q

Check for
updates

A New Approach for Processing
Natural-Language Queries to Semantic
Web Triplestores

Shane Peelar®)@® and Richard A. Frost

School of Computer Science, University of Windsor, Windsor, ON, Canada
{peelar,richard}@uwindsor.ca

Abstract. Natural Language Query Interfaces (NLQIs) have once again
captured the public imagination, but developing them for the Semantic
Web has proven to be non-trivial. This is unfortunate, because the Seman-
tic Web offers many opportunities for interacting with smart devices,
including those connected to the Internet of Things. In this paper, we
present an NLQI to the Semantic Web based on a Compositional Seman-
tics (CS) that can accommodate many particularly tricky aspects of the
English language, including nested n-ary transitive verbs, superlatives,
and chained prepositional phrases, and even ambiguity. Key to our app-
roach is a new data structure which has proven to be useful in answering
NL queries. As a consequence of this, our system is able to handle NL fea-
tures that are often considered to be non-compositional. We also present
a novel method to memoize sub-expressions of a query formed from CS,
drastically improving query execution times with respect to large triple-
stores. Our approach is agnostic to any particular database query lan-
guage. A live demonstration of our NLQI is available online.

Keywords: Natural language processing - Natural Language Query
Interfaces + Compositional Semantics + Event Semantics -
Quantification

1 Introduction

This is an extended version of the paper by Frost and Peelar [14] that was pre-
sented at WEBIST 2019 in Vienna, Austria. That paper was selected as one of the
best papers at WEBIST 2019 and the authors were invited to submit an extended
version for publication. In this paper we expand upon the compositionality of our
NLQI, including the parsing framework and semantic implementations, we intro-
duce a novel method to accommodate superlatives using compositional semantics,
and we discuss a novel approach to memoization and triplestore retrieval. We also
significantly expand upon how our NLQI is implemented.

Supported by NSERC of Canada.

© Springer Nature Switzerland AG 2020
A. Bozzon et al. (Eds.): WEBIST 2019, LNBIP 399, pp. 168-194, 2020.
https://doi.org/10.1007/978-3-030-61750-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61750-9_8&domain=pdf
http://orcid.org/0000-0001-7391-0951
http://orcid.org/0000-0001-7083-5060
https://doi.org/10.1007/978-3-030-61750-9_8

A New Approach for Processing Natural-Language Queries 169

We begin by describing a Natural Language Query Interface (NLQI) that
we have built. We hope that the interface will motivate readers to look into our
modifications to MS. In Sect. 2, we explain how our NL Query interface (NLQI)
can be accessed through the Web. In Sect. 3, we describe the compositional
aspects of our NLQI. In Sect. 4, we describe the Semantic Web triplestore. In
Sect. 5 we discuss example queries and their results, including examples of what
are often referred to as “non-compositional” features of NL that our NLQI can
handle. With each of the examples we provide an informal explanation of how
the answer is, or could be, computed. In Sect. 6, we describe the new FDBR data
structure which is central to our approach. In Sect. 7 and Sect. 8, we describe
how our system accommodates chained prepositional phrases with superlatives.
In Sect. 9, we describe how to use our approach with relational databases. In
Sect. 10, we provide a system overview and implementation details on how our
semantics are realized. Section 11 discusses how our work fits into the framework
of existing work in this area. We close with Sect. 12 and Sect. 13 where we discuss
future research directions and our conclusions.

Much of our semantics is based on MS. We differ in these ways:

—_

We add events to the basic ontological concepts of entities and truth values.
2. Each event has a number of roles associated with it. Each role has an entity
as a value.

3. For efficiency, we use sets of entities rather than characteristic functions of
those sets as is the case in MS.

We define transitive n-ary verbs in terms of sets of events, each with n roles.
5. We compute FDBRs, the novel data structure presented in this paper, from
sets of events and use them in the denotations of transitive verbs and in
computing results of queries containing prepositional phrases. Although not
referred to as an FDBR, the use of relational images in denotations of verbs
was first proposed by Frost and Launchbury in 1989 [12].

=~

We hope that this paper reawakens an interest in Compositional Semantics, in
particular for NL query processing.

2 How to Access Our NLQI

Our NL interface is accessible via the following URL, and is speech enabled for
both voice-in and voice-out in browsers that support the Web Speech API:

http://speechweb2.cs.uwindsor.ca/solarman4 /demo_sparql.html

3 Compositionality

Compositionality is a useful property of any system as it facilitates understand-
ing, construction, modification, extension, proof of properties, and reuse in dif-
ferent situations. When building our system, we tried to make it as compositional
as possible: a compositional syntax processor is systematically combined with a
compositional semantics.

http://speechweb2.cs.uwindsor.ca/solarman4/demo_sparql.html

170 S. Peelar and R. A. Frost

3.1 The Compositionality of Our Syntactic Processor

Our parser is designed and built using the Haskell programming language, using
parser combinators [13]. The approach enables parsers to be constructed as exe-
cutable specifications of context-free grammars with explicit and implicit left-
recursive productions, which is useful for defining grammars for NL. The result
of applying our parser is the set of all parse trees for ambiguous grammars. The
trees are represented efficiently using a Tomita-style [20] compact graph in which
trees share common components.

In 2008, Frost and Hafiz [13] demonstrated that it is possible to efficiently
implement context-free parsing using combinators, with their approach having
O(n*) complexity in the worst case and O(n?) complexity in the average case.

The following example was featured in Frost and Hafiz [13]. To demon-
strate use of our combinators, consider the following ambiguous grammar from
Tomita [20]:

s ::==np vp | s pp np ::=noun | det noun | np pp

jge) 1= prep np vp 1= verb np

det ::="a" | "the" noun ::= "i" | "man" | "park" | "bat"
verb ::= "saw" prep :: = "in" | "with"

In this grammar, the non-terminal s stands for sentence, np for nounphrase,
vp for verbphrase, det for determiner, pp for prepositional phrase, and prep for
preposition. It is left recursive in the rules for s and np. The Haskell code below
defines a parser for the above grammar using our combinators term (terminal),
<+> (alternative), and *> (sequence) [13]:

data Label =S | ... | PREP

s = memoize S $ np *> vp <+> s *> pp

np = memoize NP $ noun <+> det *> noun <+> np *> pp
pp = memoize PP $ prep *> np

vp = memoize VP $ verb *> np

det = memoize DET $ term "a" <+> term "the"

noun = memoize NOUN

$ term "i" <+> term "man" <+> term "park" <+> term "bat"
verb = memoize VERB $ term "saw"
prep = memoize PREP $ term "in" <+> term "with"

Parsers written in this fashion are highly compositional, and can be easily
extended with new rules if needed. Parsers constructed with our combinators
have O(n?) worst case time complexity for non-left-recursive ambiguous gram-
mars (where n is the length of the input), and O(n?) for left recursive ambigu-
ous grammars. This compares well with O(n?) limits on standard algorithms for
CFGs such as Earley-style parsers [8]. The increase to n* is due to expansion
of the left recursive non-terminals in the grammar. The potentially exponential
number of parse trees for highly-ambiguous input are represented in polynomial
space as in Tomita’s algorithm.

A New Approach for Processing Natural-Language Queries 171

3.2 The Compositionality of Our Semantics

The semantics on which our system is based is similar to Montague Semantics.
All phrases of the same syntactic category have meanings of the same semantic
type. The meaning of all words and phrases are functions defined over sets of
base terms which are entities, events and Boolean values. The meaning of a
complex phrase is obtained by applying the functions which are the meanings
of its parts, to each other in an order determined by the syntactic structure of
the whole. Our system was easy to construct, and is easy to extend. Additional
language features are accommodated by adding their syntactic structure and
then defining their semantics by viewing the semantics of words and phrases of
the same syntactic category.

3.3 The Compositionality of the Whole NL Processor

Our processor is built as an executable specification of a fully general attribute
grammar. Compositional semantic rules are added to each syntactic production
using the technique of Frost, Hafiz and Callaghan [13]. The attribute grammar
is fully general as it can accommodate left recursive context-free grammars and
fully-general dependencies between inherited and synthesized attributes. Haskell
allows any computational dependency between attributes to be defined. Also,
Haskell’s lazy evaluation strategy enables our language processor to be efficient.
For example, no attribute computation is carried out until a successful parse has
been obtained. We have also developed a variation of memoization using monads
[13] in order to reduce the complexity of syntactic and semantic evaluation. In
the paper by Frost and Peelar [14] we discuss how we accommodate, using our
compositional approach, various English phrases that are often given as examples
of non-compositional constructs.

4 The Triplestore that Is Queried

Our NLQI computes answers with respect to an event-based Semantic Web
triplestore containing data about the planets, the moons that orbit them, and
the people who discovered those moons, and when, where and with what imple-
ment they were discovered. Briefly, a triplestore is a database of 3-tuples, called
triples, that have the form (subject, predicate, object), where subject, predicate
and object are Uniform Resource Identifiers (URISs).

An event-based triple has a subject that identifies an event rather than an
entity [19]. In these triples, the predicate identifies a role through which the
object participates in the event. That is, an event-based triple (e, r, 0) expresses
that o participates in e through role . We call o the event e’s “r property”. For
example, in Table 1, “hall” is event “event1045”’s subject property. Triplestores
consisting of event-based triples are called event-based triplestores.

The advantage of event-based triplestores is that additional information
about the events and entities participating in those events is immediately avail-
able. This is not the case in an entity-based triplestore, where some form of

172 S. Peelar and R. A. Frost

reification is necessary to obtain additional information about a fact expressed
in a triple. For example, obtaining the location where “hall discovered phobos”
in an entity-based triplestore, described by (hall, discovered, phobos), is not pos-
sible without reification.

We assume that each event will at minimum contain a role ev_type that
identifies the type of the event, with the general expectation that events of the
same type will contain similar roles. This implies the existence of a schema that
describes the types of roles that an event may contain. As a consequence of this,
each event could be equally well be represented by a row in a relational database.
We discuss this further in Sect. 9.

Going forward, when we refer to the type of an event or set of events, we
are referring to their ev_type property. Likewise, when we refer to events of a
particular type, we are referring to events whose ev_type property corresponds
to that type. As a shorthand, we use t-type events to refer to events with type
t. For example, “discover” events refers to events that have ev_type property
“discover”.

The triplestore contains triples such as those in Table 1 which represent the
event in which hall (in the role of subject) discovered phobos (in the role of
object) in 1877 (in the role of year) with the refractor_telescope_1 (in the
role of implement) at the us_naval_observatory (in the role of location). Events
representing set membership are represented as shown in Table 2.

Table 1. Triples describing an event of type “discover” [14]. The full URIs of the
events, roles, and entities have been omitted here.

Event Role Entity

event1045 | subject hall

event1045 | object phobos

event1045 | ev_type discover_ev
event1045 | year 1877

event1045 | location us_naval_observatory
event1045 | implement | refractor_telescope_1

Table 2. Triples describing an event of type “membership” [14].

Event Role Entity

event1128 | subject | galileo

event1128 | object | person

event1128 | ev_type | membership

The complete triplestore, which contains tens of thousands of triples, is
hosted on a remote server using the Virtuoso software [9] and can be accessed
by following the link at the beginning of Sect. 2.

A New Approach for Processing Natural-Language Queries 173

5 Example Queries

Our NLQI can answer millions of queries with respect to the triplestore dis-
cussed above. The NLQI can accommodate queries containing common and
proper nouns, adjectives, conjunction and disjunction, intransitive and transitive
verbs, nested quantification, superlatives, chained prepositional phrases contain-
ing quantifiers, comparatives and polysemantic words. In the following sections,
we provide an informal explanation of how the answer is computed. If a query
is syntactically ambiguous, the results from each possible interpretation of the
query are denoted with a semicolon.

5.1 Queries Demonstrating the Range of NL Features that Our
NLQI Can Accommodate

phobos spins = True
phobos is a moon = True

The function denoted by phobos checks to see if epnobos is @ member of the
spin set, and secondly if eppobos is @ member of the moon set.

a moon spins = True
every moon spins = True
an atmospheric moon exists = True

The function denoted by “a” checks to see if the intersection of the set of moons
and the set of spins is non-empty. The function denoted by “every” checks to see
if the set of moons is a subset of the spins set. The denotations of a and every that
we use are set-theoretic event-based versions of the denotations from MS which
uses characteristic functions. The answer to the third query is obtained by check-
ing if the intersection of the atmospheric set and the moon set is non-empty.

hall discovered = True

All of the events of type “discover” are collected together and are checked to
see if epqy; is found as the subject role value of any of them. If so, True is returned.

when did hall discover = 1877

The year property of the events returned by “hall discover” (treated as
“hall discovered”) are returned.

phobos was discovered = True

All of the events of type “discover” are collected together and are checked
to see if epnobos is found as the object role value of any of them. If so True is
returned.

earth was discovered = Fulse
Earth was not discovered by anyone, according to our data.

did hall discover phobos = True

174 S. Peelar and R. A. Frost

All of the events of type “discover” are collected together and are checked to
create a pair (s, evs) for each value of the subject property found in the set of
events. evs is the set of events to which the subject property is related through a
discovery event. Each pair is then examined to see if the function denoted by the
object termphrase (in this case phobos) returns a non-empty set when applied
to a set (called an FDBR, which is described in Sect. 6) generated from the set
of evs in the pair, and if so the subject of the pair is added to the set which is
returned as the denotation of the verbphrase part of the query. The denotation
of the termphrase at the beginning of the query is then applied to the denotation
of the verbphrase to obtain the answer to the query.

Owing to the fact that our semantics is compositional, the subject and object
termphrases of the query above can be replaced by any termphrases, e.g.:

a person or a team discovered every moon that orbits mars
= True
who discovered 2 moons that orbit mars = hall

43 7

who”, “what”, “where”, “when” and “how” can be used in place of the subject
termphrase. Different role values are returned depending on which “wh”-word is
used in the query:

where discovered by galileo = padua

when discovered by galileo = 1610

every telescope was used to discover a moon = True (w.r.t. our data)

a moon was discovered by every telescope = Fulse

a telescope was used by hall to discover two moons = True

which moons were discovered with two telescopes

= halimede laomedeia sao themisto

who discovered deimos with a telescope that was used to
discover
every moon that orbits mars = hall

who discovered a moon with two telescopes

= nicholson science_team_18 science_team_2

how was sao discovered = blanco_telescope canada-france-hawaii_telescope

how discovered in 1877 = refractor_telescope_1

how many telescopes were used to discover sao = 2

who discovered sao = science_team_18

how did science_team_18 discover sao

= blanco_telescope canada-france-hawaii_telescope

which planet is orbited by every moon that was discov-
ered by two people = saturn; none (ambiguous because “by two people”
could apply to “discovered” or “orbited”)

which person discovered a moon in 1877 with every tele-
scope that was used to discover phobos = hall; none (ambiguous because
“to discover phobos” could apply to “used” or “discovered”)

who discovered in 1948 and 1949 with a telescope = kuiper

A New Approach for Processing Natural-Language Queries 175

5.2 Queries with “Non-compositional” Structures

We agree that natural language has non-compositional features but believe that
the non-compositionality is mostly problematic when the objective is to give a
meaning to an arbitrary NL expression (i.e. an NL expression without a context).
It is less problematic when answering NL queries. As illustrated below, the person
posing the query, or the database or triplestore can provide contexts that help
resolve much of the ambiguity resulting from non-compositional features. The
advantages of a using a compositional semantics include:

1. The answer to a query is as correct as the data from which it is derived,

2. The meaning of sub phrases within a query can be discussed formally,

3. The query language can be extended such that all existing phrases maintain
their original meanings,

4. The definition of syntax and semantics in the compositional semantics can be
used as a blueprint for the implementation of the query processor.

Some researchers have provided examples of what they claim to be non-com-
positional structures in NL. For example, Hirst [16] gives the example of the
verb “depart” which he states is not compositional because its meaning changes
with the prepositional phrase(s) which follow it, and that the definition of com-
positionality needs to be modified to include the requirement that the func-
tion used to compose the meaning of parts must be systematic. We claim that
our semantics for verbs is systematic as the denotations of subject and object
termphrases, and the possibly empty list of prepositional phrases following the
verb, are treated equally and are all used in the same way to filter the set of
events of the type associated with the verb, before that set is returned as the
denotation of the verb phrase. This is illustrated in the following queries:

who discovered = bernard bond cassini cassini_tmaging_science_team
christy dollfus galileo etc. ..

No subject, object or prepositional phrase is given in the query, and so all
events of type “discover” are returned by the verbphrase and the denotation of
the word who picks out the subjects from those events.

where discovered io = padua

No subject, or prepositional phrase is given in the query, and so all events
of type “discover” are considered and filtered by the denotation of the object
termphrase io and then, those that pass the filter are returned by the verbphrase
and the word where picks out the location from those events.

who discovered in 1610 = galileo

No subject or object is in the query so all events of type “discover” are
considered and only those with the year property equal to 1610 pass the filter
and then the denotation of the word who selects the subject which is returned.

176 S. Peelar and R. A. Frost

who discovered every moon that orbits mars with one
telescope or a moon that orbits jupiter with a telescope = omne. ;
none. ; none. ; bernard galileo kowal melotte nicholson perrine science_team._-
1 science_team_2 ; hall ; hall ; none.

As shown above, in our semantics, the subject and object termphrases are
treated as filters, as are all prepositional phrases. Note that several results are
returned here because the query is syntactically ambiguous. We discuss solutions
on how to best present the results of ambiguous queries to the user in Sect. 10.3.

where discovered in 1610 = padua
how discovered in padua = galilean_telescope_1

5.3 Extensions to the Semantics

Some phrases containing nested quantifiers are given by some researchers as
examples of non-compositionality. For example: “a US diplomat was sent to every
capital” is often read as having two meanings which can only be disambiguated
by additional knowledge. We argue that the person posing a query can express
the query unambiguously if they are familiar with quantifier scoping conventions
used by our processor, as illustrated in the following:

christy or science_team_19 or science_team_20 or science_team 21
discovered every moon that orbits pluto = False

In our semantics, quantifier scoping is always leftmost/outermost, and an unam-
biguous query can be formulated as follows:

every moon that orbits pluto was discovered by christy or
science_team_19 or science_team_20 or science_team_21 = True

Some examples of non-compositionality involve polysemantic superlative
words such as “most” in, for example:

“Who discovered most moons that orbit P. Where P is a planet.”

If “most” is treated as “more than half” then:
who discovered most moons that orbit mars = hall

However, consider the answer to the alternate reading “who discovered the
most moons that orbit P” - i.e. more than anyone else who discovered a moon
that orbits P.:

what discovered the most moons that orbit jupiter
= science_team_4

Here, the subjects of the “discover” events are sorted based on the cardi-
nality of the number of things they discovered after filtering the events for
objects which are moons that orbit jupiter. Of the 50 moons that orbit jupiter,
science_team 4 discovered 12 of them.

A New Approach for Processing Natural-Language Queries 177

how was every moon that orbits saturn discovered = cassini reflec-
tor_telescope_1 aerial _telescope_1 refractor_telescope_4 etc. ..

It may be surprising that cassini is returned in the answer since it is not
a telescope, but is instead a spacecraft. However, since it was used to dis-
cover at least one moon that orbits saturn, it is considered to have fulfilled the
implement role and is encoded as such in the triplestore.

6 The FDBR: A Novel Data Structure for Natural
Language Queries

6.1 Quantifiers and Events

In 2015, Champollion [5] stated that, at that time, it was generally thought
by linguists that integration of Montagovian-style compositional semantics and
Davidsonian-style event semantics [7,18] was problematic, particularly with
respect to quantifiers. Champollion did not agree with that analysis and pre-
sented an integration which he called “quantificational event semantics” which
he claimed solved the difficulties of integration by assuming that verbs and their
projections denote existential quantifiers over events and that these quantifiers
always take lowest possible scope.

In this paper, we borrow much from Montague Semantics (MS), Davidsonian
Event Semantics, and Champollion’s Quantificational Event Semantics. How-
ever, we provide definitions of our denotations in the notation of set theory,
which improves computational efficiency and, we believe, simplifies understand-
ing of our denotations. We also believe that our semantics is intuitive, systematic,
and compositional.

6.2 Montague Semantics

[1P

All quantifiers, such as “a”, “every” and “more than two” are treated in MS
as functions which take two characteristic functions of sets as arguments and
return a Boolean value as result. Our modifications to MS are to use sets of
entities instead of predicates/characteristic functions of those sets, and to pair
sets of events with each entity; the set of events paired with an entity justify the
entity’s inclusion in the denotation. For example:
||lpropernoun|| = Ap.{(e, evs) | (e, evs) € p & e = the entity associated
with the proper noun}
||spins|| = {(ephob037 {6U1360})a (edeim037 {6U1332})7 etc.. }

Therefore,
lphobos spins||
= ||phobos|| ||spins||
= As.{(e, evs) | (e, evs) € s & e = eppobos} ||spins||
= {(e, evs | (e, evs) € ||spins|| & e = epnovos }
— {(ephobOSa {evizeo})}

178 S. Peelar and R. A. Frost

We call this set of pairs of entities and events an FDBR, and describe it in more
detail in Sect. 6.3. In the following example, we show how the FDBR can be used
to denote the quantifier a. The function intersect computes the intersection of
two FDBRs based on their entities, keeping the events of the second FDBR and
discarding those of the first in the result.

intersect = AmAs.{(e1, evsa) | (e1,evs1) € m & (eq, evsy) € s & e = ea}

lla|| = intersect
Therefore,

[la moon spinsl|
= |la||[lmoonl]||spins||
= {(e1, evsa) | (e1, evs1) € |[moon| & (eq, evss) € ||spins|| & e; = ea}

- {(ephobosa {61}1360})7 (edeimosa {67}1332})’ etc. . }

We can define the denotations of other quantifiers in terms of intersect as well.
For example, consider the denotation of every, where ents m denotes the set of
entities that appear in the first column of the FDBR m:

ents = Am.{ent | (Jevs) (ent, evs) € m}

intersect m s, ents m C ents s

llevery|] = AmAs. {

0, otherwise

Therefore,

|levery moon spins||
= |levery[[[moonl[|[spins|

= intersect m s, since ents ||moon| C ents ||spins]|

= {(ephoboss 1€V1360}), (€deimos, {€V1332}), etc...}

Note that the events evs paired with the entities returned in the denotation of
“was every moon that orbits saturn discovered” are a subset of the events
of type “discover” where the object property of those events are moons, since the
result of intersect_fdbr takes the events of from its second argument. This enables
additional data to be accessed from those events, as illustrated in the last example
query in the previous section, where “how” retrieves the implement property from
those events. This allows all “wh”-style questions to be handled compositionally,
selecting the desired properties from the events as needed.

6.3 The FDBR

In order to generate the answer to “hall discovered every moon that
orbits mars”, ||every| is applied to ||moon that orbits mars|| (i.e. the set of

A New Approach for Processing Natural-Language Queries 179

moons that orbit mars), as first argument, and the set of entities that were dis-
covered by hall, as the second argument. Our semantics generates this set from
the set of events of type “discover” whose the subject property is “hall”, as
discussed below:

Every set of m-ary events (i.e. events with n roles) of a given type, e.g.
discovery, defines n? — n binary relations. For example, for discovery events:

discover_relsybject— object BiSCOVET _Telsypject— year A1SCOVET _Te€lsybicct— implement - - -
discover_relopject— subject diSCOVET _Telopject—year AiSCOVET _T€lobject—implement - - -

discover _relyecar— subject AiSCOVET _Telyear—s object discover_relyecar—implement - - -

etc... to 20 binary relations for the set of discovery events or an 5-ary dis-
covery relation. For example:

discover _relsubject— object =

{(6'010457 €halls eph0b08)7 (€v10465 €halls edeimos)a etc. . }

If we collect all of the values from the range of a relation that are mapped to
by each value v from the domain (i.e. the image of v under the relation r) and
create the set of all pairs (v,image_of_v), we obtain a Function Defined by the
Relation r, i.e. the FDBR. For example:

FDBR(discover_relsypject— object)

= {(ehally {(ephobosa {67]1045}); (€deimoss {6711046})}), etc. .. }

It is these functions that are created, and used, by the denotation of the
transitive verb associated with the type of the events. For example in calcu-
lating the value of ||who discovered every moon that orbits mars||, || every|| is
applied to the set of entities which is the denotation of “moon that orbits
mars” (i.e {(ephobos, {evi045}) , (Edeimos; {6’01046})}) and all of the images that
are in the second field of the pairs in FDBR(discover_relsypject— object)- For the
pair (epau, {(ephob037{evlo45})7 (edeimos, {ev1046})}), ||every]|| returns the non-
empty set {(ephobos, {ev1045}), (Cdeimos, {€V1046 })}, and the value in the first
field, i.e. epqy, is subsequently returned with the answer to the query.

The various FDBRs are used to answer different types of queries. For example:

who discovered phobos and deimos = hall
uses FDBR(discover_relsypject— object)

where discovered by galileo = padua
uses FDBR(discover_reliocqtion— subject)

how discovered in 1610 or 1855 = galilean_telescope_1
uses FDBR (discover_relympiement—year)

7 Handling Prepositional Phrases

Prepositional phrases (PPs) such as “with a telescope” are treated similarly
to the method above, except that the termphrase following the preposition is

180 S. Peelar and R. A. Frost

applied to the set of entities that are extracted from the set of events in the
FDBR function, according to the role associated with the preposition. The result
is a “filtered” FDBR which is further filtered by subsequent PPs.

8 Handling Superlative Phrases

A novel feature of our semantics is that we can directly accommodate superlative
phrases such as “most” and “the most” inside chained prepositional phrases.
Here, we take “most” to mean “more than half” and “the most” to mean
“more than anything else”. This makes it possible to answer queries such as
“who discovered a moon using the most telescopes” and “most planets
are orbited by a moon” with our NLQI.

Superlatives can be placed nearly anywhere a determiner can exist. This
makes it possible to nest superlatives inside chained prepositional phrases, a
property we believe to be novel in our semantics. For example, consider “what
discovered at the most places using the most telescopes”, where “the
most” occurs inside both prepositional phrases “at the most places” and
“using the most telescopes”. The query is always evaluated in left-to-right
order, and results are sorted by each superlative phrase in the order they appear.
In this case, the results are first sorted by the number of places, followed by the
number of telescopes, both in descending order. First, the denotation for “most”
(as in “more than half”) is defined as follows:

Imost]] = AmA {intersect ms, |intersect m s| > |s|/2
most|| = AmAs.

0, otherwise

Providing a denotation for superlative phrases such as “the most” is more chal-
lenging. To achieve this and maintain compositionality, the superlatives are han-
dled in the denotation for the transitive verbs. First, we introduce the denotation
for “the most”:

llthe most|| = Am.(GT, intersect m)

“the most” takes a nounphrase as an argument and returns a pair consisting of
the ordering GT (i.e. “greater than”), and a termphrase created using partial
application of the intersect function. This ordering describes how the results
should be sorted — in this case, in descending order.

The denotation for prepositional phrases is modified to include an ordering
as third parameter, which may take on the special value None if the preposi-
tional phrase does not contain a superlative phrase within it. However, if it does
contain a superlative phrase, the ordering of the prepositional phrase is set to
the ordering specified in the denotation of the superlative phrase.

The denotation for transitive verbs is modified such that, at the end of the
prepositional phrase evaluation performed previously, where the filtered FDBR is
obtained (containing only relevant events [19]), the resulting FDBR is passed to a
new function, filter_super, which handles superlative evaluation. The behavior
of this function is as follows. First, if no superlatives are present (i.e. the ordering

A New Approach for Processing Natural-Language Queries 181

in the denotation of each prepositional phrase is None), nothing more is done, and
the behavior of the new denotation is identical to the previous one.

If superlatives are present, however, they are evaluated in the order they
appear. For each superlative phrase present in the chain of prepositional phrases,
the FDBR is expanded to a new data structure called a Generalized FDBR (or
GFDBR) which is similar to an FDBR, except that instead of having a set of
events in its second column, it has an FDBR instead. The GFDBR is formed by
taking the set of events in each row of the original FDBR, and expanding them
into an FDBR using the role attached in the prepositional phrase. This is used
to obtain the cardinality of the number of entities that the subject is related to
in that role under the FDBR (called the object cardinality). Now, these object
cardinalities are used to partition the GFDBR into a set of GFDBRs, where the
set with the highest (or lowest) object cardinality is chosen to replace the orig-
inal GFDBR, depending on the ordering in the denotation of the prepositional
phrase (i.e. the ordering denoted by the superlative phrase). For “the most”, it
would be the set with the highest object cardinality (since the ordering is GT').
In the future, for “the least”, it would be the set with the lowest object cardi-
nality. The GFDBR is then converted back into an FDBR by keeping only the
events in each row, and the process repeats until no more superlative phrases
are remaining. The final FDBR is returned as the result.

This allows superlative phrases to still be handled in left-to-right evaluation
order, and it also allows results to be sorted by multiple columns. For example
“who discovered the most moons in the most places” would first sort by
“the most moons”, and following that, would sort by “the most places”. Cur-
rently, we are not able to accommodate “the least”, as the semantics filters
out rows with empty sets of events in FDBRs before superlatives work on them.
For example, if a user were to ask “which planet has the least moons”, the
answer currently would be “earth”, as it has only one moon, and our system
filters out both “venus” and “mercury” (which have no moons) before they have
a chance to affect the result. This seems to be related to our original Open World
Assumption, where we only include results in the result set if there is at least
one accompanying event in the FDBR to justify its inclusion. It is possible that
if negation could be accommodated in the semantics, then “the least” could
be handled as well, since they seem to be related problems.

9 Our Approach with Relational Databases

Our NLQI can be easily adapted for use with conventional relational databases.
First, note that each event at minimum contains a role ev_type that identifies
the type of event, and as noted in Sect. 4, there is a general expectation that
events of the same type should contain similar roles. Second, note that the event
identifier in each triple is a URI and is therefore unique by definition.

182 S. Peelar and R. A. Frost

Assume the roles that events of a particular type t are fixed, including
optional roles. Let N be the number of roles, including optional roles, that an
event of type t contains. Then an event of type ¢t can be described as a row in
a relation with N columns, each role occupying one column respectively, with
optional roles taking on a special value NULL if they are not present in that
particular event. Let this relation be called ev_type.

Store this relation in a relational database as a table using the event identifier
as the primary key. Now, only the triple retrieval functions in Sect. 10.2 need to
be modified to use this database in place of a triplestore. This architecture allows
the denotations to remain unchanged and yet still work with different types of
databases. Note that triplestores do have an advantage in that they need not be
rebuilt if a new role is added to the event. The decision to choose one approach
over the other needs to be weighed based on application specific factors.

10 Implementation of Our NLQI

We built our query processor as an executable attribute grammar using the
X-SAIGA Haskell parser-combinator library package [15]. The collect function
which converts a binary relation to an FDBR is one of the most compute intensive
parts of our implementation of the semantics. However, in Haskell, once a value
is computed, it can be made available for future use. We have developed an
algorithm to compute FDBR(rel) in O(n lg n) time, where n is the number of
pairs in rel. Alternatively, the FDBR functions can be computed and stored in a
cache when the NLQI is offline. Our implementation is amenable to running on
low power devices, enabling it for use with the Internet of Things. A version of
our query processor exists that can run on a common consumer network router as
a proof of concept for this application. The use of Haskell for the implementation
of our NLQI has many advantages, including:

1. Haskell’s “lazy” evaluation strategy only computes values when they are
required, enabling parser combinator libraries to be built that can handle
highly ambiguous left-recursive grammars in polynomial time.

2. The higher-order functional capability of Haskell allows the direct definition
of higher-order functions that are the denotations of some English words and
phrases.

3. The ability to partially apply functions of n arguments to 1 to n arguments
allows the definition and manipulation of denotation of phrases such as “every
moon”, and “discover phobos”.

4. The availability of the hspargl [25] Haskell package enables a simple interface
between our semantic processor and SPARQL endpoints to our triplestores.

A New Approach for Processing Natural-Language Queries 183

10.1 System Architecture

A flowchart of our system architecture is presented in Fig. 1.
The query begins as a string of text as sent to the semantics, which is then
sent directly to the parser, as described in Sect. 3.1. This produces two results:

(1) A function that, given a set of triples, will evaluate the query with respect
to that set of triples and return the result

(2) A “Memo Tree” that roughly follows the syntax tree resulting from the
parse of the input string. In addition to providing a unique name to each
sub-expression of the parsed input, it is also used to determine which queries
need to be evaluated against the remote triplestore.

The function produced in (1) requires a set of triples to produce a result. While
it is possible, given sufficient time and resources, to directly retrieve all triples
from the remote triplestore and pass them directly into this function to evaluate
the input, in practice it is cost prohibitive to do so.

Instead, we retrieve only relevant triples [19] from the remote triplestore
and we create a reduced triplestore from them which is then passed into (1).

Query Tree Semantics

Flatten Optimize

Query Triplestore

Triplestore

Display Results

Triplestore]

Fig. 1. Application architecture.

184 S. Peelar and R. A. Frost

The Memo Tree obtained in (2) is traversed to obtain the set of all triplestore
queries that are required to evaluate each sub-expression of the parsed input.
These queries correspond to the getts family of functions described in Sect.
10.2. The results of these queries may overlap, i.e. share triples in common with
those of other queries in the set. An optimization step is performed to eliminate
these redundant queries. Domain specific knowledge could be used to improve
this process where appropriate. Finally, these optimized queries are evaluated
against the remote triplestore and the results are merged and stored locally in
the reduced triplestore. These triples are then passed to the function produced in
(1), yielding the final result. This is one area where our NLQI differs from other
NLQIs to the Semantic Web — notice that nowhere do we attempt to directly
translate the NL query into SPARQL or any other querying language. Instead,
we rely on simple triple querying primitives which are embedded in the semantics
to perform this task for us.

The architecture presented in this section lends itself to a very clean imple-
mentation in Haskell, where the semantics themselves can be written as pure
functions, with the only impure parts of the NLQI being those that directly deal
with querying the triplestore and with presenting these results to the user. We
expand on the individual sub-components of the NLQI in the following sections.

10.2 Triple Retrieval

Remote Triplestore. Our semantics does not directly depend upon any par-
ticular query language. When querying remote triplestores, the NLQI requires
only two conceptually simple functions. The first is:

getts_triples_entevprop_type ev_data prop_names ev_type

This function is used to retrieve triples belonging to the relation ev_type.
prop_names is a list of columns of the relation to retrieve. Only the names of
the columns of the relation that are actually required are listed here. Finally,
ev_data is the URL used to access the remote triplestore or database. For exam-
ple, in the query what discovered, it may be invoked as follows:

getts_triples_entevprop-type url ["subject"] "discover_ev"

This would retrieve the triples of all “discover” events that contain a subject
property, including the triples describing the type of those events. The second
function is:

getts_triples_members ev_data set

Here, ev_data performs the same function as it did previously, and “set”
indicates the name of a set, for example the moons or the set of things that
spin. This retrieves the triples of all “membership” events whose object property
corresponds to that set, including the triples describing the type of those events.

A New Approach for Processing Natural-Language Queries 185

Together, these two primitives can be used to retrieve triples from event-
based triplestores, provided the names of the roles to be queried are known. This
would typically be described in a schema, but in simple cases may be feasible
to hard-code into a program. To see how these two primitives work in action,
consider the following complex query, featuring chained prepositional phrases:

which person discovered a moon in 1877 with a telescope

This would invoke the following queries to the database:

getts_triples_entevprop._-type url ["subject", "object",
"year", "implement"] "discover_ev"

getts_triples members url "moon"

getts_triples.members url "telescope"

getts_triples_members url "person"

These four queries to the remote triplestore, taken together, will retrieve
enough information to answer the user’s query. Transitive and intransitive verbs
are implemented in terms of getts_triples_entevprop_type. Common nouns
and adjectives are implemented in terms of getts_triples members. These con-
ceptually simple functions are easy to implement in SPARQL, SQL, and as Triple
Pattern Fragments [23]. An example implementation is provided in our source
code, available on Hackage [15] for both Triple Pattern Fragments and SPARQL.

After all “getts” queries are evaluated, their results are merged together into
a local reduced triplestore. The idea behind this triplestore is that it contains
enough triples to evaluate the correct result, but no more than that. In other
words, the results from passing in the entire triplestore to the semantic function
in (1) and the results from passing in the reduced triplestore should be equivalent.

Reduced Triplestore. Once the reduced triplestore is passed into the seman-
tics, however, it still needs to be queried by the semantic functions in the deno-
tations. This is where the boundary of the impure code of the NLQI meets the
pure code of the semantics. At this higher level, there are three primitives that
are used to query the reduced triplestore:

— pure_getts_triples_entevprop_type ev_data prop_names
ev_type

— pure_getts_triples_entevprop ev_data prop_names evs

— pure_getts_members ev_data set

These are very similar functions to those described previously, however
they are implemented as pure functions in Haskell. The actual implementa-
tion of the reduced triplestore is opaque to the semantics, which rely strictly
on these three functions to retrieve triples from the reduced triplestore. Imple-
menting these as pure functions allows them to be embedded in the semantics,
which are implemented as pure functions themselves. This provides a number
of benefits, including allowing the semantics and queries to be lazily evaluated.

186 S. Peelar and R. A. Frost

pure_getts_triples_entevprop-type performs a similar role as it did previ-
ously. pure_getts_triples_entevprop is a new function that, instead of spec-
ifying an event type parameter, specifies a set of events instead. This is used
to implement chained prepositional phrases, where sets of events are honed
down in the order that the phrases occur in (from left to right). Finally,
pure_getts members performs a similar function as it did previously, except
this time it directly returns an FDBR from the members of the set given to the
events in which the set membership is recorded.

10.3 Handling Ambiguity in the Query Interface

Syntactic Ambiguity. As queries may be ambiguous, it’s important that users
see how their queries were parsed to understand the result given. Our system
displays the parse tree along with the query result to assist with this. The parse
tree is presented in a familiar Haskell syntax to indicate scoping. As an exam-
ple, consider the scoping of the simple query “who discovered a moon that
orbits mars”:

who (discovered (a (moon ‘that' (orbits mars))))

Here, we see that scoping of denotations is shown with parentheses. Prepo-
sitional phrases are enclosed inside square brackets, with commas to delimit
chained prepositional phrases:

who discovered a moon in 1877 with a telescope

= who (discovered (a moon) [in 1877, with (a telescope)])

This mirrors the familiar list syntax that Haskell offers and suggests to the
user that the prepositional phrases will be evaluated in the order presented (left
to right), allowing users to understand exactly how their query is evaluated by
the system. Now, consider the following ambiguous query:

who discovered a moon that orbits in 1877

There are two possible parses of this query, depending on which transitive
verb the prepositional phrase “in 1877” is applied to:

who (discovered (a (moon ‘that' (orbits [in 1877]1)))) =
none
who (discovered (a (moon ‘that' orbits)) [in 1877]1) = hall

In the first case, the prepositional phrase “in 1877” is treated as though
it applies to “orbits”. However, the result is “none” because orbit events do
not have a concept of time in our database. If we were to add a year role to
the “orbit” relation, then all planets and moons in the solar system would be
returned. In the second case, “in 1877” applies to “discovered”, a relation
which has the concept of a time of discovery (the year role). As hall is the only
person that discovered anything in 1877, only they are included in the result.

Our system permits highly ambiguous input, providing a result for each
possible parse of that input. However, it may be the case that a user

A New Approach for Processing Natural-Language Queries 187

has a clear understanding of how they want their query to be parsed and
would gain no benefit from seeing other possible parses of their query.
Fortunately, this use case is easily accommodated with a simple exten-
sion to our NLQI: allowing the scoping syntax as presented above directly
in the query interface itself. For example, a user could directly query
“what (discovered (a (moon ‘that' orbits)) [in 1877])" which
would exclude the other parse as mentioned in the example above. In fact, the
query need not even be fully explicitly scoped to benefit from this. A partial
scoping such as “what discovered (a moon that orbits) in 1877” would
be sufficient to exclude the other undesirable parses from the result. We intend
to implement this functionality in our NLQI in the very near future.

It may also be worthwhile to implement a simple dialogue-based approach
to disambiguation, where the system could simply provide the possible parses
to the user and allow them to choose which one they intended. This approach
may be beneficial when using speech to interact with the system, as providing
scoping with the above method directly with speech would be very inconvenient.
An example dialogue could be:

User:

what discovered a moon that orbits mars in 1877 with a
telescope
Interface:

There are three possible ways I can interpret this
query.

Which one do you mean?

1) what (discovered (a (moon ‘that‘ (orbits mars [in
1877, with (a telescope)l))))

2) what (discovered (a (moon ‘that' (orbits mars))) [in
1877, with (a telescope)])

3) what (discovered (a (moon ‘that' (orbits mars [in
18771)))
[with (a telescope)])
User:

2
Interface:

OK -- the result of the second interpretation is
‘‘hall’’

If the modality of the interface is by voice, reading the scoping directly as
presented above may be inconvenient to users. Fortunately, it is possible to
verbally state the scoping in an intuitive way:

188 S. Peelar and R. A. Frost

User:

what discovered a moon that orbits mars in 1877 with a
telescope
Interface:

I can interpret this three different ways. In the first
interpretation, the prepositions ‘‘in 1877’’ and ‘‘with a
telescope’’ apply to the verb ‘‘orbit’’. Is that what you
meant?

User:

no
Interface:

In the second interpretation, the prepositions ‘‘in
1877’7’ and ‘‘with a telescope’’ apply to the verb ‘‘discov-
ered’’. Is that what you meant?

User:
yes, that’s what i meant
Interface:
OK —-- the result of that interpretation is ‘‘hall’’

Given the different nature of the user’s responses compared to the queries
themselves, they may be subject to a different grammar or may be handled by
a different system entirely that permits more free-form responses to be given.
This could be a good opportunity to integrate Machine Learning-based NLP
approaches in the NLQI in the future, as they are ideally suited to use cases
involving loosely structured input.

Semantic Ambiguity. Semantic ambiguity may also be accommodated by
permitting multiple definitions of the same terminal in the grammar, augmenting
it with a human readable description of what the terminal means. Each definition
would be evaluated as though it were a different parse of the query, although
each parse would have the same syntax tree. To avoid confusion, the human
readable definition of the word could be printed below the tree.

10.4 Semantic Implementation

The semantics themselves are completely unaware of the structure of the under-
lying triplestore or the methods and query languages used to retrieve triples
from it. Recall from Sect. 10.1 that the result of a parse of user input produces
two items: a pure function that, given a triplestore as input will produce the
result of a query and a tree that represents the query itself, including the types
of queries that are required from a remote triplestore.

Applying Multiple Semantics in Parallel. The Biapplicative Bifunctor in
Haskell, which is inspired from its counterpart in category theory, can serve as
a generalization of function application. One possible use for it is to apply pairs

A New Approach for Processing Natural-Language Queries 189

of values to pairs of functions. Briefly, given two arbitrary functions f and g
and two values a and b we can use the biapplicative operator <<*>> to apply a
and b both functions in parallel: (f,g) <<*>> (a,b) = (f a,g b). The functions
themselves need not be related.

First, we introduce an operator, >|<, that allows us to bridge together two
semantics such that they can be applied using <<x>>:

a>|<b=(a,b)

This allows these two independent functions to be applied in parallel while pars-
ing the input string using the exact same grammar and no code duplication, pro-
vided the <<*>> is used in place of function application. For example, “a moon
spins” is evaluated as though it were written as “a <<*>> moon <<*>> spins”
under this approach. Our NLQI uses this to construct the Memo Tree in parallel
while applying the denotations of the words in the query. Consider the following
example, where GIntersect and GMembers are constructors of the Memo Tree:

a’ = a >|< GIntersect
moor! = moon >|< GMembers "moon"
spins’ = spins >|< GMembers "spins"

Therefore,

a’ <> moon’ << >> spins’
= (a moon spins, GIntersect (GMembers "moon") (GMembers "spin"))

However, this is somewhat inconvenient and unfamiliar syntax to work with.
Fortunately, it is trivial to define a set of “wrapper” functions to restore the
original function application syntax:

wrapy (f,9) (a1,b1) (a2,b2) ... (an,bn) = (f a1 az...an, g by ba...bN)

Here, the function wrap, takes a pair of functions (f,g) with arity N
and then N pairs of arguments to be applied in order to f and g respec-
tively. This allows ¢ @'<<*>> moon’ <<x>> spins’” above to be written
as “a’ moon spins”, where a” = wrap, a’. Therefore, we can retain the familiar
function application syntax in the semantics while taking advantage of parallel
function application. By itself, this is a convenience, but let us revisit the Memo
Tree once more. It has two uses. The first is as stated previously, in determining
which queries need to be performed against the remote triplestore. The second
is that this allows us to assign a unique identifier to each sub-expression of the

parsed input.

Memoized Compositional Semantics. Consider the query “what is
orbited by a thing that was discovered by a person that discovered
phobos”, containing three nested transitive verbs. One possible parse of this
query yields:

190 S. Peelar and R. A. Frost

what (is orbited [by (a (thing ‘that' (was discovered [by
(a (person ‘that' (discovered phobos)))]1)))1)

A query’s sub-expressions may be evaluated multiple times during the prepo-
sitional filtering of a transitive verb (i.e one evaluation for each row of the FDBR
denoted in that transitive verb). This has a compounding effect when transitive
verbs are nested as sub-expressions in prepositional phrases of other transitive
verbs. In general, if there are m nested transitive verbs in a query, each having
an FDBR with n rows. Then the complexity for evaluation is O(n™).

As it turns out, we can use the Memo Tree to memoize the results of the
sub-expressions of a query, drastically reducing the number of re-evaluations per-
formed. The memoization occurs in a more sophisticated version of the wrap y
functions described previously, which use the unique identifier provided by the
Memo Tree to memoize the results of the semantic functions as they are eval-
uated. This is completely transparent to the user, and the familiar function
application syntax used in all previous examples still remains. This reduces the
complexity to O(mn), where m is the number of nested transitive verbs, each
having an FDBR with n rows. All sub-expressions in the query are memoized,
including the final result of the query expression itself.

The State monad in Haskell is used to thread the memoized state throughout
the execution of the semantics. This mirrors the memoization technique used in
the parser itself to provide efficient parsing using combinators [13]. We believe
this two-pronged approach to triplestore retrieval and memoization is novel and
has not been used in any other Compositional Semantics-based systems. We
intend to expand more on our approach in a future publication, as we believe
it to be useful for creating modular and efficient compositional NLQIs that can
scale to the needs of the Semantic Web.

11 Related Work

Orakel [6] is a portable NLQI which uses a Montague-like grammar and a lambda
calculus semantics. Our approach is similar in this respect. Queries are translated
to an expression of first order logic enriched with predicates for query and numer-
ical operators. These expressions are translated to SPARQL or F-Logic. Orakel
supports negation, limited quantification, and simple prepositional phrases.

YAGO2 [17] is a semantic knowledge base containing reified triples extracted
from Wikipedia, WordNet and GeoNames, representing nearly 0.5 billion facts.
Reification is achieved by tagging each triple with an identifier. However, this
is hidden from the user who views the knowledge base as a set of “SPOTL”
quintuples, where T is for time and L for location. The SPOTLX query language
is used to access YAGO2. SPOTLX can handle queries with prepositional aspects
involving time and location. However, no mention is made of chained complex
PPs.

Alexandria [24] is an event-based triplestore, with 160 million triples (repre-
senting 13 million n-ary relationships), derived from FreeBase. Alexandria uses
a neo-Davidsonian [18] event-based semantics. In Alexandria, queries are parsed

A New Approach for Processing Natural-Language Queries 191

to a syntactic dependency graph, mapped to a semantic description, and trans-
lated to SPARQL queries containing named graphs. Queries with simple PPs are
accommodated. However, no mention is made of negation, nested quantification,
or chained complex PPs.

The systems referred to above have made substantial progress in handling
ambiguity and matching NL query words to URIs. However, they appear to have
hit a roadblock with respect to natural-language coverage. Most can handle sim-
ple PPs such as in “who was born in 1918” but none can handle chained com-
plex PPs, containing quantifiers, such as “in us_naval_observatory in 1877
or 1860”.

Blackburn and Bos [4] implemented lambda calculus with respect to nat-
ural language, in Prolog, and Van Eijck and Unger [22] have extensively and
clearly discussed such implementation in Haskell. Implementation of the lambda
calculus for open-domain question answering has been investigated by [1].
The SQUALL query language [10,11] is a controlled natural language (CNL)
for querying and updating triplestores represented as RDF graphs. SQUALL
can return answers directly from remote triplestores, as we do, using sim-
ple SPARQL-endpoint triple retrieval commands. It can also be translated to
SPARQL queries which can be processed by SPARQL endpoints for faster com-
putation of answers. SQUALL can handle quantification, aggregation, some
forms of negation, and simple unchained prepositional phrases containing the
word “at” and “in”. It can also handle superlative phrases as long as they are
not nested under a prepositional phrase. Notably, the scope of prepositional
phrases in SQUALL are the entire sentence they reside in. It is also written in a
functional language. However, some queries in SQUALL require the use of vari-
ables and low-level relational algebraic operators (see for example, the queries
on page 118 of [11]).

12 Future Work

Negation. Our system currently relies on the Open World Assumption, where
the absence of evidence cannot be treated as having evidence of absence. As a
consequence of this, the system currently is unable to handle negation, and does
not have a denotation for the words “no” and “not”.

However, there is a clear need for handling negation in our semantics where
the Closed World Assumption holds. For example, it should be possible to
answer queries such as “who did not discover a moon "or“ what discov-
ered no moon”. Work has been done on event-based semantics that can handle
negation [5]. We believe it should be possible to accommodate negation in our
semantics as well using a similar approach, and in turn provide a denotation for
“the least” as well, as noted in Sect. 8.

DBPedia. With the addition of memoization in our semantics, we feel our
approach is now scalable enough to work directly with DBPedia. We intend to
expand on how our semantics can handle large triplestores such as DBPedia

192 S. Peelar and R. A. Frost

in a future publication. In particular, an interface to DBPedia will allow our
approach to be directly evaluated with existing systems in use, such as YAGO
[17].

Hardware Acceleration. Consider that the reduced triplestore described in
Sect. 10.2 is stored locally in the query interface and is queried with the pure
“getts” functions. These could make good candidates for offloading to FPGA
fabric or a GPU for hardware acceleration. Work has been done in developing on
FPGAs using Haskell [3]. This could allow for both low latency and low power
consumption in embedded consumer devices, such as those that operate on the
Internet of Things.

Non-Event-Based Triplestores. We also believe it should be possible to han-
dle non-event based triplestores as well using our approach using a translation
layer. It may be possible to use ontological information to provide an event-based
view to many kinds of non-event based data. Machine Learning approaches could
provide a way forward in the absence of or lacking sufficient ontological infor-
mation about a triplestore.

13 Conclusions

This work comes at an appropriate time when massive triplestores, such as DBpe-
dia [2] are being created containing billions of verified facts. We are currently
looking at how such facts can be converted to event-based triples which can be
queried by our interface. We are confident that, after we accommodate nega-
tion, our compositional semantics is appropriate for answering most queries that
are likely to be asked of data stores containing everyday knowledge. We have
shown how the FDBR data structure presented in this paper can be used to
handle many kinds of complex language features, including chained preposi-
tional phrases and superlatives. The way quantification is handled within the
semantics is consistent with other work in this area, as discussed in Sect. 6.1.
Our approach is extensible enough that it can accommodate queries to both
relational and non-relational types of database, including Semantic Web triple-
stores. Our approach is also suitable for use on low power devices, which may
be useful for applications on the Internet of Things (IoT).

We have shown how our system is tolerant of highly ambiguous user input
and we discussed possible ways to present this in Sect. 10.3. In particular, we
discussed how both semantic and syntactic ambiguity could be handled. We
also presented a novel approach to memorizing compositional semantics using
unique identifiers attached to sub-expressions in a query, substantially improving
the time complexity of evaluation. We also showed how those unique identifiers
are also useful to determine the set of queries that need to be made to the remote
database.

A New Approach for Processing Natural-Language Queries 193

Our next goal is to provide an NLQI to DBPedia using our approach with

the techniques described here, and then evaluate the effectiveness of our system
relative to other NLQIs using established benchmarks, such as QALD [21].

References

10.

11.

12.

13.

14.

15.

16.

. Ahn, K., Bos, J., Kor, D., Nissim, M., Webber, B.L., Curran, J.R.: Question

answering with QED at TREC 2005. In: TREC (2005)

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722-735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0_52

Baaij, C.: CAash: from Haskell to hardware. Master’s thesis, University of Twente
(2009)

Blackburn, P., Bos, J.: Representation and Inference for Natural Language. A First
Course in Computational Semantics, CSLI (2005)

Champollion, L.: The interaction of compositional semantics and event semantics.
Linguist. Philos. 38(1), 31-66 (2014). https://doi.org/10.1007/s10988-014-9162-8
Cimiano, P., Haase, P., Heizmann, J., Mantel, M.: ORAKEL: a portable natural
language interface to knowledge bases. Technical report, Institute AIFB, University
of Karlsruhe (2007)

Davidson, D.: The logical form of action sentences (1967)

Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94—
102 (1970). https://doi.org/10.1145/362007.362035

Erling, O., Mikhailov, I.: Virtuoso: RDF support in a native RDBMS. In: de Vir-
gilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Manage-
ment, pp. 501-519. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-04329-1_21

Ferré, S.: SQUALL: a controlled natural language for querying and updating RDF
graphs. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS (LNAI), vol. 7427, pp.
11-25. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32612-7_2
Ferré, S.: SQUALL: a controlled natural language as expressive as SPARQL 1.1.
In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds.) NLDB
2013. LNCS, vol. 7934, pp. 114-125. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38824-8_10

Frost, R., Launchbury, J.: Constructing natural language interpreters in a lazy
functional language. Comput. J. 32(2), 108-121 (1989)

Frost, R.A., Hafiz, R., Callaghan, P.: Parser combinators for ambiguous left-
recursive grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol.
4902, pp. 167-181. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77442-6_12

Frost, R.A., Peelar, S.M.: A new data structure for processing natural language
database queries. In: Proceedings of the 15th International Conference on Web
Information Systems and Technologies, WEBIST 2019, Vienna, Austria, 18-20
September 2019, pp. 80-87 (2019). https://doi.org/10.5220,/0008124300800087
Hafiz, R., Frost, R., Peelar, S., Callaghan, P., Matthews, E.: The XSaiga package
(2018)

Hirst, G.: Semantic Interpretation and the Resolution Of Ambiguity. Cambridge
University Press, Cambridge (1992)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/s10988-014-9162-8
https://doi.org/10.1145/362007.362035
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1007/978-3-642-32612-7_2
https://doi.org/10.1007/978-3-642-38824-8_10
https://doi.org/10.1007/978-3-642-38824-8_10
https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.1007/978-3-540-77442-6_12
https://doi.org/10.5220/0008124300800087

194

17.

18.

19.

20.

21.

22.

23.

24.

25.

S. Peelar and R. A. Frost

Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28-61
(2013)

Parsons, T.: Events in the Semantics of English, vol. 5. MIT Press, Cambridge
(1990)

Peelar, S.: Accommodating prepositional phrases in a highly modular natural lan-
guage query interface to semantic web triplestores using a novel event-based deno-
tational semantics for English and a set of functional parser combinators. Master’s
thesis, University of Windsor, Canada (2016)

Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Boston (1985)

Usbeck, R., Gusmita, R.H., Ngomo, A.C.N., Saleem, M.: 9th challenge on question
answering over linked data (QALD-9). In: Semdeep/NLIWoD@ ISWC, pp. 58-64
(2018)

Van Eijck, J., Unger, C.: Computational Semantics with Functional Programming.
Cambridge University Press, Cambridge (2010)

Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-scale querying through linked data fragments. In: LDOW. Citeseer
(2014)

Wendt, M., Gerlach, M., Diiwiger, H.: Linguistic modeling of linked open data for
question answering. In: Proceedings of Interacting with Linked Data (ILD 2012)
[37], pp- 75-86 (2012)

Wheeler, J.: The hsparql package. In: The Haskell Hackage Repository (2009).
http://hackage.haskell.org/package/hsparql-0.1.2

http://hackage.haskell.org/package/hsparql-0.1.2

	A New Approach for Processing Natural-Language Queries to Semantic Web Triplestores
	1 Introduction
	2 How to Access Our NLQI
	3 Compositionality
	3.1 The Compositionality of Our Syntactic Processor
	3.2 The Compositionality of Our Semantics
	3.3 The Compositionality of the Whole NL Processor

	4 The Triplestore that Is Queried
	5 Example Queries
	5.1 Queries Demonstrating the Range of NL Features that Our NLQI Can Accommodate
	5.2 Queries with ``Non-compositional'' Structures
	5.3 Extensions to the Semantics

	6 The FDBR: A Novel Data Structure for Natural Language Queries
	6.1 Quantifiers and Events
	6.2 Montague Semantics
	6.3 The FDBR

	7 Handling Prepositional Phrases
	8 Handling Superlative Phrases
	9 Our Approach with Relational Databases
	10 Implementation of Our NLQI
	10.1 System Architecture
	10.2 Triple Retrieval
	10.3 Handling Ambiguity in the Query Interface
	10.4 Semantic Implementation

	11 Related Work
	12 Future Work
	13 Conclusions
	References

