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Abstract. This paper extends an existing decisional framework for the
navigation of Micro Aerial Vehicle (MAV) swarms. The work finds inspi-
ration in the geocaching outdoor game. It leverages place recognition
methods, information sharing and collaborative work between MAVs. It
is unique in that a priori none of the MAVs knows the trajectory, way-
points and destination. The MAVs collectively solve a series of problems
that involve the recognition of physical places and determination of their
GPS coordinates. Our algorithm builds upon various methods that had
been created for place recognition. The need for a decisional framework
comes from the fact that all methods are fallible and make place recog-
nition errors. In this paper, we augment the navigation algorithm with
a decisional framework resolving conflicts resulting from errors made by
place recognition methods. The errors divide the members of a swarm
with respect to the location of waypoints (i.e., some members continue
the trip following the proper itinary; others follow a wrong one). We pro-
pose four decisional algorithms to resolve conflicts among members of a
swarm due to place recognition errors. The performance of the decisional
algorithms is modeled and analyzed.

Keywords: Micro aerial vehicle · Drone formation control · Drone
swarm · Goal location · Quadcopter · Information sharing ·
Localization · Path planning · Navigation · Place recognition

1 Introduction

Recent developments in MAV technologies enable several applications such as
inspection of infrastructures [1], parcel delivery [2] and search and rescue oper-
ations [3]. Modern MAVs are equipped with cameras, GPS and various sensors.
We focus our attention on the navigation problem for a swarm of MAVs. Nav-
igation involves the planning of a path. Existing path planning approaches use
results from the robotics literature such as artificial potential function [4], ran-
dom tree [5] and Voronoi diagram [6]. Specific related issues have been addressed
such as obstacle avoidance [7] and embedding of computational intelligence [8].
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In this paper, we extend a decentralized path planning algorithm for MAV
swarms, originally published in [9]. This algorithm is one of a kind. At the start,
the MAVs do not know the trajectory they have to follow. Each MAV is given some
information that enables the recognition of places along the way. While they pro-
ceed along a path, the MAVs cooperate and determine the GPS coordinates of a
series of landmarks. The MAVs use their on-board cameras and other sensors, such
as microphones, to collect observational data to recognize places and determine
their GPS locations. They exchange together these locations to solve simple geo-
metric problems, that is, determination of circle foci and line and perimeter inter-
sections. The recognition of places and resolution of geometric problems determine
the waypoints and how they are related. There are numerous methods available for
place recognition, including navigation systems, visual recognition, environmental
sound and thermal infrared imaging (cf. [10–14] for further details). However, none
of them is perfect. They all make errors. The presence of errors misleads the mem-
bers of a swarm with respect to the waypoint locations. In this paper, we address
the problem of conflict resolution due to place recognition errors in the context of
the swarm navigation algorithm originally presented in [9].

We create a decisional framework to resolve conflicts due to errors that occur
during waypoint recognition. We propose four conflict resolution algorithms
assembling the replies returned by place recognition queries executed by the
MAVs. In four different ways, they apply the majority rule. The first algorithm
establishes a baseline and formalizes what is done originally in [9]. The second
algorithm leverages the availability of multiple place recognition methods. It is a
two-level process. Within each MAV, the available place recognition methods are
applied. The majority’s decision of the methods applied by an individual MAV
is selected. Individual decisions are exchanged among the members of a swarm.
The final decision is the majority’s decision of the swarm. The third algorithm
is a flat process. Each MAV applies all available place recognition methods. All
results are exchanged with all members of a swarm. The final result is the major-
ity’s decision of all individual results obtained by all applications of the methods
in a swarm. The fourth algorithm is similar to the second one, but it captures
with a threshold the idea that some place recognition methods might not be
even capable of producing results due to non favorable conditions (e.g., due to
a high number of failures). We demonstrate through error probabilistic models
that the second, third and fourth algorithms improve the performance of the
baseline algorithm.

Section 2 surveys related work. Section 3 reviews the algorithm originally
presented in [9]. Section 4 describes the decisional framework details of our
algorithms and provides simulation results. Section 5 concludes the paper.

2 Related Work

Path planning for a swarm of MAVs involves collective movement of the ensem-
ble from one waypoint to another, while at the same time avoiding intermediate
obstacles and possibly according to a pattern. There is extensive scientific lit-
erature on the subject. Radmanesh et al. [7] made a survey on path planning
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with obstacle avoidance. Otto et al. [15] are concerned with path planning with
a coverage goal, while Zhao et al. [8] surveyed path planning involving compu-
tational intelligence. Several path planning approaches are inspired from ideas
developed for classical robotics. For example, some of these use artificial poten-
tial functions [4], random trees [5] and Voronoi diagrams [6]. Path planning may
be combined with team work and formation control [16]. Some approaches have
been adapted to quadcopters [17]. Similarly to other path planning algorithms,
the MAVs have a common goal, i.e., a location or coverage of an area. In contrast
to the others, in our algorithm the MAVs do not know what the exact goal is,
i.e., the covered area or final location, until the very end.

For landmark recognition, several authors use machine learning. Maravall
et al. [18,19] use probabilistic knowledge-based classification and learning
automata for the recognition of patterns associated to visual landmarks. In [20],
classification rules are associated to probability weights that are adapted dynam-
ically using supervised reinforcement learning. There is an adaptation process
that is conducted using a two-stage learning procedure. In the first stage, a series
of variables are associated to each rule, e.g., the variables associated to the con-
struction of a landmark recognition classifier are constructed using images’ his-
togram features, such as standard deviation, skewness, kurtosis, uniformity and
entropy. In the second stage, a series of weights is associated to every variable
whereby the weights are obtained by applying a reinforcement algorithm, i.e.,
incremental R-L [19,20], over a random environment. This results in a specific
image classifier for the recognition of landmarks, which is then loaded to the
MAVs.

Related to MAV formation control, [21] assumes that the signal propaga-
tion model of a MAV has the shape of a sphere and analyzes network capacity
allocation in a MAV-based network infrastructure. Furthermore, it proposes a
formation algorithm that determines the 3D geographic location of each MAV.
In [22], it is shown how to operate a swarm by human piloting a MAV (the
leader) while the remaining followers are autonomous. A solution is proposed to
synchronize and orchestrate a swarm of MAVs, based only on ad hoc communi-
cations to position MAVs. Finally, in [23], the authors formulate the multi-UAV
formation reconfiguration problem as an optimal control problem with dynami-
cal and algebraic constraints. They provide a hybrid particle swarm optimization
and genetic algorithm.

The approach presented in [9] uses an information sharing path planning
algorithm for MAV swarms. The swarm is expected to conduct a mission, whose
final destination and entire path are unknown to the MAVs in the swarm. In
order to complete the mission, MAVs are requested to cooperate and exchange
information to compute and determine a series of intermediate steps by resolving
a discrete localization problem. At each step, the MAVs execute a geocaching-
like algorithm using navigational devices (e.g., GPS receivers) and visual refer-
ences to landmarks to unravel trajectory waypoints. Together, the MAVs build
a shared-information path planning process. The information sharing approach
in [9] has been extended in [24] by adding research ideas inspired from search
with advice over graphs [25], rings and complete network [26].
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3 Incremental Path Construction Algorithm

We have introduced a navigation algorithm for a swarm of n MAVs, where n is
a positive integer greater than or equal to three [9]. The algorithm is one of its
kind in that it adopts an information sharing and collaborative model. It also
finds inspiration in the geocaching outdoor recreational activity. We describe in
the sequel its main characteristics.

3.1 Constructing a Path

A navigation path is defined by a sequence of waypoints. At the start, each
individual MAV does not know what the waypoints are and what the path
consists of, although every MAV in the swarm is seeded with some information.
While, they progress from the origin to the destination, each MAV in the swarm
has specific tasks to achieve. The completion of each of these tasks provides
complementary information. The MAVs share their information with the other
members of the swarm. Together, they uncover the location of each waypoint of
the path.

Formally, a path consists of k waypoints p0, p1, . . . , pk−1, where k is a pos-
itive integer. The swarm starts from the point p0. Intermediate and the final
waypoints p1, p2, . . . , pk−1 are initially unknown and determined one by one.
For i = 1, . . . , k − 1, the MAVs collectively resolve a localization challenge. For
each instance of this challenge, for j = 1, . . . , n, the jth MAV finds the posi-
tion of a reference point qj . Determining the reference point requires finding the
precise location of a place. For instance, such a place can be a building with spe-
cific architectural characteristics, e.g., a church with a double bell tower. Before
starting, the MAV is seeded with visual clues about that place. Using its camera,
observational data is collected. Using this data, place recognition methods and
a GPS, the precise position of the place is computed. The resulting position is
a point qj . Every MAV exchanges the location of qj with the other members of
the swarm.

Assuming the recognition of the places has been correctly conducted, all
the reference points sit on the perimeter of an imaginary circle, see Fig. 1(a).
The centre of this circle is set as the origin of a unit vector v. The waypoint
pi is determined by the intersection of the supporting line of v and perimeter
of the circle, see Fig. 1(b). Using waypoint pi as reference, the MAVs head in
a direction defined by a direction vector d to find the reference points of the
next waypoint, see Fig. 1(c). A path is a succession of “chained” waypoints,
see Fig. 1(d). Before the start of the procedure, for every waypoint, every MAV
receives information that will be used to recognize its reference points, such as
physical characteristics. The MAV is also given the vectors v and d, for every
waypoint. At each step, there is a unique circle determined by three reference
points or more. The representation of vector v finds its inspiration in an outdoor
recreational game called geocaching. It is hidden within the circle. An example
is pictured in Fig. 2. The origin of v is located at the focus of the circle. In this
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example, the orientation of v is revealed by the upstream flow of the river, a
clue given beforehand to the MAVs.

This navigation algorithm requires recognition of places, such as buildings
and rivers. For this aspect, we depend on the research about place recogni-
tion [12,13]. Several methods have been developed, including approaches specific
to building recognition [27] and applicable to recognition from the air [11,28].
While many techniques are resting on visual data, place recognition can also rely
on environmental sound [10] such as flowing water, vehicular traffic or school
yard. Each of the place recognition methods is fallible and has a degree of preci-
sion. It is determined empirically through testing and experimentation. In [12],
precision is defined as the ratio of true positives over the sum of true positives
plus the false positives. For a given method, we define the error probability as
one minus its precision. This leads to a fault model for our algorithms detailed
in the next sub-section.
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Fig. 1. Incremental path construction algorithm illustrated. Pictures (a), (b), and (c)
constitute steps required to determine the next waypoint, while picture (d) depicts a
resulting path.
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Fig. 2. Representation of vector v.

3.2 Fault Model

The algorithm originally presented in [9] solves failures in a partial manner. For
instance, assume the two scenarios depicted in Fig. 3. Figure 3(a) consists of
an arrangement of 11 MAVs with three faulty MAVs. Black dots represent reli-
able MAVs and black squares faulty MAVs. In this situation, the two non-faulty
MAVs at the intersection of the two circles wrongly determine circle S′ instead
of circle S. If the decision to pick S or S′ is according to the majority rule

Fig. 3. Black dots represent reliable MAVs and black squares unreliable MAVs. (a) An
arrangement of n = 11 MAVs with f = 3 faulty MAVs. (b) An arrangement of n = 8
MAVs with f = 3 faulty.
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(six MAVs), then the whole swarm makes a correct decision (circle S).
Figure 3(b) consists of an arrangement of eight MAVs with three faulty MAVs.
Two circles are determined S and S′. The former being correct while the latter
is incorrect. Two non-faulty MAVs, at the intersection of the two circles, are
deceived by the three faulty MAVs. They participate to the determination of
the incorrect circle (S′ instead of S). If the decision to pick S or S′ is accord-
ing to the majority rule (five MAVs), then the whole swarm makes an incorrect
decision (S′).

In this paper, we address situations such as the ones depicted in Fig. 3.
The goal is to increase the probabilities that a swarm of MAVs makes correct
choices, accomplishes its mission and reaches the final destination. Errors are
due to failures to recognize places correctly by each of the different methods.
We assume that MAVs have the capability to concurrently apply several place
recognition methods. The results of the applications of the different methods by
the MAVs can be assembled together through communications and improved the
decisional procedure. Building upon the algorithm introduced in [9] and place
recognition methods, we introduce new algorithms. The recognition methods can
be faulty. Hence, the MAVs can make errors and pick wrong reference points.
For a given waypoint, they must compute together the center of a circle. In
multiple-circle situations, ambiguity is resolved using a voting procedure and
majority rules. Once a circle is determined and chosen, the swarm computes the
center and waypoint. When a waypoint is correctly computed, the MAVs in the
swarm makes a right move. In the following section, we formalize these ideas.

4 Decisional Framework

The MAVs of a swarm co-operate to accomplish a mission that consists of follow-
ing a path with several waypoints. The discovery of each waypoint is achieved
using a combination of visual and sound clues, observational data, place recogni-
tion methods and GPS information. This means that the MAVs process queries
about place locations. The obtained replies are exchanged among the swarm
members. Due to place recognition errors, replies may be inconsistent. Based on
majoritarian rule, the replies are assembled together to determine a waypoint.
This procedure is repeated for each step until the destination is reached. The
resulting sequence of waypoints forms a path. In the sequel, we describe details
of the decisional framework taking into account place recognition errors and
disagreement between among swarm members.

4.1 Queries and Indicators

Let N = {1, 2, . . . , n} denote the set of MAVs navigating a terrain. Let I =
{1, 2, . . . ,m} be a set of indicators. Every indicator i ∈ I may correspond to a
place recognition method.

The MAVs need to navigate a terrain. They query available indicators. At
a given location within the terrain, and for each MAV-indicator pair (u, i) a
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query Q(u, i) is made by MAV u. The obtained reply may be the precise GPS
coordinates of a place. Besides, each reply may be wrong with probability p or
correct with probability 1 − p. The probability p may depend on the MAV u
and/or indicator i being used. Further, we assume that the queries, and replies,
are independent of each other, across the MAVs.

Fig. 4. Query Q(u, i) made by a MAV u to indicator i.

As shown in Fig. 4, it is convenient to depict the query system in the (u, i)
coordinate system with the u-axis representing the MAVs u ∈ N and the i-axis
the indicators i ∈ I. The place recognition methods associated with indicators
may vary and depend on sensing and computing capabilities of the MAVs. In
the sequel, it is assumed that all MAVs u ∈ N may query exactly the same set
of indicators, I.

4.2 Distributed Majority

There are two basic ways to reach a decision. Either every MAV processes queries
individually or MAVs process queries together as a group. In the first way,
all MAVs query a single indicator, say i ∈ I, corresponding to a single place
recognition method. The MAVs exchange their replies, i.e., the reference points
q1, q2, . . . , qn, resulting from the application of the place recognition method.
The replies may be inconsistent and define several circles. To resolve conflicts,
the MAVs use a majoritarian rule to select a single circle focus. This decisional
process is captured in Algorithm 1.

Algorithm 1. Single Indicator
1: Every MAV u ∈ N queries a single indicator, resulting into points q1, q2, . . . , qn.
2: MAVs exchange reference points q1, q2, . . . , qn
3: All MAVs adopt the outcome of the swarm majority, resulting into a circle focus.
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Let pn(i) denote the error probability of Algorithm 1, for n MAVs all using
a single common indicator i ∈ I. It is given by the following formula.

pn(i) = 1 −
n∑

l=�n/2�

(
n

l

)
[1 − p(i)]l p(i)n−l, (1)

where p(i) is the probability that a reply to a query is correct and 1 − p(i) that
it is wrong, for the indicator i, for all MAVs u ∈ N . Algorithm 1 corresponds
to the decisional logic in [9]. However, one can go beyond a single indicator.
When all MAVs use all indicators in I, then they may exchange their individual
majority decisions obtained across all indicators and follow the resulting swarm
majority.

In a second individualistic approach, every single MAV in N uses all available
indicators in I. It applies the standard majority rule to select a reply, i.e., a
reference point. The reference points are exchanged among the MAVs. The group
selects the circle determined by the majority of the MAVs. The decisional process
is captured in Algorithm 2.

Algorithm 2. Multiple Indicators Hierarchical
1: Every MAV u ∈ N queries all its indicators.
2: Every MAV determines the indicator majority point qu, u ∈ 1, 2, . . . , n.
3: MAVs exchange reference points q1, q2, . . . , qn
4: All MAVs adopt the outcome of the swarm majority, resulting into a circle focus.

Let pm denote the error probability of the majority rule for a single MAV
using all m indicators,

pm = 1 −
m∑

k=�m/2�

(
m

k

)
(1 − p)kpm−k, (2)

where p is the probability that a reply to a query is correct and 1 − p that it is
wrong, assuming that it is the same across all place recognition methods. We can
also derive an equation without this assumption, indexing the probabilities over
the indicators. Each MAV makes a decision independently querying all available
indicators. The MAVs exchange their decisions and follow the resulting group
majority. Assuming independence, the error probability of Algorithm 2 is given
by the following formula.

pm,n = 1 −
n∑

l=�n/2�

(
n

l

)
(1 − pm)lpn−l

m , (3)

In retrospect, there are advantages and drawbacks in Algorithms 1 and 2. On
the one hand, in either case they are flexible in that one may select the indica-
tors used in the majority decision and which are more suited to the terrain being
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navigated or available communication possibilities and thus save in energy and
communication costs, say. On the other hand, it should be emphasized that some
indicators may not be available for querying to all MAVs because of environ-
mental conditions, say, throughout the entire waypoint navigation process. This
in turn may cause additional overhead on the MAVs that are required to main-
tain a database of active indicators per waypoint depending on environmental
conditions.

Algorithm 3 combines Algorithms 1 and 2 in a comprehensive manner in that
it adjusts and updates its set of MAVs and set of indicators employed in each
waypoint. As such, it may yield more accurate results. A selected subset N ′ ⊆ N
of MAVs may query a selected subset I ′ ⊆ I of indicators. They exchange all
their replies. Because place recognition methods may disagree, a single MAV
may generate several reference points. The circle determined by the majority of
the replies is chosen.

Algorithm 3. Multiple Indicators Flat
1: All MAVs in N ′ query all indicators in I ′, resulting into points q1, q2, . . . , q|N′|·|I′|.
2: MAVs exchange reference points q1, q2, . . . , q|N′|·|I′|
3: All MAVs u ∈ N ′ pick the majority among all outcomes, result is a circle focus.

Let n′ = |N ′| and m′ = |I ′|. Let pm′,n′ denote the error probability of the
majority rule for MAVs in N ′ and indicators in I ′. It is given by the following
formula.

pm′,n′ = 1 −
m′n′∑

r=�m′n′/2�

(
m′n′

r

)
(1 − p)rpm′n′−r, (4)

where p is the probability that a reply to a query is correct and 1 − p that it
is wrong, for all the MAVs and all indicators. Note that Eq. (4) is the most
general, for a fixed p. It subsumes Eqs. (1) and (2), as this can be seen by
choosing N ′ = N, I ′ = {i} and N ′ = {u}, I ′ = I, respectively.

An interesting point to make here is that the quality of the assembled answers
depend on the reliability of the communications between the MAVs. Algorithm 3
is the most complete but also the most demanding in communication overhead
while Algorithms 1 and 2 depend on more local conditions, to a certain extent.

4.3 Majority with a Threshold

The validity of Algorithms 1 and 2, and their generalization presented as
Algorithm 3, hinges on the assumption that all the participating MAVs get
replies to their queries. It may be the case that replies to queries are not obtained
by a MAV due to harsh signal conditions (see Fig. 5). In this approach, a MAV
participates in the majority algorithm when the number of obtained replies
exceeds a certain predetermined threshold value.
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Fig. 5. Certain MAVs may not necessarily get replies for all the queries made. The
MAVs u, v, w depicted are the ones for which the number of obtained replies exceeds
a certain predefined threshold value.

More formally, for each MAV u let Iu be a random variable that counts
the number of indicators in I that replied to a query made by u. It is natural
to assume that Iu is a binomial random variable B(q,m) with parameters q
(0 < q < 1) and m, the number of indicators. The value of q may well depend
on conditions of the environment as the MAVs are navigating waypoints. The
binomial random variable B(q,m) could be approximated with a Poisson random
variable having arrival rate λ = mq and probability of k arrivals equal to λk

k! e
−λ,

where m → ∞, q → 0 and mq → λ.
We now require that the vote of a MAV u counts towards the computation of

the majority if Iu > t, where t is a fixed predetermined threshold value. Evidently
in this counting, MAVs that obtain low numbers of replies are not taken into
account in the final computation of the majority. The algorithm parametrized
with a threshold value t generates a set of VOTERS, namely the set of MAVs
that pass the threshold t. It is formalized as Algorithm 4.

Algorithm 4. Threshold Majority (t)
1: All MAVs in N query all indicators in I.
2: MAVs with number of received replies exceeding threshold t become V OTERS.
3: V OTERS exchange reference points.
4: Majority decision is decided among V OTERS.

Algorithm 4 has the advantage that it takes into account only the MAVs that
have the potential to provide the most accurate majorities based on the number
of reliable indicators. Ultimately, it is a MAV that judges the appropriateness of
a reply or even if a reply by a particular indicator is feasible given geometric and
other communication factors. However, the choice of the threshold value t may be
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critical. If it is too high, then the opinion of a large number of MAVs is excluded
while if it is set too low the majority is cluttered with inaccurate answers. We
can derive estimates on the threshold t using Chernoff bounds (see [29]). For
example, we know that for t > λ, then we may have the formula.

Pr[Iu > t] ≤
(

eλ

t

)t

· e−λ (5)

4.4 Numeric Results

Next, we discuss the numeric evaluation of Algorithms 1, 2, 3, and 4. Figure 6
have been obtained with implementation of the equations associated to each
algorithm, Eqs. (1) to (5), using representative ranges of parameters. The x-
axis represents a range for the indicator error probability. The y-axis plots the
resulting error probability, for every algorithm. Variable m corresponds to the
number of indicators. Variable n indicates the number of MAVs in the swarm. For
Algorithm 4, variable v indicates the number of MAVs participating to the voting

Fig. 6. Numeric results. Plots depict error probabilities, assuming (a) m = 3, n = 5;
(b) m = 3, n = 7; (c) m = 5, n = 5; and (d) m = 3, n = 5.
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process. The parameters associated to the indicators of each equation are based
on experimental values reported in the literature, such as failure ratios expected
from navigation systems, visual recognition, environmental sound and thermal
infrared imaging [10–14]. As we can appreciate with the results, Algorithm 1 is
always worst than all the others. For low indicator error probability, Algorithms
2, 3, and 4 have similar performance. The curves also indicate that a higher
number of participating MAVs reduces the probability of errors. The same is
true for the number of indicators.

4.5 Simulation Results

The numeric results reported in the previous section are extended in this section.
We have implemented our decisional framework and algorithms in Java and con-
ducted Monte Carlo simulations. In Fig. 7, the x-axis represents the number of
members in a swarm. We show simulation results in which all four algorithms
involve an incremental number of MAVs (from 10 to 90 MAVs), randomized
failure ratios reported in the literature of navigation systems, visual recogni-
tion, environmental sound and thermal infrared imaging. The simulation aims
at evaluating the chances of mission success of a swarm. Each simulation consists

Fig. 7. Monte Carlo simulations results. (a) Algorithm 1, m = 1. (b) Algorithm 2,
m = 5. (c) Algorithm 3, m = 7. (d) Algorithm 4, m = 10.
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of 1000 iterations per x-axis value. The y-axis represents the success rate, i.e.,
number of successful iterations per x-axis value. Additional results are available
in a companion website, online at github.1

5 Conclusion

This paper has extended an existing path planning algorithm for MAV swarms.
The revisited approach assumes that MAVs collectively work to determine and
solve a discrete location problem, in order to discover initially unknown interme-
diate landmarks. By collectively determining and sharing the landmark locations,
the MAVs are able to complete their mission and reach their final destination.
We assume that the process is prone to random failures. The original algorithm
fails at handling situations where a series of faulty MAVs disrupt the collective
procedure. It may affect the remaining MAVs to complete their mission. The new
algorithms presented in this paper improve the original work. They are resilient
to random failures.

The methodology proposed offers potential for additional research, explo-
ration and testing more sophisticated majority strategies based on probabil-
ity distributions that are realistic in that they are sensitive, for example to
geographic location, proximity to base station and/or landmarks and available
energy of the drones.
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13. Galvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in
image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

14. Spaan, D., et al.: Thermal infrared imaging from drones offers a major advance for
spider monkey surveys. Drones 3(2), 34 (2019)

15. Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches
for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey.
Networks 72(4), 411–458 (2018)

16. Turpin, M., Michael, N., Kumar, V.: Capt: concurrent assignment and planning of
trajectories for multiple robots. Int. J. Robot. Res. 33(1), 98–112 (2014)

17. Rizqi, A.A.A., Cahyadi, A.I., Adji, T.B.: Path planning and formation control
via potential function for UAV quadrotor. In: 2014 International Conference on
Advanced Robotics and Intelligent Systems (ARIS), pp. 165–170, June 2014

18. Maravall, D., de Lope, J., Fuentes Brea, J.P.: A vision-based dual anticipa-
tory/reactive control architecture for indoor navigation of an unmanned aerial
vehicle using visual topological maps. In: Ferrández Vicente, J.M., Álvarez Sánchez,
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