
Resource Multiplexing and Prioritization
in HTTP/2 over TCP Versus HTTP/3

over QUIC

Robin Marx1,2(B), Tom De Decker1, Peter Quax1,3, and Wim Lamotte1

1 Hasselt University – tUL – EDM, Diepenbeek, Belgium
{robin.marx,tom.dedecker,peter.quax,wim.lamotte}@uhasselt.be

2 Research Foundation Flanders, #1S02717N,
Brussels, Belgium

3 Flanders Make, Lommel, Belgium

Abstract. Modern versions of the HTTP protocol, such as HTTP/2 over
TCP and the upcoming HTTP/3 over QUIC, use just a single underly-
ing connection to transfer multiple resources during a web page load. The
resources are divided into chunks, optionally multiplexed on the connec-
tion, and reassembled at the receiver’s side. This poses challenges, as there
are many different ways simultaneously requested resources can share the
available bandwidth, and not all approaches perform equally well with
regards to achieving low loading times. Making matters worse, HTTP/2’s
prioritization system for directing this multiplexing behaviour is difficult
to use and does not easily transfer to the new HTTP/3.

In this work, we discuss these challenges in detail and empirically evalu-
ate the multiplexing behaviours of 10 different QUIC implementations, as
well as 11 different prioritization schemes for HTTP/3. We find that there
are large differences between strategies that can have a heavy impact on
page load performance, of up to 5x load time speedup in specific condi-
tions. However, these improvements are highly context-sensitive, depend-
ing on web page composition and network conditions, turning the best
performers for one setup into the worst for others. As such, we also crit-
ically evaluate the ability of the newly proposed HTTP/3 prioritization
mechanism to flexibly deal with changing conditions.

Keywords: Web performance · Resource prioritization · Bandwidth
distribution · Network scheduling · Measurements

1 Introduction

The HTTP protocol has undergone some highly impactful changes in the past
few years, starting with the standardization of HTTP/2 (H2) in 2015 and now the
upcoming finalization of HTTP/3 (H3), barely five years later. This rapid evolu-
tion is driven mainly by the need for improvement in two key areas: performance
and security, and this work focuses on the former. When loading web pages over
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HTTP, browsers typically request a large amount of different resources. These
resources are spread over a range of different types, including HTML, CSS,
JavaScript and image files. Over HTTP/1.1, only one of those resources can be
in-flight on the underlying TCP connection at a time, holding up all further
resources behind it until it is fully downloaded. This is called the Head-Of-Line
(HOL) blocking problem. As a workaround to achieve better web page load-
ing performance, browsers open up to six parallel HTTP/1.1 connections per
domain, each carrying one resource at a time. By distributing resources over
multiple domains this number of connections can grow to 30 or more. While
this typically gives the intended benefit of faster page loads, it is also inefficient,
as each TCP connection requires some memory and processing. Additionally,
it introduces bandwidth contention problems, with each individual connection
vying for their share. As TCP’s congestion control mechanisms work on a per-
connection basis and often use packet loss as their main backoff signal, this
massive parallelism can lead to increased packet loss rates and fairness issues
with other applications using less TCP connections.

As such, one of the main goals of H2 was to allow the multiplexing of a web
page’s resources on a single underlying TCP connection [11]. To this end, H2
subdivides resource payloads into smaller chunks which are prefixed with their
unique resource identifier, allowing data from different resources to be interleaved
on the wire. While this resolves HTTP/1.1’s HOL blocking problem, it introduces
new challenges. The question now becomes how exactly the individual resources
should be multiplexed and scheduled on the single connection. It turns out that
this depends on the specific resource: some file types (such as JavaScript or CSS)
typically need to be downloaded in full by the browser before they can be used and
executed. As such, it makes sense to send them sequentially, not multiplexed with
data from other resources. On the opposite end, resource types such as HTML
and various image formats can be processed and rendered incrementally, making
them ideal targets for heavy interleaving with data from other resources. Getting
these resource priorities right is key to achieving good web page loading perfor-
mance [9,19]. To allow browsers maximum flexibility in this area, H2 includes a
complex prioritization mechanism, using a so-called “dependency tree”, to steer
which resources should be sent first and how.

In practice, this dependency tree mechanism has turned out to be overly
complex and difficult to use, for browsers and servers alike [8]. Few implementa-
tions use its full potential and several employ sub-optimal tree layouts, leading
to higher page load times. Additionally, switching to a single underlying TCP
connection surfaces the fact that TCP has a Head-Of-Line blocking problem of
its own when faced with packet loss. As TCP is a reliable and strictly ordered
protocol, even a single packet loss can block all other packets behind it, waiting
for its retransmission. This is inefficient for H2, as at that layer the blocked
packets can contain data for other H2 resources, and as such do not necessarily
have to wait for the lost packet’s retransmission to be useful to the browser.

Solving TCP’s HOL blocking problem is one of the main reasons for the new
QUIC transport protocol [4]. While TCP regards all its payload data as a single,
contiguous and opaque byte stream, QUIC is instead aware of multiple, fully
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independent byte streams (and thus HTTP resources) being transported over
a single connection. As such, QUIC can provide features such as reliability and
in-order data delivery on a per-stream basis; it is no longer tied to the global
connection level like TCP. While this ostensibly solves TCP’s transport level
HOL blocking problem, it is unclear how much of an advantage this delivers in
practice and if its benefits hold in all conditions. Another consequence of QUIC’s
fundamental departure from TCP’s single-stream model, is that it becomes dif-
ficult to impossible to port some application layer protocols that currently rely
on TCP behaviour to the new transport protocol. A key example of this fact is
H2, which does not have a straightforward mapping onto QUIC. The discrep-
ancies are so large in fact, that a new version of the protocol, termed H3, is
being developed in tandem with QUIC. While H3 retains most of the semantics
and high level features of H2, the underlying systems for aspects such as HTTP
header compression, server push and the aforementioned resource prioritization
have been substantially reworked to deal with QUIC’s specifics. As such, the
introduction of these new protocols leads to many unanswered questions with
regards to performance and best practices.

In this text we continue the groundwork from our previous publications
on HTTP/2 and HTTP/3 prioritization [6,19] and contribute new evaluation
results for the QUIC protocol. While QUIC and HTTP/3 are conceptually bound
together, they are in essence still separate protocols. As such, we will first discuss
them individually and then combine our findings in the discussion. Starting at
the transport layer in Sect. 2, we look at how ten different QUIC implemen-
tations implement multiplexing and data retransmissions on the independent
byte streams. We find that there are large differences in how various stacks
employ the new protocol’s options. In Sect. 3 we provide new data concerning
QUIC’s HOL blocking behaviour. We find that QUIC provides definite benefits
over TCP in this area, but that they are highly dependent on the underlying
resource multiplexing behaviour. We then explore our application layer results
from previous work more deeply in Sects. 4 and 5, discussing the problems with
H2’s prioritization setup and why it had to change for H3. We present the results
of evaluating 11 H3 prioritization schemes on 42 web pages, to again show the
optimal approach to be highly context dependent. We end by combining insights
from both QUIC and HTTP/3 and discuss how the results from our previous
work helped initiate a radical change in H3’s planned approach to prioritization.
All our source code, results and visualizations are made publicly available at
https://h3.edm.uhasselt.be.

2 QUIC Resource Multiplexing

2.1 Background: Resource Streams

QUIC supports the concept of multiple, independent byte streams being active
on a connection at the same time. These streams are a rather abstract concept
in QUIC itself, but map nicely to for example individual resource requests and
responses at the HTTP layer. This is in stark contrast with TCP, which sees all

https://h3.edm.uhasselt.be
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the data it transports as part of a single opaque byte stream, even if it is in fact
carrying data from multiple files for protocols such as H2.

This can be easily understood by looking at the protocols’ mechanisms under
the hood. TCP for instance, uses a sequence number in its packet header, indi-
cating the starting byte offset of the data in the current packet within the larger
stream. For example, a TCP packet 1400 bytes in size with a sequence num-
ber of 10, carries byte 10 up to and including byte 1409 of the payload. QUIC
takes a different approach, not including the payload metadata in its packet
header, but rather using an additional binary framing layer. QUIC’s STREAM
frames contain a stream identifier (ID), to indicate which byte stream this frame
belongs to, and both offset and length fields. However, these offsets are separate
per stream: if we have a STREAM frame for stream A with offset 10 and length
1400, we can also have a subsequent STREAM frame for stream B with offset
10 and length 1400 and they would carry completely independent data. In TCP,
stream B’s data would then rather have been given offset 1410, as it was being
sent directly after A’s data.

While it adds flexibility, QUIC’s setup also provides new challenges. Where
TCP just needs to transport its single byte stream as it receives it from the
application layer, QUIC now has to decide which of the multiple in-progress
streams gets to send data in each outgoing QUIC packet. Put differently: it has
to decide on a multiplexing and scheduling approach. As we will see in Sect. 4,
this decision can be driven by the application layer, for example by H2’s and H3’s
prioritization system. However, since QUIC is a standalone transport protocol,
intended for use besides HTTP as well, it is useful to consider these mechanics
purely on the transport layer as well. It is important to note that while QUIC
includes the abstract concept of streams, it knows not of the semantics tied to
individual streams and thus also cannot derive relative stream priorities itself.
Put differently, QUIC treats all streams as equally important.

Consider then some possible approaches for two streams, A and B. One pos-
sibility is a sequential scheme, in which we would keep sending stream A’s (avail-
able) data in full, before starting to transport B. Another option is a Round-
Robin (RR) scheduler, in which we send a limited amount of data for A before
switching to B for some time, moving back to A afterwards and so on. There
are many possible RR variants, depending on how much data each stream may
send before switching. For example, the scheduler could switch after 40 packets,
after just one packet, or could even aggregate a smaller STREAM frame from
both A and B into a single QUIC packet. The question is then: which of these
schemes and their variants performs best in which circumstances?

This question becomes even more complex when we consider reliability. Just
like TCP, QUIC utilizes retransmissions based on acknowledgements and time-
outs to ensure reliable data transfers. Unlike TCP, these retransmission are now
also done on a per-stream basis. While QUIC still acknowledges full packets, end-
points are expected to keep track of which STREAM data was in which packet.
As such, QUIC does not necessarily need to retransmit full packets, but only
individual STREAM frames. In fact, not even that is needed: QUIC implemen-
tations only need to keep track of the ranges of a byte stream (offset + length)
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that have not been acknowledged. When packet loss is detected, the lost ranges
can be re-packaged into new STREAM frames at will (e.g., two smaller ranges
that were previously sent in two STREAM frames across two packets can just
as well be combined into one large range in one packet for retransmission). As
such, QUIC implementations also need to make decisions in how to schedule the
retransmission of this lost data in comparison to the “normal” data. We will
consider three main Retransmission Approaches (RAs), which are the ones
observed in our experiments in Sect. 2.3. In the following example sequences, we
assume a default RR scheduler over streams A, B, C and D, where streams A
and B suffer some losses:

– RA #1: Default scheduling: to be retransmitted data is simply seen as
“normal” data and is sent when the stream is next selected by the scheduler
as part of normal operating procedure. It does not receive special treatment.
An example sequence would be ABCDABCD.

– RA #2: Priority retransmissions with default scheduling: streams
with lost data are given a higher priority, and between them the default
scheduling applies. In the example with the default RR scheduler, it will first
perform RR between streams with losses before going back to RR across all
streams. An example sequence would be ABABCDCD.

– RA #3: Priority retransmissions with special scheduling: streams
with lost data are given a higher priority, and between them a special schedul-
ing applies. In the example with the default RR scheduler, this approach can
first utilize a sequential (or other) scheduler between streams with losses,
before going back to RR across all streams. An example sequence would be
AABBCDCD. Conversely, in the case of a default sequential scheduler, RR
could be used for lossy streams, resulting in for example ABABCCDD.

It should be evident that there is no immediate clear winner among these
schedulers and RAs: each has their own tradeoffs and will perform better or
worse depending on use case and on the specific types and frequencies of loss
(e.g., bursty vs single packets). Given this large parameter space, we decided
to evaluate the default choices made by current QUIC implementations. These
will dictate the off-the-shelf behaviour and performance seen from QUIC stacks
when not utilizing external prioritization signalling.

2.2 Experimental Setup

At the time of writing (January 2020), there are approximately 20 publicly
announced IETF QUIC implementations1, many of them tied to large internet
companies. Note that we only look at the IETF QUIC proposed standard, not
Google’s original version of the QUIC protocol, which is implemented by much
less different parties. Note too that, to our knowledge, we are the first to perform
this type of evaluation on multiple IETF QUIC implementations, related work

1 https://github.com/quicwg/base-drafts/wiki/Implementation.

https://github.com/quicwg/base-drafts/wiki/Implementation
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being limited to either Google’s original QUIC implementation or a single IETF
QUIC stack.

Most of the IETF QUIC implementations provide a publicly hosted end-
point for testing, or are open source. After filtering out obviously broken, out-
dated, and closed source implementations without a public endpoint, we are left
with 10 implementations: aioquic, quiche (Google), lsquic (LiteSpeed), msquic
(Microsoft), mvfst (Facebook), ngtcp2, picoquic, quiche (Cloudflare), ats (Apache
Foundation) and quicly (Fastly). Note that there are two implementations named
quiche. Since Cloudflare named theirs first, we will henceforth refer to Google’s
quiche as simply google.

To execute our tests, we choose the aioquic client, as it implements all of
QUIC’s features, has excellent interoperability with the other implementations
and is written in Python, which allows us to easily tweak its behaviour as needed.
We run this client in a debian docker container and point it at the public end-
points to simultaneously request one to ten files, of various sizes between 1 KB
and 10 MB. While we use H3 as a means to request these files out of convenience,
no prioritization information is passed from H3 to the QUIC layer, allowing us
to assess the transport layer’s default behaviour.

We execute all our tests on two WAN networks. Firstly, on the Hasselt Univer-
sity network, providing 1 Gbps downlink and 10 Mbps uplink capacity. Secondly,
on a residential Wi-Fi network, providing 35 Mbps downlink and 2 Mbps uplink.
The first network allows us mainly to see multiplexing behaviour in optimal sit-
uations, while the second provides more insight in retransmission behaviour, as
packet loss rates are somewhat higher on that network. All test permutations
are run at least 10 times. For our analysis, we employ the logging output of the
aioquic client in the qlog format [12]. qlog is a structured, JSON-based format
which includes highly detailed endpoint event logs. We process the qlog events
with custom scripts and visualize them using the qvis toolsuite at https://qvis.
edm.uhasselt.be. For this, we contribute a new visualization to qvis, termed the
“multiplexing graph”, which helped produce the following images in this work.

2.3 Multiplexing Results and Discussion

Our main results are summarized in Fig. 1. We show the singular experiment
configuration of ten simultaneously requested and downloaded 1 MB files across
all tested endpoints. We visualize a single representative trace per endpoint.
For picoquic, we include results before and after a major server-side code change
(picoquic alt). For mvfst, we include results after changing client-side parameters
(mvfst alt). Endpoints are loosely grouped by similar behaviour.

Figure 1 plots received QUIC STREAM frames (colored per individual
stream) horizontally appended, thus hiding any inter-packet arrival time gaps.
While this hides some contextual information, it helps to better view the over-
all multiplexing behaviour. Large contiguous blocks of the same color indicate
a more sequential transfer for that stream, while rapid changes in color mean
that an RR scheduler variant is being used. Black blocks are shown beneath

https://qvis.edm.uhasselt.be
https://qvis.edm.uhasselt.be
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STREAM frames that contain retransmitted data. These are identified by con-
tinuously tracking gaps in each stream’s byte ranges (assuming a sender always
sends data in-order per stream). Whenever a new frame fills a gap that was cre-
ated sufficiently long ago, it is considered a retransmit. If it fills a gap that was
created shortly before, it is assumed to be a re-ordered frame caused by network
jitter. As such, areas without black blocks beneath show the endpoint’s default
multiplexing behaviour, while the rest allows us to assess their retransmission
approaches (RAs). Note that the traces shown in Fig. 1 are representative for
each endpoint and that the trends discussed below were consistent across all
traces unless otherwise mentioned.

We can observe some general trends in Fig. 1. Firstly, a majority of imple-
mentations use a RR scheduler, with only two stacks opting for a sequential
approach. Within the RR group, most use the fine-grained option of switching
streams on each individual packet. Only msquic and google choose larger con-
tiguous blocks of a fixed size (respectively 4 and 14 packets). lsquic’s behaviour
seems strange at first, but it was confirmed by its implementer that it is inten-
tional: for ease of implementation and increased server performance, it chooses
its block size based on the current congestion window size. Whenever data can
be sent, the next stream is selected, which sends all its available data filling the
congestion window. This explains why the trace starts with fine-grained RR and
gets coarser as time progresses, only to condense again when loss is detected.

Secondly, the RAs are about evenly split between #1 and #2. The key visual
difference between the two, is that for #1, the black areas are usually interleaved
with small white gaps, where data from non-lossy streams is being sent, indicat-
ing that the retransmissions don’t receive absolute priority. This is for example
visible in the quicly trace. Conversely, for #2, the black areas are mostly contigu-
ous, indicating the implementations give highest priority to retransmitted data.
A good example is the first big black block in the lsquic trace. Similar behaviour
can be seen on the right side for ats and picoquic: retransmittable purple data
immediately interrupts the current yellow stream.. Finally, there is only a single
implementation, mvfst, that opts to change its behaviour when retransmitting
data as an example of RA #3. Where it normally employs per packet RR, it
switches to a fully sequential approach when there was lost data. We will discuss
the wider impact of these general findings in Sects. 3 and 6.

Next to the global findings, there are also several per-implementation quirks
to be discovered. Firstly, both ats and picoquic employ a sequential scheme,
but process the incoming requests in a Last-In First-Out (LIFO) order. Put
differently, the tenth requested resource (pink) is sent first. While this might
make sense in some use cases, it is generally not viewed as an optimal strat-
egy. After conferring with the implementers, ats indicated they were aware of
the behaviour, but are waiting for H3’s new prioritization scheme to change
their approach. On the other hand, picoquic was not expected to exhibit this
behaviour. The maintainer implemented a fix2, instead enforcing a First-In

2 https://github.com/private-octopus/picoquic/commit/a66a5d0a0b02416f9fde46bb
0c447bcc0b7abd60.

https://github.com/private-octopus/picoquic/commit/a66a5d0a0b02416f9fde46bb0c447bcc0b7abd60
https://github.com/private-octopus/picoquic/commit/a66a5d0a0b02416f9fde46bb0c447bcc0b7abd60
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Request order: 1 2 3 4 5 6 7 8 9 10

picoquic_alt Sequential in FIFO order RA 2

picoquic Sequential in LIFO order RA 2

ats RA 2Sequential in LIFO order

lsquic Round-Robin per congestion window RA 2

google Round-Robin per 14 packets RA 2

msquic Round-Robin per 4 packets RA 1

mvfst_alt Round-Robin per packet, influenced by flow control RA 3

mvfst Round-Robin per packet, influenced by flow control RA 3

ngtcp2 Round-Robin per packet RA 2

quicly Round-Robin per packet RA 1

quiche Round-Robin per packet RA 1

aioquic RA 1Round-Robin per packet

Retransmit

Fig. 1. QUIC endpoint multiplexing behaviour for ten simultaneously requested
resources of 1 MB each. Per endpoint, the top line indicates the multiplexing of indi-
vidual resource data (each small rectangle is one STREAM frame). Black areas in the
bottom line indicate which frames in the top line contain retransmitted data. STREAM
frames arrive at the client from left to right. (Color figure online)

First-Out (FIFO) approach, shown in picoquic alt. Similarly, ngtcp2 might at
first glance look like it uses RA #3, as it seems to switch to a sequential mode
for the later retransmits. After conferring with the author, this turned out to
be due to a bug in their fair queuing implementation, which was subsequently
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fixed3. Now, all ngtcp2 ’s retransmissions use per-packet RR as intended, making
it an example of RA #2 (trace of the updated implementation not shown due
to size limits).

Secondly, mvfst consistently showed a large sequential transfer for the first
requested stream (yellow) at the start of all its traces, before switching to RR.
With help from the implementers, we were able to track this down to QUIC’s
flow control mechanisms. Like TCP, QUIC includes dynamic flow control limits
to prevent a fast sender from overflowing buffers at the receiver. However, where
TCP only has a single, connection-wide flow control window (sometimes called
the receive window), QUIC instead has multiple separate flow control limits: one
for the connection as a whole like TCP, but also one for each individual stream.
This feature lead to a complex sequence of interlocking behaviours which we will
now trace step by step:

1. In our test setup, the aioquic client sets the connection-level flow control
limit to 1048576 bytes (1 MiB), but also sets the stream-level flow control
limits for each individual stream to the same amount. This is done during
the connection’s handshake.

2. Our client sends ten simultaneous requests on ten streams, each for the same
file of exactly 1000000 bytes (1 MB) in size.

3. The mvfst server processes each request individually as it comes in and works
with a complex internal buffering system that fills the buffers up to the current
flow control limits.

4. The server processes the request for the first file and puts it into the buffer
in its entirety, since the stream-level flow control limit for the first stream
(1048576 bytes) is larger than the requested file’s size (1000000 bytes). This
leaves just 48576 of headroom with regards to the over-arching connection-
level flow control.

5. The server processes the request for the second file and puts 48576 bytes of its
data into the buffer, reaching the connection-level flow control limit (1048576
bytes).

6. The server now incrementally processes the requests for the other eight files,
but does not buffer their data, because the connection-level flow control limit
is already reached.

7. The server starts sending, multiplexing with an RR scheduler between the
data from just the first two streams, as can be seen at the very start of the
mvfst trace. As the data from the second stream in the buffer soon runs out
however, we end up just sending data from stream one.

8. After a while, the server receives an update to the connection-level flow control
allowance from the client. At this point, it re-fills its internal buffers. As it
now does have knowledge of all ten streams, it starts properly utilizing the
RR scheduler across all of them.

We were able to easily confirm that this was the problem by changing the
initial per-stream flow control limits to 1

4 th of the connection-level flow control.
3 https://github.com/ngtcp2/ngtcp2/commit/4f705093d4c8f1ec5b231c2a1b557a6c96

6bc2f3.

https://github.com/ngtcp2/ngtcp2/commit/4f705093d4c8f1ec5b231c2a1b557a6c966bc2f3
https://github.com/ngtcp2/ngtcp2/commit/4f705093d4c8f1ec5b231c2a1b557a6c966bc2f3
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The result can be seen in the mvfst alt trace, which shows the server multiplex-
ing data for the first four streams from the start of the connection. Note that,
while the client’s initial flow control setup was the same for all endpoints, only
mvfst exhibited this behaviour. Its implementers indicated that, for a produc-
tion deployment, it would make sense to limit the amount of data that can be
buffered per stream (for example to 64 KB) if the intent is to use a RR sched-
uler. Further testing from our part on public mvfst-backed endpoints however,
such as facebook.com and fbcdn.net, showed that they did not yet include this
configuration change. It is interesting to note that flow control can be used
by the client as a coarse prioritization/scheduling mechanism to dictate server
behaviour, even overriding the server’s normal intentions. For example, a RR
server can be forced into sequential behaviour if the client only gives one stream
flow control allowance at a time.

Thirdly, we looked at how implementations distribute STREAM frames over
packets. While most stacks produce full-sized packets, all containing just a single
STREAM frame for one stream, some implementations showed other behaviour.
Notably google and mvfst had bugs that caused them to produce multiple,
smaller STREAM frames for the same stream per packet. For example, one QUIC
packet could contain 4 STREAM frames for stream one, sized 7, 500, 9, and 700
bytes respectively. The mvfst bug was since fixed4, with Google indicating theirs
was due to faulty re-use of HTTP/2 framing logic, which would be resolved in the
future. Relatedly, mvfst was the only implementation we observed that occasion-
ally multiplexed STREAM frames from different streams into a single QUIC
packet. This only happened during retransmits, when for example stream one did
not have enough retransmittable data to fill a full packet, which was completed
with data from the next stream. Strangely, we also observed mvfst occasionally
sending very small packets (e.g., 40 bytes). The reason was that mvfst adheres
strictly to the current congestion window, which it measures in bytes instead of
full packets. In some cases, the congestion window was not large enough to sup-
port another full packet, leading to a single smaller packet being sent instead.
This sparked an interesting discussion with other implementers, who all indi-
cated they instead rounded up to the next full packet in these situations. They
felt that this (slight) overshooting of the congestion window was a good tradeoff
between implementation complexity, correctness and performance. Note that,
while it may seem that mvfst contained the most unexpected behaviours, this
is mainly because it is a highly advanced implementation with complex logic.
Additionally, its implementers were very receptive to our feedback and contin-
ued discussions with the authors of this work, leading to more in-depth scrutiny
from our side over time. In practice, next to quiche, mvfst is the only QUIC
implementation that has seen wide deployment and use in production with the
facebook mobile app5.

4 https://github.com/facebookincubator/mvfst/commit/ec9d1ccd2088c64319f743541
b32789bb18ae2dc.

5 https://www.youtube.com/watch?v=8lYHNzoPS2o.

http://facebook.com/
http://fbcdn.net/
https://github.com/facebookincubator/mvfst/commit/ec9d1ccd2088c64319f743541b32789bb18ae2dc
https://github.com/facebookincubator/mvfst/commit/ec9d1ccd2088c64319f743541b32789bb18ae2dc
https://www.youtube.com/watch?v=8lYHNzoPS2o
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Finally, we feel it is important to note that all tested implementations are
active works in progress and that these results are not necessarily representative
of the final products these companies may offer or deploy. The benefits however,
of testing these implementations early, are manifold. Firstly, it helps to identify
subtle bugs and quirks that can nevertheless have a noticeable impact. Secondly,
it demonstrates differences between implementations, allowing implementers to
re-assess their approaches. Thirdly, it highlights the inherent complexity of the
QUIC protocol and the usefulness of specialized tooling and visualizations to
perform debugging and analysis. Fourthly, and most importantly, it poses the
question if the QUIC protocol should define a standardized interface to allow the
application layer to manipulate QUIC’s multiplexing behaviour. At the moment,
the proposed QUIC specification [4] indicates that implementations should pro-
vide such an interface, but does not specify what such an interface should look
like. As such, we end up not only with implementations choosing different default
approaches, but also implementing different APIs (if they provide an API at all),
making it more difficult for application layer protocol implementations to swap
underlying QUIC stacks. Given that QUIC software is expected to be much more
heterogeneous in behaviour than TCP deployments, this feels like an important
point of action, allowing easier re-use of for example HTTP/3 implementations.
For example, the recent “Pluginized QUIC” paper [3] can provide a possible
starting point for a flexible API integration for this purpose. Further discussion
on which multiplexing approach is optimal for performance follows in Sect. 5.3
and in the following exploration of Head-Of-Line Blocking.

3 QUIC Head-Of-Line Blocking

3.1 Background: Intra-Stream Blocking

Both QUIC and TCP are reliable protocols that deliver their received trans-
ported data to an application layer preserving the exact order in which that
data was passed to the sender for transport. As seen in Sect. 2.1, TCP enforces
this ordering across the entire connection as it collapses all data into a single
byte stream, while QUIC instead only strictly orders data per individual byte
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Fig. 2. Head-Of-Line blocking in TCP vs QUIC. Lacking knowledge of the three inde-
pendent streams, TCP is forced to wait for the retransmit of packet 2 (2’). QUIC can
instead pass packets 3 and 4 to HTTP immediately, where they are processed before
packet 2’ (source: [6]).
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stream utilizing separate offsets in STREAM frames. Put differently, in TCP,
a packet A sent before B, is always passed to the application layer before B,
while in QUIC the order may well become B and then A, if the packets contain
data for different streams and A becomes delayed. It follows that packet loss can
thus create gaps in the byte streams, which can only be filled by retransmitting
the lost data. In these instances, it is possible that data succeeding the gap is
correctly received, for example if the gap is caused by an accidental loss of just
one packet. However, the correctly received data cannot yet be passed on to
the application layer, as this would break the ordering requirement. As such,
even a single lost packet can conceivably block other packets behind it. This can
be sub optimal for performance if the blocked packets contain data that could
be processed independently from the lost data. This is called the Head-Of-Line
blocking problem and it is illustrated in Fig. 2.

Because QUIC is no longer tied to a strict, connection-level ordering of its
data, it is often said that it solves TCP’s Head-Of-Line blocking problem. How-
ever, while it is true that QUIC removes TCP’s inter-stream (connection-level)
HOL blocking, it is still vulnerable to intra-stream HOL blocking. Put differ-
ently, if at the receiver QUIC stream A currently has a gap in its byte stream
from offset 5000 to 6300, but has received and buffered stream A bytes 6301 to
40000 correctly, it still needs to wait for the gap to be filled. As soon as that hap-
pens, it can pass on bytes 5000 to 40000 in one large transfer to the application
layer for processing, but not before. In this case, we could say 33699 bytes had
been HOL blocked on this QUIC stream. The key advantage of QUIC over TCP
is that if there were another QUIC stream B in progress, it would not be HOL
blocked by loss on stream A. Note the exception to this: if QUIC implementa-
tions would multiplex STREAM frames of multiple streams into a single packet
and that packet is lost, this does lead to (limited) inter-stream HOL blocking. As
such, it is considered bad practice to multiplex data from multiple streams into a
single QUIC packet. Absent this caveat however, on QUIC, the application layer
should have to wait less time between receiving bursts of processable data from
the transport layer than it would for TCP under the same network conditions.
In the case of HTTP, this could then potentially translate into for example the
browser being able to show a picture to the user sooner over QUIC.

3.2 Experimental Setup

Overall, it is difficult to assess whether QUIC’s removal of inter-stream HOL
blocking always has the intended effects and how much it actually reduces
observed HOL-blocking in practice, due to the continued presence of intra-stream
HOL blocking. Additionally, we can already intuitively predict that the chosen
multiplexing behaviour will also influence the occurrence of this intra-stream
HOL blocking. Consider that, with a purely sequential approach, there is always
only a single stream in progress at a time and this stream will thus always HOL
block itself upon packet loss. As there are no other streams active at the same
time, there is no other data to provide to the application layer while waiting
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for the single stream to become unblocked. With an RR scheduler this is dif-
ferent, as simultaneously active streams that are not HOL blocked themselves
can continue to make progress from the application layer’s perspective. As such,
we can predict that with an RR approach, the application layer should more
frequently get smaller batches of data to process incrementally, versus rarer but
larger bursts for a sequential scheduler.

To assess the actual impact of QUIC’s inter-stream HOL blocking removal,
we would ideally need to run the same experiments over both TCP and QUIC
over identical network setups. However, this is difficult in practice, since network
simulations are rarely deterministic and H3 does not support TCP (nor does H2
QUIC). Instead, we devise a different approach by employing the rich output
logs from the previous experiment described in Sect. 2.2. The qlog format [12]
utilizes the data moved event to indicate when a given range of stream data
was actually passed from the transport to the application layer. Additionally,
the logs contain packet received events which specify when STREAM frames
were received. Correlating these two event types gives us a good indication of
intra-stream HOL blocking at the QUIC layer (e.g., a packet received not
immediately followed by a data moved, indicates data was blocked).

Subsequently, we can also use these events to simulate what would happen
if QUIC would suffer from the same inter-stream HOL blocking as TCP. At the
first encountered gap in one of the streams, we start pretending data moved
events from other streams have not proceeded and their data is blocked behind
this stream’s gap, as would be the case in TCP. We do this until this first gap was
filled through retransmits, and then cascade the held-back data moved events for
other streams until the next tracked gap. As new gaps could have occurred while
waiting behind the first gap, we track gaps in a contiguous manner, keeping a
rolling log of missing stream data and which data moved events they are block-
ing within TCP semantics. This approach allows us to derive a good estimate
of TCP HOL blocking behaviour based on the QUIC traces, meaning we can
now compare them on identical network setups and experiment parameters. It
also allows us to confirm our intuition that the scheduling mechanism plays an
important role, as some of the QUIC endpoints use RR schedulers while others
employ sequential multiplexing.

3.3 HOL Blocking Results and Discussion

Tracking the data moved events for QUIC and TCP produces two output lists,
one for each protocol, their values indicating the amount of bytes blocked at
each HOL blocking instance. Larger values indicate more data was held back
and thus more HOL blocking was observed. To get a feel for this data, let’s first
consider the highest blocked byte amounts seen across all the traces. For TCP for
example, the highest value seen was 3740019 bytes (in a mvfst trace), constituting
over a third of the total amount of transmitted bytes on the connection (ten
times 1 MB). Conversely, the highest value encountered for QUIC was 969151
bytes (unsurprisingly in a sequentially scheduled picoquic trace), a factor of three
smaller than TCP.
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The full set of results is shown in Fig. 3. Note that, as we use traces from
experiments run over real networks, not every trace contains the same occur-
rences of packet loss or HOL blocking. As we are mainly interested in the worst-
case differences that can occur between the protocols, we take the maximum
blocked byte amount for each protocol. To be able to more easily compare TCP
and QUIC measurements, we calculate the ratio between these two maximum
values per trace:

ratio =
max blocked bytes(QUIC)
max blocked bytes(TCP )

As such, ratios close to 1 indicate that the maximum values were very sim-
ilar and QUIC suffered from HOL blocking more similarly to TCP. Conversely,
ratios closer to 0 indicate that QUIC’s maximum HOL blocked byte amount was
(much) lower than TCP’s, indicating it more frequently passes data to the appli-
cation layer than the legacy transport protocol. Each trace’s ratio is plotted as a
point in Fig. 3. As traces without packet loss would give a ratio of exactly 1 (as
both maxima would be the packet size), these are left out of the results, explain-
ing the low amount of results for google and ats. Interpreting Fig. 3, we can see
that for most endpoints and most traces, QUIC indeed achieves a much lower
maximum amount of HOL blocked bytes than TCP, as most ratios are between
0.1 and 0.3. As predicted, the ratios shift upwards for the picoquic endpoint, as
its sequential scheduler induces additional intra-stream HOL blocking compared
to the other endpoints’ RR schedulers. However, from these results alone it is
difficult to assess the practical impact of QUIC’s HOL blocking behaviour on
application metrics such as page load times.
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Fig. 3. Maximum HOL blocking ratios between TCP and QUIC. Each point is a single
test run downloading ten 1 MB files. Higher values mean more HOL blocking in QUIC.
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4 HTTP/2 Prioritization

Now that we understand how QUIC can approach general purpose multiplex-
ing across different streams, it is time to look at how this behaviour can be
influenced using semantics from the HTTP layer, which is necessary to achieve
optimal page loading performance. While it may seem this is mainly impor-
tant for H3, the concept of a prioritization system to dictate web page resource
scheduling behaviour actually originates with the H2 protocol. This is because
H2 includes its own stream abstraction and framing layer, also utilizing stream
IDs in DATA frames for multiplexing [11]. This is incidentally one of the main
reasons it is difficult to use H2 on QUIC directly, as this would lead to two sepa-
rate and competing stream concepts, which can introduce much implementation
complexity and inefficiencies. The choice was made instead to define a new map-
ping of H2 onto QUIC, which is now being called H3. In essence, the main change
is that in H3, all of H2’s stream-specific amenities have been removed in favor
of utilizing QUIC’s streams directly. This does mean that H3 still needs a prior-
itization system to steer QUIC and as such, it is interesting to first understand
the details of H2’s approach.

4.1 Background: The HTTP/2 Dependency Tree

In our discussion of the QUIC implementations’ multiplexing behaviours in
Sect. 2, it was clear they treated each resource and each stream in the same
way. No individual requested file was considered more important than others;
only retransmitted data was given a higher priority in some implementations.
While this makes sense in the general purpose QUIC case, it does not when look-
ing at HTTP semantics and the use case of loading a web page with multiple
resources. Not all these resources are equally important and most have very dis-
tinct characteristics during the web page loading process. For example, HTML
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and image files can conceptually be parsed, processed and rendered incremen-
tally. This is different from JS and CSS files, which can be parsed as data comes
in (at least in some browsers) but have to be fully downloaded to be actually
executed and applied. Another issue is that the browser does not know about
all the needed resources up-font, as they are discovered incrementally during the
page load and resources can import other files dynamically. Finally, users typi-
cally only see a small part of the web page at a time due to screen sizes, which
makes resources that are currently in the viewport extra important. These and
other web page loading concepts make that web pages can have very complex
resource interdependencies. Individual resource importance depends on its type,
precise function (potentially) location within the HTML and how many children
it will end up including. Relative resource priorities can also change over time,
as new resources of a higher importance are discovered.

To be able to manage these volatile requirements, HTTP/2 includes an
advanced prioritization system in the form of a ‘dependency tree’, in which each
individual resource stream is represented as a node. Available bandwidth is then
distributed across these nodes by means of two simple rules: parents are trans-
ferred in full before their children, and sibling nodes share bandwidth among each
other based on assigned weights. For example, given a sibling A with weight 128
(out of a maximum of 256) and a sibling B with weight 64, A will receive 2/3 of
the available bandwidth, leaving 1/3 for B. In an optimal implementation, this
would result in the following scheduled frame sequence: AABAABAAB. . . . As
HTTP/2 assumes that, between the two endpoints, the browsers have the best
view of relative resource importance, it has the user agents build and maintain
this dependency tree over time, which is then synchronized back to the server
by means of PRIORITY frames. As such, the structure of the tree evolves over
time on both endpoints, as new resources are discovered and added, and fully
transferred nodes are pruned.

H2 provides two main ways to add nodes as children to a parent in the
tree: exclusively and non-exclusively. As can be seen from Fig. 4, non-exclusive
addition is the ‘normal’, less invasive way of adding nodes to the tree. Exclu-
sive addition however, changes all of its potential siblings beneath its parent to
instead become children of the newly added node itself. This allows aggressive
(re-)prioritization, by displacing (large) groups of nodes in a single operation.
One special case arises when the intended parent is no longer available at the
server (i.e., because it was fully transmitted and was pruned from the tree). In
this case, the child is added to the root node of the parent instead, leading to a
possible desynchronization of the tree between client and server and a possible
mis-prioritization of the new child, as it is now a sibling of other direct children
of the root. An example of this can be seen in Fig. 5.

While this setup in general seems easy enough to comprehend, it can be dif-
ficult to implement correctly, especially if the tree updates frequently. Addition-
ally, the possibility of desynchronization between the two endpoints can lead to
unintended behaviours. Furthermore, the tree needs to be evaluated on the server
for each packet that is to be sent, to determine which stream should received
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bandwidth, which can be computationally expensive for large trees. Given this
complexity and these edge cases, one might wonder why it was decided that
the browser should determine the resource priorities instead of the server. Could
we not make a similar argument that the server (usually) already has all the
resources for the web page and thus has a good overview from the start? While
letting the server dictate priorities is certainly possible, it is quite complex in
practice to know the resource priorities at the server at the start of the page
load [7]. Still, H2 provides an option for this approach as well: servers are free
to ignore the clients’ PRIORITY messages and to concoct a more optimized
bandwidth distribution from server-side info.

4.2 Prioritization: Theory vs. Practice
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Fig. 6. Firefox’s HTTP/2 dependency tree (source: [6]).

Given the high flexibility provided by H2’s prioritization system and the choice
between client and server-side prioritization, it is interesting to see how these
amenities are actually being used in practice by real-world implementations.
[19] looked at how modern browsers utilize H2’s prioritization system in prac-
tice. They found that out of 10 investigated browsers, only Mozilla’s Firefox
constructs a non-trivial dependency tree (see Fig. 6). It uses “empty” nodes
that are not tied to a real resource as placeholders to group other nodes and
assigns heterogeneous weights. Other browsers like Chrome and Safari instead
opt for much simpler schemes, the former creating a purely sequential model
where all resources are added to a parent exclusively, the latter a RR variant
where all resources are added non-exclusively to the root using different weights.
The original Edge browser neglected to specify any priorities at all, relying on
H2’s default behaviour of adding all the resources to the root with identical
weights, leading to pure RR.

Next, [2] looked at how various H2 servers actually adhere to client-side PRI-
ORITY directives in practice. They find that out of 35 tested implementations,
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only 9 actually properly support (re-)prioritization. They posit this is due to
faulty or inefficient implementations, servers ignoring client directives but fail-
ing to provide better server-side scheduling, and various forms of ‘bufferbloat’.
This last problem occurs when deployments use too large buffers: the risk exists
that these buffers will be filled with low-priority data before the high-priority
requests arrive [8]. This is similar to the problem encountered with mvfst in
Sect. 2.3.
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Next to this H2 specific work, there are also contributions on resource prior-
itization in general. WProf [17] looks at resource dependencies and their impact
on total page load performance. Polaris [7], Shandian [18] and Vroom [14] collect
very detailed loading information and construct complex resource transmission
and computation scheduling schemes, claiming 34%–50% faster page load times
at the median. However, none of their implementations utilize H2’s server-side
prioritization, instead using JavaScript-based schedulers or H2 Server Push. At
this time Cloudflare is the only commercial party experimenting with advanced
server-side H2 prioritization at scale, for which they employ the bucket scheme
from [9]. They claim improvements of up to 50% for the original Edge browser.

Overall, we can conclude that the flexibility of H2’s prioritization system is
barely used in practice, while its complexity leads to several bugs in real world
deployments. Additionally, advanced server-side prioritization remains relatively
unproven in practice and many servers that ignore the client’s PRIORITY mes-
sages do not employ optimal custom scheduling logic.
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4.3 Adaptation for HTTP/3

Given the complexities inherent in H2’s prioritization system and its abysmal
adoption in practice, there were already some who questioned whether the app-
roach should be reworked for H3. This was then further compounded by the
fact that directly using H2’s setup to run in H3 over QUIC would be impossible
due to QUIC’s non-deterministic ordering, if PRIORITY messages are sent on
different streams. This can be simply understood by looking at a few examples.
Firstly, consider the two opposite outcomes if two H2 PRIORITY messages, each
carrying an exclusive parenting operation, would become re-ordered over QUIC,
see Fig. 7. Secondly, priority message re-ordering can lead to nodes being added
to the default root node, if their intended parent had not yet been added to the
tree, see Fig. 8. This is similar to the problem from Fig. 5. Several more similar
edge-cases can occur within this setup.

Over time, the H3 designers debated multiple possible approaches and
changes to H2’s system to solve or at least alleviate these issues on H3. At one
point, the proposed solution was to use a separate control stream to send pri-
ority updates. This would prevent them from becoming re-ordered, as messages
within a single stream are of course delivered in-order. In tandem, a separate
default parent node was used (termed the ‘orphan’ node) to prevent new nodes
from being added to the root and stealing bandwidth from unintended siblings.
This setup can be seen in Fig. 9. While this setup indeed made the worst edge
cases manageable, it was still not ideal. For example, there was a form of HOL
blocking where resources would be mis-prioritized for a full network round trip
if there was loss on the control stream carrying the PRIORITY messages. A
much more in-depth discussion of these issues and contemplated solutions can
be found in our previous work [6]. Due to this added complexity to an already
complex system, several people proposed alternative solutions to prioritization
for H3. These are discussed and evaluated in Sect. 5.
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5 HTTP/3 Prioritization

5.1 Alternative Proposals

As many felt that the proposed integration of H2’s dependency tree system in
H3 was too complex, several alternative proposals were launched. Their first goal
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was trying to simplify the setup to make it easier to implement and reason about.
A secondary goal was that it should be possible to back port the new approaches
to H2 as well, to be able to fix the problems seen in current H2 deployments. A
final goal was to make it easier to combine server-side information with client-
side PRIORITY messages. As mentioned in Sect. 4.1, it is possible that a server
has better information about a resource’s relative importance than the client.
However, in practice it is difficult for the server to integrate that knowledge into
H2’s dependency tree. As clients are free to build their tree in very different ways
[19], it is almost impossible for a server implementation to automatically derive
the semantics employed by various clients. This makes it difficult to determine
the correct place in the tree for the (manually) prioritized resource. In practice
for H2, servers either need to follow the client’s setup, or ignore it completely
and define a full new approach for all resources at the same time. As such, a
new setup for H3 should ideally make it easier to combine client and server-side
directives.

The first proposal, termed bucket by us, is one by Patrick Meenan from
Cloudflare [10]. He proposes to drop the dependency tree setup and replace
it with a simpler scheme of ‘priority buckets’, see Fig. 10. Buckets with a
higher number are processed in full before buckets with a lower number. Within
the buckets, there are three concurrency levels. Level three, called “Exclusive
Sequential” preempts the other two and sends its contents sequentially by stream
ID (streams that are opened earlier are sent first). Levels two (“Shared Sequen-
tial”) and one (“Shared”) are each given 50% of available bandwidth if level
three is empty. Within level two, streams are again handled sequentially by low-
est resource ID, while within level one, they follow a fair Round-Robin scheduler.
As can be seen in Fig. 10, this allows a nice and fine-grained mapping to typi-
cal web page assets loading needs. This scheme was deployed for H2 as well on
Cloudflare’s edge servers and they claim impressive speedups [9]. Overall, this
scheme is also easier to implement than the dependency tree: all that is needed is

Fig. 10. Proposal for HTTP/3 prioritization based on priority buckets, from [10].
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Fig. 11. Tree for our HTTP/3 zero weighting proposal (source: [6]).

a single byte per resource stream to carry the priority and concurrency numbers.
Resources can easily be moved around by updating these numbers, though it is
not possible to re-prioritize many resources at once. This scheme also makes it
easier to incorporate server-side directives for particular resources, as there is a
clear ordering of importance through the priority buckets.

Secondly, our own proposal6 called ‘zeroweight ’ has an aim to stay close to
the idea of a dependency tree, but to significantly reduce ways in which new
nodes can be added. The main change is that nodes can now have a weight
between 0 and 255 (where before it was in the range 1–256). Nodes with weight
0 and 255 exhibit special behaviour, akin to Meenan’s sequential concurrency
levels: siblings with weight 255 are processed first, in full and sequentially in
the lowest stream ID order. Then, all siblings with weight between 254 and 1
are processed in a weighted Round-Robin fashion (assigned bandwidth relative
to their weights, see Sect. 4.1). Finally, if all other siblings are processed, do
zero-weighted nodes get bandwidth, again sequentially in the lowest stream ID
order. The resulting tree can be viewed in Fig. 11. This proposal requires just a
few semantic changes to the H2 system, and is thus easy to integrate in existing
implementations, while being much easier to implement for H3 than the more
flexible dependency tree. This setup also makes it easy to integrate server-side
directives, as changing per-resource weights can now have more impact and it
is straightforward to promote or demote a resource to a higher ‘tier’ (change
weight to 255 or 0).

Thirdly, we shortly discuss several other proposals. For example, the ‘strict
priorities’ approach from Ian Swett at Google7 attempted to integrate the seman-
tics of Patrick Meenan’s bucket proposal with the dependency tree setup to
achieve a ‘best of both worlds’ outcome. As it should perform similarly to bucket,
we did not evaluate this setup ourselves. Another proposal was to return to the
prioritization scheme of the SPDY protocol [15]. SPDY was the predecessor of
H2 and had just “eight levels of strict priorities”. The SPDY specification did
6 github.com/quicwg/base-drafts/pull/2723.
7 github.com/quicwg/base-drafts/pull/2700.

https://github.com/quicwg/base-drafts/pull/2723
http://github.com/quicwg/base-drafts/pull/2700
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not provide details on how resources should be allotted bandwidth, only that
resources of higher priority levels should be sent first. In our evaluation in Sect.
5.3 we discuss a Round-Robin version of this setup, termed spdyrr, which pro-
cesses the priority levels sequentially, but applies a fair RR scheduler between
resources within a single level. More details on these and further proposals can
be found in [16].

While at first glance these proposals seem to achieve the set goals, it is dif-
ficult to assess if they will indeed be able to provide similar or better web page
loading performance when compared to the existing H2 setups seen in the differ-
ent browser and server implementations. Without proof that these new setups
would indeed be able to pull their own weight despite shedding considerable
complexity, the H3 designers were reticent to drop the dependency tree. To aid
their decision making, we implement and evaluate the different proposals.

5.2 Experimental Setup

In order to prove that the simpler H3 approaches can perform similarly or better
than the existing H2 dependency tree configurations, we first need to determine
a baseline for the performance of these different H2 schemes. While Wijnants
et al. provide an extensive evaluation of these schemes [19], it is unclear if their
findings also hold on H3 over QUIC. As such, next to the new H3 setups, we also
implement and evaluate the main existing H2 schemes, resulting in a total of 11
different evaluated prioritization setups. Their main approaches are described in

Table 1. Prioritization schemes. The top seven are from actual browser H2 implemen-
tations and [19]. The bottom four are new proposals for H3 (source: [6]).

Name Description

rr (Edge) Fully fair Round-Robin. Each resource gets equal bandwidth

wrr (Safari) Weighted Round-Robin. Resources are interleaved, but non-equally,
based on weights

fifo First-In, First-Out. Fully sequential, lower stream IDs are sent in full
first

dfifo (Chrome) Dynamic FIFO. Sequential, but higher stream IDs of higher priority can
interrupt lower stream IDs

firefox Complex tree-based setup with multiple weighted placeholders and wrr
for placeholder children. See Fig. 6

p+ Parallel+. Combination of dfifo for high-priority with separate wrr for
medium and low-priority resources [19]

s+ Serial+. Combination of dfifo for high and medium-priority with firefox
for low-priority resources [19]

spdyrr Five strict priority sequential buckets, each performing wrr on their
children. The Round-Robin counterpart of dfifo

bucket Patrick Meenan’s proposal, Fig. 10

bucket HTML Our variation on Patrick Meenan’s proposal, with HTML having a
higher priority (bucket 63 instead of 31 in Fig. 10)

zeroweight Our proposal, Fig. 11
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Table 1 and Fig. 12 shows to what kind of data scheduling they lead in practice
for an example page load. For example, as expected the fair Round-Robin rr
clearly has a very spread out way of scheduling data for the various streams, as
was also evident from similar approaches in our QUIC experiments. The firefox,
p+, s+ and spdyrr schemes are quite similar, but include subtle differences.
Looking at the results for bucket we see that the HTML resource (and the font
that is directly dependent on it) are delayed considerably, which seems non-ideal.
As such, we propose our own variation, bucket HTML, which gives the HTML
resource a higher priority. For this test page it dramatically shortens the HTML
and font file’s Time-To-Completion (TTC). Figures 6 and 11 show dependency
tree layouts for two of the schemes; the rest can mostly be found in [19] and [16].

To make comparisons with earlier results easier, we test the 11 prioritization
schemes on the test corpus of [19]. This corpus consists of 40 real web pages from
the Alexa top 1000 and Moz top 500 lists. The corpus represents a good mix of
simple and more complex pages (10–214 resources), as well as small and larger
byte sizes (29 KB–7400 KB). We also add two synthetic test pages: one of our
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bucket

bucket HTML

zeroweight

bucket HTML 280K

bucket HTML 1000K

ATF resource index.html top.js 1.jpg 2.jpg 3.jpg background.png font.woff2 hero.jpg bottom.js

Fig. 12. Scheduling behaviour of various prioritization schemes for a single, synthetic
test page from [2]. Each individual colored rectangle represents a single QUIC packet
of 1400 bytes. Packets arrive at the client from left to right. The bottom two lines show
results with non-zero send buffers. Resources in the legend are listed in request-order
from left to right (source: [6]).
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own design that tests all types of heuristics modern browses apply, and the one
used by [2] (Sect. 4.2, Fig. 12). These two pages can be seen as “stress-tests” and
are designed to highlight prioritization issues and behaviour. The full corpus is
downloaded to disk and all files are served from a single H3+QUIC server.

For this QUIC server, we choose the open source TypeScript and NodeJS-
based Quicker implementation [13] because the high level language makes it
easy to implement the prioritization schemes. We have exhaustively tested the
implementation to make sure any inefficiencies stemming from the underlying
JavaScript engine did not lead to performance issues. As this part of our eval-
uation was run for of our previous work [6], it was performed several months
before our tests of the various QUIC implementations in Sect. 2.2. At that
time, the Quicker implementation was one of the few with a fully functional
H3 implementation which allowed us to experiment with prioritization. During
the intervening months, Quicker however became outdated with respects to the
other implementations, which is the reason it was not evaluated in our tests for
the QUIC implementations discussed earlier.

On the client side, there is currently sadly no browser available that (fully)
supports H3. As such, we use the Quicker command line client instead. However,
we do closely emulate the browser’s expected behaviour by using the open source
WProfX tool8, an easy to use implementation of the concepts from the original
WProf paper [17]. We host the test corpus on a local H2O optimized webserver
and load the pages via the Google Chrome-integrated WProfX software. From
this load, the tool can extract detailed resource inter-dependencies (e.g., was an
image referenced in the HTML directly or from inside a CSS file) and request
timing information. Our H3 Quicker client then performs a “smart play-back”
of the WProfX recording, taking into account resource dependencies (e.g., if the
current prioritization scheme causes a CSS file to be delayed, the images or fonts
it references will also be delayed accordingly). The tool also indicates which
resources are on the “critical path” and are thus most important to a fast page
load.

At the time of our evaluation, none of the open source QUIC stacks (includ-
ing Quicker) integrated a performant congestion control implementation that
had been shown to perform on par with best in class TCP implementations.
As we want to focus on the raw performance of the prioritization schemes and
the order in which data is put on the wire, we do not want to run the risk of
inefficient congestion controllers skewing our results. We instead manually tune
the Quicker server to send out a single packet of 1400 bytes containing response
data of exactly one resource stream every 10ms (i.e., simulating a steadily paced
congestion controller). To see if we can replicate the results of [8], we also imple-
ment the option to use small and larger application-level send buffers, to assess
the impact of “bufferbloat”. Given these factors, our results represent an “ideal”
upper bound of how well prioritization could perform in the absence of network
congestion and retransmits. This approach also leads to exceptionally stable

8 wprofx.cs.stonybrook.edu.

http://wprofx.cs.stonybrook.edu
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experimental conditions, with re-runs of individual experiments leading to near-
identical results.

Due to our stable experimental setup we can not simply use, for example, the
total web page download time as our metric, as these values are all identical per
tested page across the different schemes. This can easily be seen by understanding
that each scheme still needs to send the exact same amount of data; it just does
so in a different order. Instead, we will mainly look at so-called “Above The Fold”
(ATF) resources. These are the resources that are either on the browser’s critical
render path (meaning they would delay the load and usage of other resources) or
that contribute substantially to what the user sees first (e.g., large hero images).
We combine WProfX’s critical path calculations with a few manual additions
to arrive at an appropriate ATF resource set for each test page. This ATF set
typically contains the HTML, important JS and CSS, all fonts and prominent
‘hero images’. Non-hero (e.g., background) images that are rendered above the
fold are consciously not included in this set (e.g., see “background.png” in Fig.
12), as they should have less of an impact on user experience. Furthermore, to
highlight the power that comes from combining client and server-side directives,
our implementations of both bucket and zeroweight use small parts of these ATF
resource lists to simulate explicit manual web developer prioritization interven-
tions. Concretely, the hero images are given a higher server-side priority than
what they would normally receive from the client. For example, Fig. 10 mentions
a ‘visible image’ for the bucket scheme, while in practice, browsers have no way
of definitively knowing which images will eventually be visible or not. Since the
other discussed schemes do not utilize this additional metadata, this will in part
explain the seemingly best-in-class performance of bucket and zeroweight in our
results.

However, to report these results, we also cannot directly use, for example,
the mean TTC for these ATF resources as our metric. For example, receiving
most of the ATF files very early and then receiving just a single one late is
generally considered better for user experience than receiving all together at
an intermediate point, though both situations would give a similar mean TTC.
To get a better idea of the progress over time, we use the ByteIndex (BI) web
performance metric [1]. This metric estimates (visual) loading progress over time
by looking at the TTCs of (visually impactful, e.g., ATF) resources. At a fixed
time interval of 100 ms we look at which of the resources under consideration
have been fully downloaded. The BI is then defined as taking the integral of
the area above the curve we get by plotting this download progress, see Fig. 13.
Consequently as with normal web page load times, lower BI values are better.
Practically, we instrument Quicker to log the full H3 page loads in the qlog
format [12]. We then write custom tools to extract the needed BI values from
these logs, as well as new visualizations to display and verify our results (Figs.
12 and 14).

http://www.background.png/
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Fig. 13. ByteIndex (BI) for bucket and rr schemes. Bucket is clearly faster for ATF
resources. Looking at these schemes in Fig. 12, it is immediately clear why (source: [6]).

5.3 Prioritization Results
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Fig. 14. ByteIndex (BI) speedup and slowdown ratios for 10 prioritization schemes
compared to the baseline rr scheme. Each datapoint represents a single web page, split
out by total page byte size. Higher y values are better (source: [6]).

Our main results are presented in Fig. 14 and Table 2. Like [19], when processing
the results we quickly saw that the rr scheme is by far the worst performing of
all tested setups, with almost no data points performing worse. This is mainly
because for many high-priority ATF resources (e.g., JS, CSS, fonts) it is imper-
ative that they are downloaded in full as soon as possible. As can be seen at
the top of Fig. 12, RR bandwidth interleaving leads to resource downloads being
completed very late. As such, a more sequential scheduler, which sends a single
resource at a time, is a better approach for many types of critical resources, while
a RR scheme is more apt for lower-priority resources that can be incrementally
used (e.g., progressive images).
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Table 2. Mean speedup ratios compared to rr per other prioritization scheme from
Fig. 14. Higher mean values are better (source: [6]).

Name Mean All Mean ATF Mean 1000K

wrr 1.05 1.49 1.28
fifo 1.27 1.93 1.57

dfifo 1.27 2.30 1.72
firefox 1.07 1.22 1.25

p+ 1.17 2.20 1.64
s+ 1.14 1.45 1.56

spdyrr 1.14 1.96 1.57
bucket 1.20 2.13 1.82

bucket HTML 1.20 2.49 1.83
zeroweight 1.15 2.8 1.9

Consequently, we take rr as the baseline and present the other measurements
in terms of a relative speedup to that baseline result. As such, a speedup of x2
for scheme Y means that, for a baseline rr BI of 1500, Y achieves a BI of 750.
Symmetrically, a slowdown of /3 indicates that Y had a BI of 4500. We have
tested the schemes with application-level send buffers of 14 KB (about 10 packets
and similar to the default minimum H2 frame size of 16 KB [11]), 280 KB and
1000 KB, but found that these had relatively small effects until the buffer grows
substantially large. As such, we focus on results for send buffers of 1000 KB here.
As seen from the mvfst example in Sect. 2.3, this is a realistic value.

A few things are immediately clear from Fig. 14: a) Almost all data points
are indeed faster than rr. b) With the exception of a few bad performers (i.e.,
firefox, wrr, s+), all schemes are able to provide impressive gains of x3.5 to
x5+ speedup factors for individual web pages. c) Medium sized pages seem to
profit less from prioritization overall, with smaller and larger pages showing
higher relative advancements. d) Of the well-performing schemes, there is not
a clear, single winner or a scheme that consistently improves heavily upon rr
for -all- tested pages. e) The impact of the 1000KB send buffer is visible, but
less impressively so than perhaps indicated by previous work [8], which quoted
slowdowns of /2 compared to small/non-existent send buffers.

When looking at the mean ratios in Table 2, we see similar trends. We have
highlighted some of the highest and lowest values for each column. Taking into
account all page assets, even though the speedups are all modest, it is clear that
fifo is a far better default choice than rr. Looking at ATF resources only, it
is remarkable how badly some schemes implemented by browsers perform (i.e.,
firefox and Safari’s wrr), while Chrome’s dfifo is almost optimal, after bucket
HTML and zeroweight. Though all schemes suffer from larger send buffers, bucket
HTML and zeroweight again come out on top. As mentioned before, this good
performance of these latter two schemes can be partially attributed to giving
hero images a higher server-side priority, highlighting that indeed, there might
be merit in combining client and server-side directives.
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While the reduced observed impact of larger send buffers might seem unex-
pected and contrary to the findings of [2], it has a simple explanation in two
parts. Firstly, larger send buffers mainly impact the ability of the scheme to
re-prioritize its scheduler in response to late discovered but important resources.
In our data set however, we seem to have few web pages that contain such highly
important late discoveries. Indeed, the test page showing the most remarkable
slowdown from the larger send buffers was that introduced in [2] itself (dropping
from x9 speedup without send buffer to x3 with 1000K). Secondly, as the size
of the send buffer grows, the resulting behaviour more and more becomes that
of fifo, as requested resources can be put into the buffer in their entirety imme-
diately (similar to mvfst ’s flow control behaviour in Sect. 2.3). This is clearly
visible in Fig. 12. As we have seen, fifo performs well overall, so even larger send
buffers will also keep performing relatively well. It is our opinion that the results
seen in [2] for faulty prioritizations in the wild might be less due to ‘bufferbloat’
and more due to misconfigured or badly implemented H2 servers, or to their
choice of a highly tuned test page.

To dig a bit deeper into some of the outliers, we discuss two case studies.
The first is outlined in black on Fig. 14. This web page suffers a slowdown
of about /3 for three separate schemes, yet sees major improvements of x4 in
others. This specific page has relatively few resources with highly specific roles.
Most importantly, it features a single, page-spanning hero image that is relatively
small in byte size. Next, it includes several very large JS files which, even though
included in the HTML <head>, are marked as “defer”. This means they will only
execute once the full page has finished downloading. As such, the hero image is
marked as an ATF resource, but the JS files are not. As the image is discovered
after the JS files, it is stuck behind them in fifo. For firefox (and similarly s+),
the image is in the “FOLLOWERS” category (see Fig. 6), while the JS files
are in “UNBLOCKED”. While the group of the image receives about twice
the bandwidth as the JS (via the parent “LEADERS” placeholder), the image
is competing with a critical CSS in the leaders, thus being delayed. For the
speedups, the schemes either know there is a hero image (bucket (HTML) and
zeroweight), allow the smaller hero image to make fast progress via a (semi)
Round-Robin scheme or, in the case of dfifo, accurately assign low priority to
the JS files.

The second case study is outlined in blue on Fig. 14. This web page interest-
ingly has a few instances where the 1000k send buffer outperforms the normal
ATF case. This is because this page’s HTML file is comparatively very large
(167 KB). As explained before, a large send buffer exhibits fifo-alike behaviour.
Thus, for schemes where normally the large HTML would be competing with
other resources (e.g., bucket and firefox ), it now gets to fill the send buffers in
its entirety, completing much faster. Where in the previous case study Round-
Robin-alike schemes led to smaller resources completing faster, here the large
HTML file is instead smeared out over a longer period of time due to interleav-
ing with the other (ATF) resources.
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6 Conclusion

6.1 HTTP/3’s New Priority System

Based on our evaluation of the different prioritization schemes in Sect. 5.3, we
can draw two general conclusions to help guide the choice for an appropriate
H3 prioritization approach. Firstly, that it is perfectly possible to switch to a
simplified prioritization framework while still fully supporting the web brows-
ing use case and without losing performance. Schemes such as bucket HTML
and zeroweight are easy to implement performantly without a dependency tree
structure and seem to provide a good baseline performance for most web pages.

Secondly, that such a simpler scheme should nevertheless still allow enough
flexibility. As our results and case studies have clearly shown, no single scheme
performs well for all types of web pages. This is a conclusion we and related
work keep repeating: it is almost impossible to come up with a perfect general
purpose scheme. This is emphasized by the good results achieved by combining
client-side priority indicators with server-side priority information in our bucket
HTML and zeroweight schemes. This is also why efforts such as ‘Priority Hints’9

give developers options to manually indicate per-resource priorities. As such, any
new chosen system should allow the integration of similar client and server-side
overrides and behaviour tuning on a per-page basis.

These prioritization results and conclusions were first presented in our pre-
vious work [6] in June 2019, and were brought to the attention of the IETF
QUIC and HTTP working groups. Based partly on our input and other insights,
it was finally decided to remove the dependency tree setup from H3 completely
and to instead develop a new system. As the alternative proposals tested in
our evaluation were still deemed to be too complex, an even simpler proposal
named “Extensible Prioritization Scheme for HTTP” [5] was adopted. This new
proposal is simple in that it defines resource priorities based on just two param-
eters, termed ‘Urgency’ and ‘Incremental’. The Urgency parameter is defined
as an integer of value between 0 and 7. Intuitively, these values can be seen as
individual priority buckets or levels, similar to the spdyrr scheme. These buckets
are intended to be given bandwidth from low to high. The Incremental boolean
parameter then defines whether resources sharing the same Urgency level should
best be sent using a sequential (Incremental = 0) or an RR (Incremental = 1)
scheduler. As such, unlike in the dependency tree setup, a resource’s priority is
no longer directly dependent on its relationship to other resources (parent or
child), but is rather defined in a standalone, declarative fashion.

While simple in nature, this setup nevertheless provides all the benefits
we had envisioned. Firstly, it can emulate (simplified versions of) both the
zeroweight and Bucket HTML schemes. Secondly, it makes it easy to incorporate
server-side overrides, as this only requires changing the Urgency and/or Incre-
mental parameter values. Similarly, this makes it easy to re-prioritize resources.
Thirdly, it can easily be emulated by a dependency tree in existing H2 deploy-
ments. Fourthly, it is easy to extend with more semantic parameters later (e.g.,
9 github.com/WICG/priority-hints.

https://github.com/WICG/priority-hints
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to indicate the resource is RenderBlocking or OnScreen) to provide more fine-
grained scheduling options.

At the time of writing, implementation of this new scheme is expected to
start soon in several HTTP/3 implementations and thus an evaluation of this
setup is left for future work.

6.2 Transport Layer Multiplexing

Evaluating both QUIC transport layer (Sect. 2.3) and HTTP/3 application layer
(Sect. 5.3) behaviours allows us to draw conclusions about their possible inter-
plays.

The problems that might arise are most evident in our discussions of Round-
Robin schedulers. As we have shown for H3, these can lead to worst case web page
loading performance, as they can delay the full download of key resources com-
pared to a sequential scheduler. Consequently, it is somewhat counter-intuitive
to find that RR was the default for H2 and that a majority of QUIC imple-
mentations in fact implements RR as their default scheduler. The latter could
be explained by the fact that QUIC can be used as a general purpose trans-
port protocol, and is probably implemented that way in most stacks. As such,
it should indeed not just be tuned for HTTP/3, as other use cases might in fact
prefer Round-Robin schedulers. Still, this again highlights the need for clear and
flexible QUIC-level prioritization APIs to allow H3 implementations running on
top to specify more sequential behaviours as needed. As discussed in Sect. 2.3,
these APIs are currently not well defined, which might lead to problems down
the line.

Somewhat contradictory to the previous paragraph is that, while we have
found RR to perform badly for loading web pages on lossless networks, we have
also seen it is the optimal approach for reducing transport layer HOL blocking.
This is in opposition to more sequential schemes, which seem better for web
page loading, but are more at risk of becoming HOL blocked. However, it is
unclear how much of an impact HOL blocking actually has on web page loading,
as we only explored its behaviour on the transport layer. Future work is needed
to explore the impact of the complex combination of congestion control, packet
loss and application layer multiplexing behaviour.
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