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Abstract We study a class of non-clamped dynamical problems for visco-elastic
materials, the contact condition is modeled by a normal compliance, with friction,
damage and heat exchange. The weak formulation leads to a general system defined
by a second-order quasi-variational evolution inequality on the displacement field
coupled with a nonlinear evolutional inequality on temperature field and a parabolic
variational inequality on the damage field. We present and establish an existence and
uniqueness result of different fields, by using general results on evolution variational
inequalities, with monotone operators and fixed point methods. Then, we present
a fully discrete numerical scheme of approximation and derive an error estimate.
Finally, various numerical computations are developed.

1 Introduction

Problems involving contact between deformable bodies abound in industry and
everyday life. For this reason, a considerable engineering and mathematical liter-
ature is devoted to dynamic and quasi-static frictional contact problems, including
mathematical modeling, mathematical analysis, numerical analysis and numerical
simulations. The study of contact problems for elastic–visco-elastic materials
within the mathematical analysis framework was introduced in the early reference
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works [5, 8–10]. In these works, numerous types of frictional contact models
with nonlinear visco-elastic or elasto-plastic materials were widely studied, in
the framework of linearized infinitesimal deformations, using abstract variational
inequalities, with monotonicity and convexity.

Further extensions to non-convex contact conditions with non-monotone and
possible multi-valued constitutive laws led to the active domain of non-smooth
mechanic within the framework of the so-called hemivariational inequalities, for
a mathematical as well as mechanical treatment, we refer to [11].

This paper is a continuation work of the results obtained in [3], p. 251. In [3],
the authors studied a problem for the quasi-static contact between an elastic–visco-
plastic body and an obstacle, the contact was clamped on some part of the boundary
and was frictionless, and it was defined by a normal compliance condition with
damage. An existence and uniqueness result on displacement and damage fields has
been established, and also some numerical approximations and simulations have
been presented.

In this work, we study a class of dynamic contact problems with normal
compliance condition and damage, with Coulomb’s friction and thermal effects, for
visco-elastic material. The novelty here is that we investigate a general long memory
material law, depending on time, on the temperature and the damage. Moreover, the
evolution of the temperature is described by a general nonlinear equation, involving
the gradient of temperature and the velocity of deformation, and the associated
boundary condition is defined by an inclusion of sub-differential type in a non-
convex framework. Also, the usual clamped condition has been deleted, so that
Korn’s inequality cannot be applied any more. The problem appears then semi-
coercive and strongly nonlinear due to the frictions. Semi-coercive problems were
first studied in [5] for Coulomb’s friction models, where the inertial term of the
dynamic process has been used in order to compensate the loss of coerciveness in
the a priori estimates. The variational formulation of the mechanical problem leads
to a new non-standard model of system defined by a second-order quasi-variational
inequality on the displacement field, coupled with one nonlinear inequality for the
temperature field and with a variational inequality on the damage field. Then, by
using classical results on evolution variational inequalities, with monotone operators
and adopting fixed point methods frequently used in [2], we prove an existence and
uniqueness of solution on the displacement, damage, and temperature fields.

The paper is organized as follows. In Section 2, we describe the mechanical prob-
lem and specify the assumptions on the data to derive the variational formulation,
and then we state our main existence and uniqueness result. In Section 3, we give the
proof of the claimed result. In Section 4, we introduce a fully discrete approximation
scheme and derive an order error estimate under solution regularity assumptions. In
Section 5, we present some numerical simulations in order to show the evolution
of deformation, of the Von Mise’s norm, of the temperature and the damage in the
body.
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2 The Contact Problem

In this section, we study a class of thermal contact problems with non-clamped
frictional normal compliance condition, for visco-elastic materials. We describe the
mechanical problems, list the assumptions on the data, and derive the corresponding
variational formulations. Then, we state an existence and uniqueness result on
displacement and temperature fields, which we will prove in the next section.

The physical setting is as follows. A visco-elastic body occupies a bounded
domain Ω ⊂ R

d (d = 2, 3) with a Lipschitz boundary Γ that is partitioned into
two disjoint measurable parts, ΓF and Γc. Let [0, T ] be the time interval of interest,
where T > 0. We assume that a volume force of density f 0 acts in Ω × (0, T ) and
that surface tractions of density f F apply on ΓF × (0, T ). The body may come in
contact with an obstacle, the foundation, over the potential contact surface ΓC . The
model of the contact is specified by a general sub-differential boundary condition,
where thermal effects may occur in the frictional contact with the foundation. Our
aim is to describe the dynamic evolution of the body.

Let us recall now some classical notations, see e.g. [5] for further details. We
denote by Sd the space of second-order symmetric tensors on R

d , while “·” and
| · | will represent the inner product and the Euclidean norm on Sd and R

d . Let ν

denote the unit outer normal on Γ . Everywhere in the sequel, the indices i and j

run from 1 to d, summation over repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of the independent variable. We also use the following notation:

H =
(
L2(Ω)

)d

, H = { σ = (σij ) | σij = σji ∈ L2(Ω), 1 ≤ i, j ≤ d},

H1 = { u ∈ H | ε(u) ∈ H }, H1 = { σ ∈ H | Div σ ∈ H }.

Here, ε : H1 −→ H and Div : H1 −→ H are the deformation and the divergence
operators, respectively, defined by

ε(u) = (εij (u)), εij (u) = 1

2
(ui,j + uj,i), Div σ = (σij,j ).

The spaces H , H, H1, and H1 are real Hilbert spaces endowed with the canonical
inner products given by

(u, v)H =
∫

Ω

uivi dx, (σ , τ )H =
∫

Ω

σij τij dx,

(u, v)H1 = (u, v)H +(ε(u), ε(v))H , (σ , τ )H1 = (σ , τ )H+(Div σ ,Div τ )H .
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We recall that C denotes the class of continuous functions; Cm, m ∈ N
∗ the set

of m times continuously differentiable functions; and Wm,p, m ∈ N, 1 ≤ p ≤ +∞
the classical Sobolev spaces.

Now, we consider a visco-elastic body which occupies a bounded domain Ω ⊂
Rd (d = 1, 2, 3) with a Lipschitz boundary Γ that is partitioned into two disjoint
measurable parts, ΓF and ΓC . Let [0, T ] be the time interval of interest, where
T > 0. We assume that a volume force of density f 0 acts in Ω × (0, T ) and that
surface tractions of density f F apply on ΓF ×(0, T ). The body may come in contact
with an obstacle, the foundation, over the potential contact surface ΓC , see figure
below.

ν

Γ
3

f
2Γ

1 Γ
2

0
Ω

f

The mathematical contact mechanics

meas(Γ1) = 0; Γ2 = ΓF ; Γ3 = ΓC ; f 2 = f F .

To continue, the mechanical problem is then formulated as follows.
Problem Q: Find a displacement field u : (0, T ) × Ω −→ R

d , a stress field
σ : (0, T ) × Ω −→ Sd , a temperature field θ : (0, T ) × Ω −→ R+, and a damage
field α : (0, T ) × Ω → R such that for a.e. t ∈ (0, T ):

{
σ (t) = A(t)ε(u̇(t)) + G(t)(ε(u(t)), α(t)) + ∫ t

0 B(t − s) (ε(u(s)), α(s)) ds

+Ce(t, θ(t)) in Ω;
(1)

ü(t) = Div σ (t) + f 0(t) in Ω; (2)

σ (t)ν = f F (t) on ΓF ; (3)

σν(t) = −pν(t, uν(t) − g(t)) on ΓC; (4)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|σ τ (t)| ≤ pτ (t, uν(t) − g(t)) :
|σ τ (t)| < pτ (t, uν(t) − g(t)) �⇒ u̇τ (t) = 0;
|σ τ (t)| = pτ (t, uν(t) − g(t)) �⇒ u̇τ (t) = −λ σ τ (t),

for some λ ≥ 0;

on ΓC; (5)

[α̇(t) − γ �α(t) − φd(σ (t), ε(u(t)), α(t))] (ξ − α(t)) ≥ 0 in Ω, ∀ξ ∈ [0, 1];
(6)

0 ≤ α(t) ≤ 1 in Ω; (7)

∂α

∂ν
(t) = 0 on Γ ; (8)

θ̇ (t) − div(Kc(t,∇θ(t))) = De(t, ε(u̇(t)), θ(t)) + q(t) in Ω; (9)

− Kc(t, x,∇θ(t, x)) ν := Ξ(t, x, θ(t, x)) ∈ ∂ϕ(t, x, θ(t, x)) a.e. x ∈ ΓC;
(10)

θ(t) = 0 on ΓF ; (11)

u(0) = u0; u̇(0) = v0; α(0) = α0; θ(0) = θ0 in Ω. (12)

Equation (1) is the Kelving Voigt’s long memory thermo-visco-elastic consti-
tutive law of the body including the influence of the damage variable. Here, σ

is the stress tensor, A denotes the viscosity operator with, A(t)τ = A(t, ·, τ )

is some function defined on Ω , and G is the elastic operator depending on the
linearized strain tensor ε(u) of infinitesimal deformations and on the damage α,
with G(t)(τ , α) = G(t, ·, τ , α) is some function defined on Ω . For example,

G(t)(τ , α) = G0(t)τ − α Cda(t) in Ω,

where G0(t)τ = G0(t, ·, τ ) is some time-depending elastic tensor function inde-
pendent on the damage, defined on Ω , and Cda(t) is some time-depending damage
tensor. The term B(t)(τ , α) = B(t, ·, τ , α) represents the relaxation tensor time
depending on the linearized strain tensor and the damage, defined on Ω . And the
last tensor Ce(t, θ) := Ce(t, ·, θ) denotes the thermal expansion tensor depending
on time and temperature, defined on Ω . For example,

Ce(t, θ) := −θ Cexp(t) in Ω,

where

Cexp(t) := (cij (t, ·))

is some time-depending expansion tensor defined onΩ , with cij ∈ L∞((0, T )×Ω).
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The model in (2) is the dynamic equation of motion where the mass density
� ≡ 1. Equation (3) is the traction boundary condition.

On the contact surface, the general relation (4) represents the normal compliance
contact condition, where σν denotes the normal stress, uν is the normal displace-
ment, g is the gap between the contact surface and the foundation, and pν is some
normal compliance function defined on (0, T ) × ΓC × R with the convention that
pν(t, r) = pν(t, ·, r) denotes some function defined on ΓC , for a.e. t ∈ (0, T ), for
all r ∈ R. The term uν − g represents, when it is positive, the penetration of the
surface asperities into the foundation.

For example, for a.e. t ∈ (0, T ),

pν(t, ·, r) = cν(t, ·) r+ on ΓC, ∀r ∈ R.

In this formula, the normal stress is proportional to the penetration, with some
positive coefficient cν defined on (0, T ) × ΓC , which is related to the hardness of
the foundation.

Equation (5) represents a general version of Coulomb’s dry friction law, where
σ τ is the tangential stress, pτ is the friction bound measuring the maximal frictional
resistance defined on (0, T ) × ΓC ×R, and u̇τ is the tangential velocity. Recall that
pτ (t, r) = pτ (t, ·, r) is some function defined on ΓC , for a.e. t ∈ (0, T ), for all
r ∈ R.

For example, for a.e. t ∈ (0, T ),

pτ (t, ·, r) = μτ (t, ·) cν(t, ·) r+ on ΓC, ∀r ∈ R,

where the friction bound is proportional to the normal stress with some positive
coefficient of friction μτ defined on (0, T ) × ΓC .

Following Frémond [6, 7], the damage function α represents the percentage of the
safe part or undamaged part, α = 1 means that the body is undamaged, and α = 0
says that the body is completely damaged. The evolution of the microscopic cracks
responsible for the damage is described by the parabolic differential inclusion (6) of
the damage function α satisfying 0 ≤ α ≤ 1, where γ is a positive constant and φd

is a given constitutive function which describes damage source in the system. The
inequality (6) means

α(t) = 1 �⇒ α̇(t) − γ �α(t) − φd(σ (t), ε(u(t)), α(t)) ≤ 0;

and

α(t) ∈ (0, 1) �⇒ α̇(t) − γ �α(t) − φd(σ (t), ε(u(t)), α(t)) = 0;

and

α(t) = 0 �⇒ α̇(t) − γ �α(t) − φd(σ (t), ε(u(t)), α(t)) ≥ 0.
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Equation (8) represents the homogeneous Neumann boundary condition for the
damage field, see e.g. [3], p. 241.

The differential equation (9) provides the evolution of the temperature field.
There Kc(t,∇θ) := Kc(t, ·,∇θ) is some nonlinear time-depending function of
the temperature gradient ∇θ , which is defined on Ω . For example, denote by

Kc(t, ·) := (kij (t, ·))

the thermal conductivity tensor defined on Ω , we could consider

Kc(t, ·,∇θ) = Kc(t, ·)∇θ.

In the second member, q(t) denotes the density of volume heat sources, whereas

De(t, ε(u̇(t)), θ(t)) := De(t, ·, ε(u̇(t)), θ(t))

is the deformation-viscosity heat, which is a nonlinear function defined on Ω and
which represents the heat generated by the velocity of deformation (viscosity) and
may depend on the temperature.

Example 1

De(t, ε(u̇(t)), θ(t)) = −Cexp(t) : ε(u̇(t)) = −cij (t, ·) εij (u̇(t)). (13)

Example 2

De(t, ε(u̇(t)), θ(t)) = −θ(t, ·) de(t, ·), (14)

with some coefficient de ∈ L∞((0, T ) × Ω.R+);

Example 3

De(t, ε(u̇(t)), θ(t)) = −Cexp(t) : ε(u̇(t)) − θ(t, ·) de(t, ·). (15)

By assuming the variation of θ(t) small enough, then the heat function
De(t, ε(u̇(t)), θ(t)) may be considered as a formula which is independent of
the temperature.

The associated temperature boundary condition is given by (10) and (11), where
Ξ and ϕ are some functions defined on (0, T ) × ΓC × R. Here,

∂ϕ(t, x, r) := ∂ϕ(t, x, ·)(r), ∀(t, x, r) ∈ (0, T ) × ΓC × R

denotes the sub-differential on the third variable of ϕ in the locally Lipschitz
framework.
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We recall that for a locally Lipschitz function G : R −→ R, at any point a ∈ R

and for any vector d ∈ R, we can define the following directional derivative with
respect to d:

limτ→0+
G(a + τd) − G(a)

τ
:= G0(a; d). (16)

We have for all a, d ∈ R, for all ξ ∈ ∂G(a):

G0(a; d) ≥ ξ d

and

|G0(a; d)| ≤ |G0(a)| × |d|, |ξ | ≤ |G0(a)|,

where

limh→0, h �=0
G(a + h) − G(a)

h
:= G0(a).

In the case where G is convex on R, we have

G0(a; d) =

⎧⎪⎪⎨
⎪⎪⎩

G′
r (a)d if d > 0

G′
l (a)d if d < 0

0 if d = 0,

and

G0(a) = max{G′
r (a),G′

l (a)},

where G′
r and G′

l denote the right side and left side derivatives, respectively.
In the sequel, for a.e. (t, x) ∈ (0, T )×Γc, for all (r, s) ∈ R

2, we use the notation

ϕ0(t, x, r; s) := [ϕ(t, x, ·)]0(r; s),

and

ϕ0(t, x, r) := [ϕ(t, x, ·)]0(r).

Taking the previous example for Kc, we have

Kc(t, x,∇θ) ν = kij (t, x)
∂ θ

∂ xj

νi .
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Let us consider, for example,

ϕ(t, x, r) := 1

2
ke(t, x)(r − θR(t, x))2, ∀(t, x, r) ∈ (0, T ) × ΓC × R, (17)

where θR is the temperature of the foundation, and ke is the heat exchange coefficient
between the body and the obstacle. We obtain

Ξ(t, x, r) = ∂ϕ(t, x, r) = ke(t, x) (r − θR(t, x)), (t, x, r) ∈ (0, T ) × ΓC × R.

Finally, the data in u0, v0, α0, and θ0 in (12) represent the initial displacement,
velocity, damage, and temperature, respectively.

In view to derive the variational formulation of the mechanical problems (1)–
(12), let us first precise the functional framework. Let

V = H1

be the admissible displacement space, endowed with the inner product given by

(u, v)V = (ε(u), ε(v))H + (u, v)H ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖2V = ‖ε(v)‖2H + ‖v‖2H ∀ v ∈ V.

Therefore, (V , ‖ · ‖V ) is a real Hilbert space, where the norm ‖ · ‖V is equivalent to
‖ · ‖(H 1(Ω))d .

Let

E = {η ∈ H 1(Ω), η = 0 on ΓF }

be the admissible temperature space, endowed with the canonical inner product of
H 1(Ω).

By the Sobolev’s trace theorem, there exists a constant c0 > 0 depending only
on Ω , and ΓC such that

‖v‖(L2(ΓC))d ≤ c0 ‖v‖V , ∀ v ∈ V ; and ‖η‖L2(ΓC) ≤ c0 ‖ η‖E, ∀ η ∈ E.

(18)
Next, we denote the set of admissible damage fields by

Kda = {ξ ∈ H 1(Ω),
∂ξ

∂ν
= 0 on Γ, 0 ≤ ξ ≤ 1 a.e. in Ω}.

We use here two Gelfand evolution triples (see e.g. [12], pp. 416) given by

V ⊂ H ≡ H ′ ⊂ V ′, E ⊂ L2(Ω) ≡ (L2(Ω))′ ⊂ E′,

where the inclusions are dense and continuous.
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In the study of the mechanical problems (1)–(12), we assume that the viscosity
operator A : (0, T ) × Ω × Sd −→ Sd satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) A(·, ·, τ ) is measurable on (0, T ) × Ω, ∀τ ∈ Sd ;
(ii) A(t, x, ·) is continuous on Sd for a.e. (t, x) ∈ (0, T ) × Ω;
(iii) there exists mA > 0 such that

(A(t, x, τ 1) − A(t, x, τ 2)) · (τ 1 − τ 2) ≥ mA |τ 1 − τ 2|2,
∀τ 1, τ 2 ∈ Sd, for a.e. (t, x) ∈ (0, T ) × Ω;

(iv) there exists cA0 ∈ L2((0, T ) × Ω;R+), cA1 > 0 such that

|A(t, x, τ )| ≤ cA0 (t, x) + cA1 |τ |,
∀τ ∈ Sd, for a.e. (t, x) ∈ (0, T ) × Ω.

(19)

Here, recall that for every t ∈ (0, T ) and τ ∈ Sd , we write by A(t) = A(t, ·, ·)
a functional which is defined on Ω × Sd and A(t) τ = A(t, ·, τ ) some function
defined on Ω .

We suppose that the elasticity operator G : (0, T )×Ω ×Sd ×R −→ Sd satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) G(·, ·, τ , λ) is measurable on (0, T ) × Ω, ∀τ ∈ Sd, ∀λ ∈ R;
(ii) there exists LG > 0 such that

|G(t, x, τ 1, λ1) − G(t, x, τ 2, λ2)| ≤ LG (|τ 1 − τ 2| + |λ1 − λ2|)
∀τ 1, τ 2 ∈ Sd, ∀λ1, λ2 ∈ R, a.e. (t, x) ∈ (0, T ) × Ω ;

(iii) there exists cG0 ∈ L2((0, T ) × Ω;R+), cG1 ≥ 0, cG2 ≥ 0 such that

|G(t, x, τ , λ)| ≤ cG0 (t, x) + cG1 |τ | + cG2 |λ|,
∀τ ∈ Sd, ∀λ ∈ R, a.e. (t, x) ∈ (0, T ) × Ω;

(iv) the partial derivatives with respect to the first, third, and fourth
variables of G exist and are bounded.

(20)
We put again G(t)(τ , λ) = G(t, ·, τ , λ) some function defined on Ω for every t ∈
(0, T ), τ ∈ Sd , λ ∈ R.

The relaxation tensor B : (0, T ) × Ω × Sd × R −→ Sd satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) B(·, ·, τ , λ) ∈ L∞((0, T ) × Ω; Sd), ∀τ ∈ Sd, ∀λ ∈ R;
(ii) there exists LB > 0 such that

|B(t, x, τ 1, λ1) − B(t, x, τ 2, λ2)| ≤ LB (|τ 1 − τ 2| + |λ1 − λ2|)
∀τ 1, τ 2 ∈ Sd, ∀λ1, λ2 ∈ R, a.e. (t, x) ∈ (0, T ) × Ω;

(iii) the partial derivative with respect to the first variable of
B exists and is bunded.

(21)



A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage 81

The body forces and surface tractions satisfy the regularity conditions:

f 0 ∈ W 1,2(0, T ;H), f F ∈ W 1,2(0, T ;L2(ΓF )d). (22)

The gap function g : (0, T ) × ΓC −→ R+ verifies

⎧⎪⎨
⎪⎩

(i) g ∈ L∞((0, T ) × ΓC; R+);
(ii) the partial derivative with respect to the first variable of

g exists and is bounded.

(23)

The thermal expansion tensor Ce : (0, T ) × Ω × R −→ Sd verifies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Ce(·, ·, ϑ) is measurable on (0, T ) × Ω, ∀ϑ ∈ R;
(ii) there exists Le > 0 such that

|Ce(t, x, ϑ1) − Ce(t, x, ϑ2)| ≤ Le |ϑ1 − ϑ2|
∀ϑ1, ϑ2 ∈ R, a.e. (t, x) ∈ (0, T ) × Ω;

(iii) there exists c
Ce

0 ∈ L∞((0, T ) × Ω;R+), c
Ce

1 ≥ 0 such that

|Ce(t, x, ϑ)| ≤ c
Ce

0 (t, x) + c
Ce

1 |ϑ |,
∀ϑ ∈ R, for a.e. (t, x) ∈ (0, T ) × Ω;

(iv) the partial derivatives with respect to the first and third variables
of Ce exist and are bounded.

(24)

Here, we use the notation Ce(t, ϑ) = Ce(t, ·, ϑ) some function defined on Ω , for
all t ∈ (0, T ) and ϑ ∈ R.

The normal compliance function pν : (0, T ) × ΓC × R −→ R+ satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) there exists Lν > 0 such that
|pν(t, x, r1) − pν(t, x, r2)| ≤ Lν |r1 − r2|,

∀ r1, r2 ∈ R, a.e. (t, x) ∈ (0, T ) × ΓC;
(ii) pν(·, ·, r) is Lebesgue measurable on (0, T ) × ΓC, ∀ r ∈ R;
(iii) the mapping pν(·, ·, r) = 0, ∀r ≤ 0;
(iv) the partial derivatives with respect to the first and third variables

of pν exist and are bounded.

(25)

The friction bound function pτ : (0, T ) × ΓC × R −→ R+ satisfies
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) there exists Lτ > 0 such that
|pτ (t, x, r1) − pτ (t, x, r2)| ≤ Lτ |r1 − r2|,

∀ r1, r2 ∈ R, a.e. (t, x) ∈ (0, T ) × ΓC;
(ii) pτ (·, ·, r) is Lebesgue measurable on (0, T ) × ΓC, ∀ r ∈ R;
(iii) the mapping pτ (·, ·, r) = 0, ∀r ≤ 0.

(26)

The damage source φd : Ω × Sd × Sd × [0, 1] −→ R verifies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) there exists Lφ > 0 such that

|φd(x, σ 1, ε1, ξ1) − φd(x, σ 2, ε2, ξ2)| ≤ Lφ (|σ 1 − σ 2| + |ε1 − ε2| + |ξ1 − ξ2|),
∀ σ 1, σ 2, ε1, ε2 ∈ Sd, ∀ξ1, ξ2 ∈ [0, 1], a.e. x ∈ Ω;

(ii) φd(·, σ , ε, ξ) is Lebesgue measurable function on Ω,

∀ σ , ε ∈ Sd, ∀ξ ∈ [0, 1];
(iii) φd(·, 0, 0, 0) ∈ L2(Ω).

(27)

We assume that the nonlinear function Kc : (0, T ) × Ω × R
d −→ R

d satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Kc(·, ·, ξ) is measurable on (0, T ) × Ω, ∀ξ ∈ R
d ;

(ii) Kc(t, x, ·) is continuous on Rd , a.e. (t, x) ∈ (0, T ) × Ω;
(iii) there exists c

Kc

0 ∈ L2((0, T ) × Ω;R+), c
Kc

1 ≥ 0, such that

|Kc(t, x, ξ)| ≤ c
Kc

0 (t, x) + c
Kc

1 |ξ |,
∀ξ ∈ R

d , a.e. (t, x) ∈ (0, T ) × Ω;
(iv) there exists mKc

> 0 such that
(Kc(t, x, ξ1) − Kc(t, x, ξ2)) · (ξ1 − ξ2) ≥ mKc

|ξ1 − ξ2|2,
∀ξ1, ξ2 ∈ R

d , a.e. (t, x) ∈ (0, T ) × Ω ;
(v) there exists nKc

> 0 such that Kc(t, x, ξ) · ξ ≥ nKc
|ξ |2,

∀ξ ∈ R
d , a.e. (t, x) ∈ (0, T ) × Ω.

(28)

We suppose that the deformation-viscosity heat function De : (0, T )×Ω ×Sd ×
R −→ R satisfies
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) De(·, ·, τ , ϑ) is measurable on (0, T ) × Ω, ∀(τ , ϑ) ∈ Sd × R;
(ii) the function De(t, x, ·, ·) is Lypschitz continuous on Sd × R,

i.e. ∃DV > 0, ∃DT > 0 :
|De(t, x, τ 1, ϑ1) − De(t, x, τ 2, ϑ2)| ≤ DV |τ 1 − τ 2| + DT |ϑ1 − ϑ2|,

∀(τ 1, ϑ1), (τ 2, ϑ2) ∈ Sd × R, for a.e. (t, x) ∈ (0, T ) × Ω;
(iii) De(·, ·, 0Sd

, 0) ∈ L∞((0, T ) × Ω);
(iv) (De(t, x, τ , ϑ1) − De(t, x, τ , ϑ2)) (ϑ1 − ϑ2) ≤ 0,

∀τ ∈ Sd, ∀ϑ1, ϑ2 ∈ R, a.e. (t, x) ∈ (0, T ) × Ω.

(29)
We notice that these conditions are verified in examples (13)–(15).
The heat sources density verifies

q ∈ L2(0, T ;L2(Ω)). (30)

We suppose that the nonlinear functions Ξ, ϕ : (0, T ) × ΓC × R −→ R satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Ξ(·, ·, r) and ϕ(·, ·, r) are measurable on (0, T ) × ΓC, ∀r ∈ R;
(ii) ϕ(t, x, ·) is locally Lipschitz on R for a.e. (t, x) ∈ (0, T ) × ΓC;
(iii) there exists c

ϕ
0 ∈ L2((0, T ) × ΓC;R+), c

ϕ
1 ≥ 0, such that

|ϕ0(t, x, r)| ≤ c
ϕ
0 (t, x) + c

ϕ
1 |r|,

∀r ∈ R, a.e. (t, x) ∈ (0, T ) × ΓC;
(iv) (Ξ(t, x, r1) − Ξ(t, x, r2)) (r1 − r2) ≥ 0,

∀r1, r2 ∈ R, a.e. (t, x) ∈ (0, T ) × ΓC.

(31)

These assumptions are clearly satisfied in example (17).
Finally, we assume that the initial data satisfy the conditions

u0 ∈ V, v0 ∈ V, θ0 ∈ E, α0 ∈ Kda. (32)

Using Green’s formula, we obtain the following weak formulation of the
mechanical problem Q, defined by a system of second-order quasi-variational
evolution inequality coupled with a first-order evolution equation.

Problem QV : Find a displacement field u : [0, T ] → V , a damage field α :
[0, T ] −→ Kda , and a temperature field θ : [0, T ] → E satisfying for a.e. t ∈
(0, T ):
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈ü(t) + A(t) u̇(t) + B(t)(u(t), α(t)) + C(t) θ(t), w − u̇(t)〉V ′×V ,

+(

∫ t

0
B(t − s) (ε(u(s)), α(s)) ds, ε(w) − ε(u̇(t)))H

+jν(t,u(t),w − u̇(t)) + jτ (t,u(t),w) − jτ (t,u(t), u̇(t))

≥ 〈f (t), w − u̇(t)〉V ′×V , ∀w ∈ V.

(33)

{
(α̇(t), ξ − α(t))L2(Ω) + γ (∇α(t),∇ξ − ∇α(t))L2(Ω)d

≥ (φd(σ (t), ε(u(t)), α(t)), ξ − α(t))L2(Ω), ∀ ξ ∈ Kda.
(34)

{
< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)

≥ < R(t, u̇(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E.
(35)

u(0) = u0, u̇(0) = v0, α(0) = α0, θ(0) = θ0 in Ω. (36)

Here, the operators and functions A(t) : V −→ V ′, B(t) : V × Kda −→
V ′, C(t) : E −→ V ′, jν, jτ : (0, T ) × V 2 −→ R

+, K(t) : E −→ E′,
ψ(t, ·; ·) : E × E −→ R, R(t, ·, ·) : V × E −→ E′, f : (0, T ) −→ V ′,
and Q : (0, T ) −→ E′ are defined by, for all v ∈ V , w ∈ V , ζ ∈ E, η ∈ E,
ξ ∈ Kda , for a.e. t ∈ (0, T ),

〈A(t) v,w〉V ′×V = (A(t)(εv), εw)H;
〈B(t)(v, ξ),w〉V ′×V = (G(t)(εv, ξ), εw)H;
〈C(t)ζ,w〉V ′×V = (Ce(t, ζ(·)), εw)H;
jν(t, v,w) =

∫

ΓC

pν(t, vν − g(t)) wν da;

jτ (t, v,w) =
∫

ΓC

pτ (t, vν − g(t)) |wτ | da;
〈f (t),w〉V ′×V = (f 0(t),w)H + (f F (t),w)(L2(ΓF ))d ;
〈K(t) ζ, η〉E′×E =

∫

Ω

Kc(t,∇ζ ) · ∇η dx;
ψ(t, ζ ; η) =

∫

ΓC

ϕ0(t, x, ζ(x); η(x)) da(x);

〈R(t, v, ζ ), η〉E′×E =
∫

Ω

De(t, ε(v), ζ ) η dx;
〈Q(t), η〉E′×E =

∫

Ω

q(t) η dx.
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We notice that from (31), then the formula ψ(t, ζ ; η) is well defined for all ζ ∈
E, η ∈ E, for a.e. t ∈ (0, T ).

The inequality (35) is a consequence of the following equation:

⎧⎨
⎩

< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +
∫

ΓC

Ξ(t, θ(t))η da

=< R(t, u̇(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E,

(37)

where Ξ(t, r) := Ξ(t, ·, r) for (t, r) ∈ (0, T ) × R.
In the case when ϕ(t, x, ·) is differentiable for a.e. (t, x) ∈ (0, T ) × Γc, we have

Ξ(t, x, r) = ϕ′(t, x, r) := [ϕ(t, x, ·)]′(r)

for (t, x, r) ∈ (0, T ) × ΓC × R.
Then, for all ζ ∈ E and a.e. t ∈ (0, T ), the linear functional

η ∈ E �→ ψ(t, ζ ; η) =
∫

ΓC

Ξ(t, ζ )ηda =
∫

ΓC

ϕ′(t, x, ζ(x))η(x)da(x)

will be denoted by

Φ(t, ζ ) ∈ E′.

The inequality (35) or Equation (37) can be written as

θ̇ (t) + K(t) θ(t) + Φ(t, θ(t)) = R(t, u̇(t), θ(t)) + Q(t) in E′.

Our main existence and uniqueness result is the following, which we will prove
in the next section.

Theorem 1 Assume that (19)–(32) hold, and under the condition that

Lτ <
mA√
2 T c20

,

then there exists an unique solution {u, α, θ} to problem QV with the regularity:

⎧⎪⎪⎨
⎪⎪⎩

u ∈ C1(0, T ;H) ∩ W 1,2(0, T ;V ) ∩ W 2,2(0, T ;V ′);
α ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;Kda);
θ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E) ∩ W 1,2(0, T ;E′).

(38)



86 O. Chau et al.

3 Proof of Theorem 1

The idea is to bring the second-order inequality to a first-order inequality, using
monotone operator, convexity, and fixed point arguments, and will be carried out in
several steps.

Let us introduce the velocity variable

v = u̇.

The system in problem QV is then written as, for a.e. t ∈ (0, T ),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = u0 +
∫ t

0
v(s) ds;

〈v̇(t) + A(t) v(t) + B(t)(u(t), α(t)) + C(t) θ(t), w − v(t)〉V ′×V ,

+(

∫ t

0
B(t − s) (ε(u(s)), α(s)) ds, ε(w) − ε(v(t)))H

+jν(t,u(t),w − v(t)) + jτ (t,u(t),w) − jτ (t,u(t), v(t))

≥ 〈f (t), w − v(t)〉V ′×V , ∀w ∈ V ;
(α̇(t), ξ − α(t))L2(Ω) + γ (∇α(t),∇ξ − ∇α(t))L2(Ω)d

≥ (φd(σ (t), ε(u(t)), α(t)), ξ − α(t))L2(Ω), ∀ ξ ∈ Kda;
< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)

≥< R(t, v(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E;
v(0) = v0, α(0) = α0, θ(0) = θ0 in Ω,

with the regularities:

⎧⎪⎨
⎪⎩

v ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩ W 1,2(0, T ;V ′);
α ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;K);
θ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E) ∩ W 1,2(0, T ;E′).

We begin by the following lemma.

Lemma 1 For all η ∈ W 1,2(0, T ;V ′), there exists an unique

vη ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩ W 1,2(0, T ;V ′)

satisfying
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⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈v̇η(t) + A(t) vη(t), w − vη(t)〉V ′×V + 〈η(t),w − vη(t)〉V ′×V

+ jτ (t,uη(t),w) − jτ (t,uη(t), vη(t)) ≥ 〈f (t),w − vη(t)〉V ′×V ,

∀w ∈ V, a.e. t ∈ (0, T );
vη(0) = v0,

(39)

where

uη(t) = u0 +
∫ t

0
vη(s) ds, ∀t ∈ [0, T ].

Moreover, if Lτ <
mA√
2 T c20

, then ∃c > 0 such that ∀η1, η2 ∈ W 1,2(0, T ;V ′),
∀t ∈ [0, T ]:

‖vη2(t) − vη1(t)‖2H +
∫ t

0
‖vη2 − vη1‖2V ≤ c

∫ t

0
‖η1 − η2‖2V ′ . (40)

Proof Given η ∈ W 1,2(0, T ;V ′) and x ∈ C(0, T ;V ), by using a general result on
parabolic variational inequality (see e.g. [1]), we obtain the existence of a unique
vη x ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩ W 1,2(0, T ;V ′) satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈v̇η x(t) + A(t) vη x(t), w − vη x(t)〉V ′×V + 〈η(t),w − vη x(t)〉V ′×V

+ jτ (t, x(t),w) − jτ (t, x(t), vη x(t)) ≥ 〈f (t),w − vη x(t)〉V ′×V ,

∀w ∈ V, a.e. t ∈ (0, T );
vη x(0) = v0.

(41)

Now, let us fix η ∈ W 1,2(0, T ;V ′) and consider Λη : C(0, T ;V ) →
C(0, T ;V ) defined by

∀x ∈ C(0, T ;V ), Ληx (t) = u0 +
∫ t

0
vη x(s) ds.

We check by algebraic manipulation that for all u1,u2,w1,w2 ∈ V , a.e. t ∈
(0, T ), we have

jτ (t,u1, w2)−jτ (t,u1, w1)+jτ (t,u2, w1)−jτ (t,u2,w2) ≤ c1 ‖u2−u1‖V ‖w2−w1‖V ,

where c1 = Lτ c20 is involving c0, which is defined by (18).
Let x1, x2 ∈ C(0, T ;V ) be given. Putting in (41) the data x = x1 with w = vη x2

and x = x2 with w = vη x1 , adding then the two inequalities, and integrating over
(0, T ), we obtain, ∀t ∈ [0, T ],
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‖vη x2(t) − vη x1(t)‖2H +
∫ t

0
‖vη x2(s) − vη x1(s)‖2V ds

≤ c

∫ t

0
‖x2(s) − x1(s)‖2V ds + c

∫ t

0
‖vη x2(s) − vη x1(s)‖2H ds.

Using Gronwall’s inequality (see e.g. [2]), we deduce that

∀x1, x2 ∈ C(0, T ; V ), ∀t ∈ [0, T ], ‖Λη(x2)(t) − Λη(x1)(t)‖2V ≤ c

∫ t

0
‖x2(s) − x1(s)‖2V ds.

Thus, by Banach’s fixed point principle, we know that Λη has an unique fixed point
denoted by xη. We then verify that

vη = vη xη

is the unique solution verifying (39).
Now, let η1, η2 ∈ W 1,2(0, T ;V ′). Putting in (39) the data η = η1 with w = vη2

and η = η2 with w = vη1 , adding then the two inequalities and integrating over
(0, T ), and using the inequality

|a b| ≤ ε

4
a2 + 1

ε
b2

for all reals a, b, ε > 0, we obtain for all δ > 0, for all t ∈ [0, T ]:
1

2
‖vη2(t) − vη1(t)‖2H + mA

∫ t

0
‖vη2(s) − vη1(s)‖2V ds

≤ mA

∫ t

0
‖vη2(s) − vη1(s)‖2H ds + c21

4δ

∫ t

0
‖uη2(s) − uη1(s)‖2V ds

+δ

∫ t

0
‖vη2(s) − vη1(s)‖2V ds +

∫ t

0
‖vη2(s) − vη1(s)‖V ‖η2(s) − η1(s)‖V ′ds.

≤ mA

∫ t

0
‖vη2(s) − vη1(s)‖2H ds + c21

4δ

∫ t

0
‖uη2(s) − uη1(s)‖2V ds

+2δ
∫ t

0
‖vη2(s) − vη1(s)‖2V ds + 1

4δ

∫ t

0
‖η2(s) − η1(s)‖2V ′ds.

Now, verifying that

∫ t

0
‖uη2(s) − uη1(s)‖2V ds ≤ T 2

∫ t

0
‖vη2(s) − vη1(s)‖2V ds,

we have
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1

2
‖vη2(t) − vη1(t)‖2H + (mA − 2δ)

∫ t

0
‖vη2(s) − vη1(s)‖2V ds

≤ mA
∫ t

0 ‖vη2(s) − vη1(s)‖2H ds + c21
4δ T 2

∫ t

0 ‖vη2(s) − vη1(s)‖2V ds

+ 1
4δ

∫ t

0 ‖η2(s) − η1(s)‖2V ′ds.

We deduce (40) from Gronwall’s inequality if

c21

4δ
T 2 < mA − 2δ,

i.e.

Lτ <
mA

T c20

√
2ς(1 − ς),

where

ς = 2δ

mA
∈]0, 1[.

To conclude, we obtain (40) if ∃ς ∈]0, 1[ such that Lτ <
mA

T c20

√
2ς(1 − ς).

This last condition is equivalent to

Lτ <
mA√
2T c20

.

��
Here and below, we denote by c > 0 a generic constant, which value may change

from lines to lines.

Lemma 2 For all η ∈ W 1,2(0, T ;V ′), there exists a unique

θη ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E) ∩ W 1,2(0, T ;E′)

satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< θ̇η(t), ζ >E′×E + < K(t) θη(t), ζ >E′×E +
∫

ΓC

Ξ(t, θη(t)) ζ da

=< R(t, vη(t), θη(t)), ζ >E′×E + < Q(t), ζ >E′×E,

∀ ζ ∈ E, a.e. t ∈ (0, T );
θη(0) = θ0.

(42)

Moreover, if Lτ <
mA√
2 T c20

, then ∃c > 0 such that ∀η1, η2 ∈ W 1,2(0, T ;V ′):
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‖θη1(t) − θη2(t)‖2L2(Ω)
≤ c

∫ t

0
‖η1 − η2‖2V ′ , ∀t ∈ [0, T ]. (43)

Proof Let us fix η ∈ W 1,2(0, T ;V ′). We verify that Q ∈ L2(0, T ;E′).
Let us consider the operator Ψη(t) : E −→ E′ defined for a.e. t ∈ (0, T ) by

⎧⎨
⎩

< Ψη(t) ξ, ζ >E′×E :=< K(t) ξ, ζ >E′×E +
∫

ΓC

Ξ(t, ξ) ζ da− < R(t, vη(t), ξ), ζ >E′×E,

∀ ξ, ζ ∈ E.

Then, the problem is to find θ : (0, T ) −→ E verifying

{
θ̇ (t) + Ψη(t) θ(t) = Q(t) in E′, a.e. t ∈ (0, T );
θ(0) = θ0.

Using the assumptions (28), (29), and (31), Ψη(t) is strongly monotone for a.e.
t ∈ (0, T ). Therefore, the existence and uniqueness result verifying (42) follows
from classical result on first-order evolution equation (see e.g. [9], pp. 162–164).

Now, for η1, η2 ∈ W 1,2(0, T ;V ′), we have, for a.e. t ∈ (0; T ),

〈θ̇η1 (t) − θ̇η2 (t), θη1 (t) − θη2(t)〉E′×E + 〈K(t) θη1 (t) − K(t) θη2 (t), θη1 (t) − θη2(t)〉E′×E

≤ 〈R(t, vη1(t), θη1 (t)) − R(t, vη2 (t), θη2 (t)), θη1 (t) − θη2(t)〉E′×E.

Then, integrating the last property over (0, t), using the strong monotonicity of
K(t) and the Lipschitz continuity of R(t, ·, ·) : V × E −→ E′ independently of
t ∈ (0, T ), we deduce

‖θη1(t) − θη2(t)‖2L2(Ω)
≤ c

∫ t

0
‖vη1 − vη2‖2V , ∀t ∈ [0, T ].

The inequality (43) follows then from Lemma 1. ��
Lemma 3 For all μ ∈ L2(0, T ;L2(Ω)), there exists an unique

αμ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H 1(Ω))

satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(α̇μ(t), ξ − αμ(t))L2(Ω) + γ (∇αμ(t),∇ξ − ∇αμ(t))L2(Ω)d

≥ (μ(t), ξ − αμ(t))L2(Ω), ∀ ξ ∈ Kda, a.e. t ∈ (0, T );
αμ(t) ∈ Kda, ∀t ∈ [0, T ];
αμ(0) = α0.

(44)
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Moreover, ∃c > 0 such that ∀μ1, μ2 ∈ L2(0, T ;L2(Ω)):

‖αμ2(t) − αμ1(t)‖2L2(Ω)
≤ c

∫ t

0
‖μ1 − μ2‖2L2(Ω)

, ∀t ∈ [0, T ]. (45)

Proof The inequality (44) follows from classical result on parabolic evolution
variational inequalities, see e.g. [1].

Now, for any μ1, μ2 ∈ L2(0, T ;L2(Ω)), putting in (44) the data μ = μ1
with ξ = αμ2 , then μ = μ2 with ξ = αμ1 , adding then the two inequalities, and
integrating over (0, T ), we obtain, ∀t ∈ [0, T ],

1

2
‖αμ1(t) − αμ2(t)‖2L2(Ω)

+ γ

∫ t

0
‖∇αμ1 − ∇αμ2‖2L2(Ω)d

≤
∫ t

0
‖μ1 − μ2‖L2(Ω)‖αμ1 − αμ2‖L2(Ω).

Thus, the inequality (45) follows from Gronwall’s inequality. ��
Consider X := W 1,2(0, T ;V ′) × L2(0, T ;L2(Ω)), and the operator Λ : X →

X is defined by, for all (η, μ) ∈ X,

Λ(η,μ) = (Λ1(η, μ), Λ2(η, μ));
Λ1(η, μ)(t) = B(t)(uη(t), αμ(t)) + D(t)(uη, αμ) + jν(t,uη(t), ·) + C(t) θη(t);
Λ2(η, μ)(t) = φd(σ η,μ(t), ε(uη(t)), αμ(t)),

where

〈D(t)(uη, αμ),w〉V ′×V = (

∫ t

0
B(t − s) (ε(uη(s)), αμ(s)) ds, εw)H, ∀w ∈ V ;

and

σ η,μ(t) = A(t)ε(vη(t)) + G(t)(ε(uη(t)), αμ(t))

+
∫ t

0
B(t − s) (ε(uη(s)), αμ(s)) ds + Ce(t, θη(t)).

Lemma 4 Under the condition that Lτ <
mA√
2 T c20

, then Λ has a unique fixed point

(η∗, μ∗).

Proof First, we check that from the definition of the operator C(·) and from
hypothesis (24), then there exists c > 0, such that for a.e. t ∈ (0, T ), for all
ξ1, ξ2 ∈ E, we have
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‖C(t) ξ1 − C(t) ξ2‖V ′ ≤ c ‖ξ1 − ξ2‖L2(Ω).

Now, let (η1, μ1) and (η2, μ2) be given in X. We verify that, for a.e. t ∈ (0, T ),

‖Λ(η1, μ1)(t) − Λ(η2, , μ2)(t)‖2V ′×L2(Ω)

≤ c ‖B(t)(uη1 (t), αμ1 (t)) − B(t)(uη2 (t), αμ2 (t))‖2V ′ + c ‖D(t)(uη1 , αμ1 ) − D(t)(uη2 , αμ2 )‖2V ′

c ‖jν(t,uη1 (t), ·) − jν(t,uη2 (t), ·)‖2V ′ + c ‖C(t) θη1 (t) − C(t) θη2 (t)‖2V ′

+‖φd(σ η1,μ1 (t), ε(uη1 (t)), αμ1 (t)) − φd(σ η2,μ2 (t), ε(uη2 (t)), αμ2 (t))‖2L2(Ω)
.

Thus,

‖Λ(η1, μ1)(t) − Λ(η2, , μ2)(t)‖2V ′×L2(Ω)

≤ c ‖uη1(t) − uη2(t)‖2V + c ‖αμ1(t) − αμ2(t)‖2L2(Ω)
+ c ‖θη1(t) − θη2(t)‖2L2(Ω)

+ c ‖vη1(t) − vη2(t)‖2H .

We deduce from Lemmas 1–3 that if Lτ <
mA√
2T c20

, then ∃c > 0 satisfying, for all

(η1, μ1), (η2, μ2) in X and for all t ∈ [0, T ],

‖Λ(η1, μ1)(t)−Λ(η2, , μ2)(t)‖2V ′×L2(Ω)
≤ c

∫ t

0
‖η2−η1‖2V ′+c

∫ t

0
‖μ1−μ2‖2L2(Ω)

.

Then, using again Banach’s fixed point principle, we obtain that Λ has an unique
fixed point. ��
Proof of Theorem 1 We have now all the ingredients to prove Theorem 1.

We verify then that the functions

u := uη∗ , α := αμ∗ , θ := θη∗

are solutions to problem QV with the regularities in (38), the uniqueness follows
from the uniqueness in Lemmas 1–3. ��

4 Analysis of a Numerical Scheme

In this section, we study a fully discrete numerical approximation scheme of the
variational problem QV . For this purpose, let {u, θ} be the unique solution of the
problem QV , and introduce the velocity variable

v(t) = u̇(t), ∀t ∈ [0, T ].
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Then,

u(t) = u0 +
∫ t

0
v(s) ds, ∀t ∈ [0, T ]. (46)

Here, we make the following additional assumptions on the different data, operators,
and solution fields:

A(·, ·, τ ) ∈ C([0, T ] × Ω; Sd), ∀τ ∈ Sd;
G(·, ·, τ , λ) ∈ C([0, T ] × Ω; Sd), ∀(τ , λ) ∈ Sd × R;
Ce(·, ·, ϑ) ∈ C([0, T ] × Ω; Sd), ∀ϑ ∈ R;
B(·, ·, τ , λ) ∈ C([0, T ] × Ω; Sd), ∀(τ , λ) ∈ Sd × R;
f 0 ∈ C([0, T ] × Ω;Rd); f F ∈ C([0, T ] × ΓF ;Rd);
Kc(·, ·, ξ) ∈ C([0, T ] × Ω;Rd), ∀ξ ∈ R

d;
De(·, ·, τ , ϑ) ∈ C([0, T ] × Ω;R), ∀(τ , ϑ) ∈ Sd × R;
q ∈ C([0, T ] × Ω;R+);
v ∈ W 1,1(0, T ;V ) ∩ C1([0, T ];H),

θ ∈ C([0, T ];E) ∩ H 2(0, T ;L2(Ω)),

α ∈ C(0, T ;H 2(Ω)) ∩ H 2(0, T ;L2(Ω)),

(47)

and for all r, r1, r2 ∈ R, a.e. (t, x) ∈ (0, T ) × ΓC :

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) ϕ0(t, x, r; r1 + r2) ≤ ϕ0(t, x, r; r1) + ϕ0(t, x, r; r2);
(ii) ϕ0(t, x, r2; r1 − r2) + ϕ0(t, x, r1; r2 − r1) ≤ 0;
(iii) there exists cϕ ≥ 0 such that

ϕ0(t, x, r1; r) + ϕ0(t, x, r2;−r) ≤ cϕ |(r1 − r2) r|.

(48)

We remark that the example of ϕ given in (17) satisfies hypothesis (48).
From Theorem 1, {v, θ, α} verify, for all t ∈ [0, T ],

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈v̇(t) + A(t) v(t) + B(t)(u(t), α(t)) + C(t) θ(t), w − v(t)〉V ′×V ,

+(

∫ t

0
B(t − s) (ε(u(s)), α(s)) ds, ε(w) − ε(v(t)))H

+jν(t,u(t),w − v(t)) + jτ (t,u(t),w) − jτ (t,u(t), v(t))

≥ 〈f (t), w − v(t)〉V ′×V , ∀w ∈ V.

(49)
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{
< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)

≥< R(t, v(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E.
(50)

{
(α̇(t), ξ − α(t))L2(Ω) + γ (∇α(t),∇ξ − ∇α(t))L2(Ω)d

≥ (φd(σ (t), ε(u(t)), α(t)), ξ − α(t))L2(Ω), ∀ ξ ∈ Kda.
(51)

v(0) = v0, α(0) = α0, θ(0) = θ0 in Ω. (52)

Now, let V h ⊂ V , Eh ⊂ E, and Kh
da ⊂ Kda be a family of finite dimensional

subspaces, with h > 0 a discretization parameter. We divide the time interval [0, T ]
into N equal parts: tn = n k, n = 0, 1, . . . , N , with the time step k = T/N .
For a continuous operator or function U ∈ C([0, T ];X) with values in a space X,
we use the notation Un = U(tn) ∈ X.
Then, from (49)–(52), we introduce the following fully discrete scheme.

Problem P hk Find vhk = {vhk
n }Nn=0 ⊂ V h, θhk = {θhk

n }Nn=0 ⊂ Eh and αhk =
{αhk

n }Nn=0 ⊂ Kh
da such that

vhk
0 = vh

0, θhk
0 = θh

0 , αhk
0 = αh

0 (53)

and for n = 1, · · · , N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
vhk

n −vhk
n−1

k
, wh − vhk

n

)
H

+ 〈An vhk
n , wh − vhk

n 〉V ′×V

+〈Bn uhk
n−1, wh − vhk

n 〉V ′×V + 〈Cn θhk
n−1, wh − vhk

n 〉V ′×V

+(k
∑n−1

m=0B(tn − tm) (ε(uhk
m ), αhk

m ), ε(wh) − ε(vhk
n ))H

+jν(tn,u
hk
n−1,w

h − vhk
n ) + jτ (tn,u

hk
n−1,w

h) − jτ (tn,u
hk
n−1, v

hk
n )

≥ 〈f n, wh − vhk
n 〉V ′×V , ∀wh ∈ V h.

(54)

⎧⎨
⎩

(
θhk
n −θhk

n−1
k

, ηh
)

L2(Ω)
+ 〈Kn θhk

n , ηh〉E′×E + ψ(tn, θ
hk
n ; ηh)

≥ 〈R(tn, v
hk
n , θhk

n ), ηh〉E′×E + 〈Qn, η
h〉E′×E, ∀ ηh ∈ Eh.

(55)

{
(
αhk

n −αhk
n−1

k
, ξh − αhk

n )L2(Ω) + γ (∇αhk
n ,∇(ξh − αhk

n ))L2(Ω)d

≥ (φd(σ hk
n−1, ε(uhk

n−1), α
hk
n−1), ξ

h − αhk
n )L2(Ω), ∀ ξh ∈ Kh

da,
(56)

where for n = 1, · · · , N ,
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uhk
n = uhk

0 + k

n∑
j=1

vhk
j ; uhk

0 = uh
0 . (57)

{
σ hk

n = An vhk
n + Bn (uhk

n , αhk
n ) + Cn θhk

n + k
∑n−1

m=0B(tn − tm) (ε(uhk
m ), αhk

m );
σ hk
0 = σ h

0 .

(58)
Here, uh

0 ∈ V h, vh
0 ∈ V h, θh

0 ∈ Eh, αh
0 ∈ Kh

da , and σ h
0 ∈ H are suitable

approximations of the initial values u0, v0, θ0, α0, and σ 0, respectively.
We verify that for n = 1, · · · , N , once uhk

n−1, v
hk
n−1, θ

hk
n−1, α

hk
n−1, andσ hk

n−1 are
known, then we obtain vhk

n by (54), θhk
n by (55), αhk

n by (56), uhk
n by (57) (using

uhk
n = uhk

n−1 + k vhk
n ), and σ hk

n by (58).
We now turn to an error analysis of the numerical solution. Here, we use and

extend the technique developed in [3], p. 241.

Proof We have to estimate the following numerical solution errors, respectively, for
the velocity, temperature, and damage:

vn − vhk
n , θn − θhk

n , αn − αhk
n , 1 ≤ n ≤ N.

First step. Estimate of (αn − αhk
n )1≤n≤N . Let us fix n = 1, · · · , N .

Using (51) with t = tn, ξ = αhk
n and (56) with ξh = ξh

n ∈ Kh
da and then adding the

two inequalities, we obtain after some algebraic manipulation, for some constant
c > 0,

‖αn − αhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖∇(αj − αhk

j )‖2
L2(Ω)

≤ +c ‖u0 − uh
0‖2V + c ‖σ 0 − σ h

0‖2H + c ‖α0 − αh
0‖2

L2(Ω)

+c k
∑n

j=1 ‖αj −αj−1
k

− α̇j‖2L2(Ω)
+ c k

∑n
j=1 ‖αj − αhk

j ‖2
L2(Ω)

+c k2 + c k
∑n−1

j=1 ‖uj − uhk
j ‖2V + c ε k

∑n−1
j=1 ‖σ j − σ hk

j ‖2H
+c A2

0 + c k A1 + c k A2 + c k A3 + c k A4,

where ε > 0 is a small parameter which will be chosen later and

A0 := max1≤j≤N ‖αj − ξh
j ‖L2(Ω);

∇A1 := ∑N
j=1 ‖∇(αj − ξh

j )‖2
L2(Ω)

;
A1 := ∑N

j=1 ‖αj − ξh
j ‖2

L2(Ω)
;

A2 := ∑N−1
j=1 ‖(αj+1 − ξh

j+1) − (αj − ξh
j )‖2

L2(Ω)
;

A3 := ∑N
j=1 ‖φd(σ j , ε(uj ), αj ) − αj −αj−1

k
+ γj Δαj‖L2(Ω) × ‖αj − ξh

j ‖L2(Ω).
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From (47), we have

k A3 ≤ c A0

and

∥∥∥αj − αj−1

k
− α̇j

∥∥∥
L2(Ω)

≤
∫ tj

tj−1

‖α̈(s)‖L2(Ω) ds, 1 ≤ j ≤ N.

We deduce that

n∑
j=1

‖αj − αj−1

k
− α̇j‖2L2(Ω)

≤ c k.

From (46) and (57), we have

k
∑n−1

j=1 ‖uj − uhk
j ‖2V

≤ c ‖u0 − uh
0‖2V + c k I + c k

∑n−1
j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)
,

where by using (47),

I :=
N∑

j=1

∥∥∥
∫ tj

0
v − k

j∑
i=1

vi

∥∥∥
2

V
≤ c k.

From (58), we have for n = 1, · · · , N ,

‖σ n − σ hk
n ‖2H

≤ c ‖vn − vhk
n ‖2V + c ‖un − uhk

n ‖2V + c ‖θn − θhk
n ‖2

L2(Ω)

+‖
∫ tn

0
B(tn − s) (ε(u(s)), α(s)) ds − k

n−1∑
m=0

B(tn − tm) (ε(uhk
m ), αhk

m )‖2H.

Therefore, we arrive to the following error estimate for the damage:
For some constant c > 0 and for n = 1, · · · , N ,
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‖αn − αhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖∇(αj − αhk

j )‖2
L2(Ω)

≤ +c ‖u0 − uh
0‖2V + c ‖σ 0 − σ h

0‖2H + c ‖α0 − αh
0‖2

L2(Ω)

+c k
∑n

j=1 ‖αj − αhk
j ‖2

L2(Ω)

+c k2 + c k
∑n−1

j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)

+c ε k
∑n−1

j=1 ‖vj − vhk
j ‖2V + c ε k

∑n−1
j=1 ‖θj − θhk

j ‖2
L2(Ω)

+c A0 + c A2
0 + c k ∇A1 + c k A1 + c k A2.

(59)

Second step. Estimate of (εn := θn − θhk
n )1≤n≤N .

Let us fix n = 1, · · · , N and denote shortly εj := θj − θhk
j , 1 ≤ j ≤ N . We take

(50), where t = tn and η = −ηh, and add to (55), with ηh ∈ Eh, we have

(
θ̇n − θhk

n −θhk
n−1

k
, ηh

)
L2(Ω)

+ 〈Kn θn − Kn θhk
n , ηh〉E′×E

≤ ψ(tn, θn;−ηh) + ψ(tn, θ
hk
n ; ηh) + 〈R(tn, vn, θn) − R(tn, v

hk
n , θhk

n ), ηh〉E′×E.

Taking ηh = ηh
n − θn + εn, then we have

(
εn−εn−1

k
, εn

)
L2(Ω)

+ 〈Kn θn − Kn θhk
n , εn〉E′×E

≤ 〈Kn θn − Kn θhk
n , θn − ηh

n〉E′×E

〈R(tn, vn, θn) − R(tn, v
hk
n , θhk

n ), ηh〉E′×E

+
(
θ̇n − θn−θn−1

k
+ εn−εn−1

k
, θn − ηh

n

)
L2(Ω)

−
(
θ̇n − θn−θn−1

k
, εn

)
L2(Ω)

+ψ(tn, θn;−ηh) + ψ(tn, θ
hk
n ; ηh).

From (28), we have

|〈Kn θn − Kn θhk
n , θn − ηh

n〉E′×E | ≤ c ‖θn − θhk
n ‖E × ‖θn − ηh

n‖E.

From (29), we have

|〈R(tn, vn, θn) − R(tn, v
hk
n , θhk

n ), ηh〉E′×E |
≤ DV ‖vn − vhk

n ‖V × ‖ηh‖L2(Ω) + DT ‖θn − θhk
n ‖L2(Ω) × ‖ηh‖L2(Ω);

≤ DV ‖vn − vhk
n ‖V × ‖ηh

n − θn‖L2(Ω) + DT ‖θn − θhk
n ‖L2(Ω) × ‖ηh

n − θn‖L2(Ω)

+DV ‖vn − vhk
n ‖V × ‖θn − θhk

n ‖L2(Ω) + DT ‖θn − θhk
n ‖2

L2(Ω)
.

Then, let us denote

B0 := max
1≤n≤N

‖θn − ηh
n‖L2(Ω).
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We have

DV ‖vn−vhk
n ‖V ×‖ηh

n−θn‖L2(Ω) ≤ DV ‖vn−vhk
n ‖V B0 ≤ 1

2
D2

V ‖vn−vhk
n ‖2V +1

2
B2
0 ;

and for ε1 > 0,

DT ‖θn − θhk
n ‖L2(Ω) × ‖ηh

n − θn‖L2(Ω) ≤ ε1 ‖θn − θhk
n ‖2

L2(Ω)
+ 1

4ε1
(DT B0)

2;

and for ε > 0,

DV ‖vn − vhk
n ‖V × ‖θn − θhk

n ‖L2(Ω) ≤ D2
V

4ε
‖vn − vhk

n ‖2V + ε ‖θn − θhk
n ‖2

L2(Ω)
.

To continue, by using (48), we obtain

ψ(tn, θn;−ηh) + ψ(tn, θ
hk
n ; ηh) ≤ c0 cϕ ‖θn − θhk

n ‖E × ‖ηh‖E,

and thus

ψ(tn, θn;−ηh)+ψ(tn, θhk
n ; ηh) ≤ c0 cϕ ‖θn − θhk

n ‖2E + c0 cϕ ‖θn − θhk
n ‖E ×‖θn − ηh

n‖E.

Consider the quantity for n = 1, · · · , N ,

Ξn :=
(εn − εn−1

k
, εn

)
L2(Ω)

+ 〈Kn θn − Kn θhk
n , εn〉E′×E.

We have

Ξn ≥ 1

2k

(
‖εn‖2L2(Ω)

− ‖εn−1‖2L2(Ω)

)
+ mKc

‖εn‖2E.

Now, we sum Ξj from j = 1 to j = n.
From (47), we have

n∑
j=1

‖θj − θj−1

k
− θ̇j‖2L2(Ω)

≤ c k.

Under the condition that

DT + c0 cϕ < mKc
, (60)

we can choose ε and ε1 such that ε + ε1 + DT + c0 cϕ < mKc
.
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After some manipulation, we deduce the following error estimate for the
temperature.
For some constant c > 0 independent of DV and for n = 1, · · · , N ,

‖θn − θhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖θj − θhk

j ‖2E
≤ c ‖θ0 − θh

0 ‖2
L2(Ω)

+ c B2
0 + c k2 + c k B1 + c B2 Mθ

+c D2
V k

∑n
j=1 ‖vj − vhk

j ‖2V .

(61)

Here,

Mθ := max1≤n≤N ‖θn − θhk
n ‖L2(Ω),

B1 := ∑N
j=1 ‖θj − ηh

j ‖2E,

B2 := ∑N
j=1 ‖θj − ηh

j − (θj+1 − ηh
j+1)‖L2(Ω).

Third step. Estimate of (vn − vhk
n )1≤n≤N .

The computation of the estimate for the velocity is similar as in [3], p. 241, which
we refer for details. We mention only the main steps.

We obtain, for some constant c > 0 and for n = 1, · · · , N ,

‖vn − vhk
n ‖2H + k

∑n
j=1 ‖vj − vhk

j ‖2V
≤ c ‖v0 − vh

0‖2H + c ‖u0 − uh
0‖2V

+c C0 + c k2 + c k (C1 + Ĉ1) + c C2 Mv

+c k
∑n

j=1 Rhk
j + c k

∑n
j=1 Jhk

νj + c k
∑n

j=1 Jhk
τj

+ε k
∑n−1

j=0 ‖θj − θhk
j ‖2

L2(Ω)
+ c k

∑n−1
j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)
.

Here, we denote by

Mv := max1≤n≤N ‖vn − vhk
n ‖H ;

C0 := max1≤n≤N ‖vn − wh
n‖H ;

C1 := ∑N
j=1 ‖vj − wh

j ‖2V ;
Ĉ1 := ∑N

j=1 ‖vj − wh
j ‖V ;

C2 := ∑N−1
j=1 ‖(vj − wh

j ) − (vj+1 − wh
j+1)‖H ,

and for n = 1, · · · , N ,
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Rhk
n =

( ∫ tn

0
B(tn − s) ε(u(s)) ds − k

n−1∑
m=0

B(tn − tm) ε(uhk
m ), −ε(en)

)
H

+
(
k

∑n−1
m=0B(tn − tm) ε(uhk

m ), ε(wh
n) − ε(vn)

)
H

;

and

Jhk
νn = jν(tn,un, v

hk
n − vn) + jν(tn,u

hk
n−1,w

hk
n − vhk

n );

and

Jhk
τn = jτ (tn,un, v

hk
n ) − jτ (tn,un, vn) + jτ (tn,u

hk
n−1,w

h
n) − jτ (tn,u

hk
n−1, v

hk
n ).

We have, for n = 1, · · · , N ,

k
∑n

j=1 Rhk
j

≤ c k2 + c ‖u0 − uh
0‖2V + c k

∑n−1
j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)
+ c k (C1 + Ĉ1);

and

k
∑n

j=1 Jhk
νj

≤ c k2 + c ‖u0 − uh
0‖2V + c k

∑n−1
j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)

+cε k
∑n

j=1 ‖vj − vhk
j ‖2V + c k C1 + c k Ĉ1;

and

k
∑n

j=1 Jhk
τj

≤ c k2 + c ‖u0 − uh
0‖2V + c k

∑n−1
j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)

+cε k
∑n

j=1 ‖vj − vhk
j ‖2V + c k C1 + c k Ĉ1.

Thus, we obtain the following error estimate for the velocity.
For some constant c > 0 and for n = 1, · · · , N ,

‖vn − vhk
n ‖2H + k

∑n
j=1 ‖vj − vhk

j ‖2V
≤ c ‖v0 − vh

0‖2H + c ‖u0 − uh
0‖2V

+c C0 + c k2 + c k (C1 + Ĉ1) + c C2 Mv

+c ε k
∑n−1

j=0 ‖θj − θhk
j ‖2

L2(Ω)
+ c ε k

∑n
j=1 ‖vj − vhk

j ‖2V
+c k

∑n−1
j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)
.

(62)
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To summarize, adding the three inequalities (59), (61), and (62) and choosing
DV and ε small enough, we obtain, for some constant c > 0 and for n = 1, · · · , N ,

‖αn − αhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖∇(αj − αhk

j )‖2
L2(Ω)

+ ‖θn − θhk
n ‖2

L2(Ω)

+k
∑n

j=1 ‖θj − θhk
j ‖2E + ‖vn − vhk

n ‖2H + k
∑n

j=1 ‖vj − vhk
j ‖2V

≤ +c ‖u0 − uh
0‖2V + c ‖v0 − vh

0‖2H + c ‖σ 0 − σ h
0‖2H

+c ‖α0 − αh
0‖2

L2(Ω)
+ c ‖θ0 − θh

0 ‖2
L2(Ω)

+c k
∑n

j=1 ‖αj − αhk
j ‖2

L2(Ω)

+c k2 + c k
∑n−1

j=1

(
k

∑j

i=1 ‖vi − vhk
i ‖2V

)

+c A0 + c A2
0 + c k ∇A1 + c k A1 + c k A2 + +c B2

0 + c k B1 + c B2 Mθ

+c C0 + c k C1 + c k Ĉ1 + c C2 Mv.

(63)
To end, let us recall the discrete version of Gronwall’s inequality, see e.g. [2].

Consider a sequence {rn}0≤n≤N ⊂ R
+ and a ∈ R

+.
Assume

rn ≤ a + c k

n−1∑
j=0

rj , 1 ≤ n ≤ N.

Then, we have

rn ≤ (a + c k r0) (1 + c k)n−1 ≤ (a + c k r0) ec T , 1 ≤ n ≤ N.

Now, from Gronwall’s inequality, using estimation (63) and under condition (60),
we conclude that for DV small enough, then there exists some constant c > 0:

max
1≤n≤N

(
‖αn − αhk

n ‖2
L2(Ω)

+ k

n∑
j=1

‖∇(αj − αhk
j )‖2

L2(Ω)
+ ‖θn − θhk

n ‖2
L2(Ω)

+k
∑n

j=1 ‖θj − θhk
j ‖2E + ‖vn − vhk

n ‖2H + k
∑n

j=1 ‖vj − vhk
j ‖2V

)

≤ +c ‖u0 − uh
0‖2V + c ‖v0 − vh

0‖2H + c ‖σ 0 − σ h
0‖2H

+c ‖α0 − αh
0‖2

L2(Ω)
+ c ‖θ0 − θh

0 ‖2
L2(Ω)

+c k2 + c A0 + c A2
0 + c k ∇A1 + c k A1 + c k A2

+c B2
0 + c k B1 + c B2

2 + c C0 + c k C1 + c k Ĉ1 + c C2
2 .

(64)
As a typical example, let us consider Ω ⊂ R

d , d ∈ N
∗, a polygonal domain. Let Th

be a regular finite element partition ofΩ . Let V h ⊂ V ,Eh ⊂ E, andKh
da ⊂ Kda be

the finite element spaces consisting of piecewise polynomials of degree ≤ m, with
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m ≥ 1, according to the partition Th. Denote by Πh
V : Hm+1(Ω)d → V h,

Πh
E : Hm+1(Ω) → Eh, and Πh

K : Hm(Ω) → Kh
da the finite element

interpolation operators.

Recall (see e.g. [4]) that

⎧⎪⎪⎨
⎪⎪⎩

‖w − Πh
V w‖Hr(Ω)d ≤ c hm+1−r |w|Hm+1(Ω)d , ∀w ∈ Hm+1(Ω)d;

‖η − Πh
Eη‖Hr(Ω) ≤ c hm+1−r |η|Hm+1(Ω), ∀ η ∈ Hm+1(Ω);

‖ξ − Πh
Kξ‖L2(Ω) ≤ c hm |ξ |Hm(Ω), ∀ ξ ∈ Hm(Ω),

where r = 0 (for which H 0 = L2) or r = 1.
We assume the following additional data and solution regularities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0 ∈ Hm+1(Ω)d; α0 ∈ Hm(Ω);
v ∈ C([0, T ];H 2m+1(Ω)d), v̇ ∈ L1(0, T ;Hm(Ω)d);
θ ∈ C([0, T ];Hm+1(Ω)), θ̇ ∈ W 1,2(0, T ;Hm(Ω));
α̇ ∈ W 1,1(0, T ;Hm(Ω)).

(65)

Then, we choose in (64) the elements

uh
0 = Πh

V u0, vh
0 = Πh

V v0, θh
0 = Πh

E θ0, αh
0 = Πh

K α0,

and

wh
j = Πh

V vj , ηh
j = Πh

E θj , j = 1 · · · N.

From assumption (65), we have

‖u0 − uh
0‖V ≤ c hm, ‖v0 − vh

0‖H ≤ c hm;
‖θ0 − θhk

0 ‖L2(Ω) ≤ c hm, ‖α0 − αh
0‖L2(Ω) ≤ c hm;

A0 ≤ c hm+1, B0 ≤ c hm+1, C0 ≤ c h2m+1;
k A1 ≤ c h2m, k B1 ≤ c h2m, k C1 ≤ c h2m, k Ĉ1 ≤ c h2m;
A2 ≤ c h2m, B2 ≤ c hm, C2 ≤ c hm.

Using these estimates in (64), we conclude to the following error estimate result.

Theorem 2 We keep the assumptions of Theorem 1. Under the additional assump-
tions (47), (48), and (65), and condition (60), then for DV small enough, we obtain
the error estimate for the corresponding discrete solution {(vhk

n , θhk
n , αhk

n ), 1 ≤
n ≤ N}:
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max1≤n≤N ‖vn − vhk
n ‖H +

(
k

∑N
n=1 ‖vn − vhk

n ‖2V
)1/2

+max1≤n≤N ‖θn − θhk
n ‖L2(Ω) +

(
k

∑N
n=1 ‖θn − θhk

n ‖2E
)1/2

+max1≤n≤N ‖αn − αhk
n ‖L2(Ω)

≤ c (h
m+1
2 + k).

In particular, for m = 1, we have

max1≤n≤N ‖vn − vhk
n ‖H +

(
k

∑N
n=1 ‖vn − vhk

n ‖2V
)1/2

+max1≤n≤N ‖θn − θhk
n ‖L2(Ω) +

(
k

∑N
n=1 ‖θn − θhk

n ‖2E
)1/2

+max1≤n≤N ‖αn − αhk
n ‖L2(Ω)

≤ c (h + k).

5 Numerical Computations

In this section, we provide numerical simulations in two-dimensional tests for the
variational problem (QV ) by using Matlab computation codes. We refer to the
previous numerical scheme and use spaces of continuous piecewise affine functions
V h ⊂ V , Eh ⊂ E, and Kh

da ⊂ Kda as families of approximating subspaces.
Here, we consider the following formulas:

G(t)(τ , α) = G0(t) τ − α (dij (t)) in Ω;
Ce(t, θ) := −θ (cij (t)) in Ω;
pν(t, ·, r) = cν(t) r+ on ΓC;
pτ (t, ·, r) = μτ (t) cν(t) r+ on ΓC;
Kc(t,∇θ) = (kij (t))∇θ in Ω;
De(t, v, θ) = −cij (t)

∂ vi

∂ xj
− θ de(t) in Ω;

φd(σ, ε(u), α) = −d1 ‖σ‖V M − d2 Ld(α) in Ω;
ϕ(t, r) = 1

2ke(t) (r − θR(t))2 on ΓC.

In view of the numerical simulations, we consider a rectangular open set, linear
elastic, and linear visco-elastic operators, for a.e. t ∈ (0, T ):
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Ω = (0, L1) × (0, L2);
ΓF = ({0}×[0, L2]) ∪ ([0, L1]×{L2}) ∪ ({L1} × [0, L2]); ΓC = [0, L1] × {0};
(G0(t) τ )ij = EY (t) rP (t)

1−r2P (t)
(τ11 + τ22) δij + EY (t)

1+rP (t)
τij , 1 ≤ i, j ≤ 2, τ ∈ S2;

(A(t) τ )ij = μ(t) (τ11 + τ22) δij + η(t) τij , 1 ≤ i, j ≤ 2, τ ∈ S2;
(B(t) τ )ij = B1(t) (τ11 + τ22) δij + B2(t) τij , 1 ≤ i, j ≤ 2, τ ∈ S2.

Here, EY is the Young’s modulus, rP is the Poisson’s ratio of the material, δij

denotes the Kronecker symbol, and μ and η are viscosity constants.
For computations, we considered the following data (IS unity), for t ∈ (0, T ):

L1 = L2 = 1, T = 1;
μ(t) = 3 et , η(t) = 10

1 + t2
, EY (t) = 2

1 + t
, rP (t) = 0.1

1 + t2
, f 0(x, t)=(0, −t);

f F (x, t) = (0, 0), x ∈ {0} × (0, L2);
f F (x, t) = (0.4 t, 0.3

1+t
), x ∈ ((0, L1) × {L2}) ∪ ({L1} × (0, L2));

d11(t) = d22(t) = d12(t) = d21(t) = 1;
c11(t) = c12(t) = c21(t) = t, c22(t) = t2;
k11(t) = 2

1+t
, k22(t) = 1+t

2 , k12(t) = k21(t) = 1;
ke(t) = 1+t

2 , de(t) = t2, q(t) = t;
g(t, x) = x (L1 − x) t, μτ (t, x) = 0.1 x t2,

cν(t, x) = 10 t x2, x = (x, 0) ∈ (0, L1) × {0};
γ = 0.1, d1 = 1/50, d2 = 1/20, Ld(s) = es, 0 ≤ s ≤ 1;
u0 = (0, 0), v0 = (0, 0), α0 = 1, θ0 = 0.

Figure 1 represents the initial configuration.
In Figures 2, 3, and 4, we compute, respectively, the Von Mise norm, which

gives a global measure of the stress, the temperature, and the damage at final time
in the body at final time, for θR = 0, respectively, for short and long memory visco-
elasticity. In Figure 5, we show the evolution of the damage at the particular point
S = (L1, L2) (direction of the surface traction). We observe that the distribution of
these parameters is changing for long memory, the deformation is more important,
as well as for the damage, temperature, and stress in the neighborhood of the point S.

Finally in Figure 6, we show the distribution of the temperature and damage of
the body for larger ground temperature. Here, we observe larger deformation, larger
damage, and larger temperature in the neighborhood of the contact surface.
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Fig. 1 Initial configuration
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Fig. 2 Von Mise norm at final time, θR = 0
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Fig. 3 Temperature field at final time, θR = 0
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Fig. 4 Damage field at final time, θR = 0
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