
Testing and Evaluating a Security-Aware
Pub and Sub Protocol in a Fog-Driven

IoT Environment

Sabrina Sicari1(B), Alessandra Rizzardi1, Luigi Alfredo Grieco2,
and Alberto Coen-Porisini1

1 Dipartimento di Scienze Teoriche e Applicate, Universitàdegli Studi dell’Insubria,
Via O. Rossi 9 - 21100, Varese, Italy

{sabrina.sicari,alessandra.rizzardi,alberto.coenporisini}@uninsubria.it
2 Department of Electrical and Information Engineering, Politecnico di Bari, Via

Orabona, 4 - 70125, Bari, Italy
alfredo.grieco@poliba.it

Abstract. The continuous spreading of innovative applications and ser-
vices, based on the emerging Internet of Things (IoT) paradigm, leads
to the need of even more efficient network architectures/infrastructures,
in order to support the huge amount of information to be transmitted
in real-time. Hence, new protocols and mechanisms must be conceived
to allow the IoT network to be more reactive towards environmental
changes and in promptly satisfying the IoT users’ requests. Aiming at
dealing with the emerged issues, the paper presents an efficient IoT plat-
form, which, thanks to fog computing principles, acts as a middleware
layer between data producers and consumers; it adopts a security-aware
publish&subscribe protocol, based on MQTT, coupled with a network of
brokers, for efficiently sharing the processed information with end-users.
Transmitted data are kept secure under an enforcement framework based
on sticky policies. A test campaign is conducted on a prototypical imple-
mentation of the just mentioned platform, for preliminary evaluating its
efficiency, in terms of computing effort and latency.

Keywords: Internet of Things · Fog computing · Security · Testing ·
Publish&Subscribe

1 Introduction

The diffusion of Internet of Things (IoT) technologies and applications is ever
increasing in a large variety of application’s domains, ranging from smart build-
ings, e-health, smart agriculture, industry 4.0, military services, and so on. Such
a continuous spreading of the IoT paradigm has a great impact on the net-
work’s infrastructure, which must be able to efficiently manage the huge amount
of data, continuously provided by IoT devices. Note that heterogeneous tech-
nologies are involved, such as Wireless Sensor Networks (WSN), RFID, NFC,
c© Springer Nature Switzerland AG 2020
L. A. Grieco et al. (Eds.): ADHOC-NOW 2020, LNCS 12338, pp. 183–197, 2020.
https://doi.org/10.1007/978-3-030-61746-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61746-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-61746-2_14

184 S. Sicari et al.

actuators, and they communicate by means of different standards and protocols
(e.g., MQTT, CoAP, ZigBee, BLE, 6LoWPAN). Hence, two main issues natu-
rally emerge: scalability and interoperability. To cope with such problems, many
architectures have been proposed in literature in the last years, some of them
with a certain distributed nature, other ones semi-centralized, often operating
with a cloud [23]. Most of them are conceived as middleware layers or gateways,
able to directly interact with IoT devices, and to transmit data to proper servers
or clouds, for completing the processing and sharing tasks with the interested
parties.

What does not emerge from such approaches is how much such architectures
are distributed, in terms of coverage area, number of managed sources, amount
of data processed, possible thresholds, and so on. In fact, often the middleware
or the gateways are mentioned as single entities, which presumably interact
with other similar ones, in a not so clear way. Hence, little attention has been
paid, until now, to how to decentralize as much as possible all the network’s
components (e.g., the middleware’s or gateways’ modules) and tasks, in order to
cover a wider area and make the IoT environment both more pervasive, reliable
and powerful.

Following a fog-driven approach [3] should help in facing the raised chal-
lenges. In fact, fog computing is pursuing a decentralized networking and com-
puting infrastructure, where data, processing tasks, storage and applications are
distributed in an efficient manner towards the edge of the network, in an interme-
diate layer (e.g., a middleware), which is situated between the data sources and
a cloud [9]. Fog computing is promoted by the OpenFog Consortium1, which
encourages many initiatives all over the world about its diffusion in the IoT
applications.

In such a perspective, the present paper describes how fog computing prin-
ciples are integrated within a security and privacy-aware IoT-based middleware
platform, named NetwOrked Smart object (NOS) [20], which adopts a pub-
lish&subscribe protocol, based on MQTT, for disseminating information. Such
an architecture has been chosen for two main reasons. On the one hand, the
authors own an already existing and running test-bed, which allows to promptly
carry out an extensive performance analysis. On the other hand, NOS is already
integrated with some relevant security functionalities, which will be described
later in the paper. Note that more than one NOS is expected to simultaneously
run within the same IoT network. As a consequence, a first fog layer includes the
network of such NOSs. Instead, a second fog layer includes a network of brokers,
whose role is supporting NOSs in efficiently share the acquired and processed
data towards the interested end-users. A scheme of the envisioned infrastructure
is sketched in Fig. 1.

The advantages of the just presented vision are the following: (i) avoiding
single points of failure, thanks to the presence of multiple distributed NOSs and
brokers; (ii) reducing the amount of data transmitted to a central entity, which
could represent a sort of bottleneck for the IoT network (e.g., a single NOS or

1 https://www.openfogconsortium.org/.

https://www.openfogconsortium.org/

Testing and Evaluating a Security-Aware Pub&Sub Protocol 185

Fig. 1. IoT System composed by a dual fog layer, including multiple NOSs and brokers

a single broker); (iii) reducing the delays of information retrieval, since data
are closer to the final consumers, due to the highly distributed nature of the
fog layers just defined. Such outcomes are hereby evaluated by means of a test
campaign, which is conducted on the just mentioned test-bed. The results reveal
that network’s latency is reduced, since a better balancing of the data load is
achieved.

The rest of the paper is organized as follows. Section 2 presents the state
of the art of existing IoT infrastructures and examines how they manage the
information dissemination task, which is the main focus of the proposed work.
Section 3 describes the background related to NOS’s platform and MQTT func-
tionalities, useful to clearly understand the role of the introduced fog layers.
Section 4.1 presents the proposed approach, which is then evaluated in Sect. 5.
Section 6 ends the paper and draws some hints for future work.

2 Related Work

The IoT environment proposed in this work envisions the coupling of fog com-
puting paradigm and secure mechanisms for data sharing via MQTT protocol;
the main purposes of the adopted network infrastructure have been just clar-
ified in Sect. 1. Hereby, some related papers are described, trying to highlight
their differences and weaknesses with respect to the work analyzed in the next
sections.

With the final aim of improving the quality of service (QoS), the authors, in
[14], present EMMA, an edge-enabled publish&subscribe middleware; the main
weaknesses of such an approach is that it requires a controller and a broker
that acts as a server for the client brokers integrated into the gateways, thus
introducing a single point of failure into the network architecture.

186 S. Sicari et al.

The work in [4] proposes the adoption of a new kind of broker, named QEST,
which is able to bridge MQTT primitives and REST interfaces, in order to
ease machine-to-machine interactions. With respect to such an approach, the
target of the paper proposed hereby is a more heterogeneous and distributed
IoT system, not confined to the direct communications among IoT devices, but
where interactions among the different involved parties are filtered and mediated
by a middleware layer, which is able to perform processing and security tasks.

[22] evaluates the performance of an edge-switch, which implements some
basic MQTT broker functionalities, in a Software-Defined Networking (SDN)
based system. How the different edge-switches cooperate is not clear as well as
it is worth to remark that SDN still presents some centralized features.

Security and privacy requirements are not taken into account by the afore-
mentioned solutions. Instead, works which address such issues (e.g., by means
of the adoption of enforcement policies) and which make use of MQTT protocol
[10,11,15], are based on a centralized broker, which is the obstacle the authors
want to overcome in this work.

Concerning fog computing, many solutions are currently inspired to smart
health scenarios [8,13,21], or to the Internet of Vehicles (IoV) [1,7], or even to
attacks’ recognition [6,19]. Despite such approaches deal with end-to-end secure
communications, authentication and authorization, a little focus is paid on how
information are effectively shared once acquired by the IoT platform.

3 IoT Platform and Information Sharing

In this section, NOS’s platform components and interactions are detailed; then,
the main MQTT functionalities are explained, in order to clarify the data flow
management of the envisioned IoT infrastructure.

Two main entities are typically included in an IoT system: (i) the nodes,
conceived as heterogeneous data sources (e.g., WSN, RFID, NFC, actuators,
etc.) which send data to the IoT platform; (ii) the users, who interact with the
IoT system through services making use of such IoT-generated data, typically
accessing them by means of a mobile device (e.g., smartphone, tablet) connected
to the Internet (e.g., through WiFi, 4G, or Bluetooth technologies). NOSs are
conceived as powerful smart devices, able to manage such entities.

NOSs and the data sources use RESTful interfaces, usually based on the
HTTP or CoAP protocols, to communicate. Such interfaces are defined depend-
ing on the kind of IoT device. In this way, it is possible to collect the data
from the IoT devices and to perform sources’ registration. In fact, NOSs deal
both with registered and non-registered sources. The registration is not manda-
tory, but it provides various advantages in terms of security, since registered
sources may specify an encryption scheme for their interactions with NOSs, thus
increasing the level of protection of their communications (encryption keys’ dis-
tribution is made by the algorithms presented in [16]). The information related
to the registered sources are put in the storage unit, named Sources. Instead, for
each incoming data, both from registered and non-registered sources, the follow-
ing information are gathered: (i) the kind of data source, which describes the

Testing and Evaluating a Security-Aware Pub&Sub Protocol 187

type of node; (ii) the communication mode, that is, the way in which the data
are collected (e.g., discrete or streaming communication); (iii) the data schema,
which represents the content type (e.g., number, text) and the format of the
received data (since heterogeneous IoT devices may be connected); (iv) the data
itself; (v) the reception timestamp. Hence, also non-registered sources are known
to the system; the main difference with respect to the registered ones, is that
non-registered sources does not agree on an encryption schema with NOSs to
protect their transmitted data.

Fig. 2. Scheme of NOS architecture

Since the received data are of different types and formats, NOSs initially put
them in the Raw Data storage unit. In such a collection, data are periodically
processed, in a batch way, by the Data Normalization and Analyzers phases,

188 S. Sicari et al.

in order to obtain a uniform representation and add useful metadata regarding
the security (i.e., level of confidentiality, integrity, privacy and robustness of the
authentication mechanism) and data quality (i.e., level of accuracy, precision,
timeliness and completeness) assessment. Such an assessment is based on a set
of rules stored in a proper format in another storage unit, named Config, and
are detailed in [20]; it allows users who access the IoT data to directly filter by
themselves the data processed by NOSs, according to their personal preferences.
Figure 2 sketches the NOS’s components introduced hereby.

Moreover, NOS offers the following relevant security related functionalities:

– A set of algorithms, as just mentioned, for data quality and security assess-
ment, which are able to perform an automatic evaluation of the information
by inferring to the data sources behavior [20]

– Two different key management systems by Dini et al. [5] and Di Pietro
et al. [12], which are adopted for protecting the communications among NOSs
and data producers/consumers; note that one of them must be chosen (please
refer to [16] for further details)

– An enforcement framework, which is based on sticky policies; it provides
a set of general-purpose rules, aimed at regulating the access to the IoT
resources and controlling the actions performed by NOSs, in order to react
towards possible violation attempts [18]; this implies the presence of a Trusted
Authority, as shown in Fig. 2. Note that the Trusted Authority could represent
a bottleneck in the system; hence, the presence of multiple coordinated trusted
authorities is encouraged

– The enforcement mechanism, just presented, has been integrated with AUPS
(AUthenticated Publish&Subscribe system), a protocol able to securely man-
age publications and subscriptions through Message Queue Telemetry Trans-
port (MQTT)2 interactions, thus protecting the information sharing with
data consumers [15].

Why MQTT has been chosen as the protocol adopted for data dissemina-
tion by the NOS platform? Firstly, because MQTT is lightweight event- and
message-oriented, and allows the devices to asynchronously communicate across
constrained networks to reach remote systems, as happens in typical IoT scenar-
ios. Such a protocol employs a publish&subscribe pattern, where a central broker
acts as intermediary among the entities that produce and consume the messages.
All the communications among brokers and producers/consumers happen via a
publish&subscribe mechanism, based on the topic concept. A topic is a mean for
representing the resources (i.e., the information) exchanged within the system.
Topics are used by data producers for publishing messages and by data con-
sumers for subscribing to the updates from other producers. A topic is assigned
by a proper NOS’ module to each processed data for regulating the information
sharing itself.

2 OASIS, MQTT v5 protocol specification, https://docs.oasis-open.org/mqtt/mqtt/
v5.0/mqtt-v5.0.html.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Testing and Evaluating a Security-Aware Pub&Sub Protocol 189

Concerning the MQTT-based AUPS mechanism, it was conceived with the
presence of only one broker. Such a choice, initially dictated for simplicity, reveals
now to be troublesome, due to the single point of failure and the bottleneck that
the broker represents in the current NOS architecture. From such a considera-
tion emerges the proposal to include a network of brokers in the IoT platform.
However, such brokers must be properly managed and their tasks must be some-
how coordinated, in order to really improve the IoT network’s performance. No
studies have been specifically conducted in the literature on the performance of
the broker involved in an IoT system, as revealed in Sect. 2. Such an aspect will
be clarified in Sect. 4.1.

4 Broker’s Network

A dual fog layer, composed by NOSs and brokers, respectively, is setup within
the IoT network, to reach the following requirements: (i) better balancing the
load of the data to be shared with end-users on different brokers; (ii) reducing
the delays of information retrieval from the time when information are acquired
by NOS, to the time when the same information is received by the end-user; (iii)
working in a location-awareness way; (iv) giving more robustness to the whole
IoT system, avoiding single points of failure and bottlenecks. These are the main
features, characterizing the conceived solution:

– A NOS can be connected to more than one broker and vice versa; hence, a
many-to-many relationship can be established among NOSs and brokers

– NOSs and brokers communicate among themselves by means of MQTT proto-
col, via the MQTT client installed on NOS; such interactions are kept private
thanks to the adoption of AUPS, as said in Sect. 3

– All the other communications taking place within the presented IoT system
are security-aware, because: (i) users/applications receive ciphered data under
specific permissions, defined at the subscription phase and implemented as
sticky policies [18]; (ii) NOSs, if needed, exchange information among them-
selves on a HTTPS/SSL channel; (iii) the brokers need not to communicate
among each other (in this sense, they are agnostic of each other), since NOSs
both supervision on how information is shared and coordinate the brokers’
activities

– NOSs and brokers are fully decoupled, in the sense that brokers can also be
owned by different organizations/companies, which are interested in exploit-
ing the functionalities made available by NOS platform, to disclose some
relevant information to their customers. As a consequence, an organiza-
tion/company can deploy its own broker and connect it to NOSs; using the
MQTT protocol, no issue in terms of interoperability arises. For such a reason,
the brokers’ instances have not been directly installed within NOSs.

Therefore, a clear separation is created between data acquisition, performed
by NOSs (along with processing tasks), and data sharing with end-users, per-
formed by brokers. Summarizing, the authors decided to not integrate one bro-
ker for each NOS for three reasons: (i) preserve NOSs’ power consumption;

190 S. Sicari et al.

(ii) enabling the participation of third-party brokers; (iii) there’s no guarantee
that the number of NOSs must be equal to that of brokers. In fact, the proportion
between the number of NOSs and brokers within the IoT network should depend
on the features of the specific application domain (e.g., number of managed top-
ics, kinds of data producers and consumers involved). In the next section, the
interactions among NOSs and brokers will be explained.

4.1 Brokers’ Management

Suppose that the different NOSs and brokers involved in the IoT system are
identified by NOS1, NOS2, ...NOSn and br1, br2, ...brm, respectively. When
a user or an application requires a service/data provided by the IoT system,
a session is opened. During such a session, the user/application, identified by
usapp1, usapp2, ...usappj , can obtain the information provided by a NOS, taking
into account the accessible resources. The resources can be accessed on the basis
of the content of the sticky policies Pdata1 , Pdata2 , ...Pdatak

, defined within the
NOS enforcement framework, in the format specified in [18]. An advantage of
such an approach is that the brokers can manage the incoming information in
compliance with the associated policies, regardless of the NOSs with which they
interact, since policies travel along with the corresponding data. However, the
brokers must interact with NOSs in order to establish which subscriptions to
accept or deny. Hence, brokers do not have a total control on the information
disclosure.

At the initial state of the IoT network, NOSs and brokers may be associated
in such a way that each broker has at least one connection to a NOS. Moreover,
each broker manages the topics related to the data, which are further managed
by the connected NOS. This depend on the kind of data transmitted by the
sources connected to that NOS. But, what happens when a data acquired by
NOS1, assigned to a certain topic t, and transmitted by NOS1 itself to the bro-
ker br1, is required (due to another subscription) by a user/application usapp2,
connected to broker br2, which does not receive any data under t? A mechanism
for efficiently satisfying such a required information’s exchange must be put in
action. The simplest solution would be a sort of flooding approach: the broker
br1 notifies all the other brokers brk of the new published data, so as to make
it available in the whole IoT area, covered by the brokers; or, as an alternative,
each NOS notifies all the brokers belonging to the IoT network about all the
managed information. Clearly, such solutions are power-consuming and redun-
dant, since it can be assumed that the data associated to a certain topic t are not
required at all points in the network every time. Hence, a more viable approach
follows the steps listed hereby, which also summarized in Fig. 3.

When a user or application usappi subscribes to a certain topic t1 on a certain
broker (e.g., br1), the broker itself inform the connected NOS (e.g., NOS1), which
performs such tasks:

1. NOS1 checks if usappi is authorized to access the data published under the
topic t1 (i.e., the check is executed by contacting the Trusted Authority, which

Testing and Evaluating a Security-Aware Pub&Sub Protocol 191

is able to verify the compliance of the sticky policy associated to the data
under topic t1 with the attributes owned by the requester)

2. If yes, br1 is enabled to notify usappi about the information related to topic
t1; if no, the requested resource cannot be disclosed

3. However, NOS1 has to check if it directly manages the data assigned to topic
t1; such a check is performed by using a proper table, named topicsMap,
which is stored in the Config collection (see Sect. 3) and contains an entry for
each couple topic-NOS in the form (ti, NOSi)
(a) If the couple (t1, NOS1) exists, the data acquired by NOS1 and published

under the topic t1 will be notified by br1 to the authorized usappi, but
what happens if other NOSs process information related to the topic t1,
instead of NOS1?

(b) In such a case or in case the entry (t1, NOS1) is not found in NOS1, then
NOS1 itself must find the couple or the couples (t1, NOSi), where i is not
equal to 1, and warn the selectedNOSi (for example,NOS2 in Fig. 3) about
the fact that it must begin to publish the data related to the topic t1 towards
br1. Finally, topicsMap must be updated accordingly: as shown in the exam-
ple of Fig. 3, the couple (t1, NOS2) is added to the topicsMap on all NOSs;
note that such an update is notified to all NOSs for future requests via the
proper secure MQTT dedicated channel [17], in order not to compromise
the topicsMap’s content.

Fig. 3. Scheme of NOSs and brokers interactions

192 S. Sicari et al.

5 Performance Analysis

A test campaign is hereby proposed, in order to preliminary asses the feasibil-
ity of the approach presented in Sect. 4.1. Firstly, the employed hardware and
software tools are introduced. Secondly, obtained results are discussed.

5.1 Test-Bed Details

A test-bed, whose software is openly accessible at https://bitbucket.org/
alessandrarizzardi/nos.git, is setup to practically perform an analysis about com-
puting effort and latency metrics. The testing environment, sketched in Fig. 4, is
composed by four instances of NOS (NOS1, NOS2, NOS3 and NOS4), running
on four Raspberry Pi platforms, and by a variable number of brokers (from
two to ten, namely br1, ..., br10), and data sources, which virtually run on
separated virtual machines, installed on a personal computer. The sources use
measures from real-world smart home test-bed3, acquired by means of installed
sensors that collect electricity data every minute for the entire home [2]. In
particular, data are gathered from smart meter number 2 of Home A, which
include, among the others, electricity consumption data of: kitchen lights, bed-
room lights, duct heater HRV, and HRV furnace, published under the topics
homeA/lights/kitchen (t1), homeA/lights/bedroom (t2), homeA/HRV/ductheater
(t3), and homeA/HRV/furnace (t4), and so on. Wi-Fi connections are adopted
for communications among the data sources, the MQTT brokers, and NOSs (i.e.,
the Raspberry Pi). NOSs modules interact among themselves through RESTful
interfaces; such a feature allows the NOSs’ administrators to add new mod-
ules or modify the existing ones at runtime, since they work in a parallel and
non-blocking manner. Moreover, the non-relational nature of the adopted Mon-
goDB database allows also the data model to dynamically evolve over the time.
Node.JS 4 platform has been used for developing NOSs’ core operations, Mon-
goDB5 has been adopted for the data management, and Mosquitto6 has been
chosen for realizing the open-source MQTT broker. Information is exchanged in
JSON format. More details about the implementation can be found in [20].

The parameters used for simulations are summarized in Table 1. The storage
overhead will be not investigated in this work, because it has just been deeply
analyzed in previous works [17,18]; it is worth to remark NOSs support a non-
persistent storage of IoT-generated data, since Raw Data and Normalized Data
collections are emptied as the data are transmitted to the brokers. The same is
for the brokers, which do not need to persistently store IoT-data to continue their
activity. If the IoT system needs to persistently store the information obtained
from the IoT network, a proper infrastructure (e.g., a cloud) must be involved.

3 http://traces.cs.umass.edu/index.php/Smart/Smart.
4 http://nodejs.org/.
5 http://www.mongodb.org/.
6 Mosquitto broker, http://mosquitto.org.

https://bitbucket.org/alessandrarizzardi/nos.git
https://bitbucket.org/alessandrarizzardi/nos.git
http://traces.cs.umass.edu/index.php/Smart/Smart
http://nodejs.org/
http://www.mongodb.org/
http://mosquitto.org

Testing and Evaluating a Security-Aware Pub&Sub Protocol 193

Fig. 4. Test-bed

5.2 Results

Figures 5 and 6 show the average distribution of the CPU load on the analyzed
NOSs and brokers, respectively, in three different situations: (i) the IoT system
adopting only one broker (i.e., br1); (ii) running five brokers; (iii) running ten
brokers. Such a metric is important for investigating about the computational
resources’ consumption of the tasks performed at the middleware IoT layer. The
simulated scenario is as follows: (i) sources send to NOSs data related to the
aforementioned topics at a rate of 10pck/sec; while data requests (i.e., by hypo-
thetical users) are simulated as well, at the same rate, and imply the notification
from the brokers; (ii) at the initial stage, topic ti is only associated with the topic
ti, but such a setting will vary during the system’s running depending on the

Table 1. Test-bed parameters

Parameter Value

NOSs 4

Brokers [1, 10]

Sources 4

Topics 10

Data generation rate 10 pck/s

Data request rate 10 req/s

Observation time 24 h

194 S. Sicari et al.

Fig. 5. Whiskers-box diagram: average CPU load on NOSs

random users’ requests; (iii) in fact, when an external entity requires, for exam-
ple, a subscription to t1 towards br2, the procedure presented in Sect. 4.1 must
be executed.

The obtained results suggest that having more brokers affects, in a relevant
way, the performance of the whole IoT system. Instead, the CPU load on NOSs
is approximately constant; in the three scenarios, such a behavior is due to the
fact that, NOSs process the same amount of data, but, even more important is to
note that the resources required by NOSs to manage the topicsMap is negligible.
Instead, the computing effort on brokers decreases, since they share the data

Fig. 6. Whiskers-box diagram: average CPU load on brokers

Testing and Evaluating a Security-Aware Pub&Sub Protocol 195

load, balancing the requests to be managed. Similar considerations can be made
for the latency. In fact, the average time required by data from their transmission
towards NOS to their reception by the subscribed entities is reduced in the three
scenarios, as shown in Fig. 7. This means that, in presence of more brokers, the
IoT system is able to satisfy the users’ requests in a shorter time, thus improving
the efficiency of the whole application.

Summarizing, the presence of more brokers better balances the data load,
generated by the IoT system, without demanding all the information sharing
task to one centralized broker, than the previous version of the NOS platform.

Fig. 7. Whiskers-box diagram: average end-to-end data latency

6 Conclusion

The paper has presented a security-aware fog-driven IoT architecture, composed
by a dual fog layer, involving smart powerful devices (i.e., NOSs), responsible of
acquiring and processing IoT-generated data, and a network of brokers, respon-
sible for disseminating such elaborated data. Hence, MQTT protocol has been
adopted, mainly due to its lightweight primitives, which fit the constraints of
IoT devices. The paper has also provided a test campaign with the final aim
to assess the advantages brought by the interactions among NOSs and brokers,
which are conceived as fully decoupled. The outcomes revealed that network’s
latency is reduced, since a better balancing of the data load is achieved. Surely,
a deeper analysis will be conducted in the near future, taking into account dif-
ferent applications scenarios and the possibility of connecting real IoT-devices

196 S. Sicari et al.

as data sources, in order to conduct analysis on the power consumption of both
data producers and IoT platform. Moreover, different QoS (Quality of Service)
modes, related to the MQTT protocol, can be evaluated, in order to reveal how
they affect the system performance.

References

1. Arif, M., Wang, G., Balas, V.E.: Secure VANETs: trusted communication scheme
between vehicles and infrastructure based on fog computing. Stud. Inform. Control
27(2), 235–246 (2018)

2. Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht, J.: Smart*: an
open data set and tools for enabling research in sustainable homes. In: SustKDD,
August 111, 112 (2012)

3. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, pp. 13–16. ACM (2012)

4. Collina, M., Corazza, G.E., Vanelli-Coralli, A.: Introducing the QEST broker: scal-
ing the IoT by bridging MQTT and REST. In: IEEE 23rd International Sympo-
sium on Personal, Indoor and Mobile Radio Communications-(PIMRC), pp. 36–41
(2012)

5. Dini, G., Lopriore, L.: Key propagation in wireless sensor networks. Comput. Elect.
Eng. 41, 426–433 (2015)

6. Ionita, M.G., Patriciu, V.V.: Secure threat information exchange across the internet
of things for cyber defense in a fog computing environment. Inform. Econ. 20(3)
(2016)

7. Kang, J., Yu, R., Huang, X., Zhang, Y.: Privacy-preserved pseudonym scheme for
fog computing supported internet of vehicles. IEEE Trans. Intell. Transp. Syst.
19(8), 2627–2637 (2018)

8. Moosavi, S.R., et al.: End-to-end security scheme for mobility enabled healthcare
internet of things. Fut. Gener. Comput. Syst. 64, 108–124 (2016)

9. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos,
P.A.: A comprehensive survey on fog computing: state-of-the-art and research chal-
lenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2017)

10. Neisse, R., Steri, G., Baldini, G.: Enforcement of security policy rules for the
internet of things. In: IEEE 10th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pp. 165–172 (2014)

11. Niruntasukrat, A., Issariyapat, C., Pongpaibool, P., Meesublak, K., Aiumsupucgul,
P., Panya, A.: Authorization mechanism for MQTT-based internet of things. In:
IEEE International Conference on Communications Workshops (ICC), pp. 290–295
(2016)

12. Pietro, R.D., Mancini, L., Jajodia, S.: Providing secrecy in key management pro-
tocols for large wireless sensors networks. Ad Hoc Networks 1(4), 455–468 (2003)

13. Rahmani, A.M., et al.: Exploiting smart e-health gateways at the edge of healthcare
internet-of-things: a fog computing approach. Fut. Gener. Comput. Syst. 78, 641–
658 (2018)

14. Rausch, T., Nastic, S., Dustdar, S.: EMMA: distributed QoS-aware MQTT mid-
dleware for edge computing applications. In: IEEE International Conference on
Cloud Engineering (IC2E), pp. 191–197 (2018)

Testing and Evaluating a Security-Aware Pub&Sub Protocol 197

15. Rizzardi, A., Sicari, S., Miorandi, D., Coen-Porisini, A.: AUPS: an open source
authenticated publish/subscribe system for the Internet of Things. Inf. Syst. 62,
29–41 (2016)

16. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Internet of Things: security
in the keys. In: 12th ACM International Symposium on QoS and Security for
Wireless and Mobile Networks, Malta, pp. 129–133, November 2016

17. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Dynamic policies in inter-
net of things: enforcement and synchronization. IEEE Internet Things J. 4(6),
2228–2238 (2017)

18. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Security towards the edge:
sticky policy enforcement for networked smart objects. Inf. Syst. 71, 78–89 (2017)

19. Sohal, A.S., Sandhu, R., Sood, S.K., Chang, V.: A cybersecurity framework to
identify malicious edge device in fog computing and cloud-of-things environments.
Comput. Secur. 74, 340–354 (2018)

20. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini, A.: A secure
and quality-aware prototypical architecture for the Internet of Things. Inf. Syst.
58, 43–55 (2016)

21. Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., Priyan, M.: Cen-
tralized fog computing security platform for IoT and cloud in healthcare system.
In: Exploring the Convergence of Big Data and the Internet of Things, pp. 141–154.
IGI Global (2018)

22. Xu, Y., Mahendran, V., Radhakrishnan, S.: Towards SDN-based fog computing:
MQTT broker virtualization for effective and reliable delivery. In: IEEE 8th Inter-
national Conference on Communication Systems and Networks (COMSNETS), pp.
1–6 (2016)

23. Yaqoob, I., et al.: Internet of things architecture: recent advances, taxonomy,
requirements, and open challenges. IEEE Wirel. Commun. 24(3), 10–16 (2017)

	Testing and Evaluating a Security-Aware Pub and Sub Protocol in a Fog-Driven IoT Environment
	1 Introduction
	2 Related Work
	3 IoT Platform and Information Sharing
	4 Broker's Network
	4.1 Brokers' Management

	5 Performance Analysis
	5.1 Test-Bed Details
	5.2 Results

	6 Conclusion
	References

