)

Check for
updates

XSS Attack Detection Model Based
on Semi-supervised Learning Algorithm
with Weighted Neighbor Purity

Xinran Li, Wenxing Ma, Zan Zhou®™), and Changqiao Xu

Beijing University of Posts and Telecommunications, Beijing 100191, China
{1xr_bupt,cqxu}@bupt.edu.cn, mwx0519@sina.com, zan.leon.zhou@gmail.com

Abstract. With the popularity of web applications, cyber security is
becoming more and more important. The most common web attack is
cross-site scripting (XSS), which can be easily constructed in malicious
URLSs. However, the existing methods of detecting XSS attacks are suffer-
ing from the lack of labeled data, and some semi-supervised methods still
have the problem of mislabeling. In this paper, we propose a novel XSS
attack detection model based on semi-supervised learning algorithm with
weighted neighbor purity. Semi-supervised learning can make best use of
little labeled data, and a simple mechanism of neighbor purity using
weighted-kNN is applied to rectify mislabeled samples, improving clas-
sification accuracy. To verify the feasibility of our solution in real-world
scenario, we collected real HTTP requests in the China Education and
Research Network (CERNET) as training data. The comparison exper-
iment shows that proposed method performs better than a well-known
semi-supervised algorithm and a recently published ensemble learning
method in different initially labeled rates.

Keywords: XSS attack - Machine learning - Semi-supervised
learning - Binary classification

1 Introduction

As the Internet has become an indispensable part in many people’s lives, a lot
of Internet companies make profit from their web services. However, adversaries
can collect information from such a large quantity of Internet traffic and conduct
tentative attacks [30]. These attacks have resulted in increasing security incidents
like leakage of massive sensitive data [29], causing huge economic losses. The
most widespread threat among the top 10 critical web security risks in 2017,
according to the Open Web Application Security Project (OWASP) [17], was
Cross-site scripting (XSS), which was unfortunately found in about two-thirds
of all the web applications. Besides, the data provided by a cybersecurity leader
team Imperva [3] showed that - XSS remained as the runner up category of web
vulnerabilities in 2019, and probably one of the dominant categories in 2020.

© Springer Nature Switzerland AG 2020
L. A. Grieco et al. (Eds.): ADHOC-NOW 2020, LNCS 12338, pp. 198-213, 2020.
https://doi.org/10.1007/978-3-030-61746-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61746-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-61746-2_15

XSS Attack Detection Model 199

The great threat of information safety and economic losses warn us to focus on
XSS attack detection.

Many web attacks are executed by simply clicking a malicious URL from
web browsers, including XSS attacks under discussion. The majority of success-
ful XSS attacks are built by deliberate URLs with malicious code. When victims
click an elaborately constructed URL, an evil request is sent to the web server.
At the same time, the malicious code is executed on victims’ browser, resulting
in information leakage, keylogging, dynamic downloads and other serious conse-
quences [18]. Sometimes the evil input sent to the server side will be stored in
database, threatening more visitors of this webpage.

To detect XSS attack, this paper focuses on distinguishing malicious URLs
with XSS attacks from the benign. In the field of URL detections using artificial
intelligence, actually in all the cyber security areas using machine learning, the
limited malicious database is a serious problem [16,22], leading many approaches
to use not real representative or intentionally generated dataset. Thus, these
approaches are lack of empirical evidence against real-world scenarios. Some
studies use the semi-supervised learning method to take more advantage of exist-
ing labeled data. However, the problems of mislabeling and overfitting in the
developed model still need to be solved [12].

In face of the issues above, this paper develops a novel classification model for
automatically detecting XSS attacks in malicious URL requests based on a semi-
supervised algorithm using weighted neighbor purity. Machine learning method
can greatly improve the classification accuracy [20], especially a semi-supervised
method based on ensemble learning can eliminate the lack of labeled data. To
address mislabeling and overfitting problems in semi-supervised learning, we add
two novel restrictions on a well-known algorithm. Also, real-world scenarios are
considered by using the real data flows in both training and testing data set.

The main contributions of this paper are summarized as follows:

(1) Toimprove the classification accuracy of semi-supervised learning algorithm,
we ameliorate traditional Co-Training algorithm [1] by calculating weighted
neighbor purity as a threshold to reduce mislabeled data, and introducing
an excess ratio to address the overfitting problem.

(2) Considering the practical use of real-world application, we train our model
by captured URLs from HTTP requests in CERNET and feasible attacks
that have caused loss collected by XSSed [4]. To achieve the usability of our
detection model, practical data cleaning method is also introduced.

(3) Finally, comparison experiments are conducted to compare our improved
method with the original algorithm and another ensemble learning approach
published last year, showing that the proposed method outperforms the
other two methods.

The rest of this paper is structured as follows: Sect. 2 summarizes the related
work about URL detection and semi-supervised learning algorithm. Section 3
explains the overview of proposed detecting model. Section4 describes the

200 X. Li et al.

improved semi-supervised algorithm in detail. Section5 represents the imple-
mentation and experimental result of three methods. Section 6 concludes this

paper.

2 Related Work

In this section, we introduce the studies of URL attack detection w ith machine
learning and semi-supervised learning algorithm. The knowledge in these two
respects mostly supports our research.

2.1 Research on URL Attack Detection with Machine Learning

Many web attacks can be simply constructed by embedding or injecting malicious
code in URLs [27], and XSS attack is the dominant type among them [19]. Using
a machine learning algorithm, we can extract representative static features from
URL [20] and train a prediction model to classify benign and malicious samples.
Thus, the performance of machine learning depends largely on features. Machine
learning methods can detect unknown malicious code, unlike universally used
methods based on blacklists. Furthermore, a classifier built by machine learning
method consumes little time to predict whether an URL is malicious, that is the
reason why more and more web servers choose to use machine learning method
for security issues.

Cui et al. [2] designed a feasible feature process procedure. They used gradient
learning to perform statistical analysis and their feature extraction is conducted
based on a sigmoidal threshold level. Yang [26] created a multi-classifier model
for URL with syntax and domain features, indicating that the best performance
is achieved by random forest algorithm. Joshi et al. [10] proposed an ensemble
classification method with lexical static features to detect malicious URLs, which
is currently being used in the FireEye Advanced URL Detection Engine. Zhou
et al. [28] also used an ensemble learning method which is based on Bayesian
networks, but they combined domain knowledge and threat intelligence with the
traditional lexical features, achieving a good result.

The current studies paid more attention to feature extraction, but few of
them believes the balanced dataset should be manually checked, though it could
consume a large amount of manpower. Instead of using real-world data, most of
these studies used generated data. These data could have high-level of identity
for training their models, which reduces the reliability of their methods to some
extent.

2.2 Research on Semi-supervised Algorithm

In traditional supervised learning, although it’s easy to obtain plenty of unla-
beled URL samples, it takes a lot of manually labeling time and cost to provide
labels for them. To address this challenge, semi-supervised learning is proposed
to improve learning performance with mostly unlabeled data. Disagreement-
based semi-supervised learning using ensemble learning method is one of the

XSS Attack Detection Model 201

mainstream paradigms in this field [31]. It applies multiple classifiers to utilize
unlabeled data, and the disagreement between learners is critical to learning
effectiveness. Research on disagreement-based semi-supervised learning began
with the work of Blum and Mitchell on Co-Training [1].

There have been many studies on improving Co-Training. Zhou and his col-
laborators proposed Tri-training [32], which can be seen as an extension of the
binary classifier cooperative training. It generated three classifiers from a single-
view training set and then used these three classifiers by the rule of majority to
generate pseudo-labeled samples and solved the confidence evaluation problem
of pseudo-labeled samples. After training, the three classifiers were used as one
classifier through a voting mechanism. Li et al. proposed Co-Forest that puts
emphasis on the importance of ensemble learning [11]. Gu et al. proposed an
ensemble multi-train method of heteromorphic multi-classifiers [7]. The training
process of this method is similar to that of Co-Forest but required each base
classifier to use a different learning algorithm, and at the same time use different
attribute reduction strategies. In this paper, the random forest algorithm is inte-
grated into the semi-supervised learning framework, which can further improve
the learning performance of the classifier, and the introduction of multiple clas-
sifiers simplifies the calculation of the pseudo-labeled confidence.

In Co-Training, mislabeled data can accumulate during training, which influ-
ences diversity and accuracy of the combined classifier. Xiang et al. [24] devel-
oped a visual analysis method, which could improve the quality of labeled sam-
ples interactively. The quality improvement was achieved through the use of
user-selected trusted items and much manual work was required. The study in
[12] used data editing in Tri-training [32], which significantly improved the clas-
sification performance. Li et al. proposed an improved naive Bayes self-training
algorithm based on weighted K-nearest neighbors. Selecting the samples with
the similar spatial structure of the labeled samples, the naive Bayes classifier
assorted unlabeled samples on a better spatial structure and reduced mislabeled
samples effectively [21]. In this paper, the weighted K-nearest neighbor rule is
used to rectify the mislabeled data more accurately.

Based on these existing studies, we combine the wisdom of URL attacks
detection method and machine learning with a semi-supervised algorithm, for
designing a novel detection model of XSS attacks in URL. The lack of labeled
data is solved by machine learning, in which real scene and data are considered.
Furthermore, to solve the mislabeling problem in semi-supervised learning, we
propose a weighted neighbor purity method to rectify pseudo-labeled samples.

3 XSS Attack Detection Model Based on Improved
Semi-supervised Learning

This section describes the proposed detection model, as shown in Fig. 1. Fol-
lowing the process lines, raw URL data collected from real world are divided
into training set and testing set, and then they are sent into URL processing
procedure. The URL processing procedure transfers raw data in training set and

202 X. Li et al.

testing set, respectively, into practicable feature vectors. Particularly in training
process, we add a data cleaning step to eliminate noise in features. After URL
processing, the refined data represented as feature vectors from training set are
sent to learning process to train a detection model. The detection model is then
evaluated by classifying the feature vectors generated from the testing set. If the
evaluation result is good enough, the generated detection model can be put into
application. Otherwise the control flow goes back to URL processing procedure,
trying to extract more representative features.

XSS attacks

Feasible XSS generated by

Data flgws from

attacks attack tools

Training Set

Testing Set

Y v

I N

\ 4 \ 4

Preprocessing [Preprocessing]

v v

N

URL
Processing
Procedure

—p| Feature extraction [Feature extraction]

J

Data cleaning

\

N

Improved semi-
Improved supervised training |
Semi-
supervised A 4

Learnig Detection XSS attack
model detection Detection
L with Real-

world Attacks
- N Evaluation

Y

Application

Fig. 1. XSS attack detection model based on improved semi-supervised learning

3.1 URL Processing Procedure

Preprocessing. URLs in HTTP request are often encoded, leading to confusion
of both human and artificial intelligence. Many attacks also use encoding method

XSS Attack Detection Model 203

to bypass traditional attack detectors. That is why we need a preprocessing step
to check possible attacks. Figure 2 shows the preprocessing procedure, trans-
forming encoded data into human-readable strings. We firstly pick out the URL
query section from normal data packet shown in the first box. In the second box,
we get the extracted URL query. After URL decoding, HTML entity decoding
and lowercasing, URL query is transferred into apprehensible string in the third
box.

IP packet

TCP segment

Chunk of TCP data stream

URL request

extract

URL and HTML entity encoded URL
query

decode

explicit string of URL query

Fig. 2. Preprocessing procedure

Feature Extraction. Feature extraction is conducted on the decoded URL
query strings of the last step. According to the previous researches [15,25], we
use 70 URL static features as the original attributes. To eliminate the deviation
of redundant attributes, we carry out a feature selection algorithm, which is
based on correlation between features and its category. After the selection, 14
effective features are selected. These useful features consist of 5 URL structural
features, 1 XSS risk level feature, 7 evil char features, and 2 evil keyword features.

204 X. Li et al.

Data Cleaning. Considering the adaptation of different practical scenarios,
data cleaning is necessary to filter out outliers in training process. The outliers
in training set can be regarded as noise, which badly affects the universality
of the model to be trained. Feature vectors in training set are projected into a
plane space by a dimensionality reduction method t-SNE [14]. Then a density-
based clustering algorithm DBSCAN [5] can easily find out the outliers. For test
process, as it will omit some real attacks in test data, we do not conduct data
cleaning method.

3.2 Improved Semi-supervised Learning

The core algorithm in detection model is a semi-supervised machine learning
method improved by weighted neighbor purity. We can describe the target of
detecting XSS attacks as a binary classification issue, where positive samples are
malicious and negative samples are benign [2]. As for classification, the funda-
mental assumption is that malicious attacks and benign requests have different
features. In this way, the classification model can learn how to predict a new
feature vector by adjusting itself according to labeled feature vectors.

Unlike supervised learning method, semi-supervised machine learning can
learn from both labeled and unlabeled data, saving a large amount of manpower
for labeling. We improve the existing method by introducing weighted neighbor
purity and an excess ratio, to ameliorate the accumulating mislabeled error prob-
lem and the overfitting problem caused by imbalanced training data. Section 4
describes the improved machine learning algorithm in detail.

3.3 Detection with Real-World Attacks

As attackers usually use attack tools to automatically build XSS attacks, our
model is intended to detect newly constructed attacks from normal requests.
Therefore, the test set is mixed with XSS attacks generated by attack tools and
benign URL requests from life scene in the training set. Although the evil data
in training set is collected from real-world XSS attack in website XSSed [4],
which is not similar with the test set, our model performs well according to the
experiment result.

To evaluate the performance of the detection result, we use classification
accuracy as the metric. Classification accuracy is the proportion of correct pre-
dictions to all predictions. Equation 1 defines the accuracy, where P and N is
the number of positive and negative predictive value respectively, TP + TN is
the number of correctly predicted samples, and P + N is the total number of
predictions.

TP+ TN

P+N W)

Accuracy =

4 Improved Semi-supervised Algorithm

This section describes the core algorithm in our detection model. An improved
semi-supervised algorithm is proposed similar to Co-Forest [11] for binary classi-

XSS Attack Detection Model 205

fication problems. In the following discussion, we use L to denote labeled samples
and U to denote unlabeled samples. C' = {C4, Cs, ..., C,, } represents the classifi-
cation space of labeled samples. First, a labeled training set L is used to build
a random forest composed of N base classifiers H = {H(1), H(2),..., H(N)}.
H(i)(i =1, ..., N) represents a base classifier in H, and a new ensemble classifier
composed of the remaining N — 1 classifiers is called the companion classifier of
H (i), denoted by H*(i). During iterations, each companion classifier provides
its most confident pseudo label to its base classifier and expand the training set
of base classifiers.

4.1 Solution for Overfitting

When building a model for detecting malicious URL, there are often far more
samples of normal URL than malicious URL ones. To solve the overfitting prob-
lem resulted by extreme imbalance of positive and negative samples, we propose
a simple processing mechanism. For each iteration, we measure the proportion
of newly added pseudo-labeled samples of different classifications according to
the proportion of initially labeled data in different classifications. Suppose the
initially labeled samples have N, positive samples and V,, negative samples, and
the ratio of positive and negative samples is r, which is defined in Eq.2. The
allocation of pseudo-labeled samples added to each classifier in each iteration
should follow the ratio r, and the excess samples will be put back in U.

r=-2 (2)

4.2 Rectification for Mislabeled Data

To reduce the number of mislabeled samples and to improve the performance of
the classifier, this paper treats the samples differently according to the marginal-
ity of the samples. If the nearest neighbors of a sample mostly belong to the
same category, then it has a higher probability of belonging to this category. On
the contrary, if the categories of the nearest neighbors are more uniformly dis-
tributed, it will be difficult to determine the category according to the neighbors.
For each unlabeled sample x(x € U), we construct a neighbor set neighbor(x)
composed of labeled samples. The purity of the neighbors [13] can describe the
distribution of neighbor sample categories. This paper proposes weighted neigh-
bor purity, which can more accurately describe the distribution of the neighbors.
In order to avoid calculation errors caused of value interval difference in differ-
ent attributes, it is necessary to normalize each attribute value first. Then, all
samples are mapped into points in a multidimensional space, and the distance
dis(z,z) between the unlabeled samples z and z refers to their Euclidean dis-
tance. The weight of each point w, is the confidence of the sample, which is
defined in Eq. 3. And the weight of each edge w.(z, z) is defined in Eq. 4.

max{Ny, No}

N1 3)

wy(x) = con fidence(x) =

206 X. Li et al.

dis?(x,z)

We(r,2) =€~ & (4)

Where Ny, Ny denotes the number of yq, y2 labeled by H*(x) respectively. We
use k to denote the number of the nearest neighbors. Then, the weight of the
negative samples in k neighbors W, (z) is defined in Eq.5. The weight of the
positive samples in &k neighbors W), (z) is defined in Eq. 6, where n; denotes the

it" nearest neighbor of z. The weighted neighbor purity is defined in Eq. 7.
k
W) =Y wy(x) * we(x,ns), y(ni) = (5)
i=1
k
Wp(x) = Zwv(x) *we(w,mi),y(ni) = y2 (6)
i=1
2% W,
wpurity(x) = Wy () In Wy (@) +In * W (2) (7)

Wy(2) + Wh(z) — Wa(z) Wy () + Wa(z)

In this paper, samples with low neighbor purity are called margin samples.
The introduction of margin samples is important to improve the generalization
ability of the classifier and approximate the ideal hypothesis. We add margin
samples that have higher confidence than 6 to the set of labeled samples, while
manually label the samples that have lower confidence than 6;. For samples
with lower marginality, we combine the idea of weighted K-nearest neighbor
algorithm to rectify pseudo-labeled samples. That is to say, we sample the k
neighbors closest to x, then compare the weights of the positive and negative
samples, and the label of the sample is rectified according to the category with
larger weight.

The main algorithm flow that applies the semi-supervised learning is given
in Algorithm 1. First, N random trees are constructed using labeled samples
to build a random forest. For each classifier, we sample some unlabeled data
and label them with the companion classifier. If the confidence level and the
weighted neighbor purity are high, data editing is employed. On the other hand,
if the confidence level and the weighted neighbor purity are low, the sample is
manually labeled. Excess samples of a classification are put back in U according
to the ratio r. When all classifiers stop updating, training ends.

5 Experiment

This section describes the detailed experiment settings, consisting of data
resources, feature selection method, training parameters and comparison exper-
iment results about our method, and other two competitive methods.

XSS Attack Detection Model 207

Algorithm 1. Improved Semi-supervised Algorithm
Input: L: the labeled set; U: the unlabeled set; 05: the high confidence threshold; 6;:
the low confidence threshold; 6),: the threshold of the weighted neighbor purity; N:
the number of random trees; K: the number of the nearest neighbors
Output: classifiers H = {H(1), H(2),..., H(N)};
1: build a random forest consisting N random trees with L
2: forie {1,..,N} do

3: é@o =0.5
4: Wio=0
5: end for
6: t=1
7: repeat
8: forie {1,..,N} do
9: compute the estimated error rate é; o = EstimateError(H;, L)
10: Li,=¢
11: if éi,t < éi,tfl then
12: sample some unlabeled data Ui/,t = SubSampled(U, %)
13: for each z € U;t do
14: if confidence(H;,xz) > 0, then
15: if wpurity(x) > 6, then
16: compare Wy, (z) and Wy, (z) to correct the mislabeled data
17: end if
18: add x to the labeled dataset L;,t = L;,t U{(x, Hi(z))}
19: Wit = Wit + confidence(H;, x)
20: else if confidence(H;,x) < 6; and wpurity(x) < 6, then
21: label the data manually and add it to L;t
22: end if
23: end for
24: put excess samples back in U according to the ratio r
25: end if
26: end for
27: forie {1,..,N} do
28: if ei,tWi,t < ei,t,lwi,t,l then
29: update the classifier h; = LearnRandomTree(L U L;’t)
30: end if
31: end for

32: t=t+1
33: until none of the trees in random forest changes

5.1 Dataset

To simulate the practical application of our model, we captured 54.8 MB data
flows from outgoing traffic of Beijing University of Posts and Telecommunications
network as the normal samples. After extracting the investigated URL request
from the flows, we obtain 39596 distinct queries. The majority of these samples
are used as white data in training set, and the remaining 3770 normal samples
are randomly selected into testing set.

208 X. Li et al.

The evil XSS attacks in training set are collected from a well-known security
website XSSed [4], containing 28776 unique attacks in URL requests. The XSS
attacks in testing set are collected from several GitHub repositories, consisting
of 3770 distinct attacks. Because of the difference between training and testing
data, our model cannot completely learn the feature pattern of testing samples
during training procedure, which greatly supports the validity of our evaluation
result.

5.2 Feature Selection

Feature selection is an important procedure that determines the efficiency of
machine learning algorithm. This part is executed after URL decoding, HTML
entity decoding and lowercasing in the preprocessing procedure of training pro-
cess. After roughly selecting 70 static features according to [15,25], we use a
built-in algorithm of Waikato Environment for Knowledge Analysis (WEKA)
[23], and finally pick out 14 useful features shown in Table 1, where URL struc-
tural features are statistical features for the whole clean strings; XSS risk level
feature is calculated by the cumulative number of the XSS keywords occurrence.
The evil char and evil keyword features are the respective numbers of certain
char and keyword occurrence.

The selection algorithm named CfsSubsetEval [8] calculates the individual
predictive ability of each feature in a subset of attributes, the degree of redun-
dancy is evaluated as well. Searched by greedy algorithm, subsets of features
having low intercorrelation and high correlation with the category will be rec-
ommended.

5.3 Training Parameters

This subsection explains the detailed parameters in our comparison experiments
of improved semi-supervised method, original Co-Forest algorithm and the repro-
duction of an ensemble learning method published last year [28].

In the proposed semi-supervised method, the algorithm benefits from ensem-
ble learning, using Random Tree algorithm as the base classifier, and the N value
is set to 10. The other parameters use the default parameters of the random for-
est package in WEKA. The high confidence threshold 6}, is 0.75 and the low
confidence threshold 6; is set to 0.65. The weighted neighbor purity threshold
is set to 0.02. The size of the nearest neighbor set is related to the confidence
of the pseudo-label samples and the number of iterations and has no significant
impact on the accuracy of classifiers. The nearest neighbor set size is set to 5 in
this experiment.

The original Co-Forest [11] algorithm in comparison uses consistent con-
figuration for base classifier with the improved algorithm. Its only confidence
threshold of the labeled samples is set to 0.75, as high as our high confidence
threshold.

XSS Attack Detection Model 209

Table 1. Selected features

Category Feature name Description
URL structural | URL_length the total length of a URL
query
digit_percentage the percentage of digit in a
URL query
letter_percentage |the percentage of letter in a
URL query
parameter_number | number of parameters in a
URL query
XSS risk level | XSS_count accumulative number of XSS

keywords occurrence

evil char “ existence of char “
< existence of char <
\ existence of char \
, existence of char ,
% existence of char %
evil keyword img existence of word img
eval existence of word ewval

In the reproduction of another ensemble learning method using Bayesian
network as base classifier, we exactly use the same parameters as the paper
mentioned [28]. For ensemble learning, bagging and majority voting methods
are used to generate different training subsets and predict results. The number
of distinguishing base learners is 5. For each base classifier, Tabu [6] search
algorithm and BDeu [9] scoring function are applied.

All the approaches are conducted with different initial rates of labeled train-
ing sets, which are respectively labeled as 5%, 10%, 20%, and 30%. The average
classification accuracy of five tests is finally used for comparison.

5.4 Experiment Result

Figure 3 shows the improved algorithm classification accuracy of different ini-
tially labeled proportions. From this figure, it can be seen that in each initially
labeled proportion of 5%, 10%, 20%, and 30%, the accuracy increases as the
number of iterations increases. Table 2 shows the number of samples that need
to be manually labeled as well as exercise classification accuracy for each iter-
ation. Only a few samples need to be manually labeled each iteration, which
meets the actual production requirements.

210 X. Li et al.

Table 2. The accuracy and manually labeled number of each iteration under different
initially labeled proportions. Nmanue: denotes the manually labeled number.

5% 10% 20% 30%
Accuracy | Npanual | Accuracy | Npyanuat | Accuracy | Npanual | Accuracy | Nyanual
1]0.875 53 0.901 36 0.933 18 0.942 28
2 | 0.906 39 0.938 18 0.942 14 0.956 19
310.925 48 0.945 61 0.945 27 0.958 20
410.936 27 0.953 46 0.956 23 0.965 13
510.943 18 0.957 24 0.962 10 0.973 06
Initial labeling rate = 5% Initial labeling rate = 10%
1.00 1.00
0.95 0.95 ISy T -
A= - AT
g 0.90 /—”/ g 0.90 e
& e g
0.85 0.85
0.80 0.80
1 2 3 4 5 1 2 3 4 5
Iterations Iterations
(a) Initially labeled proportion = 5%. (b) Initially labeled proportion = 10%.
Initial labeling rate = 20% Initial labeling rate = 30%
1.00 1.00
095 JPU— — e 0951 == e A
§ 0.90 § 0.90
2 %
0.85 085
0.80 0.80
1 2 3 a4] 1 2 -] 4 5
terations Iterations
(c) Initially labeled proportion = 20%. (d) Initially labeled proportion = 30%.

Fig. 3. The improved algorithm classification accuracy of different initially labeled
proportions.

Moreover, we compare our work with the Co-Forest algorithm and another
ensemble learning algorithm. Table 3 shows the comparison of the accuracy
of three algorithms under different initially labeled proportions. As can be seen
from the Fig. 4, the improved semi-supervised algorithm has the highest accuracy
among the three methods in each initially labeled proportion. The fewer labeled
samples, the more obvious the advantages of the proposed algorithm.

XSS Attack Detection Model

Table 3. Algorithm classification accuracy comparison.

211

Labeled proportion | Improved algorithm | Co-Forest | Ensemble Bayesian Network
5% 94.3% 88.2% 57.6%
10% 95.7% 92.3% 75.7%
20% 96.5% 94.0% 68.9%
30% 97.3% 95.2% 77.5%
Algorithm classification accuracy comparison
1.00
———————— -
_______________ W= ————
0954 seem==="" = [—@———mmmmmm = -0
- -7
0.90 - =7
P
0.85
3 0.80 -
e
g -
g 075 Rl Ny -7
;l’ -‘h-.""- ,””
0.70 Y e
'
!
0.65 J
/ -~ Improved-Algorithm
0604)/ -®- Co-Forest
* —+- Ensemble Bayesian Network
0.55 T T T T T T
0.05 0.10 0.15 0.20 0.25 0.30

Initially labeled proportion

Fig. 4. Algorithm classification accuracy comparison.

Although all of the methods use ensemble learning, the ensemble Bayesian
network performs worst in low labeling rates. That is because it does not apply
semi-supervised learning to gain more knowledge from limited data, though it
actually performs well when learning a fully labeled data set with the classifica-
tion accuracy of 0.96. In the comparison of two semi-supervised algorithms, the
improved one takes the importance of margin samples into account and rectifies
mislabeled samples, thereby improving the performance of our classifier.

In general, applying the proposed algorithm to XSS detection has high accu-
racy and requires little manpower to label the data, proved to have high appli-

cation value.

212 X. Li et al.

6 Conclusion

This paper developed a novel classification model for automatically detect-
ing malevolent URL request with an improved semi-supervised algorithm. To
improve the classification accuracy of semi-supervised algorithm, we introduced
the weighted purity of edge samples to address the problem of accumulating
mislabeled data, and an excess ratio is taken into account for the overfitting
problem. In addition, we collected real network traffic in the CERNET and fea-
sible XSS attacks that had caused loss in history for training, achieving practical
value of real-world scenario. The experiment showed that our method exceeded a
well-known semi-supervised method Co-forest and another competitive ensemble
learning method.

In future work, more precise features and the semantic features of the attack
can be analyzed and they will greatly improve the universalism of the detection.
Furthermore, the proposed method can only detect the evil URLs with XSS
attack, and more malicious behaviors in URLs will be taken into consideration,
such as code injection, filename attack and so on.

References

1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, pp. 92-100 (1998)

2. Cui, B., He, S., Yao, X., Shi, P.: Malicious URL detection with feature extraction
based on machine learning. Int. J. High Perform. Comput. Networking 12(2), 166—
178 (2018)

3. Dima, B., Sarit, Y.: The state of web application vulnerabilities in 2019.
https://www.imperva.com/blog/the-state-of-vulnerabilities-in-2019/. Accessed 5
Mar 2020

4. DP, KF: Xssed archive. http://www.xssed.com/archive. Accessed 5 Mar 2020

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD 96, 226-231 (1996)

6. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74-94 (1990)

7. Gu, S., Jin, Y.: Multi-train: a semi-supervised heterogeneous ensemble classifier.
Neurocomputing 249, 202-211 (2017)

8. Hall, M.A.: Correlation-based feature selection for machine learning (1999)

9. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the
combination of knowledge and statistical data. Mach. Learn. 20(3), 197-243 (1995)

10. Joshi, A., Lloyd, L., Westin, P., Seethapathy, S.: Using lexical features for malicious
URL detection-a machine learning approach. arXiv preprint arXiv:1910.06277
(2019)

11. Li, M., Zhou, Z.H.: Improve computer-aided diagnosis with machine learning tech-
niques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 37(6), 1088-1098 (2007)

12. Liu, R., Verbi¢, G., Ma, J.: A new dynamic security assessment framework based on
semi-supervised learning and data editing. Electr. Power Syst. Res. 172, 221-229
(2019)

13. Liu, Z., Gao, Z., Li, X.: Co-training method based on margin sample addition.
Chin. J. Sci. Instrum. 39(3), 45-53 (2018)

https://www.imperva.com/blog/the-state-of-vulnerabilities-in-2019/
http://www.xssed.com/archive
http://arxiv.org/abs/1910.06277

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

XSS Attack Detection Model 213

Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9,
2579-2605 (2008)

Mereani, F.A., Howe, J.M.: Detecting cross-site scripting attacks using machine
learning. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.)
AMLTA 2018. AISC, vol. 723, pp. 200-210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74690-6-20

Mokbal, F.M.M., Dan, W., Imran, A., Jiuchuan, L., Akhtar, F., Xiaoxi, W.:
MLPXSS: an integrated XSS-based attack detection scheme in web applications
using multilayer perceptron technique. IEEE Access 7, 100567—100580 (2019)
OWASP, T.: Top 10-2017. The Ten Most Critical Web Application Security Risks.
OWASP™ Foundation. The free and open software security community (2017).
https://www.owasp.org/index.php/Top-10-2017_Top_10

Raman, P.: JaSPIn: JavaScript based Anomaly Detection of Cross-site scripting
attacks. Ph.D. thesis, Carleton University (2008)

Rodriguez, G., Torres, J., Flores, P., Benavides, E.: Cross-site scripting (XSS)
attacks and mitigation: a survey. Comput. Networks 106960 (2019). https://doi.
org/10.1016/j.comnet.2019.106960

Sahoo, D., Liu, C., Hoi, S.C.H.: Malicious URL detection using machine learning;:
a survey. CoRR abs/1701.07179 (2017). http://arxiv.org/abs/1701.07179
Tingting, L., Jia, L.: Improved Naive Bayes self-training algorithm based on
weighted k-nearest neighbor. J. Wuhan Univ. (Nat. Sci. Ed.) (2019)
Vinayakumar, R., Soman, K., Poornachandran, P., Mohan, V.S.; Kumar, A.D.:
Scalenet: scalable and hybrid framework for cyber threat situational awareness
based on DNS, URL, and email data analysis. J. Cyber Secur. Mobil. 8(2), 189—
240 (2019)

Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques with java implementations. ACM SIGMOD Record 31(1), 76-77 (2002)
Xiang, S., Ye, X., Xia, J., Wu, J., Chen, Y., Liu, S.: Interactive correction of
mislabeled training data. In: 2019 IEEE Conference on Visual Analytics Science
and Technology (VAST), pp. 57-68 (2019)

Yang, J., Yang, P., Jin, X., Ma, Q.: Multi-classification for malicious URL based on
improved semi-supervised algorithm. In: 2017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 143-150. IEEE (2017)
Yang, P.: A Study on Real-time Detection of URL Attack Behavior Based on
Machine Learning. Master’s thesis, Beijing University of Posts and Telecommuni-
cations (2018)

Yang, W., Zuo, W., Cui, B.: Detecting malicious URLs via a keyword-based convo-
lutional gated-recurrent-unit neural network. IEEE Access 7, 29891-29900 (2019)
Zhou, Y., Wang, P.: An ensemble learning approach for XSS attack detection with
domain knowledge and threat intelligence. Comput. Secur. 82, 261-269 (2019)
Zhou, Z., Qiao, Y., Zhu, L., Guan, J., Liu, Y., Xu, C.: Differential privacy-
guaranteed trajectory community identification over vehicle ad-hoc networks.
Internet Technol. Lett. 1(3), 9 (2018)

Zhou, Z., Xu, C., Kuang, X., Zhang, T., Sun, L.: An efficient and agile spatio-
temporal route mutation moving target defense mechanism. In: ICC 2019-2019
IEEE International Conference on Communications (ICC), pp. 1-6. IEEE (2019)
Zhou, Z.H.: Disagreement-based semi-supervised learning. Acta Automatica Sinica
39(11), 1871-1878 (2013)

Zhou, Z.H., Li, M.: Tri-training: Exploiting unlabeled data using three classifiers.
IEEE Trans. Knowl. Data Eng. 17(11), 1529-1541 (2005)

https://doi.org/10.1007/978-3-319-74690-6_20
https://doi.org/10.1007/978-3-319-74690-6_20
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://doi.org/10.1016/j.comnet.2019.106960
https://doi.org/10.1016/j.comnet.2019.106960
http://arxiv.org/abs/1701.07179

	XSS Attack Detection Model Based on Semi-supervised Learning Algorithm with Weighted Neighbor Purity
	1 Introduction
	2 Related Work
	2.1 Research on URL Attack Detection with Machine Learning
	2.2 Research on Semi-supervised Algorithm

	3 XSS Attack Detection Model Based on Improved Semi-supervised Learning
	3.1 URL Processing Procedure
	3.2 Improved Semi-supervised Learning
	3.3 Detection with Real-World Attacks

	4 Improved Semi-supervised Algorithm
	4.1 Solution for Overfitting
	4.2 Rectification for Mislabeled Data

	5 Experiment
	5.1 Dataset
	5.2 Feature Selection
	5.3 Training Parameters
	5.4 Experiment Result

	6 Conclusion
	References

