01.002
https://doi.org/10.1137/120895950
https://doi.org/10.1137/120895950
https://doi.org/10.1007/3-540-45841-7_34
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1007/3-540-45535-3_23
https://doi.org/10.1007/s00037-017-0152-4
https://doi.org/10.1007/s00037-017-0152-4
https://doi.org/10.1007/s00493-015-3193-9
https://doi.org/10.1007/s00493-015-3193-9
https://doi.org/10.1007/978-3-540-73001-9_67
https://doi.org/10.1007/s00037-001-8194-y

Hardness of Variants of the Graph
Coloring Game

Thiago Marcilon1, Nicolas Martins2, and Rudini Sampaio3(B)

1 Centro de Ciências e Tecnologia, University Federal do Cariri,
Juazeiro do Norte, Brazil

thiago.marcilon@ufca.edu.br
2 University Integração Internacional Lusofonia Afrobrasileira Unilab,

Redenção, Brazil
nicolasam@unilab.edu.br

3 Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
rudini@dc.ufc.br

Abstract. Very recently, a long-standing open question proposed by
Bodlaender in 1991 was answered: the graph coloring game is PSPACE-
complete. In 2019, Andres and Lock proposed five variants of the graph
coloring game and left open the question of PSPACE-hardness related to
them. In this paper, we prove that these variants are PSPACE-complete
for the graph coloring game and also for the greedy coloring game, even if
the number of colors is the chromatic number. Finally, we also prove that
a connected version of the graph coloring game, proposed by Charpentier
et al. in 2019, is PSPACE-complete.

Keywords: Coloring game · Game chromatic number ·
PSPACE-hardness

1 Introduction

In the graph coloring game, given a graph G and a set C of integers (representing
the color set), two players (Alice and Bob) alternate turns (starting with Alice)
in choosing an uncolored vertex to be colored by an integer of C not already
assigned to one of its colored neighbors. In the greedy coloring game, there is one
additional constraint: the vertices must be colored by the least possible integer
of C. Alice wins if all vertices are successfully colored. Otherwise, Bob wins the
game. From the classical Zermelo-von Neumann theorem, one of the two players
has a winning strategy, since it is a finite game without draw. Thus, the game
chromatic number χg(G) and the game Grundy number Γg(G) are defined as
the least numbers of colors in the set C for which Alice has a winning strategy
in the graph coloring game and the greedy coloring game, respectively.

R. Sampaio—Supported by CAPES [88887.143992/2017-00] DAAD Probral and
[88881.197438/2018-01] STIC AmSud, CNPq Universal [401519/2016-3], [425297/2016-
0] and [437841/2018-9], and FUNCAP [4543945/2016] Pronem.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 348–359, 2020.
https://doi.org/10.1007/978-3-030-61792-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_28

Hardness of Variants of the Graph Coloring Game 349

Clearly, χ(G) ≤ χg(G) and χ(G) ≤ Γg(G) ≤ Γ (G), where χ(G) is the chro-
matic number of G and Γ (G) is the Grundy number of G (the maximum number
of colors that can be used by a greedy coloring of G).

The graph coloring game was first considered by Brams about 38 years ago
in the context of coloring maps and was described by Gardner in 1981 in his
“Mathematical Games” column of Scientific American [8]. It remained unnoticed
until Bodlaender [2] reinvented it in 1991.

Since then, the graph coloring game became a very active topic of research.
In 1993, Faigle et al. [7] proved that χg(G) ≤ 4 in forests and, in 2007, Sidorowicz
[16] proved that χg(G) ≤ 5 in cacti. In 1994, Kierstead and Trotter [11] proved
that χg(G) ≤ 7 in outerplanar graphs. In 1999, Dinski and Zhu proved that
χg(G) ≤ k(k + 1) for every graph with acyclic chromatic number k [6]. In 2000,
Zhu proved that χg(G) ≤ 3k + 2 in partial k-trees [18]. For planar graphs,
Zhu [19] proved in 2008 that χg(G) ≤ 17, Sekiguchi [15] proved in 2014 that
χg(G) ≤ 13 if the girth is at least 4 and Nakprasit et al. [13] proved in 2018 that
χg(G) ≤ 5 if the girth is at least 7. In 2008, Bohman, Frieze and Sudakov [3]
investigated the asymptotic behavior of χg(Gn,p) for the random graph Gn,p.

In Bodlaender’s 1991 paper, the complexity was left as “an interesting open
problem”. A point of difficulty to set the complexity is the definition of the
decision problem. As pointed out by Zhu [17], the graph coloring game “exhibits
some strange properties” and the following naive question is still open (Question
1 of [17]): Does Alice have a winning strategy for the coloring game with k + 1
colors if she has a winning strategy with k colors? Thus it is possible to define two
decision problems for the graph coloring game: given a graph G and an integer
k: χg(G) ≤ k? Does Alice have a winning strategy with k colors? Both problems
are equivalent if and only if Question 1 of [17] has an affirmative answer.

Nevertheless, it was proved in 2019 that both coloring game decision problems
are PSPACE-complete [5], solving Bodlaender’s 1991 question. Also in 2019,
Andres and Lock [1] proposed five variants of the graph coloring game: gB (Bob
starts the game), gA,A (Alice starts and can pass turns), gA,B (Alice starts and
Bob can pass turns), gB,A (Bob starts and Alice can pass turns) and gB,B (Bob
starts and can pass turns). They left the following problem: “the question of
PSPACE-hardness remains open for all the game variants mentioned above”.

In 2019, Charpentier, Hocquard, Sopena and Zhu [4] proposed a connected
version of the graph coloring game (starting with Alice): the subgraph induced
by the set of colored vertices must be connected. They prove that Alice wins
with 2 colors in bipartite graphs and with 5 colors in outerplanar graphs.

In 2013, Havet and Zhu [9] proposed the greedy coloring game and the game
Grundy number Γg(G). They proved that Γg(G) ≤ 3 in forests and Γg(G) ≤ 7
in partial 2-trees. They also posed two questions. Problem 5 of [9]: χg(G) can be
bounded by a function of Γg(G)? Problem 6 of [9]: Is it true that Γg(G) ≤ χg(G)
for every graph G? In 2015, Krawczyk and Walczak [12] answered Problem 5
of [9] in the negative: χg(G) is not upper bounded by a function of Γg(G). To
the best of our knowledge, Problem 6 of [9] is still open. In 2019, it was proved
that the greedy coloring game is PSPACE-complete [5]. It was also proved that

350 T. Marcilon et al.

the game Grundy number is equal to the chromatic number in split graphs and
extended P4-laden graphs, even if Bob starts and can pass any turn.

In this paper, we prove that all variants of the graph coloring game and the
greedy coloring game are PSPACE-complete even if the number of colors is the
chromatic number for any pair Y ∈ {Alice,Bob} and Z ∈ {Alice,Bob,No one},
where Y starts the game and Z can pass turns, by reductions from POS-CNF-
11 and POS-DNF-11. Finally, we also prove that the connected version of the
graph coloring game is PSPACE-complete, by a reduction from the variant of
the graph coloring game in which Bob starts the game.

2 PSPACE-Complete Variants of Graph Coloring Game

Firstly, let us consider the game variant gB : Bob starts the game. Let χB
g (G)

be the minimum number of colors in the set C for which Alice has a winning
strategy in gB . Clearly, χB

g (G) ≥ χ(G). With this, we can define two decision
problems for gB : given a graph G and an integer k,

– (Problem gB-1) χB
g (G) ≤ k?

– (Problem gB-2) Does Alice have a winning strategy in gB with k colors?

In this section, we prove that the following more restricted problem is
PSPACE-complete: given a graph G and its chromatic number χ(G),

– (Problem gB-3) χB
g (G) = χ(G)?

Notice that χ(G) is part of the input of Problem gB-3.
It is easy to see that Problems gB-1 and gB-2 are generalizations of Problem

gB-3, since both problems are equivalent to it for k = χ(G). For this, notice
that χB

g (G) ≤ k = χ(G) if and only if χB
g (G) = χ(G), which is true if and

only if Alice has a winning strategy in gB with k = χ(G) colors. Then the
PSPACE-hardness of Problem gB-3 implies the PSPACE-hardness of Problems
gB-1 and gB-2. To the best of our knowledge, no paper have explicitly defined
these decision problems or proved pertinence in PSPACE.

Lemma 1. Problems gB-1, gB-2 and gB-3 are in PSPACE.

Proof (Sketch). Let G be a graph with n vertices and k ≤ n be an integer. Let
us begin with Problem gB-2. Since the number of turns is exactly n and, in each
turn, the number of possible moves is at most n·k (there are at most n vertices to
select and at most k colors to use), we have that Problem gB-2 is a polynomially
bounded two player game and then it is in PSPACE [10]. Consequently, Problem
gB-3 is also in PSPACE.

Finally, regarding Problem gB-1, notice that it can be decided using Problem
gB-2 for all k′ = χ(G), . . . , k. That is, if there is k′ ∈ {χ(G), . . . , k} such that
Problem gB-2 with k′ colors is YES, then Problem gB-1 is also YES. Otherwise, it
is NO. Since Problem gB-2 is in PSPACE, then Problem gB-1 is also in PSPACE.

Hardness of Variants of the Graph Coloring Game 351

Now, we prove that Problem gB-3 is PSPACE-complete. In [5], the PSPACE-
hardness reduction of the graph coloring game used the POS-CNF problem,
which is known to be log-complete in PSPACE [14]. In POS-CNF, we are given
a set {X1, . . . , XN} of N variables and a CNF formula (conjunctive normal
form: conjunction of disjunctions) with M clauses C1, . . . , CM (also called dis-
junctions), in which only positive variables appear (that is, no negations of vari-
ables). Players I and II alternate turns setting a previously unset variable True
or False, starting with Player I. After all N variables are set, Player I wins if and
only if the formula is True. Clearly, since there are only positive variables, we can
assume that Players I and II always set variables True and False, respectively.

Unfortunately, by associating Player I with Alice and Player II with Bob,
all our attempts to obtain a reduction for gB similar to the one in [5] using
POS-CNF have failed. However, another problem proved to be useful for gB:
POS-DNF, which is also PSPACE-complete [14]. In POS-DNF, we are given a
DNF formula (disjunctive normal form: disjunction of conjunctions) instead of a
CNF formula. In other words, Player I in POS-DNF has a similar role of Player
II in POS-CNF: he wins if plays every variable of some conjunction. From now
on, we will call Players I and II of POS-DNF as Bob and Alice, respectively.
As an example, consider the DNF formula (X1 ∧ X2 ∧ X5) ∨ (X1 ∧ X3 ∧ X5) ∨
(X2 ∧ X4 ∧ X5) ∨ (X3 ∧ X4 ∧ X5). Note that Bob has a winning strategy for this
formula firstly setting X5 True, since it is in all conjunctions: if Alice sets X1

False, Bob sets X4 True; if Alice sets X4 False, Bob sets X1 True; if Alice sets
X2 False, Bob sets X3 True; if Alice sets X3 False, Bob sets X2 True.

Lemma 2. If Bob (resp. Alice) has a winning strategy in POS-CNF or POS-
DNF, then he (resp. she) also has a winning strategy if Alice (resp. Bob) can
pass any turn.

Proof (Sketch). In both cases, if the opponent passed a turn, just assume that
the opponent has selected some non-selected variable and keep playing following
the winning strategy in the original game. If the opponent selects this assumed
variable later in the game, just assume that other non-selected variable was
selected and keep playing with the winning strategy. If all variables (including
the assumed ones) were selected, then the formula is true and just select any
assumed variable (in any order). With this, since the player have followed a
winning strategy in POS-CNF or POS-DNF and the assumptions restricted only
the player (and not the opponent), we are done.

If the disjunctions/conjunctions have at most 11 variables, we are in POS-
CNF-11 and POS-DNF-11 problems, which are also PSPACE-complete [14].

One important ingredient of the reduction is the graph F1 of Fig. 1, which
has a clique K, an independent set Q of |K| + 3 vertices and three vertices s,
w and y such that s and w are neighbors and are adjacent to all vertices in K
and y is adjacent to all vertices in K ∪ Q. We start proving that, in case of Bob
firstly coloring s, Alice must color y with the same color of s in her first move.

352 T. Marcilon et al.

F1

s

w

y

K Q

Fig. 1. Graph F1: clique K with k vertices and independent set Q with k +3 vertices.

Lemma 3. Consider the graph F1 of Fig. 1 with |K| = k and |Q| = k + 3 and
assume that Bob colored vertex s in the first move of gB. Alice wins the game
in F1 with k + 2 colors if and only if she colors vertex y with the same color of
s in her first move.

Proof (Sketch). Without loss of generality, assume s was colored with color 1.
Note that F1 can be colored with k + 2 colors if and only if either y and s or y
and w receive the same color. Then, she wins with k + 2 colors if colors y with
1 in her first move. Thus assume Alice does not color y with 1 in her first move.

During the game, we say that a vertex v sees a color c if v has a neighbor
colored c. Bob can win by coloring s, w and y with distinct colors in the following
way. He firstly colors a vertex of Q with color 1, avoiding Alice to color y with
color 1. Now, Bob has to guarantee that y and w receive different colors. For
this, the following strategy holds: (i) if w is not colored and some color c �= 1
appears in Q and does not appear in K, then he colors w with color c; (ii) If w is
colored, y is not colored and does not see some color c distinct from the color of
w, then he colors y with c; (iii) otherwise, he colors any vertex of F1 preferring
vertices of Q with any color not appearing in the neighborhood of y.

This strategy guarantees that every color seen by w is also seen by y. More-
over, after a Bob’s move from (iii), he guarantees that some color c seen by y
is not seen by w. Thus Alice must color a vertex of K with c, since otherwise
Bob wins in his turn from (i) or (ii). Since |Q| = |K| + 3, Alice cannot do this
indefinitely and Bob wins the game.

Theorem 1. Given a graph G, deciding whether χB
g (G) = χ(G) is PSPACE-

complete. Thus, given k, deciding whether χB
g (G) ≤ k or deciding if Alice has a

winning strategy in gB with k colors are PSPACE-complete problems.

Proof (Sketch). From Lemma 1, the three decision problems are in PSPACE.
Given a POS-DNF-11 formula with N variables X1, . . . , XN and M conjunctions
C1, . . . , CM , let pj (for j = 1, . . . ,M) be the size of conjunction Cj (pj ≤ 11). We
will construct a graph G such that χ(G) = M+3N+25 and χg(G) = M+3N+25
if and only if Alice has a winning strategy for the POS-DNF-11 formula.

Initially, the constructed graph G is the graph F1 of Fig. 1 with |K| = M +
3N + 23 and |Q| = |K| + 3. See Fig. 2. For every variable Xi, create a vertex
xi in G. For every conjunction Cj , we create a conjunction clique. For this, first
create a clique with vertices �j,1, . . . , �j,pj

and join �j,k to xi with an edge if and

Hardness of Variants of the Graph Coloring Game 353

only if both are associated to the same variable, for k = 1, . . . , pj . Also add the
new vertex �j,0 (which is not associated to variables) and join it with an edge
to the vertex y. For every vertex �j,k (j = 1, . . . ,M and k = 0, . . . , pj), replace
it by two true-twin vertices �′

j,k and �′′
j,k, which are adjacent vertices with same

neighborhood of �j,k. Moreover, add to the conjunction clique of Cj a clique Lj

with size M + 3N + 25 − 2(pj + 1) ≥ 3N and join all vertices of Lj to s. With
this, all conjunction cliques have exactly M + 3N + 25 vertices.

Figure 2 shows the constructed graph G for the formula (X1 ∧ X2 ∧ X5) ∨
(X1∧X3∧X5)∨ (X2 ∧X4∧X5)∨ (X3 ∧X4∧X5). Recall that Bob has a winning
strategy in POS-DNF-11 firstly setting X5 True: if Alice sets X1 False, Bob sets
X4 True; if Alice sets X4 False, Bob sets X1 True; if Alice sets X2 False, Bob
sets X3 True; if Alice sets X3 False, Bob sets X2 True. In the reduction of this
example, we have N = 5 variables, M = 4 conjunctions, pj = 3, |K| = 42,
|Q| = 45, the cliques L1 to L4 have M + 3N + 25 − 2(pj + 1) = 36 vertices each.

s

w

K Q

y

F1

x1 x2 x3 x4

x5

�1,1 �1,2

�1,3

�2,1 �2,2

�2,3

�3,1 �3,2

�3,3

�4,1 �4,2

�4,3

L1 �1,0 L2 �2,0 L3 �3,0 L4 �4,0

Fig. 2. Constructed graph G for the formula (X1 ∧ X2 ∧ X5)∨ (X1 ∧ X3 ∧ X5)∨ (X2 ∧
X4 ∧ X5) ∨ (X3 ∧ X4 ∧ X5). Recall that each vertex �j,k represents two true-twins �′

j,k

and �′′
j,k; L1, L2, L3, L4 are cliques with 36 vertices; K is a clique with 42 vertices. Bob

has a winning strategy avoiding 44 colors in the graph coloring game.

It is easy to check that χ(G) = M +3N +25. For this, color s and all vertices
in Q with color 1, the vertices of K with colors 2 to M +3N +24, color w, y and
every vertex xi (i = 1, . . . , n) with color M + 3N + 25. For every j = 1, . . . , M ,
color the vertices �′

j,k and �′′
j,k with colors 2k+1 and 2k+2 (k = 0, . . . , pj). Finally,

354 T. Marcilon et al.

color the vertices of the clique Lj using the colors 2pj +3, . . . , M +3N +25. Since
the conjunction cliques contains M +3N +25 vertices, then χ(G) = M +3N +25.

In the following, we show that Alice has a winning strategy in the graph
coloring game if and only if she has a winning strategy in POS-DNF-11. From
Lemma 3, in her first move, Alice must color vertex y of F1 if Bob colored vertex
s in his first move. Roughly speaking, we show that, in the best strategies, Bob
colors vertex s first and Alice colors vertex y with the same color. Also notice
that every vertex of a conjunction clique has degree exactly M + 3N + 25 (since
it has exactly one neighbor outside the clique). In order to have the conjunction
clique colored using the colors 1, . . . ,M + 3N + 25, Alice must guarantee that
all colors appearing in the outside neighbors of a conjunction clique also appears
inside the clique. On the other hand, we show that Bob’s strategy is making all
outside neighbors of a conjunction clique to be colored with the same color of s
and y (which will represent True in POS-DNF-11) and thus impeding Alice of
using this color inside the conjunction clique.

We first show that if Bob has a winning strategy in POS-DNF-11, then
χg(G) > M + 3N + 25. Assume that Bob wins in POS-DNF-11. Bob uses the
following strategy. He firstly colors s with color 1 and, from Lemma 3, Alice must
color y with 1. In the next rounds, Bob follows his first POS-DNF-11 winning
strategy: colors with color 1 the vertex associated to the variable that should
receive True. If Alice colors a vertex in N [xi] (the closed neighborhood of xi) for
some i, Bob considers that she marked Xi False in POS-DNF-11 and he follows
his winning POS-DNF-11 strategy; if Alice does not color any vertex in N [xi]
for some i, then Bob plays as if Alice has passed her turn in POS-DNF-11 (recall
Lemma 2). Then at some point all literals of some conjunction will be marked
True. This means that all outside neighbors of some conjunction clique will be
colored with color 1. Since the clique has M + 3N + 25 vertices and color 1
cannot be used, we have that χg(G) > M + 3N + 25.

We now show that if Alice has a winning strategy in the POS-DNF-11 game
then χg(G) = M + 3N + 25. Assume that Alice wins in the POS-DNF-11 game.

Firstly suppose Bob colors s (resp. y), say with color 1, in his first move. Then
Alice must color y (resp. s) with color 1 in her first move (recall Lemma 3). Alice
can play using the following strategy: (1) if Bob plays onxi, Alice plays as if Bob has
chosen Xi to be True in POS-DNF-11, meaning that she colors the vertex xj with a
color different from1,whereXj is the literal chosenbyherwinning strategy inPOS-
DNF-11; (2) if Bob plays on some twin obtained from vertex �i,j , Alice plays the
least available color in the other twin; (3) otherwise,Alice plays as if Bob has passed
his turn in POS-DNF-11 (recall Lemma 2) if this game is not over yet; otherwise
colors any non-colored vertex of G with the least available color. Following this
strategy, every conjunction clique has a vertex colored 1. Since each clique Lj has
at least 3N vertices, Alice and Bob can finish coloring every conjunction clique
using the colors 1, . . . ,M + 3N + 25.

Now assume Bob colored v1 �∈ {s, y} in his first move (with some color c).
Then Alice colors y firstly with a color c′ �= c, say c′ = 2 w.l.g. Let v2 be the
2nd vertex chosen by Bob. If v2 = s and its color is 2, we are done from the last

Hardness of Variants of the Graph Coloring Game 355

paragraph (just replacing color 2 by color 1). Otherwise, Alice colors w with color
2 (and then s cannot be colored 2). We show that Alice has a winning strategy
in this case. Assume w.l.g. that the color of s in the game will be 1 (otherwise
we can relabel the colors). Thus no vertex of Lj is colored 1 (j = 1, . . . ,M).

With this, if Bob colored �′
i,0 or �′′

i,0 for some i and the corresponding con-
junction clique does not have a vertex colored 1, then Alice must color a vertex
inside this conjunction clique with color 1. Otherwise, if there is a non-colored
variable vertex, Alice colors it with a color distinct from 1. Since each clique Lj

has at least 3N vertices, then Bob cannot color all vertices of some Lj before
all variable vertices are colored. With this, Alice can guarantee that all colors of
the variable vertices appear in the conjunction cliques and Alice wins.

Following the same path of gB , we define χA,A
g (G), χA,B

g (G), χB,A
g (G) and

χB,B
g (G): the minimum number of colors in C such that Alice has a winning

strategy in gA,A, gA,B , gB,A and gB,B , resp. We can also define three decision
problems for each game gY,Z (Y,Z ∈ {A,B}): given a graph G, its chromatic
number χ(G) and an integer k,

– (Problem gY,Z-1) χY,Z
g (G) ≤ k?

– (Problem gY,Z-2) Does Alice have a winning strategy in gY,Z with k colors?
– (Problem gY,Z-3) χY,Z

g (G) = χ(G)?

Corollary 1. For every Y,Z ∈ {A,B}, the decision problems gY,Z-1, gY,Z-2
and gY,Z-3 are PSPACE-complete.

Proof (Sketch). Let Y,Z ∈ {A,B}. Following similar arguments in Lemma 1, we
obtain that they are PSPACE. The crucial argument to prove PSPCE-hardness
is Lemma 2, which asserts that if Bob (resp. Alice) has a winning strategy in
POS-CNF or POS-DNF-11, then he (resp. she) also has a winning strategy if
Alice (resp. Bob) can pass any turn. Following the proof of Theorem 2.2 in [5]
if Y = A or the proof of Theorem 1 above if Y = B, we have that a winning
strategy in gY is obtained from a winning strategy in POS-CNF/POS-DNF-11.
If Alice (resp. Bob) has a winning strategy in the related logical game and Z = B
(resp. Z = A), she (resp. he) also has a winning strategy in gY,Z by following the
winning strategy in the logical game when the opponent passes a turn. Now if
Alice (resp. Bob) has a winning strategy in the related logical game and Z = A
(resp. Z = B), she (resp. he) also has a winning strategy in gY,Z (just not passing
moves and simulating the obtained winning strategy in gY).

3 Connected Graph Coloring Game Is PSPACE-Complete

In this section, we prove that the connected version of the graph coloring game
[4] is PSPACE-complete with a reduction from Problem gB-3 of Sect. 2.

Theorem 2. Given a graph G and an integer k, deciding whether Alice has an
winning strategy with exactly k colors or at most k colors in the connected version
of the graph coloring game (Alice starting) are PSPACE-complete problems.

356 T. Marcilon et al.

Proof (Sketch). As before, we first define a more restricted decision problem and
prove that it is PSPACE-complete: given G and its chromatic number χ(G), Alice
has a winning strategy with χ(G) colors?

We obtain a reduction from Problem gB-3 of Sect. 2. Let (G,χ(G)) be an
instance of Problem gB-3 with |V (G)| odd. The reduction is as depicted in
Fig. 3, where K is a clique with size χ(G) and s is connected to every vertex of
G. Notice that |V (G) ∪ {s}| is even.

F2

y1 y2

s

K

G

F2

y1 y2 p

s

K

G

Fig. 3. The reduction from the graph G adding a gadget F2 to it. The left if χ(G) is
even or the right if χ(G) is odd.

The resulting graph G′ has chromatic number χ(G′) = χ(G) + 1. Note that,
if y1 and y2 receive distinct colors, Bob wins since it is impossible to color G′

with χ(G′) colors.
Also, note that, if Alice does not play her first move in y1, y2 or K, she loses.

This is because, since |V (G)∪{s}| is even, Bob can always guarantee that Alice
will play on either y1 or y2 before him and consequently he can play a different
color in the other, forcing distinct colors for y1 and y2. This is true even if she
plays in p first or in y2 first when p is a vertex of G′.

First, assume that Alice has a winning strategy for the variant gB-3 of the
graph coloring game (Bob starts the game). She has the following strategy: she
begins playing y1. Bob has to play in either s or K. She then plays in y2 with
the same color as y1, ensuring her safety inside F2. From there on, if Bob plays
in G, she plays according to her strategy in gB-3. If he plays in F2, she also plays
in F2 (since |V (F)| is odd, she can always do this).

Now, assume that Bob has a winning strategy in gB-3. Assume, without loss
of generality, that Alice plays either y1 or K. If she plays in y1, Bob can play in
s and then she has to play in y2. If she plays in K, he can play in y1 and then
she has to play in y2. From now on, in either case, Bob can guarantee he is the
first to make a move in G since |V (F)| is odd. After this, if she plays in G, he
also plays in G following his winning strategy. If she plays in F2, he also plays
in F2 which is always possible.

4 PSPACE-Complete Variants of Greedy Coloring Game

As in Sect. 2, we define five variants of the greedy coloring game: g∗
B (Bob starts),

g∗
A,A (Alice starts and can pass any turn), g∗

A,B (Alice starts and Bob can pass

Hardness of Variants of the Graph Coloring Game 357

any turn), g∗
B,A (Bob starts and Alice can pass any turn) and g∗

B,B (Bob starts
and can pass any turn). Unlike in the game coloring problem, the greedy game
coloring problem satisfies the following:

Proposition 1. If Alice (resp. Bob) has a winning strategy with k colors in g∗
Y,Z ,

then she (resp. he) also has a winning strategy with k+1 colors (Y,Z ∈ {A,B}).
Proof. A winning strategy with k colors in the greedy coloring game is a strategy
with k + 1 colors that does not use the color k + 1, since the coloring is greedy.

Let us start with g∗
B (Bob starts the greedy coloring game). Let ΓB

g (G) be
the minimum number of colors in C such that Alice has a winning strategy in
g∗
B . Clearly, χ(G) ≤ ΓB

g (G) ≤ Γ (G). We can define two natural decision problem
for g∗

B : given a graph G, its chromatic number χ(G) and an integer k,

– (Problem g∗
B-1) ΓB

g (G) ≤ k? Alice has winning strategy with k colors in g∗
B?

– (Problem g∗
B-2) ΓB

g (G) = χ(G)?

Clearly, Problem g∗
B-1 is a generalization of Problem g∗

B-2 (just set k = χ(G)).
Then the PSPACE-hardness of g∗

B-2 implies the PSPACE-hardness of g∗
B-1.

We obtain a reduction from POS-DNF-11 similar to the one of Sect. 2 for gB.
One important ingredient of the reduction is the graph F3 of Fig. 4, which has
a clique K with k vertices and three vertices s, w and y such that s and w are
adjacent to all vertices in K and w is adjacent to y. We start proving that, in
case of Bob firstly coloring s, Alice must color y in her first move.

F3

s

w

y

K

Fig. 4. Graph F3: K is a clique.

Lemma 4. Consider the graph F3 of Fig. 4 with |K| = k and assume that Bob
colored vertex s in the first move of g∗

B. Alice wins the game in F3 with k + 1
colors if and only if she colors vertex y in her first move.

Proof (Sketch).Clearly s is colored 1 and F3 is colored with k+1 colors if and only
if y and s receive the same color. If Alice colors y in her first move (color 1), she
wins with k + 1 colors. Thus assume Alice does not color y. Then Bob colors w,
which receives color 1, forcing different colors for s and y.

358 T. Marcilon et al.

Theorem 3. g∗
B-1 and g∗

B-2 are PSPACE-complete.

Proof (Sketch). Following similar arguments of Lemma 1, since the number of
turns is exactly n and, in each turn, the number of possible moves is at most n, we
have that both decision problems are PSPACE. We follow a very similar reduc-
tion of Theorem 1 (but from POS-CNF-11 instead of POS-DNF-11), including a
neighbor xi of degree 1 to each vertex xi and replacing graph F1 by graph F3 with
|K| = M + 3N + 24. Recall that, in POS-CNF, it is given a CNF formula (con-
junctive normal form: conjunction of disjunctions). In POS-CNF-11, there is an
additional constraint: the clauses have at most 11 variables. Figure 4 shows the
constructed graph G for the formula (X1∨X2)∧(X1∨X3)∧(X2∨X4)∧(X3∨X4).
In the reduction of this example, we have N = 4 variables and M = 4 clauses.
The cliques L1 to LM have M + 3N + 19 vertices each (Fig. 5).

s

w

K

y

F3

x1 x2 x3 x4

x1 x2 x3 x4

�1,1 �1,2 �2,1 �2,2 �3,1 �3,2 �4,1 �4,2

L1 �1,0 L2 �2,0 L3 �3,0 L4 �4,0

Fig. 5. Constructed graph G for the formula (X1∨X2)∧(X1∨X3)∧(X2∨X4)∧(X3∨X4).
Recall that each vertex �j,k represents two true-twins �′

j,k and �′′
j,k, L1, L2, L3, L4 are

cliques with 35 vertices. Bob has a winning strategy avoiding 41 colors in the greedy
coloring game.

As in Theorem 1, χ(G) = M +3N +25. With similar arguments in Theorem 1,
we obtain the result. The main difference is that, instead coloring a vertex xi with
a color distinct from 1, Alice colors the vertex xi (with color 1).

As before, we define ΓA,A
g (G), ΓA,B

g (G), ΓB,A
g (G) and ΓB,B

g (G): the mini-
mum number of colors in C such that Alice has a winning strategy in g∗

A,A, g∗
A,B ,

g∗
B,A and g∗

B,B , resp. With this, we define two decision problem for each game
g∗
Y,Z with Y,Z ∈ {A,B}: given G, its chromatic number χ(G) and an integer k,

Hardness of Variants of the Graph Coloring Game 359

– (Problem g∗
Y,Z-1) ΓY,Z

g (G) ≤ k? That is, does Alice have a winning strategy
in gY,Z with k colors?

– (Problem g∗
Y,Z-2) ΓY,Z

g (G) = χ(G)?

Corollary 2. For every Y,Z ∈ {A,B}, the decision problems g∗
Y,Z-1 and g∗

Y,Z-2
are PSPACE-complete.

References

1. Andres, D., Lock, E.: Characterising and recognising game-perfect graphs. Discrete
Math. Theoret. Comput. Sci. 21(1) (2019). https://dmtcs.episciences.org/5499

2. Bodlaender, H.L.: On the complexity of some coloring games. In: Möhring, R.H.
(ed.) WG 1990. LNCS, vol. 484, pp. 30–40. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-53832-1 29

3. Bohman, T., Frieze, A., Sudakov, B.: The game chromatic number of random
graphs. Random Struct. Algorithms 32(2), 223–235 (2008)

4. Charpentier, C., Hocquard, H., Sopena, E., Zhu, X.: A connected version of the
graph coloring game. In: Proceedings of the 9th Slovenian International Conference
on Graph Theory (Bled 2019) (2019). arXiv:1907.12276

5. Costa, E., Pessoa, V.L., Sampaio, R., Soares, R.: PSPACE-hardness of two graph
coloring games. In: Electronic Notes in Theoretical Computer Science, vol. 346,
pp. 333–344, Proceedings of the 10th Latin and American Algorithms, Graphs and
Optimization Symposium, LAGOS 2019 (2019)

6. Dinski, T., Zhu, X.: A bound for the game chromatic number of graphs. Discrete
Math. 196(1), 109–115 (1999)

7. Faigle, U., Kern, U., Kierstead, H., Trotter, W.: On the game chromatic number
of some classes of graphs. Ars Combinatoria 35, 143–150 (1993)

8. Gardner, M.: Mathematical games. Sci. Am. 244(4), 18–26 (1981)
9. Havet, F., Zhu, X.: The game Grundy number of graphs. J. Comb. Optim. 25(4),

752–765 (2013)
10. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd.,

Natick (2009)
11. Kierstead, H.A., Trotter, W.T.: Planar graph coloring with an uncooperative part-

ner. J. Graph Theory 18(6), 569–584 (1994)
12. Krawczyk, T., Walczak, B.: Asymmetric coloring games on incomparability graphs.

Electron. Notes Discrete Math. 49, 803–811 (2015)
13. Nakprasit, K.M., Nakprasit, K.: The game coloring number of planar graphs with

a specific girth. Graphs Comb. 34(2), 349–354 (2018)
14. Schaefer, T.J.: On the complexity of some two-person perfect-information games.

J. Comput. Syst. Sci. 16(2), 185–225 (1978)
15. Sekiguchi, Y.: The game coloring number of planar graphs with a given girth.

Discrete Math. 330, 11–16 (2014)
16. Sidorowicz, E.: The game chromatic number and the game colouring number of

cactuses. Inf. Process. Lett. 102(4), 147–151 (2007)
17. Zhu, X.: The game coloring number of planar graphs. J. Comb. Theory, Ser. B

75(2), 245–258 (1999)
18. Zhu, X.: The game coloring number of pseudo partial k-trees. Discrete Math.

215(1), 245–262 (2000)
19. Zhu, X.: Refined activation strategy for the marking game. J. Comb. Theory, Ser.

B 98(1), 1–18 (2008)

https://dmtcs.episciences.org/5499
https://doi.org/10.1007/3-540-53832-1_29
https://doi.org/10.1007/3-540-53832-1_29
http://arxiv.org/abs/1907.12276

Tractable Unordered 3-CNF Games

Md Lutfar Rahman(B) and Thomas Watson

University of Memphis, Memphis, TN, USA
mrahman9@memphis.edu

Abstract. The classic TQBF problem can be viewed as a game in which
two players alternate turns assigning truth values to a CNF formula’s
variables in a prescribed order, and the winner is determined by whether
the CNF gets satisfied. The complexity of deciding which player has a
winning strategy in this game is well-understood: it is NL-complete for
2-CNFs and PSPACE-complete for 3-CNFs.

We continue the study of the unordered variant of this game, in which
each turn consists of picking any remaining variable and assigning it a
truth value. The complexity of deciding who can win on a given CNF
is less well-understood; prior work by the authors showed it is in L for
2-CNFs and PSPACE-complete for 5-CNFs. We conjecture it may be
efficiently solvable on 3-CNFs, and we make progress in this direction
by proving the problem is in P, indeed in L, for 3-CNFs with a certain
restriction, namely that each width-3 clause has at least one variable
that appears in no other clause. Another (incomparable) restriction of
this problem was previously shown to be tractable by Kutz.

Keywords: 3-CNF · Games · Unordered · Logarithmic space

1 Introduction

Two-player games play an important role in complexity theory, particularly in
the study of space-bounded computations. For example, the seminal PSPACE-
complete problem TQBF—in which the goal is to determine whether a given
quantified boolean formula ∃x1 ∀x2 ∃x3 ∀x4 · · · ϕ(x1, . . . , xn) is true—can be
viewed as deciding who has a winning strategy in the following two-player game:
player 1 picks a bit value to assign to x1, then player 2 assigns x2, then player 1
assigns x3, then player 2 assigns x4, etc., with player 1 winning iff ϕ is satisfied.

Most commonly, ϕ is a conjunctive normal form (CNF) formula, which con-
sists of a conjunction of clauses where each clause is a disjunction of literals. A
w-CNF has at most w literals in each clause, and this width parameter w often
governs the complexity of problems involving CNFs. For 2-CNFs, TQBF is NL-
complete [2,4] (in particular, in P), while for 3-CNFs it is PSPACE-complete [12].
We call the corresponding game the ordered CNF game because the players are
required to “play” the variables in a particular order prescribed in the input.

This work was supported by NSF grant CCF-1657377.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 360–372, 2020.
https://doi.org/10.1007/978-3-030-61792-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_29

Tractable Unordered 3-CNF Games 361

Complexity of the Unordered CNF Game. In contrast, many real-world games
have greater flexibility in terms of the set of moves available in each turn: the
current player may be allowed to pick any of the remaining possible moves to
do. We can define a variant of TQBF, called the unordered CNF game, which
has this format: The input is again a CNF ϕ, and in each turn the current player
picks a remaining (unassigned) variable and picks a bit value to assign it. The
winner is determined by whether ϕ gets satisfied; we let T denote the player who
wins when every clause of ϕ is true, and F denote the player who wins when
some clause of ϕ is false. For 2-CNFs, deciding who has a winning strategy in
this game is known to be in L [7], while PSPACE-completeness was shown for
11-CNFs [10,11], then for 6-CNFs [1], and then for 5-CNFs [7]. It remains a
mystery what happens for widths 3 and 4.

We boldly conjecture that, in stark contrast to its ordered counterpart, the
unordered 3-CNF game may actually be tractable. Progress toward confirming
this conjecture can be made by considering certain restrictions on the input CNF,
and showing that the game is tractable under these restrictions. The contribution
of this paper is such a result. Before stating our result, for comparison we review
other restrictions that have been studied.

One natural restriction is CNFs that are positive (a.k.a. monotone), mean-
ing that all literal occurrences are unnegated variables; in this case, the
unordered CNF game is equivalent to the so-called Maker–Breaker game (which
is widely-studied in the combinatorics literature). In fact, [10,11] proved that
the unordered CNF game is PSPACE-complete even for positive 11-CNFs (and a
simplified proof for unbounded-width positive CNFs appears in [3]). Kutz [5,6]
proved that for positive 3-CNFs, the unordered CNF game is tractable (in P)
under an additional restriction on the hypergraph structure of the CNF, namely
that no two clauses have more than one variable in common. This is the only
previous result in the direction of confirming our conjecture.

It would be interesting to lift either the “positive” restriction or the “only
one common variable” restriction in Kutz’s result. We prove that both can be
lifted if we instead impose a different (incomparable) restriction on the CNF’s
hypergraph structure. Specifically, we can view the variables in a clause as nodes,
which are places where the clause can “connect” to other clauses (by sharing the
variable). One difficulty in Kutz’s analysis was handling width-3 clauses that use
each of their 3 nodes to connect to other clauses. By restricting this difficulty
away, we are able to address both limitations of Kutz’s result, by handling general
(not positive) CNFs that can have more than one common variable between pairs
of clauses. (Our analysis does not end up resembling Kutz’s very much, though.)

Thus our theorem can be stated as: the unordered 3-CNF game is in P, in
fact in L, when each width-3 clause has at least one “spare” variable that appears
in no other clauses. In the context of satisfiability, this restriction (each width-
3 clause has a spare variable) is not very interesting since it would reduce to
2-SAT (the width-3 clauses could automatically be satisfied). Similarly, under
this restriction, 3-TQBF would reduce to 2-TQBF since each clause with a spare
variable belonging to T (∃) would get satisfied (and thus disappear), and each

362 M. L. Rahman and T. Watson

clause whose spare variable belongs to F (∀) would shrink to a width-2 clause.
However, for the unordered 3-CNF game there is no clear way to reduce this
restricted version to a 2-CNF game, since both players can vie for any spare
variable. As we show in this paper, combinatorially characterizing the winner
of such a restricted unordered 3-CNF game turns out to be drastically more
involved than for unordered 2-CNF games [7].

Proof Outline. To prove our theorem, there are multiple cases depending on
who has the first move and who has the last move. The case where T goes first
reduces to the case where F goes first (by trying all possibilities for T’s opening
move, and seeing whether any of them lead to a win for T in the residual game
where F moves first), so we focus on the latter. Our proof separately handles the
cases where F has both the first and last moves (Sect. 3) and where F has the
first move and T has the last move (omitted due to space constraints).

The case where F has both the first and last moves (so the number of variables
is odd) is somewhat simpler to analyze. We state and prove a characterization of
who has a winning strategy in this case, in terms of certain features of the input
formula; an efficient algorithm follows straightforwardly from this. To obtain
the characterization, we begin by identifying various types of subformulas whose
presence in the input formula would enable F to win. It is an elementary but
non-trivial case analysis to verify that in any of these subformulas, F indeed has a
strategy to ensure some clause gets falsified (Sect. 3.1). The more interesting part
of the proof is to show that not only do these subformulas constitute “obstacles”
to T winning, but in a sense they are the only obstacles (Sect. 3.2). Although it is
not true that F can win iff at least one of those subformulas exists in the original
formula, we prove something just as good: F can win iff he has an opening move
that ensures at least one of those subformulas will exist in the residual formula
at the end of the first round. (A round consists of an F move followed by a T
move.)

In other words, if T can fend off all the obstacles for one round, then he will
be able to fend them off for the entire game. This non-obvious fact is key to
taming the combinatorial structure of the game. The proof of this fact involves
a subtle induction that modifies the game rules to allow F to “pass” (forgo his
turn) whenever he wishes—this can only make it harder for T to win, but it is
needed for the induction to go through. After a round, we can prove that for
each of the smaller components that were created in the residual formula: either
we can design a direct winning strategy for T in that component by exploiting
the absence of the obstacle subformulas, or T can fend off obstacles for one
more round in that component, enabling us to apply the induction hypothesis.
Finally, to combine the “sub-strategies” for the separate components into an
overall strategy for T, we exploit the resilience of the sub-strategies against pass
moves by F.

The case where F goes first and T goes last follows a similar structure but is
more involved. Some of the above argument can be recycled, but the parts that
relied on F moving last need to be changed. Now the “complete” set of obstacles
is larger and more complicated. The inductive argument for T’s winning strategy

Tractable Unordered 3-CNF Games 363

requires a more detailed analysis and uses a further modification of the game:
the new rule says that a certain subformula gets immediately removed from the
game (its variables become unplayable) whenever it is created in the residual
formula. The deleted copies of this subformula are then dealt with “outside of”
the induction, to recover a proof for the unmodified game.

Summary. One motivation for studying the unordered CNF game is that it is
naturally analogous to a variety of real-world games where the same moves are
available to both players. Indeed, the original result of Schaefer [10,11] has been
used in many reductions to show PSPACE-completeness of other natural games
with an unordered flavor (see [7] for a list). At a more fundamental level, the
problem we study is very simple to define, and our result reveals new insights
about CNFs, which are among the most ubiquitous representations of boolean
functions.

A potential big payoff for this research direction is to show that the general
unordered 3-CNF game is tractable. That may sound outlandish since arbi-
trary 3-CNFs are typically thought of as “too unstructured” to admit efficient
algorithms for interesting problems. Our result together with the complemen-
tary result by Kutz [5,6] provides a glimpse into why the bold conjecture may
be true, and a plausible roadmap for proving it: by combining our techniques,
which handle negated literals and clauses that share two variables, with Kutz’s
techniques, which handle clauses without spare variables. Short of handling
the general game, there are other open and interesting special cases to which
our techniques may be germane, such as the Maker–Breaker game on general
3-uniform hypergraphs.

The proof of our result reveals a novel structural property: it is impossible
for F to mount a “long-range” attack for creating a simple “obstacle” after a
super-constant number of rounds—it is a “now or never” situation for F. We
conjecture the same phenomenon holds for the game on unrestricted 3-CNFs,
since we are unaware of any counterexamples. If a counterexample is found, it
might be turned into a gadget for proving hardness of the general game. Even
NL-hardness would be fundamentally interesting since our algorithm—based on
detecting a simple obstacle after constantly many rounds—only uses logarithmic
space. (As a side result—not included in this paper—we can show that the
unordered 4-CNF game is NL-hard.)

Although our requirement that every width-3 clause has a spare variable
seems to be a very strong restriction, and may not naturally show up in other
contexts, we feel it is an important stepping stone for understanding more general
games. It already adds a very significant layer of complexity over the unordered
2-CNF game, and it represents a reasonable way of suppressing some of the
difficulties posed by the hypergraph structure of 3-CNFs (which Kutz’s proof
works hard to address), en route to a more general result.

Furthermore, our proof contributes some innovative techniques for analyzing
games, including: modifying the game to facilitate an induction; our framework
for showing how T can extend his good fortune from one round to all subsequent

364 M. L. Rahman and T. Watson

rounds; and a method for simplifying gameplay analysis by imagining that the
moves happened in a different order.

2 Preliminaries

We define a formula as a pair (ϕ,X) where ϕ is a CNF and X = {x1, . . . , xn}
contains all the variables that appear in ϕ (and possibly more). In the unordered
CNF game there are two players, denoted T (for “true”) and F (for “false”), who
alternate turns. Each turn consists of picking a remaining (unassigned) variable
from X and assigning it a value 0 or 1. The game ends when all variables of
X have been assigned, and T wins if ϕ is satisfied, and F wins if it is not. We
let G (for “game”) denote the problem of deciding which player has a winning
strategy, given the formula (ϕ,X) and a specification of which player goes first.
We let Gw denote the restriction of G to instances where each clause has at most
w literals (ϕ has width w). We define a spare variable as occurring in only one
clause, and we assume without loss of generality that a spare variable appears
as a positive literal. Then we let G∗

3 denote the restriction of G3 to instances
where each width-3 clause in ϕ has at least one spare variable.

Theorem 1. G∗
3 is in polynomial time, in fact, in logarithmic space.

We introduce subscripts to distinguish the different patterns for “who goes
first” and “who goes last”. For a, b ∈ {T,F}, the subscript a · · · b means player a
goes first and player b goes last, a · · · means a goes first, and · · · b means b goes
last. Thus G∗

3,T··· corresponds to the game where T goes first, which (as noted
in Sect. 1) reduces to G∗

3,F··· by brute-forcing T’s first move. So, we just prove
Theorem 1 for G∗

3,F···, which is split into the cases G∗
3,F···F (F goes first and last,

so n = |X| must be odd) and G∗
3,F···T (F goes first and T goes last, so n = |X|

must be even). We use the terms move, turn, or play interchangeably to mean
T or F assigning a bit value to one variable. A round consists of two consecutive
moves, and since we only need to consider F having the first move, each round
will consist of one F move followed by one T move (except in G∗

3,F···F, the last
round will have only one move).

A subformula (ϕ′,X ′) of a formula (ϕ,X) is defined as ϕ′ having a subset
of clauses from ϕ and X ′ ⊆ X containing all the variables that appear in ϕ′ (and
possibly more). After a move, the formula changes to a residual formula where
the variable that got played is removed from X, and each clause containing the
variable either disappears (since it is satisfied by a true literal) or shrinks (since
a false literal might as well not be there). F wins if the residual formula has
a width-0 clause, and T wins if it has no clauses. The residual formula after a
move may or may not be a subformula of the formula before the move.

When we say F can ensure some property within k rounds, we formally
mean that either

• the original formula has the property, or
• (∃ F move) (∀ T move) the residual formula has the property, or

Tractable Unordered 3-CNF Games 365

• (∃ F move) (∀ T move) (∃ F move) (∀ T move) the residual formula has the
property, or · · · · · ·

• (∃ F move) (∀ T move) · · · (∃ F move in kth round) (∀ T move in kth round)
the residual formula has the property.

Note that the property is only checked at the boundary between rounds (and
not after F’s move but before T’s move inside of a round).

A positive CNF is equivalent to a hypergraph where nodes are variables and
hyperedges are clauses. In this paper, we use a hypergraph representation of gen-
eral (not necessarily positive) CNFs. As shown in Fig. 1, a clause is a hyperedge
where nodes represent variables, and signs are annotations representing vari-
ables’ literal appearances. When we omit the sign of a variable on a diagram, it
could be either + or − but it is not relevant.

x1

+

(x1)

x1 x2

(x1 ∨ x2)

+ − x1 x2

x3

(x1 ∨ x2 ∨ x3)

+ −
+

Fig. 1. Example clauses and their hypergraph representations

Two clauses in a general CNF can share any number of same signed or
opposite signed literals. We think of a shared variable as a connection between
two clauses, and we define two types of connections:

• Pure Connection: A variable that appears with the same sign in two
clauses. For example, in (x1∨x2∨x3)∧(x2∨x4∨x5) there is a pure connection
at x2. See Fig. 2 on the left. Another example: in (x1∨x2∨x3)∧(x2∨x4∨x5)
there is again a pure connection at x2.

• Mixed Connection: A variable that appears with the opposite sign in two
clauses. For example, in (x1∨x2∨x3)∧(x2∨x4∨x5) there is a mixed connection
at x2. See Fig. 2 on the right. Another example: in (x1∨x2∨x3)∧(x2∨x4∨x5)
there is again a mixed connection at x2.

A formula (ϕ,X) is called connected if the associated hypergraph is con-
nected (with the signs being irrelevant); i.e., it is possible to get from any variable
to any other variable by a sequence of clauses, each having a connection to the
next. A formula is thus naturally partitioned into connected components, each
of which is a subformula. An isolated variable is one that is in X but not
in any clause of ϕ, and thus forms a connected component by itself since the
associated node is incident to no hyperedges. A variable in a width-1 clause is
not considered isolated.

366 M. L. Rahman and T. Watson

x1 x2

x3

Pure at x2

+
x4

x5

+
x1 x2

x3

Mixed at x2

+
x4

x5

−

Fig. 2. Clause connections

x1 ...
+ −

x2 x1 x2

+
−

Fig. 3. A chain between x1 and x2

A chain is a sequence of distinct width-3 clauses each sharing exactly one
variable with the next, and with no shared variables between two non-consecutive
clauses. The length L of the chain is the number of clauses. An arbitrary chain
between x1 and x2 is illustrated in Fig. 3 on the left. On the right, we show how
the chain can be depicted by a thick line. If L = 0 then x1 = x2. If L = 1 then
the only clause in the chain contains both x1 and x2.

A cycle is like a chain with L > 2 and x1 = x2. A diamond happens when
two width-3 clauses share exactly two variables. Intuitively, a diamond is like
the smallest case of a cycle, with L = 2.

3 G∗
3,F···F

We henceforth assume that in a formula (ϕ,X), ϕ is always a 3-CNF where each
width-3 clause has at least one spare variable.

Lemma 1. F has a winning strategy in a G∗
3,F···F game iff F can ensure within

one round at least one of the following subformulas exists.

(1) A width-0 or width-1 clause.
(2) Two width-2 clauses sharing both variables.
(3) Two width-2 clauses and a chain (of length ≥ 0) between them.
(4) A width-2 clause and a chain (of length ≥ 1) between its two variables with

at least one mixed connection between the chain and the width-2 clause.
(5) A width-2 clause, a cycle or diamond containing at most one width-2 clause

variable, and a chain (of length ≥ 0) between them.

Moreover, if subformula (4) or (5) exists at the beginning of a round then F can
ensure subformula (1) or (2) or (3) exists within two more rounds.

The proof of Lemma 1 is in Sect. 3.1 and Sect. 3.2.

Tractable Unordered 3-CNF Games 367

Corollary 1. F has a winning strategy in a G∗
3,F···F game iff F can ensure sub-

formula (1) or (2) or (3) exists within the first three rounds.

Corollary 1 yields a direct approach to devise an algorithm for G∗
3,F···F:

Try all possible sequences of 6 moves for the first 3 rounds. Check whether
(∃ F move) (∀ T move) (∃ F move) (∀ T move) (∃ F move) (∀ T move):
subformula (1) or (2) or (3) exists in the residual formula.

This can be implemented in log space, because keeping track of a sequence
of the first six moves takes log space, searching for subformula (1) or (2) takes
log space, and searching for subformula (3) also takes log space since it can be
expressed as an undirected s–t connectivity problem [8,9]: for each pair of width-
2 clauses, check whether there exists a chain between them.

We conjecture the same algorithm (possibly with a different number of brute-
force rounds) actually solves G3,F···F; we are not aware of any counterexamples.

3.1 Right-to-left Implication of Lemma 1

Suppose at least one of the subformulas (1–5) exists when it is F’s turn to play.
We will handle each subformula in separate claims. For concreteness, we illustrate
the arguments using literals with particular signs, but all the arguments work
even if we negate all occurrences of any variable.

Claim 1. If subformula (1) exists, F has a winning strategy.

Proof. If a width-0 clause exists then T has no chance to satisfy it, so F wins.
If a width-1 clause exists, say (x1), then F can play x1 = 0 and win. 	

Claim 2. If subformula (2) exists, F has a winning strategy.

Proof. There are two possible ways that can happen:

• Case 1: The clauses have opposite signs for one variable (mixed connection).
For example, in (x1 ∨ x2) ∧ (x1 ∨ x2) only x1 has opposite signs. Then F can
play x2 = 0, and whatever the value of x1, F will win.

• Case 2: The clauses have opposite signs for both variables. For example, in
(x1 ∨ x2) ∧ (x1 ∨ x2) both x1 and x2 have opposite signs. Since F moves last,
F can wait by playing other variables until T has to play x1 or x2. Then F
makes x1 = x2 and wins. 	

Claim 3. If subformula (3) exists, F has a winning strategy.

Proof. We call this situation a manriki (a Japanese ninja weapon). The two
width-2 clauses are like two handles and the chain in the middle can be arbitrarily
long. We prove this claim by induction on the length of the chain.

Base case: The length of the chain is zero, i.e., the two handles directly share
a variable. We can assume the two handles do not share both variables since
otherwise that falls under Claim 2. There are two possible ways the handles can
have one common variable:

368 M. L. Rahman and T. Watson

• Case 1: Pure Connection. For example, in (x1 ∨ x2) ∧ (x2 ∨ x3), x2 forms a
pure connection. F can play x2 = 0. Then whatever T does, F plays x1 = 0
or x3 = 0 and wins.

• Case 2: Mixed Connection. For example, in (x1 ∨ x2) ∧ (x2 ∨ x3), x2 forms a
mixed connection. F can play x1 = 0. If T plays x2 = 1 then F plays x3 = 0
and wins. If T plays x2 = 0 then F wins. If T does not play x2, F wins by
playing x2 = 0.

+ +x1 x2 x6

x5

x4 x3
+ −x1 x2 x6

x5

x4 x3

Pure Mixed

Fig. 4. Subformula (3) (Claim 3)

Induction Step: There are two cases depending on the type of connection at the
common variable between one of the handles and the chain:

• Case 1: Pure Connection. For example, in Fig. 4 on the left, x2 forms a pure
connection between handle (x1 ∨ x2) and the chain. F can play x2 = 0. If T
plays x1 = 1 then we have a smaller manriki from (x5∨x6) to (x4∨x3) where
F can win by the induction hypothesis. If T plays x1 = 0 then F wins. If T
does not play x1 then F wins by playing x1 = 0.

• Case 2: Mixed Connection. For example, in Fig. 4 on the right, x2 forms a
mixed connection between handle (x1 ∨x2) and the chain. F can play x1 = 0.
If T plays x2 = 1 then we have a smaller manriki from (x5 ∨ x6) to (x4 ∨ x3)
where F can win by the induction hypothesis. If T plays x2 = 0 then F wins.
If T does not play x2 then F wins by playing x2 = 0. 	

Claim 4. If subformula (4) exists, F has a winning strategy.

Proof. There are three cases depending on how the width-2 clause is connected
to the chain. For example, in Fig. 5, (x1 ∨ x2) is the width-2 clause and x2 is a
mixed connection. In the smallest versions, the chain (the bold line illustrated
in the general versions) has length 1 for cases 1 and 2 and length 0 for case 3.

• Case 1: Pure at x1. F can play x1 = 0. If T plays x2 = 1 then in the smallest
case F wins by x3 = 0 and in the general case F wins by Claim 3 by a manriki
created from x1’s left end to x2’s right end. If T plays x2 = 0 then F wins. If
T does not play x2 then F wins by x2 = 0.

• Case 2: Mixed at x1 but pure at x4 (the next non-spare variable on the chain).
F can play x4 = 0. If T plays x1 = 0 or x2 = 0 then F wins by x2 = 0 or
x1 = 0. If T plays x1 = 1 then F wins by x3 = 0. If T plays x2 = 1 then

Tractable Unordered 3-CNF Games 369

x1 x2
+ −

+ +
x1 x2

x3

+ −
+ +

x1 x2

x4x3

−
−

+
+

+ +
x1 x2

x4 x5x3

− −
++

+ +

x1 x2

x4x3

+ +

−
−

− +

x1 x2

x3

++

− −

Case 1:

Case 2:

Case 3:

General Smallest

Fig. 5. Subformula (4) (Claim 4)

in the smallest case F wins by x5 = 0 and in the general case F wins by a
manriki created from x4’s right end to x2’s right end. If T plays x3 then in the
smallest case F wins by the manriki (x5 ∨ x2) ∧ (x2 ∨ x1) and in the general
case F wins by a manriki created from x4’s right end to (x2 ∨ x1). If T plays
any other variable then F wins by the manriki (x3 ∨ x1) ∧ (x1 ∨ x2).

• Case 3: Mixed at both x1 and x4. F can play x3 = 0. In the smallest case,
since F moves last, F can wait by playing other variables until T has to play
x1 or x2, and then F can win by making x1 = x2. Now consider the general
case. If T plays x1 = 0 or x2 = 0 then F wins by x2 = 0 or x1 = 0. If T plays
x1 = 1 then F wins by x4 = 1. If T plays x2 = 1 then F wins by a manriki
created from x2’s right end to (x4 ∨ x1). If T plays x4 = 0 then F wins by
a manriki created from x4’s right end to (x2 ∨ x1). If T plays x4 = 1 then
F wins by x1 = 1. If T plays any other variable then F wins by the manriki
(x2 ∨ x1) ∧ (x1 ∨ x4). 	

Claim 5. If subformula (5) exists, F has a winning strategy.

The proof of Claim 5 is omitted due to space constraints.
Moreover, in all cases, there exists a subformula (1) or (2) or (3) within one

round for Claim 4 and within two rounds for Claim 5.

370 M. L. Rahman and T. Watson

3.2 Left-to-right Implication of Lemma 1

Definition 1. A cobweb is a formula where none of the subformulas (1–5) exist
(and each width-3 clause has at least one spare variable). Note that any subfor-
mula in a cobweb is also a cobweb.

Observation 1. A cobweb has a variable that occurs in at most one clause.

The proof of Observation 1 is omitted due to space constraints.
Suppose F cannot ensure that at least one of the subformulas (1–5) exists

within one round. So at the beginning the formula is a cobweb and in the first
round, for every move by F there exists a move for T such that the residual
formula is again a cobweb. In other words, T can ensure that the beginning
cobweb remains a cobweb after a round. We will argue that T has a winning
strategy. The proof will be by induction on the number of variables. In order for
the induction to go through, we need to prove something stronger: “T can win
even if F is allowed to use pass moves.” This means F has the option of forgoing
any turn, thus forcing T to play multiple variables in a row. In this case it does
not make sense to consider which player has the last move, so we consider the
game G∗

3,F··· in this section.
First we consider a special case of cobweb that we call a jellyfish.

Definition 2. A jellyfish is a connected cobweb with a width-2 clause. Its eyes
are the variables in the width-2 clause.

Lemma 2. If the formula is a jellyfish then T has a winning strategy in G∗
3,F···

even if F can use pass moves.

The proof of Lemma 2 is omitted due to space constraints.

Definition 3. A winweb is a cobweb such that T can ensure that it remains a
cobweb after a round (where F is not allowed to use pass moves).

Lemma 3. Every subformula of a winweb is also a winweb.

The proof of Lemma 3 is omitted due to space constraints.
The following lemma proves something stronger than the left-to-right impli-

cation of Lemma 1, because F can use pass moves.

Lemma 4. If the formula is a winweb then T has a winning strategy in G∗
3,F···

even if F can use pass moves.

Proof. We prove this by induction on the number of variables.
Base case: The formula is a cobweb with one or two variables. In case of

one variable the only possibility is an isolated variable with no clauses since
subformula (1) does not exist. T has already won in this case. In case of two
variables there exists either two isolated variables where T has already won or
a width-2 clause which T can satisfy in one move.

Induction step: The formula (ϕ,X) is a winweb with at least three variables.

Tractable Unordered 3-CNF Games 371

Suppose F played a pass move. There exists an isolated or spare variable
since the formula is a cobweb (Observation 1). T can play that isolated/spare
variable to remove the isolated variable or satisfy a clause. The residual formula
is a subformula, which is a winweb by Lemma 3. Thus T can win the rest of the
game by the induction hypothesis.

Now suppose F did not play a pass move. By the definition of winweb, T has
a response such that the residual formula is a cobweb. Call this residual formula
(ϕ′,X ′) and let (ϕ1,X1), (ϕ2,X2), . . . , (ϕk,Xk) be its connected components
(so ϕ′ =

∧
i ϕi and X ′ =

⋃
i Xi). We claim that for each component individually,

T has a winning strategy even if F can use pass moves:

• If (ϕi,Xi) has a width-2 clause then it is a jellyfish (since it is a connected
cobweb) so by Lemma 2, T can win even if F can use pass moves.

• Suppose (ϕi,Xi) has no width-2 clause. Then it has only width-3 clauses since
subformula (1) does not exist, and so it is a subformula of the winweb (ϕ,X)
since no new width-3 clause can be created during the game. By Lemma 3,
(ϕi,Xi) is also a winweb and hence by the induction hypothesis, T can win
even if F can use pass moves.

We now explain how to combine T’s winning strategies for the separate com-
ponents to get a winning strategy for the rest of the game on (ϕ′,X ′). After F
plays a variable in some Xi, T simply responds according to his winning strategy
for component (ϕi,Xi), unless F played the last remaining variable in Xi. In the
latter case, or if F played a pass move, T picks any other component (ϕj ,Xj)
with remaining variables and continues according to his winning strategy in that
component, as if F had just played a pass move in that component. 	

References

1. Ahlroth, L., Orponen, P.: Unordered constraint satisfaction games. In: Rovan, B.,
Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 64–75. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2 9

2. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of
certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

3. Byskov, J.: Maker-maker and maker-breaker games are PSPACE-complete. Techni-
cal report RS-04-14, BRICS, Department of Computer Science, Aarhus University
(2004)

4. Calabro, C.: 2-TQBF is in P (2008). https://cseweb.ucsd.edu/∼ccalabro/essays/
complexity of 2tqbf.pdf. Unpublished

5. Kutz, M.: The angel problem, positional games, and digraph roots. Ph.D. thesis,
Freie Universität Berlin (2004). Chapter 2: Weak Positional Games

6. Kutz, M.: Weak positional games on hypergraphs of rank three. In: Proceedings of
the 3rd European Conference on Combinatorics, Graph Theory, and Applications
(EuroComb), pp. 31–36. Discrete Mathematics & Theoretical Computer Science
(2005)

7. Rahman, M.L., Watson, T.: Complexity of unordered CNF games. In: Proceedings
of the 29th International Symposium on Algorithms and Computation (ISAAC),
pp. 9:1–9:12. Schloss Dagstuhl (2018)

https://doi.org/10.1007/978-3-642-32589-2_9
https://cseweb.ucsd.edu/~ccalabro/essays/complexity_of_2tqbf.pdf
https://cseweb.ucsd.edu/~ccalabro/essays/complexity_of_2tqbf.pdf

372 M. L. Rahman and T. Watson

8. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24
(2008)

9. Rozenman, E., Vadhan, S.: Derandomized squaring of graphs. In: Chekuri, C.,
Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS,
vol. 3624, pp. 436–447. Springer, Heidelberg (2005). https://doi.org/10.1007/
11538462 37

10. Schaefer, T.: Complexity of decision problems based on finite two-person perfect-
information games. In: Proceedings of the 8th Symposium on Theory of Computing
(STOC), pp. 41–49. ACM (1976)

11. Schaefer, T.: On the complexity of some two-person perfect-information games. J.
Comput. Syst. Sci. 16(2), 185–225 (1978)

12. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time. In: Pro-
ceedings of the 5th Symposium on Theory of Computing (STOC), pp. 1–9. ACM
(1973)

https://doi.org/10.1007/11538462_37
https://doi.org/10.1007/11538462_37

Quantum Computing

Lower Bounds for Testing Complete
Positivity and Quantum Separability

Costin Bădescu(B) and Ryan O’Donnell

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
{cbadescu,odonnell}@cs.cmu.edu

Abstract. In this work we are interested in the problem of testing quan-
tum entanglement. More specifically, we study the separability problem
in quantum property testing, where one is given n copies of an unknown
mixed quantum state � on C

d ⊗ C
d, and one wants to test whether � is

separable or ε-far from all separable states in trace distance. We prove
that n = Ω(d2/ε2) copies are necessary to test separability, assuming ε
is not too small, viz. ε = Ω(1/

√
d).

We also study completely positive distributions on the grid [d] × [d],
as a classical analogue of separable states. We analogously prove that
Ω(d/ε2) samples from an unknown distribution p are necessary to decide
whether p is completely positive or ε-far from all completely positive
distributions in total variation distance.

1 Introduction

A bipartite quantum state � on C
d ⊗ C

d is said to be separable if it can be
written as a convex combination of product states, meaning states of the form
ρ1⊗ρ2 where ρ1 and ρ2 are quantum states on C

d. Separable quantum states are
precisely those states which do not exhibit any form of quantum entanglement.
These are the only states that can be prepared by separated parties who can only
share classical information. Understanding the general structure and properties
of the set of separable states in higher dimensions is a difficult problem and is the
subject of much ongoing research. For instance, deciding whether a given d2 × d2

matrix represents a separable state on C
d ⊗ C

d – also known as the separability
problem in the quantum literature – is NP-hard [7]. In this work, we study the
following property testing version of the separability problem:

Given unrestricted measurement access to n copies of an unknown quan-
tum state � on C

d ⊗ C
d, decide with high probability if � is separable or

ε-far from all separable states in trace distance.

Supported by NSF grant FET-1909310. This material is based upon work supported
by the National Science Foundation under grant numbers listed above. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation
(NSF).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 375–386, 2020.
https://doi.org/10.1007/978-3-030-61792-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_30

376 C. Bădescu and R. O’Donnell

The ultimate goal is to determine the number of copies of � that is necessary
and sufficient to solve the problem, up to constant factors, as a function of d
and ε.

By estimating (i.e., fully learning) � using recent algorithms for quantum
state tomography [9,14] and checking if the estimate is sufficiently close to a
separable state, this problem can be solved using O(d4/ε2) copies of �. In this
paper, we prove a lower bound, showing that Ω(d2/ε2) copies of � are necessary
when ε = Ω(1/

√
d); this reaches a lower bound of Ω(d3) for ε = Θ(1/

√
d).

Closing the gap between the known bounds seems like a difficult problem, and
we have no particularly strong feeling about whether the tight bound is the
upper bound, the lower bound, or something in between. (Indeed, at least one
paper [2] contains some evidence that ˜Θ(d3) might be the true complexity for
constant ε).

Given the difficulty of closing the gap, we have sought a classical analogue
of the separability testing problem to try as a first step. Analogies between
quantum states and classical probability distributions have proven to be a helpful
source of inspiration throughout quantum theory. Unfortunately, entanglement
is understood to be a purely quantum phenomenon; every finitely-supported
discrete distribution can be expressed as a convex combination of product point
distributions, so there are no “entangled” distributions. But motivated by the
characterization of separable quantum states using symmetric extensions and
the quantum de Finetti theorem [4], we propose as a kind of analogue the study
of mixtures of i.i.d. bivariate distributions, which arise in the classical de Finetti
theorem. Doherty et al. [4] used the quantum de Finetti theorem to show that a
quantum state � on C

d ⊗C
d is separable (i.e. a mixture of product states) if and

only if � has a symmetric extension to C
d ⊗ (Cd)⊗k for any positive integer k.

Somewhat analogously, the classical de Finetti theorem states that a sequence
of real random variables is a mixture of i.i.d. sequences of random variables if
and only if it is exchangeable [3].

We call distributions which are mixtures of i.i.d. bivariate distributions com-
pletely positive, due to their connection with completely positive matrices. We
show that, given sample access to an unknown distribution p over [d]×[d], at least
Ω(d/ε2) samples are necessary to decide with high probability if p is completely
positive or ε-far from all completely positive distributions in total variation dis-
tance. Our proof is a generalization of Paninski’s lower bound for testing if a
distribution is uniform [15].

Regarding upper bounds, one can again get a trivial upper bound of O(d2/ε2)
samples for testing complete positivity, simply by fully estimating p to ε-accuracy
in total variation distance. We again do not know how to close the gap between
Ω(d/ε2) and O(d2/ε2), but we present evidence that the upper bound may be
the true complexity. Specifically, a common strategy for trying to test a family
D of distributions is to solve the problem of learning an unknown distribution
promised to be in D. In the full version of the paper, we show that learning
a completely positive distribution on [d] × [d] to accuracy ε requires Ω(d2/ε2)

Lower Bounds for Testing Complete Positivity and Quantum Separability 377

samples. On the other hand, we are not able to show an analogous improved
lower bound for learning separable quantum states.

1.1 Previous Work

The property testing version of the separability problem, as defined above,
appears in [12], where a lower bound of Ω(d2) is proven for constant ε. As
in [12], our proof also reduces the problem of testing if a state is separable to the
problem of testing if a state is the maximally mixed state. However, we do not
pass through the notion of entanglement of formation, as [12] does, and instead
rely on results about the convex structure of the set of separable states. This
approach yields a more direct proof that certain random states are w.h.p. far
from separable, which allows us to take advantage of a lower bound from [13]
(see Theorem 1).

We believe that the separability testing problem has seen further study, but
that there has been a lack of results due to its difficulty. There is a very exten-
sive literature on the subject of entanglement detection (see e.g. [6,10]), which is
concerned with establishing different criteria for detecting or verifying entangle-
ment. However, it is not obvious how these results can be applied in the property
testing setting. In particular, few of these criteria are specifically concerned with
states that are far from separable in trace distance and many only apply to
certain restricted classes of quantum states.

As regards our classical analogue – testing if a bipartite distribution is com-
pletely positive (mixture of i.i.d.) – we are not aware of previous work in the
literature. The proof of our Ω(d/ε2) lower bound is inspired by, and generalizes,
Paninski’s lower bound for testing if a distribution is uniform [15]. The proof
of our tight Ω(d2/ε2) lower bound for learning completely positive distributions
uses the Fano inequality method.

1.2 Outline

In Sect. 2 we cover background material on completely positive distributions,
quantum states and separability, and the property testing framework that our
results are concerned with. In Sect. 3, we prove that testing if a distribution p on
[d] × [d] is completely positive or ε-far from all completely positive distributions
in total variation distance requires Ω(d/ε2) samples from p; in the full version of
the paper, we also show that learning completely positive distributions requires
Ω(d2/ε2) samples. Finally, in Sect. 4, we show that testing if a quantum state
� on C

d ⊗ C
d is separable or ε-far from all separable states in trace distance

requires Ω(d2/ε2) copies of � when ε = Ω(1/
√

d).

2 Preliminaries

This section covers the mathematical background and notation used in the rest
of the paper.

378 C. Bădescu and R. O’Donnell

2.1 Completely Positive Distributions

There is a well-developed theory of completely positive and copositive matrices
(see e.g. [5, Chapter 7]). In this section, we review some known material.

Let d be a positive integer. We consider distributions over the grid [d]2 =
{(1, 1), (1, 2), . . . , (d, d)} which we represent as matrices A ∈ R

d × d with Aij

being the probability of sampling (i, j).

Example 1. If p ∈ R
d is a distribution on [d] = {1, . . . , d} represented as a

column vector, then ppT is the natural i.i.d. product probability distribution on
[d] × [d] derived from p, with pipj being the probability of sampling (i, j).

Definition 1. A matrix A ∈ R
d × d is completely positive (CP) if there exist

vectors v1, . . . , vk ∈ R
d
≥0 with nonnegative entries such that A can be expressed

as a convex combination of their projections v1v
T
1 , . . . , vkvT

k , viz.

A =
k

∑

i=1

civiv
T
i (1)

for some nonnegative real numbers c1, . . . , ck ∈ R with c1 + · · · + ck = 1.
A distribution on [d]2 represented as a matrix A is completely positive if A

is a CP matrix.

Remark 1. For a CP distribution A, the vectors vi in Eq. (1) may be taken to be
probability distributions, since one can replace vi by vi/‖vi‖1 and ci by ci‖vi‖21.
Thus, CP distributions are precisely the mixtures of i.i.d. distributions.

It follows immediately from Definition 1 that a CP matrix A satisfies three
basic properties:

(i) A is symmetric (AT = A),
(ii) Aij ≥ 0 for all i, j ∈ [d], and
(iii) A is positive semidefinite (PSD), denoted A ≥ 0.

A matrix satisfying these three properties is called doubly nonnegative. However,
if d ≥ 5, then there exist doubly nonnegative matrices which are not completely
positive [11].

Example 2. Let J denote the d × d matrix with Jij = 1 for all i, j ∈ [d] and
let Unifd2 = J/d2 denote the uniform distribution on [d]2. Since Unifd2 =
(1d , . . . , 1

d)(1d , . . . , 1
d)T, the uniform distribution on [d]2 is completely positive.

Let CPd denote the set of completely positive d × d matrices and let CPDd

denote its subset of completely positive distributions on [d]2. It is well known
that CPd is a cone and that its dual cone consists of copositive matrices, i.e.
matrices M such that xTMx ≥ 0 for all nonnegative vectors x ∈ R

d
≥0. Thus,

by cone duality, if B �∈ CPd is a non-CP matrix, then there exists a copositive
matrix W such that tr(AW) ≥ 0 for all A ∈ CPd and tr(BW) < 0. This result

Lower Bounds for Testing Complete Positivity and Quantum Separability 379

yields witnesses certifying nonmembership in CPDd. However, its usefulness is
limited by the fact that it provides no quantitative information about how far a
nonmember A is from the set CPDd.

In what follows, we interpret distributions on [d]2 as weighted directed graphs
with self-loops and obtain a sufficient condition for a distribution to be ε-far
in total variation distance from CPDd in terms of the maximum value of a cut
in the corresponding graph.

We interpret a distribution A on [d]2 as a weighted directed graph G with
vertices V (G) = [d] and edges E(G) = {(i, j) ∈ [d]2 | Aij > 0}.

A cut x ∈ {±1}d in G is a bipartition of the vertices V (G) = E1 ∪ E2 with
E1 = {i ∈ [d] | xi < 0} and E2 = {i ∈ [d] | xi > 0}. The total weight of edges
cut by this bipartition is

∑

(i,j)∈[d]2

1 − xixj

2
Aij = E

(i,j)∼A

1 − xixj

2
=

1
2

− 1
2

E
(i,j)∼A

xixj =
1
2

− 1
2
xTAx.

In particular, if A = ppT with p ∈ R
d, then xTAx = xTppTx = (xTp)2 ≥ 0.

By Remark 1, a CP distribution is a convex combination of matrices of the
form ppT. Thus, the following holds:

Proposition 1. If A is a CP distribution, then the total weight of a cut in the
graph represented by A is at most 1

2 .

This fact allows us to prove the following result which gives a sufficient condition
for a distribution to be ε-far from all CP distributions in �1 distance. (The matrix
norms in the following are entrywise.)

Proposition 2. Let A be a distribution on [d]2. If there exists a cut x ∈ {±1}d

with xTAx ≤ −ε, then ‖B − A‖1 ≥ ε for all B ∈ CPDd.

Proof. Let B ∈ CPDd be arbitrary. By Hölder’s inequality, for all U ∈ R
d × d

with ‖U‖∞ = 1, ‖B − A‖1 ≥ tr(UT(B − A)) = tr(UTB) − tr(UTA).
Let U = xxT. Since xTBx ≥ 0 and tr(UTA) = xTAx ≤ −ε, ‖B − A‖1 ≥

xTBx − xTAx ≥ ε.

2.2 Quantum States and Separability

This section serves as a brief introduction to quantum states and separability.
For a more comprehensive introduction, see e.g. [17].

We work over C and use bra–ket notation to denote vectors in C
d, viz. for

all vectors x, y ∈ C
d and matrices A ∈ C

d × d, |x〉 = x, 〈x| = x† = x̄T, 〈x ⊗ y| =
〈x| ⊗ 〈y|, |x ⊗ y〉 = |x〉 ⊗ |y〉, 〈x|y〉 = x†y, |x〉〈y| = xy†, and 〈x|A|y〉 = x†Ay.

Definition 2. A quantum state ρ on C
d is a positive semidefinite matrix ρ ∈

C
d × d with tr(ρ) = 1. A measurement is a set {E1, . . . , Ek} of positive semidefi-

nite matrices on C
d with E1 + · · · + Ek = 1, where 1 denotes the identity matrix.

380 C. Bădescu and R. O’Donnell

Let ρ and {E1, . . . , Ek} be as in the definition above and let pi = tr(ρEi) for
i = 1, . . . , k. Since ρ and the Ei are PSD, pi ≥ 0 for all i = 1, . . . , k, and

p1 + · · · + pk = tr(ρE1) + · · · + tr(ρEk) = tr(ρ(E1 + · · · + Ek)) = tr(ρ) = 1.

Hence, (p1, . . . , pk) is a distribution on [k]. Applying the measurement
{Ei | i ∈ [k]} to the quantum state ρ yields outcome i ∈ [k] with probabil-
ity pi = tr(ρEi).

Example 3. 1
d is a quantum state on C

d called the maximally mixed state; it is
analogous to the uniform distribution on [d].

Definition 3. A state of the form ρ = |x〉〈x| for some x ∈ C
d is called a pure

state.

Given quantum states ρ and σ on C
d, the tensor product ρ⊗σ is a quantum

state on C
d ⊗ C

d. If ρ and σ represent the individual states of two isolated
particles, then ρ⊗σ is the state of the physical system comprising both particles.
Thus, the system composed of n identical copies of the state ρ is represented as
the state ρ⊗n on (Cd)⊗n.

Definition 4. A quantum state � on C
d ⊗C

d is separable if � can be expressed
as a convex combination of product states, viz.

� =
k

∑

i=1

ciρi ⊗ σi,

where ρi and σi are states on C
d for i = 1, . . . , k and c1, . . . , ck ∈ R≥0 satisfy

c1 + . . . + ck = 1. Thus, the physical system represented by � may be regarded as
being in the state ρi ⊗ σi with probability ci.

A state that is not separable is called entangled.

Example 4. Since 1
d2 = 1

d ⊗ 1
d , the maximally mixed state is separable.

Definition 5. Let Sep denote the set of separable states on C
d ⊗ C

d and
let Sep± denote its cylindrical symmetrization (cf. [1, p. 81]), viz. Sep± =
conv(Sep∪(−Sep)), where conv(E) denotes the convex hull of the set E.

Similar to the duality between completely positive and copositive matrices,
the set Sep generates a cone of separable operators whose dual is the cone
of block-positive operators (see e.g. [1]). A block-positive operator acts as an
entanglement witness certifying that a given quantum state is not separable.
Thus, Proposition 4 in Sect. 4 is comparable to Proposition 2 in that it describes
witnesses certifying that a quantum state is not just entangled but actually ε-far
from all separable states in trace distance.

Lower Bounds for Testing Complete Positivity and Quantum Separability 381

2.3 The Property Testing Framework

In the property testing model, we have a set O of objects and also a distance
function dist : O×O → R. A property P is a subset of O and the distance between
an object x ∈ O and the property P is defined by dist(x,P) = infy∈P dist(x, y).
An algorithm T is said to test P if, given some type of access to x ∈ O (e.g..
independent samples or identical copies), T accepts x w.h.p. when x ∈ P and T
rejects x w.h.p. when dist(x,P) ≥ ε.

In Sect. 3, O is the set of distributions on [d] × [d], dist is the total variation
distance, and P = CPDd ⊆ O is the set of CP distributions. Given samples
x1, . . . ,xn from a distribution p on [d]2, a testing algorithm T for CPDd satisfies

p ∈ CPDd =⇒ P[T (x1, . . . ,xn) accepts] ≥ 2
3
,

p ε-far from CPDd =⇒ P[T (x1, . . . ,xn) accepts] ≤ 1
3
.

In Sect. 4, O is the set of quantum states on C
d⊗C

d, dist(�, σ) = 1
2‖�−σ‖1 is

the trace distance between quantum states, and P = Sep is the set of separable
states on C

d ⊗ C
d. Given measurement access to n copies �⊗n of a state � ∈

C
d ⊗C

d, a testing algorithm for Sep is a two-outcome measurement {E0, E1} on
(Cd)⊗n satisfying:

� ∈ Sep =⇒ tr(E1�
⊗n) ≥ 2

3
,

� ε-far from Sep =⇒ tr(E1�
⊗n) ≤ 1

3
.

3 Testing Complete Positivity

Let d be a positive integer. If d is odd, we can reduce to the case of d − 1 by
using distributions that don’t involve outcome d ∈ [d], and the asymptotics of
Ω(d/ε2) remain unchanged. Hence we may assume, without loss of generality,
that d is even.

We begin by defining a family of distributions on [d]2 which are ε-far from
CPDd. LetS ⊆ [d] be a subset of size |S| = d

2 . Thus, |S c| = d
2 and |S×S c∪S c×S| =

|S × S c| + |S c × S| = d2/2. Let φS : [d]2 → R be the function defined by

φS(x) =

{

1 + ε, x ∈ S × S c ∪ S c × S

1 − ε, otherwise.

Hence, avgx∈[d]2 φS(x) = 1
d2

(

d2

2 (1 + ε) + d2

2 (1 − ε)
)

= 1. So we may think of φS

as a density function with respect to the uniform distribution on [d]2.
Let x ∈ {±1}d be defined as follows: for all i ∈ [d], if i ∈ S, then xi = 1,

otherwise xi = −1. Let AS be the matrix defined by AS
ij = φS((i, j))/d2. Thus,

382 C. Bădescu and R. O’Donnell

AS is a symmetric distribution on [d]2 and x is a cut. The total weight of this
cut is 1/2 + ε/2.

Therefore, for every subset S ⊆ [d], the distribution AS is not completely
positive. Moreover, xTASx = −ε, so, by Proposition 2, ‖AS − B‖1 ≥ ε for every
CP distribution B (where the matrix norm is entry-wise). In other words, for
every subset S ⊆ [d] with |S| = d

2 , AS is a distribution on [d]2 which is ε-far in
�1 distance from every CP distribution on [d]2.

Fix Ω = [d]2 and let φ : Ωn → R denote the function defined by

φ(x) = avg
S⊆[d]

|S|=d/2

φS(x1) · · · φS(xn).

Let Dn denote the distribution on Ωn defined by the density φ and let dχ2(,)
denote the χ2-distance between probability distributions, i.e. for distributions P
and Q on Ω,

dχ2(P,Q) = E
x∼Q

[

(

P(x)
Q(x)

− 1
)2

]

.

The following proposition, proved in the full version of the paper, will be
shown to imply our lower bound:

Proposition 3. If dχ2(Dn,Unif⊗n
d2) ≥ 1

3 , then n = Ω(d/ε2).

Let dTV(,) denote the total variation distance between probability distri-
butions. Let p ∈ CPDd and let q be a distribution ε-far from CPDd.

A testing algorithm f : ([d]2)n → {0, 1} for complete positivity determines a
probability event E ⊆ ([d]2)n satisfying p⊗n(E) ≥ 2/3 and q⊗n(E) ≤ 1/3. Hence,
Unif⊗n

d2 (E) ≥ 2/3 and, since Dn is supported on distributions ε-far from CPDd,
Dn(E) ≤ 1/3. Therefore, dTV(Dn,Unif⊗n

d2) ≥ 1/3 and the following corollary
establishes the lower bound:

Corollary 1. If dTV(Dn,Unif⊗n
d2) ≥ 1/3, then n = Ω(d/ε2).

Proof. The inequality (d/4nε2−1)−1 ≥ dχ2(Dn,Unif⊗n
d2) is obtained in the proof

of Proposition 3. Since 2dTV(μ, ν)2 ≤ dχ2(μ, ν) holds for all distributions μ
and ν, it follows that (d/4nε2 − 1)−1 ≥ 2dTV(Dn,Unif⊗n

d2)2 ≥ 2/9. Therefore,
n = Ω(d/ε2).

4 Testing Separability

Let d be a positive integer. As in the previous section, we may assume, without
loss of generality, that d is even.

Let H = C
d ⊗ C

d, let U(H) denote the set of unitary operators on H, and
recall that Sep denotes the set of separable states on H. For all operators T on
H, let ‖T‖p denote the Schatten p-norm of T , viz. ‖T‖p = (tr(|T |p))

1
p , where

Lower Bounds for Testing Complete Positivity and Quantum Separability 383

|T | =
√

T †T is the absolute value of the operator T . Let dtr(�, σ) = 1
2‖� − σ‖1

denote the trace distance between quantum states � and σ.
We begin by defining a family of quantum states which are with high prob-

ability O(ε)-far from Sep. For 0 ≤ ε ≤ 1/2, let Dε be the diagonal matrix on H
defined by

Dε = diag
(

1 + 2ε

d2
, . . . ,

1 + 2ε

d2
,
1 − 2ε

d2
, . . . ,

1 − 2ε

d2

)

,

where tr(Dε) = 1, and let D denote the family of all quantum states on H with
the same spectrum as Dε, viz. D = {UDεU

† | U ∈ U(H)}.
Our lower bound will rely on the next theorem which follows immediately

from [13, Lemma 2.22 and Theorem 4.21]:

Theorem 1. Ω(d2/ε2) copies are necessary to test whether a quantum state �
on H is the maximally mixed state or � ∈ D.

If U is a random unitary on H distributed according to the Haar measure,
then � = UDεU

† is a random element of D. This induced probability measure
is invariant under conjugation by a fixed unitary: for all V ∈ U(H), V �V † has
the same distribution as �. We want to show the following:

Lemma 1. There is a universal constant C0 such that for all C0/
√

d ≤ ε ≤ 1/2,
the following holds when � = UDεU

† is a uniformly random state in D in the
sense discussed above: P[∀σ ∈ Sep, ‖� − σ‖1 ≥ 2ε] ≥ 2

3 .

As ε tends to zero, the elements of D get closer to the maximally mixed state
and eventually become separable, by the Gurvits–Barnum theorem [8]. Indeed,
if ε ≤ 1/(2

√
d2 − 1), then D ⊆ Sep. Hence, some assumption on ε is necessary

for Lemma 1 to hold.
Lemma 1 and Theorem 1 easily imply the desired lower bound:

Theorem 2. Let � be a quantum state on C
d ⊗ C

d and let ε = Ω(1/
√

d). Testing
if � is separable or ε-far from Sep in trace distance requires Ω(d2/ε2) copies of �.

Proof. Let {E0, E1} be a measurement corresponding to a separability testing
algorithm using n copies of �. To apply the lower bound in Theorem 1, we use
{E0, E1} to define an algorithm that decides w.h.p. if a state � is equal to the
maximally mixed state 1

d2 or � ∈ D.
Let �⊗n be given with either � ∈ D or � = 1

d2 . Note that, for all � ∈ D,
dtr(�, 1

d2) ≥ ε holds. Let U be a random unitary. If � is the maximally mixed
state, then V �V † = � for all V ∈ U(H), so (U�U †)⊗n = �⊗n. Otherwise, U�U †

is a random state in D.
Applying the separability test {E0, E1} to U�U †, we have that:

(i) if U�U † = � = 1
d2 , then U�U † is separable, so tr((U�U †)⊗nE1) =

tr(�⊗nE1) ≥ 2
3 .

1 Note that d in [13] corresponds to d2 in the present paper.

384 C. Bădescu and R. O’Donnell

(ii) if � ∈ D, then the probability of error is EU tr((U�U †)⊗nE1), which is at
most P[U�U † is ε-close to Sep] +P[test fails | U�U † is ε-far from Sep] ≤
1
3 + 1

3 · 2
3 = 5

9 , where the second inequality follows from Lemma 1.

Thus, using the separability test, we can distinguish w.h.p. between � = 1
d2 and

� ∈ D using n copies of �. Therefore, by Theorem 1, n = Ω(d2/ε2).

It remains to show that Lemma 1 holds. Its proof relies on two main facts:
first, that Sep is approximated by a polytope with exp(O(d)) vertices which are
separable pure states; and, second, that a random element of D is ε-far from a
fixed pure state except with probability exp(−O(d)).

The first fact follows from the next lemma which is a rephrasing of
[1, Lemma 9.4]:

Lemma 2. There exists a constant C > 0 such that, for every dimension d,
there is a family N of pure product states on H (i.e. states of the form |x ⊗
y〉〈x ⊗ y| with x, y ∈ C

d) with |N | ≤ Cd satisfying conv(N ∪ −N) ⊆ Sep± ⊆
2 conv(N ∪ −N).

Now, we wish to upper bound the probability that a random element of D is
ε-far from a fixed pure state. The following result provides a sufficient condition
for a state σ on H to be ε-far from a state � ∈ D:

Proposition 4. Let � ∈ D be arbitrary and let W =
1

d2
− �. For all quantum

states σ on H, if tr(σW) ≥ −ε‖W‖∞, then ‖� − σ‖1 ≥ ε.

Proof. Note that tr(�W) = 1
d2 − tr(�2) = 1

d2 − 1+4ε2

d2 = − 4ε2

d2 and ‖W‖∞ =
∥

∥
1
d2 − Dε

∥

∥

∞ = 2ε
d2 . By Hölder’s inequality for matrices, tr((σ − �)W) ≤ ‖σ −

�‖1 · ‖W‖∞. Hence, ‖σ − �‖1 ≥ tr(σW)−tr(�W)
‖W‖∞

= 2ε + tr(σW)
‖W‖∞

.

When σ = |x〉〈x| with x ∈ H and � = UDεU
†, we have

tr(|x〉〈x|W) = 〈x|W |x〉 = 〈x|U
(

1
d2 − Dε

)

U†|x〉 = ‖W‖∞ · 〈x|UZU†|x〉, (2)

where Z = diag(−1, . . . ,−1, 1, . . . , 1) is just 1 /d2−Dε divided by ‖W‖∞. Hence,
‖� − |x〉〈x|‖1 ≥ ε holds if 〈x|UZU†|x〉 ≥ −ε.

Since we are interested in the case when � = UDεU
† is random, it suffices

to show that 〈x|UZU †|x〉 concentrates in the interval [−ε, ε]. This fact follows
easily from the next lemma:

Lemma 3. Let k be a positive even integer. If u ∈ C
k is a uniformly random

unit vector, then, for sufficiently large k, P
[

|〈u|Z|u〉| ≥ 1
2ck−1/4

]

is at most
4 exp(−

√
kc2/8), where Z = diag(1, . . . , 1,−1, . . . ,−1) is a k × k diagonal matrix

with tr(Z) = 0 and c may be any positive constant.

Proof. Let u = (a1 + ib1, . . . ,ak + ibk) ∈ C
k be a uniformly random unit

vector with a1, . . . ,ak, b1, . . . , bk ∈ R and let v ∈ R
2k be defined by v =

(a1, . . . ,a k
2
, b1, . . . , b k

2
,a k

2+1, . . . ,ak, b k
2+1, . . . , bk).

Lower Bounds for Testing Complete Positivity and Quantum Separability 385

Let D be the 2k × 2k diagonal matrix D = diag(1, . . . , 1,−1, . . . ,−1) with
tr(D) = 0. Thus, v is a uniformly random real unit vector such that 〈v|D|v〉 =
〈u|Z|u〉.

Let x1, . . . ,xk,y1, . . . ,yk ∈ R be 2k standard Gaussian random variables.
Let X = x2

1 + · · · + x2
k and Y = y2

1 + · · · + y2
k. By the rotational symme-

try of multivariate Gaussian random variables, v has the same distribution as
(x1,...,xk,y1,...,yk)√

X+Y
.

Hence, 〈v|D|v〉 and X −Y
X+Y have the same distribution. Since X and Y are

independent χ2 random variables with k degrees of freedom each, it holds that
(see e.g. [16, Example 2.11]) P

[∣

∣
X
k − 1

∣

∣ ≥ t
]

≤ 2 exp(−kt2/8), for all t ∈ (0, 1)
and similarly for Y . Hence, for t = ck−1/4, we have P

[

|X − k| ≥ ck3/4
]

≤
2 exp(−

√
kc2/8).

If |X − k| < ck3/4 and |Y − k| < ck3/4, then, for k sufficiently large,

|〈v|D|v〉| =
|X − Y |
X + Y

≤ 2ck3/4

2k − 2ck3/4
=

c

k1/4 − 1
<

1
2
ck−1/4.

Hence, P[|〈v|D|v〉| < 1
2ck−1/4] ≥ 1 − 4 exp(−

√
kc2/8).

If U is a random unitary distributed according to the Haar measure on U(H)
and x ∈ H is a fixed unit vector, then u = U |x〉 is a uniformly random unit
vector in H. Hence, we can apply Lemma 3 to |〈u|Z|u〉| to get

P[|〈x|UZU †|x〉| ≥ ε] ≤ 4 exp(−dc2/8), (3)

where c is an arbitrary positive constant and ε ≥ 1
2cd−1/2.

We now have all the elements needed to prove Lemma 1:

Proof (Proof of Lemma 1). Let � = UDεU
† be a uniformly random element of

D and let W = 1
d2 − �. Thus, assuming ε ≥ cd−1/2,

P[∀σ ∈ Sep, dTV(�, σ) ≥ ε]

= P[∀σ ∈ Sep, ‖� − σ‖1 ≥ 2ε]

≥ P[∀σ ∈ Sep, tr(σW) ≥ −2ε‖W ‖∞] (by Proposition 4)

≥ P[∀σ ∈ 2 conv(N ∪ −N), tr(σW) ≥ −2ε‖W ‖∞] (by Lemma 2)

= P[∀|x〉〈x| ∈ N ∪ −N , 2 tr(|x〉〈x|W) ≥ −2ε‖W ‖∞] (by convexity)

= P
[
∀|x〉〈x| ∈ N , |〈x|UZU †|x〉| ≤ ε

]
(by Equation (2))

≥ 1 −
∑

|x〉〈x|∈N
P

[
|〈x|UZU †|x〉| > ε

]
(by the union bound)

≥ 1 − |N | · 4 exp(−dc2/8) (by Equation (3))

= 1 − 4 exp(d(log C − c2/8)) (since |N | = Cd).

Hence, if c =
√

8(log C + 1), then, for d ≥ log 12,

P[∀σ ∈ Sep, dTV(�, σ) ≥ ε] ≥ 1 − 4 exp(d(log C − c2/8)) = 1 − 4 exp(−d) ≥ 2
3
.

386 C. Bădescu and R. O’Donnell

References

1. Aubrun, G., Szarek, S.: Alice and Bob Meet Banach. American Mathematical
Society, Providence (2017)

2. Aubrun, G., Szarek, S.: Dvoretzky’s theorem and the complexity of entanglement
detection. Discr. Anal. 1–20 (2017)

3. Diaconis, P.: Finite forms of de Finetti’s theorem on exchangeability. Synthese
36(2), 271–281 (1977). https://doi.org/10.1007/BF00486116

4. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Complete family of separability
criteria. Phys. Rev. A 69(2), 022308 (2004)

5. Gärtner, B., Matoušek, J.: Approximation Algorithms and Semidefinite Program-
ming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22015-9

6. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1–75 (2009)
7. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. Syst.

Sci. 69(3), 448–484 (2004)
8. Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed

bipartite quantum state. Phys. Rev. A 66(6), 062311 (2002)
9. Haah, J., Harrow, A.W., Ji, Z., Wu, X., Yu, N.: Sample-optimal tomography of

quantum states. In: Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016. ACM Press (2016)

10. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Rev. Mod. Phys. 81(2), 865–942 (2009)

11. Maxfield, J.E., Minc, H.: On the matrix equation X ′X = A. In: Proceedings of the
Edinburgh Mathematical Society, vol. 13, no. 02, p. 125 (1962)

12. Montanaro, A., de Wolf, R.: A survey of quantum property testing. Theory Com-
put. 1(1), 1–81 (2016)

13. O’Donnell, R., Wright, J.: Quantum spectrum testing. In: Proceedings of the 47th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2015. ACM
Press (2015)

14. O’Donnell, R., Wright, J.: Efficient quantum tomography. In: Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016.
ACM Press (2016)

15. Paninski, L.: A coincidence-based test for uniformity given very sparsely sampled
discrete data. IEEE Trans. Inf. Theory 54(10), 4750–4755 (2008)

16. Wainwright, M.J.: High-Dimensional Statistics. Cambridge University Press, Cam-
bridge (2019)

17. Watrous, J.: The Theory of Quantum Information. Cambridge University Press,
Cambridge (2018)

https://doi.org/10.1007/BF00486116
https://doi.org/10.1007/978-3-642-22015-9

Exponential-Time Quantum Algorithms
for Graph Coloring Problems

Kazuya Shimizu1 and Ryuhei Mori1,2(B)

1 School of Computing, Tokyo Institute of Technology, Tokyo, Japan
shimizu.k.ap@m.titech.ac.jp, mori@c.titech.ac.jp

2 Japan Science and Technology Agency, PRESTO, Tokyo, Japan

Abstract. The fastest known classical algorithm deciding the
k-colorability of n-vertex graph requires running time Ω(2n) for k ≥ 5. In
this work, we present an exponential-space quantum algorithm comput-
ing the chromatic number with running time O(1.9140n) using quantum
random access memory (QRAM). Our approach is based on Ambainis et
al.’s quantum dynamic programming with applications of Grover’s search
to branching algorithms. We also present a polynomial-space quantum
algorithm not using QRAM for the graph 20-coloring problem with run-
ning time O(1.9575n). For the polynomial-space quantum algorithm, we
essentially show (4 − ε)n-time classical algorithms that can be improved
quadratically by Grover’s search.

Keywords: Quantum algorithm · Graph coloring · Grover’s search ·
Dynamic programming

1 Introduction

Exhaustive search is believed to be (almost) the fastest classical algorithm
for many NP-complete problems including SAT, hitting set problem, etc. [8].
Grover’s quantum search quadratically improves the running time of exhaustive
search [15]. Hence, the best classical running time for many NP-complete prob-
lems can be quadratically improved by quantum algorithms. On the other hand,
non-trivial faster classical algorithms are known for some NP-complete problems
including the travelling salesman problem (TSP), the graph coloring problem,
etc. For these problems, more complicated techniques, such as dynamic program-
ming, arithmetic algorithm based on inclusion–exclusion principle, etc., are used
in the fastest known classical algorithms. It is not obvious how to boost these
classical algorithms by a quantum computer. Recently, Ambainis et al. showed
a general idea of quantum dynamic programming using quantum random access
memory (QRAM), and showed quantum speedup for many NP-complete and
NP-hard problems including TSP, set cover, etc. [1]. Ambainis et al.’s work
gives a new general method for exact exponential-time quantum algorithms.

In this work, we present exact exponential-time quantum algorithms for the
graph coloring problem. The fastest known classical algorithm computes the
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 387–398, 2020.
https://doi.org/10.1007/978-3-030-61792-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_31&domain=pdf
http://orcid.org/0000-0001-5474-5145
https://doi.org/10.1007/978-3-030-61792-9_31

388 K. Shimizu and R. Mori

Table 1. O(2d∗
kn)-time quantum algorithms not using QRAM for the graph k-coloring

problem.

k d∗
k 2d∗

k k d∗
k 2d∗

k k d∗
k 2d∗

k

3 0.2051 1.1528 9 0.8041 1.7460 15 0.9488 1.9303

4 0.4039 1.3231 10 0.8298 1.7775 16 0.9488 1.9303

5 0.5553 1.4695 11 0.8298 1.7775 17 0.9488 1.9303

6 0.6099 1.5261 12 0.8676 1.8246 18 0.9536 1.9366

7 0.7234 1.6511 13 0.8874 1.8499 19 0.9690 1.9575

8 0.7299 1.6585 14 0.8938 1.8580 20 0.9691 1.9575

chromatic number of n-vertex graph with running time poly(n)2n on the random
access memory (RAM) model. The main result of this work is the following
theorem.

Theorem 1. There is an exponential-space bounded-error quantum algorithm
using QRAM for the chromatic number problem with running time1 O∗((237/35

33/75−9/707−5/28)n
)

= O(1.9140n).

The quantum algorithm in Theorem 1 is based on Ambainis et al.’s quantum
dynamic programming for TSP with applications of Grover’s search to Byskov’s
algorithm enumerating all maximal independent sets (MISs) of fixed size [7].
Byskov’s algorithm is not naive exhaustive search, but is a branching algorithm
(also referred as Branch & Reduce), for which Grover’s search can be applied
[12]. While RAM is widely accepted model of classical computation, QRAM is
sometimes criticized due to the difficulty of implementation. In this paper, we
also present quantum algorithms not using QRAM.

Theorem 2. For k ≤ 20, there exists ε > 0 such that there are polynomial-space
bounded-error quantum algorithms not using QRAM for the graph k-coloring
problem with running time 2(1−ε)n.

Note that classical algorithms with running time 2(1−ε)n are known only for
k = 3, 4 [2,7]. Running times of the quantum algorithms in Theorem 2 are shown
in Table 1. For proving Theorem 2, we essentially show classical algorithms with
running time 4(1−ε)n that can be improved quadratically by Grover’s search.
These classical algorithms are obtained by generalizing Byskov’s techniques for
reducing the graph k(≥4)-coloring problem to the graph 3-coloring problem [7].
The proofs of Theorem 1 and 2 in this paper require numerical calculations.

1.1 Related Work

Since a graph is k-colorable if and only if the set of vertices can be partitioned
into k independent sets, many algorithms for the graph k-coloring problem use
1 In this paper, O∗(f(n)) means O(poly(n)f(n)).

Exponential-Time Quantum Algorithms for Graph Coloring Problems 389

enumeration algorithms of independent sets. There is a simple branching algo-
rithm enumerating all MISs in time O∗(3n/3) = O(1.4423n) [11]. Lawler showed
that 3-colorability can be decided in time O∗(3n/3) by enumerating all MISs and
checking the bipartiteness of the subgraph induced by the complement of each
MIS [17]. Lawler also showed that the chromatic number can be computed in
time O(2.4423n) by a simple dynamic programming.

Beigel and Eppstein showed an efficient algorithm for the graph 3-coloring
problem with running time O(1.3289n) [2]. Byskov showed reduction algorithms
from the graph k(≥4)-coloring problem to the graph 3-coloring problem [7]. By
using Beigel and Eppstein’s graph 3-coloring algorithm, Byskov showed classi-
cal algorithms for the graph 4-, 5- and 6-coloring problems with running time
O(1.7504n), O(2.1592n) and O(2.3289n), respectively. Fomin et al. showed an
algorithm for the graph 4-coloring problem with running time O(1.7272n) by
using the path decomposition [10].

In 2006, Björklund and Husfeldt, and Koivisto showed an exponential-space
O∗(2n)-time algorithm for the chromatic number problem in the RAM model
[3,16]. These algorithms are based on the inclusion–exclusion principle. They
also showed that if there is a polynomial-space O∗(αn)-time algorithm counting
the number of independent sets, then there is a polynomial-space O∗((1 + α)n)-
time algorithm computing the chromatic number [3,5]. Since the fastest known
polynomial-space algorithm computes the number of independent sets with run-
ning time O(1.2356n) [13], there is a polynomial-space O(2.2356n)-time algo-
rithm computing the chromatic number.

There is almost no previous theoretical work on quantum algorithms for
the graph coloring problems. Fürer mentioned that Grover’s algorithm can be
applied to branching algorithms, and hence, Beigel and Eppstein’s algorithm for
the graph 3-coloring problem can be improved to running time O(

√
1.3289

n
) =

O(1.1528n) [12]. The quantum algorithms for Theorem 2 are basically obtained
by applying Grover’s search to generalized Byskov’s reduction algorithms on the
basis of Fürer’s observation.

For general NP-hard problems, Ambainis et al. showed exponential-space
exponential-time quantum algorithms using QRAM for many NP-hard prob-
lems [1]. The quantum algorithm for Theorem 1 is based on Ambainis et al.’s
algorithm for TSP with application of Grover’s search to Byskov’s algorithm
enumerating MISs of fixed size on the basis of Fürer’s observation.

1.2 Overview of Quantum Algorithms

Quantum Algorithm for the Chromatic Number Problem. Similarly
to Ambainis et al.’s quantum algorithm for TSP, the quantum algorithm for
Theorem 1 is a simple divide-and-conquer algorithm with dynamic programming
approach. The basic classical algorithm was shown in [4, Proposition 3]. The
chromatic number of a graph G is equal to a sum of the chromatic numbers
of G[S] and G[V \S] for some non-empty S�V unless G is one-colorable. If we
can assume that S has size exactly �n/2� or �n/2�, then we can consider a
classical algorithm that recursively finds S of size �n/2� minimizing χ(G[S]) +
χ(G[V \S]). Let T (n) be the running time of this algorithm. Then, it follows

390 K. Shimizu and R. Mori

T (n) =
(

n
�n/2�

)
(T (�n/2�) + T (�n/2�)), so that we can apply Ambainis et al.’s

quantum dynamic programming straightforwardly and obtain O(1.7274n)-time
quantum algorithm [1]. However, the balanced partition S satisfying χ(G) =
χ(G[S]) + χ(G[V \S]) does not necessarily exist. Hence, we use the following
useful fact.

Fact 1. Let a1, . . . , ak be positive integers, and n :=
∑k

i=1 ai. Assume that a1 ≥
ai for all i ∈ {1, 2, . . . , k}. Then, for any m ∈ {1, 2, . . . , n − 1}, there exists
S ⊆ {2, 3, . . . , k} such that

∑
i∈S ai ≤ m and

∑
i∈{2,...,k}\S ai ≤ n − m − 1.

Proof. Let t := max
{
j ∈ {2, . . . , k} | ∑j

i=2 ≤ m
}
. Let S := {2, 3, . . . , t}. Then,∑

i∈{t+1,t+2,...,k} ai ≤ ∑
i∈{1,t+2,t+3,...,k} ai = n − ∑

i∈{2,3,...,t+1} ai ≤ n − m − 1.
��

From Fact 1, we can consider the following quantum algorithm computing the
chromatic number. First, the algorithm precomputes the chromatic number of
all induced subgraphs with size at most �n/4�. This precomputation is based on
Lawler’s formula

χ(G) = 1 + min
I∈MIS(G)

χ(G[V \ I]) (1)

where MIS(G) denotes the set of all MISs of G [17]. There is a classical algo-
rithm enumerating all MISs with running time O∗(3n/3). We will show in Sect. 3
that Grover’s search can be applied to this algorithm, and hence, the quantum
algorithm can search for all MISs with running time O∗(3n/6). Here, computed
chromatic numbers are stored to QRAM. Hence, we can apply Grover’s search
for computing the minimum in (1). The precomputation requires the running
time O∗

(∑�n/4�
i=1

(
n
i

)
3i/6

)
= O(1.8370n). Then, the main part of the algorithm

computes the chromatic number of G by using the formula

χ(G) = 1 + min
I∈MIS(G)

min
S⊆V \I, |S|≤�n/2�, |V \I\S|≤�n/2�

{
χ(G[S]) + χ(G[V \ I \ S])

}

for χ(G) ≥ 3. This formula is justified by Fact 1 for m = �n/2�. Grover’s search
is used for finding S. For computing χ(G[S]) and χ(G\I \S]), the above formula
is used again. Then, we need the chromatic numbers of subgraphs of G of size at
most �n/4�, which were precomputed and stored to QRAM. The running time
of the main part of this quantum algorithm is

O∗
(
3n/62n/23n/122n/4

)
= O(2.2134n).

Quantum algorithm for Theorem 1 searches for all MISs of size t for each
t ∈ {1, 2, . . . , n} separately. Therefore, the above estimate of the running time
is larger than the actual running time since if MIS I of size t is chosen, the
remaining graph G[V \I] has only n − t vertices. Hence, the factor 2n/2 in the
above estimate can be replaced by 2(n−t)/2. Then, precise analysis shows that
the running time of the improved quantum algorithm is O(1.9140n).

Exponential-Time Quantum Algorithms for Graph Coloring Problems 391

Quantum Algorithms for the Graph k-Coloring Problem. We will derive
classical algorithms that can be improved quadratically by Grover’s search. In
the classical algorithms, the graph k(≥4)-coloring problem is reduced to the
graph k′-coloring problems for some k′ < k. Since a graph G is k(≥2)-colorable
if and only if there exists a subset S of vertices such that G[S] is �k/2�-colorable
and G[V \S] is �k/2�-colorable. Let us consider a classical algorithm that simply
searches for S ⊆ V satisfying the above condition. Let Tk(n) be the running
time of this algorithm for the graph k-coloring problem. Then, Tk(n) satisfies

T1(n) = T2(n) = 1,

Tk(n) =
n∑

i=0

(
n

i

)
(T�k/2�(i) + T
k/2�(n − i)), k ≥ 3

where polynomial factors in n are ignored. Then, we obtain T4(n) = O∗(2n),
T8(n) = O∗(3n) and T16(n) = O∗(4n). Let us consider a quantum algorithm that
uses Grover’s search for finding S. Let T ∗

k (n) be the running time of the quantum

algorithm. Then, it follows T ∗
k (n) =

∑n
i=0

√(
n
i

)
(T ∗

�k/2�(i)+T ∗

k/2�(n− i)), which

implies T ∗
k (n) = O∗(

√
Tk(n)). Hence, we obtain T ∗

4 (n) = O(1.4143n), T ∗
8 (n) =

O(1.7321n) and T ∗
16(n) = O∗(2n). This yields a weaker version of Theorem 2

that is valid for k ≤ 8 rather than k ≤ 20. Better reduction algorithms are used
for Theorem 2.

1.3 Organization

In Sect. 2, notations and known classical and quantum algorithms are introduced.
In Sect. 3, we present details of quantum algorithm for branching algorithms. In
Sect. 4, we prove Theorem 1. The proof of Theorem 2 is not presented in this
paper due to the page limit, but included in the full version of this paper [18].

2 Preliminaries

2.1 Definitions and Notations

For a finite vertex set V , a set E of edges consists of subsets of V of size two.
A pair (V,E) of finite vertex set V and a set E of edges is called an undirected
simple graph. In this paper, we simply call a graph rather than an undirected
simple graph. The number of vertices |V | is denoted by n. A mapping c : V →
{1, 2, . . . , k} is called k-coloring if c(v) �= c(w) for all {v, w} ∈ E. For a graph
G, the smallest k such that there exists a k-coloring is called the chromatic
number of G, and denoted by χ(G). A subset I ⊆ V of vertices is called an
independent set if {v, w} /∈ E for all v, w ∈ I. An independent set I is said to be
maximal if there is no strict superset of I that is an independent set. A maximal
independent set of size t is called t-MIS. For S ⊆ V , G[S] denotes a induced
subgraph (S, {{v, w} ∈ E | v, w ∈ S}) of G. Let h(δ) := −δ log δ−(1−δ) log(1−δ)

392 K. Shimizu and R. Mori

for δ ∈ [0, 1] where 0 log 0 = 0. In this paper, the base of logarithm is 2. The
notation g(n) = O∗(f(n)) means that g(n) = O(ncf(n)) for some constant c.
For O∗(λn), we often round λ up to the fourth digit after the decimal point.
In this case, we can use O() rather than O∗(). For example, we often write
g(n) = O(1.4143n) rather than g(n) = O∗(2n/2). The notation g(n) = Õ(f(n))
means that g(n) = O((log f(n))cf(n)) for some constant c.

2.2 Known Classical Algorithm for Enumerating All t-MISs

Byskov showed the following theorem.

Theorem 3 (Byskov [7]). The maximum number of t-MISs of n-vertex graphs
is

I(n, t) := �n/t�(�n/t�+1)t−n(�n/t� + 1)n−�n/t�t.

Furthermore, there is a classical algorithm enumerating all t-MISs of n-vertex
graph in time O∗(I(n, t)).

We can straightforwardly obtain the following lemma and corollary.

Lemma 1. For any constant δ ∈ (0, 1), I(n, �δn�) = O(2E(δ)n) where

E(δ) := ((�δ−1� + 1)δ − 1) log�δ−1� + (1 − �δ−1�δ) log(�δ−1� + 1).

Here, E(δ) is concave (and hence, continuous) and piecewise linear for δ ∈ (0, 1).
The maximum of E(δ) is given at δ = 1/3.

Proof. It is easy to see that I(n, �δn�) = O(2E(δ)n). If �δ−1� in the definition
of E(δ) is replaced by δ−1, we obtain −δ log δ, which is obviously concave for
δ ∈ (0, 1). Furthermore, E(δ) = −δ log δ if δ is an inverse integer. For δ ∈
(1/(s + 1), 1/s) where s is some positive integer, E(δ) is a linear function since
�δ−1� is constant in this domain. Therefore, it is sufficient to show that E(δ)
is continuous at δ = 1/s for all s ∈ Z≥1 for showing that E(δ) is concave.
Obviously, E(δ) is left-continuous. At δ = 1/s for some positive integer s, E(δ)
is equal to −δ log δ = (log s)/s even if �δ−1� = s is replaced by s−1. This means
that E(δ) is right-continuous as well.

Finally, by comparing E(1/2), E(1/3) and E(1/4), it is shown that the max-
imum of E(δ) is given at δ = 1/3. ��
Corollary 1. For any a ∈ R≥0 and t ∈ Z≥3, the maximum of E(δ) − aδ for
δ ∈ [1/t, 1] is given at δ = 1/s for some s ∈ {3, 4, . . . , t}.

2.3 Grover’s Search

Here, Grover’s search is briefly introduced without using quantum circuit, uni-
tary oracle, etc.

Exponential-Time Quantum Algorithms for Graph Coloring Problems 393

Theorem 4 (Grover [15], Boyer et al. [6]). Let A : {1, 2, . . . , N} → {0, 1}
be a bounded-error quantum algorithm with running time T . Then, there is a
bounded-error quantum algorithm computing

∨
x∈{1,...,N} A(x) with running time

Õ(
√

NT). If it is guaranteed that |A−1(1)| ≥ M or |A−1(1)| = 0, then there is a
bounded-error quantum algorithm with running time Õ(

√
N/MT).

Theorem 5 (Dürr and Høyer [9]). Let A : {1, 2, . . . , N} → {1, 2, . . . ,M}
be a bounded-error quantum algorithm with running time T . Then, there is a
bounded-error quantum algorithm computing minx∈{1,...,N} A(x) with running
time Õ(

√
NT).

2.4 QRAM

QRAM is the quantum analogue of RAM which can be accessed in a superpo-
sition [14]. QRAM has been used in many quantum algorithms [1]. RAM is the
memory that can be accessed in constant or logarithmic time with respect to the
memory size. For computing the minimum of f(x,W) for all x ∈ {1, 2, . . . , N}
where W denotes a read-only RAM, we can replace RAM with QRAM and
apply Grover’s search for computing the minimum. Then, we obtain Õ(

√
NT)-

time quantum algorithm where T denotes the running time for computing f .

3 Grover’s Search for Branching Algorithms

Fürer mentioned that Grover’s search can be applied to branching algorithms
[12]. Since the details of the quantum algorithm were not explicitly described
in [12], we will show the details in this section. A branching algorithm is an
algorithm which recursively reduce a problem into some problems of smaller
parameters. We now consider decision problems with � parameters n1, n2, . . . , n�

that are non-negative integers. If the parameters are sufficiently small, we do not
apply any branching rule and solve this problem in some way. For a problem P
with parameters n1, . . . , n� that are not sufficiently small, we choose a branch-
ing rule b(P) such that P is reduced to mb(P) problems P1, P2 . . . , Pmb(P) of the

same class. Here, Pi has parameters f
b(P),i
1 (n1), . . . , f

b(P),i
� (n�) for some function

f
b(P),i
j satisfying f

b(P),i
j (nj) ≤ nj for i = 1, 2, . . . ,mb(P) and j = 1, 2, . . . , �. At

least one of the parameters of Pi must be smaller than the same parameter of
P for all i ∈ 1, 2, . . . ,mb(P). The solution of P is true if and only if at least one
of the solutions of P1, . . . , Pmb(P) is true. Hence, we will call this algorithm OR-
branching algorithm. For a problem P of this class, we can consider a computa-
tion tree that represents the branchings of the reductions. The computation tree
for P is a single node if P has sufficiently small parameters, so that no branching
rule is performed, and is a rooted tree where children of the root node are the
root nodes of the computation trees for P1, P2, . . . , Pmb(P) if some branching rule
b(P) is applied to P . Let L(n1, . . . , n�) be the maximum number of leaves of the
computation tree for P with parameters n1, . . . , n�. Assume that the running

394 K. Shimizu and R. Mori

Algorithm 1. Algorithm computing s-th leaf of P

1: function Leaf(P , s)
2: if P is a leaf then return P
3: Compute the branching rule b ← b(P)
4: for i ∈ {1, 2, . . . , mb − 1} do
5: Compute Pi and its parameters n′

1, . . . , n
′
� = fb,i

1 (n1), . . . , f
b,i
� (n�)

6: if s ≤ U(n′
1, . . . , n

′
�) then return Leaf(Pi, s)

7: else s ← s − U(n′
1, . . . , n

′
�)

8: return Leaf(Pmb , s)

time of the computation at a non-leaf node, including computations of b(P), Pi,
and f

b(P),i
j , is polynomial with respect to n1, . . . , n�. Then, the total running time

of the OR-branching algorithm is at most poly(n1, . . . , n�)L(n1, . . . , n�)T where
T is the running time for the computation at a leaf node. We can apply Grover’s
search to OR-branching algorithms if we have an upper bound of L(n1, . . . , n�)
with some properties.

Lemma 2. Let U(n1, . . . , n�) be an upper bound of L(n1, . . . , n�) that can be
computed in polynomial time with respect to the parameters, and satisfies

U(n1, . . . , n�) ≥
mb∑

i=1

U(f b,i
1 (n1), . . . , f

b,i
� (n�))

for any branching rule b. Then, there is a bounded-error quantum algorithm with
running time poly(n1, . . . , n�)

√
U(n1, . . . , n�)T .

Proof. If we can assign an integer s ∈ {1, 2, . . . , U(n1, . . . , n�)} to every leaf of
the computation tree, and can compute the corresponding leaf from given s in
polynomial time with respect to the parameters, then, we can apply Grover’s
search for computing

a(P) =
∨

Q∈W (P)

a(Q)

where a(P) denotes the solution of a problem P and W (P) denotes the set of
all problems corresponding to leaves of the computation tree for P . Then, we
obtain quantum algorithm with running time poly(n1, . . . , n�)

√
U(n1, . . . , n�)T

[12]. The algorithm computing s-th leaf of a problem P is shown in Algorithm 1.
We will show the validity of Algorithm 1.

Proposition 1. For any problem Q that corresponds to a leaf node of the
computation tree of a problem P with parameters n1, . . . , n�, there exists s ∈
{1, 2, . . . , U(n1, . . . , n�)} such that Leaf(P, s) = Q.

Proof. The proof is an induction on the depth of the computation tree for P . If
the computation tree for P consists of a single node, then Algorithm 1 returns
P for any s. Since U(n1, . . . , n�) is an upper bound of L(n1, . . . , n�), it follows

Exponential-Time Quantum Algorithms for Graph Coloring Problems 395

U(n1, . . . , n�) ≥ 1, and hence, {1, 2, . . . , U(n1, . . . , n�)} is non-empty. Assume
that the proposition holds for any P with the computation tree of depth at most
d. We will consider a problem P with computation tree of depth d + 1. Let i be
the index of the branching at P that achieves Q. From the induction hypothesis,
there exists s′ ∈ {1, . . . , U(f b,i

1 (n1), . . . , f
b,i
� (n�))} such that Leaf(Pi, s

′) = Q.
Let s := s′ +

∑i−1
j=1 U(f b,j

1 (n1), . . . , f
b,j
� (n�)). Then, Leaf(P, s) = Q. Here, s ≤

∑mb

j=1 U(f b,j
1 (n1), . . . , f

b,j
� (n�)) ≤ U(n1, . . . , n�). ��

From Proposition 1 and a fact that Leaf(P, s) always returns a problem
corresponding to one of the leaf nodes for P , we obtain

a(P) =
∨

s∈{1,...,U(n1,...,n�)}
a(Leaf(P, s)).

Since the depth of the computation tree for P is at most
∑�

j=1 nj , the run-
ning time of Leaf(P, s) is polynomial with respect to the parameters. Hence,
there is a quantum algorithm computing a(P) with running time poly(n1, . . . , n�)√

U(n1, . . . , n�)T . ��
For a problem P whose solution is an integer, we can also consider a branching

algorithm satisfying a(P) = minmb(P)
i=1 a(Pi) for children P1, . . . , Pmb(p) of P . In

this case, we will call this algorithm MIN-branching algorithm. Similarly to OR-
branching algorithm, we can apply Grover’s search to MIN-branching algorithm
from Theorem 5.

In this paper, we apply Lemma 2 to Byskov’s algorithm in Theorem 3. Byskov
showed the upper bound I(n, t) satisfying the conditions in Lemma 2 for the
branching algorithm with two parameters n and t [7, Theorem 2]. Hence, we can
apply Grover’s search to Byskov’s algorithm in Theorem 3. For example, since∑n

t=1 I(n, t) = O∗(3n/3), there is a bounded-error quantum algorithm searching
for all MISs in time O∗(3n/6).

4 Quantum Algorithms for the Chromatic Number
Problem

The overview of the quantum algorithm was described in Sect. 1.2. The quantum
algorithm for Theorem 1 is shown in Algorithm 2. For computing the chromatic
number of G[S], when MIS I of size t is chosen, we have to chose T ⊆ S \ I
satisfying |T | ≤ |S|/2 and |S \ I \ T | ≤ |S|/2 as mentioned in Sect. 1.2. This
implies the condition |S|/2 − t ≤ |T | ≤ |S|/2. Hence, Algorithm 2 computes the
chromatic number correctly. By analyzing the running time of Algorithm 2, we
obtain the following theorem.

Theorem 6. Algorithm 2 computes the chromatic number of n-vertex graph
with running time O∗ (

(237/3533/75−9/707−5/28)n
)

= O(1.9140n) with bounded
error probability.

396 K. Shimizu and R. Mori

Algorithm 2. Algorithm computing the chromatic number of G. Grover’s search
is used for mins.
1: function CHR(G)
2: if G is two colorable then return the chromatic number of G
3: χ[∅] ← 0
4: for S ⊆ V, S �= ∅, |S| ≤ �n/4	 do (any order consistent with the inclusion

relation)
5: χ[S] ← 1 + minI∈MIS(G[S]){χ[S \ I]}
6: return CHR1(V)

7: function CHR1(S)
8: c ← |S|
9: for t ∈ {1, . . . , |S|}, s ∈ {max{
|S|/2� − t, 1}, . . . , �(|S| − t)/2	} do

10: a ← minI∈MIS(G[S]), |I|=t minT⊆S\I, |T |=s (CHR2(T) + CHR2(S \ I \ T))
11: c ← min{c, a}
12: return c + 1

13: function CHR2(S)
14: if G[S] is two colorable then return the chromatic number of G[S]

15: c ← |S|
16: for t ∈ {1, . . . , |S|}, s ∈ {max{
|S|/2� − t, 1}, . . . , �(|S| − t)/2	} do
17: a ← minI∈MIS(G[S]), |I|=t minT⊆S\I, |T |=s (χ[T] + χ[S \ I \ T])
18: c ← min{c, a}
19: return c + 1

Proof. The running time of the precomputation is O∗
(∑�n/4�

i=1

(
n
i

)
3i/6

)
=

O∗(2h(1/4)n3n/24
)

= O(1.8370n). Let T1(n) be the running time of CHR1(V)
and T2(m) be the running time of CHR2(S) for S ⊆ V of size m. Then, we
obtain

T2(m) =
m∑

t=1

√
I(m, t)

�(m−t)/2�∑

s=max{
m/2�−t, 1}

√(
m − t

s

)
, (2)

T1(n) =
n∑

t=1

√
I(n, t)

�(n−t)/2�∑

s=max{
n/2�−t, 1}

√(
n − t

s

)
(T2(s) + T2(n − t − s))

≤
n∑

t=1

√
I(n, t)

min{�n/2�, n−t}∑

s=0

√(
n − t

s

)
T2(s) (3)

by ignoring polynomial factors in n. Here, T2(m) ≤ ∑m
t=1

√
I(m, t)2

m−t
2 whose

exponent is equal to maxδ∈[0,1] {(E(δ) + (1 − δ))/2}. From Corollary 1, it is suf-
ficient to take maximum among δ being an inverse integer. Numerical calculation
shows that the maximum is given at δ = 1/5 and hence T2(m) = O∗(80m/10) =
O(1.5500m). Hence, the exponent of T1(n) is equal to

Exponential-Time Quantum Algorithms for Graph Coloring Problems 397

max
δ∈[0,1/3], λ∈[0,1/2]

{
1
2
E(δ) +

1
2
h

(
λ

1 − δ

)
(1 − δ) +

(
1
10

log 80
)

λ

}
.

Here, we only consider maximum for t ≤ n/3 since I(n, t) is decreasing with

respect to t for t ≥ n/3, and the other part
∑

s

√(
n−t

s

)
T2(s) in (3) is also

decreasing with respect to t. Numerical calculation shows that the maximum is
given at δ = 1/7, λ = 1/2. Hence, we obtain

T1(n) = O∗
((

71/142h(7/12)3/7801/20
)n)

= O∗
(
(237/3533/75−9/707−5/28)n

)
= O(1.9140n). ��

Careful readers may notice that the running times of the precomputation and
the main computation are not balanced. If the quantum algorithm precomputes
the chromatic numbers of induced subgraphs with size at most (1/4 + ε)n for
some ε > 0, the precomputation and the main computation require more and
less running time, respectively (we can use Fact 1 for unbalanced m). By opti-
mizing ε such that the both running time are balanced, we may obtain improved
running time. This idea improved the running time of the quantum algorithm
for TSP [1], but does not improve the running time of Algorithm 2. Equation.
(2) is dominated by t = n/5 and s = (2/5)n. Equation. (3) is dominated by
t = n/7 and s = n/2. In order to exclude s = (2/5)n in the summation in (2),
the chromatic number of induced subgraph with size at most (3/10)n must be
precomputed. However, the running time of the precomputation in this case is∑(3/10)n

i=1

(
n
i

)
3i/6 = Ω(1.9460n). Hence, the running time of quantum algorithm

is not improved.

Acknowledgment. This work was supported by JST PRESTO Grant Number
JPMJPR1867 and JSPS KAKENHI Grant Numbers JP17K17711 and JP18H04090.
The authors thank François Le Gall for the insightful comments.

References

1. Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prūsis, K., Vihrovs, J.: Quan-
tum speedups for exponential-time dynamic programming algorithms. In: Proceed-
ings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2019). pp. 1783–1793. SIAM (2019)

2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Alg. 54(2), 168–204
(2005)

3. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set par-
titions. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006). pp. 575–582. IEEE (2006)

4. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number
of perfect matchings. Algorithmica 52(2), 226–249 (2008)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

398 K. Shimizu and R. Mori

6. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4–5), 493–505 (1998)

7. Byskov, J.M.: Enumerating maximal independent sets with applications to graph
colouring. Oper. Res. Lett. 32(6), 547–556 (2004)

8. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Alg. (TALG)
12(3), 41 (2016)

9. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014 (1996)

10. Fomin, F.V., Gaspers, S., Saurabh, S.: Improved exact algorithms for counting 3-
and 4-colorings. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 65–74.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8 9

11. Fomin, F.V., Kratsch, D.: Split and List. Exact Exponential Algorithms. TTC-
SAES, pp. 153–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16533-7 9

12. Fürer, M.: Solving np-complete problems with quantum search. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp.
784–792. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-
0 67

13. Gaspers, S., Lee, E.J.: Faster graph coloring in polynomial space. In: Cao, Y.,
Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 371–383. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62389-4 31

14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100(16), 160501 (2008)

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC
1996). pp. 212–219. ACM (1996)

16. Koivisto, M.: An O∗(2n) algorithm for graph coloring and other partitioning prob-
lems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2006). pp. 583–590. IEEE (2006)

17. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf.
Proc. Lett. 5, 66–67 (1976)

18. Shimizu, K., Mori, R.: Exponential-time quantum algorithms for graph coloring
problems. arXiv e-prints p. 1907.00529 (2019), https://arxiv.org/abs/1907.00529

https://doi.org/10.1007/978-3-540-73545-8_9
https://doi.org/10.1007/978-3-642-16533-7_9
https://doi.org/10.1007/978-3-642-16533-7_9
https://doi.org/10.1007/978-3-540-78773-0_67
https://doi.org/10.1007/978-3-540-78773-0_67
https://doi.org/10.1007/978-3-319-62389-4_31
https://arxiv.org/abs/1907.00529

Neural Networks and Biologically
Inspired Computing

On Symmetry and Initialization
for Neural Networks

Ido Nachum1(B) and Amir Yehudayoff2(B)

1 EPFL - École polytechnique fédérale de Lausanne, Lausanne, Switzerland
ido.nachum@epfl.ch

2 Technion - Israel Institute of Technology, Haifa, Israel
amir.yehudayoff@gmail.com

Abstract. This work provides an additional step in the theoretical
understanding of neural networks. We consider neural networks with
one hidden layer and show that when learning symmetric functions, one
can choose initial conditions so that standard SGD training efficiently
produces generalization guarantees. We empirically verify this and show
that this does not hold when the initial conditions are chosen at ran-
dom. The proof of convergence investigates the interaction between the
two layers of the network. Our results highlight the importance of using
symmetry in the design of neural networks.

Keywords: Neural networks · Symmetry

1 Introduction

Building a theory that can help to understand neural networks and guide their
construction is one of the current challenges of machine learning. Here we wish
to shed some light on the role symmetry plays in the construction of neural
networks. It is well-known that symmetry can be used to enhance the perfor-
mance of neural networks. For example, convolutional neural networks (CNNs)
(see [26]) use the translational symmetry of images to classify images better
than fully connected neural networks. Our focus is on the role of symmetry in
the initialization stage. We show that symmetry-based initialization can be the
difference between failure and success.

On a high-level, the study of neural networks can be partitioned to three
different aspects.

Expressiveness Given an architecture, what are the functions it can
approxi- mate well?

Training Given a network with a “proper” architecture, can the network fit
the training data and in a reasonable time?

Generalization Given that the training seemed successful, will the true
error be small as well?

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 401–412, 2020.
https://doi.org/10.1007/978-3-030-61792-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_32&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_32

402 I. Nachum and A. Yehudayoff

We study these aspects for the first “non trivial” case of neural networks,
networks with one hidden layer. We are mostly interested in the initialization
phase. If we take a network with the appropriate architecture, we can always
initialize it to the desired function. A standard method (that induces a non trivial
learning problem) is using random weights to initialize the network. A different
reasonable choice is to require the initialization to be useful for an entire class
of functions. We follow the latter option.

Our focus is on the role of symmetry. We consider the following class of
symmetric functions

S = Sn =
{ n∑

i=0

ai · 1|x|=i : a1, . . . , an ∈ {±1}
}

,

where x ∈ {0, 1}n and |x| =
∑

i xi. The functions in this class are invariant
under arbitrary permutations of the input’s coordinates. The parity function
π(x) = (−1)|x| and the majority function are well-known examples of symmetric
functions.

Expressiveness for this class was explored by [30]. They showed that the par-
ity function cannot be represented using a network with limited “connectivity”.
Contrastingly, if we use a fully connected network with one hidden layer and a
common activation function (like sign, sigmoid, or ReLU) only O(n) neurons
are needed. We provide such explicit representations for all functions in S; see
Lemmas 1 and 2.

We also provide useful information on both the training phase and generaliza-
tion capabilities of the neural network. We show that, with proper initialization,
the training process (using standard SGD) efficiently converges to zero empirical
error, and that consequently the network has small true error as well.

Theorem 1. There exists a constant c > 1 so that the following holds. There
exists a network with one hidden layer, cn neurons with sigmoid or ReLU acti-
vations, and an initialization such that for all distributions D over X = {0, 1}n

and all functions f ∈ S with sample size m ≥ c(n+log(1/δ))/ε, after performing
poly(n) SGD updates with a fixed step size h = 1/poly(n) it holds that

P
xm∼Dm

({
S : Pr

x∼D
(NS(x) �= f(x)) > ε

})
< δ

where S = {(x1, f(x1)), ..., (xm, f(xm))} and NS(x) is the network after training
over S.

The number of parameters in the network described in Theorem 1 is Ω(n2).
So in general one could expect overfitting when the sample size is as small as
O(n). Nevertheless, the theorem provides generalization guarantees, even for
such a small sample size.

The initialization phase plays an important role in proving Theorem 1. To
emphasize this, we report an empirical phenomenon (this is “folklore”). We show
that a network cannot learn parity from a random initialization. On one hand,

On Symmetry and Initialization for Neural Networks 403

if the network size is big, we can bring the empirical error to zero (as suggested
in [41]), but the true error is close to 1/2. On the other hand, if its size is too
small, the network is not even able to achieve small empirical error. We observe
a similar phenomenon also for a random symmetric function. An open question
remains: why is it true that a sample of size polynomial in n does not suffice to
learn parity (with random initialization)?

A similar phenomenon was theoretically explained by [37] and
[40]. The parity function belongs to the class of all parities

P = Pn = {πs(x) = (−1)s·x : s ∈ X}

where · is the standard inner product. This class is efficiently PAC-learnable with
O(n) samples using Gaussian elimination. A continuous version of P was studied
by [37] and [40]. To study the training phase, they used a generalized notion
of statistical queries (SQ); see [24]. In this framework, they show that most
functions in the class P cannot be efficiently learned (roughly stated, learning
the class requires an exponential amount of resources). This framework, however,
does not seem to capture actual training of neural networks using SGD. For
example, it is not clear if one SGD update corresponds to a single query in this
model. In addition, typically one receives a dataset and performs the training by
going over it many times, whereas the query model estimates the gradient using
a fresh batch of samples in each iteration. The query model also assumes the
noise to be adversarial, an assumption that does not necessarily hold in reality.
Finally, the SQ-based lower bound holds for every initialization (in particular,
for the initialization we use here), so it does not capture the efficient training
process Theorem 1 describes.

Theorem 1 shows, however, that with symmetry-based initialization, parity
can be efficiently learned. So, in a nutshell, parity can not be learned as part
of P, but it can be learned as part of S. One could wonder why the hardness
proof for P cannot be applied for S as both classes consist of many input sensitive
functions. The answer lies in the fact that P has a far bigger statistical dimension
than S (all functions in P are orthogonal to each other, unlike S).

The proof of the theorem utilizes the different behavior of the two layers in
the network. SGD is performed using a step size h that is polynomially small in
n. The analysis shows that in a polynomial number of steps that is independent
of the choice of h the following two properties hold: (i) the output neuron reaches
a “good” state and (ii) the hidden layer does not change in a “meaningful” way.
These two properties hold when h is small enough.

Here is a high level description of the proof. The � neurons in the hidden layer
define an “embedding” of the inputs space X = {0, 1}n into R

� (a.k.a. the feature
map). This embedding changes in time according to the training examples and
process. The proof shows that if at any point in time this embedding has good
enough margin, then training with standard SGD quickly converges. This is
explained in more detail in Sect. 3. It remains an interesting open problem to
understand this phenomenon in greater generality, using a cleaner and more
abstract language.

404 I. Nachum and A. Yehudayoff

1.1 Background

To better understand the context of our research, we survey previous related
works.

The expressiveness and limitations of neural networks were studied in several
works such as [6,17,33,43]. Constructions of small ReLU networks for the parity
function appeared in several previous works, such as [8,9,22,44]. Constant depth
circuits for the parity function were also studied in the context of computational
complexity theory, see for example [2,19,21].

The training phase of neural networks was also studied in many works. Here
we list several works that seem most related to ours. [15] analyzed SGD for
general neural network architecture and showed that the training error can be
nullified, e.g., for the class of bounded degree polynomials (see also [5]). [23]
studied neural tangent kernels (NTK), an infinite width analogue of neural net-
works. [16] showed that randomly initialized shallow ReLU networks nullify the
training error, as long as the number of samples is smaller than the number of
neurons in the hidden layer. Their analysis only deals with optimization over
the first layer (so that the weights of the output neuron are fixed). [12] provided
another analysis of the latter two works. [4] showed that over-parametrized neu-
ral networks can achieve zero training error, as long as the data points are not
too close to one another and the weights of the output neuron are fixed. [46] pro-
vided guarantees for zero training error, assuming the two classes are separated
by a positive margin.

Convergence and generalization guarantees for neural networks were studied
in the following works. [11] studied linearly separable data. [27] studied well sep-
arated distributions. [3] gave generalization guarantees in expectation for SGD.
[7] gave data-dependent generalization bounds for GD. All these works optimized
only over the hidden layer (the output layer is fixed after initialization).

Margins play an important role in learning, and we also use it in our proof.
[10,38,39,42] gave generalization bounds for neural networks that are based on
their margin when the training ends. From a practical perspective, [18,29,34],
suggested different training algorithms that optimize the margin.

As discussed above, it seems difficult for neural networks to learn parities.
[40] and [37] demonstrated this using the language statistical queries (SQ). This
is a valuable language, but it misses some central aspects of training neural
networks. SQ seems to be closely related to GD, but does not seem to capture
SGD. SQ also shows that many of the parities functions ⊗i∈Sxi are difficult to
learn, but it does not imply that the parity function ⊗i∈[n]xi is difficult to learn.
[1] demonstrated a similar phenomenon in a setting that is closer to the “real
life” mechanics of neural networks.

We suggest that taking the symmetries of the learning problem into account
can make the difference between failure and success. Several works suggested
different neural architectures that take symmetries into account; see [13,20,45].

On Symmetry and Initialization for Neural Networks 405

2 Representations

Here we describe efficient representations for symmetric functions by networks
with one hidden layer. These representations are also useful later on, when we
study the training process. We study two different activation functions, sigmoid
and ReLU (similar statement can be proved for other activations, like arctan).
Each activation function requires its own representation, as in the two lemmas
below.

-5 0 5 10 15 20 25 30

|x|

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ReLU activation
sigmoid activation

Fig. 1. Approximations of the symmetric function fA = sign(
∑

i∈A 1|x|=i − 0.5) by
sigmoid and ReLU activations for A = {1, 5, 7, 15, 20, 21, 22, 25}.

2.1 Sigmoid

We start with the activation σ(ξ) = 1
1+exp(−ξ) , since it helps to understand the

construction for the ReLU activation. The building blocks of the symmetric
functions are indicators of |x| = i for i ∈ {0, 1, . . . , n}. An indicator function is
essentially the difference between two sigmoid functions:

sign(1|x|=i − 0.5) = sign(Δi − 0.5),

where Δi(x) = σ(5(|x| − i + 0.5)) − σ(5(|x| − i − 0.5)).

Lemma 1. The symmetric function fA = sign(
∑

i∈A 1|x|=i − 0.5) satisfies
fA(x) = sign(−0.5 +

∑
i∈A Δi(x)), where A ⊂ [n].

A network with one hidden layer of n + 2 neurons with sigmoid activations
and one bias neuron is sufficient to represent any function in S. The coefficients
of the sigmoid gates are 0,±1 in this representation. The proofs of this lemma
and the subsequent lemmas are deferred to the full version of this paper.

406 I. Nachum and A. Yehudayoff

2.2 ReLU

A sigmoid function can be represented using ReLU(ξ) = max{0, ξ} as the dif-
ference between two ReLUs

σ(5(x + 0.5)) ≈ ReLU(x + 1) − ReLU(x)

Hence, an indicator function can be represented using sign(1|x|=i − 0.5) =
sign(Γi − 0.5) where

Γi(x) = ReLU(|x| − i + 1) − 2ReLU(|x| − i) + ReLU(|x| − i − 1).

Lemma 2. The symmetric function fA = sign(
∑

i∈A 1|x|=i − 0.5) satisfies
fA(x) = sign(−0.5 +

∑
i∈A Γi(x)), where A ⊂ [n].

The lemma shows that a network with one hidden layer of n + 3 ReLU
neurons and one bias neuron is sufficient to represent any function in S. The
coefficients of the ReLU gates are 0,±1,±2 in this representation.

3 Training and Generalization

The goal of this section is to describe a small network with one hidden layer that
(when initialized properly) efficiently learns symmetric functions using a small
number of examples (the training is done via SGD).

3.1 Specifications

Here we specify the architecture, initialization and loss function that is implicit
in our main result (Theorem 1).

To guarantee convergence of SGD, we need to start with “good” initial con-
ditions. The initialization we pick depends on the activation function it uses,
and is chosen with resemblance to Lemma 2 for ReLU . On a high level, this
indicates that understanding the class of functions we wish to study in term
of “representation” can be helpful when choosing the architecture of a neural
network in a learning context.

The network we consider has one hidden layer. We denote by wij the weight
between coordinate j of the input and neuron i in the hidden layer. We denote
W this matrix of weights. We denote by bi the bias of neuron i of the hidden
layer. We denote B this vector of weights. We denote by mi is the weight from
neuron i in the hidden layer to the output neuron. We denote M this vector of
weights. We denote by b the bias of the output neuron.

Initialize the network as follows: The dimensions of W are (n + 3) × n. For
all 1 ≤ i ≤ (n + 3) and 1 ≤ j ≤ n, we set wij = 1 and bi = −i + 2. We set
M = 0 and b = 0.

To run SGD, we need to choose a loss function. We use the hinge loss,

L(x, f) = max{0,−f(x)(vx · M + b) + β},

where vx = ReLU(Wx + B) is the output of the hidden layer on input x and
β > 0 is a parameter of confidence.

On Symmetry and Initialization for Neural Networks 407

3.2 Margins

A key property in the analysis is the ‘margin’ of the hidden layer with respect
to the function being learned.

A map Y : V → {±1} over a finite set V ⊂ R
d is linearly1 separable if there

exists w ∈ R
d such that sign(w · v) = Y (v) for all v ∈ V . When the Euclidean

norm of w is ‖w‖ = 1, the number marg(w, Y) = minv∈V Y (v)w · v is the margin
of w with respect to Y . The number marg(Y) = supw∈Rd:‖w‖=1 marg(w, Y) is
the margin of Y .

We are interested in the following set V in R
d. Recall that W is the weight

matrix between the input layer and the hidden layer, and that B is the relevant
bias vector. Given W,B, we are interested in the set V = {vx : x ∈ X}, where
vx = ReLU(Wx + B). In words, we think of the neurons in the hidden layer as
defining an “embedding” of X in Euclidean space. A similar construction works
for other activation functions. We say that Y : V → {±1} agrees with f ∈ S if
for all x ∈ X it holds that Y (vx) = f(x).

The following lemma bounds from below the margin of the initial V .

Lemma 3. If Y is a partition that agrees with some function in S for the ini-
tialization described above then marg(Y) ≥ Ω(1/

√
n).

Proof. By Lemmas 1 and 2, we see that any function in S can be represented
with a vector of weights M, b ∈ [−2, 2]Θ(n) of the output neuron together with
a bias . These M, b induce a partition Y of V . Namely, Y (vx)M · vx + b > 0.25
for all x ∈ X. Since ‖(M, b)‖ = O(

√
n) we have our desired result.

3.3 Freezing the Hidden Layer

Before analyzing the full behavior of SGD, we make an observation: if the
weights of the hidden layer are fixed with the initialization described above, then
Theorem 1 holds for SGD with batch size 1. This observation, unfortunately, does
not suffice to prove Theorem 1. In the setting we consider, the training of the
neural network uses SGD without fixing any weights. This more general case is
handled in the next section. The rest of this subsection is devoted for explaining
this observation.

[32] showed that the perceptron algorithm [35] makes a small number of
mistakes for linearly separable data with large margin. For a comprehensive
survey of the perceptron algorithm and its variants, see [31].

Running SGD with the hinge loss induces the same update rule as in a
modified perceptron algorithm, Algorithm 1.

Novikoff’s proof can be generalized to any β > 0 and batches of any size to
yield the following theorem; see [14,25].

1 A standard “lifting” that adds a coordinate with 1 to every vector allows to translate
the affine case to the linear case.

408 I. Nachum and A. Yehudayoff

Algorithm 1. The modified perceptron algorithm
Initialize: w(0) = 0, t = 0, β > 0 and h > 0
while ∃v ∈ V with Y (v)w(t) · v ≤ β do

w(t+1) = w(t) + Y (v)vh
t = t + 1

end while
return w(t)

Theorem 2. For Y : V → {±1} with margin γ > 0 and step size h > 0, the
modified perceptron algorithm performs at most 2βh+(Rh)2

(γh)2 updates and achieves

a margin of at least γβh
2βh+(Rh)2 , where R = maxv∈V ‖v‖.

So, when the weights of the hidden layer are fixed, Lemma 3 implies that the
number of SGD steps is at most polynomial in n.

3.4 Stability

When we run SGD on the entire network, the layers interact. For a ReLU net-
work at time t, the update rule for W is as follows. If the network classifies the
input x correctly with confidence more than β, no change is made. Otherwise,
we change the weights in M by ΔM = yvxh, where y is the true label and h is
the step size. If also neuron i of the hidden fired on x, we update its incoming
weights by ΔWi,: = ymixh. These update rules define the following dynamical
system: (a)

W (t+1) = W (t) + y
((

M (t)
))

(1)

W (t+1) = W (t) + y

((
M (t)

)T

◦ H
(
W (t)x + B(t)

))
xT h (2)

B(t+1) = B(t) + y

((
M (t)

)T

◦ H
(
W (t)x + B(t)

))
h (3)

M (t+1) = M (t) + yReLU
(
W (t)x + B(t)

)
h (4)

b(t+1) = b(t) + yh, (5)

where H is the Heaviside step function and ◦ is the Hadamard pointwise product.
A key observation in the proof is that the weights of the last layer ((4)

and (5)) are updated exactly as the modified perceptron algorithm. Another key
statement in the proof is that if the network has reached a good representation of
the input (i.e., the hidden layer has a large margin), then the interaction between
the layers during the continued training does not impair this representation. This
is summarized in the following lemma (we are not aware of a similar statement
in the literature).

On Symmetry and Initialization for Neural Networks 409

Lemma 4. Let M = 0, b = 0, and V = {ReLU(Wx + B) : x ∈ X} be a
linearly separable embedding of X and with margin γ > 0 by the hidden layer
of a neural network of depth two with ReLU activation and weights given by
W,B. Let RX = maxx∈X ‖x‖, let R = maxv∈V ‖v‖, and 0 < h ≤ γ5/2

100R2RX
be the

integration step. Assuming RX > 1 and γ ≤ 1, and using β = R2h in the loss
function, after t SGD iterations the following hold:

– Each v ∈ V moves a distance of at most O(R2
Xh2Rt3/2).

– The norm ‖M (t)‖ is at most O(Rh
√

t).
– The training ends in at most O(R2/γ2) SGD updates.

Intuitively, this type of lemma can be useful in many other contexts. The high
level idea is to identify a “good geometric structure” that the network reaches
and enables efficient learning.

4 Main Result

Proof (Proof of Theorem 1). There is an unknown distribution D over the space
X. We pick i.i.d. examples S = ((x1, y1), ..., (xm, ym)) where m ≥ c

(n+log(1/δ)
ε

)
according to D, where yi = f(xi) for some f ∈ S. Run SGD for O(n4) steps,
where the step size is h = O(1/n5) and the parameter of the loss function is
β = R2h with R = n3/2.

We claim that it suffices to show that at the end of the training (i) the
network correctly classifies all the sample points x1, . . . , xm, and (ii) for every
x ∈ X such that there exists 1 ≤ i ≤ m with |x| = |xi|, the network outputs yi

on x as well. Here is why. The initialization of the network embeds the space X
into n+4 dimensional space (including the bias neuron of the hidden layer). Let
V (0) be the initial embedding V (0) = {ReLU(W (0)x+B(0)) : x ∈ X}. Although
|X| = 2n, the size of V (0) is n+1. The VC dimension of all the boolean functions
over V (0) is n+1. Now, m samples suffice to yield ε true error for an ERM when
the VC dimension is n + 1; see e.g. Theorem 6.7 in [36]. It remains to prove (i)
and (ii) above.

By Lemma 3, at the beginning of the training, the partition of V (0) defined
by the target f ∈ S has a margin of γ = Ω(1/

√
n). We are interested in the

eventual V ∗ = {ReLU(W ∗x + B∗) : x ∈ X} embedding of X as well. The
modified perceptron algorithm together with Lemma 4 guarantees that after
K ≤ 20R2/γ2 = O(n4) updates, (M∗, b∗) separates the embedded sample V ∗

S =
{ReLU(W ∗xi+B∗) : 1 ≤ i ≤ m} with a margin of at least 0.9γ/3. This concludes
the proof of (i).

It remains to prove (ii). Lemma 4 states that as long as less than K = O(n5)
updates were made, the elements in V moved at most O(1/n2). At the end of
the training, the embedded sample VS is separated with a margin of at least γ/3
with respect to the hyperplane defined by M∗ and B∗. Each v∗

x for x ∈ X moved
at most O(1/n2) < γ/4. This means that if |x| = |xi| then the network has the
same output on x and xi. Since the network has zero empirical error, the output
on this x is yi as well.

410 I. Nachum and A. Yehudayoff

A similar proof is available with sigmoid activation (with better convergence
rate and larger allowed step size).

Remark 1. The generalization part of the above proof can be viewed as a conse-
quence of sample compression [28]. Although the eventual network depends on
all examples, the proof shows that its functionality depends on at most n + 1
examples. Indeed, after the training, all examples with equal hamming weight
have the same label.

Remark 2. The parameter β = R2h we chose in the proof may seem odd and
negligible. It is a construct in the proof that allows us to bound efficiently the
distance that the elements in V have moved during the training. For all practical
purposes β = 0 works as well.

5 Conclusion

This work demonstrates that symmetries can play a critical role when designing
a neural network. We proved that any symmetric function can be learned by a
shallow neural network, with proper initialization. We demonstrated by simula-
tions that this neural network is stable under corruption of data, and that the
small step size is the proof is necessary.

We also demonstrated that the parity function or a random symmetric func-
tion cannot be learned with random initialization. How to explain this empirical
phenomenon is still an open question. The works [37] and [40] treated parities
using the language of SQ. This language obscures the inner mechanism of the
network training, so a more concrete explanation is currently missing.

We proved in a special case that the standard SGD training of a network
efficiently produces low true error. The general problem that remains is proving
similar results for general neural networks. A suggestion for future works is to
try to identify favorable geometric states of the network that guarantee fast
convergence and generalization.

References

1. Abbe, E., Sandon, C.: Provable limitations of deep learning. arXiv e-prints
p. 1812.06369 (2018)

2. Ajtai, M.:
∑1

1-formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)
3. Allen-Zhu, Z., Li, Y., Liang, Y.: Learning and generalization in overparameterized

neural networks, going beyond two layers. arXiv e-prints p. 1811.04918 (2018)
4. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-

parameterization. arXiv e-prints p. 1811.03962 (2018)
5. Andoni, A., Panigrahy, R., Valiant, G., Zhang, L.: Learning polynomials with neu-

ral networks. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International
Conference on Machine Learning. pp. 1908–1916 (2014)

6. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. arXiv e-prints p. 1611.01491 (2016)

On Symmetry and Initialization for Neural Networks 411

7. Arora, S., Du, S.S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. arXiv e-prints
p. 1901.08584 (2019)

8. Arslanov, M.Z., Ashigaliev, D.U., Ismail, E.: N-bit parity ordered neural networks.
Neurocomput. 48, 1053–1056 (2002)

9. Arslanov, M., Amirgalieva, Z.E., Kenshimov, C.A.: N-bit parity neural networks
with minimum number of threshold neurons. Open Eng. 6, 309–313 (2016)

10. Bartlett, P., Foster, D.J., Telgarsky, M.: Spectrally-normalized margin bounds for
neural networks. arXiv e-prints p. 1706.08498 (2017)

11. Brutzkus, A., Globerson, A., Malach, E., Shalev-Shwartz, S.: SGD learns over-
parameterized networks that provably generalize on linearly separable data. arXiv
e-prints p. 1710.10174 (2018)

12. Chizat, L., Bach, F.: A note on lazy training in supervised differentiable program-
ming. arXiv e-prints p. 1812.07956 (2018)

13. Cohen, T.S., Welling, M.: Group equivariant convolutional networks. arXiv e-prints
p. 1602.07576 (2016)

14. Collobert, R., Bengio, S.: Links between perceptrons. In: Proceedings of the 21st
International Conference on Machine Learning. p. 23 (2004)

15. Daniely, A.: SGD learns the conjugate kernel class of the network. arXiv e-prints
p. 1702.08503 (2017)

16. Du, S.S., Zhai, X., Póczos, B., Singh, A.: Gradient descent provably optimizes
over-parameterized neural networks. arXiv e-prints p. 1810.02054 (2018)

17. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In:
Feldman, V., Rakhlin, A., Shamir, O. (eds.) Proceedings of the 29th Annual Con-
ference on Learning Theory. Proceedings of Machine Learning Research, vol. 49,
pp. 907–940. PMLR, Columbia University, New York, USA (2016)

18. Elsayed, G.F., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep
networks for classification. arXiv e-prints p. 1803.05598 (2018)

19. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. In: Proceedings of the 22nd Symposium on the Foundations of Computer
Science. pp. 260–270 (1981)

20. Gens, R., Domingos, P.M.: Deep symmetry networks. In: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Infor-
mation Processing Systems 27, NIPS 2014, pp. 2537–2545 (2014)

21. H̊astad, J.: Computational Limitations of Small-depth Circuits. MIT Press, United
States (1987)

22. Iyoda, E.M., Nobuhara, H., Hirota, K.: A solution for the n-bit parity problem
using a single translated multiplicative neuron. Neural Process. Lett. 18, 233–238
(2003)

23. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv e-prints p. arXiv:1806.07572 (2018)

24. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6),
983–1006 (1998)

25. Krauth, W., Mezard, M.: Learning algorithms with optimal stability in neural
networks. J. Phys. A: Math. General 20, L745–L752 (1987)

26. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

27. Li, Y., Liang, Y.: Learning overparameterized neural networks via stochastic gra-
dient descent on structured data. arXiv e-prints p. 1808.01204 (2018)

28. Littlestone, N., Warmuth, M.K.: Relating data compression and learnability
(1986), Unpublished manuscript, University of California Santa Cruz (1986)

http://arxiv.org/abs/1806.07572

412 I. Nachum and A. Yehudayoff

29. Liu, W., Wen, Y., Yu, Z., Yang, M.M.: Large-margin softmax loss for convolutional
neural networks. arXiv e-prints p. 1612.02295 (2016)

30. Minsky, M.L., Papert, S.A.: Perceptrons, Expanded edn. MIT Press, Cambridge,
MA, USA (1988)

31. Moran, S., Nachum, I., Panasoff, I., Yehudayoff, A.: On the perceptron’s compres-
sion. arXiv e-prints p. 1806.05403 (2018)

32. Novikoff, A.B.J.: On convergence proofs on perceptrons. Proceedings of the Sym-
posium on the Mathematical Theory of Automata. 12, 615–622 (1962)

33. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Platt,
J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information
Processing Systems 20, pp. 1177–1184 (2008)

34. Romero, E., Alquezar, R.: Maximizing the margin with feedforward neural net-
works. In: Proceedings of the 2002 International Joint Conference on Neural Net-
works, IJCNN 2002. vol. 1, pp. 743–748 (2002)

35. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65, 386–408 (1958)

36. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory
to algorithms. Cambridge University Press (2014)

37. Shamir, O.: Distribution-specific hardness of learning neural networks. arXiv
e-prints p. 1609.01037 (2016)

38. Sokolic, J., Giryes, R., Sapiro, G., Rodrigues, M.R.D.: Margin preservation of deep
neural networks. arXiv e-prints p. 1605.08254v1 (2016)

39. Sokolic, J., Giryes, R., Sapiro, G., Rodrigues, M.R.D.: Robust large margin deep
neural networks. IEEE Trans. Signal Process. 65, 4265–4280 (2017)

40. Song, L., Vempala, S., Wilmes, J., Xie, B.: On the complexity of learning neural
networks. arXiv e-prints p. 1707.04615 (2017)

41. Soudry, D., Carmon, Y.: No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv e-prints p. 1605.08361 (2016)

42. Sun, S., Chen, W., Wang, L., Liu, T.Y.: Large margin deep neural networks: Theory
and algorithms. arXiv e-prints p. 1506.05232 (2015)

43. Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv e-prints
p. 1509.08101 (2016)

44. Wilamowski, B., Hunter, D., Malinowski, A.: Solving parity-n problems with feed-
forward neural networks. In: Proceedings of the International Joint Conference on
Neural Networks, IJCNN. vol. 4, pp. 2546–2551 (2003)

45. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., Smola, A.:
Deep sets. In: Guyon, I., et al., (eds.) Advances in Neural Information Processing
Systems 30, pp. 3391–3401 (2017)

46. Zou, D., Cao, Y., Zhou, D., Gu., Q.: Stochastic gradient descent optimizes over-
parameterized deep relu networks. arXiv e-prints p. 1811.08888 (2018)

How to Color a French Flag

Biologically Inspired Algorithms for Scale-Invariant
Patterning

Bertie Ancona1(B), Ayesha Bajwa1, Nancy Lynch1,
and Frederik Mallmann-Trenn2

1 Massachusetts Institute of Technology, Cambridge, USA
{bancona,abajwa}@alum.mit.edu, lynch@csail.mit.edu

2 King’s College London, London, UK
frederik.mallmann-trenn@kcl.ac.uk

Abstract. In the French flag problem, initially uncolored cells on a grid
must differentiate to become blue, white or red. The goal is for the cells
to color the grid as a French flag, i.e., a three-colored triband, in a dis-
tributed manner. To solve a generalized version of the problem in a dis-
tributed computational setting, we consider two models: a biologically-
inspired version that relies on morphogens (diffusing proteins acting as
chemical signals) and a more abstract version based on reliable message
passing between cellular agents.

Much of developmental biology research focuses on concentration-
based approaches, since morphogen gradients are an underlying mecha-
nism in tissue patterning. We show that both model types easily achieve
a French ribbon - a French flag in the 1D case. However, extending the
ribbon to the 2D flag in the concentration model is somewhat difficult
unless each agent has additional positional information. Assuming that
cells are identical, it is impossible to achieve a French flag or even a close
approximation. In contrast, using a message-based approach in the 2D
case only requires assuming that agents can be represented as logarith-
mic or constant size state machines.

We hope that our insights may lay some groundwork for what kind of
message passing abstractions or guarantees, if any, may be useful in anal-
ogy to cells communicating at long and short distances to solve pattern-
ing problems. We also hope our models and findings may be of interest
in the design of nano-robots.

Keywords: Distributed computing · French flag · Biologically inspired
algorithms

1 Introduction

In the French flag problem, initially uncolored cells on a grid must differentiate to
become blue, white or red, ultimately coloring the grid as a three-colored triband

The authors were supported in part by NSF Award Numbers CCF-1461559 and CCF-
0939370.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 413–424, 2020.
https://doi.org/10.1007/978-3-030-61792-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_33&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_33

414 B. Ancona et al.

without centralized decision-making. Lewis Wolpert’s original French flag prob-
lem formulation [19,20] has been applied and extended to understand how organ-
isms determine cell fate, or final differentiated cell type, a question central to
developmental biology. Wolpert’s formulation of positional information models
is both complementary to and contrasted with Turing’s earlier formulation of
reaction-diffusion instability [18], which relies on random asymmetries that arise
from activator-inhibitor dynamics in a developmental system. Our methods make
use of both positional information and initial asymmetry. However, we distin-
guish between absolute and relative positional information to probe whether full
knowledge of the coordinates is needed to solve the problem, or if strictly less
information suffices.

Broadly speaking, our work is inspired by the biological mechanisms lead-
ing to cell fate decisions in the original French flag problem. These long and
short-distance mechanisms inform the design of algorithms and analyses of
the problem in two distributed computing contexts. More precisely, we relate
a reliable message passing model (Sect. 2.2) to local cell-cell communication,
and a concentration-based model (Sect. 2.1) to morphogen gradients over long
distances.

We analyze a generalized French flag problem for k colors in these two com-
putational models. We aim to understand the resources and minimum set of
assumptions required to solve the problem exactly or approximately. In par-
ticular, we study whether cells must know their exact positions and the grid
dimensions in order to solve the k-flag problem. We hope that characterizing
the resources and information required might have some translation back to the
mechanisms enabling scale-invariant patterning.

We begin by studying the French ribbon problem, the 1D scenario in our mod-
els. Both exact and approximate solutions are possible, with a general tradeoff
between precision and space complexity. While both models easily achieve a
French ribbon, extending 1D decision-making to the 2D setting is provably dif-
ficult in the concentration model. We show that in a 2D grid with point sources
at the corners, each agent knowing its absolute distance to every source is insuf-
ficient positional information to color the grid even approximately correctly.
On the other hand, extending to the 2D setting is easy in the message passing
model. We analyze numerous algorithms to demonstrate tradeoffs between time
complexity, message size, memory size and precision of the obtained French flag.

We do not claim more accurate or thorough models than those proposed
by the biology community. However, we hope this work may illuminate com-
putational abstractions or guarantees that may be useful in analogy to cells
communicating at long and short distances to solve patterning problems.

1.1 Biology Background and Related Work

A key principle of our models is that initial asymmetry and local communication
eventually leads to long-distance transmission of the relative positional informa-
tion of cellular agents, allowing for distributed decision-making. Morphogens, or
molecules acting as chemical signals, underlie cell-cell communication over long

How to Color a French Flag 415

distances. Two well-studied morphogens are Bicoid (Bcd) for anterior-posterior
patterning in fruit flies [5,14], and Sonic hedgehog (Shh), a morphogen for neu-
ral patterning in vertebrates, including humans [4,15]. Exactly how these mor-
phogens produce scale-invariant patterns in organisms and tissues of varying size
is an interesting biological question [8].

Mechanisms for local cell-cell communication include cell surface receptors
and ligands, such as the Notch-Delta system previously studied in a distributed
computing context [1]. There are also physical channels for signalling molecules,
such as gap junctions in animal cells and plasmodesmata in plant cells [2]. We
liken local signalling to message passing between neighboring agents.

Building on earlier work on gradients [12,16], Wolpert focused the French
flag problem and model [19,20] on the concept of positional information and its
generalization to other patterning mechanisms. Subsequent papers validated the
importance of positional information through empirical studies in model species
[5,14,17]. Turing had previously studied reaction-diffusion instability as a driver
of morphogenesis [18], theorizing that periodic patterns could spontaneously
arise from activator-inhibitor dynamics. Turing’s paradigm is often contrasted
with Wolpert’s notion of positional information. The idea that cells may learn
positional information via concentration has fundamentally altered the field of
developmental biology [7,10]. The French flag problem has been studied using
various models, including growth and repair simulation models [11] and reaction-
diffusion experimental models [21].

1.2 Results

Here we summarize results in the two computational models. We first present
our results for the concentration model, where we assume that each node on a
line has access to just morphogens concentrations c1 and c2, each emitted from
an endpoint of the line, and no other information. We define the model formally
in Sect. 2.1.

On the positive side, it is possible to solve the French ribbon problem exactly.

Theorem 1. Algorithm Exact Concentration Ribbon solves the concentration
model k-ribbon for an n-agent line graph of arbitrary finite length a with con-
stant time and communication complexity, given that agents have knowledge of
morphogen concentrations c1 and c2, which have reached steady states, as well
as the gradient function.

On the negative side, we show that extending to the French flag (2D-case)
with just four point-sources at the corners is infeasible. Here, symmetry prevents
us from obtaining a ε-approximate algorithm in this model.

Theorem 2. Consider the concentration model. Fix any ε ∈ (0, 1/6). No algo-
rithm can produce an ε-approximate French flag.

The concentration model contrasts the message passing model, in which even
exact solutions are possible. Results for the message passing model are summa-
rized in Table 1 below, and the exact statements can be found in Sect. 4. Finally,
we show in Sect. 4.1 how these algorithms can be extended to the 2D case.

416 B. Ancona et al.

Table 1. Comparison of k-ribbon algorithms in the message passing model. For brevity
we ignore additive O(k) terms in the round complexity. The time complexity of Exact
Count is tight up to an additive 2k term, regardless of k and the starting agent. The
memory and message complexity of Bubble Sort are independent of n and in fact
constant assuming k = O(1).

Algorithm Rounds Agent memory Msgs Msg bits Exact Reference

Exact count (2 − 1/k)n 3 logn + O(1) O(n) O(logn) � Thm. 3

Exact silent count 3n 2 logn + O(1) O(n) O(1) � Thm. 4

Bubble sort 3n O(log k) O(n2) O(log k) � Thm. 7

Approx count 2n 2 log logn + O(1) O(n) O(log logn) × Thm. 6

2 Models and Notation

2.1 Concentration Model

For concentration-based solutions to the French flag problem, we assume that
each agent receives concentration inputs from up to four source agents s1, s2, s3,
and s4. The measured concentration a cell at 2D coordinate C = (x, y) receives
from source si, i ∈ [4] is given by the following gradient function, which is
assumed to be invertible and monotonically decreasing in dist(C, si), the distance
between cell C and the source si. For concreteness, consider the following power-
law function

λi(C) =
1

dist(C, si)α
(1)

where α is the power-law constant. This family of functions is also handy for
the 1D case with coordinate C = x and source si, i ∈ [2] in Sect. 3, where we
argue that coloring correctly can be reduced to comparing λ1(C)/λ2(C) to 2α

and 2−α.
Though we choose a power-law for convenience, our upper bounds and lower

bounds hold for more general gradient functions satisfying the above constraints.
Deriving precise thresholds for λ1(C) and λ2(C) is more difficult when the
thresholds fall close together or when the gradient function is complicated. The
more difficult these conditions, the less biologically practical it may be.

We do not assume any noise, so agents have arbitrarily good precision in
measuring concentration. Additionally, we assume that the cells do not receive
any other input apart from measured concentration. In particular, they do not
have any other positional information such as knowledge of their coordinate or
the total ribbon or flag size. We assume all agents behave identically, performing
the same algorithms. No messages are passed between agents, so we consider only
local computation for time complexity, assuming morphogen concentrations have
reached steady state.

For the French ribbon, we assume that the two sources s1 and s2 are posi-
tioned at the ends of the line. We have two sources rather than one because a
single source only gives an agent information about the distance of that agent to
the source, without giving information about the agent’s distance to the other
side of the line.

How to Color a French Flag 417

For the French flag we assume the si ∈ [4] are positioned at the four corners.
We make this assumption in order to understand if the concentration model is
‘strong’ enough to solve the French flag problem without any additional com-
munication. Assuming that additional sources are placed at convenient positions
such as (a/3, 0) for example, defies the idea of scale invariant systems. The cor-
ner points are already distinguished in that they only have two neighbors, and
if one were to place a constant number of sources, these positions are somewhat
natural.

2.2 Message Passing Model

We first consider a 1D version of the French flag problem which we call the
French ribbon problem. We assume a line graph consisting of n nodes which we
refer to as agents. We later consider the 2D version, the standard French flag
problem, where the graph is a a × b grid on n = a · b agents.

Our message-passing model is similar to the standard LOCAL distributed
model, with a few exceptions. Though agents have no knowledge of their global
position, they do have a common sense of direction dir ∈ {up, down, left, right}.
Additionally, agents know which of their neighbors exist, meaning they know
whether they are endpoints of rows or columns (or both, if they are corners).
Initially, all but one arbitrary agent called the starting agent s, representing the
source of the communication signal, are asleep and thus perform no computation.
Sleeping agents wake upon receiving a message.

The goal is to design algorithms that solve the French ribbon problem. Even-
tually, each agent must output a color so that the line is segmented into three
colors: blue, white, and red from left to right. Formally, if b, w, and r denote the
number of agents of each respective color, max{|b − w|, |b − r|, |w − r|} ≤ 1. In
addition, each color should be in a single, contiguous sub-line of the graph—blue,
white, red from left to right. We also define the more general 1D k-Ribbon prob-
lem in the same model, in which there are k distinct colors {1, ..., k} which must
form bands of approximately equal size, in increasing numerical order, along a
line graph of n agents.

The 2D model is similar to the static, oriented 1D line graph model, but the
system consists of an r by c grid of agents, oriented with up and down as well as
left and right. A solution to the French flag problem requires that every agent
outputs a single color, such that the grid is divided into three vertical blocks.
Every row must abide by the requirements of the French ribbon problem, such
that the left side is blue and the right side is red. Furthermore, an agent should
be the same color as the agent above and below it in its column. The 2D k-Flag
problem generalizes in the same manner as above.

2.3 Approximation Definition

Intuitively speaking, the definition of approximation ensures two properties.
First, agents that are clearly within one stripe should have the corresponding

418 B. Ancona et al.

color. Second, agents that are close to a color border (c1, c2) should have either
color c1 or c2.

We say a k-colored flag of dimensions a × b is an ε-approximate (French)
flag if for every color z ∈ {1, ..., k} the following hold. For each agent u with
coordinates (x, y):

1. if x ∈ [
(z−1

k + ε) · a, (z
k − ε) · a

]
, then the agent has color z.

2. if u has color z, then x ∈ [
(z−1

k − ε) · a, (z
k + ε) · a

]
.

3 Concentration Model Results

3.1 1D Exact Concentration Ribbon

Algorithm Exact Concentration Ribbon. We consider an n-agent line of
arbitrary finite length a in the concentration model. Assume morphogens m1

and m2 (with concentrations c1 and c2) are each secreted by one of the endpoint
agents. We assume the underlying gradient function for concentration given posi-
tion x is the inverse power law in α, which is assumed to be noiseless.

Assume that m1 is secreted at x = 0 and m2 is secreted at x = a, we have
c1 = 1/xα and c2 = 1/(a − x)α. The ratio of c2 to c1 is then (a − x)α/xα. Each
agent computes this ratio independently from the measured values of c1 and c2.
Let ratio = c2/c1. After calculating its measured ratio, each agent computes the
smallest color z such that ratio ≥ ((z − 1)/(k − z))α, decides color z, and halts.

The algorithm is size-invariant and works for a line graph of arbitrary finite
length.

3.2 2D Concentration Lower Bound

In this section we sketch a proof of Theorem 2, showing that the concentration
model, without absolute positional information, cannot produce a correct French
flag (or even a good approximation) regardless of the gradient function.

Given an arbitrary flag G of dimensions a×b, we show that we can construct
a flag G′ with dimensions a′ × b′ such that there are two agents in both flags
that 1) have exactly the same distances from the respective sources and 2) must
choose different colors. Since the two agents have the same respective distance to
every source, they receive the same concentration input and cannot distinguish
between settings, making it impossible to always color correctly. See Fig. 1 for
an illustration. To show that such a flag G′ exists, we frame the constraints as
a system of equations and we show that there exists a valid solution.

How to Color a French Flag 419

Fig. 1. A) depicts an arbitrary original flag. In the proof of Theorem 2 we argue how
to construct a new flag as in C) such that there are two agents in both flags that have
exactly the same distances from the respective sources and must also choose different
colors. Since the two agents have the same respective distance to every source, they
receive the same concentration input and cannot distinguish between the settings,
making it impossible to always color correctly. We construct the new flag by changing
the aspect ratio in a way that maintains the distances. B) depicts this transformation.

4 Message Passing Model

Before we present our algorithms, note there is a trivial algorithm that works
as follows for k = 3. The starting agent sends a wakeup message to the leftmost
and rightmost agents. Then start a counter from each of these agents. When an
agent receives the counters n� and nr, it can determine in which stripe it is by
testing whether n�/nr ≥ 2 or n�/nr ≤ 1/2. This idea generalizes to arbitrary k.

The algorithms we present improve on the trivial algorithm in various ways.
Table 1 summarizes the tradeoffs of our approaches in the message passing model.
As a starting point, we observe that each agent can learn the number of agents
to its left and right, from which information it can determine its own color [20].
This principle is central to some of our algorithms.

Note 1. An agent in the k-ribbon problem may determine its correct color know-
ing the number of agents on each side of it in line, and knowing which side should
be color 1.

Algorithm Exact Count. The starting agent stores the value nmid ← 0 and
sends nmid + 1 in both directions. Intuitively, the value measures the distance
to the starting agent. All other agents upon waking store the received value as
nmid and forward the value nmid + 1 to the next agent in the same direction.
Each agent also stores t ← nmid and increments t every round after.

When the left endpoint receives a value for nmid, it decides on color 1 and
sends n� = 1 to its right neighbor. When the right endpoint receives a value for

420 B. Ancona et al.

nmid, it decides on color k and sends nr = 1 to its left neighbor. Each agent
stores nd for either direction d ∈ {�, r} which is the number of agents to the left
(right, respectively). Upon receiving nd, the agents forwards nd + 1 in the same
direction.

After an agent receives both n� and nr, it decides its color using Note 1. In
order to get an improved time complexity, an agent may also decide early: if an
agent has a value nd and t ≥ 2((k − 1) · nd) − nmid, it should decide color 1 if d
is � or color k otherwise.

Theorem 3. Algorithm Exact Count solves the k-ribbon problem and requires at
most (2− 1

k) ·n+k rounds, (4− 2
k) ·n log n message bits, and 3 log n+log k+O(1)

bits of memory per agent.

In reliable and synchronous models, it is well-known that silence conveys
information. We improve the message bit complexity in Theorem 3 using the
absence of a message as information, at a small cost to round complexity.

Algorithm Exact Silent Count. The starting agent sends the message 0 to
the left and 1 to the right. If it is an endpoint, the starting agent sends a 0 and
a 1 in the same, 2-bit message to its neighbor. Agents will forward any received
messages in the same direction, except endpoints which will send the messages
back.

The agents do additional processing. The endpoint on the d side sets nd ← 0
upon waking and never modifies it. Otherwise, the first time an agent receives
a message from direction d, it sets nd̄ ← 0, and each round thereafter the agent
increments nd̄, until it receives a message from the d̄ direction, at which point
it stops incrementing nd̄ and sets nd̄ ← nd̄/2. When an agent has final values
for n� and nr, and has sent 0 to the left and 1 to the right, it decides its color
based on its stored values of n� and nr using Note 1 and halts. 1

Theorem 4. Algorithm Exact Silent Count solves the k-Ribbon problem and
requires 3n rounds, 6n message bits, and 2 log n + log k + O(1) bits of memory
per agent.

Proof. We show correctness for the case when the starting agent is not an end-
point; we leave that end-case for the reader. W.l.o.g. consider an agent that first
receives a 0 from the right. After 2n� rounds, the 0 bit will return to the agent
after having been forwarded to the left endpoint and back, so the stored value
of n� at the end of the round will be correct. After 2nr more rounds, the 0 bit is
received again from the right and nr is correctly set. Thus, as long as the agent
receives the 0 bit 3 times, it will color itself correctly. The 0 bit must then travel
from the starting agent to the left, back to the right endpoint, then back to the
left endpoint; at that point, all agents to the left of the starting agent will cor-
rectly color themselves. As long as the agents to the right of the starting agent
return the 0 bit leftward, this will occur. We thus have correctness, because all
1 We note that a similar algorithm may use a single token rather than binary messages,

at an additional constant-factor increase in round complexity.

How to Color a French Flag 421

agents only halt after forwarding the opposite bit back to the other side. The
same argument applies to the 1 bit in the other direction.

A bit travels at most 3 times down the line, so all agents terminate after 3n
rounds. Each round has 2 bits sent, so the message bit complexity is 6n. Each
agent stores k and two values in Θ(n), requiring only 2 log n + log k + O(1) bits
of memory each. ��

Next, we use the approximation approach of Morris [13] and Flajolet [6]
to reduce space complexity in exchange for a slight increase in error for the
final k-ribbon. The randomized modification is made to our deterministic exact
counting algorithm.

The following theorem gives the guarantees of each counter.

Theorem 5. [6] Let β = 22
−δ

. Consider the counter procedure of [6], in which
we maintain a counter c over n increments, and increase the counter by one only
with probability (1

β)c at each increment. Using log log n + δ bits for the counter,
the expected value of the counter is logβ((β − 1) · n + β), and the value of n we
could recover from the counter has standard deviation at most n/2−δ.

Algorithm Approximate Count. The starting agent sends a bit in either
direction to wake all agents. When the endpoint in the d direction wakes up, it
sets a counter cd to 0, increments it as in [6], and sends the resulting value to
its neighbor. Each agent upon receiving a message from direction d, stores the
message as cd, increments it in the same way and forwards the result to the next
agent.

When an agent has received two values of cd, it does the following: For each
i in the sequence 1, . . . , k, if c� − cr ≤ logβ

i
k−i , then the agent decides on color

i. If the agent has not decided on a color yet after all i, the agent decides on
color k. After deciding on a color, the agent halts.

Theorem 6. Fix any k. For n large enough, Algorithm Approximate Count
solves the ε-approximate k-Ribbon problem for constant ε < 1

2(k−1) with prob-
ability 1 − 1

32k and requires 2n rounds, O(n log log n) total message bits, and
2 log log n + O(1) bits of memory per agent.

We restrict ε < 1
2(k−1) because otherwise the color thresholds would bleed

into each other and we would have regions with more than two valid colors.
The core idea of using an approximate counter as proposed in [6] is that when
subtracting the counter from the left and from the right, we get for some β,
ignoring small standard deviations,

logβ((β − 1)n� + β) − logβ((β − 1)nr + β) ≈ log(n�/nr).

Using thresholds for each color then gives the right color. Using monotonicity
of the counters, we only need to consider O(k) different counters which allows
us to take a union bound over O(k) of them, showing that all n counters are
‘correct’. The proof can be found in the full version [3].

422 B. Ancona et al.

We next demonstrate how to use bubble sort to color the flag exactly. Assume
blue, white and red are 1, 2, and 3 respectively.

Algorithm Bubble Sort. The algorithm is an application of the parallel sorting
algorithm of [9]. The idea is to naively color agents, in alternating fashion with
the colors of the flag, to ensure correct total counts of each color regardless of the
ribbon length. The algorithm then performs swaps in parallel to ensure that blue
elements ripple to the left, white elements to the middle, and red elements to the
right. In an even round, any agent at an even position swaps the value (color)
with its right neighbor if the right neighbor has a larger value. Odd rounds are
analogous.

In order to avoid cases in which a agent would like to swap its color with
both neighbors at same time, we also ensure through message passing that each
agent knows whether it is at an odd or even position and whether the current
round is odd or even.

Theorem 7. Algorithm Bubble Sort solves the 1-D k-Ribbon problem and
requires at most 2n rounds, n2 log k message bits, and O(log k) bits of memory
per agent.

Proof. The algorithm of [9] requires at most n time-steps to sort an array using
neighbor swaps in parallel. However, to assign each node a starting color, a
message must be propagated from the leader to all nodes, requiring up to an
additional n rounds.

Each round, up to half of the nodes send messages of size log k to broadcast
their current values to one of their neighbors, for a total of at most n2 log k
message bits. Each node must store its own value using log k bits. ��

4.1 Extending from Ribbon to Flag

We may solve the k-flag problem by extending any k-ribbon algorithm, with
little loss in most parameters.

Algorithm Up & Down. The starting agent begins the k-ribbon algorithm
for its row, and all agents in the row follow the algorithm to completion once
awakened. However, after deciding on a color but before halting, each agent in
the row tells its color to above and below neighbors. When an agent is awoken
with a color, it decides that color and forwards the color either above or below
before halting.

Theorem 8. Given an algorithm for the k-ribbon problem which takes T (n, k)
rounds, M(n, k) total message bits, and S(n, k) bits of memory per agent, Algo-
rithm Up & Down solves the k-flag problem on a a×b grid with at most a+T (b, k)
rounds, ab log k + M(b, k) total message bits, and S(b, k) bits of memory per
agent.

Other reductions to the k-ribbon problem that optimize for round complexity
rather than space and message bit complexity are left to the reader.

How to Color a French Flag 423

4.2 Message-Passing Lower Bounds

There are straightforward lower bounds for the 1D and 2D cases.

Theorem 9. No algorithm exists that can solve the k-Ribbon problem on an
oriented line graph if all agents are identical, even if endpoints know that they
are endpoints, in less than (2 − 1

k) · n − 3 rounds.

Theorem 10. No algorithm exists to solve the k-flag problem on an a × b grid
in less than max{(2 − 1

k) · b − k, a + b − 2} rounds.

5 Conclusion

The 1D French ribbon problem can be solved exactly and approximately in both
the concentration and the message passing models. However, the 2D French
flag problem requires additional positional information in order to satisfy size
invariance.

One direct extension of this work is a randomized version of the Silent Count
algorithm (Theorem 4). An exciting new research direction is how other pattering
problems can be solved in more general settings and under the influence of
noise. Future work could develop models that better capture important biological
constraints. For example, one could study models in which part of an organism
(e.g., a finger or the beak of a bird) grows over time.

Acknowledgements. We thank Ama Koranteng, Adam Sealfon, and Vipul Vach-
harajani for valuable discussions and contributions.

References

1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biolog-
ical solution to a fundamental distributed computing problem. Science 331(6014),
183–185 (2011)

2. Alberts, B.: Molecular Biology of the Cell. CRC Press, Boca Raton (2017)
3. Ancona, A., Bajwa, A., Lynch, N., Mallmann-Trenn, F.: How to color a french

flag-biologically inspired algorithms for scale-invariant patterning. arXiv e-prints
p. 1905.00342 (2019)

4. Dessaud, E., McMahon, A.P., Briscoe, J.: Pattern formation in the vertebrate neu-
ral tube: a sonic hedgehog morphogen-regulated transcriptional network. Develop-
ment 135(15), 2489–2503 (2008)

5. Driever, W., Nüsslein-Volhard, C.: A gradient of bicoid protein in drosophila
embryos. Cell 54(1), 83–93 (1988)

6. Flajolet, P.: Approximate counting: a detailed analysis. BIT 25(1), 113–134 (1985)
7. Green, J.B.A., Sharpe, J.: Positional information and reaction-diffusion: two big

ideas in developmental biology combine. Development 142(7), 1203–1211 (2015)
8. Gregor, T., Bialek, W., van Steveninck, R.R.D.R., Tank, D.W., Wieschaus, E.F.:

Diffusion and scaling during early embryonic pattern formation. Proc. Natl. Acad.
Sci. 102(51), 18403–18407 (2005)

424 B. Ancona et al.

9. Habermann, N.: Parallel neighbor-sort (or the glory of the induction principle).
Carnegie-Mellon University, Technical report (1972)

10. Jaeger, J., Martinez-Arias, A.: Getting the measure of positional information. PLoS
Biol. 7(3), e1000081 (2009)

11. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In: Deb,
K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24854-5 12

12. Morgan, T.H.: “Polarity” considered as a phenomenon of gradation of materials.
J. Exp. Zool. 2, 495–506 (1905)

13. Morris, R.: Counting large numbers of events in small registers. Commun. ACM
21(10), 840–842 (1978)

14. Nüsslein-Volhard, C., Wieschaus, E.: Mutations affecting segment number and
polarity in drosophila. Nature 287(5785), 795–801 (1980)

15. Patten, I., Placzek, M.: The role of sonic hedgehog in neural tube patterning.
Cellular Molecular Life Sci. CMLS 57(12), 1695–1708 (2000)

16. Stumpf, H.F.: Mechanism by which cells estimate their location within the body.
Nature 212(5060), 430–431 (1966)

17. Summerbell, D., Lewis, J.H., Wolpert, L.: Positional information in chick limb
morphogenesis. Nature 244(5417), 492–496 (1973)

18. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Biol.
Sci. 237(641), 37–72 (1952)

19. Wolpert, L.: The french flag problem: a contribution to the discussion on pattern
development and regulation. Towards Theoret. Biol. 1, 125–133 (1968)

20. Wolpert, L.: Positional information and the spatial pattern of cellular differentia-
tion. J. Theor. Biol. 25(1), 1–47 (1969)

21. Zadorin, A.S., et al.: Synthesis and materialization of a reaction–diffusion french
flag pattern. Nat. Chem. 9(10), 990–996 (2017)

https://doi.org/10.1007/978-3-540-24854-5_12

Simple Intrinsic Simulation of Cellular
Automata in Oritatami Molecular

Folding Model

Daria Pchelina1, Nicolas Schabanel2(B), Shinnosuke Seki3, and Yuki Ubukata4

1 École Normale Supérieure de Paris, Paris, France
2 École Normale Supérieure de Lyon (LIP UMR5668, MC2, ENS de Lyon),

Lyon, France
nicolas.schabanel@ens-lyon.fr

3 University of Electro-Communications, 1-5-1 Chofugaoka,
Chofu, Tokyo 1828585, Japan

4 NTT DATA Corporation, Tokyo, Japan

Abstract. The Oritatami model was introduced by Geary et al. (2016)
to study the computational potential of RNA cotranscriptional folding
as first shown in wet-lab experiments by Geary et al. (Science 2014). In
the Oritatami model, a molecule grows component by component (named
beads) into the triangular grid and folds as it grows. More precisely, the
δ last nascent beads are free to move and adopt the positions that maxi-
mize the number of bonds with the current folded structure. Geary et al.
(2018) proved that the Oritatami model is capable of efficient Turing uni-
versal computation using a complicated construction that simulates Tur-
ing machines via tag systems. We propose here a simple Oritatami sys-
tem which intrinsically simulates arbitrary 1D cellular automata. Being
intrinsic, our simulation emulates the behavior of cellular automata in a
readable way and in time linear in space and time of the simulated automa-
ton. The Oritatami model has proven to be a fruitful framework to study
molecular reconfigurability. Our construction relies on the development of
new mechanisms which are simple enough that we believe that some sim-
plification of them may be implemented in the wet lab. An implementation
of our construction can be downloaded for testing.

Keywords: Molecular self-assembly · Co-transcriptional folding ·
Intrinsic universality · Cellular automata · Turing universality

1 Introduction

DNA computing encompasses the field which tries to implement computation at
the molecular levels. A recent example is [17], which implements arbitrary 6-bit

N. Schabanel—His work is supported in part by the CNRS grants MOPREXPROG-
MOL and AMARP from the Mission pour l’interdisciplinarité.
S. Seki—His work is supported in part by JSPS KAKENHI Grant-in-Aids for Challeng-
ing Research (Exploratory) No. 18K19779 and JST Program to Disseminate Tenure
Tracking System, MEXT, Japan, No. 6F36.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 425–436, 2020.
https://doi.org/10.1007/978-3-030-61792-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_34&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_34

426 D. Pchelina et al.

cellular automata onto DNA nanotubes, realising a first DNA-based universal
computer (limited to 6 bits of memory). This success of the field was built by
going back and forth between theory, models and experiments. The Oritatami
model was introduced in 2016 by [4] to study the computational potential of
RNA cotranscriptional folding as first shown in wet-lab experiments by [5].

In Oritatami systems, we consider a finite set of bead types, and a periodic
sequence of beads, each of a specific bead type. Beads are attracted to each other
according to a fixed symmetric relation. In any folding (configuration), a bond is
formed between any pair of beads located at adjacent positions and attracting
each other. At each step, the latest few beads in the sequence are allowed to
explore all possible positions, and adopt only those positions that minimise the
energy, or otherwise put, those positions that maximise the number of bonds in
the folding. “Beads” are a metaphor for domains, i.e. subsequences, in RNA and
DNA (and are thus not limited to 4 types only). The Oritatami model has proven
to be a fruitful framework to study molecular reconfigurability, one of the most
promising directions to reduce error in wetlab molecular implementation as error
might be erased by reconfiguration later on. Indeed, programming Oritatami
systems consists of designing molecules whose shape changes depending on their
contexts, hence achieving some form of reconfiguration. Other models studying
molecular reconfiguration include nubots [16] and signal passing tile assembly
[10,11]. Previous work on Oritatami includes among others the implementation
of a binary counter [4], the Heighway dragon fractal [7], folding of shapes at small
scale [2], NP-hardness of the rule minimization [6,9], a study of its parameters
[13], and polynomial-time Turing machine simulation [3].

Our Contribution. The universality result by Geary et al. in [3] relies on a com-
plicated construction that simulates Turing machines via tag systems [1,18]. We
propose here a simple Oritatami system which intrinsically simulates arbitrary
1D cellular automata. Being intrinsic [8,15], our simulation emulates the behav-
ior of cellular automata in a readable way and in time which is linear in the
space and time of the simulated automaton. Precisely, our main result is:

Theorem 1 (Main result). There is a universal finite set of 183 bead types
B such that for any 1D cellular automaton A with Q states and radius r, there
is a delay-2 Oritatami system with bead types in B and periodic transcript with
period precisely

71
3

(
(3 + q) · 2(Qr)2 + 8(2q mod 3)

)
+ 10q + 610 ∼ 142

3
(Qr)2 log2 Qr

that simulates A intrinsically with a supercell shaped as a lozenge with sides of
size O((Qr)2 log Qr), where q = �log2(2Q2r+1)� and Qr = 2q � 4Q2r+1.

This improves the previous construction in [3] as the number of bead types
is only 183 (instead of 542) and the delay is 2 (instead of 3). Furthermore, our
construction relies on the development of new mechanisms which are now simple
enough to believe that some simplification of them may be implemented in the
wet lab.

An implementation of our construction can be downloaded for testing [14].

Simple Intrinsic Simulation of Cellular Automata by Oritatami System 427

2 Model and Preliminary Results

2.1 Oritatami Model

Let B be a finite set of bead types. A configuration c of a bead type sequence
p ∈ B∗ ∪ BN is a directed self-avoiding path c0c1c2 · · · in the triangular lattice
T,1 where for all integer i, the vertex ci of c is labeled by pi and refers to the
position in T of the (i + 1)-th bead in the configuration. A partial configuration
of p is a configuration of a prefix of p. The class of all the configurations obtained
by applying an isometry of T to a given configuration is called a conformation.

For any partial configuration c of some sequence p, an elongation of c by k
beads (or k-elongation) is a partial configuration of p of length |c|+k extending
by k positions the self-avoiding path of c. We denote by Cp the set of all partial
configurations of p (the index p will be omitted whenever it is clear from the
context). We denote by c�k the set of all k-elongations of a partial configuration c
of sequence p.

Oritatami Systems. An oritatami system = (p,) is composed of (1) a
(possibly infinite) bead type sequence p, called the transcript, (2) an attraction
rule, which is a symmetric relation B2, and (3) a parameter δ called the
delay. O is said periodic if p is infinite and periodic. Periodicity ensures that the
“program” p embedded in the oritatami system is finite (does not hardcode any
specific behavior) and at the same time allows arbitrarily long computation.2

We say that two bead types a and b attract each other when a b. Further-
more, given a (partial) configuration c of a bead type sequence q, we say that
there is a bond between two adjacent positions ci and cj of c in T if qi qj
and |i − j| > 1. The number of bonds of configuration c of q is denoted by
H(c) = (i, j) : ci cj , j > i+ 1, and qi qj .

Oritatami Dynamics. The folding of an oritatami system is controlled by the
delay δ. Informally, the configuration grows from a seed configuration (the input),
one bead at a time. This new bead adopts the position(s) that maximize(s)
the potential number of bonds the configuration can make when elongated by δ
beads in total. This dynamics is oblivious as it keeps no memory of the previously
preferred positions [3].

Formally, given an Oritatami system = (p,) and a seed configura-
tion σ of a seed bead type sequence s, we denote by Cσ,p the set of all partial
configurations of the sequence s · p elongating the seed configuration σ. The
considered dynamics D : 2Cσ,p → 2Cσ,p maps every subset S of partial configura-
tions of length � elongating σ of the sequence s · p to the subset D(S) of partial

1 The triangular lattice is defined as T = (Z2, ∼), where (x, y) ∼ (u, v) if and only
if (u, v) ∈ ∪ε=±1{(x + ε, y), (x, y + ε), (x + ε, y + ε)}. Every position (x, y) in T is
mapped in the euclidean plane to x · #»e + y · # »sw using the vector basis #»e = (1, 0) and
»sw = RotateClockwise (#»e , 120◦) = (− 1

2
, −

√
3
2

).
2 Note that we do not impose here a maximal number of bonds per bead (called arity).

428 D. Pchelina et al.

configurations of length � + 1 of s · p as follows:

D(S) =
⋃

c ∈ S

arg max
γ ∈ c�1

(

max
η ∈ γ�(δ−1)

H(η)

)

The possible configurations at time t of the oritatami system O are the elonga-
tions of the seed configuration σ by t beads in the set D t({σ}).

We say that the Oritatami system is deterministic if at all time t, D t({σ}) is
either a singleton or the empty set. In this case, we denote by ct the configuration
at time t, such that: c0 = σ and D t({σ}) = {ct} for all t > 0; we say that the
partial configuration ct folds (co-transcriptionally) into the partial configuration
ct+1 deterministically. In this case, at time t, the (t + 1)-th bead of p is placed
in ct+1 at the position that maximises the number of bonds that can be made
in a δ-elongation of ct.

2.2 Sweeping 2-Fan-in 2-Fan-Out Cellular Automata

Our construction simulates intrinsically the space-time diagrams of a specific
type of one-way cellular automata where each cell has fan-in and fan-out 2 as
shown in Fig. 2, similar to the gates implemented in [17]. Formally, a 2-fan-in
2-fan-out automaton (2FA) A is given by its set of states [Q] = {0, . . . , Q − 1}
and its transition function f : [Q]2 → [Q]2. A finite configuration of A is an
even-length word c ∈ [Q]∗, and its image by A is c′ = F (c) where (c′

2i, c
′
2i+1) =

f(c2i−1, c2i) for i = 0.. |c|
2 − 1, with the convention that c−1 = c|c| = 0. Classi-

cally, any 1D cellular automaton with Q states and radius r can be simulated
intrinsically by a 2FA with Q2r+1 states using a time rescaling by r.

Sweeping Simulation. Our construction simulates intrinsically any 2FA by sweep-
ing down (even time step) and up (odd time step), see Fig. 2. As a conse-
quence, every other step, the two inputs are read in reverse order and the
transition function is applied with its arguments exchanged. Formally a con-
figuration (c, d) of a sweeping 2FA (S2FA) ([Q], f) consists of an even-length
word c ∈ [Q]∗ together with a direction d ∈ {↑, ↓}, and has the following
dynamics: F (c, ↓) = (c′, ↑) where (c′

2i, c
′
2i+1) = f(c2i−1, c2i) for i = 0.. |c|

2 − 1;
F (c, ↑) = (c′, ↓) where (c′

2i+1, c
′
2i) = f(c2i, c2i−1) for i = 0..|c|/2 − 1. Clearly,

any 2FA ([Q], f) can be simulated intrinsically in real time by the S2FA
([Q] × {↑, ↓}, g) where g((x, ↑), (y, ↑)) = ((x′, ↓), (y′, ↓)) with (x′, y′) = f(x, y);
and g((x, ↓), (y, ↓)) = ((x′, ↑), (y′, ↑)) with (y′, x′) = f(y, x).

From now on, we consider a S2FA A = ([Q], f), where Q = 2q is a power of
two with q � 1. We will denote by (x′(x, y), y′(x, y)) the value of f(x, y).

3 Overview of the Construction

Due to space constraint, we will expose here the principle of the construction.
The full description of the modules and of the attraction rule is given in the full
version of the present article [12].

Simple Intrinsic Simulation of Cellular Automata by Oritatami System 429

Fig. 1. The modules inside a cell: (Left) Schematic view; (Right) 1. Cell Init highlighted
in yellow; 2. Scaffold in red; 3. Read in blue, green and purple; 4. Lookup Table in yellow
and violet; 5. Speedbump in cyan; 6. Write in green. (Color figure online)

In our intrinsic simulation, each cell of the simulated S2FA is affinely mapped
onto a supercell shaped as a hexagon with two short sides (N and S) of lengths
12 and 13, and four long sides (NE, NW, SE and SW) of lengths s and s − 1
where s = O(Q2 log Q) (see Fig. 1b and 2). The states are encoded on the sides
of the hexagons as described below. The simulation proceeds by building one
after the other the supercells simulating each of the cells of the simulated S2FA
according to the up-down order given in Fig. 2. Each supercell is the result of the
folding of exactly one period of the transcript. The period of transcript consists
of the sequence of 6 modules, each of them achieving one specific task:

I · S · R · L · SB · W

The Modules. Their respective roles and positions inside the supercell are
blueprinted in Fig. 1a. I is responsible for extending the configuration by one
supercell and reversing the up-down order at the end of the current column
of supercells (see [12]). S has two roles: providing a scaffold along which the
next modules will fold, and ensuring that the molecule “resynchronizes” (will be
defined later) before W writes the two outputs x′ and y′ on the output sides.
R is responsible for reading the value of the two inputs x and y and translating
accordingly the lookup table of the simulated S2FA, encoded in the next mod-
ule L . SB is responsible for “resynchronizing” the molecule along the scaffold,
annihilating the translation of the lookup table induced by the reading of x and
y by R . Finally, W writes on the output sides of the supercell the values x′

and y′ dictated by the translated lookup table L , and exits the supercell at the
entrance of the next one.

430 D. Pchelina et al.

Fig. 2. The 10 first super-steps of the Oritatami simulation of the 2-state S2FA (q = 1)
f(x, y) = (y + 1 mod 2, x) from the seed configuration encoding input 00 (to the left
in brown): (00, ↓) �→ (0100, ↑) �→ (011010, ↓) �→ (00011110, ↑) �→ (0011110000, ↓); in
white (resp. gray), the down- (resp. up-) hexagonal supercells.

Simple Intrinsic Simulation of Cellular Automata by Oritatami System 431

Encoding x and y. The values of x and y are encoded along the sides of the
supercells using “magnetic flipping flaps” of total lengths 4Qx and 4y respec-
tively, as schematically shown on Fig. 1a. When the read module R folds along
the side of the neighboring supercells, it gets flattened by these magnetic flaps;
this shifts the progression of the molecule forward by exactly half the lengths of
the flaps. It follows that the module R completes its folding Δxy = 2(Qx + y)
beads further than it would in absence of the magnetic flaps. This, in turn,
translates the position of the lookup table module L by Δxy along both output
sides of the supercell, placing the entries corresponding to x′(Δxy) = x′(x, y) and
y′(Δxy) = y′(x, y) in front of the flipping flaps of the module W to be folded
next so that, when folded, the total magnetic length of the flipping flaps on each
output side is 4Qx′ and 4y′ respectively (see Sect. 4 and Fig. 4 for details).

4 Description of the Key Mechanisms

Due to space constraints, we will focus on the new mechanisms involved in this
construction. In particular, we will not discuss I because its behavior is just
a direct translation of the Module G in [3] (see [12] for details). S is simply
hardcoded and only its key part will be discussed next in Sect. 4.2.

4.1 Modules R, L, and W: The Read, Lookup, Write Mechanism

The previous section gave the principle of the interactions between these mod-
ules: the reading of x and y on the input sides by R results in shifting the lookup
table L by Δxy = 2(Qx + y), which aligns the entries corresponding to x′(x, y)
and y′(x, y) properly with the flaps of module W which, in turn, writes the
corresponding x′(x, y) and y′(x, y) on the x′- and y′-output sides respectively
using the magnetic flaps as illustrated in Fig. 4. Let us start with Module L .
Refer to Fig. 3 for the alignment of the various parts involved.

Module L . Each output x′(x, y) and y′(x, y) is encoded in binary into q tables of
Q2 bits using bead types Q0 and Q1. The entry indexed Qx+y in the i-th table
for x′ (resp. y′) contains the value of the i-th bit of x′(x, y) (resp. y′(x, y)). More
precisely, if we write x′(x, y) =

∑q−1
i=0 bi2i in binary, the table for x′ consists

of the sequence of bead types: LookupX =
(∏q−1

i=0

∏Q−1
x=0

∏Q−1
y=0 (Q(bi))2

)R, such

that the bead types in LookupX

R at indices 0, 2Q2, . . . , (q − 1)2Q2 shifted by
Δxy = 2(Qx + y) are Q(b0), . . . ,Q(bq−1). LookupY is defined similarly.

Module. W consists of a zigzag glider T0..7 that runs along the two output
sides of the supercell, together with q “magnetic flipping flaps,” equally spaced
by 2Q2 beads on each output side (see Fig. 3): q flaps of lengths 20Q, . . . , 2q−1Q
on the x′-output side and of lengths 20, . . . , 2q−1 on the y′-output side. We define
a magnetic flipping flap of length � as the bead type sequence:

SegFF(�) = U0..5 (T4P4 (T6P0T0P3T2P2T4P1)�T6P0..4U6..8.

432 D. Pchelina et al.

Fig. 3. Alignment of the various modules

Each flap is either activated (magnetic for R) or deactivated (neutral for R)
depending on whether its “magnetic” beads P0..3 point outwards, towards the
upcoming neighboring supercell, or inwards, towards the inside of the supercell
currently folding (see Fig. 4). Now, thanks to the alignment of the modules (see
Fig. 3), the i-th flap of W starts folding in front of the entries Δxy + 2iQ2 of
the lookup table on each output side, that is in front of the pair of beads Q02 or
Q12 corresponding to the i-th bit of the value to write on this side. Now, a flap
folds outwards (is activated) by default, unless its initial bead U5 is attracted
by a pair of beads Q0 corresponding to a bit set to 0. It follows that the i-th
flap of W on each side is activated if and only if the i-th of the output is 1;
and as it is of length 2iQ and 2i for the x′- and y′-output side respectively, the

Simple Intrinsic Simulation of Cellular Automata by Oritatami System 433

total numbers of magnetic beads are 4Qx′(x, y) and 4y′(x, y) on each x′- and
y′-output side, respectively.

Fig. 4. Illustration of the border between two neighboring supercells: Interactions of 1)
the lookup table and 2) the write modules within a supercell and 3) the read module of
the upcoming neighboring supercell, when Q = 4 (q = 2). The lookup tables for each
bit follow each other and are 2Q2 beads long each (2 beads per bit). The write module
folds into q = 2 flipping flaps on each output side of lengths 4 × 20 and 4 × 21 on the
x′-output side and 20 and 21 on the y′-output side. We have highlighted in yellow the
folding of bead U5, which decides the orientation of each flap (in- or out-wards if Q0
or Q1 is present resp.). We have highlighted in orange the folding of bead U6, which
is attracted by all bead types Q0..2 and restores the orientation of the write glider to
defaults after each flap. (Color figure online)

Module R . We are now ready to conclude this mechanism by observing that
the read module R folds along the write modules of the two neighboring input
supercells, and that it gets flattened each time it folds along an activated flap
(see Fig. 3 and 4), which extends its length by half the number of magnetic
beads P0..3 of the flap. It follows that the end of its folding is shifted forward
by (4Qx + 4y)/2 = Δxy , which in turn shifts forward the lookup table module
L by Δxy as claimed. Refer to Fig. 6 for a complete view of the folding of R .

The full description of the modules R , L and W may be found in the full
version [12] of the present article.

4.2 Modules SB and S: Resynchronization Using Speedbumps

In order for the period of the transcript to end precisely at the exit of the
supercell, regardless of which inputs x and y were read by the read module R ,
we need to absorb the Δxy offset. Precisely, we need to absorb it before the write

434 D. Pchelina et al.

module W folds to ensure that it is properly aligned with the shifted lookup
table. This is the role of the speedbump module SB . Its behavior is illustrated
in Fig. 5.

This mechanism involves two modules: the scaffold module S , which con-
tains the speedbumps (consisting of alternation of red beads I0..3 and blue beads
E0..3) at the top of its NE corner (assuming the supercell is in the downwards
orientation); the speedbump module SB which consists of a matching alterna-
tion of red beads Q2 and blue beads R0..1.

Lemma 1 (speedbump). When a red-blue sequence γ = Q24k−1(R0..1)4kR0
folds from right to left over a blue-red-blue seed left-to-right sequence σ =
(E2E4E6E0)k(I1..3I0)k(E2E4E6E0)2k starting from the Δ-th rightmost position
of σ with Δ < 4k, the Δ leftmost blue beads of γ fold into a zigzag over the red
beads of σ, and the folding of γ ends at the
Δ/2� rightmost position of the left
red segment of σ, as shown in Fig. 5b.

Corollary 1. When the folding of the speedbump module SB completes, the
offset Δxy is totally absorbed.

Proof (Sketch). Note that the maximum offset when the speedbump module
SB starts to fold is Δ = 2(Q2 − 1) corresponding to reading input (x, y) =
(Q − 1, Q − 1). The matching exponentially decreasing alternation of blue and
red regions from 22q to 4 in S and SB (see [12]) ensures that the offset is
divided by 2 until it reaches 0, absorbing the total offset as shown in Fig. 5.

Correctness of the Folding. Finally, the correctness of the folding is proved by
induction using automated folding tree certificates (see [4,12]). The key is to
choose carefully the size s of the supercell so that all modules are properly
aligned regardless of the inputs x and y. This is ensured by enforcing the position
of every pattern in every module modulo 8 in the supercell as explained in Fig. 3
and detailed in [12].

Fig. 5. Speedbumps decrease exponentially the offset of the molecule folding on top
(going from right to left) until it vanishes.

Simple Intrinsic Simulation of Cellular Automata by Oritatami System 435

Fig. 6. Read module consists of 4 parts: ReadX, Turn, ReadY, and Slide along the
scaffold. ReadX and ReadY get flattened each time it passes along an outward write
magnetic flap (encoding a 1). This shifts the molecule by the length of the corresponding
flap. The following part of the molecule is then shifted overall by Δxy = 2(Qx + y).
This shift allows then to align the entry corresponding to (x, y) of the lookup table of
each side with the upcoming write modules. The two glider-based parts “Turn” and
“Slide along” are only there to ensure that after reading each input, the molecule turns
at the expected position, regardless of the offset.

436 D. Pchelina et al.

References

1. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40
(2004)

2. Demaine, E.D., et al.: Know when to fold ’em: self-assembly of shapes by folding in
Oritatami. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 19–36.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1 2

3. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Proving the Turing universality
of oritatami co-transcriptional folding. In: Proceedings of the 29th International
Symposium on Algorithms and Computation, ISAAC. LIPIcs, vol. 123, pp. 23:1–
23:13 (2018)

4. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Oritatami: a computational
model for molecular co-transcriptional folding. Int. J. Mol. Sci. 20(9), 2259 (2019).
Preliminary version published in MFCS 2016

5. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for
co transcriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

6. Han, Y.S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. Theor.
Comput. Sci. 785, 128–139 (2019)

7. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly
of fractals by co transcriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS,
vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94812-6 22

8. Ollinger, N.: Two-states bilinear intrinsically universal cellular automata. In:
Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 396–399. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44669-9 41

9. Ota, M., Seki, S.: Ruleset design problems for oritatami systems. Theor. Comput.
Sci. 671, 26–35 (2017)

10. Padilla, J.E., Patitz, M.J., Schweller, R.T., Seeman, N.C., Summers, S.M., Zhong,
X.: Asynchronous signal passing for tile self-assembly: fuel efficient computation
and efficient assembly of shapes. Int. J. Found. Comput. Sci. 25(4), 459–488 (2014)

11. Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A
signal-passing DNA strand exchange mechanism for active self-assembly of DNA
nanostructures. Angew. Chem. Int. Edit. 54(20), 5939–5942 (2015)

12. Pchelina, D., Schabanel, N., Seki, S., Ubukata, Y.: Simple Intrinsic Simulation
of Cellular Automata in Oritatami Molecular Folding Model, December 2019.
https://hal.archives-ouvertes.fr/hal-02410874. Full version of the present article

13. Rogers, T.A., Seki, S.: Oritatami system; a survey and the impossibility of simple
simulation at small delays. Fund. Inform. 154(1–4), 359–372 (2017)

14. Schabanel, N.: iOS CAOS simulator. hub.darcs.net/nikaoOoOoO/CAOSSimulator
15. Theyssier, G.: Automates Cellulaires: un Modèle de Complexités. Ph.D. thesis,

École Normale Supérieure de Lyon (2005)
16. Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active

self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Pro-
ceedings of the 4th Conference on Innovations in Theoretical Computer Science,
ITCS, pp. 353–354 (2013)

17. Woods, D., et al.: Diverse and robust molecular algorithms using reprogrammable
DNA self-assembly. Nature 567, 366–372 (2019)

18. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small uni-
versal Turing machines. In: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pp. 439–448 (2006)

https://doi.org/10.1007/978-3-030-00030-1_2
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/978-3-319-94812-6_22
https://doi.org/10.1007/3-540-44669-9_41
https://hal.archives-ouvertes.fr/hal-02410874

Randomization

Transmitting once to Elect a Leader on
Wireless Networks

Ny Aina Andriambolamalala(B) and Vlady Ravelomanana(B)

IRIF UMR CNRS 8243, University of Paris, Paris, France
{ny-aina.andriambolamalala,vlad}@irif.fr

Abstract. Distributed wireless network’s devices are battery-powered
most of the time. Transmitting a message uses more energy than receiv-
ing one which spends more energy than internal computations. Therefore
in this paper, we will focus on the energy complexity of leader elec-
tion, a fundamental distributed computing problem. As the message’s
size impacts on the energy consumption, we highlight that our algo-
rithms have almost optimal time complexities: each device is allowed to
send only once 1 − bit message and to listen to the network during at
most 2 time slots. We will firstly work on Radio Networks on which the
devices can detect when a node transmits alone: RNstrongCD where both
senders and receivers have collision detection capability, RNsenderCD,
RNreceiverCD and RNnoCD. If the nodes know their number n, our
algorithm elects a leader in optimal O(log n) time slots with a probabil-
ity of 1−1/poly(n). Then, if all nodes do not know n but know its upper
bound u such that log u = Θ(log n), it has O(log2 n) time complexity
on RNnoCD and RNsenderCD. On RNreceiverCD and RNstrongCD, it
has O(log(1+α) n) time complexity where α ∈]0, 1[is constant. For the
Beeping Networks model on which the devices cannot detect single trans-
missions, it has O(nα) time complexity with probability 1 − 1/poly(n).

1 Introduction

Distributed leader election problem has been extensively studied over the
years [11,12,17,19,20,26]. It consists in all the n devices of the distributed sys-
tem, denoted s1, s2, . . . , sn, agreeing on one device to be the leader in a decen-
tralized manner. The study of its energy complexity gained in importance with
the design of Low-power Wireless Sensor Devices [14,23,25]. On such devices,
transmitting uses more energy than listening to the network which spends more
energy than internal computations [3,17,23,25]. For example, in [23], each device
consumes respectively 1.8W, 0.6 W and 0.05 W when transmitting, receiving a
message and having radio switched off. Such energy consumption also depends
on the collision detection capability [6,17] and the message’s size [2]. Energy
complexity is the maximum over all devices of the time slot number during
which any device is awake1. In this paper, each node exchanges only a single bit

1 When it transmits or listens to the network.
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 439–450, 2020.
https://doi.org/10.1007/978-3-030-61792-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_35&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_35

440 N. A. Andriambolamalala and V. Ravelomanana

message, transmits at most once and listens to the network during at most two
time slots. This is in contrast with the works in [4,11,21] where the messages
have O(log n) or even larger size [6,10]. We found some similarities between our
model and a distributed real-time communication model (Time Triggered Proto-
cols) on which a unique sending slot is assigned to each node [18,22]. This latter
model was widely used for designing energy-efficient algorithms on Wireless Sen-
sor Networks [1,15]. We consider the single-hop2 Networks defined below, the
basic ingredient out of which larger multi-hop networks are built [21,26].

Single-Hop Radio Networks or RN. Introduced by Chlamtac and Kutten in the
80’s [7], communications occur in synchronous time slots. At any time slot, a
node independently decides whether to transmit, to listen to the network, or to
remain idle or asleep. The network can have three status: Single if exactly one
node transmits, Null if no node transmits and Collision if at least two nodes
transmit. Only the Single transmissions are received by the listening nodes.
We consider four models: on RNstrongCD, both transmitters and listeners have
collision detection capability and on RNsenderCD, only transmitters can detect
collision. On RNreceiverCD or RNCD, only listeners can detect collision but
transmitters can not and on RNnoCD, no device has collision detection.

Single-Hop Beeping Networks or BN. This was introduced in 2010 by Cornejo
and Kuhn [8] and is strictly weaker than the RN model as far as the message
length and the collision detection capability are concerned [2]. It makes little
demands on the devices which need only be able to do carrier-sensing as well
as differentiating between silence and the presence of a jamming signal on the
network. The communications occur synchronously as in RN but the transmit-
ting nodes cannot detect collisions and the listening nodes cannot distinguish
between single and more beeps emitted by their neighbors.

To use randomness, we assume that the devices can generate discrete ran-
dom variables (see for instance Devroye [9]). We also assume that these devices
are initially anonymous and indistinguishable and can do any internal computa-
tions [6,20]. They cannot communicate on the network when in a sleeping state.
However, they can choose to wake up or to sleep at any time slot. All presented
algorithms in this paper succeed with high probability3 or w.h.p. for short.

1.1 Related Works

Considering single-hop RNCD, in the 70’s, Tsybakov [24], Capetanakis [5]
designed deterministic leader election algorithms terminating in O(log n) time
slots. Such algorithms are optimal since Greenberg and Winograd [13] have
established a lower bound of Ω(log n) on the time complexity for determinis-
tic algorithms when all nodes known n. On the randomized side, Willard [26]
designed protocols working in expected O(log log n) and in O(log n) time slots

2 The underlying graph of the network is complete.
3 An event εn occurs w.h.p. if P[εn] ≥ 1 − n−c where c is a positive constant.

Transmitting once to Elect a Leader on Wireless Networks 441

with high probability when n is unknown. Given an error rate ε, without the
knowledge of n, Nakano and Olariu [21] provided a randomized algorithm ter-
minating in O(log log n) + o(log log n) + O(log 1/ε) time slots with a proba-
bility exceeding 1 − ε. They also provided a lower bound of Ω(log n) for uni-
form protocols. Ghaffari, Lynch and Sastry [12] extended this lower bound
to all protocols: given an upper bound u of n, they presented a lower bound
of Ω(min{log (u/n), log (1/ε)}) for leader election algorithms succeeding with
probability greater than 1 − ε. Amongst other results, Kardas, Klonowski and
Pajak [17] designed a leader election algorithm for the RNstrongCD model where
n is unknown, succeeding in O(logε n)4 expected time slots with O(log log log n)
energy complexity. When the nodes know Θ(n), Jurdziński, Kutyłowskiowski,
and Zatopiański [16] designed an algorithm with O(log∗ n)5 energy complexity
and O(log n) time complexity on the RNCD model. Bender, Kopelowitz, Pettie
and Young [4] then gave an O(log(log∗ n)) upper bound for the energy complex-
ity of leader election and approximate counting on RNCD when n is unknown.
In [6], Chang, Kopelowitz, Pettie, Wang and Zhan presented a leader election
protocol for RNreceiverCD (resp. RNnoCD) with no(1) time complexity and
O(log log∗ n) energy complexity (resp. O(log∗ n)) when n is unknown. Amongst
several important results, they proved a Ω(log log∗ n) (resp. Ω(log∗ n)) lower
bound for the energy complexity of leader election on RNCD (resp. RNnoCD)
for such setting.

1.2 Our Results

The following Table 1 shows what differentiate our results from existing results.

Table 1. Difference between our results and existing results.

Existing results

Assumptions Model Time Energy Probability

n known RNCD [17] O(log n) O(log log log n) 1 − O(1/n)

Θ(n) known RNCD [16] O(log n) O(log∗ n) 1 − O (1/n)

n unknown RNCD, RNnoCD [6] O(no(1)) O(log∗ n) 1 − O (1/n)

n unknown RNstrongCD, RNsenderCD O(no(1)) O(log log∗ n) 1 − O (1/n)

Our results

n known RNCD, RNnoCD O(log n) 3 1 − O (1/n)

n known RNstrongCD, O(log n) 2 1 − O (1/n)

RNsenderCD, Sect. 2.1

n unknown RNnoCD O(log2 n) 3 1 − O (1/n)

and RNsenderCD, Sect. 2.2 O(log2 n) 2 1 − O (1/n)

Θ(log n) BN α ∈]0, 1[O(nα/(α+1)× 2 1−
knowna Sect. 3 log n) O(n−α/(α+1))
aAn upper bound u of n is known and log u = Θ(log n).

4 logε n = (log n)ε for any constant ε.
5 log∗ n represents the iterated logarithm of n.

442 N. A. Andriambolamalala and V. Ravelomanana

Our algorithm’s design is based on the nodes locally generating random val-
ues before communicating on the network in a deterministic way. Each node
transmits at most once and listens to the network during at most 2 time slots.
When n is known, the presented algorithm in Sect. 2.1 is optimal in view of both
time [21] and energy complexities [17]. As the IDs of the nodes commonly fit in
O(log n) bits, in Sect. 2.2, u is an upper bound of n such that log u = Θ(log n)
i.e. u ∈]n, nc]. The result in [6] can be adapted to work on such setting with the
same O(log2 n) time complexity, O(1) energy complexity and O(log n log log n)
messages size. The best result on this scenario is the O(log n) time complexity
with O(log∗ n) energy presented in [16] when all nodes know Θ(n). Note that
the assumption of knowing Θ(log n) is slightly weaker than knowing Θ(n).

2 Radio Networks

2.1 The Nodes Initially Know the Exact Value of n

We start by assuming that all the nodes initially know the exact value of n and
remembering that in the RNnoCD, only the listening nodes can differentiate
from single, no transmitter or multiple transmitters. We take advantage of this
ability to simulate loneliness detection [12] in such a model. Our goal is to cause
the following events to occur during the execution of such an algorithm:
–(i) If t0 = 0 is the initial time slot, there is a time slot tg = t0 + g when exactly
one node s1 transmits alone while a set Sz of nodes listens to the network.
–(ii) Then, exactly one second node s2 ∈ Sz transmits alone at tg + 1 (while s1

listens to the network) to notify s1 that it was elected. Thus, s2 is the unique wit-
ness of the probable election of s1. To fulfill this goal, our algorithm is based on
each node locally generating random values and communicating on the network
in a deterministic manner, to find out two consecutive unique6 values. There-
fore, we make each node generate one copy of a discrete random variable (r.v.
for short) X such that if X1,X2, . . . , XN are N independent copies of X: there
are 2 unique consecutive values Xi,Xi+1 with a constant probability. G(1/2)7,
the geometric distribution with parameter 1/2 respects such property.

We use lg a to denote the logarithm of a in base 2. We suppose that log a,
lg a and ea are integers for any value a.

Remark 1. We use some basic probability theories and the Chernoff bound for-
mula to prove all the presented Lemmas in this Section. Due to space constraint,
such proofs are not shown in this extended abstract.

Lemma 1. Let X1,X2, . . . , XN be N independent copies of a r.v. distribution
following G(1/2). I is a discrete interval of integers and |I| is the size of the
interval I. We then have I = {I0, I1, . . . I|I|−1} where Ir = I0 + r is an integer.
Let p be the probability that ∃(i, j) ∈ [1, N]2 such that Xi = lg N,Xj = lg N −
1 and Xl /∈ {lg N − 1, lg N}∀l /∈ {i, j}. We have

p >
1
5

(
1 − O

(
1
N

))

6 A random value is said to be unique if it is held by exactly one node.
7 If X is a r.v. distributed as G(1/2), qk = P[X = k] = 2−k−1 for all k ≥ 0.

Transmitting once to Elect a Leader on Wireless Networks 443

Overview of the Algorithm: It works on RNnoCD and RNCD when each node
knows n. In what follows, each node si has a status denoted Status(si), which
can take one of the following values: Null is the initial status, Candidate if si

is candidate to be the leader, Eliminated if si cannot be elected, Marked if si

is temporarily marked to do some computations and Leader if si is the elected
node. Any node si having Status(si)=Null is designated as a Null node and
we do the same for all status. Each node is initially sleeping and is restricted to
send a 1 − bit message only once. Our algorithm is designed to make each node
si aware of its final Status(si) ∈ {Leader, Eliminated}.

Our main idea is to make each node si locally generate one random copy Xi

of a r.v. X distributed as G(1/2). Then, all nodes browse through8 the interval
I = [lg n − 1, lg n], in order to find out which two of them have consecutive
unique random values. For instance, by Lemma 1, a sequence of X1,X2, . . . , Xn

with unique node si (resp. sj) holding Xi = lg n − 1 (resp. Xj = lg n) occurs
with a constant probability. Thus such idea leads us to the election of si with
a constant probability in O(|I|) time slots. Then, to reach the high probability
requirement, we have to execute such algorithm O(log n) times by keeping the
energy complexity at a maximum of 3. To do so, our new algorithm is subdivided
into 2 log n+1 steps. All nodes are firstly distributed such that O(n/ log n) nodes
participate to each step and each node participates to only one step. During each
such step, O(n/ log n) nodes then do a leader election succeeding with a constant
probability as described earlier.
Step 0: choice of step. Each node chooses uniformly at random in which step
it will participate. Let Sz be the set of nodes participating to Step z, ∀z > 0.

Lemma 2. Card(Sz) ∈ [2n/5 log n, 3n/5 log n] with a probability greater than
1 − e−O(n/ log n).

Each step is subdivided into 3 Phases: candidacy, witnessing and browsing. For
the sake of clarity, we describe the execution of Step 1 but this will be general-
ized for any Step z in the presentation of the algorithm. During the candidacy
phase, each node in S1 chooses to be Candidate or Eliminated. Then, on the
witnessing9 phase, each Eliminated node in S1 chooses at which time slot of
the browsing phase it will witness for the election of a node. Finally, during the
browsing phase, all nodes in S1 browse through I to elect a leader. I is defined
by Lemma 1 by replacing N with O (n/ log n). For greater clarity, we present
Phase 3 before Phase 2.
Step 1 Phase 1: candidacy. At t0, each node si ∈ S1 locally generates one
independent copy Xi of a r.v. X distributed as G(1/2). Based on Lemma 1, all
nodes in S1 having Xi ∈ I = [lg (2n/5 log n) − 1, lg (3n/5 log n)] then take the
Candidate status and the other nodes of S1 become Eliminated.

Lemma 3. There are O(log n) Candidate nodes in each Step with a probability
greater than 1 − O (log n/n).
8 At each time slot t0, t1, . . . , tg, each node si checks if the corresponding value Ig in

the interval I is equal to its Xi, then transmits or does some computations at tg.
9 Listening to verify an election at the time slot.

444 N. A. Andriambolamalala and V. Ravelomanana

Step 1 Phase 3: browsing through I. This phase uses an odd/even time
slots scheduling. Even time slots {t0, t2, . . . , t2g} are dedicated for transmissions
and odd time slots {t1, t3, . . . , t2g+1} are used for feedback. At t0, each Can-
didate node si ∈ S1 checks if Xi = I0, then, transmits a 1 − bit message
(I0 = lg (2n/5 log n) − 1). Each S1’s Candidate node si having Xi = I1 listens
to the network. Then, at t1, the nodes with Xi = I0 listen in their turn and if
the nodes that listened at t0 received a message, they send a single bit feedback
at t1. A node that transmitted at t0 and receives the feedback at t1 becomes
Leader and the other nodes become Eliminated. Each Candidate node
si ∈ S1 executes these computations at each time slot t0, t1, . . . , tg, . . . , t2|I|−1,
checking if its Xi = Ig at tg. It is possible to have several consecutive unique
random values in the interval I, involving the election of multiple leaders. In
order to bypass such a problem, we add the following Phase 2 before Phase 3.

Step 1 Phase 2: witnessing an election at a time slot and flooding
the next time slots. After Phase 1, the O (n/ log n) Eliminated nodes in S1

(Lemma 2 and Lemma 3) are distributed to witness the probable election of a
leader at each time slot of Phase 3. Let T be the time complexity of Phase 3.
We have T = 2|I| ≤ 6. At the round t0, after executing Phase 1, each Elim-
inated node in S1 chooses uniformly at random or UAR one time slot tw or
time to witness from {t0, t2, . . . , tT−2}. So tw = UAR({t0, t2, t4})10. These Elim-
inated nodes listen to the network at tw and tw+1 during Phase 3. They receive
messages at both points if a leader is elected. So, to avoid another election, each
node chooses a time to flood11 tf = UAR({tw + 2, . . . , t(4|I| log n)−1}) and trans-
mits at tf . By flooding all the remaining time slots, no other Candidate node
can transmit alone. The following Fig. 1 illustrates the execution of one step of
such algorithm whith 8 devices.

2

1

1

1

3

4

5
1 2 3 4 52

Generate r.v.
leader

Eliminated nodes
Candidate nodes

Witnessing election
Flooding

Fig. 1. Leader election for 8 devices and I = [3, 5].

Lemma 4. Each time slot of such leader election algorithm is witnessed and
flooded by at least one node with a probability greater than 1 − e−O(n/ log2 n).
10 UAR(B) returns one value picked uniformly at random from the set B.
11 Sending a message at the time slot if a leader has already been elected.

Transmitting once to Elect a Leader on Wireless Networks 445

Algorithm 1. LeaderElection(n).

Input : The exact value of n.
Output: Each node si with a Status(si) ∈ {Leader, Eliminated}.

1 Step 0: Each node enters a set UAR({S1, S2, . . . , S2 log n}) where Sz is
the set of nodes that will participate in Step z.

2 Step 1 to Step 2 logn: for z from 1 to 2 log n do
3 Step z Phase 1: Each node si ∈ Sz locally generates a random value

Xi distributed as G(1/2).
4 Each node si ∈ Sz having Xi ∈ I = [lg (2n/5 log n) − 1, lg (3n/5 log n)]

sets Status(si) ← Candidate, Status(si) ← Eliminated otherwise.
5 Step z Phase 2: Each Eliminated node in Sz sets

tw ← UAR({t(z−1)2|I|, t(z−1)2|I|+2, . . . , t2z|I|−2}) and
tf ← UAR({tw + 2, . . . , t(4 log n|I|)−1}).

6 Step z Phase 3: Each node runs the Browse(I) procedure.
7 Each remaining Candidate node si sets status(si) ← Eliminated.
8 end

Algorithm 2. Browse(I): called at Step z.

Input : Interval I.
Output: Each node si with Status(si) ∈ {Leader, Eliminated}.

1 for g from 0 to |I| − 1 do
2 Each node sets t = t2(z−1)|I|+2g.
3 Each Candidate node si ∈ Sz with Xi = Ig sends 1 − bit at time slot

t and listens at t + 1.
4 Each Candidate node sj ∈ Sz with Xj = Ig+1 listens at t.
5 if sj receives a message at t then
6 sj transmits 1 − bit message at t + 1.
7 end
8 if si receives a message at t + 1 then
9 si sets Status(si) ← Leader.

10 end
11 Each Eliminated node se ∈ Sz having tw = t listens at t and t + 1.
12 if se receives a message at both t and t + 1 then
13 se sets Status(se) ← Marked.
14 end
15 Each Marked node that has tf = t transmits at t and sets

Status(se) ← Eliminated.
16 end

Lemma 5. During the execution of LeaderElection(n), each node wakes
up to transmit one bit at most once and listens to the network during at most
two time slots.

446 N. A. Andriambolamalala and V. Ravelomanana

Remark 2. On the RNsenderCD and RNstrongCD models, each node can know
when it transmits alone. Then, the other nodes do not have to notify the leader
that it was elected. Thus, we can cause the Candidate nodes to never listen to
the network and the Eliminated nodes to witness at only one time slot.

Theorem 1. In single-hop RNnoCD and RNCD (resp. RNstrongCD and
RNsenderCD) networks of known large size n, there is a randomized Monte-
Carlo leader election algorithm succeeding in O(log n) time slots with a probabil-
ity of at least 1 − O

(
n−1/3

)
. Each node transmits 1 − bit message no more than

once and listens to the network for a maximum of two (resp. one) time slots.

Proof. By Lemma 1, a leader can be elected with a strictly positive
constant probability by running the Browse(I) protocol once. Thus, the
LeaderElection(n) algorithm elects a leader w.h.p. in 4|I| log n = O(log n)
time slots as |I| ≤ 6. According to Lemma 4, a maximum of one leader is
elected with a probability greater than 1− e−O(n/ log2 n) ≥ 1−O

(
n−1

)
for suffi-

ciently large n. During the execution of LeaderElection(n), each node wakes
up during at most three time slots, transmitting once and listening to at most
two time slots for the RNnoCD and RNCD (Lemma 5). Applying Remark 2 to
LeaderElection(n), we have each node listening at exactly on time slot for
the RNstrongCD and RNsenderCD models.

Remark 3. To simplify Algorithm1, we made it run the Browse(I) proto-
col 2 log n times. Thus, it succeeds with probability 1 − O

(
n−1/3

)
. This can be

improved to reach 1 − O
(
n−1

)
by running Browse(I) 5 log n times.

2.2 The Nodes Do Not Know n

When the nodes do not know n but know its upper bound u such that
log u = Θ(log n) i.e. u ∈]n, nc] where c > 1, we adapt the LeaderElection(n)
algorithm as follows. On Step 0, each node chooses UAR to participate in one of
the remaining 2 log u Steps. Let Sz be the set of nodes participating in Step z.
By Lemma 2, Card(Sz) ∈ [2n/5 log u, 3n/5 log u] w.h.p. Then on Phase 1 of each
Step z, in order to have an interval containing the interval I = [lg (2n/5 log u)−1,
lg (3n/5 log u)], each node sets a new interval J = [lg

(
2u1/c/5 log u

) − 1,
lg (3u/5 log u)]. Then, on Phase 2, the nodes eliminated after Phase 1 set
tw = UAR({t(z−1)2|J|, t(z−1)2|J|+2, . . . , t2z|J|−2}) and tf = UAR({tw + 2, . . . ,
t(4 log u|J|)−1}). Finally, on Phase 3, all nodes run the Browse(J) protocol.

Theorem 2. In single-hop RNnoCD and RNCD (resp. RNsenderCD and
RNstrongCD) networks of unknown large size n, if an upper bound u of n is
given in advance to all the nodes, there is a randomized Monte-Carlo leader
election algorithm succeeding in O(log2 n) time slots with a probability greater
than 1 − O

(
n−1

)
. Each node transmits during no more than one time slot and

listens to the network during at most two (resp. one) time slots.

Proof. By applying Card(J) = O(log n) and Remark 3 to the proof of Theorem 1,
we obtain w.h.p. a O(log2 n) time complexity and an energy complexity of at
most 3. �	

Transmitting once to Elect a Leader on Wireless Networks 447

3 Beeping Networks

In this section, we consider the BN model where neither a beeping node si nor
listening nodes can detect if si beeps alone or not. The goal here is to make a node
know that it beeped along w.h.p. without any feedback from the network. To do
so, our main idea is based on the uniqueness of the maximum of n independent
copies Y1, Y2, . . . , Yn of the following new r.v.

Definition 1 (Definition of the distribution of the r.v. Y). Throughout
this paper, let pk = P[Y = k] for all integers k ≥ 0 defined for some α ∈]0, 1[as
follows. Fix β = 1/(1 + α),

p0 = e−1 and pk = exp
(−kβ

) − exp
(−(k + 1)β

)
for all k > 0 . (1)

If such a maximum is unique, we cause each node to generate a random copy
of Y and our algorithm has to localize which node holds such a maximum. This
latter node then becomes Leader.

The following observation is crucial for our purpose:

Lemma 6. Let Y1, Y2, · · · , YN be N independent copies of a r.v. distributed as
described by (1) and m = max1≤i≤N{Yi}
(a) P [Card{l such that Yl = m} = 1] ≥ 1 − O (1/ logα N) .

(b) Let μ = P
[
(log N − log log log N)(1+α) ≤ m ≤ (log N + log log N)(1+α)

]
:

μ ≥ 1 − O (1/ log N) .

(c) Set L = [(log N − log log log N)(1+α), (log N + log log N)(1+α)] ,
and let q be the random variable such that q = Card({l such that Yl ∈ L}).

P[q ≥ 3 log log N] ≤ O

(
1

log N

)
.

Remark 4. Due to space limitation, we do note give the full proof of this Lemma
in this extended abstract. Such proof uses some basic probability properties, the
standard Euler-Maclaurin formula and the Chernoff bounds formula.

The time complexities of our algorithms on BN, when the nodes know and
do not know n are quite similar. Thus, we immediately consider the case when
the nodes do not know n.

3.1 The Nodes Do Not Know n

Each node knows an upper bound u of n such that log u = Θ(log n) i.e. u ∈]n, nc]
where c > 1 is known by the nodes. In order to reach the high probability
requirement, we adapt LeaderElection(n) to work on BN model with the
following 3 phases. For better clarity, we present Phase 3 before Phase 2.

448 N. A. Andriambolamalala and V. Ravelomanana

– Phase 1: Let V = exp
(
uα/(c(α+1))

)
. Based on Lemma 6 (a), each node si gen-

erates V random copies Yi,1, Yi,2, . . . , Yi,V of a r.v. Y distributed as described
by (1) and saves Yi = maxh=1,2,...V {Yi,h}. Then, according to Lemma 6 (b),
with N = nV , each node computes L0 = (log V − log log log V)(1+α) and
LLast = (log(uV) + log log V)(1+α). Each node si having Yi in the interval of
integers L = [L0, LLast] = {L0, L1, . . . , LLast} such that Lr = L0+r, becomes
Candidate and the other nodes are Eliminated.

– Phase 3: Each Candidate node browses through the interval L one value
at a time as in the Browse(I) protocol but in reverse order from LLast

to L0 in order to find out which holds the maximum. This latter node
becomes Leader. Firstly, if a Candidate node si has Yi = LLast, it
becomes Leader and beeps at t0. At each time slot t0, t1, . . . , tg, each Can-
didate node checks if Yi = LLast − (g + 1). If a Candidate node has
Yi = LLast − (g + 1), it listens to the network at tg. If it does not hear a
beep at tg, it beeps at tg+1 and becomes Leader.

Some values in L may not be picked by any node i.e. there can be time slots dur-
ing Phase 3 when node neither beeps nor listens to the network. The algorithm
can then elect more than one leader. To circumvent that, we introduce a new
witnessing procedure which consists of flooding all time slots after an election.

– Phase 2: All Eliminated nodes sets tw = UAR({t0, . . . , t|L|−1}). They will
listen to the network at tw on Phase 3. Then, if a node beeps at a time slot
tg of Phase 3, all nodes hearing a beep: the Candidate nodes with Yi =
L|L| − (g + 1) and the Eliminated nodes with tw = tg, have to beep at tg+1

in order to notify the next Candidate nodes (which become Eliminated)
that a Leader has already been elected.

After Phase 3, all remaining Candidate nodes become Eliminated.

Theorem 3. Fix α ∈]0, 1[, in single-hop BN networks of large size n, if no node
knows n, but an upper bound u of n is given in advance to all the nodes, there
is a randomized Monte-Carlo leader election algorithm that elects a leader in
O(nα) time slots with a probability of 1 − O

(
n−α2/(α+1)

)
. Each node transmits

and listens during a maximum of one time slot.

Proof. As for the proof of Theorem 1, the time complexity comes from the
time spent to browse through the interval L which is O(|L|) = O(nα). The
success probability depends on two facts: the probability that the maximum of
all generated random values in Phase 1 is unique and the probability that each
time slot of Phase 3 is witnessed by at least one node. It is straightforward to
see that these probabilities are greater than 1 − O

(
n−α2/(1+α)

)
and that each

node transmits and listens to the network at most once. �	

Conclusion

We designed leader election algorithms taking into account their energy con-
sumption and their time complexities while each device can transmit 1 − bit

Transmitting once to Elect a Leader on Wireless Networks 449

message once and can listen to the network during a maximum of 2 time slots.
Our algorithm design is based on each node locally generating random values
with a probability distribution and communicating in a deterministic manner on
the network to find out which node has a unique value. The latter node becomes
the leader. Its time complexity only depends on the time slots spent to localize
such a node. Assuming that the nodes are initially indistinguishable and know
n, our randomized algorithm terminates in optimal O(log n) time slots w.h.p.
in the Radio Networks with and without collision detection. If a common value
α ∈]0, 1[is given to all nodes, it has O(nα/(α+1)) time complexity for the Beeping
Networks. For the realistic case when the nodes do not know n, if a common
upper bound u such that log u = Θ(log n) is given in advance to all the nodes,
our algorithms terminate in O(log2 n) time slots for the RN models and O(nα)
for BN. Some existing results can be adapted to reach O(1) energy complexity
on the models studied in this paper [4,6] but we present the first results with
each node transmitting at most once and listening to the network during at
most two time slots, exchanging 1 − bit messages. Optimal energy complexity
has been reached in [6] for the Radio Networks models when the nodes have no
information about the topology of the network, but designing a polynomial time
leader election for the BN model matching such lower bounds is open.

References

1. Aby, A.T., Guitton, A., Lafourcade, P., Misson, M.: SLACK-MAC: adaptive MAC
protocol for low duty-cycle wireless sensor networks. In: Mitton, N., Kantarci,
M.E., Gallais, A., Papavassiliou, S. (eds.) ADHOCNETS 2015. LNICST, vol. 155,
pp. 69–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25067-0_6

2. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)

3. Barnes, M., Conway, C., Mathews, J., Arvind, D.: ENS: an energy harvesting wire-
less sensor network platform. In: Proceedings of the 5th International Conference
on Systems and Networks Communications, pp. 83–87. IEEE (2010)

4. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with
log-logstar channel accesses. In: Proceedings of the 48th Annual ACM Symposium
on Theory of Computing, pp. 499–508. ACM (2016)

5. Capetanakis, J.I.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf.
Theor. 25(5), 505–515 (1979)

6. Chang, Y.J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential sepa-
rations in the energy complexity of leader election. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 771–783. ACM
(2017)

7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks-problem analysis and
protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)

8. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15763-9_15

9. Devroye, L.: Non-Uniform Random Variate Generation. Devroye’s web page (2003).
http://www.nrbook.com/devroye/

https://doi.org/10.1007/978-3-319-25067-0_6
https://doi.org/10.1007/978-3-642-15763-9_15
http://www.nrbook.com/devroye/

450 N. A. Andriambolamalala and V. Ravelomanana

10. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM (JACM) 60(5), 35 (2013)

11. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio net-
works. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 748–766 (2013)

12. Ghaffari, M., Lynch, N., Sastry, S.: Leader election using loneliness detection. Dis-
trib. Comput. 25(6), 427–450 (2012)

13. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case
to resolve conflicts deterministically in multiple access channels. J. ACM 32(3),
589–596 (1985)

14. Guo, C., Zhong, L.C., Rabaey, J.M.: Low power distributed mac for ad hoc sensor
radio networks. In: Proceedings of the IEEE Global Telecommunications Confer-
ence, GLOBECOM 2001. vol. 5, pp. 2944–2948. IEEE (2001)

15. He, Y., Du, P., Li, K., Yong, S.: An optimization algorithm based on the Monte
Carlo node localization of mobile sensor network. Int. J. Simul. Syst. Sci. Technol.
17, 20 (2016)

16. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Weak communication in single-hop
radio networks: adjusting algorithms to industrial standards. Concurr. Comput.
Pract. Exper. 15(11–12), 1117–1131 (2003)

17. Kardas, M., Klonowski, M., Pajak, D.: Energy-efficient leader election protocols
for single-hop radio networks. In: Proceedings of the 42nd International Conference
on Parallel Processing, ICPP, pp. 399–408. IEEE (2013)

18. Liu, F., Narayanan, A., Bai, Q.: Real-time systems (2000)
19. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local com-

puter networks. Commun. ACM 19(7), 395–404 (1976)
20. Nakano, K., Olariu, S.: Randomized leader election protocols in radio networks

with no collision detection. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee,
D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 362–373. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3_31

21. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE
Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002)

22. Oh, H., Han, T.D.: A demand-based slot assignment algorithm for energy-aware
reliable data transmission in wireless sensor networks. Wire. Netw. 18(5), 523–534
(2012)

23. Sivalingam, K.M., Srivastava, M.B., Agrawal, P.: Low power link and access proto-
cols for wireless multimedia networks. In: Proceedings of the IEEE 47th Vehicular
Technology Conference. Technology in Motion, vol. 3, pp. 1331–1335. IEEE (1997)

24. Tsybakov, B.S.: Free synchronous packet access in a broadcast channel with feed-
back. Problem. Inform. Trans. 14(4), 259–280 (1978)

25. Vieira, M.A.M., Coelho, C.N., Da Silva, D., da Mata, J.M.: Survey on wireless
sensor network devices. In: Proceedings of the 2003 IEEE Conference on Emerging
Technologies and Factory Automation, vol. 1 (2003)

26. Willard, D.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM J. Comput. 15(2), 468–477 (1986)

https://doi.org/10.1007/3-540-40996-3_31

Asymptotics for Push
on the Complete Graph

Rami Daknama, Konstantinos Panagiotou, and Simon Reisser(B)

Ludwig-Maximilians Universität München, Munich, Germany
{kpanagio,reisser}@math.lmu.de

Abstract. We study the popular randomized rumour spreading proto-
col push. Initially, a node in a graph possesses some information, which
is then spread in a round based manner. In each round, each informed
node chooses uniformly at random one of its neighbours and passes the
information to it. The quantity to investigate is the runtime, that is, the
number of rounds until everybody has received the information.

In this work, we study the case where the underlying graph is com-
plete with n nodes. Even in this most basic setting, specifying the limiting
distribution of the runtime as well as determining asymptotically related
quantities, like its expectation, have remained open problems since the
protocol was introduced.

As our main result, we show that the limiting distribution of the
runtime does not converge, and that it becomes, after the appropriate
normalization, asymptotically periodic both on the log2 n as well as on
the lnn scale. In particular, the limiting distribution converges only if
we restrict ourselves to suitable subsequences of N, where simultaneously
log2 n−�log2 n� → x and lnn−�lnn� → y for some fixed x, y ∈ [0, 1). We
are not aware of any other structure exhibiting such a behaviour. Apart
from that, on such subsequences we show that the expected runtime is
log2 n+ lnn+ h(x, y) + o(1), where h is explicitly given and numerically
|suph − inf h| ≈ 2 · 10−4.

Keywords: Randomized rumour spreading · Asymptotics · Complete
graph

1 Introduction

We consider the well-known and well-studied rumour spreading protocol Push. It
has applications in replicated databases [6], multicast [1] and blockchain technol-
ogy [20]. Push operates on graphs and proceeds in rounds as follows. In the begin-
ning, one node has a piece of information. In subsequent rounds each informed
node chooses a neighbour independently and uniformly at random and informs
it. For a graph G = (V,E) with |V | = n and a node v ∈ V we denote by
X(G, v) the (random) number of rounds needed to inform all nodes, where at
the beginning of the first round only v knows the information. We call X(G, v)

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 451–463, 2020.
https://doi.org/10.1007/978-3-030-61792-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_36&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_36

452 R. Daknama et al.

the runtime (on G with start node v). The most basic case, and the one that we
study here, is when G is the complete graph Kn. Since in that case the initially
informed node makes no difference, we will abbreviate X(Kn, v) = Xn for any
starting node v.

Related Work. There are several works studying the runtime of push on the
complete graph. The first paper considering this protocol is by Frieze and Grim-
mett [12], who showed that with high probability (whp), that is, with proba-
bility 1 − o(1) as n → ∞, that Xn = log2 n + ln n + o(ln n). Moreover, they
obtained bounds for (very) large deviations of Xn from its expectation. In [21],
Pittel improved upon the results in [12], in particular, he showed that for any
f : N → R

+ with f = ω(1), whp, |Xn − log2 n − ln n| ≤ f(n). The currently
most precise result in this context was obtained by Doerr and Künnemann [7],
who considered in great detail the distribution of Xn. They showed that Xn can
be stochastically bounded (from both sides) by coupon collector type problems.
This gives a lot of control regarding the distribution of Xn, and it allowed them
to derive, for example, very sharp bounds for tail probabilities. Apart from that,
it enabled them to consider related quantities, as for example the expectation of
Xn. Among other results, their bounds on the distribution of Xn imply that

�log2 n� + lnn − 1.116 ≤ E[Xn] ≤ �log2 n	 + lnn + 2.765, (1)

which pins down the expectation up to a constant additive term. Besides on com-
plete graphs, push has been extensively studied on several other graph classes.
For example, Erdös-Rényi random graphs [9,10], random regular graphs and
expander graphs [5,11,19]. More general bounds that only depend on some
graph parameter have also been derived, e.g. the diameter [9], graph conduc-
tance [3,4,13,18] and node expansion [4,14,15,22].

Results. In order to state our main result we need some definitions first. Set

g = g(1) : [0, 1] → [0, 1], x
→ xex−1

and g(i) : [0, 1] → [0, 1], g(i) = g ◦ g(i−1), i ≥ 2. As we will see later, the
function g describes, for a wide range of the parameters, the evolution of the
number of uninformed nodes; in particular, if at the beginning of some round
there are xn uninformed nodes, then at the end of the same round there will
be (roughly) g(x)n uninformed nodes, and after i rounds there will be (roughly)
g(i)(x)n uninformed nodes. This fact is not new – at least for bounded i – and
has been observed long ago, see for example [21, Lem. 2]. For x ∈ R define the
function

c(x) = −x + lim
a→∞,a∈N

lim
b→∞,b∈N

−a + b + ln
(
g(b)(1 − 2−a−x)

)
, (2)

whose actual meaning will become clear later. We will show that the double limit
exists, so that this indeed defines a function c : R → R. Moreover, we will show

Asymptotics for Push on the Complete Graph 453

0 0.5 1 1.5

0

2

4

6
·10−10

x

c(
x
)
−

c(
0)

Fig. 1. This figure shows the function
c(x)−c(0), c(0) ≈ 0.105, plotted for values
of x between 0 and 2. The periodic nature
of the function and the small amplitude is
evident.

0

0.5

0

0.5

4

6

·10−4

xy

h
(x
,y
)
−

1.
18

2

Fig. 2. The figure shows the function
h(x, y)− 1.182 plotted for values of x and
y between 0 and 1. This function is not
periodic.

that c is continuous and periodic with period 1, that is, if we write {x} = x−�x�
then c(x) = c({x}), and that (numerically) |sup c − inf c| ≈ 10−9, cf. Fig. 1.

The Gumbel distribution will play a prominent role in our considerations. We
say that a real valued random variable G follows a Gum(α) distribution with
parameter α ∈ R, G ∼ Gum(α), if for all x ∈ R

P [G ≤ x] = e−e−x−α

, x ∈ R.

Finally, let γ denote the Euler-Mascheroni constant. With all these ingredients
we can now state our main result, which specifies – see also below – the distri-
bution of the runtime of push on the complete graph.

Lemma 1. Let G ∼ Gum(γ). Then, as n → ∞
sup
k∈N

∣
∣
∣P [Xn ≥ k] − P

[⌈
G + log2 n + lnn + γ + c({log2 n})

⌉ ≥ k
]∣∣
∣ = o(1).

This lemma does not look completely innocent, and it actually has striking
consequences. It readily implies the following result, which establishes that the
limiting distribution Xn is periodic both on the log2 n and on the lnn scale.
In order to formulate it, we need a version of the Gumbel distribution where
we restrict ourselves to integers only. More specifically, we say that a random
variable G follows a discrete Gumbel distribution, G ∼ dGum(α), if the domain
of G is Z and

P [G ≤ k] = e−e−k−α

, k ∈ Z.

Theorem 1. Let x, y ∈ [0, 1) and (ni)i∈N be a strictly increasing sequence of
natural numbers, such that log2 ni − �log2 ni� → x and ln ni − �ln ni� → y as
i → ∞. Then in distribution, as i → ∞

Xni
− (�log2 ni� + �ln ni�

) → dGum(−x − y − c(x)).

454 R. Daknama et al.

Some remarks are in place. First, it is a priori not obvious (at least it was
not to us) that subsequences as required in the theorem indeed exist. They do,
and the fundamental reason for this is that real numbers can be approximated
arbitrarily well by rational numbers; we include a short proof of the existence
in the Appendix. Second, it is a priori not clear that x + c(x) is not constant
for x ∈ [0, 1). If it was constant, Theorem 1 would imply that the limiting
distribution of Xn is periodic on the lnn scale only. Although we didn’t manage
to prove that x + c(x) is not constant, we have stong numerical evidence that
it indeed is not so. In particular, as we shall also see later, the double limit
in the definition of c converges exponentially fast and thus it is not difficult to
obtain accurate estimates for it and explicit error bounds. We leave it as an open
problem to study the behavior of c more accurately.

Our next result addresses the expectation of Xn. Bounds given in previous
works, for example in [7], guarantee that Xn−log2 n−ln n is uniformly integrable.
This allows us to conclude that the expectation also converges.

Theorem 2. Let x, y ∈ [0, 1) and (ni)i∈N be a strictly increasing sequence of
natural numbers, such that log2 ni − �log2 ni� → x and ln ni − �ln ni� → y as
i → ∞. Then, as i → ∞

E
[
Xni

] − (�log2 ni� + �ln ni�
) → E

[
dGum(−x − y − c(x))

]
.

For any random variable X with support in Z and finite first moment we
have that E[X] =

∑
k≥1(P [X ≥ k] − P [−X ≥ k]). Thus, for α ∈ R

E[dGum(α)] =
∑

k≥1

(
1 − e−e−k−α+1

)
−

∑

k≥1

e−ek−α

.

This converges also exponentially fast and allows for an effective numeric
treatment. In particular, for x, y ∈ [0, 1) and a strictly increasing sequence of
natural numbers (ni)i∈N such that {log2 ni} → x and {ln ni} → y we obtain
that

E
[
Xni

]
= log2 ni + lnni + h(x, y) + o(1)

with h(x, y) = E
[
dGum(−x−y−c(x))

]−x−y and numerically | sup h− inf h| ≈
2 · 10−4, cf. Fig. 2. In summary, improving (1), we get for all n ∈ N

log2 n + lnn + 1.18242 ≤ E[Xn] ≤ log2 n + lnn + 1.18263,

and these bounds are best possible as inf0≤x,y≤1 h(x, y) = 1.18242 . . . and
sup0≤x,y≤1 h(x, y) = 1.18262

Outline. In the next section we give an outline of the proof of our main results,
in which we highlight the intuitive behaviour of push. At the beginning of the
rumour spreding process push is dominated by an exponential growth of the
informed nodes (Lemma 3). For the main part, where most nodes get informed, it
closely follows a deterministic recursion (Lemma 2) and at the end it is described

Asymptotics for Push on the Complete Graph 455

by a coupon collector type problem (Lemma 4). Based on these lemmas we give
the rigorous proof of our claims in Sect. 3. Some ideas to the proof of these three
important lemmas can be also be found there, in Subsects. 3.3 and 3.4. Due to
restrictions on the number of pages we had to heavily abbreviate there.

Further Notation. Unless stated otherwise, all asymptotic behaviour in this
paper is for n → ∞. Consider a graph G = (V,E). For t ∈ N0 (= N ∪ {0})
we denote by It ⊆ V the set of informed nodes at the end of round t; in partic-
ular |I0| = 1. Analogously we write Ut = V \It for the set of uninformed nodes.
For an event A, we sometimes write PA[·] instead of P [· | A] to denote the con-
ditional probability and we write EA[·] = E[· | A]. If we condition on It, then we
also abbreviate P [· | It] = Pt[·] and E[· | It] = Et[·].

2 Proof Overview

Let us start the proof of Lemma 1 about the distribution of the runtime of push
on Kn with a simple observation, that is more or less explicit also in previous
works. Note that as long as the total number of pushes performed is o(

√
n), then

whp no node will be informed twice – this is a simple consequence of the famous
birthday paradox. That is, whp as long as |It| = o(

√
n), every node in It will

inform a currently uninformed node and thus |It+1| = 2|It|. In particular, whp

|It0 | = 2t0 , where t0 := �0.49 · log2 n�. (3)

Soon after round t0 things get more complicated. We continue with a definition.
Apart from the functions g(i) defined in the previous section, we will also need
the following functions. Set

f = f (1) : [0, 1] → [0, 1], x
→ 1 − e−x(1 − x)

and f (i) : [0, 1] → [0, 1], f (i) = f ◦ f (i−1), i ≥ 2. Some elementary properties of
f are: f is strictly increasing and concave, and f (b)(x) → 1 as b → ∞ for all
x ∈ (0, 1]. Moreover, f (i)(x) = 1−g(i)(1−x) for all x ∈ [0, 1] and i ∈ N. It is also
not hard to establish, see also [21], that f captures the behavior of the expected
number of informed nodes after one round of the protocol. Moreover, |It+1| is
typically close to f(|It|/n)n. Here we will need a more explicit qualitative control
of how |It| behaves, since our aim is to specify the limiting distribution. We show
the following statement, which implies that if we start in round t0 (set T = t0 in
that lemma) then whp for all succeeding rounds t0 + t the number of informed
nodes is close to f (t)(|It0/n|)n.

Lemma 2. Let 0 < c < 0.49 and T ≥ c log2 n. Then

PT

[
⋂

t∈N0

{∣
∣|IT+t| − f (t) (|IT |/n) n

∣
∣ ≤ n1−c/4

}
]

= 1 − O(n−c2/10).

456 R. Daknama et al.

Thus, the key to understanding |It| is to understand how f behaves when
iterated very many times. Note that when the number of informed nodes is xn for
some very small x, then the e−x term in the definition of f can be approximated
by 1 − x and therefore f(x) ≈ 1 − (1 − x)2 ≈ 2x. This crude estimate suggests
that the number of informed nodes doubles every round as long as there are
only few informed nodes, and we know already that the doubling is perfect if
xn = o(

√
n). Our next lemma actually shows that the doubling continues to be

almost perfect, as long as the total number of nodes is not close to n.

Lemma 3. Let a, T ∈ N be such that 2−a < 0.1 and T ≤ �0.49 · log2 n�. Set
t1 := �log2 n� − a. Then

∣
∣
∣2t1 − f (t1−T)

(
2T /n

)
n
∣
∣
∣ ≤ 2−2a+1n.

Combining the previous lemmas we have thus established that for any a ∈ N

with 2−a < 0.1 whp

(1 − 2−a+2) · 2t1 ≤ |It1 | ≤ 2t1 , t1 := �log2 n� − a. (4)

Here we can think of a being very large (but fixed) and then the two bounds
are very close to each other; in particular, |It1 | ≈ 2�log2 n	−a and thus It contains
a linear number of nodes. Up to that point we have studied the behaviour of the
process up to time t1. Next we perform another b steps, where again b is fixed.
Applying Lemma 2 once more and using that f (b)(x) is increasing and is less
than 1 for x < 1 yields with room to spare that, setting t2 := t1 + b, whp

(
1 − n−1/6

)
f (b)

(
(1 − 2−a+2)2t1/n

) ≤ |It2 | /n ≤
(
1 + n−1/6

)
f (b)

(
2t1/n

)
. (5)

In essence, this says that if we write x = log2 n − �log2 n� = {log2 n}, then
(we begin getting informal and obtain that)

|It2 | ≈ f (b)
(
2t1/n

)
n = f (b)

(
2−a−x

)
n, where t2 = �log2 n� − a + b.

In particular, choosing a priori b large enough makes the fraction |It2 |/n
arbitrarily close to 1, that is, almost all nodes except for a tiny fraction are
informed. All in all, up to time t2 we have very fine control of the number of
informed nodes, and we also see how the quantity {log2 n} slowly sneaks in.

After time t2 the behavior changes once more. There is an interesting con-
nection to the well-known Coupon Collector Problem (CCP), which was also
exploited in [7]. In order to formulate the connection, note that the number of
pushes that are needed to inform a node, having N informed nodes, is (in distri-
bution) equal to the number of coupons needed to draw the (N + 1)st distinct
coupon. It is a classic result that, appropriately normalized, the total number
of coupons tends to a Gumbel distribution. However, translating the number of
required pushes to the number of rounds – the quantity we are interested in – is
not straightforward. In particular, the number of pushes in one round depends on
the current number of informed nodes. On the other hand, after round t2 there

Asymptotics for Push on the Complete Graph 457

are n − o(n) informed nodes, so that we may hope to approximate the remain-
ing number of rounds with n−1 times the number of coupons in the CCP. The
next lemma establishes the precise bridge between the two problems. For two
sequences of random variables (Xn)n∈N and (Yn)n∈N we write Xn � Yn if there
is a function h : N → R

+ with h = o(1) such that P [Xn ≥ x] ≤ P [Yn ≥ x]+h(n)
for all n ∈ N, x ∈ R; Xn � Yn is defined with “≥” instead of “≤”.

Lemma 4. Let G ∼ Gum(γ), b > 2a ∈ N and assume that � · n ≤
|I�log2 n	−a+b| ≤ u · n for some �, u ∈ [0, 1). Then

Xn − �log2 n� + a − b � �ln n + ln (1/u − 1) + γ + G	
and

Xn − �log2 n� + a − b � �ln n + ln (1/� − 1) + ln (�/(e� − e + 1)) + γ + G	 .

Note that the previous discussion guarantees that �, u in Lemma 4 are very
close to 1 and very close to each other. So, the term ln(�/(e� − e + 1)) is very
close to 0. We obtain that in distribution

Xn−�log2 n�+a−b ≈ �ln n + ln (1/u − 1) + γ + G	 , where u = f (b)
(
2−a−x

)
,

and equivalently with x = log2 n − �log2 n�

Xn ≈
⌈
log2 n + lnn − a + b + ln

(
g(b)(2−a−x)

)
− x + γ + G

⌉
. (6)

Here we now encounter the mysterious function c from (2). The next lemma
collects some important properties of it that will turn out to be very helpful.

Lemma 5. The function

c(x) = lim
a→∞,a∈N

lim
b→∞,b∈N

−a + b + ln
(
g(b)(1 − 2−a−x)

) − x

is well-defined, continuous and periodic with period 1.

With all these facts at hand, the proof of Lemma 1 is completed by con-
sidering the random variable on the right-hand side of (6); in particular, the
dependence on y = ln n − �ln n� arises naturally. The complete details of the
proof, which is based on Lemmas 2–4 and follows the strategy outlined here can
be found in Sect. 3 (together with the proofs of the lemmas).

As described in the introduction, apart from the limiting distribution we
are interested in the asymptotic expectation of the runtime. A key ingredient
towards the proof of Theorem 2 is uniform integrability, which can be shown
by using the distributional bounds from [7]. Uniform integrability is a sufficient
condition that convergence in distribution implies convergence of the means.

Lemma 6. The random variable Yn := Xn − �log2 n� − �ln n� is uniformly
integrable, that is

lim
N→∞

sup
n∈N

E

[
|Yn|

∣
∣
∣ 1[|Yn| > N]

]
= 0.

458 R. Daknama et al.

3 Proof of the Main Result

In this section we complete the proof of Lemma 1 outlined in Sect. 2. Afterwards
we give the (short) proofs for Theorems 1 and 2.

3.1 Proof of Lemma 1

As the outline was indeed rigorous until (5) we take the proof up from there.
Choose the quantities a, b ∈ N such that 2a < b and recall that t1 = �log2 n�−a.
Set furthermore for brevity

� =
(
1 − n−1/6

)
f (b)

(
(1 − 2−a+2)2t1/n

)
and u =

(
1 + n−1/6

)
f (b)

(
2t1/n

)
.

Then (5) states that, for t2 = �log2 n�−a+b, we have that � ≤ n−1 |It2 | ≤ u,
and Lemma 4 yields, for Yn = Xn − �log2 n� + a − b, that

Yn � �ln n + ln (1/� − 1) + ln (�/(e� − e + 1)) + γ + G	
and

Yn � �ln n + ln (1/u − 1) + γ + G	.
The next lemma establishes that both �, u tend to 1 as a gets large, and moreover
that the difference ln (1/� − 1) − ln (1/u − 1) can be made arbitrarily small. Its
proof is omitted due to space limitations.

Lemma 7. For �, u defined as above (where b > 2a)

lim
a→∞ sup

n∈N

| ln �| = lim
a→∞ sup

n∈N

| ln u| = lim
a→∞ sup

n∈N

|ln (�/(e� − e + 1))| = 0.

Furthermore,

lim
a→∞ sup

n∈N

| ln(1 − �) − ln(1 − u)| = 0.

Thus, as n → ∞,

ln(1 − u) = ln
(
1 − f (b)

(
2t1/n

))
+ o(1) = ln

(
g(b)

(
1 − 2−a−{log2 n}

))
+ o(1).

Let ε > 0. Lemma 7 readily implies that there are a0, n0 ∈ N such that for all
a > a0 and n > n0,

Yn � �ln n + ln
(
g(b)

(
1 − 2−a−{log2 n}

))
+ γ + G − ε	

and similarly also

Yn � �ln n + ln
(
g(b)

(
1 − 2−a−{log2 n}

))
+ γ + G + ε	.

Asymptotics for Push on the Complete Graph 459

Lemma 5 guarantees that there is an a1 ≥ a0 such that for all a ≥ a1

∣
∣
∣ln

(
g(b)

(
1 − 2−a−{log2 n}

))
− a + b − (c({log2 n}) + {log2 n})

∣
∣
∣ ≤ ε.

Thus for all a > a1 and n > n0

Xn � �log2 n + lnn + c({log2 n}) + γ + G − 2ε	,
as well as Xn � �log2 n + lnn + c({log2 n}) + γ + G + 2ε	. Thus we are left
with getting rid of the ε terms in the previous equations. The following lemma
accomplishes exactly that and therefore implies the claim of Lemma 1. Its proof
is omitted due to space limitations.

Lemma 8. Let h : N → R
+ and G ∼ Gum(γ). Then

∀ε > 0 : Xn � �h(n) + G + ε	 =⇒ Xn � �h(n) + G	.
The respective statement also holds for “�”.

3.2 Proof of Theorems 1 and 2

Proof (Theorem 1). Let (ni)i∈N be a strictly increasing subsequence of N such
that log2 ni −�log2 ni� → x and lnni −�ln ni� → y. Substituting k = �log2 ni�+
�ln ni� + 1 + t for any t ∈ Z in Lemma 1 and using the continuity of c and
Lemma 8 we get that
∣
∣
∣P

[
Xni

≥ �log2 ni� + �ln ni� + 1 + t
] − P

[
G + x + y + γ + c(x) > t

]∣∣
∣ = o(1).

Using the distribution function of G ∼ Gum(γ) we get

P
[
Xni

≥ �log2 ni� + �ln ni� + 1 + t
] i→∞−→ 1 − exp

(− exp (−t + x + y + c(x))
)
.

Proof (Theorem 2). Lemma 6 states that Xn−�log2 n�−�ln n� is uniformly inte-
grable and Theorem 1 established its convergence in distribution to dGum(−x−
y − c(x)). Together this implies

E
[
Xn − �log2 n� − �ln n�] → E

[
dGum(−x − y − c(x))

]
.

3.3 Proof of Lemma 2

We will use Chernoff-type bounds to control the distribution of |It+1|. We will
exploit an approach initiated in [5] that is based on so-called self-bounding func-
tions. For x = (x1, . . . , xn) we write x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).

Definition 1 (Self-bounding function, [2,17]). A non-negative function h :
N

n → R is self-bounding if there are functions hi : Nn−1 → R such that for all
x ∈ N

n and all i = 1, ..., n,

0 ≤ h(x) − hi(x(i)) ≤ 1 and
∑

1≤i≤n

(h(x) − hi(x(i))) ≤ h(x).

460 R. Daknama et al.

Lemma 9 (Exponential inequalities for self-bounding functions, [2]).
Let n ∈ N and h : N

n → R be a self-bounding function. Let Y1, . . . , Yn be
independent random variables that take values in N. Let Y = h(Y1, . . . , Yn).
Then for s ≥ 0 and 0 < t < E[Y]

P [Y ≥ E[Y] + s] ≤ exp
(−s2

2E[Y] + 2s/3

)
, P [Y ≤ E[Y] − t] ≤ exp

(−t2

2E[Y]

)
.

Our next lemma from [5] asserts that we can apply the framework of self-
bounding functions to study It.

Lemma 10. There is m ∈ N, independent random variables Y1, ..., Ym in N and
a self-bounding function h : Nm → R such that conditioned on It,

|It+1| = h(Y1, . . . , Ym).

Lemma 11 is a concentration result for the number of informed nodes, and
it follows by applying the Chernoff-type bounds from Lemma 9. The proof of
Lemma 2 depends heavily on it.

Lemma 11. Let 0 < c ≤ 1, let t0 ∈ N and assume that |It0 | ≥ nc. For t ∈ N

and ε > 0 let Ct denote the event that
∣
∣|It+1| − Et[|It+1|]

∣
∣ ≤ (Et[|It+1|])1/2+ε.

Let C = ∩t≥t0Ct. Then Pt0 [C] = 1 − O (n−cε) .

3.4 Proof of Lemma 4

The next well known theorem, that is linked to the Coupon Collector Problem,
states that a sum of n independent geometrically distributed random variables
that are centered around their expectation and rescaled with a factor 1/n con-
verge to a Gumbel distribution.

Theorem 3 ([8]). Let T1, . . . , Tn−1 be independent random variables such that
Ti ∼ Geo((n − i)/(n − 1)) for 1 ≤ i < n. Then, in distribution

n−1
n−1∑

i=1

(
Ti − E[Ti]

) → Gum(γ).

Unfortunately we can not directly apply Theorem 3 to our setting, as we will
have to deal with a sum of independent geometric random variables that are not
normalized with the ‘correct’ factor n−1. However, the next lemma is a more
general version of Theorem 3 that is applicable to our setting.

Lemma 12. Let T1, . . . , Tn−1 be independent random variables such that Ti ∼
Geo((n − i)/(n − 1)) for 1 ≤ i < n. Let furthermore ε > 0 and s : N → [1, n]
be a function such that s(n − i) ≥ (

1 − o(1)
)
(n − c · i) for any positive integer

i < εn. Then, in distribution
∑

(1−ε)n≤i<n

Ti − E[Ti]
s(i)

→ Gum(γ).

Asymptotics for Push on the Complete Graph 461

Let us briefly outline the proof of Lemma 4. We have already shown bounds
for the number of informed nodes after �log2 n� − a + b rounds in (5). Starting
from these bounds we will use the Coupon Collector Problem to compute the
number of pushes that are needed to inform all remaining uninformed nodes.
This will yield sums of independent geometric random variables (one summand
for each uninformed node). Then we will translate these numbers of pushes into
numbers of rounds, which results in almost normalised sums of geometric random
variables that Lemma 12 assures to converge to a Gumbel distribution. We will
end up with upper and lower bounds to the distribution function of push.

A Existence of Subsequence

Let x, y ∈ [0, 1]. In this section we show that there is an unbounded sequence of
natural numbers (ni)i∈N such that log2 ni −�log2 ni� → x and lnni −�ln ni� → y
as i → ∞. To this end, set z = y −x ln 2. According to a Theorem of Kronecker,
see e.g. [16, Thm. 440], for all i ∈ N, there are pi, qi ∈ N such that

∣
∣qi ln 2 − pi − z

∣
∣ ≤ i−1. (7)

Actually even more is true: there are infinitely many pi, qi ∈ N that solve
(7). To see this, assume that there are only finitely many, then there is k, � ∈ N

such that k ln 2 = � + z, otherwise there would be some i ∈ N where (7) has no
solution. However, according to a Theorem of Hurwitz, see e.g. [16, Thm. 193],
there are infinitely many rj , sj ∈ N such that

∣
∣rj ln 2 − sj

∣
∣ ≤ r−2

j . But then
∣
∣rj ln 2 − sj

∣
∣ =

∣
∣(rj + k) ln 2 − (sj + �) − z

∣
∣ ≤ r−2

j ,

a contradiction, thus there are infinitely many solutions to (7). We continue with
that equation, which we can restate, as i → ∞,

qi ln 2 + x ln 2 = pi + y + O
(
i−1

)
.

Taking the exponential on both sides thus yields 2qi+x = epi+y+O(i−1) as i → ∞.
Set ni = �2qi+x� for all i ∈ N, where we choose qi such that qi ≥ i from the
infinitely many solutions to (7). Then ni ∈ N for all i ∈ N and

log2 ni − �log2 ni� = x + O
(
2−i

)
as well as ln ni − �ln ni� = y + O

(
i−1

)
.

Thus the subsequence of natural numbers that is induced by log2 ni−�log2 ni� →
x and lnni − �ln ni� → y is non-empty and unbounded.

References

1. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Trans. Comput. Syst. 17(2), 41–88 (1999)

2. Boucheron, S., Lugosi, G., Massart, P.: A sharp concentration inequality with
applications. Random Struct. Algorithms 16(3), 277–292 (2000)

462 R. Daknama et al.

3. Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour
spreading with conductance. In: Proceedings of the 42nd ACM Symposium on
Theory of Computing, pp. 399–408. ACM (2010)

4. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph con-
ductance. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1657–1663. SIAM (2010)

5. Daknama, R., Panagiotou, K., Reisser, S.: Robustness of randomized rumour
spreading. In: Proceedings of the 27th Annual European Symposium on Algo-
rithms, ESA. Leibniz International Proceedings in Informatics (LIPIcs), vol. 144,
pp. 36:1–36:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2019)

6. Demers, A., et al.: Epidemic algorithms for replicated database maintenance. In:
Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-
puting, PODC, pp. 1–12. ACM (1987)

7. Doerr, B., Künnemann, M.: Tight analysis of randomized rumor spreading in com-
plete graphs. In: Proceedings of the 11th Workshop on Analytic Algorithmics and
Combinatorics, ANALCO, pp. 82–91. SIAM (2014)

8. Erdős, P., Rényi, A.: On a classical problem of probability theory. Magyar Tud.
Akad. Mat. Kutató Int. Közl. 6, 215–220 (1961)

9. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Random Struct. Algorithms 1(4), 447–460 (1990)

10. Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random
networks and the effect of density. In: Proceedings of the 29th IEEE International
Conference on Computer Communications, IEEE Annual Joint Conference, INFO-
COM, pp. 2552–2560 (2010)

11. Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs
and expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX/RANDOM - 2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15369-3 42

12. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random
arc-lengths. Discrete Appl. Math. 10(1), 57–77 (1985)

13. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conduc-
tance. In: Proceedings of the 28th International Symposium on Theoretical Aspects
of Computer Science, STACS, Dortmund, Germany, pp. 57–68 (2011)

14. Giakkoupis, G.: Tight bounds for rumor spreading with vertex expansion. In:
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, Portland, Oregon, USA, pp. 801–815 (2014)

15. Giakkoupis, G., Sauerwald, T.: Rumor spreading and vertex expansion. In: Pro-
ceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, Kyoto, Japan, 17–19 January 2012, pp. 1623–1641 (2012)

16. Hardy, G.H.: Wright: An Introduction to the Theory of Numbers. Oxford Univer-
sity Press, Oxford (1979)

17. Lugosi, G.: Concentration-of-Measure Inequalities. Lecture notes (2009)
18. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing separable

functions. IEEE Trans. Inf. Theory 54(7), 2997–3007 (2008)
19. Panagiotou, K., Pérez-Giménez, X., Sauerwald, T., Sun, H.: Randomized rumour

spreading: the effect of the network topology. Comb. Probab. Comput. 24(2), 457–
479 (2015)

20. Patsonakis, C., Roussopoulos, M.: Revisiting asynchronous rumor spreading in
the blockchain era. In: Proceedings of the IEEE 25th International Conference on
Parallel and Distributed Systems, ICPADS, pp. 284–293 (2019)

https://doi.org/10.1007/978-3-642-15369-3_42

Asymptotics for Push on the Complete Graph 463

21. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)
22. Sauerwald, T., Stauffer, A.: Rumor spreading and vertex expansion on regular

graphs. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp.
462–475 (2011)

The Hardness of Sampling Connected
Subgraphs

Andrew Read-McFarland(B) and Daniel Štefankovič

University of Rochester, Rochester, NY, USA
areadmcf@ur.rochester.edu, stefanko@cs.rochester.edu

Abstract. We consider the problem of sampling connected induced sub-
graphs of a given input graph G. Our first result is that an efficient algo-
rithm to approximately sample connected induced subgraphs of a given
size (the size is specified in the input) does not exist unless RP=NP. We
then focus on the problem of approximately sampling connected induced
subgraphs with a bias, more precisely we consider a distribution where
the probability of a connected subgraph induced by S ⊆ V (G) is pro-
portional to λ|S|. When the input graph G has maximum degree d we

identify a threshold λd = (d−1)(d−1)

dd
. For 0 < λ < λd there exists a trivial

efficient sampler for the problem, and for λd < λ < 1 an efficient approx-
imate sampler does not exist unless RP=NP. Finally, we show local
Markov chains are unlikely to be effective at approximately sampling
connected subgraphs.

1 Introduction

Sampling a subgraph allows us to examine small sections of a graph without
having to look at the potentially massive graph as a whole [4,11,13]. When we
can approximately sample connected subgraphs, we gain information about the
occurrence of configurations in the graph [2,11]. There are several variants of
what sampling a connected subgraph means, the most common of which is to
examine spanning subgraphs as done in [5], where we sample edges such that the
graph is connected and every vertex is reachable. Another variant is counting
the number of induced subgraphs of a graph G that are isomorphic to another
graph H [17]. Exactly counting these connected induced copies is essential for
polynomial time execution for Barvinok’s algorithm, as done in [16].

In this paper we are concerned with fully polynomial approximate samplers
(FPAS), rather than the more common fully polynomial randomized approxi-
mation scheme (FPRAS) as we wish to sample connected subgraphs induced by
vertices rather than count them. Within this paradigm we consider two models
of sampling: fixed size and with bias λ > 0 (where each graph of size k is sam-
pled with probability proportional to λk). In Sect. 2 we look at the fixed size
case, where the connected subgraph we sample always has k vertices (for a given
k). This has been studied in an applied setting by [13] with various algorithms
given. The related problem of exactly counting connected induced subgraphs
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 464–475, 2020.
https://doi.org/10.1007/978-3-030-61792-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_37

The Hardness of Sampling Connected Subgraphs 465

on k vertices is #W [1]-hard [7] and is also considered in combinatorial settings
[9,23]. We show in Theorem 1 that if there is an FPAS for the uniform distri-
bution of fixed sized connected subgraphs, then RP=NP. We then prove the
even stronger result that an FPAS on graphs of maximum degree three implies
RP=NP in Theorem 2.

Next we consider sampling with bias λ. Specifically, Theorem 3 shows sam-
pling with bias λ is efficient on a graph with maximum degree d for any
λ < λd = (d−1)d−1

dd and Theorem 4 proves an FPAS for connected induced
subgraphs with bias λ ∈ (λd, 1) implies RP=NP.

Finally, in Sect. 5 we give a tree such that no local Markov chain can efficiently
sample connected subgraphs of fixed size, and similarly with bias 1 > λ > 0 with
Theorems 5 and 6 respectively. This hints that local Markov chains likely are not
effective, as they do not perform well even on trees, where we know the problem
to be easy (using dynamic programming).

The following examples are mentioned to motivate sampling with bias λ
and the study of computational thresholds in this setting. The variant with
sampling biased by size is considered, for example, in the hardcore model in
statistical physics [6,12]. Weitz shows that on a graph of maximum degree d

for all λ < λc = (d−1)d−1

(d−2)d
we can efficiently approximately count independent

sets [24]. Sly then showed for all λ > λc we cannot efficiently approximately
count independent sets unless RP=NP [21]. Closer to our setting, Savoie et
al. sample simply connected subgraphs (that is, connected subgraphs with no
“holes”) on a grid, with bias λ on the perimeter [19].

We generally take a subgraph of G to be induced by a subset of the vertices
of G. However, in the proofs of Theorems 1, 2, and 4 we also induce subgraphs
of G induced by edges of G. We formally define both below.

Definition 1. For a graph G and S ⊆ V (G), let G[S] denote the subgraph of G
induced by S. Formally, V (G[S]) = S and E(G[S]) = {{u, v} | {u, v} ∈ E(G)
and u, v ∈ S}.

Similarly, let G[R] for R ⊆ E(G) be defined as V (G[R]) =
⋃

{u,v}∈R{u, v}
and E(G[R]) = R.

We will use the following formal definition of FPAS (see, e.g. [3]).

Definition 2. An algorithm A is a Fully Polynomial Approximate Sampler
(FPAS) for a problem B if for any δ > 0 and input to B the distribution of
the output of A is within δ of the distribution of B (on the given input) and A
runs in time polynomial with respect to its input and log δ−1. By distance we
mean the total variation distance, dTV (μ, ν) = 1

2 ||μ − ν||1.

2 Sampling Fixed Size Connected Subgraphs

In this section we show an FPAS for connected subgraphs of a given size is
possible only if RP=NP. Now we give the formal definition of our sampling
problem, which asks for a uniformly random sample from the set of all connected
subgraphs of a given size.

466 A. Read-McFarland and D. Štefankovič

Definition 3. Let Connected Induced Subgraphs of Given Size or
CISGS be the problem that on input (G,K) (for a graph G and non-negative
integer K) outputs uniformly random L ⊆ V (G) such that |L| = K and G[L] is
connected.

We show a FPAS for CISGS solves the Steiner Tree problem (see below).

Definition 4. (see [10]) Let Steiner Tree or ST be the decision problem of
whether there is a connected subgraph of G such that all vertices of a set S (the
vertices in S are called terminals) are included and the total weight of all the
edges used is no more than �. Formally, ST = {(G,S, φ, �) | ∃R ⊆ E(G) such
that G[R] is connected, S ⊆ V (G[R]), and

∑
r∈R φ(r) ≤ �}.

We will use the NP-Hardness of ST many times throughout the paper, which
Karp shows [10]. However we use the stronger result that when φ(e) = 1 for each
edge (often called the Cardinality Steiner Problem) ST is hard [10,25].

Theorem 1. If an FPAS exists for CISGS, then RP = NP.

Proof. Let (G, S, φ, �) be an instance of ST, where G has n vertices and m
edges, and φ(e) = 1 for all e ∈ E(G). Now let us give a brief outline of the proof.
Given an instance of ST we construct a graph G′ such that an FPAS for CISGS
on G′ allows us to obtain a solution to ST with high probability. We have 4 main
sections of this proof to accomplish this.

1. First we construct G′ and pick K based upon G,S, and �.
2. Then we create a function f that maps connected subgraphs of G′ to con-

nected subgraphs of G.
3. Next we give a combinatorial argument to show at least 2/3 of the connected

subgraphs of G′ of size K map to solutions of ST on G.
4. Finally we make the complexity argument to show the Theorem’s claim.

Now let us construct G′ such that if we can sample connected subgraphs
of G′ in polynomial time we will solve ST in polynomial time on G (using a
randomized algorithm). Let k = n3, c = k2, and K = |S| · k/2 + � · c.

Intuitively, G′ replaces vertices in S with complete graphs of size k whose
connected subgraphs provide high entropy (so that typical subgraphs will include
these vertices). On the other hand, it also replaces edges with paths of length
c so that including long paths consumes many vertices and therefore lowers
the entropy (hence typical solutions will avoid long paths). Let A be the set
of nodes in the “S-gadgets” (each a complete graph on k vertices), B be the
vertices forming the elongated edges, and let C be the unchanged vertices of
V (G). Formally, let G′ be such that V (G′) = A ∪ B ∪ C where

1. A =
⋃

s∈S,i∈[1,k]{vs,i} (where [1, k] = {1, ..., k}),
2. B =

⋃
e∈E(G),i∈[1,c]{ve,i}, and

3. C = (V (G) − S).

The Hardness of Sampling Connected Subgraphs 467

Note we use vs,i and ve,i to give names to vertices we are creating. Now let
A′ be the edges between the nodes in A, B′ be the edges between the nodes in
B, and C ′ be the edges between A,B, and C. Thus E(G′) = A′ ∪B′ ∪C ′, where

1. A′ =
⋃

s∈S{{vs,i, vs,j} | i �= j, i, j ∈ [1, k]} and
2. B′ =

⋃
e∈E(G),i∈[1,c−1]{{ve,i, ve,i+1}} (making paths for each e ∈ E(G)).

3. Finally, we need to connect the paths to the original vertices and the complete
graphs. Fix an arbitrary ordering of V (G′) and let

C ′ =
⋃

{u,v}=e∈E(G)

{{ve,1,min(u′, v′)}, {ve,c,max(u′, v′)}}

where u′ = vu,1 if u ∈ S and otherwise is simply u, and the same holds for
v′. Note the min and max are with respect to the ordering we picked.

Let us now define a function f that maps a connected subset L of V (G′) (that
is, G[L] is connected) to R ⊆ E(G) such that G[R] is connected (note G[R] is a
subgraph induced by edges rather than vertices). Informally, if a path of vertices
corresponding to an edge in G is fully included in L, then we will include that
edge, and otherwise we will not. Formally, let L be a subset of V (G′) such that
G[L] is connected. Then f(L) = R where R ⊆ E(G) such that e ∈ R if and only
if ve,1, ve,2, ..., ve,c ∈ L.

A subset of vertices L falls into one of two cases:

(1)
∑

e∈G[f(L)] φ(e) ≤ � and G[f(L)] includes all points in S

(2) G[f(L)] excludes some point in S.

Note that for
∑

e∈G[f(L)] φ(e) > � we must use c(� + 1) vertices on edges in
G′. This is impossible, as we sample K = |S| · k/2 + � · c < � · c + c vertices.

Note a subset L from case (1) yields a solution to ST, whereas a subset L from
case (2) does not. For convenience, let C1 be the set of all L such that G[f(L)]
falls into case (1), and C2 be likewise for case (2). Note that if (G,S, φ, �) /∈ ST,
then C1 = ∅. With that in mind, let (G,S, φ, �) ∈ ST and let us bound the size
of C1. Since (G,S, φ, �) ∈ ST, there is a subset of edges with weight less than or
equal to � such that all nodes in S are included and the graph is connected. Thus
in G′ we can include the paths that correspond to those edges, which requires
� · c vertices, and then use the remaining |S| · k/2 nodes in the clusters for each
s ∈ S. We can use k/2 in each of the complete graphs created for vertices in S,

and so |C1| ≥ (
k

k/2

)|S|
.

Now let us show |C2| ≤ 2k(|S|−1)|S| · c2m. This follows since there are |S|
ways to pick an s ∈ S to omit, and then 2k(|S|−1) ways to include or exclude
the k(|S| − 1) points in the remaining |S| − 1 gadgets. Note that the number of
ways to allocate any amount of vertices to edges is at most c2m as for each of
the m edges we can choose the length of the partial paths on either side, which
can both be at most length c. Now let us show |C1| ≥ 2|C2|.

Since for n ≥ 75 we have n3 ≥ 1 + log2(n) + n log2(n3 + 1) + 4n2 log2(n3).
Thus, we can substitute in k = n3, |S| ≤ n, and m ≤ n2 to get

468 A. Read-McFarland and D. Štefankovič

k ≥ 1 + log2(|S|)|S| log2(k + 1) + 4m log2(k).
Then, by exponentiating both sides and multiplying by 2k(|S|−1)

(k+1)|S| we obtain
(

2k

k+1

)|S|
≥ 2 · 2k(|S|−1)|S| · c2m. Since

(
k

k/2

) ≥ 2k

k+1 , this gives |C1| ≥ 2|C2|.

Thus a random sample of a connected subgraph of size K from G′ falls into
case (1) with probability ≥ 2/3 (recall we assume (G,S, φ, �) ∈ ST). However, we
are using an FPAS, and so our distribution is within δ of the uniform distribution.
Thus, we obtain a sample from case (1) with probability ≥ 2/3 − δ, and so any
δ < 1/6 is sufficient. Our reduction at this point is quite simple; we sample L
from G′, and then accept if and only if G[f(L)] has weight ≤ � and includes
all terminals. Thus, if a solution with weight ≤ � does not exist, we will never
accept, and if one does we accept with probability > 1/2. Finally, to show that
the size of G′ is polynomial with respect to (G,S, φ, �), note G′ has O(mn6)
vertices. Thus, if an FPAS exists for CISGS, we have an RP algorithm that
solves ST, and so RP=NP.
�

Since ST is hard for planar graphs [18] (with maximum degree 4), so the
above proof shows hardness for planar graphs as well by simply modifying the
complete graphs on k vertices to be a single vertex with k adjacent vertices.
Now let us extend this further to show if an FPAS exists for CISGS on graphs
of maximum degree three, then RP=NP.

First, note Steiner Tree is hard for graphs of maximum degree three by a
simple reduction of splitting vertices and connecting them with a 0 weight edge.
In the proof of Theorem 2 we require all terminals to have maximum degree two
(as we will attach a tree to each), so note any vertex with degree three can be
split into two, one of which has degree two (and we consider that one to be a
terminal and the other not to be).

The basic idea of the proof is the same as Theorem 1 but instead of complete
graph gadgets, we will have binary trees of size k. Let us give some definitions
for use in analyzing the number of connected subgraphs of a tree.

Definition 5. For a graph G and v ∈ V (G), the connected rooted subgraphs
of G at v are the subgraphs of G that include v, together with the empty subgraph.

Definition 6. Let GTd be an infinite d-ary tree with root vertex vGTd
.

Definition 7. Let G be a tree with arbitrary root v. Then for all w ∈ V (G) let
the height of w be the length of the path between w and v.

Definition 8. Let Th,k denote the number of connected subtrees of GT2 rooted
at vGT2 of size k with maximum height h.

Suppose that h = �log2(n), then we can compute Th,k for any k in polyno-
mial time, as we can recursively compute Th,k =

∑k
i=0 Th−1,iTh−1,k−i−1 (note

that the numbers have polynomially many (in n) bits). Thus for a given h, we
can compute the k such that Th,k is maximal.

The Hardness of Sampling Connected Subgraphs 469

Definition 9. Let kh denote the index such that Th,kh
≥ Th,k for all 0 ≤ k ≤

2h+1 − 1.

Definition 10. Let Th denote the number of connected subtrees of GT2 rooted
at vGT2 with maximum height h. That is, Th =

∑2h+1−1
k=0 Th,k.

Fig. 1. The 5 configurations of T2,3, with vGT2 being the black vertex.

Figure 1 shows the 5 configurations of T2,3. Also note we can iteratively
calculate Th = 1 + T 2

h−1 as we can either include no vertices (by omitting the
root), or include the root and have any height h − 1 subtree on either side. Now
let us move on to the proof.

Theorem 2. If an FPAS to CISGS exists on graphs of maximum degree three,
then RP = NP.

Proof. The proof follows similarly to that of Theorem 1 except let h =
�log2(n3), k = 2h, and K = Th,kh

· |S| + � · c + n2 + |S|.
We assume that φ(e) is 0 or 1 for each edge e and G has maximum degree

3. As mentioned above, we assume every terminal has degree ≤ 2. Now, we
construct G′ with the same idea as that of Theorem 1, but using trees instead
of complete graph gadgets. If φ(e) = 1, then as before we replace it with a path
of length c, but if φ(e) = 0, e is a single node in G′ rather than a path of length
c (note there are at most n2 edges with weight 0). The sets B,C,B′, and C ′ are
essentially the same as in the proof of Theorem 1 (except for the additional zero
weight edges). However, we use trees for gadgets rather than complete graphs
so let

A = S ∪ ⋃
s∈S,i∈[1,k−1]{vs,i} and

A′ =
⋃

s∈S

({{vs,1, s}} ∪ {{vs,i, vs,�i/2�} | i ∈ [2, k − 1]})
.

Let f be as in Theorem 1 and note that a sample L falls into one of 2 cases
as before (where again, G[f(L)] is a subgraph induced by edges):

1. φ(G[f(L)]) ≤ � and G[f(L)] includes all points in S
2. G[f(L)] excludes some point in S.

Let C1 be the set of such L that fall into case (1) and C2 be likewise for case
(2). Let us first bound |C1| ≥ (

Th

2h+1

)|S|
. This is since

∑2h+1−1
k=0 Th,k = Th and

since Th,kh
has maximum value, it must be at least the average value. Thus we

470 A. Read-McFarland and D. Štefankovič

can allocate c · � vertices to the edges of G′ and kh + 1 to each of the “S-trees”
(kh for the tree, 1 for s) and so there are at least

(
Th

2h+1

)|S|
distinct connected

subgraphs created in this manner. Note that we might need to use weight 0
edges in this construction which equates to using a single vertex for each weight
0 edge. However, we have n2 “extra” vertices in K to be used specifically for
this (as there are no more than n2 weight 0 edges).

Now let us show |C2| ≤ T
|S|−1
h |S| · c2m. The logic for this is the same as

in Theorem 1 except we use Th instead of 2k as there are Th ways to allocate
the vertices to a tree. Note that the zero weight edges (that are represented by
a single vertex) are accounted as they are edges in G and so contribute to the
value of m. Finally let us conclude by showing |C1| ≥ 2|C2|. Since for n ≥ 73

n3 ≥ 1 + n + n�log2(n
3) + log2(n) + 4n2�log2(n

3),
by substituting in terms and exponentiating both sides we get

22
h ≥ 2 · 2|S|(h+1) · |S| · c2m.

Now note Th ≥ 22
h

as T0 = 2 and Th = 1 + T 2
h−1 ≥ T 2

h−1. Thus by making

another substitution and multiplying by T
|S|−1
h

2|S|(h+1) we have

(
Th

2h+1

)|S|
≥ 2 · T

|S|−1
h |S| · c2m

Therefore |C1| ≥ 2|C2| and so if (G,S, φ, �) ∈ ST then the probability that
the sampler gives a solution with weight ≤ � is at least 2/3− δ as in Theorem 1.
Additionally if no such solution exists, this algorithm will never give one. Since
the whole process runs in polynomial time, we have an RP algorithm that solves
ST, and so RP=NP if an FPAS exists for CISGS on graphs with maximum
degree three.
�

3 Trees and Efficient Sampling with Bias

We showed earlier that it is hard to sample connected subgraphs of general
graphs, planar graphs, and even for bounded degree graphs. In this section we
will show that for bounded degree graphs as long as the bias parameter λ is small
enough, we can sample connected subgraphs with bias λ allowing arbitrarily
small error ε in time polynomial in n and 1/ε (for a fixed λ).

We analyzed earlier Th,k, but let us now extend this definition to letting h
be unbounded for a fixed k.

Definition 11. Let T̃k,d be the number of connected subtrees of GTd of size k
rooted at vGTd

.

We will need the following result of Stanley [22] reformulated in our setting.

Lemma 1. T̃k,d =
(
dk
k

)
1

(d−1)k+1 .

The Hardness of Sampling Connected Subgraphs 471

Proof. Letting a full d-ary tree mean every node either has d children or is a leaf,
in his Proposition 6.2.2 [22, p. 172] Stanley shows the number of full d-ary trees
with n vertices and m leaves is equal to 1

n

(
n
j

)
if n = dj + 1 and m = (d − 1)j + 1

for some j and 0 otherwise. Note that if a full d-ary tree has a nodes each
with d children, then there are (d − 1)a + 1 leaves. Thus, we wish n = dk + 1
and m = (d − 1)k + 1, so it is clear to see that if we remove all leaves from
such trees we can obtain every d-ary tree on k vertices, and likewise every d-ary
tree can have every node without d children add leaves until it has d children
to obtain all such full trees. Thus the number of d-ary trees on k vertices is(
dk+1

k

)
/(dk + 1) =

(
dk
k

)
1

(d−1)k+1 .
�

Now we move on to show that a d-ary tree has more rooted connected sub-
graphs of a fixed size than any maximum degree d graph.

Definition 12. Let Ck,d,G,v be the number of connected subgraphs on k vertices
with maximum degree d of a graph G rooted at vertex v ∈ V (G). Let Ck,d,G be
as above, but for unrooted subgraphs.

Lemma 2. For all k, d,G, v, Ck,d,G,v ≤ T̃k,d.

Proof. Let G be a graph with n nodes, and fix k, d, v. Let T be the SAW (self-
avoiding walk) tree of G rooted at v (see [8,24]). That is, each node in T cor-
responds to a path in G starting at v. Thus T has maximum height n, has
maximum degree ≤ d, and since it has no cycles it must be a subtree of GTd.

Now let S ⊆ V (G) such that G[S] is connected and v ∈ S, and let T ′ be
a spanning tree of G[S]. Note T ′ is a subtree of T as every node in T ′ is a
node in T , and T ′ is unique as any other S′ cannot generate T ′ because it must
necessarily omit some vertex in S. Thus Ck,d,G,v ≤ Ck,d,T,v ≤ T̃k,d.
�

Now we will shall show that for small enough λ, the total weight,
∑∞

k=0 T̃k,dλ
k

converges.

Lemma 3. Fix d, and let λ = c (d−1)d−1

dd where c < 1. Then for any s ≥ 0
∑∞

k=s T̃k,dλ
k ≤ cs

1−c .

Proof. By Lemma 1 we have that
∑∞

k=0 T̃k,dλ
k =

∑∞
k=0

(
dk
k

)
λk

(d−1)k+1 . Then
(
dk
k

) · λk = ck
(
dk
k

)
(d − 1)(d−1)k/((d − 1) + 1)dk which by the binomial theorem is

ck

(
dk
k

)
(d − 1)(d−1)k

∑dk
i=0

(
dk
i

)
(d − 1)i

.

Since the numerator occurs in the sum in the denominator, the fraction is less
than 1. Thus,

∑∞
k=0 T̃k,dλ

k ≤ ∑∞
k=0

ck

(d−1)k+1 ≤ ∑∞
k=0 ck = 1

1−c .

Additionally, for s ≥ 0,
∑∞

k=s T̃k,dλ
k ≤ ∑∞

k=s
ck

(d−1)k+1 ≤ cs

1−c , by the same
logic as above, giving us our result.
�

472 A. Read-McFarland and D. Štefankovič

We now show there is a sampler for any λ < (d−1)d−1

dd and ε > 0 that runs in
time polynomial with respect to n and 1/ε. Note that this is not a FPAS.

Theorem 3. For any c < 1 and any constant d the following is true. There
exists an algorithm that for any λ < c (d−1)d−1

dd and graph G with maximum
degree d samples connected subgraphs with size bias λ in polynomial (in n and
1/ε) time with error at most ε > 0.

Proof. We will pick some s such that the probability that we would obtain a
graph with size ≥ s is less than ε, and so we can only consider graphs of size
< s. Thus, we want ∑∞

k=s Ck,d,G,vλk

∑∞
k=0 Ck,d,G,vλk

< ε.

This term is less than
∑∞

k=s Ck,d,G,vλk as the denominator is at least 1 (because
of the empty set). By Lemma 2 we have that this term is again less than∑∞

k=s T̃k,dλ
k. By Lemma 3 we have that this sum is no more than cs

1−c . Now
we simply need to pick s such that cs

1−c is less than ε. Therefore, as long as
s > logc(ε(1 − c)) we have that the chance of randomly sampling a subgraph
of size greater than s is less than ε. So, we can have a sampling algorithm that
only samples up to size s and since Ck,d,G,v ≤ T̃k,d ≤ (

dk
k

) ≤ (e·d·k
k)k = (e · d)k,

there are O((e · d)logc(ε(1−c))) = O((ε(1 − c))logc(ed)) graphs we need to sample
allowing error ε. Since this is a polynomial number of graphs, we can inductively
enumerate them (up to size s) to calculate their weights and approximate Ω.

Additionally, if we wish to remove the rooted aspect of the subgraphs,
note that Ck,d,G ≤ ∑

v∈V (G) Ck,d,G,v ≤ n maxv∈V (G) Ck,d,G,v, and since T̃k,d ≥
Ck,d,G,v for any v, we have Ck,d,G ≤ nT̃k,d ≤ n(e ·d)k. Then we only need to con-
sider sampling from O(n(ε(1 − c))logc(ed)) subgraphs. Thus, sampling unrooted
connected subgraphs still only requires examining a polynomial (in n and 1/ε)
number of subgraphs.
�

4 Hardness of Sampling with Bias

We will now show that even when we sample connected subgraphs with bias λ

rather than having fixed size, the problem is hard for 1 > λ > (d−1)d−1

dd . However
we need to give the analogous definition for CISGS.

Definition 13. Let Connected Induced Subgraphs With Bias or CISWB
be the problem that on input (G,λ) (for a graph G and λ ∈ R≥0) outputs L such
that L ⊆ V (G), G[L] is connected, and L occurs with probability λ|L|/Z where
Z =

∑
L′⊆V (G),G[L′]is connected λ|L′|.

Now let us show that an efficient algorithm for CISWB would give an effective
solution to ST.

Theorem 4. If there is an FPAS to CISWB for (G,λ) where G has maximum
degree d and 1 > λ > (d − 1)d−1/dd, then RP = NP.

The Hardness of Sampling Connected Subgraphs 473

The proof is extremely similar to those of Theorems 1 and 2, so for brevity
we have removed the proof of Theorem 4.

5 Markov Chains and Sampling

Now we will show that Markov chains are not likely to be useful in sampling
connected subgraphs of either fixed size or with bias λ. To do this we will show
that local Markov chains cannot be rapidly mixing while also sampling connected
subgraphs from the desired distribution. Here we use local to mean neighboring
states share k−1 vertices, that is for two neighboring states X and Y , X−{x} =
Y − {y} for some x ∈ X and y ∈ Y (see, e.g., [15]). The notion of local can be
extended to mean neighboring states must share at least one vertex and our
proofs would follow accordingly, but we use sharing k − 1 vertices for simplicity.
Our proof uses conductance (see, e.g., [20]) to show slow mixing, the standard
definition is given below. We use the standard notions of P (i, j) to mean the
probability we move from state i to state j and π(i) to be the probability of
being in state i according to the stationary distribution.

Definition 14. The conductance of a Markov chain M on state space
Ω is ΦM = minU⊆Ω,CU≤1/2 Φ(U) where Φ(U) = FU/CU and FU =∑

i∈U,j∈U P (i, j)π(i), CU =
∑

i∈U π(i).

We use conductance to bound τ , the mixing time of M . Formally, τ = min{t :∑
j∈Ω |P t′

(i, j) − π(j)| ≤ 1/e for all t′ ≥ t and i ∈ Ω}. It is a well known result
that 1/τ ≤ 8Φ(M) for an ergodic chain M (see, e.g., [1], we use this result so
that M can be non-reversible, see [14] for a similar argument). Therefore, in the
following proofs we give a tree G such that for any local ergodic chain M , Φ(M)
is tiny.

Theorem 5. There is a tree G with maximum degree 3 such that the following
is true. Let M be a local ergodic Markov chain whose states are S ⊆ V (G) such
that |S| = k and G[S] is connected and the stationary distribution is uniform.
Then the mixing time of M is exponential in k.

Proof. Let G be a graph on 4n vertices consisting of 2 binary trees on n nodes
with a path of length 2n in between them. Nodes 1 through n are in one tree,
nodes n + 1 to 3n are a path from the first tree to the second tree, and nodes
3n + 1 through 4n are the second tree. We will use a conductance argument to
show slow mixing, and so we will give some U such that Φ(U) ≤ 2

2k/2 .
Let U = {U ′ | U ′ ∈ Ω,∀v ∈ U ′, v ≤ 2n, |U ′| = k}. Clearly |U | is no more than

1/2 of the total number of connected subsets of size k as we can see |Ū | ≥ |U |,
thus CU ≤ 1/2. Note that the only set in U that can move out of U in 1 move is
{2n, 2n − 1, ..., 2n − (k − 1)} as we require the vertex 2n to be included to add
the vertex 2n + 1. Thus, FU ≤ 1

|Ω| .
Now let us give a lower bound on |Ω| by counting the number of configura-

tions in the trees alone. Consider taking a connected subset of size k/2 rooted
at the root of the tree such that no leaves are in the subset. Thus there are

474 A. Read-McFarland and D. Štefankovič

k vertices left to choose from (as each vertex has degree 3 and k/2 − 1 edges
are used internally), and so there are at least

(
k

k/2

)
connected subsets with this

specific configuration. Thus |Ω| ≥ (
k

k/2

) ≥ 2k/2 and so Φ(U) ≤ 2
2k/2 . Therefore

the mixing time is exponential in k.
�
Note that Theorem 5 implies that the chain is not rapidly mixing for k =

ω(log n). Now let us give an analogous proof for sampling with bias λ.

Theorem 6. Fix d and 1 > λ > (d−1)(d−1)

dd , then there is a graph G with maxi-
mum degree d+1 such that the following is true. Let M be a local ergodic Markov
chain whose states are S ⊆ V (G) and G[S] is connected and the stationary dis-
tribution is such that S occurs with probability λ|S|/Z. Then the mixing time of
M is exponential in n.

The proof is very similar to that of Theorem 5 and so in consideration of
space we have removed it.

Further Questions

– We showed hardness for CISWB on a general graph for 1 > λ > (d−1)d−1

dd .
Is there a polynomial solution for CISWB on an infinite grid (rooted at an
arbitrary vertex) for some 1 > λ > (d−1)d−1

dd ?
– We have hardness results for CISWB with λ < 1. Is there a similar threshold

for λ > 1?
– Similarly, we can sample connected subgraphs of a bounded degree graph

with bias λ < (d−1)d−1

dd for any error ε. Is there some threshold for λ > 1
where this is also true?

– In Sect. 5 we showed Markov chains are likely not useful in randomly sampling
trees. What sets of graphs can they randomly sample and rapidly mix?

References

1. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs
(2002). https://www.stat.berkeley.edu/users/aldous/RWG/book.pdf. Unfinished
monograph, recompiled 2014

2. Baskerville, K., Grassberger, P., Paczuski, M.: Graph animals, subgraph sampling,
and motif search in large networks. Phys. Rev. E 76(3), 036107, 13 (2007)

3. Frieze, A.: Notes on Counting and rapidly mixing Markov chains. http://www.
math.cmu.edu/∼af1p/Mixing.html

4. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration
and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS,
vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71681-5 7

5. Guo, H., Jerrum, M.: A polynomial-time approximation algorithm for all-terminal
network reliability. In: Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic,
9–13 July 2018, pp. 68:1–68:12 (2018)

https://www.stat.berkeley.edu/users/aldous/RWG/book.pdf
http://www.math.cmu.edu/~af1p/Mixing.html
http://www.math.cmu.edu/~af1p/Mixing.html
https://doi.org/10.1007/978-3-540-71681-5_7
https://doi.org/10.1007/978-3-540-71681-5_7

The Hardness of Sampling Connected Subgraphs 475

6. Ising, E.: Contribution to the theory of ferromagnetism. Z. Phys. 31, 253–258
(1925)

7. Jerrum, M., Meeks, K.: The parameterised complexity of counting connected sub-
graphs and graph motifs. J. Comput. Syst. Sci. 81(4), 702–716 (2015)

8. Jung, K., Shah, D.: Inference in binary pair-wise Markov random fields through
self-avoiding walks. arXiv e-prints p. cs/0610111 (2006)

9. Kangas, K., Kaski, P., Koivisto, M., Korhonen, J.H.: On the number of connected
sets in bounded degree graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS,
vol. 8747, pp. 336–347. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12340-0 28

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, Boston (1972)

11. Kashtan, N., Milo, R., Itzkovitz, S., Alon, U.: Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics
20(11), 1746–1758 (2004)

12. Lenz, W.: Beitrag zum Verständnis der magnetischen Erscheinungen in festen
Körpern. Z. Phys. 21, 613–615 (1920)

13. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random.
In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9 13

14. �Luczak, T., Vigoda, E.: Torpid mixing of the Wang-Swendsen-Kotecký algorithm
for sampling colorings. J. Discret. Algorithms 3(1), 92–100 (2005)

15. Mossel, E., Weitz, D., Wormald, N.: On the hardness of sampling independent sets
beyond the tree threshold. Probab. Theory Relat. Fields 143(3), 401–439 (2009)

16. Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for
partition functions and graph polynomials. SIAM J. Comput. 46(6), 1893–1919
(2017)

17. Patel, V., Regts, G.: Computing the number of induced copies of a fixed graph in
a bounded degree graph. Algorithmica 81(5), 1844–1858 (2018)

18. Garey, M.R., Johnson, D.: The rectilinear steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32, 826–834 (1977)

19. Savoie, W., et al.: Phototactic supersmarticles. Artif. Life Robot. 23(4), 459–468
(2018). https://doi.org/10.1007/s10015-018-0473-7

20. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain
Approach. Birkhauser Verlag, Basel (1993)

21. Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of
the 51st IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pp. 287–296 (2010)

22. Stanley, R.P.: Enumerative Combinatorics: vol. 2, 1st edn. Cambridge University
Press, New York (1999)

23. Vince, A.: Counting connected sets and connected partitions of a graph. Australas.
J. Comb. 67(2), 281–293 (2017)

24. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, STOC, pp. 140–149.
ACM, New York (2006)

25. White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and
strongly chordal graphs. Networks 15(1), 109–124 (1985)

https://doi.org/10.1007/978-3-319-12340-0_28
https://doi.org/10.1007/978-3-319-12340-0_28
https://doi.org/10.1007/978-3-642-31235-9_13
https://doi.org/10.1007/s10015-018-0473-7

Combinatorics

Lower Bounds for Max-Cut via
Semidefinite Programming

Charles Carlson1(B), Alexandra Kolla1, Ray Li2, Nitya Mani3,
Benny Sudakov4, and Luca Trevisan5

1 Department of Computer Science, University of Colorado Boulder,
Boulder, CO 80302, USA

{charles.carlson,alexandra.kolla}@colorado.edu
2 Department of Computer Science, Stanford University, Stanford, CA 94305, USA

rayyli@cs.stanford.edu
3 Department of Mathematics and Computer Science, Stanford University,

Stanford, CA 94305, USA
nmani@cs.stanford.edu

4 Department of Mathematics, ETH, 8092 Zurich, Switzerland
benjamin.sudakov@math.ethz.ch

5 Department of Decision Sciences, Bocconi University, Milan, Italy
l.trevisan@unibocconi.it

Abstract. For a graph G, let f(G) denote the size of the maximum cut
in G. The problem of estimating f(G) as a function of the number of
vertices and edges of G has a long history and was extensively studied
in the last fifty years. In this paper we propose an approach, based on
semidefinite programming (SDP), to prove lower bounds on f(G). We
use this approach to find large cuts in graphs with few triangles and in
Kr-free graphs.

Keywords: Max-Cut · Semidefinite programming · Kr-free graphs

1 Introduction

The celebrated Max-Cut problem asks for the largest bipartite subgraph of a
graph G, i.e., for a partition of the vertex set of G into disjoint sets V1 and V2

Alexandra Kolla was supported by NSF CAREER grant 1452923 as well as NSF AF
grant 1814385.
Ray Li was supported by an NSF GRF grant DGE-1656518 and by NSF grant CCF-
1814629.
Nitya Mani was supported in part by a Stanford Undergraduate Advising and Research
Major Grant.
Luca Trevisan was supported by the NSF under grant CCF 181543 and his work on this
project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 834861).
Benny Sudakov was supported in part by SNSF grant 200021 196965.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 479–490, 2020.
https://doi.org/10.1007/978-3-030-61792-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_38&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_38

480 C. Carlson et al.

so that the number of edges of G crossing V1 and V2 is maximal. This problem
has been the subject of extensive research, both from a largely algorithmic per-
spective in computer science and from an extremal perspective in combinatorics.
Throughout, let G denote a graph with n vertices and m edges with maximal
cut of size f(G). The extremal version of Max-Cut problem asks to give bounds
on f(G) solely as a function of m and n. This question was first raised more
than fifty years ago by Erdős [9] and has attracted a lot of attention since then
(see, e.g., [1,3,5–7,10,11,16,17] and their references).

It is well known that every graph G with m edges has a cut of size at least
m/2. To see this, consider a random partition of vertices of the vertices G into
two parts V1, V2 and estimate the expected number of edges between V1 and
V2. On the other hand, already in 1960’s Erdős [9] observed that the constant
1/2 cannot be improved even if we consider very restricted families of graphs,
e.g., graphs that contain no short cycles. Therefore the main question, which
has been studied by many researchers, is to estimate the error term f(G)−m/2,
which we call surplus, for various families of graphs G.

The elementary bound f(G) ≥ m/2 was improved by Edwards [7,8] who
showed that every graph with m edges has a cut of size at least m

2 +
√
8m+1−1

8 .
This result is easily seen to be tight in case G is a complete graph on an odd
number of vertices, that is, whenever m =

(
k
2

)
for some odd integer k. Estimates

on the second error term for other values of m can be found in [4] and [5].
Although the

√
m error term is tight in general, it was observed by Erdős and

Lovász [10] that for triangle-free graph it can be improved to at least m2/3+o(1).
This naturally yiels a motivating question: what is the best surplus which can
always be achieved if we assume that our family of graphs is H-free, i.e., no
graph contains a fixed graph H as a subgraph. It is not difficult to show (see,
e.g. [2]) that for every fixed graph H there is some ε = ε(H) > 0 such that
f(G) ≥ m

2 +Ω(m1/2+ε) for all H-free graphs with m edges. However, the problem
of estimating the error term more precisely is not easy, even for relatively simple
graphs H. It is plausible to conjecture (see [3]) that for every fixed graph H there
is a constant cH such that every H-free graph G with m edges has a cut with
surplus at least Θ(mcH), i.e., there is both a lower bound and an infinite sequence
of example showing that exponent cH can not be improved. This conjecture is
very difficult. Even in the case H = K3 determining the correct error term took
almost twenty years. Following the works of [10,15,16], Alon [1] proved that
every m-edge triangle free graph has a cut with surplus of order m4/5 and that
this is tight up to constant factors. There are several other forbidden graphs H
for which we know quite accurately the error term for the extremal Max-Cut
problem in H-free graphs. For example, it was proved in [3], that if H = Cr for
r = 4, 6, 10 then cH = r+1

r+2 . The answer is also known in the case when H is a
complete bipartite graph K2,s or K3,s (see [3] for details).

Due to space constraints several proofs will appear in the full version of this
paper.

Lower Bounds for Max-Cut via Semidefinite Programming 481

1.1 New Approach to Max-Cut Using Semidefinite Programming

Many extremal results for the Max-Cut problem rely on quite elaborate prob-
abilistic arguments. A well known example of such an argument is a proof by
Shearer [16] that if G is a triangle-free graph with n vertices and m edges, and
if d1, d2, . . . , dn are the degrees of its vertices, then f(G) ≥ m

2 + O(
∑n

i=1

√
di).

The proof is quite intricate and is based on first choosing a random cut and then
randomly redistributing some of the vertices, depending on how many their
neighbors are on the same side as the chosen vertex in the initial cut. Shearer’s
arguments were further extended, with more technically involved proofs, in [3]
to show that the same lower bound remains valid for graphs G with relatively
sparse neighborhoods (i.e., graphs which locally have few triangles).

In this article we propose a different approach to give lower bounds on the
Max-Cut of sparse H-free graphs using approximation by semidefinite program-
ming (SDP). This approach is intuitive and computationally simple. The main
idea was inspired by the celebrated approximation algorithm of Goemans and
Williamson [13] of the Max-Cut: given a graph G with m edges, we first construct
an explicit solution for the standard Max-Cut SDP relexation of G which has
value at least (12 +W)m for some positive surplus W . We then apply a Goemans-
Williamson randomized rounding, based on the sign of the scalar product with
random unit vector, to extract a cut in G whose surplus is within constant factor
of W . Using this approach we prove the following result.

Theorem 1. Let G = (V,E) be a graph with n vertices and m edges. For every
i ∈ [n], let Vi be some subset of neighbors of vertex i and εi ≤ 1√

|Vi|
. Then,

f(G) ≥ m

2
+

n∑

i=1

εi|Vi|
4π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

.

This results implies the Shearer’s bound [16]. To see this, set Vi to the neigh-
bors of i and εi = 1√

di
for all i. Then, if G is triangle-free graph, then |Vi∩Vj | = 0

for every pair of adjacent vertices i, j.
The fact that we apply Goemans-Williamson SDP rounding in this setting is

perhaps surprising for a few reasons. In general, our result obtains a surplus of
Ω(W) from an SDP solution with surplus W , which is not possible in general.
The best cut that can be guaranteed from any kind of rounding of a Max-Cut
SDP solution with value (12 + W)m is (12 + Ω(W

log W))m (see [14]). Furthermore,
this is achieved using the RPR2 rounding, not the Geomans-Williamson round-
ing. Nevertheless, we show that our explicit Max-Cut solution has additional
properties that circumvents these issues and permits a better analysis.

1.2 New Lower Bound for Max-Cut of Triangle Sparse Graphs

Using Theorem 1, we give a new result on the Max-Cut of triangle sparse graphs
that is more convenient to use than previous similar results. A graph G is d-
degenerate if there exists an ordering of the vertices 1, . . . , n such that vertex i

482 C. Carlson et al.

has at most d neighbors j < i. Degeneracy is a broader notion of graph sparseness
than maximum degree: all maximum degree d graphs are d-degenerate, but the
star graph is 1-degenerate while having maximum degree n−1. Theorem 1 gives
the following useful corollary on the Max-Cut of d-degenerate graphs.

Corollary 1. Let ε ≤ 1√
d
. Let G be a d-degenerate graph with m edges and t

triangles. Then

f(G) ≥ m

2
+

εm

4π
− ε2t

2
.

Indeed, let 1, . . . , n be an ordering of the vertices such that any i has at most
d neighbors j < i, and let Vi be this set of neighbors. Let εi = ε for all i. In this
way,

∑
i |Vi| counts every edge exactly once and

∑
(i,j)∈E |Vi ∩ Vj | counts every

triangle exactly once, and the result follows. This shows that graphs with few
triangles have cuts with surplus similar to triangle-free graphs.

This result is new and more convenient to use than existing results in this
vein, because it relies only on the global count of the number of triangles, rather
than a local triangle sparseness property assumed by prior results. For example,
it was shown that (using Lemma 3.3 of [3]) a d-degenerate graph with a local
triangle-sparseness property, namely that every large induced subgraph with a
common neighbor is sparse, has Max-Cut at least m

2 + Ω(m√
d
). However, we

can achieve the same result with only the guarantee that the global number of
triangles is small. In particular, when there are at most O(m

√
d) triangles, which

is always the case with the local triangle-sparseness assumption above, setting
ε = Θ(1√

d
) in Corollary 1 gives that the Max-Cut is again at least m

2 + Ω(m√
d
).

1.3 Corollary: Lower Bounds for Max-Cut of H-free Degenerate
Graphs

We illustrate usefulness of the above results by giving the following lower bound
on the Max-Cut of Kr-free graphs.

Theorem 2. Let r ≥ 3. There exists a constant c = c(r) > 0 such that, for all
Kr-free d-degenerate graphs G with m edges,

f(G) ≥
(

1
2

+
c

d1−1/(2r−4)

)
m.

Lower bounds such as Theorem 2 giving a surplus of the form c · m
dα are more

fine-grained than those that depend only on the number of edges. Accordingly,
they are useful for obtaining lower bounds of the Max-Cut independent of the
degeneracy: many tight Max-Cut lower bounds in H free graphs of the form
m
2 + cmα first establish that f(G) ≥ m

2 + c · m√
d

for all H-free graphs, and then
case-work on the degeneracy [3].

In the case of r = 4 one can use our arguments together with Alon’s result on
Max-Cut in triangle-free graphs to improve Theorem 2 further to m/2+cm/d2/3.
While Theorem 2 gives nontrivial bounds for Kr-free graphs, we believe that a
stronger statement is true and propose the following conjecture.

Lower Bounds for Max-Cut via Semidefinite Programming 483

Conjecture 1. For any graph H, there exists a constant c = c(H) > 0 such that,
for all H-free d-degenerate graphs with m ≥ 1 edges,

f(G) ≥
(

1
2

+
c√
d

)
m. (1)

Our Theorem 1 implies this conjecture for various graphs H, e.g.,
K2,s,K3,s, Cr and for any graph H which contains a vertex whose deletion makes
it acyclic. This was already observed in [3] using the weaker, locally triangle-
sparse form of Corollary 1 described earlier. Conjecture 1 provides a natural
route to proving a closely related conjecture of Alon, Bollobás, Krivelevich, and
Sudakov [2].

Conjecture 2 (See concluding remarks of [2]). For any graph H, there exists
constants ε = ε(H) > 0 and c = c(H) > 0 such that, for all H-free graphs with
m ≥ 1 edges,

f(G) ≥ m

2
+ cm3/4+ε.

Since every graph with m edges is obviously
√

2m-degenerate, the Conjec-
ture 1 implies immediately a weaker form of Conjecture 2 with surplus of order
m3/4. With some extra technical work we can show that it actually implies
the full conjecture, achieving a surplus of m3/4+ε for any graph H. For many
graphs H for which Conjecture 2 is known, (1) was implicitly established for
H-free graphs [3], making Conjecture 1 a plausible stepping stone to Conjec-
ture 2. As further evidence of the plausibility of Conjecture 1, we show that
Conjecture 2 implies a weaker form of Conjecture 1, namely that any H-free
graph has Max-Cut m

2 + cm · d−5/7. Using similar techniques, we can obtain
nontrivial, unconditional results on the Max-Cut of d-degenerate H-free graphs
for particular graphs H.

Conjecture 1, if true, gives a surplus of Ω(m√
d
) that is optimal up to a multi-

plicative constant factor for every fixed graph H containing a cycle. To see this,
consider an Erdős-Rényi random graph G(n, p) with p = n−1+δ. Using standard
Chernoff-type estimates, one can easily show that with high probability that this
graph is O(np)-degenerate and its Max-Cut has size at most 1

4

(
n
2

)
p + O(n

√
np).

Moreover, if δ = δ(H) > 0 is small enough, then with high probability G(n, p)
contains very few copies of H, which can be destroyed by deleting few vertices,
without changing the degeneracy and surplus of the Max-Cut.

2 Lower Bounds for Max-Cut Using SDP

In this section we give a lower bound for f(G) in graphs with few triangles, show-
ing Theorem 1. To prove this result, we make heavy use of the SDP relaxation
of the Max-Cut problem, formulated below for a graph G = (V,E):

maximize
∑

(i,j)∈E

1
2
(1 − 〈v(i), v(j)〉)

subject to ‖v(i)‖2 = 1∀i ∈ V. (2)

484 C. Carlson et al.

We leverage the classical Goemans-Williamson [13] rounding algorithm which
that gives an integral solution from a vector solution to the Max-Cut SDP.

Proof of Theorem 1. For i ∈ [n], define ṽ(i) ∈ R
n by

ṽ
(i)
j =

⎧
⎪⎨

⎪⎩

1 i = j

−εi j ∈ Vi

0 otherwise.

.

For i ∈ [n], let v(i) def= ṽ(i)

‖ṽ(i)‖ ∈ R
n. Then 1 ≤ ‖ṽ(i)‖ ≤ 1 + ε2i |Vi| ≤ 2 for all i. For

each edge (i, j) with i ∈ Vj , we have

v
(i)
i v

(j)
i =

1
‖ṽ(i)‖ · −εj

‖ṽ(j)‖ ≤ −εj

4
.

For k ∈ Vi ∩ Vj , we have v
(i)
k v

(j)
k ≤ εiεj . For k �∈ {i, j} ∪ (Vi ∩ Vj), we have

v
(i)
k v

(j)
k = 0 as v

(i)
k = 0 or v

(j)
k = 0. Thus, for all edges (i, j),

〈v(i), v(j)〉 ≤ −εi

4
1Vj

(i) − εj

4
1Vi

(j) + |Vi ∩ Vj |εiεj .

Here, 1S(i) is 1 if i ∈ S and 0 otherwise. Vectors v(1), . . . , v(n) form a vec-
tor solution to the SDP (2). We now round this solution using the Goemans-
Williamson [13] rounding. Let w denote a uniformly random unit vector, A =
{i ∈ [n] : 〈v(i), w〉 ≥ 0}, and B = [n] \ A. The angle between vectors v(i), v(j) is
equal to cos−1(〈v(i), v(j)〉), so the probability an edge (i, j) is cut is

Pr[(i, j) cut] =
cos−1(〈v(i), v(j)〉)

π
=

1
2

− sin−1(〈v(i), v(j)〉)
π

≥ 1
2

− 1
π

sin−1
(
|Vi ∩ Vj |εiεj − εi

4
1Vj

(i) − εj

4
1Vi

(j)
)

≥ 1
2

+
εi

4π
1Vj

(i) +
εj

4π
1Vi

(j) − |Vi ∩ Vj |εiεj

2
.

In the last inequality, we used that sin−1(a − b) ≤ π
2 a − b for a, b ∈ [0, 1]. This is

true as sin−1(x) ≤ π
2x when x is positive and sin−1(x) ≤ x when x is negative.

Thus, the expected size of the cut given by AB is, by linearity of expectation,

∑

(i,j)∈E

Pr[(i, j) cut] ≥
∑

(i,j)∈E
i<j

(
1

2
+

εi
4
1Vj (i) +

εj
4
1Vi(j) − |Vi ∩ Vj |εiεj

2

)

=
m

2
+

n∑

i=1

|Vi|εi
4π

−
∑

(i,j)∈E

|Vi ∩ Vj |εiεj
2

. �

Lower Bounds for Max-Cut via Semidefinite Programming 485

In the proof of Theorem 2 we use the following version of Corollary 1.

Corollary 2. There exists an absolute constant c > 0 such that the following
holds. For all d ≥ 1 and ε ≤ 1√

d
, if a d-degenerate graph G = (V,E) has m edges

and at most m
8ε triangles then

f(G) ≥
(

1
2

+ cε

)
· m.

3 Decomposition of Degenerate Graphs

In a graph G = (V,E), let n(G) and m(G) denote the number of vertices and
edges, respectively. For a vertex subset V ′ ⊂ V , let G[V ′] denote the subgraph
induced by V ′. We show that d-degenerate graphs with many triangles have
small subsets of neighborhoods with many edges.

Lemma 1. Let d ≥ 1 and ε > 0, and let G = (V,E) be a d-degenerate graph
with at least m(G)

ε triangles. There exists a subset V ′ of at most d vertices with
a common neighbor in G such that the induced subgraph G[V ′] has at least |V ′|

ε
edges.

This lemma helps us partition the vertices of any d-degenerate graph in
a useful way. Repeatedly applying this lemma, we can peel off small subsets of
neighborhoods with many edges until we are left with an vertex subset containing
many triangles.

Lemma 2. Let ε > 0. Let G = (V,E) be a d-degenerate graph on n vertices
with m edges. Then there exists a partition V1, . . . , Vk+1 of the vertex set V with
the following properties.

1. For i = 1, . . . , k, the vertex subset Vi has at most d vertices and has a common
neighbor, and the induced subgraph G[Vi] has at least |Vi|

ε edges.
2. The induced subgraph G[Vk+1] has at most m(G[Vk+1])

ε triangles.

3.1 Large Max-Cut from Decompositions

For a d-degenerate graph G = (V,E), in a partition V1, . . . , Vk+1 of V given
by Lemma 2, the induced subgraph G[Vk+1] has few triangles, and thus, by
Corollary 1, has a cut with good surplus. This allows us to obtain the following
technical result regarding the Max-Cut of H-free d-degenerate graphs.

Lemma 3. There exists an absolute constant c > 0 such that the following
holds. Let H be a graph and H ′ be obtained by deleting any vertex of H. Let
0 < ε < 1√

d
. For any H-free d-degenerate graph G = (V,E), one of the following

holds:

486 C. Carlson et al.

– We have

f(G) ≥
(

1
2

+ cε

)
m. (3)

– There exist graphs G1, . . . , Gk such that five conditions hold: (i) graphs Gi

are H ′-free for all i, (ii) n(Gi) ≤ d for all i, (iii) m(Gi) ≥ n(Gi)
8ε for all i,

(iv) n(G1) + · · · + n(Gk) ≥ m
6d , and (v)

f(G) ≥ m(G)
2

+
k∑

i=1

(
f(Gi) − m(Gi)

2

)
. (4)

Proof. Let c1 < 1 be the parameter given by Corollary 2. Let c = c1
6 . Let

G = (V,E) be a d-degenerate H-free graph. Applying Lemma 2 with parameter
8ε, we can find a partition V1, . . . , Vk+1 of the vertex set V with the following
properties.

1. For i = 1, . . . , k, the vertex subset Vi has at most d vertices and has a common
neighbor, and the induced subgraph G[Vi] at least |Vi|

8ε edges.
2. The subgraph G[Vk+1] has at most m(G[Vk+1])

8ε triangles.

For i = 1, . . . , k + 1, let Gi
def= G[Vi] and let mi

def= m(Gi). For i = 1, . . . , k,
since G is H-free and each Vi is a subset of some vertex neighborhood in G, the
graphs Gi are H ′-free. For i = 1, . . . , k, fix a maximal cut of Gi with associated
vertex partition Vi = Ai Bi. By the second property above, the graph Gk+1

has at most mk+1
8ε triangles. Applying Corollary 2 with parameter ε, we can find

a cut of Gk+1 of size at least (12 + c1ε)mk+1 with associated vertex partition
Vk+1 = Ak+1 Bk+1.

We now construct a cut of G by randomly combining the cuts obtained above
for each Gi. Independently, for each i = 1, . . . , k + 1, we add either Ai or Bi to
vertex set A, each with probability 1

2 . Setting B = V \ A, gives a cut of G. As
V1, . . . , Vk+1 partition V , each of the m − (m1 + · · ·+mk+1) edges that is not in
one of the induced graphs G1, . . . , Gk+1 has exactly one endpoint in each of A,B
with probability 1/2. This allows us to compute the expected size of the cut (a
lower bound on f(G) as there is some instantiation of this random process that
achieves this expected size).

f(G) ≥ 1
2
(m − (m1 + · · · + mk+1)) +

(
1
2

+ c1ε

)
· mk+1 +

k∑

i=1

f(Gi)

=
m

2
+ c1εmk+1 +

k∑

i=1

(
f(Gi) − mi

2

)
. (5)

We bound (5) based on the distribution of edges in G in 3 cases:

– mk+1 ≥ m
6 . Since f(Gi) ≥ mi

2 for all i = 1, . . . , k, (3) holds:

f(G) ≥ m

2
+ c1εmk+1 ≥

(
1
2

+ cε

)
· m.

Lower Bounds for Max-Cut via Semidefinite Programming 487

– The number of edges between V1 ∪ · · · ∪ Vk and Vk+1 is at least 2m
3 . Then,

the cut given by vertex partition V = A′ B′ with A′ = V1 ∪ · · · ∪ Vk and
B′ = Vk+1 has at least 2m

3 edges, in which case f(G) ≥ 2m
3 > (12 + c1ε

6) · m,
so (3) holds.

– G′ = G[V1∪· · ·∪Vk] has at least m
6 edges. We show (4) holds. By construction,

for i = 1, . . . , k, the graph Gi is H ′ free, has at most d vertices, and has at
least mi

8ε edges. Since G is d-degenerate, G′ is as well, so

m

6
≤ m(G′) ≤ d · n(G′) = d ·

k∑

i=1

n(Gi),

Hence n(G1) + · · · + n(Gk) ≥ m
6d . Lastly, by (5), we have

f(G) ≥ m

2
+

k∑

i=1

(
f(Gi) − mi

2

)
.

This covers all cases, and in each case we showed either (3) or (4) holds. �
Lemma 3 allows us to convert Max-Cut lower bounds on H-free graphs to

Max-Cut lower bounds on H-free d-degenerate graphs.

Lemma 4. Let H be a graph and H ′ be obtained by deleting any vertex of H.
Suppose that there exists constants a = a(H ′) ∈ [12 , 1] and c′ = c′(H ′) > 0 such
that for all H ′-free graphs G with m′ ≥ 1 edges, f(G) ≥ m′

2 + c′ · (m′)a. Then
there exists a constant c = c(H) > 0 such that for all H-free d-degenerate graphs
G with m ≥ 1 edges,

f(G) ≥
(

1
2

+ cd− 2−a
1+a

)
· m.

4 Max-Cut in Kr-free Graphs

In this section we specialize Lemma 3 to the case H = Kr to prove Theorem 2.
Let χ(G) denote the chromatic number of a graph G, the minimum number of
colors needed to properly color the vertices of the graph so that no two adjacent
vertices receive the same color. We first obtain a nontrivial upper bound on the
chromatic number of a Kr-free graph G, giving an lower bound (Lemma 7) on
the Max-Cut of Kr-free graphs. The lower bound on the Max-Cut of general
Kr-free graphs enables us to apply Lemma 3 to give a lower bound on the Max-
Cut of d-degenerate Kr-free graphs per Theorem 2. The following well known
lemma gives a lower bound on the Max-Cut using the chromatic number.

Lemma 5. (see e.g. Lemma 2.1 of [2]) Given a graph G = (V,E) with m edges
and chromatic number χ(G) ≤ t, we have f(G) ≥ (12 + 1

2t)m.

We can bound the chromatic number of Kr-free graphs by repeatedly apply-
ing a standard bound [12] on the off-diagonal Ramsey number R(r, ·).

488 C. Carlson et al.

Lemma 6. Let r ≥ 3 and G = (V,E) be a Kr-free graph on n vertices. Then,

χ(G) ≤ 4n(r−2)/(r−1).

Lemma 5 and Lemma 6 give the following immediate corollary.

Lemma 7. If G is a Kr-free graph with at most n vertices and m edges, then

f(G) ≥
(

1
2

+
1

8n(r−2)/(r−1)

)
m.

The above bounds allow us to prove Theorem 2.

Proof of Theorem 2. Let G be a d-degenerate Kr-free graph and ε = d−1+ 1
2r−4 .

Let c2 be the parameter from Lemma 3. Let c = min(c2, 1
388). Applying Lemma 3

with parameter ε, one of two properties hold. If (3) holds, we are done by our
choice of ε. If (4) holds, there exist Kr−1-free graphs G1, . . . , Gk such that Gi

has at most d vertices and at least n(Gi)
8ε edges, n(G1) + · · · + n(Gk) ≥ m

6d , and

f(G) ≥ m

2
+

k∑

i=1

(
f(Gi) − m(Gi)

2

)
.

For all i, we have

f(Gi) − m(Gi)
2

≥ m(Gi)
8n(Gi)(r−3)/(r−2)

≥ n(Gi)
64εn(Gi)(r−3)/(r−2)

=
εdn(Gi)

64
.

In the first inequality, we used Lemma 7. In the second inequality, we used
m(Gi) ≥ n(Gi)

8ε . In the third inequality, we used n(Gi) ≤ d and the definition of
ε. Hence, as d(n(G1) + · · · + n(Gk)) ≥ m

6 , we have as desired that

f(G) ≥ m

2
+

k∑

i=1

εdn(Gi)
64

≥ m

2
+

εm

388
≥

(
1
2

+ cd−1+ 1
2r−4

)
· m.

�
Remark 1. As we already mentioned in the introduction, we can improve the
result of Theorem 2 in the case that r = 4 using Lemma 4. By a result of [1], we
may apply Lemma 4 with H = K4 and H ′ = K3 and a = 4/5, so that for some
absolute c > 0, any K4-free d-degenerate graph G with m ≥ 1 edges satisfies

f(G) ≥
(

1
2

+ cd− 2−(4/5)
1+(4/5)

)
· m =

(
1
2

+ cd−2/3

)
· m.

Lower Bounds for Max-Cut via Semidefinite Programming 489

5 Concluding Remarks

In this paper we presented an approach, based on semidefinite programming
(SDP), to prove lower bounds on Max-Cut and used it to find large cuts in
graphs with few triangles and in Kr-free graphs. A closely related problem of
interest is bounding the Max-t-Cut of a graph, i.e. the largest t-colorable (t-
partite) subgraph of a given graph. Our results imply good lower bounds for this
problem as well. Indeed, by taking a cut for a graph G with m edges and surplus
W , one can produce a t-cut for G of size t−1

t m + Ω(W) as follows. Let A,B be
the two parts of the original cut. If t = 2s is even, simply split randomly both
A,B into s parts. If t = 2s+1 is odd, then put every vertex of A randomly in the
parts 1, . . . , s with probability 2/(2s+1) and in the part 2s+1 with probability
1/(2s + 1). Similarly, put every vertex of B randomly in the parts s + 1, . . . , 2s
with probability 2/(2s + 1) and in the part 2s + 1 with probability 1/(2s + 1).
An easy computation (which we omit here) shows that the expected size of the
resulting t-cut is t−1

t m + Ω(W).
The main open question left by our work is Conjecture 1. Proving this con-

jecture will require some major new ideas. Even showing that any d-degenerate
H-free graph with m edges has a cut with surplus at least m/d1−δ for some fixed
δ (independent of H) is out of reach of current techniques.

Acknowledgements. The authors thank Jacob Fox and Matthew Kwan for helpful
discussions and feedback. The authors thank Joshua Brakensiek for finding an error
in an earlier draft of this paper. The authors thank Joshua Brakensiek and Yuval
Wigderson for helpful feedback on an earlier draft of the paper.

References

1. Alon, N.: Bipartite subgraphs. Combinatorica 16, 301–311 (1996)
2. Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B.: Maximum cuts and judicious

partitions in graphs without short cycles. J. Combin. Theory Ser. B 88, 329–346
(2003)

3. Alon, N., Krivelevich, M., Sudakov, B.: Max cut in H-free graphs. Combin. Prob.
Comput. 14, 629–647 (2005)

4. Alon, N., Halperin, E.: Bipartite subgraphs of integer weighted graphs. Discret.
Math. 181, 19–29 (1998)

5. Bollobás, B., Scott, A.D.: Better bounds for max cut. In: Bollobás, B. (ed.)
Contemporary Combinatorics. Bolyai Society Mathematical Studies, pp. 185–246.
Springer, Heidelberg (2002)

6. Conlon, D., Fox, J., Kwan, M., Sudakov, B.: Hypergraph cuts above the average.
Isr. J. Math. 233(1), 67–111 (2019). https://doi.org/10.1007/s11856-019-1897-z

7. Edwards, C.S.: Some extremal properties of bipartite subgraphs. Canad. J. Math.
3, 475–485 (1973)

8. Edwards, C.S.: An improved lower bound for the number of edges in a largest
bipartite subgraph. In: Proceedings of the 2nd Czechoslovak Symposium on Graph
Theory, Prague, pp. 167–181 (1975)

9. Erdős, P.: On even subgraphs of graphs. Mat. Lapok 18, 283–288 (1967)

https://doi.org/10.1007/s11856-019-1897-z

490 C. Carlson et al.

10. Erdős, P.: Problems and results in graph theory and combinatorial analysis. In:
Proceedings of the 5th British Combinatorial Conference, pp. 169–192 (1975)

11. Erdős, P., Faudree, R., Pach, J., Spencer, J.: How to make a graph bipartite. J.
Combin. Theory Ser. B 45, 86–98 (1988)

12. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. ACM 42,
1115–1145 (1995)

14. O’Donnell, R., Wu, Y.: An optimal SDP algorithm for Max-Cut, and equally opti-
mal long code tests. In: Proceedings of the 40th ACM Symposium on Theory of
Computing, pp. 335–344 (2008)

15. Poljak, S. Tuza, Zs.: Bipartite subgraphs of triangle-free graphs. SIAM J. Discret.
Math. 7, 307–313 (1994)

16. Shearer, J.: A note on bipartite subgraphs of triangle-free graphs. Rand. Struct.
Alg. 3, 223–226 (1992)

17. Sudakov, B.: Making a K4-free graph bipartite. Combinatorica 27, 509–518 (2007)

Quasi-Random Words and Limits of
Word Sequences

Hiê.p Hàn1, Marcos Kiwi2,3(B), and Mat́ıas Pavez-Signé3

1 Departamento de Matemática y Ciencia de la Computación,
Universidad de Santiago de Chile, Santiago, Chile

hiep.han@usach.cl
2 Centro de Modelamiento Matemático (UMI CNRS 2807), Santiago, Chile

3 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Santiago, Chile
{mk,mpavez}@dim.uchile.cl

Abstract. Words are sequences of letters over a finite alphabet. We
study two intimately related topics for this object: quasi-randomness and
limit theory. With respect to the first topic we investigate the notion of
uniform distribution of letters over intervals, and in the spirit of the
famous Chung-Graham-Wilson theorem for graphs we provide a list of
word properties which are equivalent to uniformity. In particular, we
show that uniformity is equivalent to counting 3-letter subsequences.

Inspired by graph limit theory we then investigate limits of conver-
gent word sequences, those in which all subsequence densities converge.
We show that convergent word sequences have a natural limit, namely
Lebesgue measurable functions of the form f : [0, 1] → [0, 1]. Via this
theory we show that every hereditary word property is testable, address
the problem of finite forcibility for word limits and establish as a byprod-
uct a new model of random word sequences.

Along the lines of the proof of the existence of word limits, we can
also establish the existence of limits for higher dimensional structures.
In particular, we obtain an alternative proof of the result by Hoppen,
Kohayakawa,Moreira andRath (2011) proving the existence of permutons.

1 Introduction

Roughly speaking, quasi-random structures are deterministic objects which share
many characteristic properties of their random counterparts. Formalizing this
concept has turned out to be tremendously fruitful in several areas, among oth-
ers, number theory, graph theory, extremal combinatorics, the design of algo-
rithms and complexity theory. This often follows from the fact that if an object
is quasi-random, then it immediately enjoys many other properties satisfied by
its random counterpart.

The first author was supported by the FONDECYT Regular grant 1191838. The second
author was supported by CONICYT via PIA Concurso Apoyo a Centros Cient́ıficos
y Tecnológicos de Excelencia con financiamiento basal AFB170001. The third author
was partially supported by CONICYT Doctoral Fellowship 21171132.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 491–503, 2020.
https://doi.org/10.1007/978-3-030-61792-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_39&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_39

492 H. Hàn et al.

Seminal work on quasi-randomness concerned graphs [9,28,31]. Afterward,
other combinatorial objects were considered, which include subsets of Zn [11,16],
hypergraphs [1,10,17,32], finite groups [18], and permutations [13]. Curiously, in
the rich history of quasi-randomness, words, i.e., sequences of letters from a finite
alphabet, one of the most basic combinatorial object with many applications,
do not seem to have been explicitly investigated. We overcome this apparent
neglect, put forth a notion of quasi-random words and show it is equivalent to
several other properties. We then show how our notion of quasi-random words
relates to other topics as explained next.

For the primal example of graphs, the notion of quasi-randomness was first
studied by Thomason [31] who investigated a quantitative version of the follow-
ing. A sequence (Gn)n→∞ of graphs Gn on n-vertices has uniform edge distri-
bution, if for some p ∈ [0, 1] we have

e(U) = p

(|U |
2

)
+ o(n2) for all U ⊆ V (Gn). (1)

The former is not only a.a.s. satisfied by the random graph G(n, p), but is more-
over considered one of its emblematic properties. In a cornerstone result of the
area, Chung, Graham and Wilson [9] relate several properties of G(n, p) to (1).
For example, (1) implies the counting property, meaning that in a sequence
(Gn)n→∞ with property (1) the number NF (Gn) of labeled copies of a fixed
graph F in Gn is asymptotically close to what is expected from G(n, p), i.e.,

NF (Gn) = peF nvF + o(nvF) for all graphs F, (2)

where vF = |V (F)| and eF = |E(F)|. The converse of this implication also holds;
and in a rather surprisingly strong form. Indeed, to imply the full strength of
uniform edge distribution it is sufficient to require the counting property (2) to
hold for F = C4, the cycle of length four, and for F = K2, i.e., to know the
global edge density. In other words, (Gn)n→∞ satisfies (1) if for some p ∈ [0, 1]
we have

e(Gn) = p

(
n

2

)
+ o(n2) and NC4(Gn) = p4n4 + o(n4).

Hence, graph sequences (Gn)n→∞ which satisfy one of the three properties must
satisfy them all and such sequences are called quasi-random. We refer to [9,31]
for further characterizations of graph quasi-randomness and to [22] for a more
recent survey on the subject.

In contrast to the classical topic of quasi-randomness the research of limits for
discrete structures was launched rather recently by Chayes, Lovász, Sós, Szegedy
and Vesztergombi [8,25], and has become a very active topic of research since.
Central to the area is the notion of convergent graph sequences (Gn)n→∞, i.e.,
sequences of graphs which, roughly speaking, become more and more “similar”

Quasi-Random Words and Limits of Word Sequences 493

as n = |V (Gn)| grows. The measure of similarity used in [8,25] is given in terms
of homomorphism density

t(F,G) =
1

(vG)vF
hom(F,G),

where hom(F,G) denotes the number of homomorphisms of F into G, i.e.,
edge preserving maps from V (F) to V (G). A sequence of graphs (Gn)n→∞ is
then called convergent if

(
t(F,Gn)

)
n→∞ converges for all F . Note that quasi-

randomness deals with the particular case when limn→∞ t(F,Gn) = peF for
every F , see (2). For convergent graph sequences, Lovász and Szegedy [25] show
the existence of natural limit objects, called graphons, which are symmetric
Lebesgue measurable functions of the form W : [0, 1]2 → [0, 1]. A graphon W is
the limit of (Gn)n→∞ if

lim
n→∞ t(F,Gn) = t(F,W) for every F,

where for a k-vertex graph F

t(F,W) =
∫ 1

0

. . .

∫ 1

0

∏
ij∈E(F)

W (xi, xj) dx1 . . . dxk.

For example, it follows from (2) that quasi-random graph sequences with edge
density p + o(1) converge to the constant p function.

Graphons can be used to define new models of random graphs, which is an
interesting and important consequence of the theory. For a graphon W and an
n ∈ N, define the W -random graph G(n,W) on the vertex set [n] = {1, 2, . . . , n}
created by first choosing X1, . . . , Xn uniformly from [0, 1] and then connecting
the pair i and j with probability W (Xi,Xj), independently of other pairs. If W
is constant and equal to p this coincides with G(n, p), and for general W it was
shown [25] that the sequence G(n,W) converges to W a.s. as n → ∞.

Note: Due to space limitations all proofs have been omitted from this extended
abstract. For a version of this article that includes them, see [19].

2 Main Contributions

We continue previously mentioned investigations and study quasi-randomness for
words and limits of convergent word sequences. Surprisingly, in the rich literature
of quasi-randomness and in the one concerning limits of discrete structures,
explicit investigation of this fundamental object has been overlooked so far.

A word w of length n is an ordered sequence w = (w1, w2, . . . , wn) of letters
wi ∈ Σ from a fixed size alphabet Σ. For the sake of presentation we restrict
our consideration to the two letter alphabet Σ = {0, 1}, but most of our results
and their proofs have straightforward generalizations to finite size alphabets.

494 H. Hàn et al.

2.1 Quasi-Random Words

Concerning quasi-randomness for words, our central notion is that of uniform
distribution of letters over intervals. Specifically, a word w = (w1 . . . wn) ∈
{0, 1}n is called (d, ε)-uniform if for every interval I ⊆ [n] we have1

∑
i∈I

wi = |{i ∈ I : wi = 1}| = d|I| ± εn. (3)

We say that w is ε-uniform if w is (d, ε)-uniform for some d. Thus, uniformity
states that up to an error term of εn the number of 1-entries of w in each inter-
val I is roughly d|I|, a property which binomial random words with parameter d
satisfy with high probability. In a different context, the notion of uniformity has
been studied previously by Cooper [13] who gave a list of equivalent properties.
A word (w1, . . . , wn) ∈ {0, 1}n can also be seen as the set W = {i : wi = 1} ⊆ Zn

and from this point of view our notion should be compared to the classical notion
of quasi-randomness of subsets of Zn studied by Chung and Graham in [11] and
extended to the notion of Uk-uniformity by Gowers in [16]. With respect to this
line of research we note that our notion of uniformity is weaker than all of the
ones studied in [11,16]. Indeed, the weakest of them concerns U2-uniformity and
may be rephrased as follows: W ⊆ Zn has U2-norm at most ε > 0 if for all
A ⊆ Zn and all but εn elements x ∈ Zn we have |W ∩ (A + x)| = |W | |A|

n ± εn
where A+x = {a+x : a ∈ A}. Thus, e.g., the word 0101 . . . 01 is uniform in our
sense but its corresponding set does not have small U2-norm.

As in the graph case there is a counting property related to uniformity. Given
a word w = (w1 . . . wn) and I = {i1, . . . , i�} ⊆ [n], where i1 < i2 < · · · < i�, let
sub(I,w) be the length � subsequence u = (u1 . . . u�) of w such that uj = wij

.
We show that uniformity implies adequate subsequence count, i.e., for any fixed u
the number of subsequences equal to u in a large uniform word w, denoted by(
w
u

)
, is roughly as expected from a random word with the same density of 1-

entries as w. It is then natural to ask whether the converse also holds. Our main
result concerning quasi-random words states that uniformity is indeed already
enforced by counting of length three subsequences. Let ‖w‖1 =

∑
i∈[n] wi denote

the number of 1-entries in w, then our result reads as follows.

Theorem 1. For every ε > 0, d ∈ [0, 1], and � ∈ N, there is an n0 such that for
all n > n0 the following holds.

– If w ∈ {0, 1}n is (d, ε)-uniform, then for each u ∈ {0, 1}�,
(
w
u

)
= d‖u‖1(1 − d)�−‖u‖1

(
n
�

) ± 5εn�.

– Conversely, if w ∈ {0, 1}n is such that for all u ∈ {0, 1}3 we have
(
w
u

)
= d‖u‖1(1 − d)3−‖u‖1

(
n
3

) ± εn3,

then w is (d, 18ε1/3)-uniform.
1 We write a ± x to denote a number contained in the interval [a − x, a + x].

Quasi-Random Words and Limits of Word Sequences 495

Note that in the second part of the theorem the density of 1-entries is implicitly
given. This is because

(
w

(111)

)
=

(‖w‖1
3

)
and therefore the condition

(
w

(111)

) ≈
d3

(
n
3

)
implies that ‖w‖1 ≈ dn. We also note that length three subsequences in

the theorem cannot be replaced by length two subsequences and in this sense
the result is best possible. Indeed, the word (0 . . . 01 . . . 10 . . . 0) consisting of
(1 − d)n

2 zeroes followed by dn ones followed by (1 − d)n
2 zeroes contains the

“right” number of every length two subsequences without being uniform.
From Theorem 1 and a result from Cooper [13, Theorem 2.3] we obtain a

list of properties equivalent to uniformity (see Theorem 2 below). To state the
result let w[j] denote the j-th letter of the word w. Furthermore, by the Cayley
digraph Γ = Γ (w) of a word w = (w1, . . . , wn) we mean the graph on the vertex
set Zn in which i and j form an edge if and only if wi−j (mod n) = 1. Given a
word u ∈ {0, 1}�+1, a sequence of vertices (v1, . . . , v�+1) is an increasing u-path
in Γ = Γ (w) if the numbers i1, . . . , i� ∈ [n] defined by vk+1 = vk + ik (mod n)
satisfy i1 < · · · < i� and for each k ∈ [�] the pair vkvk+1 is an edge in Γ if
uk = wik

= 1 and a non-edge if uk = wik
= 0.

Theorem 2. For a sequence (wn)n→∞ of words such that wn ∈ {0, 1}n and
‖wn‖1 = dn + o(n) for some d ∈ [0, 1], the following are equivalent:

– (Uniformity) (wn)n→∞ is (d, o(1))-uniform.
– (Counting) For all � ∈ N and all u ∈ {0, 1}� we have

(
wn

u

)
= d‖u‖1(1 − d)�−‖u‖1

(
n
�

)
+ o(n�).

– (Minimizer) For all u ∈ {0, 1}3 we have
(
wn

u

)
= d‖u‖1(1 − d)3−‖u‖1

(
n
3

)
+ o(n3).

– (Exponential sums) For any fixed α > 0 and for all non-zero k ∈ Zn we have

1
n

∑
j∈[n] wn[j] · exp

(
2πi
n kj

)
= o(1)|k|α.

– (Equidistribution) For every Lipschitz function f : R/Z → C

1
n

∑n
j=1 wn[j] · f(j

n) = d
∫
R/Z

f + o(1)‖f‖Lip.

– (Cayley graph) For all u ∈ {0, 1}3 the number of increasing u-paths in Γ (wn)
is

d‖u‖1(1 − d)3−‖u‖1n
(
n
3

)
+ o(n4).

We will say that a word sequence is quasi-random if it satisfies one of (hence all)
the properties of Theorem 2.

496 H. Hàn et al.

2.2 Convergent Word Sequences and Word Limits

Over the last two decades it has been recognized that quasi-randomness and
limits of discrete structures are intimately related subjects. Being interesting
on their own right, limit theories have also unveiled many connections between
various branches of mathematics and theoretical computer science. Thus, as a
natural continuation of the investigation on quasi-randomness, we study conver-
gent word sequences and their limits, a topic which to the best of our knowledge,
has only been briefly mentioned by Szegedy [29].

The notion of convergence we consider is specified in terms of convergence
of subsequence densities. Given w ∈ {0, 1}n and u ∈ {0, 1}�, let t(u,w) =(
w
u

)(
n
�

)−1 be the density of occurrences in w of the subsequence u. Alterna-
tively, if we let sub(�,w), with � ≤ n, denote the length � subsequence of w
corresponding to sub(I,w), for I uniformly chosen among all subsets of [n] of
size �, then t(u,w) = P(sub(�,w)) = u). A sequence of words (wn)n→∞ is called
convergent if for every finite word u the sequence

(
t(u,wn)

)
n→∞ converges. In

what follows, we will only consider sequences of words such that the length of
the words tend to infinity. This, however, is not much of a restriction since con-
vergent word sequences with bounded lengths must be constant eventually and
limits considerations for these sequences are simple.

We show that convergent word sequences have natural limit objects, which
turn out to be Lebesgue measurable functions of the form f : [0, 1] → [0, 1].
Formally, write f1 = f and f0 = 1 − f for a function f : [0, 1] → [0, 1] and for a
word u ∈ {0, 1}� define

t(u, f) = �!
∫
0≤x1<···<x�≤1

∏
i∈[�]

fui(xi) dx1 . . . dx�. (4)

We say that (wn)n→∞ converges to f and that f is the limit of (wn)n→∞, if for
every word u we have

lim
n→∞ t(u,wn) = t(u, f).

In particular, (wn)n→∞ is convergent in this case. Furthermore, let W be the
set of all Lebesgue measurable functions of the form f : [0, 1] → [0, 1] in which,
moreover, functions are identified when they are equal almost everywhere. We
show that each convergent word sequence converges to a unique f ∈ W and that,
conversely, for each f ∈ W there is a word sequence which converges to f .

Theorem 3 (Limits of convergent word sequences).

– For each convergent word sequence (wn)n→∞ there is an f ∈ W such that
(wn)n→∞ converges to f . Moreover, if (wn)n→∞ converges to g then f and
g are equal almost everywhere.

– Conversely, for every f ∈ W there is a word sequence (wn)n→∞ which con-
verges to f .

Theorem 3 can be phrased in topological terms as follows. Given a word u, one
can think of t(u, ·) as a function from W to [0, 1]. Then, endow W with the

Quasi-Random Words and Limits of Word Sequences 497

initial topology with respect to the family of maps t(u, ·), with u ∈ {0, 1}� and
� ∈ N, that is, the smallest topology that makes all these maps continuous.

We show that this initial topology is metrizable and, moreover, compact
(thereby proving Theorem 3). Specifically, given h : [0, 1] → [−1, 1] define the
interval-norm

‖h‖� = sup
I⊆[0,1]

∣∣∣
∫

I

h(x) dx
∣∣∣,

where the supremum is taken over all intervals I ⊆ [0, 1]. The interval-metric is
then defined by d�(f, g) = ‖f − g‖� for every f, g : [0, 1] → [0, 1], and we write

fn
�→ f if lim

n→∞ d�(fn, f) = 0.

The following result states that the interval-norm controls subsequence counts, in
particular. As a byproduct of the lemma, we obtain the first part of Theorem 1.
concerning counting subsequences in uniform words.

Lemma 1. For f, g ∈ W and u ∈ {0, 1}� we have
∣∣t(u, f) − t(u, g)

∣∣ ≤ �2 · d�(f, g).

Moreover, if w ∈ {0, 1}n is ε-uniform and n = n(ε, �) is sufficiently large, then
for some d ∈ [0, 1] and all u ∈ {0, 1}� we have

(
w
u

)
= d‖u‖1(1−d)�−‖u‖1

(
n
�

)±5εn�.

It follows immediately that if a sequence (fn)n→∞ in W is Cauchy with respect
to d�, then it is also t-convergent. A technical novelty of the proof strategy we
follow is that it yields the converse without relying on compactness arguments.

Proposition 1. If (fn)n→∞ is a sequence in W which is t-convergent, then it
is a Cauchy sequence with respect to d�. Moreover, if fn

t→ f for some f ∈ W,
then fn

�→ f.

To prove the result we use that for any polynomial P (x) ∈ R[x] we can write∫ 1

0
(fn(x) − fm(x))P (x) dx as a linear combination of subsequence densities. By

approximating 1[a,b](x) by a polynomial Pa,b(x) ∈ R[x], with error term uniform
in 0 ≤ a < b ≤ 1, we may show that

∫ 1

0
(fn(x) − fm(x))1[a,b](x) dx can be

approximated by
∫ 1

0
(fn(x)−fm(x))Pa,b(x) dx, thence by a linear combination of

subsequence densities, implying our claim. In order to prove this approximation
result, we rely on Bernstein polynomials whose first use was precisely to give a
constructive proof for the Stone-Weierstrass approximation theorem.

The compactness of the metric space (W, d�) can be easily established via
the Banach–Alaoglu theorem in L∞([0, 1]). One can also constructively establish
the compactness of (W, d�) by using the regularity lemma for words [5]. Instead,
we follow a different strategy. We introduce a probabilistic point of view for the
convergence in d� that is based on a new model of random words that naturally
arises from this theory, which is interesting on its own.

498 H. Hàn et al.

Theorem 4. The metric space (W, d�) is compact.

The last theorem thus establishes the existence of the limit object claimed in
the first part of Theorem 3.

Our overall approach is in line with what has been done for graphons [25]
and permutons [21]. However, there are important technical differences, specially
concerning the (in our case, more direct) proofs of the equivalence between dis-
tinct notions of convergence. In contrast with other technically more involved
limit theories, the simplicity of the underlying combinatorial objects we con-
sider (words) yields concise arguments, elegant proofs, simple limit objects, and
is based on far fewer concepts. Yet despite the technically comparatively simpler
theory, as illustrated in the remaining sections, many interesting aspects common
to other structures and some specific to words appear in our investigation.

2.3 Testing Hereditary Word Properties

The concept of self-testing/correcting programs was introduced by Blum et al. [6,
7] and greatly expanded by the concept of graph property testing proposed by
Goldreich, Goldwasser and Ron [14] (for an in depth coverage of property testing
see the book by Goldreich [15]). An insightful connection between testable graph
properties and regularity was established by Alon and Shapira [3] and further
refined in [2,4]. It was then observed that similar and related results can be
obtained via limit theories (for the case of testing graph properties, the reader
is referred to [24], and for the case of (weakly) testing permutation properties,
to [20]). Thus, it is not surprising that analogue results can be established for
word properties. On the other hand, it is noteworthy that such consequences can
be obtained very concisely.

We next state our main result concerning testing word properties. Formally,
for u,w ∈ {0, 1}n let d1(w,u) = 1

n

∑
i∈[n] |wi − ui|. A word property is simply a

collection of words. A word property P is said to be testable if there is another
word property P ′ (called test property for P) satisfying the following conditions:

(Completeness) For every w ∈ P of length n and every � ∈ [n], P(sub(�,w) ∈
P ′) ≥ 2

3 .
(Soundness) For every ε > 0 there is an �(ε) ≥ 1 such that if w ∈ {0, 1}n

with d1(w,P) = minu∈P∩{0,1}n d1(w,u) ≥ ε, then P(sub(�,w) ∈ P ′) ≤ 1
3 for

all �(ε) ≤ � ≤ n.

Variants of the notion of testability can be considered. However, the one
stated is sort of the most restrictive. On the other hand, the notion can be
strengthened by replacing the 2/3 in the completeness part by 1 − ε and 1/3 in
the soundness part by ε. The notion can be weakened letting the test property
P ′ depend on ε. These variants do not change the concept of testability. A word
property P is called hereditary if for each w ∈ P, every subsequence u of w also
belongs to P.

Quasi-Random Words and Limits of Word Sequences 499

Theorem 5. Every hereditary word property is testable.

Since our notion of testability is very restrictive (it consists in sampling uniformly
a constant number of characters from the word being tested) it straightforwardly
yields efficient (polynomial time) testing procedures.

Examples of hereditary properties are: (1) the collection PF of words that
do not contain as subsequence any word in F where F is a family of words (F
might even be infinite), and (2) for given P1, ...,Pk hereditary word properties,
the collection Pcol of words that can be k-colored (i.e., each of its letters assigned
a color in [k]) so that for all c ∈ [k] the induced c colored sub-word is in Pc.

2.4 Finite Forcibility

Finite forcibility was introduced by Lovász and Sós [26] (see also Lovász and
Szegedy [23]) while studying a generalization of quasi-random graphs. We say
that f ∈ W is finitely forcible if there is a finite list of words u1, . . .um such
that any function h : [0, 1] → [0, 1] which satisfies t(ui, h) = t(ui, f) for all
i ∈ [m] must agree with f almost everywhere. A direct consequence of Theorem 1
concerning quasi-random words is that the constant functions are finitely forcible
(by words of length three). We can generalize this result as follows:

Theorem 6. Piecewise polynomial functions are finitely forcible. Specifically,
if there is an interval partition {I1, ..., Ik} of [0, 1], polynomials P1(x), ..., Pk(x)
of degrees d1, ..., dk, respectively, and f ∈ W is such that f(x) = Pi(x) for
all i ∈ [k] and x ∈ Ii, then there is a list of words u1, . . . ,um, with m ≤
21+2k+2

∑
i di + 2

(
k
2

)
(1+maxi di) such that any function h : [0, 1] → [0, 1] which

satisfies t(ui, h) = t(ui, f) for all i ∈ [m] must agree with f almost everywhere.

2.5 Extensions

We have studied quasi-randomness for binary words and limits of convergent
binary word sequences. However, our results (except for the ones concerning
testing word properties) can be easily extended to any alphabet of finite size.
Indeed, for a word w ∈ Σn and an interval I ⊆ [n] let Na(w, I) denote the
number of occurrences of a ∈ Σ in sub(I,w) and let Na(w) = Na(w, [n]). As
for the binary alphabet case, denote by

(
w
u

)
the number of subsequences of w

which coincide with u.
A sequence (wn)n→∞ of words wn ∈ Σn is called o(1)-uniform if for each

a ∈ Σ there is a density da such that Na(wn, I) = da|I| + o(1)n holds for each
interval I ⊆ [n]. By fixing any a ∈ Σ and replacing every other letter in wn, say,
by b, we obtain a sequence of words over the alphabet {a, b} and from Theorem 1
we deduce that a is uniformly distributed. This observation coupled with a large
alphabet analogue of Lemma 1 yields the following result.

Corollary 1. Let (wn)n→∞ be a sequence of words wn ∈ Σn over the finite size
alphabet Σ. If (wn)n→∞ is o(1)-uniform, then there are d1, . . . , d|Σ| such that

500 H. Hàn et al.

for every � ∈ N and every word u ∈ Σ� we have
(
wn

u

)
=

∏
i∈Σ d

Ni(u)
i

(
n
�

)
+ o(n�).

Conversely, if for some d1, . . . , d|Σ| we have
(
wn

u

)
=

∏
i∈Σ d

Ni(u)
i

(
n
3

)
+ o(n3) for

all words u ∈ Σ3, then (wn)n→∞ is o(1)-uniform.

Similarly, one can obtain an analog of Theorem 3 concerning limits of convergent
word sequences for larger alphabets. A sequence (wn)n→∞ of words wn ∈ Σn

over the alphabet Σ = {a1, . . . , ak} is convergent if for all � ∈ N and u ∈ Σ�

the subsequence density
((

wn

u

)
/
(
n
�

))
n→∞ converges and we say that (wn)n→∞

converges to f = (fa1 , . . . , fak) if
((

wn

u

)
/
(
n
�

))
n→∞ converges to

t(u,f) = �!
∫
0≤x1<···<x�≤1

∏
i∈[�]

fui(xi) dx1 . . . dx�.

Corollary 2 (Limits of convergent k-letter word sequences). Let Σ =
{a1, . . . , ak}.
– Each convergent sequence (wn)n→∞ of words over Σ converges to some vector

f = (fa1 , . . . , fak) with fai ∈ W and fa1(x) + · · · + fak(x) = 1 for almost
all x ∈ [0, 1]. Moreover, if (wn)n→∞ converges to g = (ga1 , . . . , gak) then fai

and gai , i ∈ [k], are equal almost everywhere.
– Conversely, for every vector f = (fa1 , . . . , fak) of functions fai ∈ W which

satisfies fa1(x) + · · · + fak(x) = 1 for almost all x ∈ [0, 1] there is a sequence
(wn)n→∞ of words over Σ which converges to f .

2.6 Permutons from Words Limits

Given n ∈ N, we denote by Sn the set of permutations of order n and S =⋃
n≥1 Sn the set of all finite permutations. Also, for σ ∈ Sn and τ ∈ Sk we

let Λ(τ, σ) be the number of copies of τ in σ, that is, the number of k-tuples
1 ≤ x1 < · · · < xk ≤ n such that for every i, j ∈ [k]

σ(xi) ≤ σ(xj) iff τ(i) ≤ τ(j).

The density of copies of τ in σ, denoted by t(τ, σ), is the probability that σ
restricted to a randomly chosen k-tuple of [n] yields a copy of τ . A sequence
(σn)n→∞ of permutations, with σn ∈ Sn for each n ∈ N, is said to be convergent
if limn→∞ t(τ, σn) exists for every permutation τ ∈ S. Hoppen et al. [21] proved
that every convergent sequence of permutations converges to a suitable analytic
object called permuton, which are probability measures on the Borel σ-algebra
on [0, 1] × [0, 1] with uniform marginals, the collection of which we henceforth
denote Z, and also extend the map t(τ, ·) to the whole of Z. Then, Hoppen et
al. define a metric d� on Z so that for all τ ∈ S the maps t(τ, ·) are Lipschitz
continuous with respect to d�. They also show that (Z, d�) is compact and, as a
consequence, establish that t-convergence and convergence in d� are equivalent.
In particular, they prove that for every convergent sequence of permutations

Quasi-Random Words and Limits of Word Sequences 501

(σn)n→∞ there is a permuton μ ∈ Z such that t(τ, σn) → t(τ, μ) for all τ ∈ S.
We give new proofs of these results by using a more direct approach based on
Theorem 3 and the Stone–Weirestrass theorem. In particular, without relying
on compactness argument (in contrast to [21]) we establish the following.

Proposition 2. If (μn)n→∞ is a sequence in Z which is t-convergent, then it
is a Cauchy sequence with respect to d�.

The result’s proof argument is an extension, relying in multi-variate Bernstein
polynomials, of the one used to establish Proposition 1.

3 Concluding Remarks

A variety of applications use data structures and algorithms on strings/words. In
many settings, it is reasonable to assume that strings are generated by a random
source of known characteristics. Several basic (generic) probabilistic models have
been proposed and are often encountered in the analysis of problems on words,
among others, memoryless Markov, mixing and ergodic sources (for detailed
discussion see [30]). Our investigations suggest that a new probabilistic model
for generating strings under which to analyze the behavior of algorithms on
words is, for f ∈ W, the sequence of distribution on words (sub(n, f))n∈N. For
instance, one may consider variants of classical long-standing open problems on
words such as the Longest Common Subsequence (LCS) problem, for which (in
the mid 70’s) it was shown [12] that two random words uniformly chosen in
{0, 1}n have a LCS of size proportional to n plus low order terms. The exact
value of the proportionality constant remains unknown, although good upper
and lower bounds have been established [27]. Generalizing this model, one may
consider two random strings sub(n, f1) and sub(n, f2) and ask for conditions on
f1, f2 ∈ W so that the expected length of the LCS is of size o(n).

Acknowledgments. We would like to thank Svante Janson, Yoshiharu Kohayakawa
and Jaime San Mart́ın for valuable discussions and suggestions. We are also greatful
to the anonymous reviewers whose comments have greatly improved this manuscript.

References

1. Aigner-Horev, E., Conlon, D., Hàn, H., Person, Y., Schacht, M.: Quasirandomness
in hypergraphs. Electron. J. Comb. 25(3), 3–34 (2018)

2. Alon, N., Fischer, E., Newman, I., Shapira, A.: A combinatorial characterization
of the testable graph properties: it’s all about regularity. SIAM J. Comput. 39(1),
143–167 (2009)

3. Alon, N., Shapira, A.: Every monotone graph property is testable. In: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, STOC 2005, pp.
128–137. ACM (2005)

4. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable
with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)

502 H. Hàn et al.

5. Axenovich, M., Person, Y., Puzynina, S.: A regularity lemma and twins in words.
J. Combin. Theory Ser. A 120(4), 733–743 (2013)

6. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42,
269–291 (1995)

7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci. 47, 549–595 (1993)

8. Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K.: Convergent sequences
of dense graphs I: subgraph frequencies, metric properties and testing. Adv. Math.
219(6), 1801–1851 (2008)

9. Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinator-
ica 9(4), 345–362 (1989)

10. Chung, F., Graham, R.: Quasi-random hypergraphs. Proc. Natl. Acad. Sci. 86(21),
8175–8177 (1989)

11. Chung, F., Graham, R.: Quasi-random subsets of Zn. J. Comb. Theory Ser. A
61(1), 64–86 (1992)

12. Chvátal, V., Sankoff, D.: Longest common subsequences of two random sequences.
J. Appl. Probab. 12(2), 306–315 (1975)

13. Cooper, J.N.: Quasirandom permutations. J. Combin. Theory Ser. A 106(1), 123–
143 (2004)

14. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45(4), 653–750 (1998)

15. Goldreich, O.: Introduction to Property Testing. Cambridge University Press,
Cambridge (2017)

16. Gowers, W.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–
588 (2001)

17. Gowers, W.: Quasirandomness, counting and regularity for 3-uniform hypergraphs.
Comb. Probab. Comput. 15(1–2), 143–184 (2006)

18. Gowers, W.: Quasirandom groups. Comb. Probab. Comput. 17(3), 363–387 (2008)
19. Hàn, H., Kiwi, M., Pavez-Signé, M.: Quasi-random words and limits of word

sequences. arXiv e-prints, arXiv:2003.03664, March 2020
20. Hoppen, C., Kohayakawa, Y., Moreira, C.G., Sampaio, R.M.: Testing permutation

properties through subpermutations. Theoret. Comput. Sci. 412(29), 3555–3567
(2011)

21. Hoppen, C., Kohayakawa, Y., Moreira, C.G., Ráth, B., Sampaio, R.M.: Limits of
permutation sequences. J. Combin. Theory Ser. B 103(1), 93–113 (2013)

22. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. In: Győri, E., Katona,
G.O.H., Lovász, L., Fleiner, T. (eds.) More Sets, Graphs and Numbers: A Salute
to Vera Sós and András Hajnal, pp. 199–262. Springer, Heidelberg (2006). https://
doi.org/10.1007/978-3-540-32439-3 10

23. Lovász, L., Szegedy, B.: Finitely forcible graphons. J. Comb. Theory Ser. B 101(5),
269–301 (2011)

24. Lovász, L., Szegedy, B.: Testing properties of graphs and functions. Israel J. Math.
178(1), 113–156 (2010)

25. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory Ser. B
96(6), 933–957 (2006)

26. Lovász, L., Sós, V.T.: Generalized quasirandom graphs. J. Comb. Theory Ser. B
98(1), 146–163 (2008)

27. Lueker, G.S.: Improved bounds on the average length of longest common subse-
quences. J. ACM 56(3), 17:1–17:38 (2009)

28. Rödl, V.: On universality of graphs with uniformly distributed edges. Discret.
Math. 59(1–2), 125–134 (1986)

http://arxiv.org/abs/2003.03664
https://doi.org/10.1007/978-3-540-32439-3_10
https://doi.org/10.1007/978-3-540-32439-3_10

Quasi-Random Words and Limits of Word Sequences 503

29. Szegedy, B.: From graph limits to higher order Fourier analysis. In: Proceedings
of the International Congress of Mathematicians, vol. 3, pp. 3197–3218. World
Scientific (2018)

30. Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. Series in
Discrete Mathematics and Optimization. Wiley-Interscience (2001)

31. Thomason, A.: Pseudo-random graphs. In: Barlotti, A., Biliotti, M., Cossu, A.,
Korchmaros, G., Tallini, G. (eds.) Annals of Discrete Mathematics (33). North-
Holland Mathematics Studies, vol. 144, pp. 307–331. North-Holland (1987)

32. Towsner, H.: -algebras for quasirandom hypergraphs. Random Struct. Algorithms
50(1), 114–139 (2017)

Thresholds in the Lattice
of Subspaces of Fn

q

Benjamin Rossman(B)

Duke University, Durham, NC 27708, USA
benjamin.rossman@duke.edu

Abstract. Let Q be an ideal (downward-closed set) in the lattice of
linear subspaces of Fn

q , ordered by inclusion. For 0 � k � n, let μk(Q)
denote the fraction of k-dimensional subspaces that belong to Q. We
show that these densities satisfy

μk(Q) =
1

1 + z
=⇒ μk+1(Q) � 1

1 + qz
.

This implies a sharp threshold theorem: if μk(Q) � 1−ε, then μ�(Q) � ε
for � = k + O(logq(1/ε)).

Keywords: Subspace lattice · Sharp threshold · q-analog ·
Kruskal-Katona

1 Introduction

Let Lq(n) be the lattice of linear subspaces of Fn
q , ordered by inclusion. Let Q

be a nontrivial ideal in Lq(n) (that is, a nonempty proper subset of Lq(n) such
that A ∈ Q implies B ∈ Q for all B ⊂ A). For 0 � k � n, let μk(Q) denote
the fraction of k-dimensional subspaces that belong to Q. Densities μk(Q) are
known to be non-increasing: thus,

1 = μ0(Q) � · · · � μt−1(Q) � 1/2 > μt(Q) � · · · � μn(Q) = 0

for a unique t. This paper addresses the question: How quickly must μk(Q)
transition from 1 − o(1) to o(1)?

It follows from known results (described in Sect. 2) that

μ�(t−1)/c�(Q) � 2−1/c and μ�ct�(Q) � 2−c

for all c � 1. This is the q-analog of the Bollobás-Thomason Theorem [3], which
speaks of ideals in the boolean lattice P(n) of subsets of {1, . . . , n}.

On the one hand, Lq(n) is the q-analog of P(n); on the other hand, it is a
sub-lattice of P(qn). This raises the question: Do k-subspace densities of ideals

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 504–515, 2020.
https://doi.org/10.1007/978-3-030-61792-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_40&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_40

Thresholds in the Lattice of Subspaces of Fn
q 505

in Lq(n) scale like k-subset densities in P(n) or like qk-subset densities in P(qn)?
Quantitatively, the latter suggests we should expect that

μt−1−c(Q) � 1 − q−c and μt+c(Q) � q−c.

for all integers c � 1. This is precisely what we show.
Our main result actually concerns shadows in the subspace lattice. Let

Lq(n, k) denote the set of k-dimensional subspaces of F
n
q . For 1 � k � n

and S ⊆ Lq(n, k), the shadow of S is the set �S ⊆ Lq(n, k − 1) defined by
�S := {B ∈ Ln,k−1 : ∃A ∈ S, A ⊂ B}. We show:

Theorem 1. For all 1 � k � n and S ⊆ Lq(n, k), if μk(S) = (1 + z)−1 where
z ∈ R�0, then

μk−1(�S) �
(

1 +
q(qk−1 − 1)(qn−k − 1)
(qk − 1)(qn−k+1 − 1)

· z

)−1

�
(

1 +
z

q

)−1

.

The first inequality in Theorem 1 is tight in two cases:

– when S is the set of k-dimensional subspaces of a fixed n−1-dimensional space
(z = qn−qn−k

qn−k−1
), as well as

– when S is the set of k-dimensional subspaces not containing a fixed 1-
dimensional space (z = qk−1

qn−qk).

For values of z between qk−1
qn−qk and qn−qn−k

qn−k−1
, Theorem 2 improves the lower

bound on μk−1(�S) given by a q-analog of the Kruskal-Katona Theorem due to
Chowdhury and Patkós [5].

A sharp threshold theorem for Lq(n) follows immediately from Theorem 1
and the observation that �(Q ∩ Lq(n, k)) ⊆ Q ∩ Lq(n, k − 1) for ideals Q.

Theorem 2. For every ideal Q in Lq(n) and 1 � k � n−1, if μk(Q) = (1+z)−1,
then μk−1(Q) � (1 + (z/q))−1 and μk+1(Q) � (1 + qz)−1. As a consequence, if
μk(Q) � 1 − ε, then μ�(Q) � ε for � = k + O(logq(1/ε)).

The rest of the paper is organized as follows. In Sect. 2 we describe the
previous q-analogs of the Kruskal-Katona and Bollobás-Thomason Theorems
and their dual versions. In Sect. 3 we prove Theorem 1 using well-known tools
(the Expander Mixing Lemma and bounds on the eigenvalues of Grassmann
graphs). In Sect. 4 we discuss the tightness of the results. Finally, in Sect. 5 we
give an application of Theorem 2 to a problem in query complexity.

2 q-Analogs of Kruskal-Katona and Bollobás-Thomason

For x ∈ R�0, let [x]q := qx−1
q−1 . The (Gaussian) q-binomial coefficient

[
x
k

]
q

is
defined by

[
x

k

]
q

:=
k−1∏
i=0

[x − i]q
[k − i]q

.

506 B. Rossman

Note that [0]q = 0 and [1]q = 1 and |Lq(n, k)| =
[
n
k

]
q

=
[

n
n−k

]
q

for integers
n � k.

Chowdhury and Patkós [5] proved a q-analog the Kruskal-Katona Theorem
[8,11], specifically a version due Keevash [10]. (See [15] for an alternative proof.)

Theorem 3 (q-Kruskal-Katona). For all 1 � k � n and S ⊆ Lq(n, k), if
|S| =

[
x
k

]
q
, then |�S| �

[
x

k−1

]
q
. Moreover, this bound is tight when S is the set

of k-dimensional subspaces of a fixed �-dimensional space where k � � � n.

Note that the parameter n (the dimension of the ambient vector space) plays
no role in this bound, in contrast to Theorem 1. It turns out Theorem 3 is slack
when n − 1 < x < n; this is precisely where Theorem 1 gives an improvement
(as we discuss in Sect. 4).

Combining Theorem 3 with the inequality (
[

x
k−1

]
q
/
[

n
k−1

]
q
)k � (

[
x
k

]
q
/
[
n
k

]
q
)k−1

for all k � x � n, we have the following q-analog of the Bollobás-Thomason
Theorem [3] for the boolean lattice P(n).

Theorem 4 (q-Bollobás-Thomason). For every ideal Q in Lq(n),

μ1(Q) � μ2(Q)1/2 � μ3(Q)1/3 � · · · � μn(Q)1/n.

In particular, if μt−1(Q) � 1/2 > μt(Q), then μ�(t−1)/c�(Q) � 2−1/c and
μ�ct�(Q) � 2−c for all c � 1.

If we regard Q as a sequence of ideals in Lq(n), one for each n, then The-
orem 4 implies that every nontrivial Q has a threshold function t(n), meaning
that μk(n)(Q) = 1 − o(1) for all k(n) = o(t(n)) and μ�(n)(Q) = o(1) for all
�(n) = ω(t(n)). In the boolean lattice P(n), nothing more can be said in general,
although certain classes of ideals in P(n), such as monotone graph properties
when n =

(
m
2

)
, are known to have sharp thresholds such that μk(n)(Q) = 1−o(1)

and μ�(n)(Q) = o(1) for some k(n) = t(n) − o(t(n)) and �(n) = t(n) + o(t(n))
(see [6]). In the same sense, Theorem 2 shows that every sequence of nontrivial
ideals in Lq(n) has a sharp threshold.

2.1 Dual Versions of Theorems 3 and 4

For a subspace A of Fn
q , the orthogonal complement is defined by

A⊥ := {b ∈ F
n
q :

n∑
i=1

aibi = 0 for all a ∈ A}.

Note that dim(A⊥) = n − dim(A) and (A⊥)⊥ = A and B ⊆ A =⇒ A⊥ ⊆ B⊥.
For every ideal Q in Lq(n), there is a dual ideal Q∗ := {A ∈ Lq(n) : A⊥ /∈ Q}

satisfying μk(Q∗) = 1 − μn−k(Q). Applying Theorem 4 to Q∗ yields:

Thresholds in the Lattice of Subspaces of Fn
q 507

Theorem 5 (Dual q-Bollobás-Thomason). For every ideal Q in Lq(n),

1 − μn−1(Q) � (1 − μn−2(Q))1/2 � (1 − μn−3(Q))1/3 � · · · � (1 − μ0(Q))1/n.

In particular, μ�c(t−1)+(1−c)n�(Q) � 1 − 2−c and μ�t/c+(1−1/c)n�(Q) � 1 − 2−1/c

for all c � 1. (This improves Theorem 4 when t � n/2.)

Similarly, there is a dual version of Theorem 3. It may be helpful to include
the proof, since we will use a similar argument in Sect. 3.

Theorem 6 (Dual q-Kruskal-Katona). For all 1 � k � n and n − k + 1 �
y � n and S ⊆ Lq(n, k), if |S| =

[
n
k

]
q
− [

y
n−k

]
q
, then |�S| �

[
n

k−1

]
q
− [

y
n−k+1

]
q
.

Proof. We will assume |�S| <
[

n
k−1

]
q

− [
y

n−k+1

]
q

and prove that |S| <
[
n
k

]
q

−[
y

n−k

]
q
. Define T ⊆ Lq(n, n − k + 1) by

T := {B⊥ : B ∈ Lq(n, k − 1) \ �S}.

Note that |T | =
[

n
k−1

]
q
−|�S| =

[
y

n−k+1

]
q
. Therefore, Theorem 3 implies |�T | >[

y
n−k

]
q
.

For all A ∈ Lq(n, k), observe that

A⊥ ∈ �T ⇐⇒ ∃B ∈ Lq(n, k − 1) \ �S, A⊥ ⊂ B⊥

⇐⇒ ∃B ∈ Lq(n, k − 1) \ �S, B ⊂ A

=⇒ A /∈ S.

Therefore, S ⊆ {A ∈ Lq(n, k) : A⊥ /∈ �T}. We conclude that |S| =
[
n
k

]
q

−
|�T | <

[
n
k

]
q
− [

y
n−k

]
q
, as required.

3 Proof of Theorem 1

The proof of Theorem 1 involves bounding the edge-expansion of sets in the
Grassmann graph Jq(n, k). We state the required definitions and lemmas below.
(See [12] for a much deeper study of expansion of Grassman graphs.)

Definition 7. For a d-regular graph G = (V,E) and S ⊆ V , the edge-expansion
of S is defined by

ΦG(S) :=
|E(S, S)|

d|S|
where E(S, S) is the set of edges between S and S = V \ S.

Lemma 8 (Expander Mixing Lemma [1]). Let G = (V,E) be a d-regular
graph and suppose the second largest eigenvalue (in absolute value) of the adja-
cency matrix of G is at most λ. Then for all S ⊆ V ,(

1 − λ

d

)(
1 − |S|

|V |
)

� ΦG(S) �
(

1 +
λ

d

)(
1 − |S|

|V |
)

.

508 B. Rossman

Definition 9. For 1 � k � n, the Grassmann graph Jq(n, k) is the q[k]q[n−k]q-
regular graph with vertex set Lq(n, k) and edge set

EJq(n,k) := {(A1, A2) ∈ Lq(n, k) × Lq(n, k) : dim(A1 ∩ A2) = k − 1}.

Lemma 10 (Spectrum of Jq(n, k) [4]). The adjacency matrix of Jq(n, k) has
eigenvalue qi+1[k − i]q[n − k − i]q − [i]q with multiplicity

[
n
i

]
q

− [
n

i−1

]
q
for each

0 � i � min(k, n − k). In particular, the second largest eigenvalue (in absolute
value) equals 1 if k ∈ {1, n−1} and equals q2[k−1]q[n−k−1]q−1 if 2 � k � n−2.

Lemmas 8 and 10 give the following lower bound on ΦJq(n,k)(S).

Lemma 11. For all 2 � k � n − 2 and S ⊆ Lq(n, k),

ΦJq(n,k)(S) � [n]q
q[k]q[n − k]q

(1 − μk(S)).

Proof. Lemma 8 implies the lower bound

ΦJq(n,k)(S) �
(

1 − q2[k − 1]q[n − k − 1]q − 1
[k]q[n − k]q

)
(1 − μk(S)) .

By a straightforward calculation,

1 − q2[k − 1]q[n − k − 1]q − 1
q[k]q[n − k]q

=
qn+1 − qn − q + 1

qn+1 − qk+1 − qn−k+1 + q
=

[n]q
q[k]q[n − k]q

.

We next show an upper bound on ΦJq(n,k)(S) in terms of the ratio
μk(S)/μk−1(�S).

Lemma 12. For all 1 � k � n and ∅ ⊂ S ⊆ Lq(n, k),

ΦJq(n,k)(S) � [n − k + 1]q
q[n − k]q

(
1 − μk(S)

μk−1(�S)

)
.

Proof. For B ∈ �S, let SB := {A ∈ S : B ⊂ A}. We have
∑

B∈
S |SB | = [k]q|S|
and, by the Cauchy-Schwarz inequality,

∑
B∈
S

|SB |2 �
(
∑

B∈
S |SB |)2
|�S| =

([k]q|S|)2
|�S| .

Therefore,

|EJq(n,k)(S, S)| =
∑

B∈
S

|SB × SB | =
∑

B∈
S

|SB | ([n − k + 1]q − |SB |)

� [k]q|S|
(

[n − k + 1]q − [k]q|S|
|�S|

)
.

Thresholds in the Lattice of Subspaces of Fn
q 509

We now have

ΦJq(n,k)(S) =
|EJq(n,k)(S, S)|
q[k]q[n − k]q|S| � [n − k + 1]q

q[n − k]q
− [k]q

q[n − k]q
· |S|
|�S| .

The lemma now follows from the equality

[k]q
q[n − k]q

· |S|
|�S| =

[k]q
[
n
k

]
q

q[n − k]q
[

n
k−1

]
q

· μk(S)
μk−1(�S)

=
[n − k + 1]q
q[n − k]q

· μk(S)
μk−1(�S)

.

We are ready to prove:

Theorem 1 (restated). For all 1 � k � n and S ⊆ Lq(n, k), if μk(S) =
(1 + z)−1 where z ∈ R�0, then

μk−1(�S) �
(

1 +
q(qk−1 − 1)(qn−k − 1)
(qk − 1)(qn−k+1 − 1)

· z

)−1

�
(

1 +
z

q

)−1

.

Proof. The second inequality is by a straightforward calculation:

q(qk−1 − 1)(qn−k − 1)
(qk − 1)(qn−k+1 − 1)

=
1
q

(
1 − (q − 1)(qn−k+1 + qk − q − 1)

(qk − 1)(qn−k+1 − 1)

)
� 1

q
.

For the first inequality, consider the case that k ∈ {1, n}. In both cases, we
have μk−1(�S) = 1 for every nonempty S ⊆ Lq(n, k). Therefore, the inequality
holds (moreover, with equality since [k − 1]q[n − k]q = 0).

Next, consider the case that 2 � k � n − 2. In this case, Lemmas 11 and 12
imply

[n]q
q[k]q[n − k]q

(1 − μk(S)) � ΦJq(n,k)(S) � [n − k + 1]q
q[n − k]q

(
1 − μk(S)

μk−1(�S)

)
.

Therefore,

[n]q
[k]q[n − k + 1]q

(1 − μk(S)) � 1 − μk(S)
μk−1(�S)

.

Substituting (1 + z)−1 for μk(S), this rearranges to

μk−1(�S) �
(

1 +
(

1 − [n]q
[k]q[n − k + 1]q

)
z

)−1

=
(

1 +
q(qk−1 − 1)(qn−k − 1)
(qk − 1)(qn−k+1 − 1)

· z

)−1

.

We derive the remaining case k = n − 1 from the case k = 2 via duality.
Letting S ⊆ Lq(n, n − 1), we will assume that

μn−2(S) <

(
1 +

q(q − 1)(qn−2 − 1)
(q2 − 1)(qn−1 − 1)

· z

)−1

510 B. Rossman

and show that μn−1(S) < (1 + z)−1. Let T := {B⊥ : B ∈ Lq(n, n − 2) \ �S}
and note that

μ2(T) = 1 − μn−2(�S) > 1 −
(

1 +
q(q − 1)(qn−2 − 1)
(q2 − 1)(qn−1 − 1)

· z

)−1

=
(

1 +
(q2 − 1)(qn−1 − 1)

z · q(q − 1)(qn−2 − 1)

)−1

.

From the case k = 2, we have

μ1(�T) �
(

1 +
q(q − 1)(qn−2 − 1)
(q2 − 1)(qn−1 − 1)

· (μ2(T)−1 − 1)
)−1

>

(
1 +

1
z

)−1

.

Since S ⊆ {A ∈ Lq(n, n − 1) : A⊥ /∈ �T} (as in the proof of Theorem 6), it
follows that

μn−1(S) � 1 − μ1(�T) < 1 −
(

1 +
1
z

)−1

= (1 + z)−1,

as required.

We remark that Theorem 1 is self-dual: for any 1 � k � n and S ⊆
Lq(n, k), we get the same inequality between μk(S) and μk−1(�S) as between
1 − μn−k(�T) and 1 − μn−k+1(T) where T := {B⊥ : B ∈ Lq(n, k − 1) \ �S}.

4 Tightness of the Result

Fix a flag V0 ⊂ V1 ⊂ · · · ⊂ Vn = F
n
q . (Without loss of generality, we may take

Vk = {u ∈ F
n
q : uk+1 = · · · = un = 0}.) For 1 � j � n, let Q

̂j be the ideal

Q
̂j

:= {A ∈ Lq(n) : A ∩ (Vj − Vj−1) = ∅}.

In particular, Q
̂1 is the set of subspaces of Fn

q that do not contain V1, while Qn̂

is the set of subspaces contained in Vn−1.
Densities μk(Q

̂j) satisfy the following (in)equalities:

(i) μn−j(Q̂j) > 1/2 > μn−j+1(Q̂j),
(ii) if 2 � k � n − 1 and μk(Q

̂j) = (1 + z)−1, then

(
1 +

z

q2

)−1

� μk−1(Q̂j) �
(

1 +
z

q

)−1

,

(iii) μk(Qn̂) =

[
n−1

k

]
q[

n
k

]
q

=
[n − k]q

[n]q
=

(
1 +

qn−k(qk − 1)
(qn−k − 1)

)−1

,

(iv) μk(Q
̂1) = 1 −

[
n−1
k−1

]
q[

n
k

]
q

= 1 − [k]q
[n]q

=
(

1 +
(qk − 1)

qk(qn−k − 1)

)−1

.

Thresholds in the Lattice of Subspaces of Fn
q 511

Inequalities (i) and (ii) show that Theorem 2 is essentially tight, no matter
where in {1, . . . , n} the threshold for Q occurs. Equations (iii) and (iv) show
that the first inequality of Theorem 1 is tight both:

– when S is the set of k-dimensional subspaces of a fixed n−1-dimensional
space, as well as

– when S is the set of k-dimensional subspaces not containing a fixed 1-
dimensional space.

The first example is also tight for q-Kruskal-Katona (Theorem 3), while the
second example is tight for the Dual q-Kruskal-Katona (Theorem 6). Taking the
maximum of the bounds given by Theorem 1, 3 and 6, we get:

Corollary 13. For all 1 � k � n and ∅ ⊂ S ⊂ Lq(n, k),

|
S| �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[x

k − 1

]

q
if |S| =

[x

k

]

q
, k � x � n − 1,

[n

k − 1

]

q

(

1 +
z · (qk−1 − 1)

qk−1(qn−k+1 − 1)

)−1

if |S| =
[n

k

]

q

(

1 +
z · (qk − 1)

qk(qn−k − 1)

)−1

, 1 � z � q
n

,

[n

k − 1

]

q
−

[y

n − k + 1

]

q

if |S| =
[n

k

]

q
−

[y

n − k

]

q
, n − k + 1 � y � n − 1.

Corollary 13 is known to be tight when x or y are integers (or z ∈ {1, qn},
coinciding with cases y = n − 1 and x = n − 1). In other cases, determining
the optimal lower bound for |�S| in terms of |S| remains an open problem.
In contrast, note that the original Kruskal-Katona Theorem [8,11] completely
solves the shadow minimization problem in the boolean lattice: if S is a family
of k-element sets and |S| =

(
nk

k

)
+

(
nk−1
k−1

)
+ · · · +

(
nj

j

)
where nk > nk−1 > · · · >

nj = j � 1, then |�S| �
(

nk

k−1

)
+

(
nk−1
k−2

)
+ · · · +

(
nj

j−1

)
and this bound is tight.

Moreover, a family of nested solutions is given by the subsets of {1, . . . , n} in co-
lexicographic order. The situation in Lq(n) appears more complicated, as nested
solutions to the shadow minimization problem in Lq(n) are known not to exist
[2,7,13].

5 Application to a Query Problem

In this section, we present an application of Theorem 2 to a problem in query
complexity. In this problem, A is a hidden nontrivial subspace of Fn

2 and the goal
is to learn a nonzero element of A with probability � 1/2 by making m simulta-
neous (non-adaptive) monotone queries. What is the minimum m for which this

512 B. Rossman

is possible? An upper bound of O(n2) follows from the Valiant-Vazirani isolation
technique [14] (see [9]). The following theorem gives a matching lower bound of
Ω(n2). (We adopt the convention of writing random variables in boldface.)

Theorem 14. Let (Q1, . . . ,Qm) be a joint distribution over ideals in the sub-
space lattice of Fn

2 and let f be a function {0, 1}m → F
n
2 \ {0}. Suppose that for

every nontrivial subspace A of Fn
2 , it holds that

P[f(1{A∈Q1}, . . . , 1{A∈Qm}) ∈ A] � 1/2

where 1{A∈Qi} is the indicator function for the event that A ∈ Qi. Then m =
Ω(n2).

This result answers a question of Kawachi, Watanabe and the author [9],
who proved the special case of Theorem 14 where ideals Qi are restricted to be
of the form Qi = {A ∈ L2(n) : A ∩ Ui = ∅} for an arbitrary joint distribution
(U1, . . . ,Um) of subsets Ui ⊆ F

n
2 . In the remainder of this section, we prove

Theorem 14 by combining our threshold theorem for L2(n) with a few lemmas
from the paper [9].

By Yao’s principle [16], it suffices to exhibit a random nontrivial subspace A
of Fn

2 such that, for all fixed ideals Q1, . . . , Qm and every function f : {0, 1}m →
F

n
2 \ {0}, if

P[f(1{A∈Q1}, . . . , 1{A∈Qm}) ∈ A] � 1/2,

then m = Ω(n2). We define A as follows: first, choose k ∈ {1, . . . , �n/2} uni-
formly at random; then let A be a uniform random k-dimensional subspace of
F

n
2 (i.e., a uniform random element of L2(n,k)).

We next state three lemmas (adapted from [9]) concerning the entropy of
random variables that depend on A. A reminder of the definition of the (condi-
tional) entropy function: for discrete random variables X and Y, let

H[X] :=
∑

x∈Supp(X)

P[X = x] · log(1/P[X = x]),

H[X |Y] :=
∑

y∈Supp(Y)

P[Y = y] · H[X |Y = y],

where log(·) is the base-2 logarithm.

Lemma 15. For every ideal Q in L2(n), we have

H[1{A∈Q} |k] = O(1/n).

Proof. If Q is trivial, then this conditional entropy is 0. So we assume Q in
nontrivial and let t ∈ {1, . . . , n} be the unique threshold such that μt−1(Q) �
1/2 > μt(Q). Let 0 � y � 1 < z be the unique real numbers such that μt−1(Q) =

Thresholds in the Lattice of Subspaces of Fn
q 513

(1 + y)−1 and μt(Q) = (1 + z)−1. By our threshold theorem for ideals in L2(n)
(Theorem 2), for all i ∈ {1, . . . , t − 1} and j ∈ {1, . . . , n − t},

μt−1−i(Q) � (1 + y2−i)−1 � (1 + 2−i)−1 � 1 − 2−i,

μt+j(Q) � (1 + z2j)−1 < (1 + 2j)−1 � 2−j .

For k ∈ {0, . . . , n}, let Sk is a uniform random k-dimensional subspace of Fn
2 .

It follows that

H[1{Sk∈Q}] = μk(Q) log(1
μk(Q)) + (1 − μk(Q)) log(1

1−μk(Q))

�

⎧⎪⎨
⎪⎩

1 if k ∈ {t − 1, t},

i2−i + (1 − 2−i) log(1
1−2−i) if k = t − 1 − i,

j2−j + (1 − 2−j) log(1
1−2−j) if k = t + j,

�

⎧⎪⎨
⎪⎩

1 if k ∈ {t − 1, t},

i21−i if k = t − 1 − i,

j21−j if k = t + j.

We now obtain the desired bound as follows:

H[1{A∈Q} |k] =
�n/2�∑
k=1

P[k = k] · H[1{Sk∈Q}]

� 1
�n/2

(
2 +

min(t−2,�n/2�)∑
k=1

H[1{Sk∈Q}] +
�n/2�∑
k=t+1

H[1{Sk∈Q}]
)

� 2
n + 1

(
2 + 2

∞∑
i=1

i21−i

)

=
20

n + 1
.

Lemma 16. Let v be a random vector in F
n
2 \ {0}, not necessarily independent

of A. Then

P[v ∈ A] � 4
n
H[v] +

1
2n/4

.

Proof. Let

U :=
{
x ∈ F

n
2 \ {0} : P[v = x] � 2−n/4

}
.

Note that

P[v ∈ A] � P[v /∈ U] + P[A ∩ U �= ∅].

(If v ∈ A, then either v /∈ U or v ∈ A∩U .) We bound these two terms separately.

514 B. Rossman

First, we have

P[v /∈ U] =
∑

x∈(Fn
2 \{0})\U

P[v = x] �
∑

x∈(Fn
2 \{0})\U

P[v = x]
log(1/P[v = x])

n/4

�
∑

x∈F
n
2 \{0}

P[v = x]
log(1/P[v = x])

n/4

=
4
n
H[v].

For the second term, observing that |U | � 2n/4 and P[x ∈ A] � 2�n/2�−1
2n−1 � 1

2n/2

for every x ∈ F
n
2 \ {0}, we have

P[A ∩ U �= ∅] �
∑
x∈U

P[x ∈ A] � |U | · 1
2n/2

� 1
2n/4

.

This complete the proof.

Lemma 17. For every function f : {0, 1}m → F
n
2 \{0} and ideals Q1, . . . , Qm ⊆

L2(n),

P[f(1{A∈Q1}, . . . , 1{A∈Qm}) ∈ A] � O

(
m + n log n

n2

)
.

Proof. By standard entropy inequalities and Lemma 15,

H[f(1{A∈Q1}, . . . , 1{A∈Qm})] � H[1{A∈Q1}, . . . , 1{A∈Qm}]

� H[1{A∈Q1}, . . . , 1{A∈Qm},k]

= H[k] + H[1{A∈Q1}, . . . , 1{A∈Qm} |k]

� log(�n/2) +
m∑

i=1

H[1{A∈Qi} |k]

� O(log n) + O(m/n).

Combining the above with Lemma 16, we get the stated bound

P[f(1{A∈Q1}, . . . , 1{A∈Qm}) ∈ A] � 4
n
H[f(1{A∈Q1}, . . . , 1{A∈Qm})] +

1
2n/4

� 4
n

(
O(log n) + O(m/n)

)
+

1
2n/4

= O

(
m + n log n

n2

)
.

Theorem 14 follows directly from Lemma 17, as

P[f(1{A∈Q1}, . . . , 1{A∈Qm}) ∈ A] � 1/2 =⇒ m = Ω(n2).

Thresholds in the Lattice of Subspaces of Fn
q 515

References

1. Alon, N., Chung, F.R.: Explicit construction of linear sized tolerant networks.
Discret. Math. 72(1–3), 15–19 (1988)

2. Bezrukov, S., Blokhuis, A.: A Kruskal-Katona type theorem for the linear lattice.
Eur. J. Comb. 20(2), 123–130 (1999)

3. Bollobás, B., Thomason, A.G.: Threshold functions. Combinatorica 7(1), 35–38
(1987)

4. Brouwer, A.E., Haemers, W.H.: Distance-regular graphs. In: Brouwer, A.E.,
Haemers, W.H. (eds.) Spectra of Graphs, pp. 177–185. Springer, New York (2012).
https://doi.org/10.1007/978-1-4614-1939-6 12

5. Chowdhury, A., Patkós, B.: Shadows and intersections in vector spaces. J. Comb.
Theory Ser. A 117(8), 1095–1106 (2010)

6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold.
Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)

7. Harper, L., Hergert, F.: The isoperimetric problem in finite projective planes. Con-
gressus Numerantium 103, 225–232 (1994)

8. Katona, G.: A theorem of finite sets. In: Gessel, I., Rota, G.C. (eds.) Classic Papers
in Combinatorics, pp. 381–401. Springer, Boston (2009). https://doi.org/10.1007/
978-0-8176-4842-8 27

9. Kawachi, A., Rossman, B., Watanabe, O.: The query complexity of witness finding.
Theory Comput. Syst. 61(2), 305–321 (2017)

10. Keevash, P.: Shadows and intersections: stability and new proofs. Adv. Math.
218(5), 1685–1703 (2008)

11. Kruskal, J.B.: The number of simplices in a complex. In: Bellmann, R.E. (ed.)
Mathematical Optimization Techniques, vol. 10, pp. 251–278. University of Cali-
fornia Press (1963)

12. Subhash, K., Minzer, D., Safra, M.: Pseudorandom sets in Grassmann graph have
near-perfect expansion. In: Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pp. 592–601 (2018)

13. Ure, P.K.: A study of (0, n, n + 1)-sets and other solutions of the isoperimetric
problem in finite projective planes. Ph.D. thesis, California Institute of Technology
(1996)

14. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. In:
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, STOC,
pp. 458–463 (1985)

15. Wang, J.: Intersecting antichains and shadows in linear lattices. J. Comb. Theory
Ser. A 118(7), 2092–2101 (2011)

16. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complex-
ity. In: Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, FOCS, pp. 222–227. IEEE (1977)

https://doi.org/10.1007/978-1-4614-1939-6_12
https://doi.org/10.1007/978-0-8176-4842-8_27
https://doi.org/10.1007/978-0-8176-4842-8_27

Analytic and Enumerative
Combinatorics

On Minimal-Perimeter Lattice Animals

Gill Barequet(B) and Gil Ben-Shachar

Department of Computer Science, The Technion—Israel Institute of Technology,
3200003 Haifa, Israel

{barequet,gilbe}@cs.technion.ac.il

Abstract. A lattice animal is a connected set of cells on a lattice. The
perimeter of a lattice animal A consists of all the cells that do not
belong to A, but that have a least one neighboring cell of A. We consider
minimal-perimeter lattice animals, that is, animals whose periemeter is
minimal for all animals of the same area, and provide a set of conditions
that are sufficient for a lattice to have the property that inflating all
minimal-perimeter animals of a certain size yields (without repetitions)
all minimal-perimeter animals of a new, larger size. We demonstrate this
result for polyhexes (animals on the two-dimensional hexagonal lattice).

Cyvin S.J., Cyvin B.N., Brunvoll J. (1993) Enumeration of benzenoid chem-
ical isomers with a study of constant-isomer series. In: Computer Chemistry,
part of Topics in Current Chemistry book series, vol. 166. Springer, Berlin,
Heidelberg (p. 117).

1 Introduction

An animal on a d-dimensional lattice is a connected set of lattice cells, where
connectivity is through (d−1)-dimensional faces of the cells. Specifically, in two
dimensions, connectivity is through lattice edges. Two animals are considered
identical if one can be obtained from the other by translation only, without
rotations or flipping. (Such animals are called “fixed” animals in the literature.)

Lattice animals attracted interest as combinatorial objects [10] and as a
model in statistical physics and chemistry [17]. In this paper, we consider lattices
in two dimensions, specifically, the hexagonal, triangular, and square lattices,
where animals are called polyhexes, polyiamonds, and polyominoes, respectively.
We focus on the application of our results to the hexagonal lattice, and explain
how to make them applicable also to the triangular lattice.

Let AL(n) denote the number of lattice animals of size n, that is, animals
composed of n cells, on a lattice L. A major research problem in the study of
lattices is understanding the nature of AL(n), either by finding a formula for it
as a function of n, or by evaluating it for specific values of n. This problem is
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 519–531, 2020.
https://doi.org/10.1007/978-3-030-61792-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_41&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_41

520 G. Barequet and G. Ben-Shachar

to this date still open for any nontrivial lattice. Redelmeier [15] introduced the
first algorithm for counting all polyominoes of a given size, with no polyomino
being generated more than once. Later, Mertens [14] showed that Redelmeier’s
algorithm can be utilized for any lattice. The first algorithm for counting lattice
animals without generating all of them was introduced by Jensen [13]. Using
his method, the number of animals on the 2-dimensional square, hexagonal, and
triangular lattices were computed up to size 56, 46, and 75, respectively.

An important measure of lattice animals is the size of their perimeter (some-
times called “site perimeter”). The perimeter of a lattice animal is defined as
the set of empty cells adjacent to the animal cells. This definition is motivated
by models in statistical physics. In such discrete models, the plane or space is
made of small cells (squares or cubes, respectively), and quanta of material or
energy “jump” from a cell to a neighboring cell with some probability. Thus, the
perimeter of a cluster determines where units of material or energy can move to,
and guide the statistical model of the flow.

Q I(Q)

Fig. 1. A polyomino Q
and its inflated poly-
omino I(Q). Polyomino
cells are colored gray,
perimeter cells are col-
ored white.

Asinowski et al. [2,3] provided formulae for poly-
ominoes and polycubes with perimeter size close to
the maximum possible. On the other extreme reside
animals with the minimum possible perimeter size for
their area. The study of polyominoes of a minimal
perimeter dates back to Wang and Wang [19], who
gave an infinite sequence of cells on the square lat-
tice, the first n of which (for any n) form a minimal-
perimeter polyomino. Later, Altshuler et al. [1], and
independently Sieben [16], studied the closely-related
problem of the maximum area of a polyomino with p
perimeter cells, and provided a closed formula for the
minimum perimeter of an n-cell polyomino.

Recently, Barequet and Ben-Shachar [4,5] studied properties of minimal-
perimeter polyominoes. A key notion in their findings is the inflation operation.
Simply put, inflating a polyomino is creating the union of a polyomino and
the set of its perimeter cells (see Fig. 1). Barequet and Ben-Shachar showed
that inflating all the minimal-perimeter polyominoes of some size yields all the
minimal-perimeter polyominoes of some larger size in a bijective manner. In
this paper, we generalize this result to other lattices and find a sufficient set of
conditions for such a bijection to exist.

In the literature, minimal-perimeter animals were studied also on other lat-
tices. For animals on the triangular lattice (polyiamonds), the main result is
due to Fülep and Sieben [11], who characterized all the polyiamonds with
maximum area for their perimeter, and provided a formula for the minimum
perimeter of a polyiamond of size n. However, there has been much more
intensive research of minimal-perimeter animals on the hexagonal lattice (poly-
hexes), mainly in the literature on organic chemistry. There has been a vast
amount of work on molecules called benzenoid hydrocarbons. It is a known
natural fact that molecules made of carbon atoms are structured as shapes

On Minimal-Perimeter Lattice Animals 521

on the hexagonal lattice, that is, exactly as polyhexes. Benzenoids hydrocar-
bons are made of only carbon and hydrogen atoms. In such a molecule, the

Fig. 2. The Naph-
thalene molecule
(C10H8).

carbon atoms are arranged as a polyhex and the hydrogen
atoms are arranged around the carbons, at the perimeter
of the polyhex. The number of hydrogen atoms is exactly
the size of the perimeter of the imaginary polyhex. Figure 2
shows a schematic drawing of Naphthalene (molecular for-
mula C10H8), a simple benzenoid hydrocarbon made of 10
carbon atoms and 8 hydrogen atoms. Note that differ-
ent configurations of atoms exist for the same molecular
formula—these are called isomers. In the field of organic chemistry, a major
goal is to enumerate all the different isomers of a given formula. In a series
of papers (culminated in Reference [9]), Dias provided the basic theory of the
enumeration of benzenoids hydrocarbons.

A comprehensive review of the subject is given by Brubvoll and Cyvin [6].
Several other works [7,8,12] also dealt with the properties and enumeration of
such animals. Inflating is called by chemists circumscribing. For example, cir-
cumscribing the Naphthalene molecule yields a molecule known as Circumnaph-
thalene. In the chemistry literature, it is well known that inflating all isomers of
some molecular formulae creates all isomers that correspond to another molec-
ular formula. (The sequences of molecular formulae that have the same num-
ber of isomers created by circumscribing are known as constant-isomer series.)
Although this fact is well known, to the best of our knowledge, no rigorous proof
of it was ever given. This is exactly the analogue of a theorem proven by the
authors of this paper for polyominoes [4].

In this paper, we generalize the fact that inflation induces a bijection between
sets of minimal-perimeter animals from the square lattice to other lattices, specif-
ically, to the hexagonal lattice. By this, we prove the long-observed (but never
proven) phenomenon of “constant-isomer chains,” that is, that inflating isomers
of benzenoid hydrocarbon molecules (in our terminology, inflating minimum-
perimeter polyhexes) yields all the isomers of a larger molecule.

2 Preliminaries

Q I(Q) D(Q)

Fig. 3. A polyhex Q, its
inflated polyhex I(Q), and its
deflated polyhex D(Q).

Let L be a lattice, and let Q be an animal on L.
The perimeter of Q, denoted by P(Q), is the set of
all empty lattice cells that are neighbors of at least
one cell of Q. Similarly, the border of Q, denoted
by B(Q), is the set of cells of Q that are neighbors
of at least one empty cell. The inflated version
of Q is defined as I(Q) := Q ∪ P(Q). Similarly,
the deflated version of Q is defined as D(Q) :=
Q\B(Q). These operations are demonstrated in Fig. 3.

Denote by εL(n) the minimum size (number of cells) of the perimeter of n-cell
animals on L, and by ML

n the set of all minimal-perimeter n-cell animals on L.

522 G. Barequet and G. Ben-Shachar

Let S be the two-dimensional square lattice. Animals on S are usually called
polyominoes. For this lattice, we know the following.

Theorem 1. [4, Thm. 4]
∣
∣MS

n

∣
∣ =

∣
∣
∣MS

n+εS(n)

∣
∣
∣ (for n ≥ 3).

This theorem is a corollary of another theorem that states that the inflation
operation induces bijections between sets of minimal-perimeter polyominoes.
This is demonstrated in Fig. 4.

(a) All four minimal-perimeter
polyominoes of size 7 (up to rotations)

(b) All four minimal-perimeter polyominoes of
size 17 (up to rotations)

Fig. 4. A demonstration of Theorem 1.

3 Minimal-Perimeter Animals

Our main result consists of a certain set of conditions, which is sufficient
for minimal-perimeter animals to satisfy a claim similar to the one stated in
Theorem 1. Throughout this section, we consider animals on some specific
lattice L.

3.1 A Bijection

Theorem 2. Consider the following set of conditions.

(1) The function εL(n) is weakly monotone increasing.
(2) There exists some constant c ≥ 0, for which, for any minimal-perimeter

animal Q, we have that |P(Q)| = |B(Q)| + c and |P(I(Q))| ≤ |P(Q)| + c.
(3) If Q is a minimal-perimeter animal, then D(Q) is a valid (connected) ani-

mal.

If all the above conditions hold for L, then
∣
∣ML

n

∣
∣ =

∣
∣
∣ML

n+εL(n)

∣
∣
∣. If these

conditions are not satisfied for only a finite amount of sizes of animals on L,
then the claim holds for all sizes greater than some nominal size n0. ��

Remark. Obviously, no lattice fulfills condition (2) with c < 0, and only trivial
lattices (e.g., the 1-dimensional lattice) fulfill it with c = 0.

The remainder of this section is devoted to proving the theorem above. We
begin with proving that inflation preserves perimeter minimality.

Lemma 1. If Q is a minimal-perimeter animal, then I(Q) is a minimal-
perimeter animal as well.

On Minimal-Perimeter Lattice Animals 523

Proof. Let Q be a minimal-perimeter animal. Assume to the contrary that I(Q) is
not a minimal-perimeter animal, thus, there exists an animal Q′, such that |Q′| =
|I(Q)| and |P(Q′)| < |P(I(Q))|. By Condition (2) of Theorem 2, we know that
|P(I(Q))| ≤ |P(Q)| + c, thus, |P(Q′)| < |P(Q)| + c, and since Q′ is a minimal-
perimeter animal, we also know by the same condition that |P(Q′)| = |B(Q′)| + c,
and, thus, that |B(Q′)| < |P(Q)|. Consider now the animal D(Q′). Recall that
|Q′| = |I(Q)| = |Q| + |P(Q)|, hence, the size of D(Q′) is at least |Q| + 1,
and |P(D(Q′))| < |P(Q)| = εL(|Q|) (since the perimeter of D(Q′) is a subset
of the border of Q′). This is a contradiction to Condition (1), which states that
the sequence εL(n) is monotone increasing. Therefore, the animal Q′ cannot exist,
and I(Q) is a minimal-perimeter animal. ��

We now proceed to demonstrate the effect of repeated inflation on the size
of minimal-perimeter animals.

Lemma 2. The minimum size of the perimeter of animals of area n+kεL(n)+
ck(k − 1)/2 (for n > 1 and any k ∈ N) is ε(n) + ck.

Proof. We repeatedly inflate a minimal-perimeter animal Q, whose initial size
is n. The size of the perimeter of Q is εL(n), thus, inflating it creates a new
animal of size n + εL(n), and the size of the border of I(Q) is εL(n), thus,
by Condition (2), the size of the perimeter of I(Q) is εL(n) + c. By repeating
this operation, the kth inflation step will increase the size of the animal by
εL(n) + (k − 1)c and will increase the size of the perimeter by c. Summing up
these amounts yields the claim. ��

Next, we prove that inflation preserves difference, that is, inflating two differ-
ent minimal-perimeter animals (of equal or different sizes) always produces two
different new animals. (This is not true for non-minimal-perimeter animals.)

Lemma 3. Let Q1, Q2 be two different minimal-perimeter animals. Then,
regardless of whether or not Q1, Q2 have the same area, the animals I(Q1)
and I(Q2) are different as well.

Proof. Assume to the contrary that Q = I(Q1) = I(Q2), i.e., that Q = Q1 ∪
P(Q1) = Q2 ∪P(Q2). In addition, since Q1 �= Q2, and since a cell cannot belong
simultaneously to both an animal and to its perimeter, this means that P(Q1) �=
P(Q2). The border of Q is a subset of both P(Q1) and P(Q2), that is, B(Q) ⊂
P(Q1) ∩ P(Q2). Since P(Q1) �= P(Q2), we have that either |B(Q)| < |P(Q1)|
or |B(Q)| < |P(Q2)|; assume without loss of generality the former case. Now,
consider the animal D(Q). Its size is |Q|−|B(Q)|. The size of Q is |Q1|+ |P(Q1)|,
thus, |D(Q)| > |Q1|, and since the perimeter of D(Q) is a subset of the border
of Q, we have that |P(D(Q))| < |P(Q1)|. However, Q1 is a minimal-perimeter
animal, which is a contradiction to Condition (1) of Theorem 2, which states
that εL(n) is monotone increasing. ��

To complete the cycle, we also prove that for any minimal-perimeter ani-
mal Q ∈ ML

n+εL(n), there is a minimal-perimeter source in ML
n , i.e., an animal Q′

whose inflation yields Q. Specifically, this animal is D(Q).

524 G. Barequet and G. Ben-Shachar

Lemma 4. For any Q ∈ ML
n+εL(n), we also have that I(D(Q)) = Q.

Proof. Since Q ∈ ML
n+ε(n), we have by Lemma 2 that |P(Q)| = ε(n) + c. Com-

bining this with the equality |P(Q)| = |B(Q)|+ c, we obtain that |B(Q)| = ε(n),
thus, |D(Q)| = n and |P(D(Q))| ≥ ε(n). Since the perimeter of D(Q) is a subset
of the border of Q, and |B(Q)| = ε(n), we conclude that the perimeter of D(Q)
and the border of Q are the same set of cells, and, thus, I(D(Q)) = Q. ��

Let us now wrap up the proof of Theorem 2. In Lemma 1 we have shown that
for any minimal-perimeter animal Q ∈ Mn, we have that I(Q) ∈ ML

n+εL(n). In
addition, Lemma 3 states that the inflation of two different minimal-perimeter
animals results in two other different minimal-perimeter animals. Combining
the two lemmata, we obtain that

∣
∣ML

n

∣
∣ ≤

∣
∣
∣ML

n+εL(n)

∣
∣
∣. On the other hand, in

Lemma 4 we have shown that if Q ∈ ML
n+εL(n), then I(D(Q)) = Q, and, thus,

for any animal in ML
n+εL(n), there is a unique source in ML

n (specifically, D(Q)),

whose inflation yields Q. Hence,
∣
∣ML

n

∣
∣ ≥

∣
∣
∣ML

n+εL(n)

∣
∣
∣. Combining the two rela-

tions, we conclude that
∣
∣ML

n

∣
∣ =

∣
∣
∣ML

n+εL(n)

∣
∣
∣.

3.2 Inflation Chains

Theorem 2 implies that there exist infinitely-many chains of sets of minimal-
perimeter animals, each one obtained from the previous one by inflation, while
the cardinalities of all sets in a single chain are identical. Obviously, there are
sets of minimal-perimeter animals that are not created by inflating any other
set. We call the size of animals in such sets an inflation-chain root. Using the
definitions and proofs in the previous section, we are able to characterize which
sizes are the inflation-chain roots. The result is stated in the following theorem,
and its full proof is given in the full version of the paper.

Theorem 3. Let L be a lattice for which the three premises of Theorem 2 are
satisfied, and, in addition, the following condition holds.

(4) The inflation operation preserves (for an animal) the property of having a
maximum size for a given perimeter.

Then, if n is the minimum animal area for a minimal-perimeter size p, or equiv-
alently, if there exists a perimeter size p, such that n = min

{

n ∈ N | εL(n) = p
}

,
then n is an inflation-chain root. ��

4 Application to Polyhexes

Denote the two-dimensional hexagonal lattice by H. In this section, we show
that the conditions of Theorem 2 hold for the lattice H.

On Minimal-Perimeter Lattice Animals 525

4.1 Condition 1: Monotonicity

Condition (1) was proven independently, first by Vainsencher and Bruck-
stien [18], and later by Fülep and Sieben [11]. We will use the latter, stronger
proof which also provides a formula for εH(n).

Theorem 4. [11, Thm. 5.12] εH(n) =
⌈√

12n − 3
⌉

+ 3. ��
Clearly, the function εH(n) is weakly monotone increasing.

4.2 Condition 2: Constant Inflation

To show that Condition (2) holds, we will analyze the different patterns that
may appear in the border and perimeter of minimal-perimeter polyhexes. We can
classify every border or perimeter cell by one of exactly 24 patterns, distinguished
by the number and positions of their adjacent occupied cells. The 24 existing
patterns are shown in Fig. 5.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

(o) (p) (q) (r) (s) (t) (u) (v) (w) (x) (y) (z)

Fig. 5. All possible patterns (up to symmetric cases) of border (first row) and perimeter
(second row) cells. The gray cells are polyhex cells, while the white cells are perimeter
cells. Each pattern consists of a cell in the middle, and the possible distribution of cells
surrounding it.

Asinowski et al. [2] defined the excess of a perimeter cell to be the number
of adjacent occupied cell minus one. We extend this definition to border cells,
and, in a similar manner, we define the excess of a border cell as the number
of adjacent empty cells minus one. Following these definitions, we define the
perimeter excess of a polyhex Q, eP (Q), to be the sum of excesses over all
perimeter cells of Q, and similarly, the border excess of Q, eB(Q), is defined to
be the sum of excesses over all border cells of Q.

The following formula is universal for all polyhexes.

Lemma 5. For every polyhex Q, we have that

|P(Q)| + eP (Q) = |B(Q)| + eB(Q) (1)

526 G. Barequet and G. Ben-Shachar

Proof. Consider the (one or more) polygons bounding the polyhex Q. The two
sides of the equation are equal to the total length of the polygon(s) in terms of
polyhex edges. Indeed, this length can be computed by iterating over either the
border or the perimeter cells of Q. In both cases, each cell contributes one edge
plus its excess to the total length. The claim follows. ��

Our next goal is to express the excess of a polyhex Q as a function of the
numbers of cells of Q of each pattern. We denote the number of cells of a specific
pattern in Q by #�, where ‘�’ is one of the 24 patterns listed in Fig. 5. The
excess (either border or perimeter excess) of Pattern � is denoted by e(�). (For
simplicity, we omit the dependency on Q in the notations of #� and e(�). This
should be understood from the context.) The border excess can be expressed
as eB(Q) =

∑

�∈{a,...,l} e(�)#�, and, similarly, the perimeter excess can be
expressed as eP (Q) =

∑

�∈{o,...,z} e(�)#�. By plugging these equations into
Eq. (1), we obtain that

|P(Q)| +
∑

�∈{o,...,z}
e(�)#� = |B(Q)| +

∑

�∈{a,...,l}
e(�)#� . (2)

The next step of proving the second condition is showing that minimal-
perimeter polyhexes cannot contain some of the 24 patterns. This will simplify
Eq. (2).

Lemma 6. No minimal-perimeter polyhex contains holes.

Proof. Assume to the contrary that there exists a minimal-perimeter polyhex Q
which contains one or more holes, and let Q′ be the polyhex obtained by filling
one of the holes in Q. Clearly, |Q′| > |Q|, and by filling the hole we eliminated
some perimeter cells and did not create new perimeter cells. Hence, |P(Q′)| <
|P(Q)|. This contradicts the fact that εH(n) is monotone increasing, as implied
by Theorem 4. ��

Another important observation is that minimal-perimeter polyhexes tend to
be “compact.” We formalize this observation in the following lemma.

A bridge is a cell whose removal unites two holes or renders the polyhex
disconnected (specifically, Patterns (b), (d), (e), (g), (h), (j), and (k)). Similarly,
a perimeter bridge is an empty cell whose addition to the polyhex creates a hole
in the latter (specifically, Patterns (p), (r), (s), (u), (v), (x), and (y)).

Lemma 7. Minimal-perimeter polyhexes contain neither bridges nor perimeter
bridges. ��
The proof is given in the full version of the paper.

As a consequence of Lemma 6, Pattern (o) cannot appear in any minimal-
perimeter polyhex. In addition, Lemma 7 tells us that the Border Patterns (b),
(d), (e), (g), (h), (j), and (k), as well as the Perimeter Patterns (p), (r), (s), (u),
(v), (x), and (y) cannot appear in any minimal-perimeter polyhex. (Note that
the central cells in Patterns (b) and (p) are not bridges by themselves, however,

On Minimal-Perimeter Lattice Animals 527

the adjacent cells are bridges.) Finally, Pattern (a) appears only in the singleton
cell (the unique polyhex of size 1), which can be disregarded. Ignoring all the
patterns mentioned above, we conclude that

|P(Q)| + 3#q + 2#t + #w = |B(Q)| + 3#c + 2#f + #i. (3)

Note that Patterns (l) and (z) have excess 0, and, thus, although they may
appear in minimal-perimeter polyhexes, they do not appear in the equation.

Consider a polyhex having only the six feasible patterns (those that appear
in Eq. (3)). Let us examine the single polygon bounding the polyhex, specifically,
let us count the number of vertices and the sum of internal angles which appear
in this polygon as a function of the numbers of appearances of the different
patterns. We are able to show that the total number of vertices is

3#c + 2#f + #i + 3#q + 2#t + #w,

and that the sum of internal angles is

(3#c + 2#f + #i)120◦ + (3#q + 2#t + #w)240◦. (4)

The full details of these calculations are given in the full version of the paper.
On the other hand, it is known that the sum of internal angles is equal to

(3#c + 2#f + #i + 3#q + 2#t + #w − 2)180◦. (5)

Equating the terms in Formulae (4) and (5), we obtain that

3#c + 2#f + #i = 3#q + 2#t + #w + 6.

Plugging this into Eq. (3), we conclude that |P(Q)| = |B(Q)| + 6, as required.
We also need to show the second part of Condition (2), that is, that if Q is a

minimal-perimeter polyhex, then |P(I(Q))| ≤ |P(Q)|+6. To this aim, note that
B(I(Q)) ⊂ P(Q), thus, it is sufficient to show that |P(I(Q))| ≤ |B(I(Q))| + 6.
Obviously, Eq. (2) holds for the polyhex I(Q), thus, in order to prove the relation,
we only need to show that there are no bridges in I(Q). The proof is given in the
full version of the paper. We wrap up this discussion with the following lemma.

Lemma 8. If Q is a minimal-perimeter polyhex, then I(Q) does not contain
any polyhex bridge. ��

4.3 Condition 3: Deflation Resistance

The last condition which we need to show states that deflating a minimal-
perimeter polyhex results in another (smaller) valid polyhex. The intuition
behind this condition is that a minimal-perimeter polyhex is “compact,” having
a shape which does not become disconnected by deflation. The next lemma for-
malizes this notion of compactness. The proof is provided in the full version of
the paper.

528 G. Barequet and G. Ben-Shachar

Lemma 9. For any minimal-perimeter polyhex Q, the shape D(Q) is a valid
polyhex. ��

To conclude, we have shown that all the premises of Theorem 2 are satisfied
for the hexagonal lattice, and, thus, inflating a set of all the minimal-perimeter
polyhexes of a certain size yields another set of minimal-perimeter polyhexes of
another, larger size. This result is demonstrated in Fig. 6.

Fig. 6. A demonstration of Theorem 2 for polyhexes. The top row contains all poly-
hexes (up to rotations and reflections) in MH

9 (minimal-perimeter polyhexes of area 9),
while the bottom row contains their inflated versions, all members of MH

23.

We also characterized inflation-chain roots of polyhexes. As is mentioned
above, the premises of Theorem 3 are satisfied for polyhexes [16,18], and, thus,
the inflation-chain roots are those which have the minimum size for a given
minimal-perimeter size. An easy consequence of Theorem 4 is that the for-
mula

⌊
(p−4)2

12 + 5
4

⌋

generates all these inflation-chain roots. This result is demon-
strated in Fig. 7.

Fig. 7. The relation between the minimum perimeter of polyhexes, εH(n), and the
inflation-chain roots. The points represent the minimum perimeter of a polyhex of
size n, and sizes which are inflation-chain roots are colored in red. The arrows show
the mapping between sizes of minimal-perimeter polyhexes (induced by the inflation
operation).

On Minimal-Perimeter Lattice Animals 529

5 Polyiamonds

Polyiamonds are sets of edge-connected triangles on the regular triangular lat-
tice, which is made of two types of cells. Due to this complication, inflat-
ing a minimal-perimeter polyiamond does not necessarily result in a minimal-
perimeter polyiamond. Indeed, the second condition of Theorem 2 does not hold
for polyiamonds. This fact is not surprising, since inflating minimal-perimeter
polyiamonds creates “jagged” polyiamonds, which do not have a minimal perime-
ter (see Fig. 8(b)).

Q I(Q) I∗(Q)

Fig. 8. Inflating polyiamonds.
The polyiamond Q is of mini-
mum perimeter, but I(Q) is not.
However, the polyiamond I∗(Q),
obtained by adding to Q all the
cells sharing a vertex with Q, is a
minimal-perimeter polyiamond.

However, we can fix this situation by modi-
fying the definition of the perimeter of a polyi-
amond so that the perimeter will include all
cells that share a vertex (instead of an edge) of
the (boundary of the) polyiamond. Theorem 2
holds under the new definition. The reason for
this is surprisingly simple: The modified defi-
nition merely mimics the inflation of animals
on the graph dual to that of the triangular lat-
tice. (Recall that graph duality maps vertices
to faces (cells), and vice versa, and edges to
edges.) However, the dual of the triangular lat-
tice is the hexagonal lattice, for which we have
already shown in Sect. 4 that all the premises of Theorem 2 hold. Thus, applying
the modified inflation operator (I∗(·)) to the triangular lattice induces a bijection
between sets of minimal-perimeter polyiamonds. This operation is demonstrated
in Fig. 8.

6 Conclusion

In this paper, we have generalized a result which states that inflation induces
a bijection between sets of minimal-perimeter polyominoes, to any lattice sat-
isfying three conditions. We have shown that this generalization holds for the
hexagonal lattice, and in some sense (with a modified definition of perimeter)
also for the triangular lattice. The most important contribution of this paper is
providing a proof for this phenomenon for polyhexes, which was observed in the
chemistry literature more than 30 years ago but was never proven.

However, we do not believe that this set of conditions is necessary. Empir-
ically, it seems that by inflating all the minimal-perimeter polycubes (animals
on the 3-dimensional cubical lattice) of a given size, we obtain all the minimal-
perimeter polycubes of some larger size. However, Condition (2) does not hold
for this lattice. Moreover, we believe that as stated, Theorem 2 applies only to

530 G. Barequet and G. Ben-Shachar

2-dimensional lattices! A simple conclusion from Lemma 2 is that if the premises
of Theorem 2 hold for animals on a lattice L, then εL(n) = Θ(

√
n). We find it is

reasonable to assume that for a d-dimensional lattice Ld, the relation between
the size of a minimal-perimeter animal and its perimeter is roughly equal to the
relation between a d-dimensional sphere and its surface area. Hence, we con-
jecture that εLd(n) = Θ(n

d−1
d), and, thus, Theorem 2 does not hold in higher

dimensions.

References

1. Altshuler, Y., Yanovsky, V., Vainsencher, D., Wagner, I.A., Bruckstein, A.M.: On
minimal perimeter polyminoes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI
2006. LNCS, vol. 4245, pp. 17–28. Springer, Heidelberg (2006). https://doi.org/10.
1007/11907350 2

2. Asinowski, A., Barequet, G., Zheng, Y.: Enumerating polyominoes with fixed
perimeter defect. In: Proceedings of the 9th European Conference on Combina-
torics, Graph Theory, and Applications, Vienna, Austria, vol. 61, pp. 61–67. Else-
vier (2017)

3. Asinowski, A., Barequet, G., Zheng, Y.: Polycubes with small perimeter defect. In:
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA, pp. 93–100, January 2018

4. Barequet, G., Ben-Shachar, G.: Properties of minimal-perimeter polyominoes. In:
Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 120–129. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94776-1 11

5. Barequet, G., Ben-Shachar, G.: Minimal-perimeter polyominoes: chains, roots, and
algorithms. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol.
11394, pp. 109–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11509-8 10

6. Brunvoll, J., Cyvin, S.: What do we know about the numbers of benzenoid isomers?
Zeitschrift für Naturforschung A 45(1), 69–80 (1990)

7. Cyvin, S.J., Brunvoll, J.: Series of benzenoid hydrocarbons with a constant number
of isomers. Chem. Phys. Lett. 176(5), 413–416 (1991)

8. Dias, J.: New general formulations for constant-isomer series of polycyclic ben-
zenoids. Polycyclic Aromat. Compd. 30, 1–8 (2010)

9. Dias, J.: Handbook of Polycyclic Dydrocarbons. Part A: Benzenoid Hydrocarbons.
Elsevier, New York (1987)

10. Eden, M.: A two-dimensional growth process. In: Neyman, J. (ed.) Proceedings of
the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 4,
pp. 223–239 (1961)

11. Fülep, G., Sieben, N.: Polyiamonds and polyhexes with minimum site-perimeter
and achievement games. Electron. J. Comb. 17(1), 65 (2010)

12. Harary, F., Harborth, H.: Extremal animals. J. Comb. Inf. Syst. Sci. 1(1), 1–8
(1976)

13. Jensen, I., Guttmann, A.: Statistics of lattice animals (polyominoes) and polygons.
J. Phys. A: Math. General 33(29), L257 (2000)

https://doi.org/10.1007/11907350_2
https://doi.org/10.1007/11907350_2
https://doi.org/10.1007/978-3-319-94776-1_11
https://doi.org/10.1007/978-3-030-11509-8_10
https://doi.org/10.1007/978-3-030-11509-8_10

On Minimal-Perimeter Lattice Animals 531

14. Mertens, S.: Lattice animals: a fast enumeration algorithm and new perimeter
polynomials. J. Stat. Phys. 58(5), 1095–1108 (1990)

15. Redelmeier, D.H.: Counting polyominoes: yet another attack. Discret. Math. 36(2),
191–203 (1981)

16. Sieben, N.: Polyominoes with minimum site-perimeter and full set achievement
games. Eur. J. Comb. 29(1), 108–117 (2008)

17. Temperley, H.: Combinatorial problems suggested by the statistical mechanics of
domains and of rubber-like molecules. Phys. Rev. 103(1), 1 (1956)

18. Vainsencher, D., Bruckstein, A.M.: On isoperimetrically optimal polyforms. Theor.
Comput. Sci. 406(1–2), 146–159 (2008)

19. Wang, D.L., Wang, P.: Discrete isoperimetric problems. SIAM J. Appl. Math.
32(4), 860–870 (1977)

Improved Upper Bounds on the Growth
Constants of Polyominoes and Polycubes

Gill Barequet1(B) and Mira Shalah2

1 Department of Computer Science, The Technion—Israel Institute of Technology,
3200003 Haifa, Israel

barequet@cs.technion.ac.il
2 Department of Computer Science, Stanford University, Stanford, CA, USA

mira@cs.stanford.edu

Abstract. A d-dimensional polycube is a face-connected set of cells on
Z
d. Let Ad(n) denote the number of d-dimensional polycubes (distinct

up to translations) with n cubes, and λd denote their growth constant

limn→∞
Ad(n+1)
Ad(n)

. We revisit and extend the method for the best known

upper bound on A2(n). Our contributions: We (1) prove that λ2 ≤ 4.5252;
(2) prove that λd ≤ (2d − 2)e + o(1) for d ≥ 2 (already improving signif-
icantly the upper bound on λ3 to 9.8073); and (3) implement an iterative
process in 3D, improving further the upper bound on λ3 to 9.3835.

Keywords: Klarner’s constant · Square lattice · Cubical lattice

1 Introduction

Fig. 1. Polyominoes of sizes 1 ≤ n ≤ 4

Polyominoes are edge-connected sets of
squares on Z

d. The size of a polyomino
is the number of squares it contains.
Figure 1 shows all polyominoes of size
up to 4. Likewise, polycubes are facet-
connected sets of d-D unit cubes, where
connectivity is through (d − 1)-D faces.
Two fixed polycubes are considered iden-
tical if one can be obtained by a transla-
tion of the other. In this work, we consider
only fixed polycubes.

The fundamental combinatorial problem concerning polycubes is “How many
polycubes with n cubes are there?” This problem originated in parallel in the
theory of percolation [9,22], the analysis of chemical graphs [14,17], and the
graph-theoretic treatment of cell-growth problems [12] more than half a century
ago. However, despite much research in those areas, most of what is known relies
primarily on heuristics and empirical studies, and very little is known rigorously,
even for the low-dimensional lattices.

Work on this paper by the first author has been supported in part by ISF Grant 575/15
and by BSF Grant 2017684.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 532–545, 2020.
https://doi.org/10.1007/978-3-030-61792-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_42&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_42

Improved Upper Bounds on the Growth Constants 533

Let Ad(n) (seq. A001168 [1]) denote the number of polycubes of size n.
Since no analytic formula for Ad(n) is known for any dimension d > 1, many
researchers have focused on efficient algorithms for counting polycubes by size,
primarily on the square lattice. These methods are based on either explicitly enu-
merating all polycubes [18,21], or on implicit enumeration [7,11]. The sequence
A2(n) has been determined so far up to n = 56 [11]. Enumerating polycubes in
higher dimensions is an even more elusive problem. Most notably, Aleksandrow-
icz and Barequet [2,3] extended polycube counting by efficiently generalizing
Redelmeier’s algorithm [21] to higher dimensions. The most comprehensive list-
ing of A3(n) (up to n = 19) is by Luther and Mertens [15].

A key fact was discovered by Klarner [12], namely, that the limit λ2 :=
limn→∞ n

√
A2(n) exists. This is a straightforward consequence of the fact that

the sequence (log A2(n)) is supper-additive, i.e., A2(n)A2(m) ≤ A2(n+m) for
all n,m ∈ N. Hence, λ2 was coined as “Klarner’s constant.” Later, Madras [16]
proved the existence of the asymptotic growth rate, namely, limn→∞ A2(n +
1)/A2(n), which thus equals λ2. These results hold, in fact, in any dimension.

A great deal of attention has been given to estimating the values of λd, espe-
cially for d = 2, 3. Their exact values are not known and have remained elusive for
many years. Based on interpolation methods, applied to the known values of the
sequences (A2(n)) and (A3(n)), it is estimated (without a rigorous proof), that
λ2 ≈ 4.06 [11] and λ3 ≈ 8.34 [10]. There have been several attempts to bound λ2

from below, with significant progress over the years [4,5,8,12,19,20], but almost
nothing is known for higher dimensions. For d = 2, it has been proven that
λ2 ≥ 4.0025 [5]. For d > 2, the only known way to set a lower bound on λd is by
using the fact [12] that λd = limn→∞ n

√
Ad(n) = supn≥1

n
√

dAd(n). In particular,
for d=3, the value A3(19) [15] yields the lower bound λ3 ≥ 19

√
3A3(19) ≈ 6.3795,

which is quite far from the best estimate of λ3 mentioned above.
On the other hand, only one procedure (Eden [8]) is known for bounding

λd from above. This procedure (explained in detail in the next section) shows
that λ2 ≤ 6.7500, λ3 ≤ 12.2071 and that λd ≤ (2d − 1)e. It was shown [6] that
λd ∼ 2ed − o(d) as d tends to infinity, and conjectured (based on an unproven
assumption) that λd is asymptotically equal to (2d − 3)e + O(1/d).

As we detail Sect. 2, Klarner and Rivest [13] enhanced Eden’s method, prov-
ing that λ2 ≤ 4.6496. We extend this enhancement to higher dimensions and
show that it results in the two-variable rational generating function g(d)(x, y) =∑∞

n,m=0 ld(n,m)xnym =
∑∞

n=0 xyn
(
(1 + x)2(d−1) + x2

)n
= x

1−y((1+x)2(d−1)+x2) ,

and its diagonal function
∑∞

n=0 ld(n, n)xnyn generates a sequence which domi-
nates (Ad(n)). It was shown [13] that l2(n, n) ≤ 4.8285n. Similarly, we prove that
l3(n, n) ≤ 9.8073n, giving the first nontrivial upper bound on λ3. We also prove
that ld(n, n) ≤ ((2d − 2)e + 1/(2d − 2))n, implying that λd ≤ (2d−2)e+1/(2d−
2). This is the first generalization of this method to higher dimensions.

We also revisit the approach used by Klarner and Rivest [13] to further
improve the upper bound on λ2 to 4.6495. We are not aware of any published
attempt to reproduce their result. With the computing resources available to us,
we improve the upper bound on λ2 to 4.5252. We also extend the approach to
d = 3, and prove that λ3 ≤ 9.3835.

534 G. Barequet and M. Shalah

2 Previous Work

e1

e2 e3 e4

e5 e6 e7

e8

Fig. 2. Eden’s twigs [13, Fig. 3]

For two d-dimensional cubes with centers c1 =
(x1, . . . , xd) and c2 = (y1, . . . , yd), we say that
c1 is lexicographically smaller than c2 if xi < yi

for the first index i where they differ. Let P be
an n-cell polycube in d dimensions. P can be
uniquely encoded with a binary string WP of
length (2d−1)n−1 [6,8], as follows. WP is ini-
tialized by the empty string. Perform a breadth-first search on G, the adja-
cency graph of cells of P and its neighboring empty cells, starting at cell 1 (the
smallest cell of P). In the course of this procedure, every cell c ∈ P is reached
through some incoming edge e since G is connected. Clearly, c is connected to at
most 2d−1 neighboring cells. The procedure traverses all these outgoing edges
according to a fixed order determined by their orientations relative to e. Then,
if such an edge leads to a cell of P which has not been labeled yet, this cell
is assigned the next unused number, and we update WP := WP ·1 (“·” is the
concatenation operator). Otherwise, if the cell does not belong to P , or it is
already assigned a number, we set WP := WP ·0. Since each cell is assigned a
number only once, this procedure maps polycubes in a one-to-one manner into
binary sequences with n−1 ones and (2d−2)n zeros. Hence, using Stirling’s for-

mula, Ad(n) ≤ (
(2d−1)(n−1)

n−1

) ≤
(

(2d−1)2d−1

(2d−2)2d−2

)n

. For polyominoes, this procedure
is equivalent to assigning an element of E = {e1, . . . , e8} (Fig. 2) to each cell of P
(in the same order). In three dimensions, one obtains that λ3 ≤ 55/44 ≤ 12.2071.

In general, since (2d−1)2d−1

(2d−2)2d−2 = (2d − 1)
(
1 + 1

2d−2

)2d−2

< (2d−1)e, we have that
λd ≤ (2d−1)e [6]. (In the full version of the paper, we show that this bound can
easily be improved to (2d−1.5)e with a more thorough analysis.)

u

∗∗∗
∗ b

a

b

∗
∗
∗∗

u

a

b

∗

∗
∗

∗
au

b∗

∗ ∗
∗ u a

(a) (b) (c) (d)

∗
u

a

b ∗
∗ ∗

b

∗ ∗
∗ u

a

∗
a ∗

∗∗
u

b ∗
a

∗
∗

∗
u

b

∗

(e) (f) (g) (h)

Fig. 3. L-contexts [13, Fig. 6]

For Klarner and Rivest’s improvement [13],
refer to Fig. 3. Around any square u on the
square lattice, there are eight L-shaped 4-sets of
squares, called the “L-contexts” of u. The status
of a cell refers to whether or not the cell belongs
to the polyomino. Klarner and Rivest designed a
set of “twigs” L (Fig. 4), which is more compact
than E, and showed that every n-cell polyomino
P corresponds to a unique n-term sequence of
elements of L, while not every such sequence rep-
resents a polyomino, implying that λ2 < |L| = 5, a substantial improvement
over 6.75. The key idea behind the design of L was that one could perform the
same search on G, assigning each cell one of the eight L-contexts, s.t. the statuses
of all cells in the L-contexts would already be encoded by the algorithm. There-
fore, while E encodes all 23=8 possible status configurations of three neighbors
for every cell, L encodes only the statuses of two neighbors. The sequence Lp,
encoding a polyomino P , can be constructed algorithmically as follows. Maintain
a queue (initially empty) of white (open) cells, and a list D of black (dead) cells.

Improved Upper Bounds on the Growth Constants 535

Black (resp., white) cells are cells that have (resp., have not) been visited by the
algorithm. Start from the lexicographically-smallest cell of P , putting it in the
queue. (Assuming, w.l.o.g., that the cells are ordered first by their y-coordinate.)
The L-context assigned to this cell is the one shown in Fig. 3(a) since the cells in
this neighborhood of the cell do not to belong to P . The addition of twigs to the
configuration T constructed so far proceeds as follows until the queue is empty.
Dequeue u, the oldest cell in the queue. Let a, b denote the cells connected to
u (which are not in its assigned L-context, see Fig. 3), c (�= u) denote the cell
connected to both a, b, and � denote the last label assigned to a cell of P (initially
� = 0).

2

∗∗
∗

L5

1

∗∗∗
∗

L1

∗∗∗
∗

L2

∗∗∗
∗

L3

1 2

∗∗∗
∗

L4

∗

Fig. 4. Twig set L [13, Fig. 7]

Refer to Fig. 4. The twig L assigned to
u is L1 if a, b, c /∈ P (or a, b, c ∈ D); L2 if
b, c /∈ P (or b, c ∈ D) and a ∈ P ; L3 if b /∈ P
(or b ∈ D) and a, c ∈ P ; L4 if a /∈ P (or
a ∈ D) and b ∈ P ; or L5 if a, b ∈ P . A new
configuration T ∗ L is then constructed:

1. The root cell of L (black in Fig. 4) is placed over u, s.t. the orientation (L-
context) of L and u coincide (possibly with a reflection and/or rotation of
L).

2. The white cell, where L was added, turns black (dead). This step is legal only
if no other cells of L overlap cells of T and no cell of L occupies a forbidden
cell.

3. The (forbidden) cells of L marked with an X become forbidden in T .
4. The white cells of L are added (in their indicated order) to the queue.

Note that when a ∈ P or b /∈ P , we have to encode whether or not c ∈ P
(twigs L3 and L2, resp.), so that when a is inserted to the queue, the statuses
of all cells in its indicated L-context are encoded. Note also that the order of
the white cells in L3 and L5 is necessary for ensuring the uniqueness of the
construction. For the second white cell in either L3 or L5, the statuses of all
cells in its indicated L-context are known only after the algorithm visits the first
open cell. An example of this process is provided in the full version of the paper.

Having a set of five twigs implies that λ2 ≤ 5. This bound can be improved by
a more delicate analysis, which assigns different weights to different elements of
L, as follows. Each twig L ∈ L is assigned a weight w(L) = xayb, where a (resp.,
b) denotes the number of cells minus 1 (resp., black cells) in P . (Obviously, for
twigs, b = 1.) Thus, w(L1) = y, w(L2) = xy, w(L3) = x2y, w(L4) = xy, and
w(L5) = x2y. The weight of the empty sequence is defined as x, and the weight
of a sequence S = (�1, . . . , �k) ∈ Lk is defined as W (S) = x · w(�1) · . . . · w(�k).

Let P be a polyomino of size n, and let Lp = {�1, . . . , �n} ∈ Ln denote the
sequence encoding P . For each �i ∈ L, we have that w(�i) = xaiy, such that
ai ∈ {0, 1, 2} equals the number of open cells in �i. Thus, w(Lp) = x ·x

∑n
i=1 aiyn.

Moreover,
∑n

i=1 ai = n−1 because each cell of P (other than the smallest cell)
becomes open only once, and is thus accounted for by some aj in the sum. The
smallest cell is accounted for by the term x in w(Lp). Therefore, w(Lp) = xnyn.

536 G. Barequet and M. Shalah

Now, let Lk denote the set of all sequences of k ≥ 0 elements of L. The sum
of weights of all finite sequences of elements of L is

∞∑

k=0

∑

S∈Lk

W (S) =
∞∑

k=0

x

(
∑

�∈L

w(�)

)k

= x

(

1 −
∑

�∈L

w(�)

)−1

. (1)

Since
∑

�∈L w(�) = y(2x2 + 2x + 1), the generating function given in (1) is

∞∑

m,n=0

l(m,n)xmyn =
x

1 − y(2x2 + 2x + 1)
=

∞∑

n=0

xyn(2x2 + 2x + 1)n, (2)

where l(m,n) is the coefficient of xmyn. Due to the injection from polyominoes
of size n into sequences of elements of L of weight xnyn, the coefficient l(n, n) in
Eq. (2) is an upper bound on A2(n), hence, its nth root bounds λ2 from above.
In the next two sections, we generalize this method to higher dimensions.

3 Twigs in Higher Dimensions

x2

x1
o

x3
*

*

*

*

*

*

Fig. 5. The +L context (bold
black lines) of a cell o on N

3

d = 3. Let us generalize the twigs idea to 3-
space. Refer to Fig. 5. Let o = (0, 0, 0) be the
lexicographically-smallest cell of the polycube. By
definition, all cubes that lie in the planes x1=− 1
and x2=1 do not belong to the polycube. We
define the “+L-context” of o to be the six cells
around o shown in asterisks in Fig. 5. Note that
the set of 2-dimensional twigs L (Fig. 4) captures all possible occupancy con-
figurations of the neighbors of o that lie in the x1x2 plane. For the remaining
neighbors of o (cells (0, 0,−1) and (0, 0, 1)), there are four possible encodings
of whether or not they belong to the polycube. This yields the set L(3) of 17
three-dimensional twigs shown in Fig. 6.

12

2

1 2

1

1

2

3

2

1

T1 T2 T3 T4 T5 T6 T7 T8 T9

1

2

3

1

3

2 3

4

1

2

2

1 2

1 1

2 3

12

T10 T11 T12 T13 T14 T15 T16 T17

Fig. 6. 3-dimensional twigs

Improved Upper Bounds on the Growth Constants 537

Similarly to the plane, the cells of a twig are either black or white, and the +L
context and linear order of the open cells is indicated. Similarly to L1, . . . , L5 (in
Fig. 2), the twigs T1, . . . , T17 (in Fig. 4) are a complete set of building blocks for
polycubes since they cover all possible situations (a formal proof is given in the
full paper). Every n-cell polycube P corresponds to a unique n-term sequence of
elements of L(3). The sequence corresponding to a polycube can be constructed
as in two dimensions. Every twig is assigned a weight in the same manner, and we
get that

∑
�∈L(3) w(�) = y(1+4x+7x2+4x3+x4) = y

(
(x + 1)4 + x2

)
. Thus, the

generating function given by Eq. (1) is x
1−y(1+4x+7x2+4x3+x4) =

∑∞
n=0 xyn(1 +

4x + 7x2 + 4x3 + x4)n. We provide the analysis of this function in Sect. 4.

d > 3. Our construction proceeds inductively for d > 3. The base is d=2, where
we fix a square in the x1x2 plane (Fig. 5) together with its L-context. In general,
when we go from d−1 (d ≥ 3) to d dimensions, a cube gains two neighbors in
the new dimension xd. Let o = (0, 0, . . . , 0) be a d-D cube (d > 2). We define
the +dL-context of o recursively. The base is +2L := L and +3L := +L, and
the recursion is +dL := +d−1L ∪ {c1, c2}, where c1,2 = (−1, 0, . . . , 0,±1). The
geometric interpretation of the +dL-context of o is an L-shape around o in the
x1x2 plane, which intersects d−2 lines in the x1 = −1 plane at (−1, 0, . . . , 0).

The set L(d) (with L(2) = L) consists of all 22d−2 occupancy options for the
neighbors of o (that are not in its +dL-context): In dimensions x3, . . . , xd, the
construction covers all 22(d−2) options for the two neighbors of o. In the x1x2

plane, the occupancies of the neighbors of o are captured by L (Fig. 4), and the
only problematic case is when cell c=(1, 0, . . . , 0) is white and all other neighbors
of o are not (twigs L2, L3 in Fig. 4, and T13, T14 in Fig. 6). It is, thus, necessary
to encode the status of (1,−1, 0, . . . , 0) since it is contained in the +dL-context
of c. This yields 22(d−2)·22+1=22(d−1)+1 twigs, which compares favorably with
Eden’s generalized construction, having about twice the number of twigs (22d−1).

To prove that our construction is more efficient, we will show that for any
white cell u in every twig in L(d), there are 4+2(d−2)=2d cells around u which
can be ignored when visiting u. Those cells will form its +dL-context. Except the
second white cell in the problematic twig, all white cells are neighbors of o. If a
new neighbor of o, (0, 0, . . . , 0,±1), is open, the “L shape” in its +dL-context is
formed by c1 (or c2), (−1, 0, . . . , 0), o, and (1, 0, . . . , 0); the other cells in its +dL-
context are (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1, 0). The statuses of these cells are
known by construction. For the two other possible white neighbors of o, namely,
ν1,2=(0, . . . , 0,±1, 0, . . . , 0), we have that +dL=+d−1 L∪ (0, . . . , 0,±1) since o is
exactly where the ‘L’ and the ‘+’ in the +d−1L-context of ν1,2 intersect. Thus,
+d−1L ∪ (0, . . . , 0,±1) is the +dL-context of o: the statuses of the cells in its
+d−1L-context and of (0, . . . , 0,±1) are known by induction and construction.
We also address the second white cell p=(1,−1, 0, . . . , 0) in the problematic twig.
It will be visited after the first open cell of the twig, q=(0, 1, 0, . . . , 0), is visited
and assigned a twig. When this happens, the statuses of all its neighbors are
known. Then, (1, 0, . . . , 0), o, (0, 1, 0, . . . , 0), and (0, 2, 0, . . . , 0) form the L-shape
near p, and together with the remaining 2(d−1) neighbors of q, form the +dL-
context of p. The statuses of these cells are also already known by construction.

538 G. Barequet and M. Shalah

Finally, we compute the weight function W (d)(x, y) =
∑

t∈L(d) w(t). Since o

has 2(d−1) neighbors not in its +dL-context, there are
(
2(d−1)

i

)
twigs in L(d)

with i white cells and one black cell (o), and the weight of each such twig is xiy.
Recall the problematic case, resulting in an additional twig with 3 cells (1 black
and 2 white), whose weight is, thus, x2y. Hence, W (d)(x, y) =

∑
t∈L(d) w(t) =

∑2(d−1)
i=0

[(
2(d−1)

i

)
xiy

]
+ x2y = y((x + 1)2(d−1) + x2). Substituting W (d)(x, y)

in the generating function of Eq. (1), we obtain g(d)(x, y) = ld(n,m)xmyn =∑∞
n=0 xyn

(
(1 + x)2(d−1) + x2

)n
= x

1−y((1+x)2(d−1)+x2) . As in 2D, polycubes of

size n are mapped uniquely to sequences of elements of L(d) having weight xnyn.

4 Analysis of the Generating Functions

It can be easily observed that ld(n, n), the coefficient of xnyn in g(d)(x, y), is
the coefficient of xn−1 in

(
(1 + x)2(d−1)+x2

)n
. We now show how to compute

ld(n, n). Let h(d)(x) =
(
(1 + x)2(d−1)+x2

)n
.

d = 2 [13]. In the plane, h(2)(x) =
(
(1 + x)2 + x2

)n = (1 +
2x + 2x2)n. By the Multinomial Theorem, we have (1 + 2x + 2x2)n =
∑

i1,i2

[(
n

n−i1−i2,i1,i2

)
(2x)i1(2x2)i2

]
.

In order to compute the coefficient of xn−1, we require that i1+2i2 = n−1.
Thus,
l2(n, n) =

∑
i2

[(
n

i2+1,n−2i2−1,i2

)
2n−i2−1

]
= 2n

2

∑
i2

[(
n

i2+1,n−2i2−1,i2

) (
1
2

)i2
]

=

2n√
2

∑

i2

[(
n

i2+1,n−2i2−1,i2

) (
1√
2

)i2 (
1√
2

)i2+1
]

<∗

2n√
2

(
1√
2

+ 1√
2

+ 1
)n

=(2(
√
2+1))n√
2

. (The relation “<∗” is because the summation
in its left-hand side contains only a subset of the terms whose sum is equal to
the exponential term on the right-hand side.) Hence, λ2 ≤ 2(

√
2 + 1) ≈ 4.82843.

d = 3

Theorem 1. λ3 ≤ 9.8073

Proof. Similarly to two dimensions, let h(3)(x) =
(
(1 + x)4 + x2

)n = (1 + 4x +

7x2 + 4x3 + x4)n =
∑

i1,i2,i3,i4

[(
n

(n−∑4
j=1 ij),i1,i2,i3,i4

)
4i17i24i3xi1+2i2+3i3+4i4

]
.

We now require that i1+2i2+3i3+4i4 = n−1. By substituting i1 in the right-
hand side of the equality above, and using the Multinomial Theorem, we obtain
l3(n, n) =

∑[(
n

i2+2i3+3i4+1,n−1−2i2−3i3−4i4,i2,i3,i4

)
4n−1−2i2−3i3−4i47i24i3

]
=

4n

4

∑
i2,i3,i4

[(
n

i2+2i3+3i4+1,n−1−2i2−3i3−4i4,i2,i3,i4

) (
7
42

)i2 (
4
43

)i3 (
1
44

)i4
]

<

4n

4

(
7
42 + 1

42 + 1
44 + 1 + 1

)n = 1
4

(
641
64

)n. Thus, λ3 ≤ 641
64 ≈ 10.016, already

improving significantly on the known upper bound of λ3 ≤ 12.2071 (see Sect. 2).

Improved Upper Bounds on the Growth Constants 539

However, we can do better than that. Let b > 0 be some constant, whose value
will be specified later, and rewrite the multinomial expression above as l3(n, n) =

4n

4

∑
i2,i3,i4

[(n
i2+2i3+3i4+1,n−1−2i2−3i3−4i4,i2,i3,i4

)
(

7(
b 4
b

)2
)i2

(
4(

b 4
b

)3
)i3

(
1(

b 4
b

)4
)i4

︸ ︷︷ ︸
c(b)

⎤
⎥⎥⎥⎥⎥⎦
.

Let us now re-arrange the three terms in c(b) as follows.

c(b) =

(
1

b2

)i2
(

7(
4
b

)2
)i2 (

1

b3

)i3
(

4(
4
b

)3
)i3 (

1

b4

)i4
(

1(
4
b

)4
)i4

=

(
1

b

)i2
(

1

b

)i2
(

7(
4
b

)2
)i2 (

1

b2

)i3
(

1

b

)i3
(

4(
4
b

)3
)i3 (

1

b3

)i4
(

1

b

)i4
(

1(
4
b

)4
)i4

=

(
1

b

)i2
(

7
16
b

)i2
(

1

b

)2i3
(

4
43

b2

)i3 (
1

b

)3i4
(

1
44

b3

)i4

=

(
1

b

)i2+2i3+3i4
(

7
16
b

)i2
(

4
43

b2

)i3
(

1
44

b3

)i4

.

Thus, l3(n, n) = 4n

4

∑

i2,i3,i4

⎡

⎣(
n

i2+2i3+3i4+1,n−1−2i2−3i3−4i4,i2,i3,i4

) (
1
b

)i2+2i3+3i4

(
7
16
b

)i2
(

4
43

b2

)i3 (
1
44

b3

)i4
]

< 4n
(

1
b + 1 + 7b

16 + b2

42 + b3

44

)n

,where the last relation

is again due to the Multinomial Theorem and due to the partial summation.
Our trick is to choose the value of b (by assigning appropriate weights

to the five components) that minimizes the sum of the summands of in the partial
summation. Define f(b) = 1

b +1+ 7b
16+ b2

42 + b3

44 . Our goal, then, is to minimize f(b).
Elementary calculus shows that f(b) assumes its minimum at b0 = 1.274306378
and that f(b0) = 2.451823893. Recall that l3(n, n) < 4nfn(b) for any b,
in particular, for b = b0. Hence, finally, l3(n, n) < 4n · 2.451823893n =
9.807295572n. ��

Higher values of d

Theorem 2. λd ≤ (2d − 2)e + 1/(2d − 2)

Proof. The proof for a general value of d > 3 is similar to that for
d = 2, 3. For simplicity of exposition, let us fix a = 2(d − 1). We have

that h(d)(x) =
(
(1 + x)a + x2

)n =
(
1 + ax +

((
a
2

)
+ 1

)
x2 +

∑a
j=3

(
a
j

)
xj

)n

=

∑

i1,...,ia

[
(n

(n−
a∑

j=1
ij),i1,...,ia

)
ai1

((
a
2

)
+ 1

)i2
(∏a

j=3

(
a
j

)ij
)

xi1+2i2+···+aia

]

. Again, we

require that i1 + 2i2 + · · · + aia = n−1, that is, i1 = n − 1 −
∑a

j=2(j · ij). Thus, ld(n, n) =
∑

i2,...,ia

[(
n

(
∑a

j=2(j−1)ij+1),(n−1− ∑a
j=2(j·ij)),i2,...,ia

)

540 G. Barequet and M. Shalah

an−1− ∑a
j=2(j·ij) ((

a
2

)
+1

)i2
(∏a

j=3

(
a
j

)ij
)]

. Therefore, ld(n, n) = an

a

∑
i2,...,ia[(

n
(
∑a

j=2(j−1)ij+1),(n−1− ∑a
j=2(j·ij)),i2,...,ia

) ((a2)+1)i2
a2i2

∏a
j=3

(aj)
ij

ajij

]
= an

a

∑
i2,...,ia

[
(

n
(
∑a

j=2(j−1)ij+1),(n−1− ∑a
j=2(j·ij)),i2,...,ia

) (
(a2)+1

a2

)i2 ∏a
j=3

(
(aj)
aj

)ij
]

. It is well

known that for all values of m and k, such that 1 ≤ k ≤ m, we

have that
(
m
k

) ≤ mk

k! . Hence, for j = 3, . . . , a, we have that (aj)
aj ≤

1
j! . It is also known that e =

∑∞
j=0

1
j! . Therefore, ld(n, n) ≤

an

a

∑
i2,...,ia

[(
n

(
∑a

j=2(j−1)ij+1),(n−1− ∑a
j=2(j·ij)),i2,...,ia

) (
1
2 + 1

a2

)i2 ∏a
j=3

(
1
j!

)ij
]

<

an
(
1 + 1 +

(
1
2 + 1

a2

)
+

∑a
j=3

1
j!

)n

= an
(

1
a2 +

∑a
j=0

1
j!

)n

< (ae + 1/a)n.
(The relation “<” above is again because the summation in its left-hand side

contains only a subset of the terms whose sum is equal to the exponential term
on the right-hand side, and the factor 1/a in its left-hand side.) Consequently,
λd ≤ (2d − 2)e + 1

2d−2 . ��

5 Improving Further the Upper Bounds on λ2 and λ3

5.1 General

Klarner and Rivest [13] developed their idea further, noting that it is possible to
start with a configuration containing a single open cell (as shown in Fig. 7), and
keep adding twigs and updating the configuration, to construct from L increas-
ingly larger sets C1 = L,C2,C3, . . . , where set Ci contains all possible twigs with
i black cells (and possibly some white cells) or less than i black cells (and no
white cells).

∗∗∗
∗

Fig. 7. A twig with one open cell

The process for building all twigs with i black cells is as follows:

1. Set Ci := ∅, B := {s̄} (the twig in Fig. 7), and Wi(x, y) := 0;
2. If B = ∅, then output Ci and halt;
3. Remove some twig T from B;
4. If T contains no open cells or exactly i dead cells, then add T to Ci, set

W := W + w(T), and goto Step 2;

Improved Upper Bounds on the Growth Constants 541

5. For j = 1, . . . , 5 do
Set Tj := T ∗ Lj ;
If Tj meets condition (∗) below, then add Tj to B;

od
6. Goto Step 2.

Condition (∗): None of the cells of Li (except the black cell) overlaps with
neither any cell (black or white) of T nor with any cell of T marked with an X.

Condition (∗) guarantees that adding a new twig to the configuration will
not cause any overlap of cells.

Observation 3. A2(i) ≤ |Ci|. ��

T1 = L1

∗∗∗
∗

T2,1 T2,2 T2,3 T2,4 T2,5 T3,1 T3,2 T3,3 T3,4 T3,5 T4,2T4,1 T4,3 T4,4 T4,5 T5,2T5,1 T5,4T5,3

T4T2

T5,5

T3 T5

∗∗∗
∗

Fig. 8. The tree modeling the algorithm that generates Ci. The root r is a twig with
one open cell; its L-context is shown in Fig. 3(a). For i, j = 1, . . . , 5, set Ti = Li = r∗Li,
and Ti,j = Ti ∗ Lj . The twig T1 is a leaf because it has no open cells.

This relation is justified by the facts that every polyomino of size i can
be built with some sequence of i twigs, and that the algorithm constructs all
valid sequences of i twigs. The algorithm can be viewed as a breadth-first-search
traversal of an infinite tree (Fig. 8) rooted at twig s̄ (Fig. 7). All other vertices
of the tree are twigs that can be “grown” from the root by repeatedly applying
operation ‘∗’ (Sect. 2). The tree contains an edge directed from a twig T1 to twig
T2 if T2 = T1 ∗ Li (for some Li ∈ L). Hence, each vertex of the tree has at most
five outgoing edges, and the leaves are all twigs which have no open cells.

The key idea is that, given a polyomino P , it is possible to encode P with a
sequence of elements of Ci, for any i ≥ 1, and any such sequence can be converted
into a sequence of elements of L.

Observation 4. The set of converted sequences of elements of Ci+1 is a proper
subset of the set of converted sequences of elements of Ci, since the former con-
tains less invalid sequences (not representing polyominoes) than the latter. ��

Similarly to twigs in L, every twig T ∈ Ci is assigned a weight w(T) := xayb

(where a denotes the number of cells in T minus 1, and b denotes the num-
ber of black cells in T), and, thus, it can be shown that every polyomino of
size n gives rise to a unique sequence of elements of Ci of weight xnyn. Letting

542 G. Barequet and M. Shalah

Wi(x, y) =
∑

T∈Ci
w(T), we can plug Wi(x, y) into the generating function in

Eq. (1) and obtain
∑

m,n ci(m,n)xmyn=x/(1−Wi(x, y)). Again, we are inter-
ested in the diagonal term ci(n, n) of the series expansion

∑
m,n ci(m,n)xmyn.

According to Observation 4, the sets C1,C2, . . . yield a sequence of improv-
ing (decreasing) upper bounds on λ2. Thus, as i increases, the upper bound
decreases. Therefore, the goal is to compute an upper bound on ci(n, n). The
main computational challenge in this approach is to construct algorithmically
the sets Ci (in order to compute Wi(x, y)), as |Ci| is increasing exponentially
with i, like A2(i) does. Klarner and Rivest carried their approach to the limit
of the resources they had available at the time, and computed Ci up to i = 10.
Their computations are summarized in Table 1.

5.2 Two Dimensions

Theorem 5. λ2 ≤ 4.5252 ��
We implemented the algorithm described in the previous section for con-

structing the sets Ci in a parallel C++ program, using Maple (the code is given
in the full version of the paper), in order to derive an upper bound on ci(n, n).
Since the size of the set Ci is growing exponentially with i, we did not keep
the entire set in memory. Instead, we accumulated the weights of the twigs as
in Step 4 in the algorithm. The “for loop” in Step 5 can be run in paral-
lel since there are no dependencies between the twigs T1, . . . , T5, as illustrated
in Fig. 8. We used OpenMP and OpenMPI to run the program in parallel on a
high-performance computer cluster. We used 33 computing nodes, each hav-
ing 12 cores, for a total of 396 cores. The time for computing C10 was negligible
even without parallelizing the program. Results were systematically improved
by increasing i, the number of dead cells of the twigs. However, as the size of
Ci increases roughly by a factor of 4 as i is incremented by 1, constructing Ci+1

requires more than four times the computing power needed to construct Ci. The
improved upper bound λ2 ≤ 4.5252 was obtained by using twigs with 21 dead
cells. Computing C21 took roughly seven hours. Our results, alongside Klarner
and Rivest’s results, are summarized in Table 1. The two sets of results differ for
i = 6, . . . , 10. We address these differences in the full version of the paper. The
weight functions W1(x, y), . . . , W21(x, y) are also provided in the full version.

For i ≥ 6, the numbers of twigs (|Ci|) we found are slightly (but consistently)
larger than the numbers reported by Klarner and Rivest [13] (see Table 1). As a
result, the upper bound we computed for C10 is slightly larger than the bound
they reported. Since they provided neither the program that generated the sets
Ci, nor the functions W6(x, y), . . . , W10(x, y) which they obtained, we had no
means for comparing our results to theirs, but only to speculate the following.

Klarner and Rivest claimed that they used the following version of (∗):

1. None of the cells of Li (except its root) overlaps with any of the cells or
forbidden cells of T ; and

2. None of the forbidden cells of Li overlaps with any cells of T .

Improved Upper Bounds on the Growth Constants 543

Table 1. Left: Results obtained by Klarner and Rivest [13]; Right: Our results.

i |Ci| 1/σi Time (Hours) Ours

Ref. [13] Ours Ref. [13] Ours

1 5 5 4.828428 4.828427124

2 21 21 4.828428 4.828427124

3 93 93 4.828428 4.828427124

4 409 409 4.796156 4.796155640

5 1,803 1,803 4.765534 4.765532996

6 7,929 7,937 4.738062 4.738743624

7 34,928 35,084 4.714292 4.716641912

8 151,897 153,458 4.690920 4.695386599

9 656,363 668,128 4.669409 4.676042980

10 2,821,227 2,899,941 4.649551 4.658412767

11 12,557,503 4.642235017

12 54,137,703 4.627069746

13 232,203,877 4.612780890

14 991,607,177 4.599355259

15 4,218,349,778 4.586741250

16 17,881,987,659 4.574877902

17 75,568,307,191 4.563716381

18 318,489,941,731 4.553209881 0:04

19 1,339,093,701,964 4.543308340 0:20

20 5,617,897,764,831 4.533962650 1:30

21 23,521,568,438,976 4.525128839 7:00

Table 2. Our results, 3D

i |C3
i | 1/σi

1 17 9.807295572

2 273 9.807295567

3 3,745 9.701430690

4 51113 9.631827042

5 693,725 9.573610717

6 9,047,959 9.517471577

7 114,736,608 9.467046484

8 1,428,690,351 9.422618063

9 17,538,443,750 9.383460515

However, although they did not state the following explicitly, they probably
did not use the second part of condition (∗) in their program. We motivate this
claim in the full version of the paper, explaining and emphasizing that using the
second part of this condition as-is is incorrect. As mentioned above, our results

544 G. Barequet and M. Shalah

agree with those of Klarner and Rivest’s only up to i = 5, and we were unable
to trace further the causes for the differences for i ≥ 6.

5.3 Three Dimensions

We applied the process described above to construct sets C3
1,C

3
2, . . . of larger 3-

dimensional twigs. Again, we began with a single open cell on the cubical lattice,
and constructed all twigs with i dead cells or fewer dead cells and no open cells.
We were able to reach twigs with i = 9 dead cells, obtaining a set of about
17.5 · 109 twigs, by which we proved that λ3 ≤ 9.3835. Computing C3

9 took 3
hours on the same cluster mentioned in Sect. 5.2.

Our results are summarized in Table 2.

References

1. The On-line Encyclopedia of Integer Sequences. http://oeis.org
2. Aleksandrowicz, G., Barequet, G.: Counting d-dimensional polycubes and nonrect-

angular planar polyominoes. Int. J. Comput. Geom. Appl. 19, 215–229 (2009)
3. Aleksandrowicz, G., Barequet, G.: Counting polycubes without the dimensionality

curse. Discret. Math. 309, 576–583 (2009)
4. Barequet, G., Moffie, M., Ribó, A., Rote, G.: Counting polyominoes on twisted

cylinders. INTEGERS: Electron. J. Comb. Number Theory 6, 37 (2006)
5. Barequet, G., Rote, G., Shalah, M.: λ>4: an improved lower bound on the growth

constant of polyominoes. Commun. ACM 59, 88–95 (2016)
6. Barequet, R., Barequet, G., Rote, G.: Formulae and growth rates of high-

dimensional polycubes. Combinatorica 30, 257–275 (2010)
7. Conway, A.: Enumerating 2D percolation series by the finite-lattice method: theory.

J. Phys. A: Math. General 28, 335–349 (1995)
8. Eden, M.: A two-dimensional growth process. In: Neyman, J. (ed.) Proceedings of

the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 4,
pp. 223–239 (1961)

9. Gaunt, D., Sykes, M., Ruskin, H.: Percolation processes in d-dimensions. J. Phys.
A: Math. General 9, 1899–1911 (1976)

10. Guttmann, A. (ed.): Polygons, Polyominoes, and Polycubes, vol. 775. Springer,
Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9927-4

11. Jensen, I.: Counting polyominoes: a parallel implementation for cluster computing.
In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra,
J.J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 203–212. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44863-2 21

12. Klarner, D.: Cell growth problems. Can. J. Math. 19, 851–863 (1967)
13. Klarner, D., Rivest, R.: A procedure for improving the upper bound for the number

of n-ominoes. Can. J. Math. 25, 585–602 (1973)
14. Lubensky, T., Isaacson, J.: Statistics of lattice animals and dilute branched poly-

mers. Phys. Rev. A 20, 2130–2146 (1979)
15. Luther, S., Mertens, S.: Counting lattice animals in high dimensions. J. Stat. Mech.:

Theory Exp. 9, 546–565 (2011)
16. Madras, N.: A pattern theorem for lattice clusters. Ann. Comb. 3, 357–384 (1999)

http://oeis.org
https://doi.org/10.1007/978-1-4020-9927-4
https://doi.org/10.1007/3-540-44863-2_21

Improved Upper Bounds on the Growth Constants 545

17. Madras, N., et al.: The free energy of a collapsing branched polymer. J. Phys. A:
Math. General 23, 5327–5350 (1990)

18. Mertens, S., Lautenbacher, M.: Counting lattice animals: a parallel attack. J. Stat.
Phys. 66, 669–678 (1992)

19. Rands, B., Welsh, D.: Animals, trees and renewal sequences. IMA J. Appl. Math.
27, 1–17 (1981)

20. Read, R.: Contributions to the cell growth problem. Can. J. Math. 14, 1–20 (1962)
21. Redelmeier, D.: Counting polyominoes: yet another attack. Discret. Math. 36,

191–203 (1981)
22. Sykes, M., Glen, M.: Percolation processes in two dimensions: I. low-density series

expansions. J. Phys. A: Math. Gen. 9, 87–95 (1976)

On the Collection of Fringe
Subtrees in Random Binary Trees

Louisa Seelbach Benkner1(B) and Stephan Wagner2,3

1 Department für Elektrotechnik und Informatik, Universität Siegen,
Hölderlinstrasse 3, 57076 Siegen, Germany

seelbach@eti.uni-siegen.de
2 Department of Mathematical Sciences, Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa
swagner@sun.ac.za

3 Department of Mathematics, Uppsala Universitet,
Box 480, 751 06 Uppsala, Sweden
stephan.wagner@math.uu.se

Abstract. A fringe subtree of a rooted tree is a subtree consisting of
one of the nodes and all its descendants. In this paper, we are specifi-
cally interested in the number of non-isomorphic trees that appear in the
collection of all fringe subtrees of a binary tree. This number is analysed
under two different random models: uniformly random binary trees and
random binary search trees.

In the case of uniformly random binary trees, we show that the num-
ber of non-isomorphic fringe subtrees lies between c1n/

√
lnn(1 + o(1))

and c2n/
√

lnn(1 + o(1)) for two constants c1 ≈ 1.0591261434 and
c2 ≈ 1.0761505454, both in expectation and with high probability, where
n denotes the size (number of leaves) of the uniformly random binary
tree. A similar result is proven for random binary search trees, but the
order of magnitude is n/ lnn in this case.

Our proof technique can also be used to strengthen known results on
the number of distinct fringe subtrees (distinct in the sense of ordered
trees). This quantity is of the same order of magnitude in both cases,
but with slightly different constants in the upper and lower bounds.

Keywords: Uniformly random binary trees · Random binary search
trees · Fringe subtrees · Tree compression

1 Introduction

A subtree of a rooted tree that consists of a node and all its descendants is called
a fringe subtree. Fringe subtrees are a natural object of study in the context of

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement No
731143 and the DFG research project LO 748/10-1 (QUANT-KOMP).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 546–558, 2020.
https://doi.org/10.1007/978-3-030-61792-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_43&domain=pdf
http://orcid.org/0000-0001-5533-2764
https://doi.org/10.1007/978-3-030-61792-9_43

On the Collection of Fringe Subtrees in Random Binary Trees 547

random trees, and there are numerous results for various random tree models,
see e.g. [3,9,11,13].

Fringe subtrees are of particular interest in computer science: One of the
most important and widely used lossless compression methods for rooted trees
is to represent a tree as a directed acyclic graph, which is obtained by merging
nodes that are roots of identical fringe subtrees. This compressed representation
of the tree is often shortly referred to as minimal DAG and its size (number
of nodes) is the number of distinct fringe subtrees occurring in the tree. Com-
pression by minimal DAGs has found numerous applications in various areas of
computer science, as for example in compiler construction [2, Chapter 6.1 and
8.5], unification [24], symbolic model checking (binary decision diagrams) [7],
information theory [20,28] and XML compression and querying [8,19].

In this work, we investigate the number of fringe subtrees in random binary
trees, i.e. random trees such that each node has either exactly two or no children.
So far, this problem has mainly been studied with respect to ordered fringe
subtrees in random ordered binary trees: A uniformly random ordered binary
tree of size n (with n leaves) is a random tree whose probability distribution is
the uniform probability distribution on the set of ordered binary trees of size n.
In [18], Flajolet, Sipala and Steyaert proved that the expected number of distinct
ordered fringe subtrees in a uniformly random ordered binary tree of size n is
asymptotically equal to c·n/

√
lnn, where c is the constant 2

√
ln 4/π. This result

of Flajolet et al. was extended to unranked labelled trees in [6] (for a different
constant c). Moreover, an alternative proof to the result of Flajolet et al. was
presented in [25] in the context of simply-generated families of trees.

Another important type of random trees are so-called random binary search
trees: A random binary search tree of size n is a binary search tree built by insert-
ing the keys {1, . . . , n} according to a uniformly chosen random permutation on
{1, . . . , n}. Random binary search trees naturally arise in theoretical computer
science, see e.g. [12]. In [16], Flajolet, Gourdon and Martinez proved that the
expected number of distinct ordered fringe subtrees in a random binary search
tree of size n is O(n/ ln n). This result was improved in [10] by Devroye, who
showed that the asymptotics Θ(n/ ln n) holds. Moreover, the result of Devroye
was generalized from random binary search trees to a broader class of random
ordered binary trees in [26], where the problem of estimating the expected num-
ber of distinct ordered fringe subtrees in random binary trees was considered in
the context of so-called leaf-centric binary tree sources, which were introduced
in [22,28] as a general framework for modeling probability distributions on the
set of ordered binary trees of size n.

In this work, we focus on estimating the number of non-isomorphic fringe
subtrees in random ordered binary trees, where we call two binary trees non-
isomorphic if they are distinct as unordered binary trees. This question arises
quite naturally for example in the context of XML compression: Here, one distin-
guishes between so-called document-centric XML, for which the corresponding
XML document trees are ordered, and data-centric XML, for which the cor-
responding XML document trees are unordered. Understanding the interplay

548 L. Seelbach Benkner and S. Wagner

between ordered and unordered structures has thus received considerable atten-
tion in the context of XML (see, for example, [1,5,29]). In particular, in [23], it
was investigated whether tree compression can benefit from unorderedness. For
this reason, so-called unordered minimal DAGs were considered. An unordered
minimal DAG of a binary tree is a directed acyclic graph obtained by merg-
ing nodes that are roots of isomorphic fringe subtrees, i.e. of fringe subtrees
which are identical as unordered trees. From such an unordered minimal DAG,
an unordered representation of the original tree can be uniquely retrieved. The
size of this compressed representation is the number of non-isomorphic fringe
subtrees occurring in the tree. So far, only some worst-case estimates comparing
the size of a minimal DAG to the size of its corresponding unordered minimal
DAG are known: Among other things, it was shown in [23] that the size of an
unordered minimal DAG of a binary tree can be exponentially smaller than the
size of the corresponding (ordered) minimal DAG.

However, no average-case estimates comparing the size of the minimal DAG
of a binary tree to the size of the corresponding unordered minimal DAG are
known so far. In particular, in [23] it is stated as an open problem to estimate
the expected number of non-isomorphic fringe subtrees in a uniformly random
ordered binary tree of size n and conjectured that this number asymptotically
grows as Θ(n/

√
ln n).

In this work, as one of our main theorems, we settle this open conjecture
by proving upper and lower bounds of order n/

√
ln n for the number of non-

isomorphic fringe subtrees which hold both in expectation and with high prob-
ability (i.e., with probability tending to 1 as n → ∞). Our approach can also
be used to obtain an analogous result for random binary search trees, though
the order of magnitude changes to Θ(n/ ln n). Again, we have upper and lower
bounds in expectation and with high probability. Our two main theorems read
as follows.

Theorem 1. Let Fn be the total number of non-isomorphic fringe subtrees in
a uniformly random ordered binary tree with n leaves. For two constants c1 ≈
1.0591261434 and c2 ≈ 1.0761505454, the following holds:

(i) c1
n√
ln n

(1 + o(1)) ≤ E(Fn) ≤ c2
n√
ln n

(1 + o(1)),

(ii) c1
n√
ln n

(1 + o(1)) ≤ Fn ≤ c2
n√
ln n

(1 + o(1)) with high probability.

Theorem 2. Let Gn be the total number of non-isomorphic fringe subtrees in
a random binary search tree with n leaves. For two constants c3 ≈ 1.5470025923
and c4 ≈ 1.8191392203, the following holds:

(i) c3
n

ln n
(1 + o(1)) ≤ E(Gn) ≤ c4

n

ln n
(1 + o(1)),

(ii) c3
n

ln n
(1 + o(1)) ≤ Gn ≤ c4

n

ln n
(1 + o(1)) with high probability.

To prove the above Theorems 1 and 2, we refine techniques from [25]. Our
proof technique also applies to the problem of estimating the number of distinct

On the Collection of Fringe Subtrees in Random Binary Trees 549

ordered fringe subtrees in uniformly random binary trees or in random binary
search trees. In this case, upper and lower bounds for the expected value have
already been proven by other authors. Our new contribution is to show that they
also hold with high probability.

Theorem 3. Let Hn denote the total number of distinct fringe subtrees in a
uniformly random ordered binary tree with n leaves. Then, for the constant c =
2
√

ln 4/π ≈ 1.3285649405, the following holds:

(i) E(Hn) = c
n√
ln n

(1 + o(1)),

(ii) Hn = c
n√
ln n

(1 + o(1)) with high probability.

Here, the first part (i) was already shown in [18] and [25], part (ii) is new.
Similarly, we are able to strengthen the results of [10] and [26]:

Theorem 4. Let Jn be the total number of distinct fringe subtrees in a random
binary search tree with n leaves. For two constants c5 ≈ 2.4071298335 and c6 ≈
2.7725887222, the following holds:

(i) c5
n

ln n
(1 + o(1)) ≤ E(Jn) ≤ c6

n

ln n
(1 + o(1)),

(ii) c5
n

ln n
(1 + o(1)) ≤ Jn ≤ c6

n

ln n
(1 + o(1)) with high probability.

The upper bound in part (i) can already be found in [16] and [10]. Moreover,
a lower bound of the form E(Jn) ≥ αn

lnn (1 + o(1)) was already shown in [10]
for the constant α = (ln 3)/2 ≈ 0.5493061443 and in [26] for the constant α ≈
0.6017824584. So our new contributions are part (ii) and the improvement of the
lower bound on E(Jn).

2 Preliminaries

Let T denote the set of ordered binary trees, i.e. of ordered rooted trees such
that each node has either exactly two or no children. We define the size |t| of a
binary tree t ∈ T as the number of leaves of t and by Tk we denote the set of
binary trees of size k for every integer k ≥ 1. It is well known that |Tk| = Ck−1,
where Ck denotes the k-th Catalan number [17]: We have

Ck =
1

k + 1

(
2k

k

)
∼ 4k

√
πk3/2

(1 + O(1/k)), (1)

where the asymptotic growth of the Catalan numbers follows from Stirling’s
Formula [17]. Analogously, let U denote the set of unordered binary trees, i.e. of
unordered rooted trees such that each node has either exactly two or no children.
The size |u| of an unordered tree u ∈ U is again the number of leaves of u and
by Uk we denote the set of unordered binary trees of size k. We have |Uk| = Wk,

550 L. Seelbach Benkner and S. Wagner

where Wk denotes the k-th Wedderburn-Etherington number. Their asymptotic
growth is

Wk ∼ A · k−3/2 · bk, (2)

for certain positive constants A, b [4,15]. In particular, we have b ≈ 2.4832535362.
A fringe subtree of a binary tree is a subtree consisting of a node and all

its descendants. For a binary tree t and a given node v ∈ t, let t(v) denote the
fringe subtree of t rooted at v. Two fringe subtrees are called distinct if they are
distinct as ordered binary trees.

Every tree t ∈ T can be considered as an element of U by simply forgetting
the ordering on t’s nodes. If two binary trees t1, t2 correspond to the same
unordered tree u ∈ U , we call them isomorphic: Thus, we obtain a partition of
T into isomorphism classes. If two binary trees t1, t2 ∈ T belong to the same
isomorphism class, we can obtain t1 from t2 and vice versa by reordering the
children of some of t1’s (respectively, t2’s) inner nodes. An inner node v of an
ordered or unordered binary tree t is called a symmetrical node if the fringe
subtrees rooted at v’s children are isomorphic. Let sym(t) denote the number
of symmetrical nodes of t. The cardinality of the automorphism group of t is
given by |Aut(t)| = 2sym(t). Thus, by the orbit-stabilizer theorem, there are
2k−1−sym(t) many ordered binary trees in the isomorphism class of t ∈ Tk, and
likewise 2k−1−sym(t) many ordered representations of t ∈ Uk.

We consider two types of probability distributions on the set of ordered binary
trees of size n:

(i) The uniform probability distribution on Tn, that is, every binary tree of size
n is assigned the same probability 1

Cn−1
. A random variable taking values

in Tn according to the uniform probability distribution is called a uniformly
random (ordered) binary tree of size n.

(ii) The probability distribution induced by the so-called Binary Search Tree
Model (see e.g. [12,16]): The corresponding probability mass function Pbst :
Tn → [0, 1] is given by

Pbst(t) =
∏

v∈t
|t(v)|>1

1
|t(v)| − 1

, (3)

for every n ≥ 1. A random variable taking values in Tn according to this
probability mass function is called a random binary search tree of size n.

Before we prove our main results, we need two preliminary lemmas:

Lemma 1. Let a, ε be positive real numbers with ε < 1
3 . For every positive

integer k with a ln n ≤ k ≤ nε, let Sk ⊂ Tk be a set of ordered binary trees with
k leaves. We denote the cardinality of Sk by sk. Let Xn,k denote the (random)
number of fringe subtrees with k leaves in a uniformly random ordered binary tree
with n leaves that belong to Sk. Moreover, let Yn,ε denote the (random) number
of arbitrary fringe subtrees with more than nε leaves in a uniformly random
ordered binary tree with n leaves. We have

On the Collection of Fringe Subtrees in Random Binary Trees 551

(1) E(Xn,k) = sk41−kn
(
1+O(k/n)

)
for all k with a ln n ≤ k ≤ nε, the O-constant

being independent of k,
(2) V(Xn,k) = sk41−kn(1 + O(k−1/2)) for all k with a ln n ≤ k ≤ nε, again with

an O-constant that is independent of k,
(3) E(Yn,ε) = O(n1−ε/2) and
(4) with high probability, the following statements hold:

(i) |
∑

k Xn,k −E(Xn,k)| ≤
∑

k s
1/2
k 2−kn1/2+ε, where the sums are taken over

all k with a ln n ≤ k ≤ nε,
(ii) Yn,ε ≤ n1−ε/3.

Lemma 2. Let a, ε be positive real numbers with ε < 1
3 and let n and k denote

positive integers. Moreover, for every k, let Sk ⊂ Tk be a set of ordered binary
trees with k leaves and let pk denote the probability that a random binary search
tree is contained in Sk, that is, pk =

∑
Pbst(t), where the sum is taken over

all binary trees in Sk. Let Xn,k denote the (random) number of fringe subtrees
with k leaves in a random binary search tree with n leaves that belong to Sk.
Moreover, let Yn,ε denote the (random) number of arbitrary fringe subtrees with
more than nε leaves in a random binary search tree with n leaves. We have

(1) E(Xn,k) = 2pkn
k(k+1) for 1 ≤ k < n,

(2) V(Xn,k) = O(pkn/k2) for all k with a ln n ≤ k ≤ nε, where the O-constant is
independent of k,

(3) E(Yn,ε) = 2n/�nε� − 1 = O(n1−ε) and
(4) with high probability, the following statements hold:

(i) |
∑

k Xn,k −E(Xn,k)| ≤
∑

k p
1/2
k k−1n1/2+ε, where the sums are taken over

all k with a ln n ≤ k ≤ nε,
(ii) Yn,ε ≤ n1−ε/2.

For the proofs of Lemma 1 and Lemma 2, see the long version of the paper [27].

3 Fringe Subtrees in Uniformly Random Binary Trees

3.1 Ordered Fringe Subtrees

We provide the proof of Theorem 3 first, since it is simplest and provides us with
a template for the other proofs. Basically, it is a refinement of the proof for the
corresponding special case of Theorem 3.1 in [25]. In the following sections, we
refine the argument further to prove Theorems 1, 2 and 4. For further details,
see the long version of the paper [27].

Proof (Proof of Theorem 3). We prove the statement in two steps: In the first
step, we show that the upper bound Hn ≤ cn/

√
ln n(1 + o(1)) holds for c =

2
√

ln 4/π both in expectation and with high probability. In the second step, we
prove the corresponding lower bound.

The Upper Bound: Let k0 = log4 n. The number Hn of distinct fringe subtrees
in a uniformly random ordered binary tree with n leaves equals (i) the number

552 L. Seelbach Benkner and S. Wagner

of such distinct fringe subtrees of size at most k0 plus (ii) the number of such
distinct fringe subtrees of size greater than k0. We upper-bound (i) by the number
of all ordered binary trees of size at most k0 (irrespective of their occurrence as
fringe subtrees) and (ii) by the total number of such fringe subtrees occurring in
the tree to obtain, using the notation of Lemma 1,

Hn ≤
∑

k≤k0

Ck−1 +
(∑

k0<k≤nε

Xn,k

)
+ Yn,ε.

Here, Sk is the full set Tk, so that sk = Ck−1. The first sum is O(n/(ln n)3/2)
by (1). This upper bound holds deterministically. In order to estimate the other
two terms, we apply Lemma 1 with a = 1

ln 4 and ε = 1
6 . We thus find that the

two terms are bounded from above by 2
√
ln 4√
π

· n√
lnn

+ O(n/(ln n)3/2), both in
expectation and with high probability.

The Lower Bound: Again, let k0 = log4 n and ε = 1
6 . In order to lower-bound

the number Hn of distinct fringe subtrees in a uniformly random ordered tree
with n leaves, we only count distinct fringe subtrees of sizes k with k0 < k ≤ nε.
To this end, let X

(2)
n,k denote the number of pairs of identical fringe subtrees of

size k in a uniformly random ordered binary tree of size n. Each such pair can
be obtained by taking an ordered tree with n−2k +2 leaves, picking two leaves,
and replacing them by the same ordered binary tree of size k. The total number
of such pairs of identical fringe subtrees of size k is thus

Cn−2k+1 ·
(

n − 2k + 2
2

)
· Ck−1 =

4n−k

2πk3/2
(n − 2k + 1)1/2(1 + O(1/k)).

By dividing by Cn−1, i.e. the total number of binary trees of size n, we thus obtain
the expected value: E(X(2)

n,k) = O(4−kn2k−3/2) and consequently
∑

E(X(2)
n,k) =

O(n/(ln n)3/2), where the sum is taken over all k with k0 < k ≤ nε. If a binary
tree of size k occurs m times as a fringe subtree in a uniformly random binary
tree of size n, it contributes m −

(
m
2

)
to the random variable Xn,k − X

(2)
n,k. Since

m−
(
m
2

)
≤ 1 for all non-negative integers m, we find that Xn,k −X

(2)
n,k is a lower

bound on the number of distinct fringe subtrees with k leaves. Hence, we have

Hn ≥
∑

k0<k≤nε

Xn,k −
∑

k0<k≤nε

X
(2)
n,k.

The second sum is O(n/(ln n)3/2) in expectation and thus with high probability
as well by the Markov inequality. As the first sum is 2

√
ln 4√
π

· n√
lnn

(1+o(1)), both
in expectation and with high probability by our estimate from the first part of
the proof, the statement of Theorem 3 follows. �

As the main idea of the proof is to split the number of distinct fringe subtrees
into the number of distinct fringe subtrees of size at most k0 plus the number of
distinct fringe subtrees of size greater than k0 for some suitably chosen integer

On the Collection of Fringe Subtrees in Random Binary Trees 553

k0, this type of argument is called a cut-point argument and the integer k0 is
called the cut-point (see [16]). This basic technique is applied in several previous
papers to similar problems (see for instance [10,16,25,26]). Moreover, we remark
that the statement of Theorem 3 can be easily generalized to simply generated
families of trees.

3.2 Unordered Fringe Subtrees

In this subsection, we prove Theorem 1. For this, we refine the cut-point argu-
ment we applied in the proof of Theorem 3: In particular, for the lower bound
on Fn, we need a result due to Bóna and Flajolet [4] on the number of auto-
morphisms of a uniformly random ordered binary tree. It is stated for random
phylogenetic trees in [4], but the two probabilistic models are equivalent.

Theorem 5 ([4], Theorem 2). Consider a uniformly random ordered binary
tree Tk with k leaves, and let Ak = |Aut(Tk)| be the cardinality of its auto-
morphism group. The logarithm of this random variable satisfies a central limit
theorem: For certain positive constants γ and σ1, we have

P(Ak ≤ 2γk+σ1
√

kx) k→∞→ 1√
2π

∫ x

−∞
e−t2/2 dt

for every real number x. The numerical value of the constant γ is 0.2710416936.

With Theorem 5, we are able to upper-bound the probability that two fringe
subtrees of the same size are isomorphic in our proof of Theorem 1:

Proof (Proof of Theorem 1). We prove the statement in two steps: First, we show
that the upper bound on Fn stated in Theorem 1 holds both in expectation and
with high probability, then we prove the respective lower bound.

The Upper Bound: The proof for the upper bound in Theorem 1 exactly matches
the first part of the proof of Theorem 3, except that we choose a different cut-
point: Let k0 = logb n, where b ≈ 2.4832535362 is the constant in the asymptotic
formula (2) for the Wedderburn-Etherington numbers. We then find

Fn ≤
∑

k<k0

Wk +
(∑

k0≤k≤nε

Xn,k

)
+ Yn,ε =

2
√

ln b√
π

· n√
ln n

+ O(n(ln n)−3/2),

both in expectation and with high probability, where the estimates for Xn,k and
Yn,ε follow again from Lemma 1. We have 2

√
ln b/

√
π ≈ 1.0761505454.

The Lower Bound: As a consequence of Theorem 5, the probability that the
cardinality of the automorphism group of a uniformly random binary tree Tk

of size k satisfies |Aut(Tk)| ≤ 2γk−k3/4
tends to 0 as k → ∞. We define Sk as

the set of ordered trees with k leaves that do not satisfy this inequality, so that
sk = |Sk| = Ck−1(1 + o(1)). Our lower bound is based on counting only fringe
subtrees in Sk for suitable k. The reason for this choice is that we have an upper

554 L. Seelbach Benkner and S. Wagner

bound on the number of ordered binary trees in the same isomorphism class
for every tree in Sk. Recall that the number of possible ordered representations
of an unordered binary tree t with k leaves is given by 2k−1/|Aut(t)| by the
orbit-stabiliser theorem. Hence, the number of ordered binary trees in the same
isomorphism class as a tree t ∈ Sk is bounded above by 2k−1−γk+k3/4

.
Now set k1 = 1+δ

1+γ log2 n for some positive constant δ < 2
3 , and consider

only fringe subtrees that belong to Sk, where k1 ≤ k ≤ nδ/2. By Lemma 1, the
number of such fringe subtrees in a random ordered binary tree with n leaves
is sk41−kn(1 + O(k/n + s

−1/2
k 2kn(δ−1)/2)) both in expectation and with high

probability. Since sk = Ck−1(1+o(1)), the number of fringe subtrees that belong
to Sk in a random ordered binary tree of size n becomes n√

πk3 (1+o(1)). We show
that most of these trees are the only representatives of their isomorphism classes
as fringe subtrees. To this end, we consider all fringe subtrees in Sk for some k
that satisfies k1 ≤ k ≤ nδ/2. Let the sizes of the isomorphism classes of trees
in Sk be r1, r2, . . . , r	, so that r1 + r2 + · · · + r	 = sk. By definition of Sk, we
have ri ≤ 2k−1−γk+k3/4

for every i. Let us condition on the event that their
number Xn,k is equal to N for some N ≤ n. Each of these N fringe subtrees
S1, S2, . . . , SN follows a uniform distribution among the elements of Sk, so the
probability of being in an isomorphism class with ri elements is ri/sk. Moreover,
the N fringe subtrees are also all independent. Let X

(2)
n,k be the number of pairs

of isomorphic trees among the fringe subtrees with k leaves. We have

E
(
X

(2)
n,k|Xn,k = N

)
=

(
N

2

)∑

i

(ri

sk

)2

≤ n2

2s2k

∑

i

r2i ≤ n2

sk
2k−2−γk+k3/4

.

Since this holds for all N , the law of total expectation yields

E
(
X

(2)
n,k

)
≤ n2

sk
2k−2−γk+k3/4

=
√

πn2k3/22−k−γk+k3/4
(1 + o(1)).

Since k ≥ k1 = 1+δ
1+γ log2 n, we find that

E
(
X

(2)
n,k

)
≤ n22−(1+γ)k+O(k3/4) ≤ n1−δ exp

(
O((ln n)3/4)

)
.

Thus
∑

k1≤k≤nδ/2

E
(
X

(2)
n,k

)
≤ n1−δ/2 exp

(
O((ln n)3/4)

)
= o(n/

√
ln n).

As in the previous proof, we see that Xn,k −X
(2)
n,k is a lower bound on the number

of non-isomorphic fringe subtrees with k leaves. This gives us

Fn ≥
∑

k1≤k≤nδ/2

Xn,k −
∑

k1≤k≤nδ/2

X
(2)
n,k.

The second sum is negligible since it is o(n/
√

ln n) in expectation and thus also
with high probability by the Markov inequality. For the first sum, a calculation

On the Collection of Fringe Subtrees in Random Binary Trees 555

similar to that for the upper bound shows that it is

2
√

(1 + γ) ln 2
√

π(1 + δ)
· n√

ln n
(1 + o(1)),

both in expectation and with high probability. Since δ is arbitrary, we can choose

any constant smaller than 2
√

(1+γ) ln 2√
π

≈ 1.0591261434 for c1. �

4 Fringe Subtrees in Random Binary Search Trees

In order to show the respective lower bounds of Theorem 2 and Theorem 4, we
need two theorems similar to Theorem 5: The first one shows that the logarithm
of the random variable Bk = Pbst(Tk)−1, where Tk denotes a random binary
search tree of size k, satisfies a central limit theorem and is needed to estimate
the probability that two fringe subtrees in a random binary search tree are
identical. The second one transfers the statement of Theorem 5 from uniformly
random binary trees to random binary search trees and is needed in order to
estimate the probability that two fringe subtrees in a random binary search tree
are isomorphic. The first of these two central limit theorems is shown in [14]:

Theorem 6 ([14], Theorem 4.1). Consider a random binary search tree Tk

with k leaves, and let Bk = Pbst(Tk)−1. The logarithm of this random variable
satisfies a central limit theorem: For certain positive constants μ and σ2, we have

P

(
Bk ≤ 2μk+σ2

√
kx

)
k→∞→ 1√

2π

∫ x

−∞
e−t2/2 dt

for every real number x. The numerical value of the constant μ is

μ =
∞∑

k=1

2 log2 k

(k + 1)(k + 2)
≈ 1.7363771368.

The second of these two central limit theorems follows from a general theorem
devised by Holmgren and Janson [21]: The proof of Theorem 7 can be found in
the long version of the paper [27].

Theorem 7. Consider a random binary search tree Tk with k leaves, and let
Ak = |Aut(Tk)| be the cardinality of its automorphism group. The logarithm of
this random variable satisfies a central limit theorem: for certain positive con-
stants ν and σ3, we have

P(Ak ≤ 2νk+σ3
√

kx) k→∞→ 1√
2π

∫ x

−∞
e−t2/2 dt

for every real number x. The numerical value of ν is ν ≈ 0.3795493473.

556 L. Seelbach Benkner and S. Wagner

For the proofs of Theorems 2 and 4, we refer to the long version of the paper
[27]: The techniques used in the proofs are mostly the same as in the proof of
Theorem 1. In order to show the corresponding upper bounds, we make use of the
cut-point technique presented in the proofs of Theorems 3 and 1, combined with
Lemma 2. For the lower bounds, we suitably define, as in the proof of Theorem 1,
respective sets Sk using Theorems 6 and 7. We then lower-bound the number
of distinct (non-isomorphic, respectively) fringe subtrees by the number of such
fringe subtrees of size k that belong to the respective set Sk. The sets Sk and
the range of k are again chosen in a way that allows us to bound the probability
that two fringe subtrees from the set Sk are identical (isomorphic, respectively).

5 Open Problems

The following natural question arises from our results: Is it possible to determine
constants α1, α2, α3 with c1 ≤ α1 ≤ c2, c3 ≤ α2 ≤ c4 and c5 ≤ α3 ≤ c6, such
that

E(Fn) =
α1n√
log n

(1 + o(1)), E(Gn) =
α2n

log n
(1 + o(1)), E(Jn) =

α3n

log n
(1 + o(1)),

respectively, and

Fn

n/
√

log n

P→ α1,
Gn

n/ log n

P→ α2, and
Jn

n/ log n

P→ α3 ?

In order to prove such estimates, it seems essential to gain a better understanding
of the random variables Pbst(Tk)−1 and |Aut(Tk)|, in particular their distribu-
tions further away from the mean values, for random binary search trees or
uniformly random ordered binary trees Tk of size k.

References

1. Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for
unordered data trees. Theory Comput. Syst. 57(4), 927–966 (2015)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and
Tools. Addison-Wesley Series in Computer Science/World Student Series Edition.
Addison-Wesley (1986)

3. Aldous, D.: Asymptotic fringe distributions for general families of random trees.
Ann. Appl. Probab. 1(2), 228–266 (1991)

4. Bóna, M., Flajolet, P.: Isomorphism and symmetries in random phylogenetic trees.
J. Appl. Probab. 46(4), 1005–1019 (2009)

5. Boneva, I., Ciucanu, R., Staworko, S.: Schemas for unordered XML on a DIME.
Theory Comput. Syst. 57(2), 337–376 (2015)

6. Bousquet-Mélou, M., Lohrey, M., Maneth, S., Noeth, E.: XML compression via
DAGs. Theory Comput. Syst. 57(4), 1322–1371 (2015)

7. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

On the Collection of Fringe Subtrees in Random Binary Trees 557

8. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: Freytag,
J.C., et al. (eds.) Proceedings of the 29th Conference on Very Large Data Bases,
VLDB 2003, pp. 141–152. Morgan Kaufmann (2003)

9. Dennert, F., Grübel, R.: On the subtree size profile of binary search trees. Comb.
Probab. Comput. 19(4), 561–578 (2010)

10. Devroye, L.: On the richness of the collection of subtrees in random binary search
trees. Inf. Process. Lett. 65(4), 195–199 (1998)

11. Devroye, L., Janson, S.: Protected nodes and fringe subtrees in some random trees.
Electron. Commun. Probab. 19, 1–10 (2014)

12. Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability,
1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-211-75357-6

13. Feng, Q., Mahmoud, H.M.: On the variety of shapes on the fringe of a random
recursive tree. J. Appl. Probab. 47(1), 191–200 (2010)

14. Fill, J.A.: On the distribution of binary search trees under the random permutation
model. Random Struct. Algorithms 8(1), 1–25 (1996)

15. Finch, S.R., Rota, G.C.: Mathematical Constants. Encyclopedia of Mathematics
and Its Applications. Cambridge University Press, Cambridge (2003)

16. Flajolet, P., Gourdon, X., Mart́ınez, C.: Patterns in random binary search trees.
Random Struct. Algorithms 11(3), 223–244 (1997)

17. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

18. Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subex-
pression problem. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–
234. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032034

19. Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended
abstract). In: Proceedings of the 18th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 2003, pp. 188–197. IEEE Computer Society Press (2003)

20. Ganardi, M., Hucke, D., Lohrey, M., Benkner, L.S.: Universal tree source coding
using grammar-based compression. IEEE Trans. Inf. Theory 65(10), 6399–6413
(2019)

21. Holmgren, C., Janson, S.: Limit laws for functions of fringe trees for binary search
trees and random recursive trees. Electron. J. Probab. 20, 1–51 (2015)

22. Kieffer, J.C., Yang, E.H., Szpankowski, W.: Structural complexity of random
binary trees. In: Proceedings of the 2009 IEEE International Symposium on Infor-
mation Theory, ISIT 2009, pp. 635–639. IEEE (2009)

23. Lohrey, M., Maneth, S., Reh, C.P.: Compression of unordered XML trees. In:
Proceedings of the 20th International Conference on Database Theory, ICDT 2017,
Venice, Italy, 21–24 March 2017, pp. 18:1–18:17 (2017)

24. Paterson, M., Wegman, M.N.: Linear unification. J. Comput. Syst. Sci. 16(2),
158–167 (1978)

25. Ralaivaosaona, D., Wagner, S.G.: Repeated fringe subtrees in random rooted trees.
In: Proceedings of the 12th Workshop on Analytic Algorithmics and Combina-
torics, ANALCO 2015, pp. 78–88. SIAM (2015)

26. Seelbach Benkner, L., Lohrey, M.: Average case analysis of leaf-centric binary tree
sources. In: Proceedings of the 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, Liverpool, UK, 27–31 August 2018,
pp. 16:1–16:15 (2018)

27. Seelbach Benkner, L., Wagner, S.: On the collection of fringe subtrees in random
binary trees. arXiv e-prints arXiv:2003.03323 (2020). https://arxiv.org/abs/2003.
03323

https://doi.org/10.1007/978-3-211-75357-6
https://doi.org/10.1007/BFb0032034
http://arxiv.org/abs/2003.03323
https://arxiv.org/abs/2003.03323
https://arxiv.org/abs/2003.03323

558 L. Seelbach Benkner and S. Wagner

28. Zhang, J., Yang, E.H., Kieffer, J.C.: A universal grammar-based code for lossless
compression of binary trees. IEEE Trans. Inf. Theory 60(3), 1373–1386 (2014)

29. Zhang, S., Du, Z., Wang, J.T.: New techniques for mining frequent patterns in
unordered trees. IEEE Trans. Cybern. 45(6), 1113–1125 (2015)

A Method to Prove the Nonrationality of
Some Combinatorial Generating

Functions

Miklós Bóna(B)

University of Florida, Gainesville, FL 32611, USA
bona@ufl.edu

Abstract. We are presenting a new method to prove that certain com-
binatorial generating functions are not rational. We show several appli-
cations of our method, such as permutation patterns, t-stack sortable
permutations, and classic examples of algebraic generating functions,
such as lattice paths.

Keywords: Generating functions · Rational functions ·
Permutations · Trees · Lattice paths

1 Introduction

When solving an enumeration problem, we often attempt to determine the
number f(n) of some structures of size n, or the generating function F (z) =∑

n≥0 f(n)zn of the corresponding sequence. When our efforts fail, we may be
interested in why the problem at hand is so difficult. In this paper, we will
present a method that can in some cases show that the generating function F (z)
is not a rational function (ratio of two polynomials) of z. This is equivalent to
the statement that there does not exist a recurrence relation

f(n) = a1f(n − 1) + a2f(n − 2) + · · · + arf(n − r),

for all n, where r is a fixed positive integer, and the ai are constants. So, when
our method works, it will provide some justification as to why the enumeration
problem is difficult.

The exponential order or exponential growth rate of the sequence of the num-
bers f(n) is defined to be lim supn(f(n)1/n). The Fundamental Theorem of Ana-
lytic Combinatorics [4] states that if F (z) =

∑
n≥0 f(n)zn is analytic at z = 0,

then the exponential order of the sequence f(n) is 1/r, where r is the distance
between zero and the singularity of F (z) that is closest to 0. We call that sin-
gularity the dominant singularity of F . The type of that singularity can be used
to determine the subexponential terms in the asymptotics of f(n).

Partially supported by a Simons Collaboration Grant.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 559–570, 2020.
https://doi.org/10.1007/978-3-030-61792-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_44&domain=pdf
http://orcid.org/0000-0002-8711-7281
https://doi.org/10.1007/978-3-030-61792-9_44

560 M. Bóna

All power series in this paper are assumed to have nonnegative real coeffi-
cients as they are combinatorial generating functions. For such a power series f ,
if R > 0 is the radius of convergence, then Pringsheim’s theorem (Theorem IV.6
in [4]) shows that the positive real number R itself is a singularity of f . We will
use this fact without explicitly mentioning it in what follows.

As we will discuss it in Sect. 5, when a generating function f is not explicitly
known, it is usually quite difficult to prove that f does not belong to a certain
class of power series. This is not surprising, in view of Rice’s theorem [10], that
states that for any non-trivial property of functions, no general and effective
method can decide whether an algorithm computes a function with that property.
This paper provides a tool to prove that certain power series are not rational
functions, even though we do not know their explicit form, or even, their radius
of convergence.

2 Supercriticality

Definition 1. Let F and G be two generating functions with nonnegative real
coefficients that are analytic at 0, and let us assume that G(0) = 0. Then the
relation

F (z) =
1

1 − G(z)
(1)

is called supercritical if G(RG) > 1, where RG is the radius of convergence of G.

See [4] for a detailed discussion of supercritical relations. For our purposes, it is
the following property of such relations that is crucial.

Proposition 1. Let F and G be two generating functions with nonnegative real
coefficients that are analytic at 0, and let us assume that the relation F (z) =
1/(1−G(z)) is supercritical. Then the exponential growth rate of the coefficients
of F is strictly larger than the exponential growth rate of the coefficients of G.

Proof. As the coefficients of G(z) are nonnegative, G(RG) > 1 implies that
G(α) = 1 for some α ∈ (0, RG). So, if the relation between F and G described
above is supercritical, then the radius RF of convergence of F is less than the
radius of convergence RG of G, and so the exponential growth rate 1/RF of
the coefficients of F is larger than the exponential growth rate 1/RG of the
coefficients of G. ��
Theorem 1. Let G(z) be a rational power series with nonnegative real coeffi-
cients that satisfies G(0) = 0. Then the relation

F (z) =
1

1 − G(z)
(2)

is supercritical.

Proof. If G is rational, then its dominant singularity RG is a pole, so G(RG) =
∞ > 1. ��

Nonrational Generating Functions 561

Therefore, in order to prove that some generating function F (z) is not ratio-
nal, it suffices to prove that (2) is not supercritical. Note that (2) is equivalent
to F (z) =

∑
n≥0 G(z)n. So the combinatorial meaning of (2) is the following.

Let G(z) be the generating function for the number of ways to carry out a
task on an n-element set. Then F (z) is the generating function for the number
of ways to split the set {1, 2, · · · , n} into an unspecified number of non-empty
intervals, and then to carry out the first task on each of those intervals. In
other words, G(z) counts structures that are the irreducible building blocks of
the structures counted by F (z). In analytic combinatorics, the symbolic nota-
tion for this relation is F = SEQ(G). If the relation between the builiding blocks
(the G-structures) and their sequences (the F-structures) is supercritical, then
the sequence enumerating the F-structures has a higher exponential order. This
leads to the following theorem, which we will apply several times in this paper.

Theorem 2. Let gn be the number of objects of size n > 0 of a certain kind,
and let fn be the number of sequences built up from various objects of that kind
so that the total size of all objects in the sequence is n. If there exists a positive
integer k so that for all nonnegative integers n, the inequality fn ≤ gn+k holds,
then the generating function F (z) =

∑
n≥0 fnzn is not rational.

Proof. If F (z) were rational, then by Theorem 1, the exponential order of the
sequence fn would be higher than that of the sequence gn, contradicting the
assumption that fn ≤ gn+k holds for all n. ��

Note that if an injection can be found from the set of all F-structures of size
n to the set of all G-structures of size n + 1, that proves that fn ≤ gn+1, and so
Theorem 2 can be applied with k = 1 to prove nonrationality of F (z).

3 Permutation Patterns

We say that a permutation p contains the pattern q = q1q2 · · · qk if there is a
k-element set of indices i1 < i2 < · · · < ik so that pir < pis if and only if qr < qs.
If p does not contain q, then we say that p avoids q. For example, p = 3752416
contains q = 2413, as the first, second, fourth, and seventh entries of p form
the subsequence 3726, which is order-isomorphic to q = 2413. A recent survey
on permutation patterns can be found in [12] and a book on the subject is [2].
Let Avn(q) be the number of permutations of length n that avoid the pattern
q. In general, it is very difficult to compute, or even describe, the numbers
Avn(q), or their sequence as n goes to infinity. Accordingly, the explicit form
of the generating function Aq(z) =

∑
n≥0 Avn(q)zn is only known for very few

patterns. Still, there are known examples when Aq(z) is algebraic, (when q is of
length three or when q = 1342), and there are known examples when Aq(z) is
not algebraic (when q is the monotone pattern 12 · · · k, where k ≥ 4 is an even
integer).

We say that a permutation p is skew indecomposable if it is not possible to
cut p into two parts so that each entry before the cut is larger than each entry

562 M. Bóna

after the cut. For instance, p = 3142 is skew indecomposable, but r = 346512 is
not as we can cut it into two parts by cutting between entries 5 and 1, to obtain
3465|12.

If p is not skew indecomposable, then there is a unique way to cut p into
nonempty skew indecomposable strings s1, s2, · · · , s� of consecutive entries so
that each entry of si is larger than each entry of sj if i < j. We call these strings
si the skew blocks of p. For instance, p = 67|435|2|1 has four skew blocks, while
skew indecomposable permutations have one skew block.

Theorem 3. Let q be a skew indecomposable pattern that does not end in its
largest entry. Then Aq(z) is not rational.

Proof. It is clear that p avoids q if and only if each of the skew blocks of p avoids
q. This means that

Aq(z) =
1

1 − Aq,1(z)
(3)

holds, where Aq,1(z) is the generating function of the skew indecomposable q-
avoiders. Let Avn,1(q) denote the number of skew indecomposable q-avoiders of
length n.

Let p be of length n, and let p avoid q. Now affix a new entry n+1 at the end
of p. The new permutation p′ still avoids q, but is also skew indecomposable.

This proves the inequality

Avn(q) ≤ Avn+1,1(q)

for all n. This, in turn immediately implies the nonrationality of Aq(z) by
Theorem 2 if we select k = 1, fn = Avn(q), and gn = Avn,1(q) ��

Note that we know that both sequences have a finite exponential order, since
it is proved in [7] that Avn,1(q) ≤ Avn(q) ≤ cn

q for some constant cq.
Using some straightforward symmetries, Theorem 3 can be strengthened as

follows.

Theorem 4. Let q = q1q2 · · · qk be any skew indecomposable permutation pat-
tern so that q1 �= 1 or qk �= q. Then Aq(z) is not rational.

We will return to this result in Sect. 5, when we discuss how it fits into the “big
picture”.

4 Stack Sorting

Stack sorting of permutations has been defined in [6]. It is concerned with the
operation of sorting permutations by passing them through a stack. This opera-
tion has many variations, and we have surveyed them in Chap. 8 of [2]. However,
in this paper, we will restrict our attention to the most vigorously studied ver-
sion, that is sometimes called West stack sorting, or right-greedy stack sorting.

Nonrational Generating Functions 563

There are at least two reasons for which this version of stack sorting is the
subject of more work than other versions. First, there are three equivalent and
natural ways of defining this stack sorting operation, which enables us to use at
least three different sets of methods when proving results about stack sorting.
Second, there are numerous conjectures about the operation that are very easy
to state, yet very difficult to prove.

4.1 Three Equivalent Definitions

The Original Definition. In order to stack sort p = p1p2 · · · pn, we consider
the entries of the input permutation p one by one. First take p1, and put it in the
stack. Second, we take p2. If p2 < p1, then it is allowed for p2 to go in the stack
on top of p1, so we put p2 there. If p2 > p1, however, then first we take p1 out of
the stack, and put it to the first position of the output permutation, and then we
put p2 into the stack. We continue this way: at step i, we compare pi with the
element r = pai−1 currently on the top of the stack. If pi < r, then pi goes on
the top of the stack; if not, then r goes to the next (that is, the leftmost) empty
position of the output permutation, and pi gets compared to the new element
that is currently on the top of the stack. The algorithm ends when all n entries
passed through the stack and are in the output permutation s(p). See Fig. 1 for
an illustration.

Definition 2. If the output permutation s(p) defined by the above algorithm is
the identity permutation 123 · · · n, then we say that p is stack sortable.

1324

4132

4
213

13 4 2

1 3 42

3
1 42

3 142

3142

output stack input

Fig. 1. Stack sorting 3142

564 M. Bóna

The Recursive Definition. It follows from Definition 2 that the maximal
entry n cannot enter the stack unless the stack is empty, that, is, all the entries
that precede n in p are already in the output. Once n enters the stack, it will
stay there until all other entries pass through the stack, at which point n will
enter the output as its last entry. This proves the following.

Proposition 2. Let p = LMR be a permutation, where L denotes the string of
entries on the left of the maximum entry M of p, and R denotes the string of
entries on the right of M . Then the equality s(p) = s(L)s(R)M holds.

Note that if we define an operation S on all finite permutations by the rules

1. S(∅) = ∅ and S(1) = 1, and
2. S(p) = S(L)S(R)M ,

then these rules uniquely define S(p) for every permutation p of any length. On
the other hand, s(p) satisfies both rules above, so by induction on the length of
p, we have that s(p) = S(p) for all p. So the above two rules define the stack
sorting operation.

The Definition Using Trees. Let p = p1p2 · · · pn be a permutation. The
decreasing binary tree of p, which we denote by T (p), is defined as follows. The
root of T (p) is a vertex labeled n, the largest entry of p. If a is the largest entry
of p on the left of n, and b is the largest entry of p on the right of n, then the root
will have two children, the left one will be labeled a, and the right one labeled b.
If n is the first (resp. last) entry of p, then the root will have only one child, and
that is a left (resp. right) child, and it will necessarily be labeled n − 1 as n − 1
must be the largest of all remaining elements. Define the rest of T (p) recursively,
by taking T (L) and T (R), where, as before, L and R are the substrings of p on
the two sides of n, and affixing them to a and b.

Note that T (p) is indeed a binary tree, that is, each vertex has 0, 1, or 2
children. Also note that each child is a left child or a right child of its parent,
even if that child is an only child. Given T (p), we can easily recover p by reading
T according to the tree traversal method called in-order. In other words, first
we read the left subtree of T (p), then the root, and then the right subtree of
T (p). We read the subtrees according to this very same rule. See Fig. 2 for an
illustration.

On the other hand, we can recover s(p) by reading the vertices of T (p) in
postorder, that is, we first read the left subtree of the root, then the right subtree
of the root, and then the root itself. The subtrees of the root are by the this
same rule. It is a direct consequence of Proposition 2 that we indeed obtain s(p)
in this way.

Example 1. If p = 328794615, then reading the vertices of T (p) shown in Fig. 2
in postorder, we obtain that s(p) = 237841569.

Nonrational Generating Functions 565

Fig. 2. The tree T (p) for p = 328794615.

t-stack Sortable Permutations. A permutation is called t-stack sortable if
sending it through the stack t times results in the identity permutation. In other
words, p is t-stack sortable if st(p) is the identity permutation. Enumerating
t-stack sortable permutations of length n for general t is extremely difficult. For
t = 1, their number is the Catalan number Cn =

(
2n
n

)
/(n + 1), and for t = 2,

their number is W2(n) = 2
(n+1)(2n+1)

(
3n
n

)
. (The latter is very difficult to prove.)

For t > 2, not only we lack exact formulas, but also, we do not even know the
exponential growth rate of the counting sequences.

Let Wt(n) be the number of t-stack sortable permutations of length n, and
let Wt(z) =

∑
n≥0 Wt(n)zn.

Theorem 5. Let t be any positive integer. Then the generating function Wt(z)
is not rational.

Proof. Let us say that a permutation p is indecomposable if it is not possible to
cut p into two parts so that each entry before the cut is smaller than each entry
after the cut. For instance, p = 2413 is indecomposable, but r = 431265 is not
as we can cut it into two parts by cutting between entries 2 and 6, to obtain
4312|65. Let Wt,1(n) be the number of t-stack sortable permutations of length n
that consist of one block, in other words, which are indecomposable. Let Wt,1(z)
be their generating function. It is then easy to see that

Wt(z) =
1

1 − Wt,1(z)
, (4)

since the stack sorting operation will remove each block of smaller entries from
the stack before entries from the next block can move in. In other words, a
permutation is t-stack sortable if and only if all its blocks are.

Now let p be a t-stack sortable permutation of length n. Affix a new entry
n+1 to its front, to get a new permutation that is indecomposable, and obviously
t-stack sortable, since the first pass through the stack results in the permutation
s(p)(n + 1), which is (t − 1)-stack sortable since s(p) is, and the entry n + 1
will not destroy that property, always entering the stack after all other entries
cleared it.

566 M. Bóna

Therefore, Wt,1(n+1) ≤ Wt(n+1) for all n, and our claim follows immediately
from Theorem 2, selecting k = 1, fn = Wt(n), and gn = Wt,1(n). ��

5 The Big Picture and Other Examples

In this section, we discuss two classes of power series that contain the class of
rational functions. Our goal is to show that it is usually difficult to prove that a
power series does not belong to a certain class.

5.1 Algebraic Power Series

Definition 3. The formal power series f ∈ C[[z]] is called algebraic if there
exist polynomials P0(z), P1(z), · · · , Pd(z) ∈ C[z] that are not all equal to zero so
that

P0(z) + P1(z)f(z) + · · · + Pd(z)fd(z) = 0. (5)

The smallest d > 0 for which such polynomials exist is called the degree of f .

For instance, 1 − √
1 − 2z and 3

√
1 + z are algebraic power series. Trivially,

all rational power series are algebraic, of degree one.
If we do not have an explicit form of a power series, it is usually difficult to

prove that the power series is not algebraic. The one tool we are aware of is the
following theorem of Jungen. If f(z) ∈ C[[z]] is algebraic and fn ∼ cnrαn for
some constants c �= 0 and 0 > r ∈ R, then r = s + 1

2 , for some integer s.
In his seminal book [11], Richard Stanley lists six general families of combi-

natorial objects, proves that they are counted by the same sequences, and shows
that the generating function of those sequences is, with some basic assump-
tions, algebraic. Among these objects, we find lattice paths with certain steps,
plane trees with prescribed down-degrees, legal sequence of parentheses, dissec-
tions of polygons with noncrossing diagonals, and sequences of integers with
certain conditions. Of course, the fact that these power series are algebraic does
not automatically mean that they are not rational, but we will present another
application of our method to show that those sequences do not have rational
generating functions.

Let S be a set of positive integers (finite or infinite). Let fS(n) be the number
of lattice paths from (0, 0) to (n, 0) using steps (1, k) where k +1 ∈ S, or (1,−1)
that never go below the horizontal axis. Let us call such lattice paths S-paths,
and let

fS(z) =
∑

n≥0

fS(n)zn.

Stanley [11] mentions that fS(z) is algebraic if and only if S differs by a finite
set from an infinite union of arithmetic progressions of positive integers. In par-
ticular, if S is finite, then fS(z) is algebraic.

Nonrational Generating Functions 567

Theorem 6. If S �= {1}, then fS(z) is not rational.

Proof. Let gS(n) be number of S-paths from (0, 0) to (n, 0) that do not touch
the horizontal axis, except in their starting and ending point, and let gS(z) =∑

n≥0 gS(n)zn. Then clearly,

fS(z) =
1

1 − gS(z)
. (6)

As in the preceding sections, we will show that fS(z) is not rational by proving
that (6) is not a supercritical relation. Again, we will achieve that by showing
that the sequence gS(n) has the same exponential order as the sequence fS(n).

In order to do that, let s be the minimal element of S, and let us take an
S-path p from (0, 0) to (n − s − 1, 0). Affix a (1, s)-step to the front of p, and
affix s steps of type (1,−1) to the end of p. Finally, translate the obtained path
so that it starts at (0, 0). Then the new path p′ will end in (n, 0), and will not
touch the horizontal axis other than in its endpoints. As the map p → p′ is
obviously an injection from the set of S-paths from (0, 0) to (n − s − 1, 0) to the
set of S-paths from (0, 0) to (n, 0) that do not touch the horizontal axis, we have
just proved the inequality fS(n − s − 1) ≤ gS(n). Therefore, our claim follows
immediately from Theorem 2, with k = s + 1. ��

5.2 d-finite Power Series

Definition 4. We say that the power series u(z) ∈ C[[z]] is d-finite if there
exists a positive integer d and polynomials p0(n), p1(n), · · · , pd(n) so that pd �= 0
and

pd(z)u(d)(z) + pd−1(z)u(d−1)(z) + · · · + p1(z)u′(z) + p0(z)u(z) = 0, (7)

Here u(j) = dju
dzj .

In other words, the derivatives of u(z) span a finite dimensional vector space
over the field of rational functions. The combinatorial importance of this class
of power series is the following.

Definition 5. A sequence f : N → C is called P -recursive if there exist poly-
nomials P0, P1, · · · , Pk ∈ C[n], with Pk �= 0 so that

Pk(n + k)f(n + k) + Pk−1(n + k − 1)f(n + k − 1) + · · · + P0(n)f(n) = 0 (8)

for all natural numbers n.

Theorem 7 [11]. The sequence f(n) is P -recursive if and only if its generating
function

∑
n≥0 f(n)zn is d-finite.

568 M. Bóna

Fig. 3. Types of power series.

Note that rational power series are obviously d-finite as their coefficient
sequences satisfy a fixed-term recurrence relation with constant coefficients, while
the coefficient sequence of a d-finite power series is P -recursive, so it satisfies a
fixed-term recurrence relation with polynomial coefficients. It is not quite this
obvious, but it is not difficult to prove that algebraic power series are d-finite as
well. See Fig. 3 for an illustration.

If we do not know the explicit form of a power series f(z), then it is usually
very difficult to prove that it is not d-finite. One way to prove that is to show that
the coefficients of f grow too fast, but that is not the case if f is the generating
function of some set of permutations of length n, since then fn ≤ n!, and the
sequence n! is P -recursive. Another way to prove that f is not d-finite is to show
that it has infinitely many singularities.

In their important 1997 paper [9], John Noonan and Doron Zeilberger asked
if Aq(z) was a d-finite generating function for all q (see Sect. 3 for the definition
of Aq(z)). While we cannot answer that question, our Theorem 4 answers a
weaker version of that question for most patterns.

6 Further Directions

Proposition 3. Let B(z) be a power series with nonnegative real coefficients
and convergence radius r > 0. If B(r) < ∞, then B(z) is not a rational power
series.

Proof. As we mentioned in the introduction, r is a singular point of B(z). If
B(r) < ∞, then the singular point r cannot be a pole, and therefore, B(z) is
not a rational power series. ��

The problem with using the simple Proposition 3 is that often we do not know
the exact value of r, or we do not know the coefficients of B(z) well enough to
decide if B(r) is finite or not. In this section, we will show examples on how
these difficulties could potentially be overcome.

Nonrational Generating Functions 569

Let us keep the notation of Sect. 3, and let Avn,i(q) denote the number of
permutations of length n that avoid q and have i skew blocks. The following
important result is proved in [3].

Lemma 1. Let q be a skew indecomposable pattern that does not end in its
largest entry. Then for all n, the inequality

Avn,2(q) ≤ Avn,1(q) (9)

holds.

Let A2,q(z) =
∑

n≥0 Avn,2(q)zn. Note that A2,q(z) = (A1,q(z))2.

Corollary 1. Let q be as in Lemma 1. Then A1,q(r) < 1, and Aq(r) is finite.

Proof. Let us assume that r > 1. Let z ∈ (0, r) so that A1,r(z) > 1. Then
∑

n≥1

Avn,1(q)zn
0 = A1,q(z0) < A1,q(z0)2 = A2,q(z0) =

∑

n≥2

Avn,2(q)zn
0 ,

contradicting (9), since the coefficients of both power series are all nonnegative.
So A1,q(r) < 1, and therefore, by (3), it indeed holds that Aq(z) is finite. ��
Here is a potential application of Proposition 3. Note that Theorem 3 applies

to the pattern 12453, but not to the pattern 13425. On the other hand, numerical
evidence seems to suggest that Avn(13425) ≤ Avn(12453). If this inequality
could be proved for all n, then, using the results in [1], it could be shown that
for both patterns, the power series Aq(z) has convergence radius 1/(9 + 4

√
2).

That would prove that for r = 1/(9 + 4
√

2), the chain of inequalities

A13425(z) =
∑

n≥0

Avn(13425)rn ≤
∑

n≥0

Avn(12453)rn < ∞

holds, which would in turn prove that the generating function A13425(q) is not
rational. That would be the first example of such a result for a pattern not
covered by Theorem 4.

Here is another potential application of Proposition 3.

Theorem 8. Let Kn,j(q) be the number of permutations of length n that contain
at most j copies of the pattern q. If there exists an absolute constant C so that

Kn,j(q) ≤ CAvn(q)

for all n, then the generating function

Kj,q(z) =
∑

n≥0

Kn,j(q)zn

is not rational.

570 M. Bóna

Proof. This follows from the straightforward fact that the sequences Avn(q) and
Kn,j(q) have the same exponential order. ��

As far as the existence of the appropriate constant C in Theorem 8 goes, we
know that such C exists if q = 123 and j = 1 [8], or j = 2 [5]. We conjecture
that such C exists for all monotone q, and for any positive j.

Finally, here is another, related method to prove non-rationality of certain
power series. It is proved in [4] that if the relation (1) between F and G is
supercritical, then the expected number of irreducible components in a structure
of size n is asymptotically equal to cn, for a specific constant c. So, if we can
prove that in a given problem, the average number of irreducible components in
a structure of size n is not asymptotically equal to n, or, equivalently, the average
size of an irreducible component is not asymptotically equal to a constant, then
the relation (1) between F (z) and G(z) is not supercritical, and therefore, the
power series F (z) and G(z) are not rational.

References

1. Bóna, M.: The limit of a Stanley-Wilf sequence is not always rational, and lay-
ered patterns beat monotone patterns. J. Combin. Theory Ser. A 110(2), 223–235
(2005)

2. Bóna, M.: Combinatorics of Permutations, 2nd edn. CRC Press, Boca Raton (2012)
3. Bóna, M.: Supercritical sequences, and the nonrationality of most principal per-

mutation classes. Eur. J. Combin. 83, 103020 (2020)
4. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,

Cambridge (2009)
5. Fulmek, M.: Enumeration of permutations containing a prescribed number of

occurrences of a pattern of length three. Adv. Appl. Math. 30(4), 607–632 (2003)
6. Knuth, D.E.: The Art of Computer Programming: Volume 3: Sorting and Search-

ing. Addison-Wesley, Reading (1973)
7. Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley-Wilf con-

jecture. J. Combin. Theory Ser. A 107(1), 153–160 (2004)
8. Noonan, J.: The number of permutations containing exactly one increasing subse-

quence of length three. Discrete Math. 152(1–3), 307–313 (1996)
9. Noonan, J., Zeilberger, D.: The enumeration of permutations with a prescribed

number of “forbidden” patterns. Adv. Appl. Math. 17(4), 381–407 (1997)
10. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.

Trans. Am. Math. Soc. 74, 358–366 (1953)
11. Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cam-

bridge (1997)
12. Vatter, V.: Permutation classes. In: Handbook of Enumerative Combinatorics,

Miklós Bóna, editor. CRC Press, Boca Raton (2015)

Binary Decision Diagrams: From Tree
Compaction to Sampling

Julien Clément1(B) and Antoine Genitrini2

1 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
Julien.Clement@unicaen.fr

2 Sorbonne Université, CNRS, LIP6, UMR 7606, 75005 Paris, France
Antoine.Genitrini@lip6.fr

Abstract. Any Boolean function corresponds with a complete full
binary decision tree. This tree can in turn be represented in a maximally
compact form as a direct acyclic graph where common subtrees are fac-
tored and shared, keeping only one copy of each unique subtree. This
yields the celebrated and widely used structure called reduced ordered
binary decision diagram (robdd). We propose to revisit the classical
compaction process to give a new way of enumerating robdds of a given
size without considering fully expanded trees and the compaction step.
Our method also provides an unranking procedure for the set of robdds.
As a by-product we get a random uniform and exhaustive sampler for
robdds for a given number of variables and size.

1 Introduction

� ⊥

x2

x1

x3

x2 x2

x1

x4

x3

x1

� ⊥

x2

x3

x4

x2

x3

x2

x4

x2

Fig. 1. Two Reduced Ordered Binary
Decision Diagrams associated to the same
Boolean function. Nodes are labeled with
Boolean variables; left dotted edges (resp.
right solid edges) are 0 links (resp. 1 links).

The representation of a Boolean func-
tion as a binary decision tree has been
used for decades. Its main benefit,
compared to other representations like
a truth table or a Boolean circuit,
comes from the underlying divide-and-
conquer paradigm. Thirty years ago a
new data structure emerged, based on
the compaction of binary decision tree,
and hereafter denoted as Binary Deci-
sion Diagrams (or bdds) [1]. Its take-
off has been so spectacular that many
variants of compacted structures have
been developed, and called through
many acronyms as presented in [14].
One way to represent the different diagrams consists in their embedding as

This work was partially supported by the anr projects Metaconc ANR-15-CE40-0014
and Ping/Ack ANR-18-CE40-0011. An implementation of the results is provided at
https://github.com/agenitrini/BDDgen.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 571–583, 2020.
https://doi.org/10.1007/978-3-030-61792-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_45&domain=pdf
https://github.com/agenitrini/BDDgen
https://doi.org/10.1007/978-3-030-61792-9_45

572 J. Clément and A. Genitrini

directed acyclic graphs (or dags). One reason for the existence of all these vari-
ants of diagrams is due to the fact that each dag correspondence has its own
internal agency of the nodes and thus each representation is oriented towards a
specific constraint. For example, the case of Reduced Ordered Binary Decision
Diagrams (robdds) is such that the variables do appear at most once and in
the same order along any path from the source to a sink of the dag, and fur-
thermore, no two occurrences of the same subgraph do appear in the structure.
For such structures and others, like qobdds or zbdds for example, there is a
canonical representation of each Boolean function.

In his book [9] Knuth proves or recalls combinatorial results, like properties for
the profile of a bdd, or the way to combine two structures to represent a more com-
plex function. However, one notes an unseemly fact. There are no results about the
distribution of the Boolean functions according to their robdd size. In fact in con-
trast to (e.g.) binary trees where there is a recursive characterization that allows to
well specify the trees,wehaveno local-constraint here forrobdds ans thus a similar
recurrence is unexpected. Very recently, there is a first study exploring experimen-
tally, numerically, and theoretically the typical and worst-case robdd sizes in [12].
We aim at obtaining the same kind of combinatorial results but here we design a
partition of the decision diagrams that allows us to go much further in terms of
size. In particular we obtain an exhaustive enumeration of the diagrams according
to their size up to 9 variables. This was unreachable through the exhaustive app-
roach proposed in [12] due to the double exponential complexity of the problem:
there are 22

k

Boolean functions with k variables. Our c++ implementation fully
manages the case of 9 variables (see Fig. 2) that corresponds to 2512 ≈ 10154 func-
tions. In particular for 9 Boolean variables, our implementation shows one seventh
of all robdds are of size 132 (the possible sizes range from 3 to 143). Furthermore,
robdds of size between 125 and 143 represents more than 99.8% of all robdds, in
accordance with theoretical results from [8,13].

Fig. 2. Proportion of bdds over 9
variables according to their size

Starting from the well-known compaction
process (that takes a binary decision tree and
outputs its compacted form, the robdd), our
combinatorial study gives a way of construc-
tion for robdds of a given size, but with-
out the compaction step. We further define
a total order over the set of robdds and we
propose both an unranking and an exhaus-
tive generation algorithm. The first one gives
as a by-product a uniform random sampler
for robdds of a given number of variables
and size. One strength of our approach is
that it allows to sample uniformly robdds of
“small” size, for instance of linear size w.r.t the number k of variables, very effi-
ciently in contrast to a naive rejection algorithm. The usual uniform distribution
on Boolean functions [13] yields with high probability robdds of near maximal
size of order 2k/k, although robdds encountered in applications, when tractable,

Binary Decision Diagrams: From Tree Compaction to Sampling 573

are smaller. As a perspective, once the unranking method is well understood,
and in particular the poset underlying the robdds, then we might be able to bias
the distribution to sample only in a specific subclass, e.g. robdds corresponding
to a particular class of formulas (e.g. read-once formulas).

Our results have practical applications in several contexts, in particular for
testing structures and algorithms. The study given in [3] executes tests for
an algorithm whose parameter is a binary decision diagram. It is based on
QuickCheck [2], the famous software, taking as an entry a random generator
and generating test cases for test suites. Using our uniform generator, we aim
at obtaining statistical testing, in the sense that the underlying distribution of
the samples is uniform, thus allowing to extract statistics thanks to the tests.
Another application of our approach allows to derive exhaustive testing for small
structures, like the study in [10], that we also can conduct inside QuickCheck.

In this paper, we focus exclusively on robdds which is one of the first and
simplest variants. Section 2 introduces the combinatorics underlying the deci-
sion tree compaction, leading in Sect. 3 to a way to unambiguously specify the
structure of reduced ordered binary decision diagrams. We apply this strategy
in Sect. 4 and obtain an unranking algorithm for robdds.

2 Decision Diagrams as Compacted Trees

This section defines precisely our combinatorial context. Many definitions are
detailed in the monograph of Wegener [14] and in the dedicated volume [9] of
Knuth.

x1

⊥⊥

x1

⊥�

x2

x1

x2

x1

x2

x3 x3

x2

�⊥� ⊥

x1 x1x1

x4

⊥ ��� ⊥�

x1

� ⊥

x2 x2

x3 x3

x2

x1 x1

x4

⊥�

Fig. 3. A decision tree and its postorder
compaction

In this section we first recall a
one-to-one correspondence between
the representation of a Boolean
function as a binary decision tree
(built on a specific variable order-
ing and seen as a plane tree, i.e.,
the children of an internal nodes
are ordered) and a reduced ordered
binary decision diagram (robdds)
also seen as a plane structure. This
approach is non-classical in the con-
text of bdds, but it allows the for-
malization of an equivalence rela-
tionship on robdds that is the key
of our enumeration: in fact our app-
roach foundation relies on breaking down the symmetry in robdds. We consider
Boolean function on k variables. We recall there are 22

k

such Boolean functions.
The compaction process is now formalized.
Compaction and Plane Decision Diagrams. A Boolean function can be
represented thanks to a binary decision diagram, which is a rooted, directed,
acyclic graph, which consists of decision nodes and terminal nodes. There are

574 J. Clément and A. Genitrini

two types of terminal nodes � and ⊥ corresponding to truth values (resp. 1
and 0). Each decision node ν is labeled by a Boolean variable xν and has two
child nodes (called low child and high child). The edge from node ν to a low (or
high) child represents an assignment of xν to 0 and is represented as a dotted
line (respectively 1, represented as a solid line). In the following we represent
robdds and decision trees (or bdds in general) as plane structures, i.e., for a
node we consider its low child to be its left child and the high child to be its
right child.

In a (plane) full binary decision tree, no subtree is shared. By contrast we
may decrease the number of decision nodes by factoring and sharing common
substructures. Representing a function with its full decision tree is not space
efficient. In Fig. 3 we depict, on top, a decision tree of a Boolean function on 4
variables. In the bottom of the figure we represent the compaction of the latter
decision tree by using the classical common subexpression recognition notion (cf.
e.g. [4,7]) based on a postorder traversal of the tree.

Definition 1 (Compaction). Let T be the (plane) binary decision tree of a
function f . The dag T is modified through a postorder traversal. When the node
ν is under visit, ν being a child of a node ρ. If an identical subtree than Tν , the
one rooted in ν, has already be seen during the traversal, rooted in a node μ, then
Tν is removed from T and the node ρ gets a pointer to μ (replacing the edge to
ν). Once T has been traversed, the resulting dag is the plane robdd of f .

In our figures of robdds we draw the pointers in red (there is an exception for
the edges to the terminal nodes as we remark in Fig. 3 also drawn in red).

In a classical setting, robdds are obtained by applying repetitively reduction
rules (well detailed in [14]) to obdds, and the process is confluent. Our approach
conceptually takes as a starting point a full decision tree with a given ordering on
variables (meaning all nodes at the same level are labeled by the same variable)
and applies the compaction rules by examining nodes of the tree in postorder.

For example the plane robdd in Fig. 3 corresponds to the leftmost robdd
depicted (in the classical way) in Fig.1. Note that for a given Boolean function,
using two distinct variable orderings can lead to two robdds of different sizes
(see Fig. 1 for such a situation). Nonetheless, an ordering of the variables being
fixed, each Boolean function is represented by exactly one single robdd obtained
through the compaction of its decision tree for this order.

In the rest of the paper, we consider only plane robdds. From now we thus call
them bdds. We also assume the set of variables X = {. . . > xk > . . . > x1} is
totally ordered.

Our first goal aims at giving an effective method to enumerate bdds with a
chosen number k of variables and size n. A first naive approach is: (1) enumerate
all the 22

k

Boolean functions by construction of the decision trees; (2) apply the
compaction procedure; and (3) finally filter the bdds of size equal to the target
size n. This algorithm ceases to be practical for k larger than 4 (see [12]).

In this paper, we propose a new combinatorial description of bdds providing
the basis for an enumeration algorithm avoiding the enumeration of all Boolean
functions on k variables.

Binary Decision Diagrams: From Tree Compaction to Sampling 575

3 Recursive Decomposition

This section introduces a canonical and unambiguous decomposition of the bdds
yielding a recursive algorithm for their enumeration.

Automaton Point of View. Let us introduce an equivalent representation
for a bdd. A bdd can indeed be described as a deterministic finite automaton
with additional constraints and properties. This point of view gives a convenient
formal characterization of the decomposition of bdds used in our algorithms.

Definition 2 (BDD as an automaton). A bdd B of index k is a tuple
(Q, I, r, δ) where

– Q is the set of nodes of the bdd. Q contains two special sink nodes ⊥ and �.
– I : Q → {0, . . . , k} is the index function which associates with every node its

index. By convention the index of both sink nodes is 0.
– r ∈ Q is the root and has index I(r) = k.
– δ : Q \ {⊥,�} × {0, 1} → Q is the full transition function.

There are constraints on δ translating the classical ones of the bdds:

– for any node ν ∈ Q \ {⊥,�}, δ(ν, 0) �= δ(ν, 1).
– for any distinct nodes μ and ν with the same index, we have δ(μ, 0) �= δ(ν, 0)

or δ(μ, 1) �= δ(ν, 1).
– the graph underlying δ forms a dag with a unique node of in-degree 0, the

root r.
– if τ = δ(ν, α) for some α ∈ {0, 1} then I(τ) < I(ν).

We say τ is the low child of ν (respectively high child of ν) if δ(ν, 0) = τ (resp.
δ(ν, 1) = τ).

Definition 3 (Spine of a BDD, tree and non-tree edges). Let a bdd B =
(Q, I, r, δ) of root-index k. The spine of B is the spanning tree obtained by a depth-
first search of the (plane) bdd (where low child is accessed before the high one),
and omitting the sinks ⊥ and �. For a bdd B, the edges of the spine forms the
set of tree edges (drawn in black). The other edges form the set of non-tree edges
(drawn in red). We describe the spine T as a tuple T = (Q′, I, r, δ′) with set of nodes
Q′ = Q \ {⊥,�} (with the same index function I as for B). The edges of the spine
are described using a partial transition function δ′ : Q′ ×{0, 1} → Q′ ∪{nil} where
nil is a special symbol designating an undefined transition.

Using standard terminology for depth-first search, non-tree edges are either
forward or cross edges. We remark that, by definition, a dag admits no cycles
and still in the standard notation, it has no backward edges.

Undefined values of the transition function δ′ can conveniently be seen as
half edges. Since in a bdd every non-sink node has two children, the spine of a
bdd of size n has (n − 2) nodes and (n − 1) half edges (drawn in red in Fig. 1).
The four possible types of a node are depicted, as the roots in Fig. 4.

Definition 4 (Valid tree). A binary tree is said to be valid if it is the spine
of some bdd. The set of spines of size n is denoted as Tn.

576 J. Clément and A. Genitrini

(i) (ii) (iii) (iv)

Fig. 4. The four cases for a node of a spine. From left to right: an internal node with
both transitions defined, two half edges, one low (left) half edge, one high (right) half
edge (cf. Proposition 1)

See Fig. 5 for examples of valid and invalid trees. To the best of our knowl-
edge, there is no way to characterize valid trees, apart from exhibiting a robdd
admitting this tree as a spine. We will discuss this point later.

For enumerating bdds it will prove convenient to introduce the profile list of
a set of nodes and some other useful notation for lists manipulation.

Definition 5. The profile of N , denoted by profile(N), is a list with (k + 1)
components p = (p0, . . . , pk) where k = maxν∈N I(ν) is the maximal index and
pi is the number of nodes of index i in N .

This definition extends naturally to trees, graphs, etc. We also equip the set of
lists with a ‘+’ operation: let two lists v = (v0, . . . , vm) and v′ = (v′

0, . . . , v
′
n)

with n ≥ m (w.l.o.g.), the sum v + v′ is equal to w = (w0, . . . , wn) where for all
0 ≤ i ≤ m, wi = vi + v′

i and otherwise, when m < i ≤ n, wi = v′
i.

In the following, we will use two orderings on the nodes of a plane bdd
induced by depth-first search, and called postordering and preordering. Since the
structure is plane these orderings correspond exactly with the classical postorder
traversal and the preorder traversal of its spanning tree. In a tree, for a node
ν with low child ν0 and high child ν1, the postorder traversal visits the subtree
rooted at ν0 then, the one rooted at ν1 and finally ν. The preorder traversal first
visits the node ν, then the subtree rooted at ν0 and finally the subtree rooted at
ν1. We use the notation μ ≺post ν (resp. μ ≺pre ν) if the node μ is visited before
ν using the postorder (resp. preorder) traversal.

We characterize now how the partial transition function of the spine is related
to the full transition function of the bdd. Introducing the pool and level set of
a node, we describe the valid choices for non-tree edges to yield a bdd.

Definition 6 (Pool and level set). Let T be the spine of a bdd. The pool of
a node ν ∈ T is

PT (ν) = {τ ∈ T | τ ≺pre ν and I(τ) < I(ν)} ∪ {⊥,�} .

The pool profile pT (ν) of a node ν in a spine T is pT (ν) = profile(PT (ν)).
The level set of ν is ST (ν) = {τ ∈ T | τ ≺pre ν and I(τ) = I(ν)}, and the level
rank sT (ν) = |ST (ν)| of a node ν is the rank of ν among the set of nodes with
the same index.

Binary Decision Diagrams: From Tree Compaction to Sampling 577

Informally the pool of a node ν of a tree T is the set of nodes we could choose as
a low child for ν without invalidating the spine. The first component of a pool
profile is always 2 since both sinks ⊥ or � are present in the pool of any node
of the spine (providing the underlying bdd is not reduced to 1 or 0).

Proposition 1. Let T = (Q′, I, r, δ′) be a valid spine with set of nodes Q′, root r
and partial transition function δ′ : Q′ × {0, 1} → Q′ ∪ {nil}. The full transition
function δ : Q′ × {0, 1} → Q′ ∪ {⊥,�} is the transition function of a bdd with
spine T if and only for any node ν ∈ Q′, noting ν0 = δ(ν, 0) and ν1 = δ(ν, 1),
the pair (ν0, ν1) satisfies

(i) if δ′(ν, 0) �= nil and δ′(ν, 1) �= nil then να = δ′(ν, α) for α ∈ {0, 1}.
(ii) if δ′(ν, 0) = δ′(ν, 1) = nil, then

να ≺pre ν and I(να) < I(ν) for α ∈ {0, 1} and ν0 �= ν1,

and there is no node τ �= ν with the same index as ν such that δ(τ, ·) =
δ(ν, ·).

(iii) if δ′(ν, 0) = nil and δ′(ν, 1) �= nil, then

ν0 ≺pre ν, I(ν0) < I(ν) and ν1 = δ′(ν, 1).

(iv) if δ′(ν, 0) �= nil and δ′(ν, 1) = nil, then ν0 = δ′(ν, 0) and

ν1 ≺post ν, ν1 �= ν0 and I(ν1) < I(ν).

Proof. Since δ(·, ·) must extend δ′(·, ·), case (i) is trivial since we must only
extend the transition function where δ(ν, α) = nil. In case (ii), we have to
choose for (ν0, ν1) two nodes in the pool of ν (ν is an external node of the spine).
We use the preorder traversal (but since ν is an external node, the postorder
would also be fine). Moreover ν0 �= ν1 and no node with the same index as ν
can have the exact same descendants (ν0, ν1) in accordance with Definition 2. In
case (iii), the low child must be chosen in the pool of ν since we preserve the
spine. In case (iv), the high child of ν is also chosen in the pool ν or in the pool
of ν0 (and must still be different from ν0 by Definition 2). �

4 Counting and Generating BDDs

In this section, we sketch algorithms in order to count and sample bdds of a
given size n and given number k of variables.

Counting BDDs. Given a spine T , we can compute the number of bdds cor-
responding with this spine. Thus counting bdds of a certain size n will consists
in building all valid spines of size (n− 2) and completing the transition function
of the spine in all possible ways according to Proposition 1.

Definition 7 (Weight). Let T = (Q′, I, δ′, r) be a spine, the weight wT (ν) of a
node ν ∈ Q′ is the number of possibilities for completing the transition function
δ′(μ, ·) and yielding a bdd with spine T . The cumulated weight of a subtree Tν

rooted at ν ∈ T is WT (ν) =
∏

τ∈Tν
wT (τ). We write W (T) = WT (r) to denote

the cumulated weight of the whole spine T rooted at r.

578 J. Clément and A. Genitrini

Note that the number of choices for the missing transitions out of a node ν are
the ones remaining after previous choices have been made for other nodes of the
spine.

Proposition 2 (Weight of a node). Let T be a spine T , the weight of a
node ν ∈ T is

wT (ν) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if δ′(ν, 0) �= nil and δ′(ν, 1) �= nil

‖pT (ν)‖(‖pT (ν)‖ − 1
) − sT (ν) if δ′(ν, 0) = δ′(ν, 1) = nil

‖pT (ν) + profile(T ′)‖ if δ′(ν, 0) �= nil and δ′(ν, 1) = nil

‖pT (ν)‖ if δ′(ν, 0) = nil and δ′(ν, 1) �= nil

where pT (ν) is the pool profile of node ν, T ′ = Tν0 is the subtree (when defined)
rooted at ν0 = δ′(ν, 0), and, for a list p = (p0, . . . , pk), we denote ‖p‖ =

∑k
i=0 pi.

In the third case, by pT (ν) + profile(T ′), we mean the profile of the set of nodes
visited before ν with the postorder traversal of T and of index strictly smaller
than I(ν).

Proof. This is a direct application of Proposition 1. �
This formula allows to detect if a tree is a valid spine. Indeed as soon as the

weight of a node is zero or negative, there is no way to define a total transition
function δ for a bdd. Note that this situation can only happen for external nodes
having two half edges, since for any node ν ∈ Q′ and any spine T , ‖pT (ν)‖ ≥ 2.

x2

x1 x1 x1

x3

x2

x1 x1

x2

x3

x2

x1 x1

x2

x3

Fig. 5. Three examples of binary trees (first
one is invalid, the two other have respective
weights 4 and 24).

In Fig. 5, the binary tree on the
left is invalid and cannot be the
spine of any bdd. The two other
trees on the right have weights 4
and 24, i.e., are resp. the spines
of exactly 4 and 24 bdds. It is
an open problem to characterize
the set of valid trees (apart from
exhibiting corresponding bdds).

Proposition 2 gives access to the total weight of the spine W (T) using a
recursive procedure. A natural way to proceed algorithmically is to use a recur-
sive postorder traversal of the tree maintaining at each node the weight in a
multiplicative manner. To do so we need to keep track in the traversal of the
pool profile and level rank of the current node.

Initially the pool of the root is reduced to the set {⊥,�}. Thus the initial
pool profile of the root of index k is initialized to (2, 0, . . . , 0) of length k. The
level rank of the root of the spine is 0.

Proposition 3. Let N(n, k) be the number of bdds of index k and size n

N(n, k) =
∑

T∈Tn−2,k
W (T),

where Tm,k is the set of valid spines with m nodes for bdds of index k.

Binary Decision Diagrams: From Tree Compaction to Sampling 579

Proof. The weight of a spine is the number of ways of extending the transition
function of T (Proposition 1), hence the number of bdds for this given spine. �
Combinatorial Description of Spines. The set of spines is not straightfor-
ward to characterize in a combinatorial way. Indeed we need context to decide
if the weight of a particular node in a tree is 0 or less, which in turn yields that
the tree is not valid . To enumerate spines, we build recursively binary trees,
and, while computing weights for its nodes, as soon we can decide the (partially
built) tree is not valid, the tree is discarded.

To decompose (or count) spines of any size or index, T =
⋃

n≥1

⋃
k≥1 Tn,k,

we introduce a partition over subtrees which can occur in a spine T ∈ T . The
goal is to identify identical subtrees occurring within different spines and with
the same weight to avoid redundant computations.

The combinatorial description we are about to present originates from the
following observation: let us fix a spine T and a node ν ∈ T . From Proposi-
tion 2, to compute the cumulated weight of the subtree Tν rooted at ν, the sole
knowledge of the pool profile pT (ν) and the level rank sT (ν) is sufficient.

Let S and S′ be two subtrees with respective roots ν and ν′ in some spines
T and T ′, we denote S ≡ S′ if the following three conditions are satisfied:

– both trees have the same size: |S| = |S′|;
– the roots of both trees have the same pool profile: pT (ν) = pT ′(ν′);
– the roots of both trees have the same level rank: sT (ν) = sT ′(ν′).

The set Tm,p,s is the class equivalence for the relation ‘≡’ and gathers trees (as
a set, without multiplicities) which are possible subtrees of size m in any spine,
knowing only the pool profile p and level rank s of the root of the subtree. More
formally:

Tm,p,s = {Tν | (∃T ∈ T) (∃ν ∈ T) pT (ν) = p and sT (ν) = s}.

Note that we have Tn,k = Tn,(2,0,...,0),0, where (2, 0, . . . , 0) has k components.

Proposition 4. The set Tm,p,s of subtrees of size m rooted at a node having
pool profile p = (p0, . . . , pk−1) and level rank s occurring in the set of spines T
is decomposed without any ambiguity. We decompose a subtree T ∈ Tm,p,s as a
tuple (ν, T ′, T ′′) where the root ν has index k and T ′ and T ′′ are its left and right
(possibly empty) subtrees of respective sizes i and m − 1 − i, with 0 ≤ i ≤ m − 1,
and verifying (when non empty)

(i) T ′ ∈
⋃

k0∈{1,...,k−1}
Ti,(p0,...,pk0−1),pk0

(ii) T ′′ ∈
⋃

k1∈{1,...,k−1}
Tm−i−1,(p′

0,...,p′
k1−1),p

′
k1

, with p′ = p + profile(T ′)

(iii) if m = 1 then
(∑k

i=0
pi

) · (− 1 +
∑k

i=0
pi

) − s > 0.

580 J. Clément and A. Genitrini

This proposition ensures that we can decompose unambiguously subtrees occur-
ring in spines in accordance with the equivalence relation ‘≡’. Practically this
means that instead of considering all possible subtrees for all possible spines,
we can compute cumulative weights for each representative of the equivalence
relation (which are fewer although still of exponential cardinality).

Algorithm count(n,p, s) in Algorithm 1 enumerates spines of bdds and,
at the same time, computes their cumulated weights. It takes as arguments a
size n for considering all subtrees of size n, assuming an initial pool profile
p = (p0, . . . , pk−1), level rank s and index k for the root of these trees. It returns
in an associative array a list of pairs (t, w) where

– t = (t0, t1, . . . , tk−1, tk) ranges over the set of profiles of trees in Tm,p,s, i.e.,
t ∈ {profile(T) | T ∈ Tm,p=(p0,...,pk−1),s}.

– w is the sum over all equivalent trees of size m with profile t of their cumu-
lated weights when the root has pool profile p and level rank s (which gives
enough information to compute the cumulated weight for each tree using
Proposition 2).

Note that any subtree T with a root of index i has a profile t = (t0, . . . , ti)
with t0 = 0 and ti = 1.

Proposition 5. The number N(n, k) of bdds of size n and of index k is com-
puted thanks to Algorithm count() and is equal to

N(n, k) =
∑

(t,w)∈count(n−2,(2,0,...,0),0)

w,

where (2, 0, . . . , 0) has k components and corresponds with a pool reduced to the
two sink nodes ⊥ and � of index 0.

Proof. Indeed t ranges over all possible profiles for spines of size (n − 2) and we
sum the weights of all spines for these profiles. Hence we compute exactly the
number of bdds of size n. �

An important refinement for this algorithm is to remark when summing over
all spines, we consider subtrees of the same size whose root shares the same pool
profile and same level rank, hence the same context. In order to avoid performing
the same exact computations twice (or more) we can use memoization technique
(that is storing intermediary results). It is an important trick to reduce the time
complexity, although at the cost of some memory consumption.

Complexity of the Counting Algorithm. First, we remark the numbers
involved in the computations are (very) big numbers (as seen before, of order
22

k

).

Proposition 6. The complexity (in the number of arithmetic operations) of the
computations of the Algorithm 1 to evaluate N(n, k) is O

(
1
k23k2/2+k

)
.

Binary Decision Diagrams: From Tree Compaction to Sampling 581

Algorithm 1. Algorithm count(). The initial pool profile of the root
(of index k) is (2, 0, . . . , 0) of length k.

function count(n, p = (p0, . . . , pk−1), s)
d ← { } � Empty dictionary
if n = 0 then

S ←
(∑k−1

j=0 pj

)
·
(∑k−1

j=0 pj − 1
)

if S > 0 then d ← {e(k) : S} � See ∗

else
for i ← 0 to n − 1 do � Left/right subtrees of size i/n − i − 1

d0 ← { }
if i = 0 then d0 ←

{
ε :

∑k−1
i=0 pi

}
� left subtree is empty, see ∗

else
for k0 ← 1 to k − 1 do � left node has index k0

d0 ← d0 ∪ count(i, (p0, . . . , pk0−2), pk0−1)

for (�, w0) ← d0 do
d1 ← { }
p′ ← p + �

if n − 1 − i = 0 then d1 ← d1 ∪
{

ε : −1 +
∑k−1

i=0 p′
i

}
� right subtree is

empty
else

for k1 ← 1 to k − 1 do � right node has index k1

d1 ← d1 ∪ count(n − 1 − i, (p′
0, . . . , p

′
k1−2), p

′
k1−1)

for (r, w1) ← d1 do
w ← w0 · w1

t ← � + r + e(k) � index profile of the subtree
if t ∈ d then d[t] ← d[t] + w � update if t is already a key in d
else d ← d ∪ {t : w} � t is a new key in d

return d
∗ For an integer k ≥ 0, the list e(k) = (0, . . . , 0, 1) is the list with (k+1) components where the last
entry is 1 and all others are 0. The empty list of size 0 is denoted ε.

For Boolean functions in k variables, although the time complexity of our algo-
rithm is of exponential growth 23k2/2. However the state space of Boolean
functions is 22

k

thus our computation is still much better than the exhaustive
construction.

Unranking BDDs. Using the classical recursive method for the generation of
structures [15] we base our generation approach on the combinatorial counting
approach. Since the class of objects under study seems not admissible in the sense
given in Analytic Combinatorics [6], we cannot directly apply the advanced tech-
niques presented in [5] nor the approaches by Mart́ınez and Molinero [11]. Thus
we devise an unranking algorithm for bdds and get as by-products algorithms
for uniform random sampling and exhaustive generation.

The ranking/unranking techniques for objects of a combinatorial class C of
size N consists in building a bijection between any c ∈ C and an integer (its rank)

582 J. Clément and A. Genitrini

in the interval [0..N − 1] (if we starts from 0). This leads trivially to a uniform
sampling algorithm by drawing uniformly first an integer and then building the
corresponding object.

Proposition 7. Once the pre-computations are done, the unranking (or uni-
form random sampling) algorithm needs O (n · |Tn,k|) arithmetic operations to
build a bdd of index k and size n.

First, remark that the worst case happens when n is of order the largest possible
size of a bdd over k variables O(2

k/2

k) (cf. [9, p. 102]) which corresponds to the
generic case according to Fig. 2. Furthermore, the number of profiles is of order
2

k2
2 . To generate a bdd given its rank, we first identify the correct profile of

its spine (by enumeration). Then according to this target profile, recursively, for
each node, we traverse at most all spines with this profile, in order to decompose
the substructures in its left and right part, yielding the upper bound.

As a conclusion, note the process of enumerating, counting and sampling we
introduced can be adapted to subclasses of functions (for instance those for which
all variables are essential), but also to other strategies of compaction, like those
used for Quasi-Reduced bdds and Zero-suppressed bdds. A natural question is
also to provide an algorithm enumerating valid spines and not all invalid ones
as well to get more efficient enumeration and unranking algorithms for robdds.
These questions will be addressed in future work.

Acknowledgement. We thank the anonymous reviewers whose comments and sug-
gestions helped improve and clarify this manuscript.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

2. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. ACM SIGPLAN Notices 35(9), 268–279 (2000)

3. Dybjer, P., Haiyan, Q., Takeyama, M.: Verifying haskell programs by combining
testing and proving. In: Proceedings of the 3rd International Conference on Quality
Software, QSIC, pp. 272–279 (2003)

4. Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subex-
pression problem. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–
234. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032034

5. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation
of labelled combinatorial structures. Theor. Comput. Sci. 132(2), 1–35 (1994)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York, NY, USA (2009)

7. Genitrini, A., Gittenberger, B., Kauers, M., Wallner, M.: Asymptotic enumeration
of compacted binary trees of bounded right height. J. Comb. Theory, Ser. A 172,
105177 (2020)

8. Gröpl, C., Prömel, H.J., Srivastav, A.: Ordered binary decision diagrams and the
shannon effect. Discrete Appl. Math. 142(1), 67–85 (2004)

https://doi.org/10.1007/BFb0032034

Binary Decision Diagrams: From Tree Compaction to Sampling 583

9. Knuth, D.E.: The Art of Computer Programming, Volume 4A, Combinatorial Algo-
rithms. Addison-Wesley Professional, Boston (2011)

10. Marinov, D., Andoni, A., Daniliuc, D., Khurshid, S., Rinard, M.: An evaluation of
exhaustive testing for data structures. Technical Report, MIT-LCS-TR-921 (2003)

11. Mart́ınez, C., Molinero, X.: A generic approach for the unranking of labeled com-
binatorial classes. Random Struct. Algorithms 19(3–4), 472–497 (2001)

12. Newton, J., Verna, D.: A theoretical and numerical analysis of the worst-case size
of reduced ordered binary decision diagrams. ACM Trans. Comput. Logic 20(1),
6:1–6:36 (2019)

13. Vuillemin, J., Béal, F.: On the BDD of a random boolean function. In: Pro-
ceedings of the 9th Asian Computing Science on Advances in Computer Science,
ASIAN’2004, pp. 483–493 (2004)

14. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
15. Wilf, H.S., Nijenhuis, A.: Combinatorial algorithms: An update. SIAM (1989)

Graph Theory

Graph Sandwich Problem
for the Property of Being Well-Covered
and Partitionable into k Independent

Sets and � Cliques

Sancrey Rodrigues Alves1, Fernanda Couto2, Luerbio Faria3, Sylvain Gravier6,
Sulamita Klein4, and Uéverton S. Souza5(B)

1 Fundação de Apoio à Escola Técnica do Estado do Rio de Janeiro,
Rio de Janeiro, Brazil
sancrey@cos.ufrj.br

2 Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
nandavdc@gmail.com

3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
luerbio@cos.ufrj.br

4 CNRS, Université Grenoble Alpes, Grenoble, France
sula@cos.ufrj.br

5 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
ueverton@ic.uff.br

6 Universidade Federal Fluminense, Rio de Janeiro, Brazil
sylvain.gravier@univ-grenoble-alpes.fr

Abstract. A (k, �)-partition of a graph G is a partition of its vertex
set into k independent sets and � cliques. A graph is (k, �) if it admits
a (k, �)-partition. A graph is well-covered if every maximal independent
set is also maximum. A graph is (k, �)-well-covered if it is both (k, �) and
well-covered. In 2018, Alves et al. provided a complete mapping of the
complexity of the (k, �)-Well-Covered Graph problem, in which given
a graph G, it is asked whether G is a (k, �)-well-covered graph. Such
a problem is polynomial-time solvable for the subclasses (0, 1), (0, 2),
(1, 0), (1, 1), (1, 2), and (2, 0), and NP-hard or coNP-hard, otherwise. In
the Graph Sandwich Problem for Property Π we are given a pair
of graphs G1 = (V, E1) and G2 = (V, E2) with E1 ⊆ E2, and asked
whether there is a graph G = (V, E) with E1 ⊆ E ⊆ E2, such that
G satisfies the property Π. It is well-known that recognizing whether
a graph G satisfies a property Π is equivalent to the particular graph
sandwich problem where E1 = E2. Therefore, in this paper we extend
previous studies on the recognition of (k, �)-well-covered graphs by pre-
senting a complexity analysis of Graph Sandwich Problem for the
property of being (k, �)-well-covered. Focusing on the classes that are
tractable for the problem of recognizing (k, �)-well-covered graphs, we
prove that Graph Sandwich for (k, �)-well-covered is polynomial-
time solvable when (k, �) = (0, 1), (1, 0), (1, 1) or (0, 2), and NP-complete
if we consider the property of being (1, 2)-well-covered.

This work was supported by FAPERJ, CNPq and CAPES Brazilian Research Agencies.

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 587–599, 2020.
https://doi.org/10.1007/978-3-030-61792-9_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_46&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_46

588 S. R. Alves et al.

Keywords: Well-covered · (k, �)-graph · Sandwich problem ·
Recognition

1 Introduction

A (k, �)-partition of a graph G = (V,E) is a partition of V into k independent
sets S1, . . . , Sk and � cliques K1, . . . , K�. By definition, some of these sets might
be empty. A graph is (k, �) if it admits a (k, �)-partition. The P vs NP-complete
dichotomy of recognizing (k, �)-graphs is well known [3]: the problem is in P if
max{k, �} ≤ 2, and NP-complete otherwise. (k, �)-graphs and its subclasses have
been extensively studied in the literature. For instance, list partitions of (k, �)-
graphs were studied by Feder et al. [6]. In another paper, Feder et al. [7] proved
that recognizing graphs that are both chordal and (k, �) is in P, and, in 2005,
Demange et al. [5] presented efficient algorithms to recognize cographs that are
partitionable into k independent sets and � cliques.

Well-covered graphs were first introduced by Plummer [10] in 1970 as the
class of graphs in which every maximal independent set has the same cardinality.
In other words, every maximal independent set is maximum.

The problem of recognizing a well-covered graph, which we denote by Well-
Covered Graph, was proved to be coNP-complete by Chvátal and Slater [4]
and, independently, by Sankaranarayana and Stewart [12], but, when restricted
to some graph classes, for instance, claw-free graphs, it is polynomial-time solv-
able [9,13]. Dealing with well-covered graphs is interesting because the polyno-
mial greedy algorithm for maximal independent sets always returns a maximum
independent set. Parameterized complexity analysis of recognizing well-covered
graphs can be found in [1,2].

Let k, � ≥ 0 be two fixed integers not simultaneously zero. A graph is (k, �)-
well-covered if it is both, (k, �) and well-covered.

Golumbic, Kaplan and Shamir [8] stated the Graph Sandwich Problem
for Property Π. The input is a pair of graphs G1 = (V,E1) and G2 = (V,E2)
with E1 ⊆ E2, and the question is whether there is a graph G = (V,E) with
E1 ⊆ E ⊆ E2, such that G satisfies the property Π. For the sake of understanding
we use to name the set E1 as the forced edges, the set E0 = E2\E1 as the optional
edges, and the set E3 = {e : e /∈ E2} as the forbidden set of edges. Thus, the
optional graph G0 = (V,E0), and the forbidden graph G3 = (V,E3) are defined.

Motivated by the relevance of well-covered and (k, �)-graphs, in this paper
we are interested in exploring the time complexity of Graph Sandwich for the
property of being (k, �)-well-covered. More precisely, in this paper we focus on
the following two decision problems restricted to (k, �)-well-covered-graphs.

(k, �)-Well-Covered Graph
Input: A graph G.
Question: Is G a (k, �)-well-covered graph?

Graph Sandwich Problem 589

Graph Sandwich for (k, �)-well-covered
Input: Graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2.
Question: Is there a graph G = (V,E) with E1 ⊆ E ⊆ E2, such that

G is (k, �)-well-covered?

When a recognition problem for a property Π is NP-hard (resp. coNP-hard),
we can consider the sets E1 = E2 to obtain that the graph sandwich problem for
the property Π is also NP-hard (resp. coNP-hard). In 2018, Alves et al. [1] proved
that the recognition of (k, �)-well-covered graphs can be done in polynomial
time for the cases (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), and (2, 0) and NP-hard or
coNP-hard otherwise. Therefore, the only cases where Graph Sandwich for
(k, �)-well-covered can be no longer hard are in these six polynomial cases.

In this paper we prove that Graph Sandwich for (k, �)-well-covered is
polynomial-time solvable when (k, �) = (0, 1), (1, 0), (1, 1) or (0, 2) but it is NP-
complete when (k, �) = (1, 2) (see Table 1). Our polynomial-time algorithms gen-
eralize previous studies on (k, �)-well-covered graphs’ recognition, and our NP-
completeness proof points out a contrast between the complexity ofRecognition
and Graph Sandwich problems for the property of being a (1, 2)-well-covered
graph. We left the problem for the property of being (2, 0)-well-covered open. Due
to space constraints, proofs of statements marked with ‘♣’ are omitted.

Table 1. Complexity of Graph Sandwich for (k, �)-well-covered. coNPc stands
for coNP-complete, NPh stands for NP-hard, NPc stands for NP-complete, and (co)NPh
stands for both NP-hard and coNP-hard.

k �

0 1 2 ≥ 3

0 - P P NPc

1 P P NPc NPc

2 ? coNPc coNPc (co)NPh

≥ 3 NPh (co)NPh (co)NPh (co)NPh

Characterizations of some (k, �)-well-covered graphs
Let G = (V,E) be a graph, v ∈ V , and S ⊆ V , we define the neighborhood
N(v) = {u ∈ V : uv ∈ E} of v in G, the neighborhood NS(v) = {u ∈ S : uv ∈ E}
of v in S, the degree d(v) = |N(v)| of v in G, and the degree dS(v) = |NS(v)| of
v in S.

Next, we present polynomial-time characterizations for (k, �)-well-covered
graphs. Notice that every (0, 1)-graph, as well as (1, 0)-graph, is well-covered.
In addition, for the case (0, 2), i.e., co-bipartite graphs, it is easy to see that the
following proposition holds.

Proposition 1. A graph G = (V,E) is (0, 2)-well-covered if and only if G is
(0, 2) and either G is a complete graph, or G has no universal vertex.

590 S. R. Alves et al.

Ravindra [11] presented the following characterization of (2, 0)-well-covered
graphs.

Proposition 2. [11] A graph G = (V,E) is (2, 0)-well-covered if and only if G
is (2, 0) and there is a perfect matching M of G such that for each e = uv ∈ M
the induced graph G[N(u) ∪ N(v)], by the union of the open neighbors of u and
v, is a complete bipartite graph.

Alves et al. [1] provided the following characterization for (1, 1)-well-covered
graphs.

Proposition 3. [1] A graph G = (V,E) is (1, 1)-well-covered if and only if there
is a partition V = (K,S) for V where K is a clique, S is a independent set, and
either dS(v) = 1 for each vertex v ∈ K or dS(v) = 0 for each vertex v ∈ K.

In order to complete the structural characterizations for polynomial-time
recognizable (k, �)-well-covered graphs, next we give a structural characterization
of (1, 2)-well-covered graphs.

Proposition 4. (♣) Let G = (V,E) be a graph with partition V = (S,K1,K2)
where S is maximal. Then, G = (V,E) is a (1, 2)-well covered graph if and only
if G satisfies the following conditions:

1. If v ∈ K1 ∪ K2, then 1 ≤ |NS(v)| ≤ 2;
2. Given v ∈ Ki with |NS(v)| = 2. Then ∃ u ∈ Kj , i 	= j, with uv /∈ E. In

addition, ∀u ∈ Kj with uv /∈ E, then NS(u) ⊆ NS(v); (i 	= j and i, j ∈ {1, 2})
3. Given v ∈ Ki with |NS(v)| = 1. If u ∈ Kj, with uv /∈ E, then |NS(u) ∪

NS(v)| = 2. (i 	= j and i, j ∈ {1, 2})

2 Sandwich for (k, �)-well-covered-Polynomial Cases

In order to check whether (G1, G2) is a yes-instance of the Graph Sandwich
for (k, �)-well-covered when (k, �) = (0, 1) or (1, 0), it is enough to check
whether, respectively, either G2 is a complete graph, or E1 = ∅.

Next, we will deal with cases (0, 2) and (1, 1).

2.1 Graph Sandwich for (0, 2)-well-covered

First, consider the following algorithm for Graph Sandwich for (0, 2)-well-
covered.

Algorithm 1.
Input: graphs G1 = (V,E1) and G2 = (V,E2) with E1 ⊆ E2;
Begin
1 If (G2 = (V,E2) is not (0, 2)) then
2 Return no;
3 Else

Graph Sandwich Problem 591

4 If (G2 = (V,E2) is a complete graph) then
5 Return yes;
6 Else
7 If (G1 = (V,E1) has a universal vertex) then
8 Return no
9 Else
10 Return yes;
End.

Theorem 1. Algorithm 1 correctly asserts whether there is a graph G = (V,E)
with E1 ⊆ E ⊆ E2 such that G is (0, 2)-well-covered.

Proof. First, note that the property of being co-bipartite is closed under edge
addition, thus if G2 = (V,E2) is not (0, 2) then no spanning subgraph of G2 will
be a co-bipartite graph (line 1–2). Since every (0, 1)-graph (complete graph) is
well-covered, we can assume that G2 is not complete, otherwise the answer of
the problem is positive (line 3–5). If G2 is (0, 2) but it is not (0, 1), and G1 has a
universal vertex, then every graph G = (V,E) with E1 ⊆ E ⊆ E2 has a universal
vertex, thus, by Proposition 1, the answer is negative (line 6–8). Finally, assume
that G2 is (0, 2) but it is not (0, 1), and G1 has no universal vertex. Take a (0, 2)-
partition, (K1,K2), of G2. Notice that every edge of E3 is crossing from K1 to
K2. If v ∈ Ki dominates all vertices of Kj (i 	= j) in G1, then there is a vertex
w ∈ Ki such that vw ∈ E2, otherwise v is a universal vertex in G1. Therefore,
we can update the (0, 2)-partition for (Ki \ {v},Kj ∪ {v}). This procedure can
be applied successively until obtain a (0, 2)-partition in which for every vertex
v ∈ Ki there is at least one vertex w ∈ Kj (i 	= j) such that vw ∈ E0 ∪ E3,
which certifies that there is a co-bipartite graph G = (V,E) with E1 ⊆ E ⊆ E2

having no universal vertex. Thus, the answer is positive (line 9–10). �

2.2 Graph Sandwich for (1, 1)-well-covered

Lemma 1. There is a polynomial-time algorithm that either correctly solves
Graph Sandwich for (1, 1)-well-covered, or outputs a partition
(S′,K ′ ∪ T ′) of V such that:

1. S′ is an independent set;
2. K ′ ∪ T ′ induces a clique of G2;
3. K ′, T ′ 	= ∅;
4. there are no edge of G2 between the vertices of T ′ and of S′;
5. each vertex v ∈ K ′ is incident to at most one edge vu ∈ E1 such that u ∈ S′,

and at least one edge vw ∈ E2 such that w ∈ S′.

Proof. Recall that (1, 1)-graphs is exactly the class of split graphs. In 1995 [8],
Golumbic, Kaplan and Shamir presented a polynomial-time algorithm for
Graph Sandwich for split graphs. This algorithm is based on reducing

592 S. R. Alves et al.

the problem to an instance I = (U,C) of 2Sat. The proposed construction
consists of creating the set of variables

U = {vK , vS : v ∈ V }
and the set of clauses

C = {(vK∨vS), (vK∨vS) : v ∈ V }∪{(uK∨vK) : uv ∈ E1}∪{(uS∨vS) : uv ∈ E3}.

It is easy to see that I = (U,C) is satisfiable if and only if V can be partitioned
into K,S such that S induces an independent set of G1 and K induces a clique
of G2, where vK (resp. vS) represents that v should be add to K (resp. S).

Considering the Graph Sandwich for (1, 1)-well-covered, every yes-
instance of such a problem is also a yes-instance of Graph Sandwich for
split graphs. However, by the characterization provided in Proposition 3, we
know that each vertex of the clique K must be a neighbor of at most one vertex
in S, in the solution graph G. Thus, in order to obey this restriction we add the
following set of clauses to I = (U,C):

{(vS ∨ wS) : u, v, w ∈ V and uv, uw ∈ E1}.

Observe that if I = (U,C) is not satisfiable, then (G1, G2) is a no-instance
of Graph Sandwich for (1, 1)-well-covered. However, if I = (U,C) is
satisfiable, then (G1, G2) can be partitioned into K,S such that S induces an
independent set of G1, K induces a clique of G2, and every vertex v ∈ K has
at most one neighbor in S, in the graph G1. Therefore, we can set S′ = S,
T ′ = {v : v ∈ Kand has no neighbor in S, in the graphG2}, and K ′ = {K \T ′}.
Now, if T ′ = ∅ then (G1, G2) is a yes-instance, since we can use the optional
edges conveniently to satisfy the condition that all vertices have exactly one
neighbor in S, and if K ′ = ∅ then (G1, G2) is also a yes-instance, since no vertex
in K will be adjacent to a vertex in S. Therefore, we can either solve Graph
Sandwich for (1, 1)-well-covered or output a partition (S′,K ′ ∪ T ′) as
required. �
Lemma 2. Let (G1, G2) be an instance of Graph Sandwich for (1, 1)-well-
covered, and V = (S′,K ′ ∪ T ′) be a partition of V as described in Lemma 1.
It can be checked in polynomial time whether there is a graph G = (V,E) with
E1 ⊆ E ⊆ E2, such that the set of vertices of G can be partitioned into (K,S)
with S′ ⊆ S, where K is a clique, S is an independent set, and either dS(v) = 1
for each vertex v ∈ K, or dS(v) = 0 for each vertex v ∈ K.

Proof. Initially, label each vertex v ∈ K ′ ∪T ′ with label(v) = 0. Now, label each
vertex v ∈ K ′ having a forced edge to S′ with label equal to one (label(v) = 1).
After that, for each vertex v ∈ K ′ ∪ T ′ with label(v)=0, such that ∃u ∈ N(v)
with uv ∈ E1 and label(u) = 1, do label(v) = 2.

Since S′ ⊆ S, no vertex v with label(v) = 1 can be in S, otherwise S is not
an independent set. Consequently, no vertex v with label(v) = 2 can be in S,
otherwise some vertices v with label(v) = 1 have two vertices in S. Therefore,

Graph Sandwich Problem 593

if every vertex v of K ′ ∪ T ′ has label(v) 	= 0, then we can safely return no.
Moreover, if there is a vertex v ∈ K ′ ∪T ′ such that label(v) = 0, we output yes,
because (S,K) = (S′ ∪ {v},K ′ ∪ T ′ \ {v}), and G = (V,E) with E = E1 ∪ {uw :
u,w ∈ K ′ ∪ T ′ \ {v}} ∪ {vu : u ∈ K ′ ∪ T ′, and label(u) 	= 1} is a solution. �
Lemma 3. Let (G1, G2) be an instance of Graph Sandwich for (1, 1)-well-
covered, and let (S′,K ′ ∪ T ′) be a partition of V as described in Lemma 1. If
there are three vertices a, b, c such that ab, bc ∈ E1, b ∈ K ′, and a, c ∈ T ′, then
we can solve (G1, G2) in polynomial time.

Proof. Let (S,K) be a partition as described in Proposition 3. If a and c are
both in S then b has two neighbors in S, a contradiction. If, either, a or c is
in K then S′ ⊆ S. Therefore, by Lemma 2, we conclude that we can solve the
instance (G1, G2) in polynomial time. �
Theorem 2. Graph Sandwich for (1, 1)-well-covered can be solved in
polynomial time.

Proof. Let (G1, G2) be an instance of Graph Sandwich for (1, 1)-well-
covered. Without loss of generality, assume that the algorithm presented in
Lemma 1 outputs a partition (S′,K ′ ∪ T ′) of V . By Lemma 2, we can also
consider that there is no sandwich graph G = (V,E) such that V (G) can be par-
titioned into (K,S) according to Proposition 3, with S′ ⊆ S. Hence, there is no
vertex b having two neighbors a and c in G1 such that a, c ∈ T ′ (see Lemma 3).

Suppose that (G1, G2) has a sandwich graph G = (V,E). Let (K,S) be a
partition of V (G) according to Proposition 3. Note that if T ′ ∩ K 	= ∅, then
S′ ⊆ S, which is a contradiction. Therefore, T ′ ⊆ S. In addition, for every
vertex v at a distance at most two, considering the graph G1, of some vertex
that must be in S, it holds that v must be contained in K, otherwise either S
is not an independent set or some vertex of K will have two neighbors in S.
Analogously, if a vertex v has a forbidden edge to a vertex that must be in K,
then v must be in S.

Let A be the set of vertices of S′ that must be in K, and let B be the set of
vertices of K ′ ∪ T ′ that must be in S by the successive application of the rules
described above. Note that T ′ ⊆ B, and such sets A,B can be easily found in
polynomial time using search algorithms.

If A ∩ B 	= ∅ then (G1, G2) is a no-instance. Otherwise, we can set the
following paritition of V :

S′′ = {B ∪ S′ \ A},

T ′′ = {v : v ∈ A and has no neighbor in S′′ in the graph G2},

and
K ′′ = {(K ′ \ B) ∪ (A \ T ′′)}.

If (G1, G2) is a yes-instance then no vertex v ∈ K ′′ has two neighbors in S′′

in the graph G1, otherwise we have a contradiction (see Proposition 3).

594 S. R. Alves et al.

If T ′′ = ∅ then every vertex in K ′′ has at least one edge of G2 to some vertex
in S′′. Thus, when T ′′ = ∅ we can easily construct the solution graph G for
(G1, G2) in polynomial time. Now, suppose that T ′′ 	= ∅. Since T ′′ ⊆ A it follows
that S′′ must be in S for a (K,S) partition of V (G) according to Proposition 3,
if any. Thus by Lemma 2 it holds that (G1, G2) can be solved in polynomial
time. �

3 Sandwich for (k, �)-well-covered-NP-complete Case

Next, we will deal with (1, 2)-well-covered graphs. The NP-completeness of such a
case points out a contrast between the complexity of Recognition and Graph
Sandwich problems for (k, �)-well-covered graphs.

Graph Sandwich for (1, 2)-well-covered
In order to prove the NP-completeness of Graph Sandwich for (1, 2)-well-
covered, we present a reduction from Positive 1-in-3 Sat, a well-known NP-
complete problem. First, we present some auxiliary definitions and preliminary
results.

Let G = (V,E) be a graph and R, T ⊆ V . We say that T 2–dominates R if
each vertex of R has at least 2 neighbors in T . Let I = (U,C) be an instance of
Positive 1-in-3 Sat where U is the set of variables and C is the set of clauses.
Let T ⊆ U , we say that T 2–dominates C if each clause of C has at least two
literals in T , in this case T is called a 2-dominating set of variables.

Lemma 4. Let I = (U,C) be an instance of Positive 1-in-3 Sat, where U =
{u1, u2, u3, . . . , un} and C = {c1, c2, c3, . . . , cm}, and let T ⊆ U such that T
2-dominates C. Then, I can be solved in time O(2|T |mn).

Proof. We can check each of the 2|T | truth assignments of T . For a given truth
assignment of T , each clause contains at most one variable with undefined value.
Thus, it is easy to see that, in linear time, one can check whether such an
assignment can be extended into a satisfiable assignment for I. �

From Lemma 4, we may assume that the hard instances of Positive 1-in-3
Sat have no 2-dominating set of variables of bounded size.

Theorem 3. Graph Sandwich for (1, 2)-well-covered is NP-complete.

Proof. Graph Sandwich for (1, 2)-well-covered is in NP, since given a
graph G and a partition V = (S,K1,K2), we can check in polynomial time the
conditions (1), (2), (3) of the characterization presented in Proposition 4.

Let I = (U,C) be an instance of Positive 1-in-3 Sat. By Lemma 4, we
may assume that I does not have a 2-dominating set of variables of size smaller
than 8, and that every truth assignment of I, if any, requires at least 2 literals
set as true. In addition, we consider that every variable occurs in at least one
clause.

We construct an instance (G1, G2) of Graph Sandwich for (1, 2)-well-
covered, such that I is satisfiable if and only if there is a (1, 2)-well-covered
sandwich graph G for G1 = (V,E1), G2 = (V,E2), as follows.

Graph Sandwich Problem 595

1. First, initialize V = {a, b, c}, and E1, E2, E3 = ∅;
2. For each ui ∈ U add ui to V .
3. For each cj ∈ C add cj to V .
4. For each cj = (ux ∨ uy ∨ uz) ∈ C, add uicj ,∀ i ∈ {x, y, z}, to E1.
5. For each pair cj , c� ∈ C, j 	= �, add cjc� to E1.
6. For each cj ∈ C, add cja, cjb, cjc to E1.
7. For each ui ∈ U add uia, uib, uic to E0.
8. Add every possible edge uiuj to E0. (Remark E0 = E2 \ E1)
9. Set E3 = ({uv : u 	= v and u, v ∈ V } \ E2)

This completes the construction of
(
G1 = (V,E1), G2 = (V,E2)

)
.

For the sake of reader’s convenience, we offer in Figure 1 a framework for the
construction.

c1 c2 c3 cm

u1 u2 u3 un
. . .

. . .

a

b
c

Forbidden

Optional

Forced

Fig. 1. Graph Sandwich for (1, 2)-well-covered instance, (G1, G2), obtained
from an instance I = (U, C) of Positive 1-in-3 Sat. Here are depicted all optional
edges in thick green lines, and all forced edges in thin black straight lines of(
G1 = (V, E1), G2 = (V, E2)

)
. We depict only the forbidden edges ab, ac, and bc in

dashed red straight lines, omitting the forbidden edges between a variable vertex x and
a clause vertex cj such that x does not occur in cj .

Now, suppose that I = (U,C) is satisfiable. Let η : U → {T, F} be a sat-
isfiable truth assignment for I. We build a (1, 2)-well-covered sandwich graph
G = (V,E) for

(
G1 = (V,E1), G2 = (V,E2)

)
from η as follows (see Fig. 2):

– first, set E = E1;
– set u ∈ S if and only if η(u) = T ;
– set u ∈ K2 if and only if η(u) = F ;
– set vertices cj in K1 ∀cj ;
– set vertices a in S; b in K1; and c in K2;
– if η(ui) = F then add to E the edges uia, uib, uic;

596 S. R. Alves et al.

c1 c2 c3 cm

u1 u2 u3
. . .

. . .

a

b c u4 u5 u6
. . .

Independent (True)

Clique(False)Clique(Clauses)

Fig. 2. Diagram showing a (1, 2)-well-covered-partition (S, K1, K2) of a sandwich
graph G obtained from a satisfiable 1-in-3 sat truth assignment η : U → {T, F}.

– add to E two edges, uib, ujc, where ui 	= uj and η(ui) = η(uj) = T ;
– finally, add to E the edges uiuj whether η(ui) = η(uj) = F .

In order to prove that G is a (1, 2)-well-covered we consider the characteri-
zation of Proposition 4.

Notice first that S is a maximal independent set and that K1, and K2 are
cliques. Also note that, because η is a satisfiable truth assignment for Positive
1-in-3 Sat, it holds that every vertex of K1∪K2 has 1 or 2 neighbors in S. Since
each clause vertex cj has NS(cj) = {ui, a} where ui is the only true literal of
cj in η, each false literal vertex ui satisfies NS(ui) = {a}, and, by construction,
both, b and c, have exactly one neighbor in S. This satisfies condition (1) of
Proposition 4.

Now, observe that edges of E3 between cliques K1 and K2 are: the edge bc,
and the edges between cj and u�, where η(u�) = F and it does not occur in cj . If
η(u�) = F and u� does not occur in cj , then |NS(cj)∪NS(u�)| = |{a, ui}∪{a}| =
2, where ui is the true variable in clause cj . Since, by construction, b and c have
no common neighbor, then |NS(b)∪NS(c)| = |{ui}∪{uj}| = 2. Thus, conditions
(2), (3) of Proposition 4 are satisfied, and G is (1, 2)-well-covered graph.

Conversely, suppose that there is a (1, 2)-well-covered sandwich graph G =
(V,E) for

(
G1, G2

)
. Since G = (V,E) is a (1, 2)-well-covered graph, there is a

partition of V into a maximal independent set S and cliques K1,K2, as described
in Proposition 4 . We proceed by defining a satisfiable 1-in-3sat assignment
η : U → {T, F} for I = (V,E), where the boolean variable ui = T if and only if
vertex ui ∈ S.

It remains to show that η is 1-in-3sat-satisfiable.

Claim 1. Every vertex clause cj ∈ K1 ∪ K2.

Proof. Since every clause vertex cj satisfies that acj , bcj and ccj ∈ E1, if cj ∈ S,
then vertices a, b, c belong together to K1 ∪ K2, what is a contradiction, since
ab, ac, bc ∈ E3. Therefore, cj ∈ K1 ∪ K2.

Graph Sandwich Problem 597

Claim 2. There is only one vertex x in {a, b, c}, such that x ∈ S.

Proof. First, notice that a, b, c are false twins. Since ab, ac, bc ∈ E3, then a, b, c
cannot all be in K1 ∪ K2. By Claim 1, we have that cj ∈ K1 ∪ K2. Hence, a, b, c
cannot all be in S, otherwise |NS(cj)| ≥ 3, contradicting Proposition 4. Suppose
there are exactly two vertices of a, b, c in S, say a, b ∈ S. Then, all the literal
vertices belong to K1 ∪ K2, otherwise |NS(cj)| ≥ 3 for some cj , because every
clause vertex belong to K1 ∪K2, and cj is adjacent to a, and b. Thus S = {a, b},
what contradicts the maximality of S. Therefore |S ∩ {a, b, c}| = 1.

Now, we may assume that: a ∈ S; cj ∈ K1 ∪ K2(∀ cj); b ∈ K1; c ∈ K2.

Claim 3. Each clause vertex cj lies at a same clique, say K1.

Proof. Suppose that there are two clause vertices lying at distinct cliques, say
cj ∈ K1 and c� ∈ K2. Since a ∈ S, each clause vertex belongs to K1 ∪ K2, each
clause vertex cj is adjacent to a, then, by Proposition 4, it follows that each
vertex clause cj is adjacent to at most one variable vertex in S, and the other
two variable neighbors are in K1 ∪K2. Notice now that the set of literal vertices
in K1 ∪ K2 forms a 2-dominating set of variables for I. Since each clause vertex
has forbidden edges for all but three variables, we have at most three variable
vertices in each clique, which implies that I = (U,C) has a 2-dominating set of
variables of size at most six, a contradiction. Thus, all the clause vertices belong
to just one clique, that we will assume to be K1.

Claim 4. If a literal vertex ui ∈ K1 ∪ K2, then ui ∈ K2.

Proof. Since each clause vertex belongs to K1, if ui ∈ K1 then every clause has
ui as literal. Thus, by setting ui as true and the other literals as false, we obtain
a satisfiable assignment for I = (U,C), a contradiction.

To conclude the proof of Theorem 3, it remains to prove the following claim.

Claim 5. For any clause vertex cj of G, it holds that there is exactly one variable
vertex ur adjacent to cj such that ur ∈ S.

Proof. Since each clause vertex cj is adjacent to a, by Proposition 4(1), there are
at most an additional neighbor of cj in S. Hence, in order to prove the claim, it
is enough to prove that each clause vertex cj has one additional neighbor in S.
From previous claims we know that b ∈ K1 and that c ∈ K2. By Proposition 4,
it follows that |NS(b) ∪ NS(c)| = 2. Hence, there are two variable vertices, say
u1 and u2 in S, such that, in G, it holds that {u1, u2} = (NS(b) ∪ NS(c)). Since
there are clauses ci and cj containing, respectively, variables u1 and u2, clause
vertices ci and cj have two neighbors in S, satisfying that NS(ci) = {a, u1} and
NS(cj) = {a, u2}.

Suppose there is a clause vertex c� with NS(c�) = {a}. Recall that K2 ∩ U is
a 2-dominating set of variables. Therefore, by assumption, |K2 ∩ U | ≥ 8. Hence,
there is a variable u ∈ K2 ∩U that does not occur in clauses ci, cj and c� (notice
that u1, u2 are in S). Therefore, ciu, cju, c�u ∈ E3. (see Fig. 3)

598 S. R. Alves et al.

Since NS(ci) = {u1, a}, from Proposition 4(2) NS(u) ⊆ {u1, a}. Moreover,
since NS(cj) = {u2, a}, then, from Proposition 4(2), NS(u) ⊆ {u2, a}. Hence,
NS(u) = {a}. But, since NS(c�) = {a} and c�u ∈ E3, from Proposition 4(3)
|NS(c�) ∪ NS(u)| should be equal to two, a contradiction. Thus, every clause
vertex has a variable neighbor in S, and the claim holds.

...

1

2

7

u

u1 u2

b c

a

c

c

c

i

j

l

Fig. 3. A sandwich graph G = (V, E) with well-covered-partition (S, K1, K2).

Therefore, the defined assignment η is a satisfiable assignment for Positive
1-in-3 Sat, and this concludes the proof of Theorem 3. �

References

1. Alves, S.R., Dabrowski, K.K., Faria, L., Klein, S., Sau, I., Souza, U.S.: On the
(parameterized) complexity of recognizing well-covered (r, �)-graph. Theor. Com-
put. Sci. 746, 36–48 (2018)

2. Araújo, R.T., Costa, E.R., Klein, S., Sampaio, R.M., Souza, U.S.: FPT algorithms
to recognize well covered graphs. Discrete Math. Theoretical Comput. Sci., 21(1)
(2019)

3. Brandstädt, A.: Partitions of graphs into one or two independent sets and cliques.
Discrete Math. 152(1–3), 47–54 (1996)

4. Chvátal, V., Slater, P.J.: A note on well-covered graphs. Ann. Discrete Math. 55,
179–181 (1993)

5. Demange, M., Ekim, T., De Werra, D.: Partitioning cographs into cliques and
stable sets. Discrete Optim. 2(2), 145–153 (2005)

6. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math.
16(3), 449–478 (2003)

7. Feder, T., Hell, P., Klein, S., Nogueira, L.T., Protti, F.: List matrix partitions of
chordal graphs. Theoretical Comput. Sci. 349(1), 52–66 (2005)

8. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithms
19(3), 449–473 (1995)

9. Lesk, M., Plummer, M.D., Pulleyblank, W.R.: Equi-matchable graphs. In: Graph
Theory and Combinatorics. Academic Press, Cambridge, pp. 239–254 (1984)

Graph Sandwich Problem 599

10. Plummer, M.D.: Some covering concepts in graphs. J. Comb. Theory 8(1), 91–98
(1970)

11. Ravindra, G.: Well-covered graphs. J. Comb. Inf. Syst. Sci. 2(1), 20–21 (1977)
12. Sankaranarayana, R.S., Stewart, L.K.: Complexity results for well-covered graphs.

Networks 22(3), 247–262 (1992)
13. Tankus, D., Tarsi, M.: Well-covered claw-free graphs. J. Comb. Theory, Ser. B

66(2), 293–302 (1996)

On the Maximum Number of Edges
in Chordal Graphs of Bounded Degree

and Matching Number

Jean R. S. Blair1, Pinar Heggernes2, Paloma T. Lima2(B),
and Daniel Lokshtanov3

1 Department of Electrical Engineering and Computer Science, United States
Military Academy, West Point, New York, USA

jean.blair@westpoint.edu
2 Department of Informatics, University of Bergen, Bergen, Norway

{pinar.heggernes,paloma.lima}@uib.no
3 Department of Computer Science, University of California, Santa Barbara, USA

daniello@ucsb.edu

Abstract. We determine the maximum number of edges that a chordal
graph G can have if its degree, Δ(G), and its matching number, ν(G),
are bounded. To do so, we show that for every d, ν ∈ N, there exists a
chordal graph G with Δ(G) < d and ν(G) < ν whose number of edges
matches the upper bound, while having a simple structure: it is a disjoint
union of cliques and stars.

1 Introduction

A problem that dates back to 1960 is to determine the maximum number of
edges that a graph can have if its maximum degree and matching number are
each bounded. It is important to note that this problem does not impose any
constraint on the number of vertices of the graph. Because of that, in general, if
one of the two parameters is not bounded, there is no upper bound on the number
of edges that a graph can have. One can simply construct graphs formed by stars
(trees that have only a single vertex of degree greater than one) or single edges. A
star with unbounded number of leaves has matching number one but unbounded
degree, while a graph that is a disjoint union of an unbounded number of edges
has bounded degree but unbounded matching number. By Vizing’s Theorem,
every graph can have its edge set partitioned into a family of at most Δ(G) + 1
matchings, where Δ(G) denotes the degree of the graph G. Thus, bounding both
the maximum degree and the matching number is actually enough to bound
the number of edges that a graph can have. Chvátal and Hanson [4] gave a
tight upper bound on this value, in the case where no further restrictions are
imposed to the graphs considered. Later on, Balachandran and Khare [1] gave
a constructive proof of the same result, which made it possible to identify the
structure of the graphs achieving the given bound on the number of edges. Such
graphs are called edge-extremal graphs. They contain collections of stars and,
in some cases, induced cycles of length four.
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 600–612, 2020.
https://doi.org/10.1007/978-3-030-61792-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_47&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_47

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree 601

An interesting problem that arises from these results is to investigate how
the number of edges in the edge-extremal graphs is affected if we impose some
additional structural property on the graphs considered. More specifically, what
happens if we restrict the question to graph classes in which cycles of length four
or stars are forbidden induced subgraphs? Natural candidates for such graph
classes are chordal graphs and claw-free graphs. In the past few years, bounds
for this problem have indeed been established for claw-free graphs in the work of
Dibek et al. [5]. Furthermore, the problem is resolved on other graph classes, such
as bipartite graphs, split graphs, disjoint unions of split graphs and unit interval
graphs in the work of Måland [9]. However, on chordal graphs, the problem had so
far remained unresolved. Chordal graphs form an extremely well-studied graph
class, both from a structural and from an algorithmic point of view, with many
and various applications. Hence, a large number of computer science papers are
published every year on chordal graphs and their subclasses.

In this work, we determine the maximum number of edges that a chordal
graph can have, given the constraints on its maximum degree and matching
number. Given d, ν ∈ N, we denote by Mchordal(d, ν) the set of chordal graphs
such that Δ(G) < d and ν(G) < ν. A graph in Mchordal(d, ν) achieving this
maximum number of edges is called an edge-extremal graph. In order to estab-
lish the upper bound on the number of edges of an edge-extremal graph in
Mchordal(d, ν) we show that, among them, there is one that has a very simple
structure: it is a disjoint union of cliques and stars of a given size.

Theorem 1. There exists an edge-extremal graph in Mchordal(d, ν) that is a
disjoint union of cliques and stars.

Section 3 is entirely devoted to the proof of Theorem 11. Once the structure of
this special edge-extremal graph is known, we are able to establish the following
upper bound on the number of edges of a graph is Mchordal(d, ν).

Theorem 2. Given d, ν ∈ N, the maximum number of edges of a graph in
Mchordal(d, ν) is given by:{

(d − 1)(ν − 1), if d is even
(d − 1)(ν − 1) + �d−1

2 �� ν−1
� d−1

2 ��, if d is odd

Moreover, a graph achieving this number of edges is{
(ν − 1)K1,d−1, if d is even
rK1,d−1 + qKd, if d is odd,

where ν − 1 = q�d−1
2 � + r, with r ≥ 0.

We also show that this result is tight in the sense that the same bound does
not hold for any superclass of chordal graphs that is defined by a finite collection

1 Statements marked with ♠ had their proofs omitted due to space constraints.

602 J. R. S. Blair et al.

of forbidden induced cycles. It is also worth mentioning that this problem is
related to the famous problem of computing Ramsey numbers, the general case
being equivalent to determining Ramsey numbers for line graphs [2].

2 Preliminaries

The graphs considered are simple and undirected. We denote by VG and EG the
vertex set and edge set of G, respectively. Given x ∈ VG, we denote by NG(x)
the neighborhood of x, that is, the set of vertices that are adjacent to x. Two
vertices x, y ∈ VG are true twins if NG(x) ∪ {x} = NG(y) ∪ {y}. Given x ∈ VG

and X ⊆ VG \ {x}, we say x is universal to X if X ⊆ NG(x). For a set X ⊂ VG,
NG(X) denotes the set of vertices in VG \ X that have at least one neighbor in
X. The degree of x is denoted by degG(x) and is defined as |NG(x)|. The degree
of a graph G is the maximum degree of a vertex in G and it is denoted by Δ(G).
A vertex x is a leaf of G if degG(x) = 1.

Given S ⊆ VG, the subgraph induced by S is denoted by G[S], and has S as
its vertex set and {uv | u, v ∈ S and uv ∈ EG} as its edge set. A clique is a set
K ⊆ VG such that G[K] is a complete graph. A clique is maximal if it is not
properly contained in another clique. An independent set is a set S such that
G[S] has no edges. A vertex v ∈ VG is a simplicial vertex if NG(v) is a clique.
Given a set S ⊆ VG, we denote the graph G[VG \ S] by G \ S. If S = {v}, we
denote the graph G[VG \ {v}] simply by G \ v. The set S is a separator if G \ S
has a larger number of connected components than G.

A set M ⊆ EG is a matching if no two edges in M share a common vertex
and M is a perfect matching if every vertex of VG is the endpoint of an edge in
M . The matching number of G, denoted by ν(G), is the largest size of a matching
in G. A graph G is a factor-critical graph if for every v ∈ VG, G \ v has a perfect
matching.

Given a family H of graphs, we say that G is an H-free graph if G does not
contain an induced subgraph that is isomorphic to a graph in H. If H = {H},
we say G is an H-free graph. A tree is a connected acyclic graph. A star is a tree
with at most one vertex that is not a leaf, and for k ∈ N, a k-star, denoted by
K1,k, is a star with k leaves. A graph is a complete graph on n vertices, denoted
by Kn, if there is an edge between every pair of its vertices. Given two graphs
G and H, the disjoint union of G and H, denoted by G + H is the graph with
vertex set VG ∪ VH and edge set EG ∪ EH . We denote by rH the graph that is
the disjoint union of r copies of a graph H. A graph G is a bipartite graph if VG

can be partitioned into two independent sets. A bipartite graph with bipartition
(A,B) is a chain graph if there exists an ordering v1v2 . . . vr of the vertices of A
such that NG(vr) ⊆ . . . ⊆ NG(v1). This property of the vertices of A is called
the nested neighborhood property. Bipartite chain graphs are also known to be
the bipartite 2K2-free graphs.

A graph is a chordal graph if it has no induced cycle of length at least four.
Chordal graphs constitute a widely studied graph class, with many different
characterisations. Given a graph G, let T be a tree such that every vertex of T is

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree 603

a maximal clique of G. The vertices of T are referred to as bags and denoted with
capital letters. For simplicity, we denote the set of vertices of G associated with a
vertex of T with the same capital letter. Let Tv = {A ∈ VT | v ∈ A}. The tree T
is a clique tree of G if for every v ∈ VG, Tv is a subtree of T . A characterisation
of chordal graphs due to Gavril [7] states that a graph is chordal if and only if
it has a clique tree. If T is a clique tree of a chordal graph G and AB ∈ ET ,
then A∩B is a separator for the graph G. Another important characterisation of
chordal graphs is in terms of vertex orderings and simplicial vertices. An ordering
v1v2 . . . vn of the vertices of G is a perfect elimination ordering for G if for every
i, the vertex vi is simplicial in the graph G[{vi+1, . . . , vn}]. A characterisation
of chordal graphs due to Fulkerson and Gross [6] states that a graph is chordal
if and only if it has a perfect elimination ordering. See [3] for an overview of the
properties of chordal graphs and clique trees.

Given two integers d and ν and a graph class C, we denote by MC(d, ν) the
set of all graphs G in C such that Δ(G) < d and ν(G) < ν. A graph in MC(d, ν)
that has the maximum number of edges is called an edge-extremal graph. When
the graph class considered is the class of all graphs, we write simply M(d, ν).
The following lemma establishes a connection between edge-extremal graphs
and factor-critical graphs in some graph classes. Even though the statement we
present here is different from the one stated in [1], the proof in [1] suffices to
prove the result as stated below.

Lemma 1 ([1]). Let C be a graph class that is closed under vertex deletion
and closed under taking disjoint union with stars. Let G be an edge-extremal
graph in MC(d, ν) with maximum number of connected components that are
(d − 1)-stars. Then every connected component of G that is not a (d − 1)-star is
factor-critical.

The following statement gives a summary of the results obtained by Bal-
achandran and Khare [1].

Theorem 3 ([1]). Given d, ν ∈ N, the maximum number of edges of a graph in
M(d, ν) is given by (d − 1)(ν − 1) + �d−1

2 �� ν−1
� d−1

2 ��. Moreover, a graph achieving
this number of edges is {

rK1,d−1 + qK ′
d, if d is even

rK1,d−1 + qKd, if d is odd,

where ν − 1 = q�d−1
2 � + r, with r ≥ 0, and K ′

d is the graph obtained from Kd

by the removal of the edges of a perfect matching and addition of a new vertex
adjacent to d − 1 vertices.

In Sect. 3, we show the corresponding bounds for Mchordal(d, ν) and obtain
graphs that achieve these bounds. We remark that, in Theorem 3, the graph
rK1,d−1 + qKd, obtained when d is odd, is already a chordal graph. Thus, for
odd d, the edge-extremal chordal graphs have the same number of edges as the
edge-extremal general graphs. Our proof, however, does not rely on this fact and
has a unified approach, that works regardless of the parity of d.

604 J. R. S. Blair et al.

3 Chordal Graphs

In this section we present our main result. The strategy to determine the max-
imum number of edges that a graph in Mchordal(d, ν) can have is to show that
among the edge-extremal graphs in Mchordal(d, ν), there is one that has a very
simple structure: it is a disjoint union of cliques and stars of a given size.

Theorem 4 (restated). There exists an edge-extremal graph in Mchordal(d, ν)
that is a disjoint union of cliques and stars.

Overview of the proof. The proof is by contradiction. We start with an edge-
extremal graph of Mchordal(d, ν) that is, in some sense, closest to being a disjoint
union of cliques and stars. From that, we will perform a series of modifications
in the graph in order to obtain another graph of Mchordal(d, ν) that has at least
as many edges as the one we started with, but that is closer to being a dis-
joint union of cliques and stars, which will be a contradiction with our initial
choice. To perform the modifications, we will consider a specific clique tree of
our edge-extremal graph and exploit the structure of this graph around one of
its cliques, given by a carefully chosen node of the tree. A crucial part of the
proof is to ensure that, after each modification, the obtained graph still belongs
to Mchordal(d, ν). In this vein, Lemmas 3 and 4 will precisely show that the two
modifications we describe can indeed be performed without disrupting member-
ship in Mchordal(d, ν). In this way, we obtain a new edge-extremal graph that,
as a result, has several structural properties that will be exploited to conclude
the proof.

Proof of Theorem 1. Assume for a contradiction that there is no edge-extremal
graph in Mchordal(d, ν) that is a disjoint union of cliques and stars. Let H be an
edge-extremal graph in Mchordal(d, ν) with maximum number of (d − 1)-stars
and subject to that, with maximum number of connected components. Let W be
a connected component of H that is not a clique nor a star and let ν1 = ν(W)+1.
By Lemma 1, W is a factor-critical graph and therefore |VW | = 2ν1 − 1. Note
that W ∈ Mchordal(d, ν1) and, in fact, W is edge-extremal in Mchordal(d, ν1).
Among all the edge-extremal graphs in Mchordal(d, ν1) with 2ν1 − 1 vertices, let
G be the one that has a clique tree with minimum number of leaves. Note that,
in particular, G is connected, by the maximality of the number of connected
components of the graph H.

Let T be a clique tree of G achieving the minimum number of leaves. We
consider T rooted in an arbitrary bag R. Let X be a node of T . We denote by
TX the subtree of T rooted at the node X. We define a subgraph GX associated
with each node X of T in the following way. If X = R, then GX = G. Otherwise,
let S be the separator of G given by the intersection between X and its parent in
T and let VTX

be the set of vertices appearing in the bags of TX . The subgraph
GX associated with the node X is given by G[VTX

\ S]. Observe that if X is a
leaf of T , then GX is a complete graph. Let B be a bottommost bag in T such
that GB is not a complete graph. Note that such a node indeed exists since G
is not a complete graph itself. Let B1, . . . , Bk be the children of B in T and let

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree 605

Si = B ∩ Bi. For simplicity, from now on we denote Ci = VTBi
\ Si. Note that

G[Ci] = GBi
is a complete graph for every i.

Observation 1(♠). For every i, the subgraph of G induced by the edges Ei =
{xy | x ∈ Si and y ∈ Ci} is a chain graph.

Observation 2(♠). For every i, the subtree TBi
is a path.

In what follows, we want to modify the graph G in such a way to obtain a
graph that is still chordal, has the same number of vertices as G and belongs
to Mchordal(d, ν1), but either has more edges than G, or is disconnected or
has a clique tree with smaller number of leaves. Either one of these outcomes
will contradict the choice of G. Note that since G is a factor-critical graph, the
addition of edges to G does not increase its matching number. Moreover, for any
k ∈ N, the removal of k vertices from G and addition of k new vertices does not
increase its matching number either, since the total number of vertices remains
unchanged. Therefore, all the modifications that are to be performed in what
follows will not lead to a graph with larger matching number than G.

For every v ∈ B let fG(v, i) denote the number of neighbors that vertex v
has in the clique Ci, that is, fG(v, i) = |NG(v) ∩ Ci| and let ui,1, . . . , ui,|Ci| be
an ordering of the vertices of Ci such that degG(ui,1) ≥ degG(ui,2) ≥ . . . ≥
degG(ui,|Ci|).

We first state and prove the following lemma that can be understood as the
converse of Observation 3 and that will be useful throughout the paper to show
that a graph is chordal.

Lemma 2 (♠). Let H be any graph and B,C1, . . . , Ck be cliques of H such
that

– NH(Ci) ⊆ B, for every 1 ≤ i ≤ k;
– H[VH \ (∪k

i=1Ci)] is a chordal graph.

If the subgraph of H induced by the edges Ei = {xy | x ∈ B and y ∈ Ci} is a
chain graph for every 1 ≤ i ≤ k, then H is a chordal graph.

We are now ready to state the two modifications that will be used repeatedly
throughout the proof of Theorem 1.

Modification 1. Let B,C1, . . . , Ck be subsets of the vertex set of the chordal
graph G as previously described and let v ∈ B. For 1 ≤ i ≤ k, if 0 < fG(v, i) <
|Ci| and v has a neighbor that does not belong to G[VTB

], we do the following
(see Fig. 1a):

(i) Add an edge between v and the vertex ui,fG(v,i)+1;
(ii) Delete the edge from v to one of its neighbors outside G[VTB

]. This neighbor
is chosen in the following way: consider the subtree Tv of T formed by the
bags that contain the vertex v. Let L be a leaf of Tv that is not in the subtree
rooted in B. Such a leaf exists since v has a neighbor outside G[VTB

]. Let L′

be the bag that is adjacent to L in Tv. Since L � L′, there exists u ∈ L \ L′.
Let u be the chosen neighbor of v and delete the edge uv.

606 J. R. S. Blair et al.

Lemma 3. Modification 3 preserves both membership in Mchordal(d, ν) and
number of edges.

Proof. Let G′ be the graph obtained with the application of Modification 3. First,
note that the addition of the edge vui,fG(v,i)+1 preserves the nested neighborhood
property in the bipartite graph induced by the edges between B and Ci. Thus,
since G is chordal and by Lemma 2, the addition of this edge does not disrupt
membership in the class of chordal graphs. Therefore, to show that G′ is chordal
it suffices to show that the removal of the edge uv preserves chordality. We
do so by providing a clique tree to G − uv. This clique tree is obtained from
T as follows. Let L′′ = L \ {u}. If L′′ �= L′, add L′′ between L and L′ in
the tree T and delete v from L. If L′′ = L′, just delete v from L in T . Also,
note that this operation does not change the number of leaves in T . Hence,
we obtain that the graph G′ is chordal. Note that the degree of v does not
change with this modification. The only vertex whose degree was increased by
Modification 3 is ui,fG(v,i)+1. However, note that since vui,fG(v,i) ∈ EG and
vui,fG(v,i)+1 /∈ EG, we have that degG(ui,fG(v,i)+1) < degG(ui,fG(v,i)). Thus,
degG′(ui,fG(v,i)+1) ≤ degG′(ui,fG(v,i)) = degG(ui,fG(v,i)) < d. We conclude the
proof by observing that |EG′ | = |EG|, since exactly one edge was deleted and
exactly one edge was added by this modification. ♦

Modification 2. Let B,C1, . . . , Ck be subsets of the vertex set of the chordal
graph G as previously described and let v ∈ B. For 1 ≤ i ≤ k, if 0 < fG(v, i) <
|Ci| and fG(v, j) > 0 with j > i, we do the following (see Fig. 1b):

(i) Delete the edge vuj,fG(v,j);
(ii) Add the edge vui,fG(v,i)+1.

Lemma 4 (♠). Modification 3 preserves both membership in Mchordal(d, ν)
and number of edges.

Recall that our graph G is an edge-extremal graph in Mchordal(d, ν1), since it
is a connected component of an edge-extremal graph H ∈ Mchordal(d, ν), where
H has maximum number of connected components among the edge-extremal
graphs of Mchordal(d, ν). Let G∗ be the graph obtained from G by exhaustive
applications of Modification 3 followed by exhaustive applications of Modifica-
tion 3. It follows immediately from Lemmas 3 and 4 that G∗ ∈ Mchordal(d, ν1)
and that G∗ is edge-extremal in this set. Moreover, if the graph obtained after the
application of any modification is disconnected, we reach a contradiction with
the maximality of the number of components of H. Therefore, we can assume
G∗ is connected. The following lemma describes the major structural property
of G∗ that will be exploited in the remainder of the proof.

Lemma 5. Let G∗ be the graph obtained from G by exhaustive applications of
Modification 3 followed by exhaustive applications of Modification 3. Then, for
every v ∈ VG∗ ∩ B and every i, if v has at least one neighbor in Ci, one of the
following conditions hold:

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree 607

VG \ VTB

u

B

Ci

v

ui,fG(v,i)+1

VG \ VTB

u

B

Ci

v

ui,fG(v,i)+1

(a) Modification 1

B

Ci Cj

v

uj,fG(v,j)ui,fG(v,i)+1

B

Ci Cj

v

uj,fG(v,j)ui,fG(v,i)+1

(b) Modification 2

Fig. 1. The dotted lines between two vertices indicate non-edges.

(a) Ci ⊆ NG∗(v);
(b) degG∗(v) = Δ(G∗) and NG∗(v) ⊆ B ∪ C1 ∪ . . . ∪ Ci.

Proof. First, let G′ be the graph obtained from G by exhaustive applications of
Modification 3. Since this modification can no longer be applied, then for every
v ∈ B and every i such that f(v, i) > 0, we have that either f(v, i) = |Ci| or
f(v, j) = 0 for every j > i. Thus, for every v ∈ B, there exists at most one index �
such that 0 < f(v, �) < |C�|. Now we apply Modification 3 exhaustively to G′ and
obtain the graph G∗. Recall that fG′(v, i) = |NG′(v)∩Ci|. Observe that for every
v ∈ B, if fG′(v, i) = 0, then fG∗(v, i) = 0 and if fG′(v, i) = |Ci|, then fG∗(v, i) =
|Ci|. Furthermore, since Modification 3 can no longer be applied, if a vertex v is
such that 0 < fG∗(v, i) < |Ci|, then v has no neighbors outside B ∪C1 ∪ . . .∪Ci.
That is, if condition (a) does not hold, then NG∗(v) ⊆ B∪C1∪. . .∪Ci. It remains
to show that, in this case, degG∗(v) = Δ(G∗). Indeed, if degG∗(v) < Δ(G∗),
we can add to G∗ the edge vui,fG∗ (v,i)+1. The addition of this edge does not
change the maximum degree of G∗ by assumption. Moreover, by Lemma 2, it
also preserves chordality. Since by Lemmas 3 and 4, we have that |EG∗ | = |EG|
and that G∗ ∈ Mchordal(d, ν1), this leads to a contradiction with the fact that
G is edge-extremal in Mchordal(d, ν1). ♦

Since the graph G∗ is such that Δ(G∗) < d and |EG∗ | = |EG|, we can
replace the connected component G in our edge-extremal graph H by G∗. This
replacement will be convenient since Lemma 5 provides useful information on
the structure of G∗. More concretely, in the rest of the proof we shall assume
that B,C1, . . . , Ck satisfy the conclusion of Lemma 5.

Let b be the size of the clique B, let Δ = Δ(G∗) and recall that Si is the
separator between the bag Bi and B. We are now going to conclude the proof
of Theorem 1 with a case analysis.
Case 1: There exists i such that |Ci| + b ≤ Δ + 1.

608 J. R. S. Blair et al.

B

S ∪ S1 ∪ . . . ∪ Sk

S ∪ S1 ∪ . . . ∪ Sk

B

S1 ∪ . . . ∪ Sk ∪ C1

S2

B2 Bk

Sk

S2

B2 Bk

SkS1

B1

Fig. 2. To the left, the clique tree T and to the right, a clique tree of the updated
graph G∗ that has less leaves than T .

Case 1.1: k ≥ 2.
We may assume, without loss of generality, that |C1| ≤ |C2| ≤ . . . ≤ |Ck|. In

particular, this implies that |C1|+ b ≤ Δ+1. We will show that, in this case, all
the vertices of C1 are adjacent to all the vertices of S1 ∪ . . . ∪ Sk. This will lead
to a contradiction with the number of leaves of the clique tree of G. Suppose for
a contradiction that there exists v ∈ S1 ∪ . . . ∪ Sk that is not universal to C1.
This implies that fG∗(v, 1) < |C1|.

We will show that the graph G∗ can be modified in order to obtain another
edge-extremal graph, also in Mchordal(d, ν1), in which v is adjacent to every
vertex of S1 ∪ . . . ∪ Sk.

First, note that it cannot be the case that fG∗(v, 1) > 0, since by Lemma 5, if
0 < fG∗(v, 1) < |C1|, then v has maximum degree and has no neighbors outside
B ∪ C1. However, this is a contradiction, since |C1| + b ≤ Δ + 1. Thus, it holds
that fG∗(v, 1) = 0.

In what follows, we will modify the graph G∗ and the deletion of some edges
might disrupt the membership in the class of chordal graphs. In these cases, we
will use the following modification in order to restore it.

Modification 3. Let H be any graph satisfying the conditions of Lemma 2. We
do the folowing:

(i) Delete from H all the edges xy such that x ∈ B and y ∈ Ci for some i;
(ii) For each v ∈ B and each 1 ≤ i ≤ k, if fH(v, i) > 0, add the edges between v

and the vertices ui,1, . . . , ui,fH(v,i).

Lemma 6 (♠). Modification 3 preserves membership in the class of chordal
graphs and number of edges.

We now modify G∗ as follows. Let j be the largest index for which fG∗(v, j) >
0. If fG∗(v, j) = |Cj |, since |C1| ≤ |Cj |, we can delete |C1| edges between v and
Cj and add all the edges between v and C1. We then apply Modification 3 to the
obtained graph in order to obtain a graph that, by Lemma 6, is chordal. Note
that the only vertices whose degree has increased are the ones in C1. However,
since |C1| + b ≤ Δ + 1, we conclude that the maximum degree of G∗ did not
increase.

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree 609

If fG∗(v, j) < |Cj |, then, by Lemma 5, v has maximum degree and has no
neighbors outside B ∪C1 ∪ . . .∪Cj . This implies that

∑k
�=2 fG∗(v, �) = Δ− b+1

(recall that fG∗(v, 1) = 0). Since |C1| ≤ Δ − b + 1 by assumption, we can delete
|C1| edges between v and vertices of C2 ∪ . . .∪Cj and add all the edges between
v and C1. We then apply Modification 3 to the obtained graph in order to obtain
a graph that, by Lemma 6, is chordal. Again, the only vertices whose degree has
increased in this process are the ones from C1, thus we conclude the obtained
graph still has degree at most Δ.

Finally note that in both cases, the modifications do not change the number
of edges of G∗, since

∑k
�=1 fG∗(v, �) remains the same. We perform this change

for every v ∈ S1∪. . .∪Sk such that fG∗(v, 1) > 0 and obtain a new edge-extremal
graph in Mchordal(d, ν1) such that all the vertices of C1 are adjacent to all the
vertices of S1 ∪ . . . ∪ Sk. Recall that among all the edge-extremal graphs in
Mchordal(d, ν1) with 2ν1 − 1 vertices, G was the one that had a clique tree with
minimum number of leaves. This new graph, however, has a clique tree that has
less leaves than the clique tree T of G. This is because the clique C1∪S1∪. . .∪Sk

is contained in B and contains the intersection between B and each child of B
(see Fig. 2). This contradicts the minimality of the number of leaves of T .

Case 1.2: k = 1.
Since B ∪ C1 is not a clique by assumption, there exists v ∈ S1 that is not

universal to C1 in G∗. By Lemma 5, v has maximum degree and no neighbors
outside B ∪ C1. Hence, degG∗(v) ≤ b − 1 + |C1| − 1, which implies that Δ ≤
b+ |C1|−2. This is a contradiction with the assumption of Case 1 that |C1|+b ≤
Δ + 1.
Case 2: For every i, |Ci| + b > Δ + 1.

Let v ∈ S1 ∪ . . . ∪ Sk. Let av be the smallest index such that fG∗(v, av) > 0.
Note that v cannot be universal to Cav

in G∗, since by assumption |Cav
| + b >

Δ+1. By Lemma 5, degG∗(v) = Δ and NG∗(v) ⊆ B ∪Cav
. This implies that for

every v ∈ S1 ∪ . . . ∪ Sk, there exists a unique index av such that fG∗(v, av) > 0.
That is, for any j �= av, fG∗(v, j) = 0, and thus Si ∩ Sj = ∅ if i �= j. Also, since
NG∗(v) ⊆ B∪Cav

and v has degree Δ, we have that fG∗(v, av) = Δ−b+1. That
is, if av = au, then u and v are true twins in G∗. Moreover, for any 1 ≤ i < j ≤ k,
|NG∗(Si)∩Ci| = |NG∗(Sj)∩Cj |. Let S be the separator between B and its parent
in the clique tree T . Since for every v ∈ S1 ∪ . . . ∪ Sk, NG∗(v) ⊆ B ∪ Cav

, we
know that S ∩ Si = ∅, for every i. Also, since the graph G∗ is connected, S �= ∅.
See Fig. 3.

Let u ∈ NG∗(Si)∩Ci. Suppose for a contradiction that degG∗(u) < Δ. Let G1

be the graph obtained from G∗ by the deletion of one vertex of S and addition
of a new vertex w in Si, such that NG1 [w] = B ∪ (N(Si) ∩ Ci).

Claim 1(♠). |EG1 | ≥ |EG∗ | and Δ(G1) = Δ(G∗).

If G1 is disconnected or has more edges than G∗, we have a contradiction. We
repeat the above modification until either the graph obtained is disconnected,
that is, until S = ∅, or until for every i, the degree of the vertices in NG1(Si)∩Ci

610 J. R. S. Blair et al.

C1 C2 Ck

S

S1 S2 Sk

y1 y2 yk

Δ − b + 1 Δ − b + 1 Δ − b + 1
→

←NG∗ (Si) ∩ Ci
simplicial
vertices of Ci

Fig. 3. Graph G∗ in case 2. Thick lines indicate all possible edges between the sets.
Gray text indicates the cardinality of the vertex set.

is Δ. Let G2 be the graph obtained after exhaustive application of the above
modification. If G2 is disconnected, we have a contradiction with the maximal-
ity of the number of connected components of our initial edge-extremal graph.
Otherwise, by Claim 3, |EG2 | ≥ |EG∗ | and Δ(G2) = Δ(G∗). Therefore, we can
now replace G∗ by G2 in the edge-extremal graph H. Note that G2 is such that:

1. For every 1 ≤ i < j ≤ k, Si ∩ Sj = ∅;
2. For every 1 ≤ i ≤ k, the vertices of Si and of NG2(Si) ∩ Ci have degree Δ

and |NG2(Si) ∩ Ci| = Δ − b + 1.

Case 2.1: k ≥ 2.
Let yi be the number of simplicial vertices in the clique Ci. Assume without

loss of generality that y1 ≥ y2. We perform the following modifications in the
graph G2: deletion of one simplicial vertex from C2 and one vertex from S1 and
addition of one vertex to S2 and one simplicial vertex to C1. Note that, after this
modification, the only vertices that had their degree changed are the simplicial
vertices from C1 and C2. Since these simplicial vertices did not have maximum
degree before, the degree of the obtained graph does not exceed the degree of
G2. Note that y2 − 1 + Δ − b + 1 + Δ edges were removed by the deletion of the
two vertices and y1 +Δ− b+1+Δ were added by the addition of the other two
vertices. However, since y1 ≥ y2, we have that the obtained graph has strictly
more edges than G2, which is a contradiction.

Case 2.2: k = 1.
Since all vertices in S1 and in NG2(S1) ∩ C1 have maximum degree, we can

perform the following modification in G2: delete all vertices of S1 and add |S1|
vertices to NG2(S1) ∩ C1. The graph obtained after this modification has the
same number of edges as G2, since |S1| vertices of degree Δ were removed and
the same amount of vertices with the same degree was added. However, the
obtained graph is disconnected, which is a contradiction with the maximality of
the number of connected components of the edge-extremal graph H.

This concludes the proof of Theorem 1. �
By Theorem 1, we know that there is an edge-extremal graph in

Mchordal(d, ν) that is a disjoint union of cliques and stars. The next lemma
gives a tight upper bound on the number of edges of such an edge-extremal
graph when d is even.

On the Maximum Number of Edges in Chordal Graphs of Bounded Degree 611

Lemma 7 (♠). Let G be a graph in Mchordal(d, ν) that is a disjoint union of
cliques and stars. If d is even, then |EG| ≤ (d − 1)(ν − 1).

By Theorem 3, we already know the maximum number of edges that a graph
that is a disjoint union of cliques and stars can have when d is odd. From
Theorem 1 and Lemma 7, we obtain our main result, Theorem 2 (see page 601),
which establishes the upper bound on the number of edges that a chordal graph
of Mchordal(d, ν) can have and shows that the obtained bound is tight.

4 Final Remarks and Open Problems

In this work, we determined the maximum number of edges that a chordal graph
can have if its maximum degree and matching number are bounded. We also
exhibit examples of graphs achieving this bound.

An interesting question that remains open comes from the fact that the graph
K ′

i used in Theorem 3 has an induced C4. For each d and ν, what is the maximum
number of edges of a graph in MC4−free(d, ν)? We point out that the bound
on the number of edges for chordal graphs does not hold for C4-free graphs, as
can be seen by the graph P , obtained from the famous Petersen graph by the
subdivision of one edge. We have that Δ(P) = 3, ν(P) = 5 and |EP | = 16. In
this case, the bound given by Theorem 1 when d = 4 and ν = 6 is 15. This
idea can be further generalized to create examples in the class of H-free graphs,
where H is any finite collection of cycles. Indeed, let r be the size of a largest
cycle of H. A result due to Kochol [8] about snarks implies that for any r ≥ 5
there exists an infinite family of 3-regular graphs of girth r that have a perfect
matching. Let G be one such graph and let H be the graph obtained from G
by the subdivision of one edge. The graph H is clearly H-free and is such that
Δ(H) = 3, ν(H) = ν(G) and |EH | = 3ν(H) + 1, while the bound given by
Theorem 1 when d = 4 and ν = ν(H) + 1 is 3ν(H).

References

1. Balachandran, N., Khare, N.: Graphs with restricted valency and matching number.
Discrete Math. 309, 4176–4180 (2009)

2. Belmonte, R., Heggernes, P., van ’t Hof, P., Saei, R.: Ramsey numbers for line graphs
and perfect graphs. In: Proceedings of the 18th Annual International Conference on
Computing and Combinatorics, COCOON. pp. 204–215 (2012)

3. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Com-
putation. The IMA Volumes in Mathematics and its Applications, vol 56. Springer,
New York (1993) https://doi.org/10.1007/978-1-4613-8369-7 1

4. Chvátal, V., Hanson, D.: Degrees and matchings. J. Combin. Theory Ser. B 20,
128–138 (1976)

https://doi.org/10.1007/978-1-4613-8369-7_1

612 J. R. S. Blair et al.

5. Dibek, C., Ekim, T., Heggernes, P.: Maximum number of edges in claw-free graphs
whose maximum degree and matching number are bounded. Discrete Math. 340,
927–934 (2017)

6. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

7. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combin. Theory Ser. B 16, 47–56 (1974)

8. Kochol, M.: Snarks without small cycles. J. Combin. Theory Ser. B 67, 34–47 (1996)
9. Måland, E.: Maximum Number of Edges in Graph Classes under Degree and Match-

ing Constraints. Master’s thesis, University of Bergen, Norway (2015)

Steiner Trees for Hereditary
Graph Classes

Hans L. Bodlaender1 , Nick Brettell2(B) , Matthew Johnson2 ,
Giacomo Paesani2 , Daniël Paulusma2 , and Erik Jan van Leeuwen1

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{h.l.bodlaender,e.j.vanleeuwen}@uu.nl
2 Department of Computer Science, Durham University, Durham, UK

{nicholas.j.brettell,matthew.johnson2,giacomo.paesani,
daniel.paulusma}@durham.ac.uk

Abstract. We consider the classical problems (Edge) Steiner Tree
and Vertex Steiner Tree after restricting the input to some class
of graphs characterized by a small set of forbidden induced subgraphs.
We show a dichotomy for the former problem restricted to (H1, H2)-
free graphs and a dichotomy for the latter problem restricted to H-free
graphs. We find that there exists an infinite family of graphs H such that
Vertex Steiner Tree is polynomial-time solvable for H-free graphs,
whereas there exist only two graphs H for which this holds for Edge
Steiner Tree. We also find that Edge Steiner Tree is polynomial-
time solvable for (H1, H2)-free graphs if and only if the treewidth of the
class of (H1, H2)-free graphs is bounded (subject to P �= NP). To obtain
the latter result, we determine all pairs (H1, H2) for which the class of
(H1, H2)-free graphs has bounded treewidth.

1 Introduction

Let G = (V,E) be a connected graph and U ⊆ V be a set of terminal vertices.
A Steiner tree for U (of G) is a tree in G that contains all vertices of U . An
edge weighting of G is a function wE : E → R

+. For a tree T in G, the edge
weight wE(T) of T is the sum

∑
e∈E(T) wE(e). We consider the classical problem:

This is often known simply as Steiner Tree, but we wish to distin-
guish it from a closely related problem. A vertex weighting of G is a function
wV : V → R

+. For a tree T in G, the vertex weight wV (T) of T is the sum∑
v∈V (T) w(v). The following problem is sometimes known as Node-Weighted

Steiner Tree.

Supported by the Leverhulme Trust (RPG-2016-258) and the Royal Society
(IES\R1\191223).
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 613–624, 2020.
https://doi.org/10.1007/978-3-030-61792-9_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_48&domain=pdf
http://orcid.org/0000-0002-9297-3330
http://orcid.org/0000-0002-1136-418X
http://orcid.org/0000-0002-7295-2663
http://orcid.org/0000-0002-2383-1339
http://orcid.org/0000-0001-5945-9287
https://doi.org/10.1007/978-3-030-61792-9_48

614 H. L. Bodlaender et al.

Note that Edge Steiner Tree is a generalization of the Spanning Tree
problem (set U = V (G)). We refer to the textbooks of Du and Hu [7] and Prömel
and Steger [14] for further background information on Steiner trees.

We consider the problems Edge Steiner Tree and Vertex Steiner Tree
separately so that, for any graph under consideration, we have either an edge
or vertex weighting but not both, so we will generally denote weightings by w
without any subscript. Moreover, when we use the following terminology there
is no ambiguity. We say that a Steiner tree of least possible weight is minimum,
and that an instance of a problem is unweighted if the weighting is constant. It is
well known that the unweighted versions of Edge Steiner Tree and Vertex
Steiner Tree are NP-complete [8,12], and we note that these unweighted prob-
lems are polynomially equivalent. We denote instances of the weighted problems
by (G,w,U, k) and of the unweighted problems by (G,U, k).

Our Focus. We focus on the complexity of Edge Steiner Tree and Vertex
Steiner Tree for hereditary graph classes, i.e., graph classes closed under vertex
deletion. We do this from a systematic point of view. It is well known, and readily
seen, that a graph class G is hereditary if and only if it can be characterized by
a set H of forbidden induced subgraphs. That is, a graph G belongs to G if
and only if G has no induced subgraph isomorphic to some graph in H. We
normally require H to be minimal, in which case it is unique and we denote it
by HG . We note that HG may have infinite size; for example, if G is the class
of bipartite graphs, then HG = {C3, C5, . . . , }, where Cr denotes the cycle on
r vertices. For a systematic complexity study of a graph problem, we may first
consider monogenic graph classes or bigenic graph classes, which are classes G
with |HG | = 1 or |HG | = 2, respectively. This is the approach we follow here.

Our Results. We prove a dichotomy for Edge Steiner Tree for bigenic graph
classes in Sect. 2 and a dichotomy for Vertex Steiner Tree for monogenic
graph classes in Sect. 3. We denote the disjoint union of two vertex-disjoint
graphs G and H by G + H = (V (G) ∪ V (H), E(G) ∪ E(H)), and the disjoint
union of s copies of G by sG. A linear forest is a disjoint union of paths. For
a graph H, a graph is H-free if it has no induced subgraph isomorphic to H.
For a set of graphs {H1, . . . , Hp}, a graph is (H1, . . . , Hp)-free if it is Hi-free for
every i ∈ {1, . . . , p}. We let Kr and Pr denote the complete graph and path on r
vertices. The complete bipartite graph Ks,t is the graph whose vertex set can be
partitioned into two sets S and T of size s and t, such that for any two distinct
vertices u, v, we have uv ∈ E if and only if u ∈ S and v ∈ T . We call K1,3 the
claw. In the first dichotomy, the roles of H1 and H2 are interchangeable.

Theorem 1. Let H1 and H2 be two graphs. Edge Steiner Tree is
polynomial-time solvable for (H1,H2)-free graphs if

Steiner Trees for Hereditary Graph Classes 615

1. H1 = Kr for some r ∈ {1, 2}.
2. H1 = K3 and H2 = K1,3.
3. H1 = Kr for some r ≥ 3 and H2 = P3.
4. H1 = Kr for some r ≥ 3 and H2 = sP1 for some s ≥ 1,

and otherwise it is NP-complete.

Theorem 2. Let H be a graph. For every s ≥ 0, Vertex Steiner Tree
is polynomial-time solvable for H-free graphs if H is an induced subgraph of
sP1 + P4; otherwise even unweighted Vertex Steiner Tree is NP-complete.

We make the following observations about these two results:
1. We prove Theorem 1 by pinpointing a strong correspondence to the notion
of treewidth. We show, in fact, that Edge Steiner Tree can be solved in
polynomial time for (H1,H2)-free graphs if and only if the treewidth of the
class of (H1,H2)-free graphs is bounded. Although Vertex Steiner Tree
is polynomial-time solvable for graph classes of bounded mim-width [1] and
thus also for graph classes of bounded treewidth, such a 1-to-1 correspon-
dence does not hold for Vertex Steiner Tree, for treewidth or mim-width.
To see this, observe that complete graphs, and hence P4-free graphs, have
unbounded treewidth, whereas cobipartite graphs, and hence 3P1-free graphs,
have unbounded mim-width. In Sect. 4 we discuss this connection between Edge
Steiner Tree and treewidth further.
2. The restriction of Theorem 1 to monogenic graph classes yields only two
(trivial) graphs H, namely H = P1 or H = P2, for which the restriction of
Edge Steiner Tree to H-free graphs can be solved in polynomial time. In
contrast, by Theorem 2, Vertex Steiner Tree can, when restricted to H-free
graphs, be solved in polynomial time for an infinite family of linear forests H,
namely H = sP1 + P4 (s ≥ 0).
3. Theorem 2 is also a dichotomy for the unweighted Vertex Steiner Tree
problem. Moreover, as the unweighted versions of Edge Steiner Tree and
Vertex Steiner Tree are polynomially equivalent, Theorem 2 is also a clas-
sification of the unweighted version of Edge Steiner Tree.

2 The Proof of Theorem 1

In this section we give a proof for our first dichotomy, which is for Edge Steiner
Tree for (H1,H2)-free graphs. We note that this is not the first systematic study
of Edge Steiner Tree. For example, Renjitha and Sadagopan [15] proved that
unweighted Edge Steiner Tree is NP-complete for K1,5-free split graphs, but
can be solved in polynomial time for K1,4-free split graphs. We present a number
of other results from the literature, which we collect in Sect. 2.1, together with
some lemmas that follow from these results. Then in Sect. 2.2 we discuss the
notion of treewidth; as we shall see, this notion will play an important role. We
then use these results to prove Theorem 1.

616 H. L. Bodlaender et al.

Fig. 1. A wall of height 2, its wye-net transformation, walls of height 3 and 4.

2.1 Preliminaries

The NP-completeness of Edge Steiner Tree on complete graphs follows from
the result [12] that the general problem is NP-complete: to obtain a reduction
add any missing edges and give them sufficiently large weight such that they will
never be used in any solution. Bern and Plasman proved the following stronger
result.

Lemma 1. [2] Edge Steiner Tree is NP-complete for complete graphs where
every edge has weight 1 or 2.

To subdivide an edge e = uv means to delete e and add a vertex w and edges uw
and vw. Let r be a positive integer. To say that e is subdivided r times means
that e is replaced by a path Pe = uw1 · · · wrv of r + 1 edges. The r-subdivision
of a graph H is the graph obtained from H after subdividing each edge exactly
r times. If we say that a graph is a subdivision of H, then we mean it can be
obtained from H using subdivisions (the number of subdivisions can be different
for each edge and some edges might not be subdivided at all). A graph G contains
a graph H as a subdivision if G contains a subdivision of H as a subgraph.

Proposition 1. If Edge Steiner Tree is NP-complete on a class C of graphs,
then, for every r ≥ 0, it is so on the class of r-subdivisions of graphs in C.

We make the following observation (proof omitted).

Lemma 2. Edge Steiner Tree is NP-complete for complete bipartite graphs.

The following follows by inspection of the reduction of Garey and Johnson for
Rectilinear Steiner Tree [10]. Let n and m be positive integers. An n × m
grid graph has vertex set {vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} and vi,j has neighbours
vi−1,j (if i > 1), vi+1,j (if i < n), vi,j−1 (if j > 1), and vi,j+1 (if j < m).

Theorem 3. [10] Unweighted Edge Steiner Tree is NP-complete for grid
graphs.

Steiner Trees for Hereditary Graph Classes 617

A wall is a graph which can be thought of as a hexagonal grid. See Fig.
1 for three examples of walls of different heights. We refer to [6] for a formal
definition. Note that walls of height at least 2 have maximum degree 3. From a
wall of height h we obtain a net-wall by doing the following for each wall vertex u
with three neighbours v1, v2, v3: replace u and its incident edges with three new
vertices u1, u2, u3 and edges u1v1, u2v2, u3v3, u1u2, u1u3, u2u3. We call this a
wye-net transformation, reminiscent of the well-known wye-delta transformation.
Note that a net-wall is K1,3-free but contains an induced net, which is the graph
obtained from a triangle on vertices a1, a2, a3 and three new vertices b1, b2, b3
after adding the edge aibi for i = 1, 2, 3.

We have two results on these classes.

Lemma 3. For every r ≥ 0, Edge Steiner Tree is NP-complete for r-
subdivisions of walls.

Proof. We reduce from unweighted Edge Steiner Tree on grid graphs, which
is NP-hard by Theorem 3. Let (G,U, k) be an instance of unweighted Edge
Steiner Tree where G is an n × m grid graph. Think of v1,1 as the top-left
corner of the grid, and in vi,j , i indicates the row of the grid containing the
vertex, while j indicates the column.

From G, we obtain a graph W as follows. Two vertices of G are exceptional:
vn,1 is always exceptional, v1,m is exceptional if n is even, and v1,1 is exceptional
if n is odd. For every vertex vi,j of G that is not exceptional, W contains vertices
vi,j

↑ and vi,j
↓ that are joined by an edge. We call these edges new. We also add

to W vertices vn,1
↑ , and v1,m

↓ (if v1,m is exceptional) or v1,1
↓ (otherwise). We add

an edge from vi,j
↓ to vi+1,j

↑ , for 1 ≤ i ≤ n − 1, 1 ≤ i ≤ m. For 1 ≤ i ≤ n,
1 ≤ j ≤ m − 1, if i is odd and n is even or if i is even and n is odd, we add an
edge from vi,j

↓ to vi,j+1
↑ , and otherwise, we add an edge from vi,j

↑ to vi,j+1
↓ . The

edges that are not new are original.
We note that W is a wall obtained from G by splitting each vertex in two

(except the exceptional vertices that lie in a corner of the grid), and that there
is a bijection between the original edges of W and the edges of G. We define an
edge weighting w′ for W by letting the weight of each original edge be 1 and
the weight of each new edge be ε, where ε > 0 is chosen so that the sum of the
weights of all new edges is less than 1. We define a set of terminals U ′ for W : if
vi,j is in U , then U ′ contains each of vi,j

↓ and vi,j
↑ that exists (one or other will

not exist if vi,j is exceptional).
We claim that there is a Steiner tree of k edges in G for terminal set U if

and only if there is a Steiner tree of weight k + δ in (W,w′) for terminal set
U ′, where 0 ≤ δ < 1. Indeed, any Steiner tree T in G for terminal set U of k
edges corresponds naturally to a Steiner tree T ′ for U ′ in (W,w′) of weight less
than k + 1 by adding all new edges to T and letting T ′ be a spanning tree of
the component of the resulting subgraph of W that contains U ′. Conversely, any
Steiner tree T ′ for U ′ in (W,w′) of weight k+δ, 0 ≤ δ < 1, corresponds naturally
to a Steiner tree T for U in G of k edges by removing all new edges from T ′

and letting T be a spanning tree of the resulting subgraph of G. Effectively, this

618 H. L. Bodlaender et al.

mimics the splitting and contraction operations which can be seen as the way in
which we obtain W from G and vice versa.

The lemma now follows immediately from Proposition 1. �	
The next lemma has a similar proof (omitted due to space restrictions).

Lemma 4. For every r ≥ 0, Edge Steiner Tree is NP-complete for r-
subdivisions of net-walls.

2.2 Treewidth and Implications

A tree decomposition of a graph G = (V,E) is a tree T whose vertices, which are
called nodes, are subsets of V and has the following properties: for each v ∈ V ,
the nodes of T that contain v induce a non-empty connected subgraph, and, for
each edge vw ∈ E, there is at least one node of T that contains v and w.

The sets of vertices of G that form the nodes of T are called bags. The width
of T is one less than the size of its largest bag. The treewidth of G is the minimum
width of its tree decompositions. A graph class G has bounded treewidth if there
exists a constant c such that each graph in G has treewidth at most c; otherwise
G has unbounded treewidth. As trees with at least one edge form exactly the class
of graphs with treewidth 1, the treewidth of a graph can be seen as a measure
that indicates how close a graph is to being a tree. Many discrete optimization
problems can be solved in polynomial time on every graph class of bounded
treewidth. The Edge Steiner Tree problem is an example of such a problem
(see, for instance, [5] or, for a faster algorithm [3]).

Lemma 5. [3,5] Edge Steiner Tree can be solved in polynomial time on
every graph class of bounded treewidth.

We also need the well-known Robertson-Seymour Grid-Minor Theorem (also
called the Excluded Grid Theorem), which can be formulated for walls.

Theorem 4. [16] For every integer h, there exists a constant ch such that a
graph has treewidth at least ch if and only if it contains a wall of height h as a
subdivision.

We will use two lemmas, both of which follow immediately from Theorem 4.

Lemma 6. For every r ≥ 0, the class of r-subdivided walls has unbounded
treewidth.

Lemma 7. For every r ≥ 0, the class of r-subdivided net-walls has unbounded
treewidth.

We need the following classification of the boundedness of treewidth for
(H1,H2)-free graphs (in which we may exchange the roles of H1 and H2). Note
that this classification coincides with the classification of Theorem 1.

Steiner Trees for Hereditary Graph Classes 619

Theorem 5. Let H1 and H2 be two graphs. Then the class of (H1,H2)-free
graphs has bounded treewidth if and only if

1. H1 = Kr for some r ∈ {1, 2}.
2. H1 = K3 and H2 = K1,3.
3. H1 = Kr for some r ≥ 3 and H2 = P3.
4. H1 = Kr for some r ≥ 3 and H2 = sP1 for some s ≥ 1.

Proof. We first prove that in each of the Cases 1–4, the class of (H1,H2)-free
graphs has bounded treewidth. Let G be an (H1,H2)-free graph. First suppose
that H1 = Kr for some r ∈ {1, 2}. Then G has no edges and so has treewidth 0.
If H1 = K3 and H2 = K1,3, then G has maximum degree at most 2, that is, G
is the disjoint union of paths and cycles. Hence G has treewidth at most 2. If
H1 = Kr for some r ≥ 3, and H2 = P3, then G is the disjoint union of complete
graphs, each of size at most r − 1. Hence G has treewidth at most r − 1. Finally
if H1 = Kr, for some r ≥ 3, and H2 = sP1, for some s ≥ 1, then, by Ramsey’s
Theorem, the number of vertices of G is bounded by some constant R(r, s).
Hence G has treewidth at most R(r, s).

We will now show that the class of (H1,H2)-free graphs has unbounded
treewidth if Cases 1–4 do not apply. First suppose that neither H1 nor H2 is a
complete graph. Then the class of (H1,H2)-free graphs contains the class of all
complete graphs. As the treewidth of a complete graph Kr is readily seen to be
equal to r − 1, the class of complete graphs, and thus the class of (H1,H2)-free
graphs, has unbounded treewidth. From now on, assume that H1 = Kr for some
r ≥ 1. As Case 1 does not apply, we find that r ≥ 3.

Suppose that H2 contains a cycle Cs as an induced subgraph for some s ≥ 1.
As H1 = Kr for some r ≥ 3, the class of (H1,H2)-free graphs contains the class
of (C3, Cs)-free subgraphs. As the latter graph class contains the class of (s+1)-
subdivided walls, which have unbounded treewidth due to Lemma 6, the class
of (H1,H2)-free graphs has unbounded treewidth.

Note that if H2 contains a cycle as a subgraph, then it also contains a cycle
as an induced subgraph. So now suppose that H2 contains no cycle, that is,
H2 is a forest. First assume that H2 contains an induced P1 + P2. Recall that
H1 = Kr for some r ≥ 3. Then the class of (H1,H2)-free graphs contains the
class of complete bipartite graphs. As this class has unbounded treewidth, the
class of (H1,H2)-free graphs has unbounded treewidth. From hereon we assume
that H2 is a (P1 + P2)-free forest.

Suppose that H2 has a vertex of degree at least 3. In other words, as H2 is
a forest, the claw K1,3 is an induced subgraph of H2. Recall that H1 = Kr for
some r ≥ 3. First assume that r = 3. As Case 2 does not apply, H2 properly
contains an induced K1,3. As H2 is a forest, this means that H2 contains an
induced P1 + P2, which is not possible. We conclude that r ≥ 4. Then the class
of (H1,H2)-free graphs contains the class of net-walls. As the latter graph class
has unbounded treewidth due to Lemma 7, the class of (H1,H2)-free graphs has
unbounded treewidth.

From the above we may assume that H2 does not contain any vertex of
degree 3. This means that H2 is a linear forest, that is, a disjoint union of paths.

620 H. L. Bodlaender et al.

As Case 4 does not apply, H2 has an edge. Every (P1+P2)-free linear forest with
an edge is either a P2 or a P3. However, this is not possible, as Case 1 (with the
roles of H1 and H2 reversed) and Case 3 do not apply. We conclude that this
case cannot happen. �	

We are now ready to prove Theorem 1.

Theorem 1 (restated). Let H1 and H2 be two graphs. Edge Steiner Tree
is polynomial-time solvable for (H1,H2)-free graphs if and only if

1. H1 = Kr for some r ∈ {1, 2}.
2. H1 = K3 and H2 = K1,3.
3. H1 = Kr for some r ≥ 3 and H2 = P3.
4. H1 = Kr for some r ≥ 3 and H2 = sP1 for some s ≥ 1,

and otherwise it is NP-complete.

Proof (Sketch). Let G denote the class of (H1,H2)-free graphs under considera-
tion. If one of Cases 1–4 applies, then G has bounded treewidth by Theorem 5;
we apply Lemma 5. We now show NP-completeness in all remaining cases.

Suppose neither H1 nor H2 is a complete graph. Then G contains all complete
graphs, and we apply Lemma 1. From now on, assume that H1 = Kr for some
r ≥ 1. As Case 1 does not apply, we find that r ≥ 3. Suppose that H2 contains a
cycle Cs as an induced subgraph for some s ≥ 1. Then G contains all (C3, Cs)-free
graphs. The latter class includes all (s+1)-subdivided walls, so we use Lemma 3.

Suppose that H2 contains no cycle, that is, H2 is a forest. If H2 contains an
induced P1 + P2, then G contains all complete bipartite graphs, and we apply
Lemma 2. Now suppose that H2 has a vertex of degree at least 3. As H is a
forest, the claw K1,3 is an induced subgraph of H2. If r = 3, then as Case 2 does
not apply, H2 properly contains an induced K1,3, which means that H2 contains
an induced P1 + P2, a contradiction. If r ≥ 4, then G contains all net-walls, and
we can apply Lemma 4. Now suppose that H2 does not contain any vertex of
degree 3; then H2 is a linear forest. As Case 4 does not apply, H2 has an edge.
Every (P1 + P2)-free linear forest with an edge is a P2 or a P3. However, this is
not possible, as Case 1 and Case 3 do not apply. �	

3 The Proof of Theorem 2

In this section we give a proof of our second dichotomy. We state useful past
results in Sect. 3.1 followed by some new results for P4-free graphs in Sect. 3.2
and we show how to combine these results to obtain the proof of Theorem 2.

3.1 Known Results

The first result we need is due to Brandstädt and Müller. A graph is chordal
bipartite if it has no induced cycles of length 3 or of length at least 5; that is, a
graph is chordal bipartite if it is (C3, C5, C6, . . .)-free.

Steiner Trees for Hereditary Graph Classes 621

Theorem 6. [4] The unweighted Vertex Steiner Tree problem is NP-
complete for chordal bipartite graphs.

The second result that we need is due to Farber, Pulleyblank and White. A
graph is split if its vertex set can be partitioned into a clique and an independent
set. It is well known that the class of split graphs coincides with the class of
(2P2, C4, C5)-free graphs [9].

Theorem 7. [8] The unweighted Vertex Steiner Tree problem is NP-
complete for split graphs.

3.2 New Results

We start with the following lemma (proof omitted).

Lemma 8. The unweighted Vertex Steiner Tree problem is NP-complete
for line graphs.

Recall that a subgraph G′ of a graph G is spanning if V (G′) = V (G). Let G1

and G2 be two graphs. The join operation adds an edge between every vertex
of G1 and every vertex of G2. The disjoint union operation takes the disjoint
union of G1 and G2. A graph G is a cograph if G can be generated from K1 by a
sequence of join and disjoint union operations. A graph is a cograph if and only
if it is P4-free. This implies the following well-known lemma.

Lemma 9. Every connected P4-free graph on at least two vertices has a spanning
complete bipartite subgraph.

Let G be a graph. For a set S, the graph G[S] = (S, {uv ∈ E(G) u, v ∈ S})
denotes the subgraph of G induced by S. Note that G[S] can be obtained from
G by deleting every vertex of V (G) \ S. If G has a vertex weighting w, then
w(S) =

∑
u∈S w(u) denotes the weight of S.

Lemma 10. For every s ≥ 0, Vertex Steiner Tree can be solved in time
O(n2s2−s+5) for connected (sP1 + P4)-free graphs on n vertices.

Proof. Let s ≥ 0 be an integer. Let G = (V,E) be a connected (sP1 + P4)-free
graph with a vertex weighting w : V → R

+ and set of terminals U . We show
how to solve the optimization version of Vertex Steiner Tree on G. Let
R ⊆ V \ U be such that G[U ∪ R] is connected and, subject to this condition,
U ∪ R has minimum weight. Thus any spanning tree of G[U ∪ R] is an optimal
solution. Let us consider the possible size of R.

First suppose that G[U ∪ R] is P4-free. Then, by Lemma 9, G[U ∪ R] has a
spanning complete bipartite subgraph. That is, there is a bipartition (A,B) of
U ∪ R such that every vertex in A is joined to every vertex in B (and neither A
nor B is the empty set). If U intersects both A and B, then G[U] is connected
and |R| = 0. So let us assume that U ⊆ A, and so R ⊇ B. Then R ∩ A = ∅ since

622 H. L. Bodlaender et al.

G[U ∪B] is connected. As we know that every vertex in A = U is joined to every
vertex in B = R, we find that |R| = 1.

Suppose instead that G[U ∪ R] contains an induced path P on four vertices.
We call the connected components of G[U] bad if they do not intersect P or the
neighbours of P in G. There are at most s− 1 bad components; else, G contains
an sP1 +P4. Let U∗ be a subset of U that includes one vertex from each of these
bad components. Then each vertex of G[U ∪ R] belongs either to U or P or is
an internal vertex of a shortest path in G[U ∪ R] from P to a vertex of U∗. The
number of internal vertices in such a shortest path is at most 2s + 1; else, the
path contains an induced sP1 + P4. As R is a subset of P and these internal
vertices, we find that |R| ≤ 4 + (2s + 1)(s − 1) = 2s2 − s + 3.

So in all cases R contains at most 2s2 − s + 3 vertices and our algorithm is
just to consider every such set R and check, in each case, whether G[U ∪ R] is
connected. Our solution is the smallest set found that satisfies the connectivity
constraint. As there are O(n2s2−s+3) sets to consider, and checking connectivity
takes O(n2) time, the algorithm requires O(n2s2−s+5) time. �	

We are now ready to prove our second dichotomy.

Theorem 2 (restated). Let H be a graph. For every s ≥ 0, Vertex Steiner
Tree is polynomial-time solvable for H-free graphs if H is an induced subgraph
of sP1+P4; otherwise even unweighted Vertex Steiner Tree is NP-complete.

Proof. If H has a cycle, then we apply Theorem 6 or Theorem 7. Hence, we may
assume that H has no cycle, so H is a forest. If H contains a vertex of degree
at least 3, then the class of H-free graphs contains the class of claw-free graphs,
which in turn contains the class of line graphs. Hence, we can apply Lemma 8.
Thus we may assume that H is a linear forest. If H contains a connected com-
ponent with at least five vertices or two connected components with at least
two vertices each, then the class of H-free graphs contains the class of 2P2-free
graphs. Hence, we can apply Theorem 7. It remains to consider the case where
H is an induced subgraph of sP1 + P4 for some s ≥ 0, for which we can apply
Lemma 10. �	

4 Conclusions

We presented complexity dichotomies both for Edge Steiner Tree restricted
to (H1,H2)-free graphs and for Vertex Steiner Tree for H-free graphs. The
latter dichotomy also holds for the unweighted variant, in which case the prob-
lems Edge Steiner Tree and Vertex Steiner Tree are polynomially equiv-
alent. In particular, we observed that Edge Steiner Tree can be solved in
polynomial time for (H1,H2)-free graphs if and only if the class of (H1,H2)-free
graphs has bounded treewidth. This correspondence is not true in general.

Theorem 8. There exists a hereditary graph class G of unbounded treewidth for
which Edge Steiner Tree can be solved in polynomial time.

Steiner Trees for Hereditary Graph Classes 623

Proof. Let G consist of graphs G of maximum degree at most 3 such that every
path between any two degree-3 vertices in G has at least 2r vertices, where r
is the number of degree-3 vertices in G. As deleting a vertex neither increases
the maximum degree of a graph nor decreases the number of vertices on paths
between degree-3 vertices, G is hereditary. As G contains subdivided walls of
arbitrarily large height, the treewidth of G is unbounded due to Theorem 4.

We solve Edge Steiner Tree on an instance (G,w,U, k) with G ∈ G as
follows. If G has at most one vertex of degree 3, then G has treewidth at most 2,
so we can apply Lemma 5. Otherwise, we apply the following rules, while possible.

Rule 1. There is a non-terminal x of degree 2. Let xy and xz be its two incident
edges. We contract xy and give the new edge weight w(xy)+w(xz). If there was
already an edge between y and z, then we remove one with largest weight.

Rule 2. There is a terminal x of degree 2 and its neighbours y and z are also
terminals. Assume w(xy) ≤ w(xz). We observe that there is an optimal solution
that includes the edge xy. Hence, we may contract xy and decrease k by w(xy).

Rule 3. There is a vertex x of degree 1. Let y be its neighbour. If x is not a
terminal, then remove x. Otherwise, contract xy and decrease k by w(xy).

Let (G′, w′, U ′, k′) be the resulting instance, which is readily seen to be equivalent
to (G,w,U, k). Then G′ has r vertices of degree 3 and each vertex of degree at
most 2 has a neighbour of degree 3; otherwise, one of Rules 1–3 applies. So, G′

has at most 4r vertices and thus O(r) edges. It remains to solve Edge Steiner
Tree on (G′, w′, U ′, k). We do this in r · 2O(r) time by guessing for each edge
in G′ if it is in the solution and then verifying the resulting candidate solution.
As r ≥ 2, we have |V (G)| ≥ 2r. So, the running time is polynomial in |V (G)|. �	

As the hereditary graph class G in Theorem 8 has an infinite family HG of
forbidden induced subgraphs, we pose the following open problem.

Open Problem 1. Is Edge Steiner Tree polynomial-time solvable for any
finitely defined hereditary graph class G if and only if G has bounded treewidth?

So far, we have not found any counterexample to Open Problem 4, and to
increase our understanding we first aim to consider classes of (H1,H2,H3)-free
graphs. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, is the subdivided claw, which is
the tree with one vertex x of degree 3 and exactly three leaves, which are of
distance h, i and j from x, respectively. Note that S1,1,1 = K1,3 and that both
walls and net-walls may contain arbitrarily large subdivided claws. Note also
that complete graphs are C3-free and complete bipartite graphs are C4-free. As
such we pose the following open problem.

Open Problem 2. For every subdivided claw S, does the class of (C3, C4, S)-
free graphs have bounded treewidth?

We also propose to consider Vertex Steiner Tree and unweighted Ver-
tex Steiner Tree for (H1,H2)-free graphs as future research. To obtain a
dichotomy, we need to answer several open problems, including the next ones.

624 H. L. Bodlaender et al.

Open Problem 3. Does there exist a pair (H1,H2) such that Vertex Steiner
Tree and unweighted Vertex Steiner Tree have different complexities for
(H1,H2)-free graphs?

Open Problem 4. For every integer t, determine the complexity of Vertex
Steiner Tree for (K1,3, Pt)-free graphs.

To obtain an answer to Open Problem 4, we need new insights into the struc-
ture of (K1,3, Pt)-free graphs. These insights may also be useful to obtain new
results for other problems, such as the Graph Colouring problem restricted
to (K1,3, Pt)-free graphs (see [11,13]).

References

1. Bergougnoux, B., Kanté, M.M.: More applications of the d-neighbor equivalence:
connectivity and acyclicity constraints. In: Proceeding of the 27th Annual Euro-
pean Symposium on Algorithms, ESA, LIPIcs, vol. 144, pp. 17:1–17:14 (2019)

2. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32, 171–176 (1989)

3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015)

4. Brandstädt, A., Müller, H.: The NP-completeness of Steiner Tree and Dominating
Set for chordal bipartite graphs. Theor. Comput. Sci. 53, 257–265 (1987)

5. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded
treewidth. J. Discrete Algorithms 16, 67–78 (2012)

6. Chuzhoy, J.: Improved bounds for the flat wall theorem. In: Proceeding of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 256–275
(2015)

7. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks.
World Scientific, Singapore (2008)

8. Farber, M., Pulleyblank, W.R., White, K.: Steiner trees, connected domination
and strongly chordal graphs. Networks 15, 109–124 (1985)

9. Földes, S., Hammer, P.L.: Split graphs. Congressus Numerantium 19, 311–315
(1977)

10. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32, 826–834 (1977)

11. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computa-
tional complexity of colouring graphs with forbidden subgraphs. J. Graph Theory
84, 331–363 (2017)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Berrlin
(1972)

13. Martin, B., Paulusma, D., Smith, S.: Colouring H-free graphs of bounded diameter.
In: Proceeding of the 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS, LIPIcs, vol. 138, pp. 14:1–14:14 (2019)

14. Prömel, H.J., Steger, A.: The Steiner Tree Problem: A Tour through Graphs,
Algorithms, and Complexity. Springer Science & Business Media, Berlin (2012)

15. Renjith, P., Sadagopan, N.: The Steiner tree in K1,r-free split graphs - a dichotomy.
Discrete Appl. Math. 280, 246–255 (2020)

16. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J.
Comb. Theor. Ser. B 41, 92–114 (1986)

On Some Subclasses of Split B1-EPG
Graphs

Zakir Deniz1, Simon Nivelle2, Bernard Ries3, and David Schindl3(B)

1 Duzce University, Duzce, Turkey
zakirdeniz@duzce.edu.tr

2 ENS Paris Saclay, Paris, France
simon.nivelle@free.fr

3 University of Fribourg, Fribourg, Switzerland
{bernard.ries,david.schindl}@unifr.ch

Abstract. In this paper, we are interested in edge intersection graphs of
paths in a grid, such that each path has at most one bend. These graphs
were introduced in [14] and they are called B1-EPG graphs. We focus
on split B1-EPG graphs, and study subclasses defined by restricting the
paths to subsets of the four possible shapes (�, �, � and �). We first state
that the set of minimal forbidden induced subgraphs for the class of
split �-path graphs is infinite. Then, we further focus on two subclasses,
and provide finite forbidden induced subgraphs characterizations for all
possible subclasses defined by restricting to any subset of shapes.

1 Introduction

Golumbic et al. introduced in [14] the notion of edge intersection graphs of paths
in a grid (referred to as EPG graphs). An undirected graph G = (V,E) is
called an EPG graph, if one can associate a path in a rectangular grid with each
vertex such that two vertices are adjacent if and only if the corresponding paths
intersect on at least one grid-edge. The authors showed in [14] that every graph
is in fact an EPG graph. Therefore, they introduced additional restrictions on
the paths by limiting the number of bends (a bend is a 90 degrees turn of a
path at a grid-point) that a path can have. An undirected graph G = (V,E) is
then called a Bk-EPG graph, for some integer k ≥ 0, if one can associate with
each vertex a path with at most k bends in a rectangular grid such that two
vertices are adjacent if and only if the corresponding paths intersect on at least
one grid-edge.

Since the introduction of the notion of Bk-EPG graphs, there has been a lot
of research done on these graphs from several points of view (see for instance [1–
9,11–13,15–17]). Since B0-EPG graphs coincide with the class of interval graphs,
particular attention has been paid to the class of B1-EPG graphs. The authors
in [15] showed that recognizing B1-EPG graphs is an NP-complete problem; the
same holds for B2-EPG graphs as recently shown in [17]. In any representation
of a B1-EPG graph, each path can only have one of the following four shapes:
c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 625–636, 2020.
https://doi.org/10.1007/978-3-030-61792-9_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_49&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_49

626 Z. Deniz et al.

�, �, �, � (a path with only a horizontal part or only a vertical part can be con-
sidered as a degenerate path of one of the four shapes mentioned before). In [7],
the authors analysed B1-EPG graphs for which the number of different shapes is
restricted to a subset of the set above. They showed that testing membership to
each of these restricted classes is also NP-complete. Furthermore, they focused
on chordal graphs that are B1-EPG with the additional restriction that only one
particular shape (namely �) is allowed for all paths. In particular, they proposed
a conjecture concerning the characterization of split graphs that are B1-EPG and
where only paths with an � shape are allowed, by a family of forbidden induced
subgraphs. Indeed, they presented a list of nine forbidden induced subgraphs
and conjecture that these are the only minimal ones. In a more recent paper
[9], we disproved this conjecture by providing an additional forbidden induced
subgraph, and managed to characterize split graphs that are B1-EPG and where
only paths with an � shape are allowed. This characterization was not in terms
of forbidden induced subgraphs, and such a characterization is still missing.

In this paper, we first show that this characterization has an infinite list
of minimal forbidden induced subgraphs. Then, for any subset P of the four
possible shapes mentioned above, we investigate inclusion relationships among
subclasses of split graphs that are B1-EPG and where only shapes from P are
allowed.

2 Preliminaries

We only consider finite, undirected graphs that have no self-loops and no multiple
edges. We refer to [10] or [18] for undefined terminology. Let G = (V,E) be a
graph. For a subset V ′ ⊆ V , we let G[V ′] denote the subgraph of G induced by
V ′, which has vertex set V ′ {uv ∈ E | u, v ∈ V ′}. For a vertex v ∈ V , we write
G−v = G[V \{v}] and for a subset V ′ ⊆ V , we write G−V ′ = G[V \V ′]. The set
of vertices adjacent to some vertex u is called the neighborhood of u and will be
denoted by N(u). The closed neighborhood of u is defined as N [u] = N(u)∪{u}.
A vertex u dominates some adjacent (resp. non-adjacent) vertex v if N [v] ⊆ N [u]
(resp. if N(v) ⊆ N(u)) denoted by v < u. Two vertices u, v in G are said to
be comparable if u dominates v or v dominates u. Two vertices that are not
comparable are said to be incomparable. A split graph is a graph G = (V,E)
whose vertex set V can be partitioned into a clique K (i.e., a set of pairwise
adjacent vertices) and a stable set S (i.e., a set of pairwise non-adjacent vertices).
We say that (K,S) is a split partition of G. The vertices in S will be called the
S-vertices (or just stable vertices).

Let G be a rectangular grid of size m × m′. The horizontal grid lines will
be referred to as rows and denoted by x0, x1, · · · , xm−1 and the vertical grid
lines will be referred to as columns and denoted by y0, y1, · · · , ym′−1. We call
segment a collection of consecutive grid edges on a column (or a row) of G. As
already mentioned above, in any representation of a B1-EPG graph, each path
can only have one of the following four possible shapes: �, �, �, �. A path with an
�-shape will be called an �-path. In a similar way we define a �-path, a �-path

On Some Subclasses of Split B1-EPG Graphs 627

and a �-path. For any subset R of the four possible shapes, we denote by [R] the
class of B1-EPG graphs which admit a representation in which each path has
one of the shapes in R. In particular, we denote by [R]s the class of B1-EPG
split graphs which admit a representation in which each path has one of the
shapes in R. For simplicity, if R contains all four shapes, we write B1-EPGs. A
representation of a B1-EPG graph containing only paths with a shape in R is
called a [R]-representation (or just [R]-shape).

Let G = (V,E) be a B1-EPG graph and let v ∈ V . We denote by Pv the path
representing v in a B1-EPG representation of G. Consider a clique K (resp. a
stable set S) in G. Any path representing a vertex in K (resp. in S) will simply
be referred to as a path of K (resp. path of S). Concerning cliques, the following
useful lemma has been shown in [14].

Lemma 1. Let G = (V,E) be a B1-EPG graph. In any B1-EPG representation
of G, a clique K of G is represented either as an edge-clique or as a claw-clique
(see Fig. 1).

Fig. 1. An edge-clique (a) and a claw-clique (b).

Notice that in an edge-clique, all paths share a common grid-edge, while it is
not the case in a claw-clique. For a B1-EPG representation of a split graph with
a split partition (K,S), we will call base a minimal (with respect to inclusion)
set of consecutive grid edges on a same row or column, such that every path of
K uses at least one of these edges. It is easy to see that this set consists of one
(horizontal or vertical) grid edge in the case of an edge-clique and two grid edges
(both horizontal or both vertical) in the case of a claw-clique. Notice also that
in a claw-clique, all paths have a unique common grid-point. We will call this
point the center of the clique.

A gem is a graph with vertex set {c1, c2, c3, s1, s2} and edge set {s1c1, s1c2,
c1c2, c2c3, c1c3, s2c2, s2c3} (see Fig. 2(a)). It is easy to see that a gem, as an
induced subgraph of a split graph G = (V,E) with split partition (K,S),
must satisfy c1, c2, c3 ∈ K and s1, s2 ∈ S. A bull is a graph with vertex set
{c1, c2, s1, s2, s3} and edge set {c1c2, c1s2, c2s2, c1s1, c2s3} (see Fig. 2(b)). Again,
it is easy to see that a bull, as an induced subgraph of a split graph G = (V,E)
with split partition (K,S), must satisfy c1, c2 ∈ K and s1, s3 ∈ S. In the case
where s2 ∈ S as well, the bull is called an S-bull. Gems and S-bulls have played
an central role in [7] and [9]. As we will see, they are also important in our
results. In Fig. 2, we also define two additional split graphs we will need for our
results: the double S-bull and the 3-S-bull.

628 Z. Deniz et al.

Fig. 2. (a) A gem. (b) An S-bull. (c) A double S-bull. (d) A 3-S-bull.

Let G be a split graph with split partition (K,S). A subgraph H induced by
N [R] for a set R ⊆ S is called stable-component of G if N(N(R)) ∩ S = R and
for every r, t ∈ R, there exists a path r, c1, s1, c2, s2, . . . , cp, t for ci ∈ K, sj ∈ S
with i > j, i = 1, 2, . . . , p. In particular, if all stable vertices of H are pairwise
comparable on G, then we will say that H is a trivial-component of G. Notice
that if a stable-component R does neither contain a gem or an S-bull, then it is
trivial.

The following definitions have been introduced in [7] for the study of graphs
in [�]s. Let G = (V,E) be in [�]s with split partition (K,S). Consider a [�]s-
representation of G. Clearly, the clique K must be represented as an edge-clique
that corresponds to the base, which we already defined above. Without loss of
generality, we may assume that the base is vertical. The horizontal parts of
the paths representing vertices in K are called branches. Let F be the vertical
segment which is the union of the vertical parts of all paths representing vertices
in K. The part of F below the base is called the trunk. The part of F above the
trunk is called the crown.

The following theorem provides a characterization of graphs in [�]s.

Theorem 1 ([9]). Let G be a split graph with split partition (K,S). Then
G ∈ [�]s if and only if there exist S1, S2 ⊆ S such that:

(a) each Si for i ∈ {1, 2} is a set of pairwise comparable vertices;
(b) for every gem in G with vertex set {c1, s1, c2, s2, c3} (see Fig. 2a), either

s1 ∈ S1 or s2 ∈ S1;
(c) for every S-bull in G with vertex set {s1, c1, s2, c2, s3} (see Fig. 2b), at least

one of s1, s2, s3 belongs to S1 or s2 ∈ S2.

In the proof of Theorem 1, the set S1 represents the vertices corresponding
to the paths lying on the crown in the constructed representation, S2 represents
the vertices corresponding to the paths lying on the trunk, while the paths
corresponding to the vertices in S − (S1 ∪S2) are actually on the branches since
they can be partitioned into trivial-components.

The following simple but general observation will also be useful when we will
need to rotate some representations in the sequel. The proof is not difficult and
we omit it here.

Observation 1. For any split graph G in B1-EPG with split partition (K,S),
there always exists a B1-EPG representation of G such that all paths correspond-
ing to vertices of S contain no bend.

On Some Subclasses of Split B1-EPG Graphs 629

By Observation 1, we may from now on assume that all paths of S are
unbended in any B1-EPG representation of a split graph G = (K,S).

3 Forbidden Induced Subgraph for [�]s

In [7], the authors conjectured that the graphs in [�]s can be characterized by a
list of nine forbidden induced subgraphs. Recently, the authors in [9] disproved
this conjecture by presenting an additional forbidden induced subgraph. In this
section, we show that a finite forbidden induced subgraph characterization of the
graph class [�]s does not exist. To do this, we exhibit an infinite set of minimal
forbidden induced subgraphs for this class of graphs.

Proposition 1. There exists an infinite family of minimal split graphs that are
not in [�]s.

Proof. We construct a minimal split graph that does not belong to the [�]s
class and whose size can be arbitrarily large. Consider the split graph G(k) =
(C,S) as represented in Fig. 3 for k ≥ 2. The set of stable vertices S of G(k) is
decomposed into three classes as S = X ∪ Y ∪ Z, where X = {x1, x2, . . . , xk},
Y = {y1, y2, . . . , yk} and Z = {z1, z2, . . . , z6} for k ≥ 2. For simplicity, the
vertices of the clique C = {c1, c2 . . . , c2k+5} are depicted as 1, 2, . . . , 2k + 5 in
Fig. 3.

We construct the graph G(k) as follows:

(i) N(xk) = {c2k+4, c2k+5}, and N(xi) = {c2i+1, c2i+2, . . . , c2k+5} for i∈ [k−1].
(ii) N(yk) = {c2k+2, c2k+3, c2k+5}, N(yk−1) = {c2k−2, c2k, c2k+1, c2k+2, c2k+3,

c2k+5}, and N(yi) = {c2i, c2i+2} ∪ {c2i+4, c2i+5, . . . , c2k+5} for i ∈ [k − 2].
(iii) N(z1) = {c1, c3}, N(z2) = {2k, 2k + 1}, and N(zi) = {c2k−3+i} for i ∈

{3, 4, 5, 6}.

We can easily see that G(k) has the following properties:

• x1 > x2 > . . . > xk and y1 > y2 > . . . > yk.
• xk, yk, c2k+3, c2k+4, c2k+5 induce a gem.
• xk, yk−1, c2k+3, c2k+4, c2k+5 induce a gem.
• For each i ∈ [k − 1], xi, yi, c2i, c2i+1, c2k+5 induce a gem.
• For each i ∈ [k − 2], xi+1, yi, c2i, c2i+3, c2k+5 induce a gem.
• For each i ∈ [k − 2], yi dominates xi+2.
• For each i ∈ [k − 1], xi dominates yi+1.

We first show that G(k) does not admit a [�]-representation and then we prove
its minimality. Assume to the contrary that G(k) admits a [�]-representation G
and hence there exist S1, S2 as defined in Theorem 1. Recall that for each i ∈ [k],
xi, yi are the two S-vertices of an induced gem in G(k). Then by Theorem 1,

630 Z. Deniz et al.

xk xk−1 xk−2

z1

z2 z3z4z5

yk yk−1 yk−2

· · ·

· · ·

C

z6

· · ·

c2k+4c2k+2c2kc2k−2

y1y2y3

x1x2x3

2k-32k-22k-12k2k+12k+22k+32k+42k+5 2k-4 123456789

Fig. 3. Forbidden subgraph configuration

one of xi, yi should be in S1. Furthermore x1, z1 are the two S-vertices of an
induced gem in G(k). Thus, again by Theorem 1, one of x1, y1 should be in
S1. Then, we have to put x1 in S1 since x1, y1, z1 are pairwise incomparable
vertices, and S1 consists of pairwise comparable vertices. Consequently, since
x1 ∈ S1, y1 /∈ S1 and y1 is a gem with x2, we have x2 ∈ S1, y2 /∈ S1. By
applying the same argument, we then have S1 = {x1, x2, . . . , xk} = X. Notice
that z2, z3, z4, c2k, c2k+1 induce an S-bull as well as z5, z6, yk, c2k+2, c2k+3 with
no stable vertices in S1. Since S2 must be a set of pairwise comparable vertices,
and since the vertices z2 and yk are incomparable, S2 cannot contain both of
them. This is a contradiction with Theorem 1. Therefore, G does not admit a
[�]-representation.

For the minimality of G(k), and let G = G(k), we need to check that for
every v ∈ V (G), G− v admits a [�]-representation. It can be done by exhibiting,
for each v ∈ V (G), two subsets of vertices S1, S2 satisfying the conditions of
Theorem 1 for G − v. This is a tedious but not difficult task, and we leave it to
the reader. ��

We immediately obtain the following:

Theorem 2. The set of minimal forbidden induced subgraph for the graph class
[�]s is infinite.

As a consequence, the search for a polynomial-time recognition algorithm con-
sisting in simply checking the existence of a finite list of graphs as induced sub-
graphs can be discarded. Of course, this does not imply that no polynomial-time
algorithm exists and this question remains open.

On Some Subclasses of Split B1-EPG Graphs 631

4 Restricted Shape B1-EPG Subclasses for (S-bull)-free
Split Graphs

In this section, we present forbidden induced subgraph characterizations for all
possible subclasses of (S-bull)-free graphs in B1-EPGs with respect to shapes.
We first mention a simple result which was proven in [9].

Proposition 2 [9]. Consider a B1-EPG representation of a gem (see
Fig. 2(a)). Let K = {c1, c2, c3} and S = {s1, s2}. If K is represented as an
edge-clique with base going from (xi, yj) to (xi+1, yj) or if K is represented as
a claw-clique with center (xi, yj) and no path of K uses the grid-edge going
from (xi, yj−1) to (xi, yj), then at least one of Ps1 , Ps2 intersects paths of K on
column yj.

The following proposition will be useful in deriving the subsequent results.

Proposition 3. Let G = (K,S) be a split graph in B1-EPG. Then three paths
corresponding to pairwise incomparable vertices of S can not lie on a same row
or column in any B1-EPG representation of G.

Proof. Assume by contradiction that there are three such paths corresponding
to pairwise incomparable vertices of S lying on some column yj . If the base
is vertical, then at least two of these three paths must lie on the same side
(above or below) of it. But by Observation 4 in [9], they must be comparable,
a contradiction. Assume then the base is horizontal, say it is on the row xi.
Then all paths of K using a grid edge on column yj are bended at a grid point
p = (xi, yj). Then any set of paths of S using grid edges on column yj above
(resp. below) p must be comparable by Observation 4 in [9]. Notice that if there is
a path of S using grid edges from (xi−1, yj) to (xi+1, yj), it must be comparable
with all other paths of S lying on column yj . We then conclude that there are
at most two incomparable vertices of S lying on column yj ; one lies below p, the
other lies above p. This completes the proof. ��

Using Proposition 2, it is easy to show that the graph V1 in Fig. 4 is not in
B1-EPG.

Lemma 2. The graph V1 is not in B1-EPG.

We know from Theorem 1, that if a split graph is {S-bull,gem}-free, by
choosing S1 = S2 = ∅, we obtain a [�]-representation of G such that every
vertex of S lies on a branch of the representation.

Corollary 1. Any {S-bull,gem}-free split graph admits a [�]-representation such
that all vertices of S lie on branches of the representation.

In [7], the authors prove the following.

Theorem 3 ([7, Theorem 24]). Let G be a graph with a split partition (K,S)
and containing no S-bull. Then G admits a [�]-representation if and only if G
is {U1, G4}-free (see Fig. 4).

632 Z. Deniz et al.

Fig. 4. (a) The graph U1. (b) The graph V1. (c) The graph G4. (d) [�, �] representation
of G4.

Consider a {S-bull, U1, G4}-free split graph G. We know from Theorem 3 that
it admits a [�]-representation. But now we can choose S2 = ∅ in Theorem 1
because G has no S-bull. Moreover, the representation constructed in Theo-
rem 1 associates S2 with the paths lying on the trunk. Therefore, we obtain the
following.

Corollary 2. Let G be a {S-bull, U1, G4}-free split graph. Then G admits a
[�]-representation with all vertices in S lying on the crown and the branches of
the representation.

An asteroidal triple (AT) is a stable set consisting of 3 vertices such that for
any two of them, there is a path between them which avoids the neighborhood
of the third vertex.

Lemma 3 (AT Lemma [2, Theorem 9]). In a B1-EPG graph, no vertex can
have an AT in its neighborhood.

The next result gives a characterization of {S-bull}-free split graphs admit-
ting a [�, �]-representation.

Theorem 4. Let G be a {S-bull}-free split graph. Then G admits a [�, �]- rep-
resentation if and only if G is {U1, V1}-free.
Proof. From [7, Theorem 24], we know that if G is {U1, G4}-free, then G admits
a [�, �]-representation. Therefore, we only need to prove the following:

(a) U1 is not in [�, �]s,
(b) V1 is not in [�, �]s,
(c) If a {S-bull, U1, V1}-free split graph contains G4, then it is in [�, �]s.

Assertion (a) can be easily deduced from Lemma 3 and (b) is a direct con-
sequence of Lemma 2. Thus, we are left with the proof of (c). First we know
that G4 is in [�, �]s (see Fig. 4). Let G be a {S-bull, U1, V1}-free split graph
containing G4 whose stable vertices are s1, s2, s3, s4 as depicted in Fig. 4 and let
C1 = N(s1) ∪ N(s2), C2 = N(s3) ∪ N(s4). For a set S′ of vertices belonging to
a stable-component, we define its closure S′ as the set of stable vertices of the
whole stable-component. Let S1 = {s1, s2}, S2 = {s3, s4}.

On Some Subclasses of Split B1-EPG Graphs 633

Claim 1: S1
= S2.
Proof of the Claim. We first claim that C1 ∩ C2 = ∅. By contradiction,

suppose that r ∈ (N(s1)∩N(s3)). Clearly, r
= ci, for each i ∈ [6]. If one of s2, s4
is in N(r), say s2 ∈ N(r), then the vertices r, s1, c1, s2, c3, s3, c6 induce U1, a
contradiction. If none of s2, s4 is in N(r), then s2, c2, s1, r, s3 induces an S-bull,
again a contradiction. Hence C1 ∩ C2 = ∅.

Assume the closure S1 contains s3 (and hence, also s4). By definition, there
is a path

s1, a1, b1, a2, b2, . . . , bk−1, ak, bk = s3

such that ai ∈ K, bi ∈ S, for each i ∈ [k]. Among all those paths between
s1 and s3, choose one with minimum k. Since C1 ∩ C2 = ∅, we have k ≥ 2.
Notice that we could have b1 = s2 and/or bk−1 = s4. By minimality of k, s1, a2
are nonadjacent, and a1, b2 are nonadjacent. But now s1, a1, b1, a2, b2 induce an
S-bull, a contradiction. Hence, S1 does not contain s3, s4, which of course also
means that S2 does not contain s1, s2. This implies that S1
= S2.

Notice that since S1 (resp. S2) does not contain s3, s4 (resp. s1, s2), the graph
H1 (resp. H2) induced by N [S1] (resp. N [S2]) is actually G4-free (otherwise we
obtain V1, a contradiction). Furthermore, H1 and H2 are disjoint. By Corollary
2, the graph Hi admits a [�]-representation with all vertices in Si lying on the
crown and the branches of the representation, for i = 1, 2. So we can combine
both representations by rotating one by 180 degrees and merging their bases, to
obtain a [�, �]-representation of H1 ∪ H2, see Fig. 5. Finally, consider the graph
H induced by N [R], with R = S\(S1 ∪ S2). It is disjoint from H1,H2 since
otherwise some vertices of R would belong to Si for i = 1, 2. Moreover, the
graph H cannot contain a gem (otherwise G contains V1 as above) and of course
it does not contain an S-bull. Hence, H admits a [�]-representation such that all
vertices of S lie only on branches of the representation, according to Corollary 1.
Now it is easy to see that we can combine this representation with the previous
one by merging again their bases. This completes the proof of the theorem. ��

Fig. 5. The combination of two [�]-representations R1, R2.

634 Z. Deniz et al.

In [9], the authors showed that [�, �]s � [�, �]s � [�, �, �]s � B1-EPGs. By
Theorem 4, U1 and V1 are the only minimal forbidden induced subgraphs for
{S-bull}-free split graphs in [�, �]s and they are also forbidden for B1-EPG by
Lemma 2 and Lemma 3. We therefore conclude that the equalities [�, �]s =
[�, �]s = [�, �, �]s = B1-EPGs hold. Furthermore, since G4 is in [�, �]s, but not
in [�]s by [7, Lemma 20], we have the following result.

Theorem 5. For {S-bull}-free split graphs, we have [�]s � [�, �]s = [�, �]s =
[�, �, �]s = B1-EPGs.

5 Restricted Shape B1-EPG Subclasses for Gem-Free
Split Graphs

In this section, we present a result similar to Theorem 5, but for gem-free split
graphs. Due to space restrictions, we decided to omit the intermediate results
and proofs. We therefore formulate directly our theorem and refer the interested
reader to an extended version of this paper.

Theorem 6. For all gem-free split graphs, we have

[�]s = [�, �]s � [�, �]s = [�, �, �]s = B1-EPGs

More precisely, we have the following forbidden induced subgraphs characteriza-
tions. Apart from the three minimal forbidden induced subgraphs for the class of
split graphs (C4, C5 and 2K2) and the gem:

– the only minimal forbidden induced subgraph of [�]s = [�, �]s is G5 (see
Fig. 6a);

– the minimal forbidden induced subgraphs of [�, �]s = [�, �, �]s = B1-EPGs are
G10, G11, G12, G13 (see Fig. 7).

Fig. 6. The graph G5 and its B1-EPG representation.

On Some Subclasses of Split B1-EPG Graphs 635

Fig. 7. The graphs G10, G11, G12 and G13.

6 Conclusion

In this paper, we were interested in split graphs as edge intersection graphs of sin-
gle bend paths on a grid. We first exhibited an infinite set of minimal forbidden
induced subgraphs for the class [�]s, showing the non-existence of a straightfor-
ward forbidden induced subgraph search as a polynomial detection algorithm
for this class. It is still open whether the graphs in [�]s can be recognized in
polynomial-time.

We were also interested in some subclasses of split graphs that are in B1-
EPG such as gem-free, (S-bull)-free. In [7], the authors have characterized gem-
free (resp. S-bull-free) split graph in [�]s by a list of minimal forbidden induced
subgraphs. We here managed to generalise these results to gem-free (resp. S-bull-
free) graphs that are in [P]s, for any subset P of {�, �, �, �}. Our characterization
implies that all these graph classes can all be recognised in polynomial time.

In [9], a relationship was given among subsets of split graphs that are in [P]s,
for any subset P of {�, �, �, �}. We here showed that [�]s � [�, �]s = [�, �]s =
[�, �, �]s = B1-EPGs when we restrict to the set of S-bull free split graphs.
In addition, we have obtained a similar result for gem-free split graphs: [�]s =
[�, �]s � [�, �]s = [�, �, �]s = B1-EPGs.

Acknowledgements. This work was done while the first author visited the University
of Fribourg, Switzerland. The support of the institution is gratefully acknowledged.

References

1. Alcón, L., Bonomo, F., Durán, G., Gutierrez, M., Mazzoleni, M.P., Ries, B.,
Valencia-Pabon, M.: On the bend number of circular-arc graphs as edge inter-
section graphs of paths on a grid. Discrete Appl. Math. 234, 12–21 (2018)

2. Asinowski, A., Ries, B.: Some properties of edge intersection graphs of single-bend
paths on a grid. Discrete Math. 312(2), 427–440 (2012)

3. Asinowski, A., Suk, A.: Edge intersection graphs of systems of paths on a grid with
a bounded number of bends. Discrete Appl. Math. 157(14), 3174–3180 (2009)

4. Bessy, S., Bougeret, M., Chaplick, S., Goncalves, D., Paul, C.: On independent set
in B1-EPG graphs. Discrete Appl. Math. 278, 62–72 (2020)

636 Z. Deniz et al.

5. Biedl, T., Stern, M.: Edge-Intersection Graphs of k -Bend Paths in Grids. In: Ngo,
H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 86–95. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02882-3 10

6. Bonomo, F., Mazzoleni, M.P., Stein, M.: Clique coloring B1-EPG graphs. Discrete
Math. 340(5), 1008–1011 (2017)

7. Cameron, K., Chaplick, S., Hoáng, C.T.: Edge intersection graphs of L-shaped
paths in grids. Discrete Appl. Math. 210, 185–194 (2016)

8. Cohen, E., Golumbic, M.C., Ries, B.: Characterizations of cographs as intersection
graphs of paths on a grid. Discrete Appl. Math. 178, 46–57 (2014)

9. Deniz, Z., Nivelle, S., Ries, B., Schindl, D.: On split B1-EPG graphs. In: Ben-
der, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) Proceeding of the 13th Latin
American Symposium on Theoretical Informatics, LATIN 2018. LNCS, vol. 10807,
pp. 361–375. Springer (2018)

10. Graph Theory. PBM. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97686-0 15

11. Epstein, D., Golumbic, M.C., Lahiri, A., Morgenstern, G.: Hardness and approxi-
mation for L-EPG and B1-EPG graphs. Discrete Appl. Math. October 2019

12. Epstein, D., Golumbic, M.C., Morgenstern, G.: Approximation algorithms for B1-
EPG graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 328–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40104-6 29

13. Francis, M.C., Lahiri, A.: VPG and EPG bend-numbers of Halin graphs. Discrete
Appl. Math. 215, 95–105 (2016)

14. Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend
paths on a grid. Networks 54(3), 130–138 (2009)

15. Heldt, D., Knauer, K., Ueckerdt, T.: Edge-intersection graphs of grid paths: the
bend-number. Discrete Appl. Math. 167, 144–162 (2014)

16. Heldt, D., Knauer, K., Ueckerdt, T.: On the bend-number of planar and outerpla-
nar graphs. Discrete Appl. Math. 179, 109–119 (2014)

17. Pergel, M., Rzazewski, P.: On edge intersection graphs of paths with 2 bends.
Discrete Appl. Math. 226, 106–116 (2017)

18. West, D.B.: Introduction to Graph Theory. Prentice-Hall, United States (1996)

https://doi.org/10.1007/978-3-642-02882-3_10
https://doi.org/10.1007/978-3-319-97686-0_15
https://doi.org/10.1007/978-3-319-97686-0_15
https://doi.org/10.1007/978-3-642-40104-6_29
https://doi.org/10.1007/978-3-642-40104-6_29

On the Helly Subclasses of Interval
Bigraphs and Circular Arc Bigraphs

M. Groshaus2, A. L. P. Guedes1(B), and F. S. Kolberg1

1 Universidade Federal do Paraná, Curitiba, Brazil
{andre,fskolberg}@inf.ufpr.br

2 Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
marinagroshaus@utfpr.edu.br

Abstract. A bipartite graph G = (U, V,E) is an interval bigraph if
and only if there is a one to one correspondence between U ∪ V and a
family of intervals on the number line such that two vertices of oppos-
ing partite sets are neighbors precisely if their corresponding intervals
intersect. Interval bigraphs, as well as many subclasses, have been exten-
sively studied by multiple researchers along the years, and many results
on their structural and computational properties have been discovered.
A bipartite graph G = (U, V,E) is a circular arc bigraph if and only if
there is a one to one correspondence between U ∪V and a family of arcs
on a circle such that two vertices of opposing partite sets are neighbors
precisely if their corresponding arcs intersect. While it is a generaliza-
tion of interval bigraphs, it remains a relatively unexplored topic. Few
studies about the class and its proper, unit and Helly subclasses have
been presented. In this work, we study some subclasses of these classes.
We provide forbidden structure characterizations for the Helly subclass
of interval bigraphs, as well as the class of non-bichordal Helly circular
arc bigraphs. We also prove that Helly interval bigraphs are a subclass
of proper interval bigraphs, and that non-bichordal Helly circular arc
bigraphs are a subclass of proper circular arc bigraphs.

Keywords: Interval bigraphs · Proper interval bigraphs · Helly ·
Circular arc bigraphs

1 Introduction

The bipartite graph class of interval bigraphs arises as a variation on the class
of interval graphs [2]. A bipartite graph G = (U, V,E) is said to be an interval
bigraph if it admits a one to one correspondence between its vertices and a family
of intervals on the number line such that, for any pair of vertices u ∈ U, v ∈ V ,
uv ∈ E precisely if their corresponding intervals intersect. Having been an object
of study for at least three decades, characterizations and recognition algorithms

*This work was partially supported by ANPCyT (PICT-2013–2205), CONICET,
CAPES and CNPq (428941/2016-8).

c© Springer Nature Switzerland AG 2020
Y. Kohayakawa and F. K. Miyazawa (Eds.): LATIN 2020, LNCS 12118, pp. 637–648, 2020.
https://doi.org/10.1007/978-3-030-61792-9_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61792-9_50&domain=pdf
https://doi.org/10.1007/978-3-030-61792-9_50

638 M. Groshaus et al.

for the class [10,11] and its proper [3,5] subclass have been presented, as well as
studies on the relationship between the class and multiple other classes [3,8].

The class of circular arc bigraphs (shortened to CA bigraphs) [1] is a bipartite
variation on circular arc graphs [9] and a generalization of interval bigraphs. A
bipartite graph G = (U, V,E) is said to be a circular arc bigraph if it admits a one
to one correspondence between its vertices and a family of arcs on a circle such
that, for any pair of vertices u ∈ U, v ∈ V , uv ∈ E precisely if their corresponding
arcs intersect. While a relatively new topic, multiple characterizations for the
class and its proper and unit subclasses [1,5] exist, as well as polynomial time
recognition algorithms for its Helly subclass [6].

In this paper, we present forbidden structure characterizations for Helly inter-
val bigraphs and non-bichordal Helly CA bigraphs. We also prove that Helly
interval bigraphs are a proper subclass of proper interval bigraphs, and that
non-bichordal Helly CA bigraphs are a subclass of proper CA bigraphs.

2 Definitions

Denote bipartite graphs as triples (U, V,E), where U, V are the graph’s partite
sets, and E is its set of edges. We call V the opposite partite set to U , and vice
versa. For any integer n > 2, denote by Cn an induced cycle on n vertices. A
bipartite graph is said to be bichordal if it admits no induced Cn, n > 4. A graph
that admits an induced Cn, n > 4 is then called non-bichordal.

Given a graph G, a clique (biclique) K ⊂ V (G) is a maximal subset such
that G[K] is a complete (bipartite-complete) graph. For any graph G = (V,E),
denote by G2 = (V,E2) its square graph, where E2 = {vw|d(v, w) ≤ 2}.

If two vertices v, w ∈ V (G) are such that their open neighborhoods are equal,
they are called twins. Given a graph G, the twin-free version of G is the graph
resulting from removing, for every set of twins in G, every vertex but one. Given
a graph G, G∗ is the graph G with an isolated vertex added to it.

Given a permutation (s1, ..., sn) of a set S, a subset S′ ⊂ S is said to be
circularly consecutive in the permutation if S′ or S−S′ are consecutive in it. We
then call the interval that contains S′ the sequence of indices of the elements
of S′ in the permutation, in numerical order if S′ is consecutive. If S − S′ is
consecutive, then S will be broken in two consecutive subsets in the permutation,
and its interval consists of the indices of the second subset in numerical order,
followed by the indices of the first subset.

In this paper, we adopt the notation of bi-interval and bi-circular-arc models
from [6]. A bi-interval model is a pair of families (E,F) of intervals on the real line.
The corresponding graph of a bi-interval model (E,F) is constructed by creating
a vertex for each element of E ∪ F and, for every pair of intervals E ∈ E, F ∈ F,
an edge between the vertices of E and F is added precisely if E ∩ F �= ∅.

Similarly, a bi-circular-arc model is a triple (C, I,E) such that C is a circle,
and I,E are arcs over C. The corresponding graph of a bi-circular-arc model is
built by creating a vertex vA for each arc A ∈ I ∪ E and, for every pair of arcs
I ∈ I, E ∈ E, an edge vIvE is added if and only if I ∩ E �= ∅. It is easy to verify

On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs 639

that a bipartite graph is an interval bigraph (CA bigraph) if and only if it is the
corresponding graph of a bi-interval (bi-circular-arc) model.

A graph is a proper interval bigraph if it admits a bi-interval model (A,B)
such that A and B are proper families (i.e. no two distinct elements of the family
are comparable) [5]. Analogously, a graph is a proper CA bigraph if it admits a
bi-circular-arc model (C, I,E) such that I and E are proper families [1].

In this paper, we consider all arcs and intervals to be open unless otherwise
stated.

A family F is said to be intersecting if, for every pair E,F ∈ F, we have
E ∩ F �= ∅. Analogously, a pair of families E,F is bipartite-intersecting if, for
every E ∈ E, F ∈ F, E∩F �= ∅. A pair of families E,F is then said to be bipartite-
Helly if, for every bipartite-intersecting pair of subfamilies E′ ⊂ E,F′ ⊂ F, there
exists an element x such that, for every F ∈ E

′ ∪ F
′, x ∈ F [7].

3 Helly Interval Bigraphs

A bipartite graph G is a Helly interval bigraph if it admits a bi-interval model
(A,B) that verifies the bipartite-Helly property.

Equivalently, a bipartite graph G is a Helly interval bigraph if and only if it
admits a bi-interval model (A,B) in which, for every biclique B ⊂ V (G), there
is a point pB on the number line such that, for any interval A ∈ A ∪ B that
corresponds to a vertex of B, pB ∈ A. The class can be recognized in quadratic
time due to the fact that a bipartite graph is a Helly interval bigraph if and
only if its square is an interval graph [6] and interval graphs can be recognized
in linear time [2].

In this section, we provide a forbidden subgraph characterization of Helly
interval bigraphs, and prove their inclusion in the class of proper interval
bigraphs. For the characterization, we use the graphs from Fig. 1 and every even
cycle of length greater than 4 as forbidden subgraphs. Note that we may work
with twin-free, connected graphs without loss of generality.

Fig. 1. Forbidden graphs for the class of Helly interval bigraphs. From left to right,
the T2, the domino, and the X2.

Let G be a Helly interval bigraph and P = (p1, ..., pn) be an induced path in
it. Call a nuisance on p1, p3 (resp. nuisance on pn−2, pn) a vertex v ∈ V (G) − P
such that p1, p3 ∈ N(v) (resp. pn−2, pn ∈ N(v)).

640 M. Groshaus et al.

Lemma 1. If G is a connected twin-free Helly interval bigraph, then there exists
in G an induced path of maximum length for which no nuisances exist.

Proof. By contradiction, we suppose that there isn’t such a path. Let P =
(p1, ..., pn) be a maximum length induced path such that the number of nui-
sances on pn−2, pn is minimum. For |P | < 4, the proof is trivial. Suppose, then,
that the length of P is at least 4. Let S ⊂ V (G) the set of vertices for which there
exists t ∈ V (G) such that (s, t, p3, ..., pn) is an induced path, and let T ⊂ V (G)
the set of vertices for which there exists s ∈ S such that (s, t, p3, ..., pn) is an
induced path. We claim that every element of S has at least two neighbors
in T . For that, consider these two cases: (1) Every induced path of the form
(q1, ..., qn) ({q1, ..., qn} ⊂ V (G)) has nuisances on both q1, q3 and qn−2, qn, or (2)
Path (p1, ..., pn) has no nuisance on pn−2, pn.

Start with case 1. Suppose there exists s ∈ S such that t ∈ N(s) ∩ T . The
induced path (s, t, p3, ..., pn) must contain a nuisance on s, p3. Let x ∈ V (G) be
said nuisance. Note that x is not neighbor to any element of {p4, ..., pn}, since
that would induce either a domino or a cycle of length greater than 4. Therefore,
(s, x, p3, ..., pn) is also an induced path, implying x ∈ T ∩ N(s).

Now for case 2. The fact that every element of S has at least two neighbors
in T follows analogously to the previous case for |P | > 4. The case where |P | = 4
is special, however, since changing the first two elements of the path changes the
vertex in position n − 2 of the path. Let p′

2 be a nuisance on p1, p3. Suppose
there exists s ∈ S such that N(s) ∩ T = {t}. The path (s, t, p3, p4) must have
a nuisance. If there was a nuisance on s, p3, there’d be more than one vertex in
N(s) ∩ T . Therefore, there is a nuisance on t, p4. Note that t �= p2, otherwise,
there’d be a nuisance in P on p2, p4. Let y be a nuisance on t, p4. If p1t �∈ E(G),
then (s, t, p3, p2, p1) is an induced path, contradicting the premise that P is a
maximum length induced path. Therefore, p1 is neighbor to t. This being the
case, consider the graph induced by p1, p2, p3, p4, t, y. Note that y cannot be
neighbor to p2, otherwise P would have a nuisance in p2, p4, and p1p4 �∈ E(G),
otherwise P would not be an induced path. With that, however, p1, p2, p3, p4, t, y
induce a domino.

Therefore, in both case 1 and 2, every s ∈ S is such that |N(s) ∩ T | ≥ 2. We
now claim that every pair of elements s, s′ ∈ S is such that N(s)∩T and N(s′)∩T
are comparable. Suppose otherwise. In that case, there exist t ∈ T ∩N(s)−N(s′)
and t′ ∈ T ∩ N(s′) − N(s).

First, suppose |P | = 4. In this case, since (s, t, p3) and (s′, t′, p3) are both
induced paths, then (s, t, p3, t′, s′) is an induced path of length greater than |P |,
contradicting the assumption that P is a maximum length induced path.

Suppose, therefore, that |P | > 4. In this case, the fact that (s, t, p3) and
(s′, t′, p3) are induced paths leads to a T2 in s, t, s′, t′, p3, p4, p5.

Therefore, in all cases, we have it that every s ∈ S has at least two neigh-
bors in T , and that any pair of elements from S has comparable neighborhoods
inside T . Let S = {s1, ..., sk} such that N(si) ∩ T ⊆ N(sj) ∩ T when i < j.
Let t1, t2 ∈ N(s1) ∩ T . Note that N(t1) and N(t2) contain p3, plus all of S.

On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs 641

They must not be twins, however, implying there exists a vertex x ∈ V (G) that
is neighbor to t1 and not t2, or vice-versa. Suppose the former w.l.o.g.

If (x, t1, p3, ..., pn) is an induced path, then x ∈ S, and therefore x must also
be neighbor to t2. Therefore, (x, t1, p3, ..., pn) is not an induced path, imply-
ing x is neighbor to some vertex from {p3, ..., pn}. If x is neighbor to p4, then
s1, t1, t2, x, p3, p4 induces a domino, and if x is neighbor to pi, i > 4, then there
exists an induced cycle of length greater than 4.

Therefore, if every maximum length induced path in G has nuisances, then
G is either not twin-free, or contains a forbidden induced subgraph. �

Lemma 2. Let G be a connected twin-free Helly interval bigraph, and P =
(p1, ..., pn) a maximum length induced path in G for which no nuisances exist.
Then every vertex in V (G) − P has exactly one neighbor in P .

Proof. Suppose there exists v ∈ V (G)−P such that |N(v)∩P | ≥ 3. If there exist
pa, pb, pc ∈ P ∩ N(v) such that a = b + 2, b = c + 2, then pa, pa−1, pb, pb−1, pc, v
induce a domino. Otherwise, if there are two elements pa, pb ∈ P ∩ N(v) such
that a > b + 2 and for every a < i < b, pi �∈ N(v), then pa, pa−1, ..., pb+1, pb, v
induce an even cycle of length greater than 4.

Suppose, then, that there exists v ∈ V (G)−P such that N(v)∩P = ∅. Since
G is connected, there exists a path from v to P . Let v1 be the last element of
that path to have no neighbors in P , and v2 the first element that has. Then
v2 has either one or two neighbors in P . If v2 has two neighbors in P and
is not a nuisance, either it is neighbor to two vertices more than two indices
apart in the path (inducing a cycle of length greater than 4) or it is neighbor
to two vertices pi, pi+2, 1 < i < n − 2. In that case, an X2 is induced with
pi−1, pi, pi+1, pi+2, v1, v2.

Now suppose v2 is neighbor to exactly one vertex of P . If v2 is neighbor to
any vertex in {p1, p2, pn−1, pn}, that implies P is not a maximum length induced
path. If v2 is neighbor to any other vertex, a T2 is induced.

Therefore, every element of V (G) −P must have at least one neighbor in P .
Now suppose there is a vertex v that is neighbor to exactly two vertices of P .

Note that the two neighbors of v in P must be exactly two indices apart, other-
wise, a cycle of length greater that 4 is induced. Also, v must not be neighbor
to p1, p3 or pn−1, pn, since P has no nuisances. So let v be neighbor to pi, pi+2,
with 1 < i < n − 2. Since v and pi+1 are not twins, either v has a neighbor
it does not share with pi+1 or vice-versa. Suppose the former w.l.o.g. and let
w ∈ N(v) − N(pi+1).

If w is neighbor to no element of P , then an X2 is induced, otherwise, either
a domino or a cycle of length greater than 4 is induced. Therefore, for every
v ∈ V (G) − P , |N(v) ∩ P | = 1. �

Lemma 3. Let G be a connected twin-free Helly interval bigraph, and P =
(p1, ..., pn) a maximum length induced path in G that has no nuisances. Let
v, w ∈ V (G) − P , with {pi} = N(v) ∩ P , and {pj} = N(w) ∩ P , with i even, j
odd, and i �= j + 1, j − 1. Then vw �∈ E(G).

642 M. Groshaus et al.

Proof. If vw ∈ E(G), then (v, w, pj , ..., pi) is an induced cycle of length greater
than 4. �

Lemma 4. Let G be a connected twin-free Helly interval bigraph, and P =
(p1, ..., pn) a maximum length induced path in G without nuisances. Let v, w, x ∈
V (G) − P , with {pi} = N(v) ∩ P , {pi+1} = N(w) ∩ P , and {pi+2} = N(x) ∩ P .
Then vw �∈ E(G) or wx �∈ E(G).

Proof. If vw,wx ∈ E(G), then v, w, x, pi, pi+1, pi+2 induce a domino. �

Lemma 5. Let G be a connected twin-free Helly interval bigraph, and P =
(p1, ..., pn) a maximum length induced path in G without nuisances. Let v, w ∈
V (G)−P such that N(v)∩P = N(w)∩P = pi and N(v)∩N(pi+1) �= ∅ �= N(w)∩
N(pi+1) (resp. N(v) ∩N(pi−1) �= ∅ �= N(w) ∩N(pi−1)). Then N(v) ⊂ N(w) or
N(w) ⊂ N(v).

Proof. By the previous lemmas, we know that, for both v and w, all of their
neighbors outside P are neighbors of pi+1 (resp. pi−1), as otherwise, there
would occur an induced domino. If N(v) and N(w) are not comparable, that
implies there exist v′ ∈ N(v) − N(w) and w′ ∈ N(w) − N(v) such that v′, w′ ∈
N(pi+1) (resp. v′, w′ ∈ N(pi−1). The graph induced by v, w, v′, w′, pi, pi+1 (resp.
v, w, v′, w′, pi, pi−1) is a domino. �

Lemma 6. A bipartite graph is a Helly interval bigraph if and only if it is
possible to arrange its bicliques in a linear order such that, for every vertex,
the bicliques it belongs to are an interval of the order.

Theorem 1. Let G be a bipartite graph such that V (G) is composed of the union
of the following subsets, for k ≥ 1, n2, ..., nk−2 ≥ 0:

– P = {p1, p2, ..., pk}.
– V = {v2, ..., vk−1}.
– Wi = {wi,1, ..., wi,ni

} for all 1 < i < k − 1.
– Ui = {ui,1, ..., ui,ni

} for all 1 < i < k − 1.

And let the neighborhoods of the vertices in V (G) be the following:

– N(p1) = {p2}, N(pk) = {pk−1}, N(pi) = {pi−1, pi+1, vi} ∪ Wi ∪ Ui−1 for
1 < i < k.

– N(vi) = {pi}.
– N(wi,j) = {pi} ∪ {ui,l ∈ Ui|l ≤ j}, for all 2 ≤ i ≤ k − 2, 1 ≤ j ≤ ni.
– N(ui,j) = {pi+1} ∪ {wi,l ∈ Wi|l ≥ j}, for all 2 ≤ i ≤ k − 2, 1 ≤ j ≤ ni.

Then G is a Helly interval bigraph. Call graphs that fit this definition interval
theorem graphs (ITG for short).

Proof. The bicliques of G are the following: A2 = {p1, p2, p3} ∪ W2; Ak−1 =
{pk−2, pk−1, pk} ∪ Uk−2; Ai = {pi−1, pi, pi+1, vi} ∪ Wi ∪ Ui−1 for all 1 < i < k;

On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs 643

Bi,j = {pi, pi+1} ∪ {wi,m|m ≥ j} ∪ {ui,l|l ≤ j} for all 1 < i < k − 1, and
1 ≤ j ≤ ni.

We must now prove that it is possible to organize the bicliques in a linear
order such that, for every vertex, the bicliques it belongs to are consecutive.
Consider the order described as follows:

(A2, B2,1, ..., B2,n2 , A3, B3,1, ..., B3,n3 , A4, B4,1, ..., B4,n4 ,
A5, B5,1, ..., B5,n5 , A6, B6,1, ..., Bk−2,nk−2 , Ak−1).

Note that, for every vertex, the order presented is such that the family of
bicliques it belongs to are an interval. �
Corollary 1. A bipartite graph is a Helly interval bigraph if and only if it does
not contain a T2, a domino, an X2, or Ck, k > 4 as induced subgraphs.

Proof. Let G be a twin-free, connected bipartite graph without the aforemen-
tioned forbidden graphs.

According to the proof of Lemma 1, G admits a maximum length induced
path P = (p1, ..., pn) without nuisances. According to the proof of Lemma 2,
every vertex in V (G)−P is neighbor to exactly one vertex of P . Note that there
are no neighbors in V (G)−P to p1 or pn, as that would contradict the maximum
length of P . Let Vi = N(pi) ∩ V (G) − P for all 1 < i < n.

According to the proofs of Lemmas 3 and 4, every vertex v ∈ Vi is such that
N(v)−P ⊂ Vi−1 or N(v)−P ⊂ Vi+1. Also, according to the proof of Lemma 5, if
two vertices v, w ∈ Vi have neighbors in Vi+1 (or Vi−1), then their neighborhoods
must be comparable.

Under these restrictions, G is an induced subgraph of an ITG for large enough
k, n2, ..., nk−2: the path P would correspond to set P from the definition in
Theorem 1, any vertex in V (G)−P that has exactly one neighbor would belong
to V , the vertices of Vi, 1 < i ≤ k − 2 that have neighbors in Vi+1 would belong
to set Wi, and the vertices of Vi, 2 < i ≤ k−1 that have neighbors in Vi−1 would
belong to set Ui. Since ITGs are Helly interval bigraphs, then G also is. �

The proof of Theorem 2 depends on the following lemma.

Lemma 7. A bipartite graph G = (V,W,E) is a proper interval bigraph if and
only if there exists a linear order of V such that

1. for every w ∈ W , N(w) is an interval in that order, and
2. if w,w′ ∈ W are such that N(w) ⊂ N(w′), then the intervals of the order

containing N(w) and N(w′) either begin or end on the same vertex.

Proof. (⇒) If G is a proper interval bigraph, then, according to [4], it admits
a biadjacency matrix with a monotone consecutive arrangement. If we assume
that the columns of the matrix represent V , then the order of columns is a linear
order with the properties presented in the lemma. (⇐) If there exists a linear
order < with the properties presented, then, given a biadjacency matrix of G in
which the rows represent W , and the columns represent V ordered according to
<, there exists a permutation of rows under which the matrix has a monotone
consecutive arrangement. �

644 M. Groshaus et al.

Theorem 2. The class of Helly interval bigraphs is a subclass of the class of
proper interval bigraphs.

Proof. According to the proof of Corollary 1, every Helly interval bigraph is an
induced subgraph of an ITG. Furthermore, every ITG for which k is odd is an
induced subgraph of an ITG for which k is even. It suffices to prove, then, that
ITGs with even k are proper interval bigraphs, for any values of n2, ..., nk−2.

Let G be an ITG with its vertex set partitioned according to the definition
contained in Theorem 1, with k being even. The two partite sets of G are:

– A = {pi ∈ P |i odd} ∪ {vi ∈ V |i even} ∪
i<k−1⋃

i=2,i+2

Wi ∪
i<k−1⋃

i=3,i+2

Ui.

– B = {pi ∈ P |i even} ∪ {vi ∈ V |i odd} ∪
i<k−1⋃

i=3,i+2

Wi ∪
i<k−1⋃

i=2,i+2

Ui.

It suffices to show that there exists an ordering of A for which the properties
in Lemma 7 are observed. Consider an order < of A in which:

– p1 < v2 < w2,1, w2,n2 < p3.
– For even i < k − 1 and j < ni, wi,j < wi,j+1.
– For odd i < k − 1 and j < ni, ui,j < ui,j+1.
– For odd i < k − 1, pi < ui,1 < ui,ni

< vi+1 < wi+1,1 < wi+1,ni+1 < pi+2.

Note that order < is such that, for every b ∈ B, N(b) is consecutive in <,
and for any two elements b1, b2 ∈ B such that N(b1) ⊂ N(b2), either the lowest
or the highest vertex in N(b1) and N(b2) is the same. �

4 Non-Bichordal Helly Circular Arc Bigraphs

Similarly to the definition of Helly interval bigraphs, a bipartite graph is a Helly
CA bigraph if it admits a bi-circular-arc model (C, I,E) such that I,E verify the
bipartite-Helly property. Equivalently, a bipartite graph G is a Helly CA bigraph
precisely if it admits a bi-circular-arc model (C, I,E) such that, for every biclique
K ⊂ V (G) in the graph, there exists a point p ∈ C such that, for every v ∈ K,
the arc corresponding to v contains p.

In [6], a polynomial time recognition algorithm for the class, as well as a for-
bidden structure characterization for Helly CA bigraphs that admit an induced
C6, were presented. In this section, we present a generalization of that character-
ization for graphs that admit an induced Cn, for any even n > 4. The approach
we use to prove this characterization is analogous to the one used for Corollary 1
in the previous section. We also show that every non-bichordal Helly CA bigraph
is a proper CA bigraph.

The forbidden graphs we use for the class are the ones in Fig. 2, alongside
every Cn

∗ for n > 4. Graphs BW3 and O4 only turn up in the proofs of the case
for n = 6 in [6]. Note that, once more, we may assume the graphs are twin-free
without loss of generality.

Since the case for which a C6 is present is treated in [6], in here, we focus on
graphs that have a cycle of length greater than 6.

On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs 645

Fig. 2. Forbidden graphs for the class of Helly CA bigraphs. From left to right, T2, O2,
BW3, O4, L3 ∪ P2. Graphs BW3 and L3 ∪ P2 are proper CA bigraphs.

Lemma 8. If G is a twin-free Helly CA bigraph with an induced Cn, n > 6,
then every vertex outside the Cn is neighbor to exactly one vertex of the Cn.

Proof. Suppose, first, that there exists a vertex v that is neighbor to three or
more vertices of the induced cycle C = (c1, ..., cn). If there are three neighbors
of v of the form ci, ci+2, ci+4, then G contains an induced O2. Now, if there are
no three neighbors of that form, consider three vertices cx, cy, cz ∈ N(v) ∩ C
such that cx is at a distance of at least 4 from cy and cz in G[C]. Let c′

y ∈
N(cy) ∩ C − N(cz) and c′

z ∈ N(cz) ∩ C − N(cy). Note that T2 is induced by
v, cx, cy, cz, cx+1, c

′
y, c

′
z.

Consider, now, that v is neighbor to exactly two vertices of C. Suppose, first,
that N(v) ∩C = {cx, cy} with x �= y + 2, y − 2. In this case, we have an T2 with
cx, cx+1, v, cx−1, cx+2, cy, cx−2.

Now, suppose the neighbors of v in C are at a distance 2 in G[C], say,
N(v)∩C = {c1, c3}. Since G is twin-free, there exists a vertex w that is neighbor
to either v or c2, but not both. Suppose that w is neighbor to v w.l.o.g.

If w is neighbor only to v, G contains an induced Cn
∗. If w is neighbor to

two or more vertices of C, then C ∪ {v} − {c2} is an induced Cn such that w
is neighbor to three of its vertices, implying G[C ∪ {v, w} − {c2}] contains an
induced O2 or T2 as seen in previous paragraphs. If w is neighbor to one vertex
of C, that vertex needs to be either c4 or cn, otherwise, there’d be an T2 as
shown in previous paragraphs. However, if w is neighbor to either of the two, G
contains an L3 ∪ P2. �

Theorem 3 is analogous to Theorem 1, evidencing a structural similarity
between Helly interval bigraphs and non-bichordal Helly CA bigraphs. The proof
of Theorem 3 depends on Lemma 9.

Lemma 9 [6]. A bipartite graph G = (V,W,E) is a Helly CA bigraph if and only
if there exists a permutation S of its biclique set such that, for every v ∈ V ∪W ,
the bicliques to which v belongs are circularly consecutive in S.

Theorem 3. Let G be a bipartite graph such that V (G) is composed of the union
of the following subsets, for k ≥ 6, n1, ..., nk ≥ 0:

– C = {c1, c2, ..., ck}.
– V = {v1, v2, ..., vk}.
– Wi = {wi,1, ..., wi,ni

} for all 1 ≤ i ≤ k.

646 M. Groshaus et al.

– Ui = {ui,1, ..., ui,ni
} for all 1 ≤ i ≤ k.

And let the neighborhoods of V (G) be the following, for all 1 ≤ i ≤ k. Con-
sider cyclic summation (1 − 1 = k, k + 1 = 1) for indices when appliable:

– N(ci) = {ci−1, ci+1, vi} ∪ Wi ∪ Ui−1.
– N(vi) = {ci}.
– N(wi,j) = {ci} ∪ {ui,l ∈ Ui|l ≤ j}, for all 1 ≤ j ≤ ni.
– N(ui,j) = {ci+1} ∪ {wi,l ∈ Wi|l ≥ j}, for all 1 ≤ j ≤ ni.

Then G is a Helly CA bigraph. Call graphs that fit this definition circular
theorem graphs (CTG for short).

Proof. The graph’s bicliques are the following:

– Ai = {ci−1, ci, ci+1, vi} ∪ Wi ∪ Ui−1 for all 1 ≤ i ≤ k.
– Bi,j = {ci, ci+1} ∪ {wi,m|m ≥ j} ∪ {ui,l|l ≤ j} for 1 ≤ i ≤ k, 1 ≤ j ≤ ni.

To prove that G is a Helly CA bigraph, we apply Lemma 9. Consider the
following permutation of G’s bicliques:

(A1, B1,1, ..., B1,n1 , A2, B2,1, ..., B2,n2 , A3, B3,1, ..., B3,n3 ,
A4, B4,1, ..., B4,n4 , A5, B5,1, ..., Bk−1,nk−1 , Ak, Bk,1, ..., Bk,nk

).

Note that the permutation is such that, for any v ∈ V (G), the bicliques to
which v belongs are circularly consecutive. �

Theorem 4. A non-bichordal bipartite graph is a Helly CA bigraph if and only
if it does not contain T2, O2, BW3, O4, Cn

∗ (n ≥ 6) or L3 ∪ P2 as an induced
subgraph.

Proof. Let G be a twin-free non-bichordal bipartite graph that does not contain
any of the mentioned induced subgraphs.

Let C = {c1, ..., cn} be a Cn(n ≥ 6) that G contains. By the proof of Lemma 8,
every vertex in V (G) − C contains exactly one neighbor in C.

If n = 6, it is proven in [6] that G is an induced subgraph of a CTG, so
suppose n > 6. Let Vi = N(ci) − C for every 1 ≤ i ≤ n. Let vi ∈ Vi, vj ∈ Vj . If
j �= i + 1, i − 1, then vivj �∈ E(G), otherwise, T2 or an odd cycle is induced.

For any 1 ≤ i ≤ n, let vi ∈ Vi, vi+1 ∈ Vi+1, vi−1 ∈ Vi−1, then either vivi−1 �∈
E(G) or vivi+1 �∈ E(G), otherwise, an O2 is induced.

Therefore, every element v ∈ Vi is such that N(v) − C ⊂ Vi+1 or N(v) −
C ⊂ Vi−1. Let Vi,j be the subset of Vi that contains vertices who are neighbors
to elements of Vj (j = i + 1 or j = i − 1). Suppose two elements v1, v2 ∈
Vi,j are such that N(v1), N(v2) are not comparable. Without loss of generality,
assume j = i − 1. Let w1 ∈ N(v1) − N(v2) and w2 ∈ N(v2) − N(v1). Note that
ci, ci−1, ci−2, v1, v2, w1, w2 induce a T2.

Therefore, every pair of elements in Vi,j have comparable neighborhoods.
Since G is twin-free, that implies it is an induced subgraph of a CTG. Therefore,
G is a Helly CA bigraph. �

On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs 647

The proof of Theorem 5 depends on Lemma 10. In a bipartite graph G =
(V,W,E), call v ∈ V a bi-universal vertex if N(v) = W .

Lemma 10. A bipartite graph G = (V,W,E) without bi-universal vertices is a
proper CA bigraph if and only if there exists a permutation of V such that, for
every w ∈ W , N(w) is circularly consecutive in the permutation, and for any two
vertices w1, w2 ∈ W such that N(w1) ⊂ N(w2), the intervals of the permutation
that contain N(w1), N(w2) either begin or end in the same vertex.

Proof. In [1], it is proven that a bipartite graph is a proper CA bigraph if and
only if it admits a biadjacency matrix with a monotone circular arrangement.
Analogously to the proof of Lemma 7, it is easy to show that the existance of
such a matrix is equivalent to the existance of a permutation as defined. �

Theorem 5. Every non-bichordal Helly CA bigraph is a proper CA bigraph.

Proof. By the proof of Theorem 4, it suffices to prove that every CTG is a proper
CA bigraph. Let G be a CTG with its vertex set partitioned as in the definition
contained in Theorem 3 for some values of k, n1, ..., nk. We apply Lemma 10.

Let C1, C2 ⊂ C be the subset of odd-indexed and even-indexed elements of
C, respectively. Also, let V1, V2 ∈ V be the subsets of odd an even index in V .

The partite sets are:

– X = C1 ∪ V2 ∪
k⋃

i=2,i+2

Wi ∪
k−1⋃

i=1,i+2

Ui.

– Y = C2 ∪ V1 ∪
k⋃

i=2,i+2

Ui ∪
k−1⋃

i=1,i+2

Wi.

Consider the following permutation of X.
(c1, u1,1, ..., u1,n1 , v2, w2,1, ..., w2,n2 , c3, ...

..., ck−1, uk−1,1, ..., uk−1,nk−1 , vk, wk,1, ..., wk,nk
).

Note that this permutation satisfies the properties of Lemma 10. �

5 Relationships Between the Presented Classes

It is easy to verify that Helly interval bigraphs are a subclass of Helly CA
bigraphs. Non-bichordal Helly circular arc bigraphs, however, do not include
any interval bigraphs, but the clear structural similarities between the classes is
notable, as the graphs we named CTG and ITG have a lot in common.

The following result is relevant for the study of the computational properties
of Helly interval bigraphs and Helly circular arc bigraphs.

Lemma 11. If G is a Helly CA bigraph with n vertices, then it has O(n)
bicliques.

Proof. Follows from the proof of Theorem 3 for the non-bichordal case and, for
the bichordal case, from the fact that a bichordal bipartite graph is a Helly CA
bigraph if and only if its square is a Helly circular arc graph [6]. �

648 M. Groshaus et al.

6 Conclusion

We proved that Helly interval bigraphs are a subclass of proper interval bigraphs,
and also that non-bichordal Helly circular arc bigraphs are a subclass of proper
interval bigraphs. We provided forbidden structure characterizations for both
Helly interval bigraphs and non-bichordal Helly circular arc bigraphs. We also
showed that both Helly classes presented are such that their graphs have a linear
number of bicliques, thus opening many possibilities for efficient algorithms for
biclique-related problems over the classes.

References

1. Basu, A., Das, S., Ghosh, S., Sen, M.: Circular-arc bigraphs and its subclasses. J.
Graph Theory 73(4), 361–376 (2013)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

3. Brown, D., Lundgren, J.R.: Characterizations for unit interval bigraphs. Congres-
sus Numerantium 206, 5–17 (2010)

4. Das, A.K., Chakraborty, R.: New characterizations of proper interval bigraphs.
AKCE Int. J. Graphs Comb. 12(1), 47–53 (2015)

5. Das, A.K., Chakraborty, R.: New characterizations of proper interval bigraphs and
proper circular arc bigraphs. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM
2015. LNCS, vol. 8959, pp. 117–125. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-14974-5 12

6. Groshaus, M., Guedes, A.L., Kolberg, F.S.: Subclasses of circular-arc bigraphs:
helly, normal and proper. In: Proceeding of the 10th Latin and American Algo-
rithms, Graphs and Optimization Symposium, LAGOS. ENTCS, vol. 346, pp. 497–
509 (2019)

7. Groshaus, M., Szwarcfiter, J.L.: Biclique graphs and biclique matrices. J. Graph
Theory 63(1), 1–16 (2010)

8. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,
313–327 (2004)

9. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc
graphs and subclasses: a survey. Discrete Math. 309(18), 5618–5635 (2009), com-
binatorics 2006. A Meeting in Celebration of Pavol Hell’s 60th Birthday, 1–5 May
2006

10. Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial time.
Discrete Appl. Math. 78(1–3), 189–205 (1997)

11. Rafiey, A.: Recognizing interval bigraphs by forbidden patterns. arXiv e-prints,
1211.2662 (2012)

https://doi.org/10.1007/978-3-319-14974-5_12
https://doi.org/10.1007/978-3-319-14974-5_12

Author Index

Ahn, Hee-Kap 271
Alves, Sancrey Rodrigues 587
Ancona, Bertie 413
Andriambolamalala, Ny Aina 439
Arseneva, Elena 223
Avin, Chen 143

Bădescu, Costin 375
Bajwa, Ayesha 413
Barequet, Gill 519, 532
Bauernöppel, Frank 235
Bender, Michael A. 155
Ben-Shachar, Gil 519
Bereg, Sergey 247
Blair, Jean R. S. 600
Bliznets, Ivan 91
Bodlaender, Hans L. 613
Bóna, Miklós 559
Bonato, Anthony 168
Bose, Prosenjit 223
Brettell, Nick 613
Buchin, K. 258
Byrka, Jarosław 3

Cano, Pilar 223
Carlson, Charles 479
Cavalar, Bruno Pasqualotto 311
Chaplick, Steven 181
Chaubal, Siddhesh 323
Clément, Julien 571
Couto, Fernanda 587

Daknama, Rami 451
Dantchev, Stefan 336
de Lima, Murilo S. 181
Deniz, Zakir 625
dos Santos, Vinicius F. 129
Duan, Ran 15

Elbassioni, Khaled 27

Fagnon, Vincent 38
Faria, Luerbio 587
Fernandes, Cristina G. 50

Gál, Anna 323
Genitrini, Antoine 571
Georgiou, Konstantinos 168
Ghani, Abdul 336
Golovach, Petr A. 104, 116
Gomes, Guilherme C. M. 129
Goswami, Mayank 155
Gravier, Sylvain 587
Groshaus, M. 637
Guedes, A. L. P. 637
Guedes, Matheus R. 129

Halldórsson, Magnús M. 181
Hàn, Hiệp 491
He, Haoqing 15
Heggernes, Pinar 600

Inenaga, Shunsuke 194

Johnson, Matthew 613

Kacem, Imed 38
Kim, Mincheol 271
Kiwi, Marcos 491
Klein, Sulamita 587
Kociumaka, Tomasz 207
Kolberg, F. S. 637
Kolla, Alexandra 479
Kosolobov, D. 258
Krithika, R. 104
Kumar, Mrinal 311

Lewandowski, Mateusz 3
Li, Ray 479
Lima, Paloma T. 116, 600
Lintzmayer, Carla N. 50
Lokshtanov, Daniel 600
Lucarelli, Giorgio 38
Lynch, Nancy 413

MacRury, Calum 168
Maheshwari, Anil 235
Mallmann-Trenn, Frederik 413

Mani, Nitya 479
Mantas, Ioannis 283
Marcilon, Thiago 348
Martin, Barnaby 336
Martins, Nicolas 348
Medjedovic, Dzejla 155
Meesum, Syed Mohammad 3
Mondal, Kaushik 143
Montes, Pablo 155
Mori, Ryuhei 387

Nachum, Ido 401
Navarro, Gonzalo 207
Nivelle, Simon 625

O’Donnell, Ryan 375

Paesani, Giacomo 613
Panagiotou, Konstantinos 451
Papadopoulos, Charis 116
Papadopoulou, Evanthia 283
Paulusma, Daniël 613
Pavez-Signé, Matías 491
Pchelina, Daria 425
Pedrosa, Lehilton L. C. 63, 76
Pérez-Lantero, Pablo 296
Prałat, Paweł 168
Prezza, Nicola 207

Quesquén, Greis Y. O. 63

Rahman, Md Lutfar 360
Ravelomanana, Vlady 439
Read-McFarland, Andrew 464
Reisser, Simon 451
Ries, Bernard 625
Rosado, Hugo K. K. 76
Rossman, Benjamin 311, 504

Sack, Jörg-Rüdiger 235
Sacristán, Vera 283

Sagunov, Danil 91
Sahu, Abhishek 104
Sampaio, Rudini 348
Saurabh, Saket 104
Schabanel, Nicolas 425
Schindl, David 625
Schmid, Stefan 143
Seara, Carlos 296
Seelbach Benkner, Louisa 546
Seki, Shinnosuke 425
Shalah, Mira 532
Shimizu, Kazuya 387
Silveira, Rodrigo I. 223, 283
Simon, Bertrand 38
Sonke, W. 258
Souza, Uéverton S. 587
Speckmann, B. 258
Spoerhase, Joachim 3
Štefankovič, Daniel 464
Sudakov, Benny 479

Tonoyan, Tigran 181
Trevisan, Luca 479
Tsichlas, Kostas 155

Ubukata, Yuki 425
Uniyal, Sumedha 3
Urrutia, Jorge 296

van Leeuwen, Erik Jan 613
Verbeek, K. 258

Wagner, Stephan 546
Watson, Thomas 360

Yehudayoff, Amir 401
Yoon, Sang Duk 271

Zehavi, Meirav 104
Zhang, Tianyi 15

650 Author Index

	Preface
	The Imre Simon Test-of-Time Award
	Organization
	Contents
	Approximation Algorithms
	PTAS for Steiner Tree on Map Graphs
	1 Introduction
	1.1 Motivation for Map Graphs
	1.2 Our Results

	2 Spanner Construction for Map-Weighted Graph
	3 Node-Weighted Contraction Decomposition
	4 Conclusion
	References

	Near-Linear Time Algorithm for Approximate Minimum Degree Spanning Trees
	1 Introduction
	2 Preliminary
	3 A (1+)*+ O(12logn) Approximation
	3.1 Degree Reduction via Augmenting Sequences
	3.2 Large-Step Phase

	References

	Approximation Algorithms for Cost-Robust Discrete Minimization Problems Based on Their LP-Relaxations
	1 Introduction
	1.1 Integrality Gap Verifiers
	1.2 Robust Discrete Optimization Problems
	1.3 Convex Relaxation for the Robust DO Problem
	1.4 Approximation Guarantees for a Robust DO Problem
	1.5 Summary of Main Results
	1.6 Some Related Work

	2 A Robust-in-Expectation Approximation Algorithm
	2.1 A Deterministically Robust Algorithm for a Class of Polyhedral Uncertainty

	3 A Robust-with-high-probability Approximation Algorithm for Polyhedral Uncertainty
	References

	Scheduling on Hybrid Platforms: Improved Approximability Window
	1 Introduction
	2 Related Work
	3 A 5.83-Approximation Algorithm
	3.1 The Algorithm HLP-b
	3.2 Analysis of the Algorithm HLP-b

	4 Conditional Lower Bound on the Approximation Factor
	5 Conclusion
	References

	Leafy Spanning Arborescences in DAGs
	1 Introduction
	2 The Algorithm
	3 Approximation Ratio
	4 Using Approximations for 3-Dimensional Matching
	5 Inapproximability of the Vertex-Weighted Version
	6 Future Directions
	References

	Approximating Routing and Connectivity Problems with Multiple Distances
	1 Introduction
	2 Steiner UCaRS (SUCaRS)
	3 Profitable UCaRS (PUCaRS)
	4 Multiple Constrained Forest Problem (MCFP)
	5 Final Remarks
	References

	A 2-Approximation for the k-Prize-Collecting Steiner Tree Problem
	1 Introduction
	2 Definitions and Preliminaries
	3 Modified Growth and Pruning Phases
	3.1 Modified Clustering Algorithm
	3.2 Modified Pruning Algorithm
	3.3 Modified Goemans-Williamson Algorithm

	4 The Threshold-Tuple
	4.1 The Threshold-Tuple Search

	5 Finding a Solution with a Threshold-Tuple
	5.1 Selecting k Vertices

	6 The 2-Approximation
	References

	Parameterized Algorithms
	Maximizing Happiness in Graphs of Bounded Clique-Width
	1 Introduction
	2 Preliminaries
	3 Maximum Happy Edges
	4 Maximum Happy Vertices
	References

	Graph Hamiltonicity Parameterized by Proper Interval Deletion Set
	1 Introduction
	2 Structure of Path and Cycle Covers
	2.1 Paths and Cycles in Proper Interval Graphs
	2.2 Canonical Minimum Path and Cycle Covers

	3 Finding Canonical Minimum Path and Cycle Covers
	References

	Graph Square Roots of Small Distance from Degree One Graphs
	1 Introduction
	2 Preliminaries
	3 FPT Algorithm for Distance-k-to-(pK1+qK2) Square Root
	3.1 Structural Lemmas
	3.2 The Algorithm for Distance-k-to-(pK1+qK2) Square Root

	4 Lower Bounds for Distance-k-to-(pK1+qK2) Square Root
	5 Conclusion
	References

	Structural Parameterizations for Equitable Coloring
	1 Introduction
	2 Literature Corollaries and Minor Observations
	3 Equitable Coloring Parameterized by Distance to Cluster
	4 Equitable Coloring Parameterized by Distance to Co-Cluster
	5 Distance to Disjoint Paths
	6 Final Remarks
	References

	Algorithms and Data Structures
	Dynamically Optimal Self-adjusting Single-Source Tree Networks
	1 Introduction
	2 Model and Preliminaries
	3 Access Optimality: A Working Set Lower Bound
	4 Deterministic Algorithm
	4.1 Efficiently Maintaining an MRU Tree
	4.2 The MOVE-HALF Algorithm

	5 Randomized MRU Trees
	6 Related Work
	References

	Batched Predecessor and Sorting with Size-Priced Information in External Memory
	1 Introduction
	2 Warmup: The RAM Version
	3 Sorting and Batched Predecessor in External Memory with Size-Priced Information
	3.1 Main Challenges in the Batched Predecessor Problem

	4 Complexity of the Batched Predecessor Problem: Lower Bounds
	4.1 Putting It All Together: Lower Bounds for S-k, k- and k-k

	5 Upper Bounds
	6 Conclusion and Open Problems
	References

	Probabilistically Faulty Searching on a Half-Line
	1 Introduction
	2 Problem Definition and Preliminary Observations
	3 Monotone Trajectories
	3.1 An Upper Bound Using Monotone Trajectories
	3.2 Lower Bounds for Monotone Trajectories

	4 Sub-monotone Trajectories
	4.1 Performance Analysis of t-Sub-monotone Trajectories
	4.2 Choosing Efficient t-Sub-Monotone Trajectories
	4.3 Numerical Computation of t-Sub-Monotone Trajectories, t10
	4.4 Some Closed Formulae

	5 Discussion and Open Problems
	References

	Query Minimization Under Stochastic Uncertainty
	1 Introduction
	2 Sorting
	3 Finding the Minimum
	4 Further Questions
	References

	Suffix Trees, DAWGs and CDAWGs for Forward and Backward Tries
	1 Introduction
	2 Preliminaries
	3 Maximal Substrings in Forward/Backward Tries
	4 Indexing Forward/Backward Tries and Known Bounds
	4.1 Suffix Trees for Forward Tries
	4.2 Suffix Trees for Backward Tries
	4.3 DAWGs for Forward Tries
	4.4 DAWGs for Backward Tries
	4.5 CDAWGs for Forward Tries
	4.6 CDAWGs for Backward Tries

	5 New Size Bounds on Indexing Forward/Backward Tries
	5.1 Size Bounds for DAWGs for Forward/Backward Tries
	5.2 Size Bounds for CDAWGs for Forward/Backward Tries

	6 Constructing O(n)-size Representation of DAWG(Tf) in O(n) Time
	References

	Towards a Definitive Measure of Repetitiveness
	1 Introduction
	2 Measure
	3 Lower Bounds in Terms of
	3.1 Lower Bounds on Attractors
	3.2 Lower Bounds on Text Entropy and Grammar Size

	4 Block Trees in -Bounded Space
	4.1 Block Trees
	4.2 Bounding the Space in Terms of

	5 Text Indexing in -Bounded Space
	6 Conclusions
	References

	Computational Geometry
	Flips in Higher Order Delaunay Triangulations
	1 Introduction
	2 Preliminaries and General Observations
	3 Points in Convex Position
	4 General Point Sets
	5 Conclusions
	References

	An (n3) Lower Bound on the Number of Cell Crossings for Weighted Shortest Paths in 3-Dimensional Polyhedral Structures
	1 Introduction
	1.1 Motivation
	1.2 Previous Work
	1.3 Example of the New 3-Dimensional Construction for n=6

	2 Preliminaries
	2.1 Polyhedral Cells and Polyhedral Structures
	2.2 Weighted Shortest Paths in Polyhedral Structures
	2.3 Properties of Weighted Shortest Paths in Polyhedral Structures

	3 A Property of Weighted Shortest Paths Crossing a Cuboid
	4 Construction of the Polyhedral Structure Q(n)
	4.1 Construction of the Central Cuboids
	4.2 Adding the Satellite Cuboids of Rank 2
	4.3 Weighted Shortest Paths in Polyhedral Structure R
	4.4 Adding the Satellite Cuboids of Rank 3
	4.5 Weighted Shortest Paths in Polyhedral Structure Q'
	4.6 Adding the Shims

	5 Conclusions
	References

	Computing Balanced Convex Partitions of Lines
	1 Introduction
	2 Preliminaries
	3 Computing Ham-Sandwich Cuts
	4 Computing an Equitable Partition
	5 Computing the Measure of a Wedge
	6 Computing Canonical Cuttings
	7 Computing an Equitable 3-Cutting
	References

	Ordered Strip Packing
	1 Introduction
	2 Computing NORDs
	2.1 Basic Algorithm
	2.2 Algorithm for Vertically Centered Blocks
	2.3 General Linear Algorithm

	3 Optimization Tradeoffs
	3.1 Lower Bound for Minimum-Height ORDs
	3.2 Upper Bound for Minimum-Height ORDs

	References

	Shortest Rectilinear Path Queries to Rectangles in a Rectangular Domain
	1 Introduction
	1.1 Notation and Preliminaries

	2 Point-to-Rectangle Shortest Path Queries
	2.1 Wake of a Side of a Rectangle
	2.2 Minimum Distance Between a Point and a Rectangle
	2.3 Maximum Distance Between a Point and a Rectangle

	3 Queries to the Nearest and Farthest Rectangles
	3.1 Nearest-Min Query
	3.2 Farthest-Min Query
	3.3 Nearest-Max Query
	3.4 Farthest-Max Query

	4 Line Segment Queries
	References

	Farthest Color Voronoi Diagrams: Complexity and Algorithms
	1 Introduction
	2 Preliminaries
	3 Structural Properties and Complexity
	4 Conditions for Linear-Size Diagrams
	5 A Lower Bound for Linearly Separable Clusters
	6 Construction Algorithms
	References

	Rectilinear Convex Hull of Points in 3D
	1 Introduction
	1.1 Previous Work
	1.2 Notation and Preliminaries

	2 Computing RCH(P)
	3 Maintaining RCH(P)
	4 The Combinatorics of Rectilinear Convex Hulls in R3
	5 Final Remarks and Future Lines of Research
	References

	Complexity Theory
	Monotone Circuit Lower Bounds from Robust Sunflowers
	1 Introduction
	1.1 Monotone Circuit Lower Bounds and Sunflowers
	1.2 Slice Sunflowers

	2 Harnik-Raz Function
	2.1 Technical Preliminaries
	2.2 The Function
	2.3 A Closure Operator
	2.4 Trimmed Monotone Functions
	2.5 The Approximators
	2.6 The Lower Bound
	2.7 Discussion

	References

	Tight Bounds on Sensitivity and Block Sensitivity of Some Classes of Transitive Functions
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Transitive Functions

	3 Lower Bounds on Sensitivity of Transitive Functions
	3.1 Sparse DNF (or CNF)
	3.2 DNF (or CNF) with a Not-Too-Frequent Variable
	3.3 DNF (or CNF) with Approximately the Same Number of Positive Literals per Term

	4 Lower Bounds on Block Sensitivity of Transitive Functions
	References

	Sherali-Adams and the Binary Encoding of Combinatorial Principles
	1 Introduction
	2 Preliminaries
	3 The Lower Bound for the Binary Pigeonhole Principle
	4 The Least Number Principle with Equality
	5 SA+Squares
	6 Conclusion
	References

	Hardness of Variants of the Graph Coloring Game
	1 Introduction
	2 PSPACE-Complete Variants of Graph Coloring Game
	3 Connected Graph Coloring Game Is PSPACE-Complete
	4 PSPACE-Complete Variants of Greedy Coloring Game
	References

	Tractable Unordered 3-CNF Games
	1 Introduction
	2 Preliminaries
	3 G*3,F @汥瑀瑯步渠F
	3.1 Right-to-left Implication of Lemma 1
	3.2 Left-to-right Implication of Lemma 1

	References

	Quantum Computing
	Lower Bounds for Testing Complete Positivity and Quantum Separability
	1 Introduction
	1.1 Previous Work
	1.2 Outline

	2 Preliminaries
	2.1 Completely Positive Distributions
	2.2 Quantum States and Separability
	2.3 The Property Testing Framework

	3 Testing Complete Positivity
	4 Testing Separability
	References

	Exponential-Time Quantum Algorithms for Graph Coloring Problems
	1 Introduction
	1.1 Related Work
	1.2 Overview of Quantum Algorithms
	1.3 Organization

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Known Classical Algorithm for Enumerating All t-MISs
	2.3 Grover's Search
	2.4 QRAM

	3 Grover's Search for Branching Algorithms
	4 Quantum Algorithms for the Chromatic Number Problem
	References

	Neural Networks and Biologically Inspired Computing
	On Symmetry and Initialization for Neural Networks
	1 Introduction
	1.1 Background

	2 Representations
	2.1 Sigmoid
	2.2 ReLU

	3 Training and Generalization
	3.1 Specifications
	3.2 Margins
	3.3 Freezing the Hidden Layer
	3.4 Stability

	4 Main Result
	5 Conclusion
	References

	How to Color a French Flag
	1 Introduction
	1.1 Biology Background and Related Work
	1.2 Results

	2 Models and Notation
	2.1 Concentration Model
	2.2 Message Passing Model
	2.3 Approximation Definition

	3 Concentration Model Results
	3.1 1D Exact Concentration Ribbon
	3.2 2D Concentration Lower Bound

	4 Message Passing Model
	4.1 Extending from Ribbon to Flag
	4.2 Message-Passing Lower Bounds

	5 Conclusion
	References

	Simple Intrinsic Simulation of Cellular Automata in Oritatami Molecular Folding Model
	1 Introduction
	2 Model and Preliminary Results
	2.1 Oritatami Model
	2.2 Sweeping 2-Fan-in 2-Fan-Out Cellular Automata

	3 Overview of the Construction
	4 Description of the Key Mechanisms
	4.1 Modules R, L, and W: The Read, Lookup, Write Mechanism
	4.2 Modules SB and S: Resynchronization Using Speedbumps

	References

	Randomization
	Transmitting once to Elect a Leader on Wireless Networks
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 Radio Networks
	2.1 The Nodes Initially Know the Exact Value of n
	2.2 The Nodes Do Not Know n

	3 Beeping Networks
	3.1 The Nodes Do Not Know n

	References

	Asymptotics for Push on the Complete Graph
	1 Introduction
	2 Proof Overview
	3 Proof of the Main Result
	3.1 Proof of Lemma 1
	3.2 Proof of Theorems 1 and 2
	3.3 Proof of Lemma 2
	3.4 Proof of Lemma 4

	A Existence of Subsequence
	References

	The Hardness of Sampling Connected Subgraphs
	1 Introduction
	2 Sampling Fixed Size Connected Subgraphs
	3 Trees and Efficient Sampling with Bias
	4 Hardness of Sampling with Bias
	5 Markov Chains and Sampling
	References

	Combinatorics
	Lower Bounds for Max-Cut via Semidefinite Programming
	1 Introduction
	1.1 New Approach to Max-Cut Using Semidefinite Programming
	1.2 New Lower Bound for Max-Cut of Triangle Sparse Graphs
	1.3 Corollary: Lower Bounds for Max-Cut of H-free Degenerate Graphs

	2 Lower Bounds for Max-Cut Using SDP
	3 Decomposition of Degenerate Graphs
	3.1 Large Max-Cut from Decompositions

	4 Max-Cut in Kr-free Graphs
	5 Concluding Remarks
	References

	Quasi-Random Words and Limits of Word Sequences
	1 Introduction
	2 Main Contributions
	2.1 Quasi-Random Words
	2.2 Convergent Word Sequences and Word Limits
	2.3 Testing Hereditary Word Properties
	2.4 Finite Forcibility
	2.5 Extensions
	2.6 Permutons from Words Limits

	3 Concluding Remarks
	References

	Thresholds in the Lattice of Subspaces of Fqn
	1 Introduction
	2 q-Analogs of Kruskal-Katona and Bollobás-Thomason
	2.1 Dual Versions of Theorems 3 and 4

	3 Proof of Theorem 1
	4 Tightness of the Result
	5 Application to a Query Problem
	References

	Analytic and Enumerative Combinatorics
	On Minimal-Perimeter Lattice Animals
	1 Introduction
	2 Preliminaries
	3 Minimal-Perimeter Animals
	3.1 A Bijection
	3.2 Inflation Chains

	4 Application to Polyhexes
	4.1 Condition 1: Monotonicity
	4.2 Condition 2: Constant Inflation
	4.3 Condition 3: Deflation Resistance

	5 Polyiamonds
	6 Conclusion
	References

	Improved Upper Bounds on the Growth Constants of Polyominoes and Polycubes
	1 Introduction
	2 Previous Work
	3 Twigs in Higher Dimensions
	4 Analysis of the Generating Functions
	5 Improving Further the Upper Bounds on 2 and 3
	5.1 General
	5.2 Two Dimensions
	5.3 Three Dimensions

	References

	On the Collection of Fringe Subtrees in Random Binary Trees
	1 Introduction
	2 Preliminaries
	3 Fringe Subtrees in Uniformly Random Binary Trees
	3.1 Ordered Fringe Subtrees
	3.2 Unordered Fringe Subtrees

	4 Fringe Subtrees in Random Binary Search Trees
	5 Open Problems
	References

	A Method to Prove the Nonrationality of Some Combinatorial Generating Functions
	1 Introduction
	2 Supercriticality
	3 Permutation Patterns
	4 Stack Sorting
	4.1 Three Equivalent Definitions

	5 The Big Picture and Other Examples
	5.1 Algebraic Power Series
	5.2 d-finite Power Series

	6 Further Directions
	References

	Binary Decision Diagrams: From Tree Compaction to Sampling
	1 Introduction
	2 Decision Diagrams as Compacted Trees
	3 Recursive Decomposition
	4 Counting and Generating BDDs
	References

	Graph Theory
	Graph Sandwich Problem for the Property of Being Well-Covered and Partitionable into k Independent Sets and Cliques
	1 Introduction
	2 Sandwich for (k,)-well-covered-Polynomial Cases
	2.1 Graph Sandwich for (0,2)-well-covered
	2.2 Graph Sandwich for (1,1)-well-covered

	3 Sandwich for (k,)-well-covered-NP-complete Case
	References

	On the Maximum Number of Edges in Chordal Graphs of Bounded Degree and Matching Number
	1 Introduction
	2 Preliminaries
	3 Chordal Graphs
	4 Final Remarks and Open Problems
	References

	Steiner Trees for Hereditary Graph Classes
	1 Introduction
	2 The Proof of Theorem 1
	2.1 Preliminaries
	2.2 Treewidth and Implications

	3 The Proof of Theorem 2
	3.1 Known Results
	3.2 New Results

	4 Conclusions
	References

	On Some Subclasses of Split B1-EPG Graphs
	1 Introduction
	2 Preliminaries
	3 Forbidden Induced Subgraph for ["4478478]s
	4 Restricted Shape B1-EPG Subclasses for (S-bull)-free Split Graphs
	5 Restricted Shape B1-EPG Subclasses for Gem-Free Split Graphs
	6 Conclusion
	References

	On the Helly Subclasses of Interval Bigraphs and Circular Arc Bigraphs
	1 Introduction
	2 Definitions
	3 Helly Interval Bigraphs
	4 Non-Bichordal Helly Circular Arc Bigraphs
	5 Relationships Between the Presented Classes
	6 Conclusion
	References

	Author Index

