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Abstract We study a class of non-clamped dynamical problems for visco-elastic
materials, the contact condition is modeled by a normal compliance, with friction,
damage and heat exchange. The weak formulation leads to a general system defined
by a second-order quasi-variational evolution inequality on the displacement field
coupled with a nonlinear evolutional inequality on temperature field and a parabolic
variational inequality on the damage field. We present and establish an existence and
uniqueness result of different fields, by using general results on evolution variational
inequalities, with monotone operators and fixed point methods. Then, we present
a fully discrete numerical scheme of approximation and derive an error estimate.
Finally, various numerical computations are developed.

1 Introduction

Problems involving contact between deformable bodies abound in industry and
everyday life. For this reason, a considerable engineering and mathematical liter-
ature is devoted to dynamic and quasi-static frictional contact problems, including
mathematical modeling, mathematical analysis, numerical analysis and numerical
simulations. The study of contact problems for elastic—visco-elastic materials
within the mathematical analysis framework was introduced in the early reference
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works [5, 8-10]. In these works, numerous types of frictional contact models
with nonlinear visco-elastic or elasto-plastic materials were widely studied, in
the framework of linearized infinitesimal deformations, using abstract variational
inequalities, with monotonicity and convexity.

Further extensions to non-convex contact conditions with non-monotone and
possible multi-valued constitutive laws led to the active domain of non-smooth
mechanic within the framework of the so-called hemivariational inequalities, for
a mathematical as well as mechanical treatment, we refer to [11].

This paper is a continuation work of the results obtained in [3], p. 251. In [3],
the authors studied a problem for the quasi-static contact between an elastic—visco-
plastic body and an obstacle, the contact was clamped on some part of the boundary
and was frictionless, and it was defined by a normal compliance condition with
damage. An existence and uniqueness result on displacement and damage fields has
been established, and also some numerical approximations and simulations have
been presented.

In this work, we study a class of dynamic contact problems with normal
compliance condition and damage, with Coulomb’s friction and thermal effects, for
visco-elastic material. The novelty here is that we investigate a general long memory
material law, depending on time, on the temperature and the damage. Moreover, the
evolution of the temperature is described by a general nonlinear equation, involving
the gradient of temperature and the velocity of deformation, and the associated
boundary condition is defined by an inclusion of sub-differential type in a non-
convex framework. Also, the usual clamped condition has been deleted, so that
Korn’s inequality cannot be applied any more. The problem appears then semi-
coercive and strongly nonlinear due to the frictions. Semi-coercive problems were
first studied in [5] for Coulomb’s friction models, where the inertial term of the
dynamic process has been used in order to compensate the loss of coerciveness in
the a priori estimates. The variational formulation of the mechanical problem leads
to a new non-standard model of system defined by a second-order quasi-variational
inequality on the displacement field, coupled with one nonlinear inequality for the
temperature field and with a variational inequality on the damage field. Then, by
using classical results on evolution variational inequalities, with monotone operators
and adopting fixed point methods frequently used in [2], we prove an existence and
uniqueness of solution on the displacement, damage, and temperature fields.

The paper is organized as follows. In Section 2, we describe the mechanical prob-
lem and specify the assumptions on the data to derive the variational formulation,
and then we state our main existence and uniqueness result. In Section 3, we give the
proof of the claimed result. In Section 4, we introduce a fully discrete approximation
scheme and derive an order error estimate under solution regularity assumptions. In
Section 5, we present some numerical simulations in order to show the evolution
of deformation, of the Von Mise’s norm, of the temperature and the damage in the
body.
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2 The Contact Problem

In this section, we study a class of thermal contact problems with non-clamped
frictional normal compliance condition, for visco-elastic materials. We describe the
mechanical problems, list the assumptions on the data, and derive the corresponding
variational formulations. Then, we state an existence and uniqueness result on
displacement and temperature fields, which we will prove in the next section.

The physical setting is as follows. A visco-elastic body occupies a bounded
domain £2 c R (d = 2,3) with a Lipschitz boundary I" that is partitioned into
two disjoint measurable parts, I'r and I.. Let [0, T] be the time interval of interest,
where T > 0. We assume that a volume force of density f acts in £2 x (0, T') and
that surface tractions of density f apply on I'r x (0, T). The body may come in
contact with an obstacle, the foundation, over the potential contact surface I'c. The
model of the contact is specified by a general sub-differential boundary condition,
where thermal effects may occur in the frictional contact with the foundation. Our
aim is to describe the dynamic evolution of the body.

Let us recall now some classical notations, see e.g. [5] for further details. We
denote by Sy the space of second-order symmetric tensors on R?, while “-” and
| - | will represent the inner product and the Euclidean norm on Sy and RY. Let v
denote the unit outer normal on I". Everywhere in the sequel, the indices i and j
run from 1 to d, summation over repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of the independent variable. We also use the following notation:

d

H=(L2®@) .  A=(o=(loy=0uecli@), 1=ij=d),
Hy={ue H | e(u) € 5}, 4 ={o €| Dive € H}.

Here, ¢ : H —> #¢and Div : #{ —> H are the deformation and the divergence
operators, respectively, defined by

1
e(w) = (gjm), &= E(Mi,j +uj;), Divo = (0ij ;).

The spaces H, .7, H}, and .77] are real Hilbert spaces endowed with the canonical
inner products given by

(u,v)H=/ u;v; dx, (U,T)JKZ/ 0ijTij dx,
2 2

(u,v)pg, = W, v)g+(€m), e)H, (0,7) 0 = (0, 7) v+ Div o,Div 7)q.
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We recall that C denotes the class of continuous functions; C*, m € N* the set
of m times continuously differentiable functions; and W7, m e N, 1 < p < 400
the classical Sobolev spaces.

Now, we consider a visco-elastic body which occupies a bounded domain 2 C
R? (d = 1,2,3) with a Lipschitz boundary I that is partitioned into two disjoint
measurable parts, I'r and I'c. Let [0, T] be the time interval of interest, where
T > 0. We assume that a volume force of density f acts in £2 x (0, T') and that
surface tractions of density f r apply on I'r x (0, T'). The body may come in contact
with an obstacle, the foundation, over the potential contact surface /¢, see figure
below.

f _

=
I
3

\Y

The mathematical contact mechanics
meas(l1)=0; L=Ir; L=Ic; fo=/fF

To continue, the mechanical problem is then formulated as follows.

Problem Q: Find a displacement field # : (0,7) x £2 — R4, a stress field
0:(0,T)x 2 — Sy, atemperature field 6 : (0, T) x 2 — R, and a damage
fielda : (0, T) x £2 — R such that fora.e. t € (0, T):

o(t) = At)e(t)) + At)(e()), at)) + fot Bt —s) (e(u(s)), a(s))ds
+C.(t,60(t)) in £2;

(1
i(t) =Dive(t) + fo(r) in £2; )
o(t)v= fr) on IF; 3)

oy(t) = —py(t,uy(t) — g(r)) onlc; “)
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lo ()] < po(t,uy(t) — g(0)) :
lo ()] < pe(t,uy(t) —gt)) = u. (1) =0;

lo-(t)] = p(t,un(t) — g(t)) = (1) = —ro (1),
for some A > 0;

on Ic; &)

la(t) —y Aa(t) — ¢alo (1), e@ (1), ()] (§ —a()) =0 ing2, V&[0, 1];

(6)
0<a(t) <1 in$2; 7
a—O{(z‘)=0 onl; (8)
ov
(1) — div(Ae(t, VO(1))) = De(t,e@(1)),0(1)) + q(t) in £2; ©
— K (t,x, VO, x)v:=E({,x,0(,x)) €dp(t,x,0(,x)) ae. x¢€lg;
(10)
0(t)=0 on IF; (11)
ul =ug; w0 =vy; a0 =«ay 60)=06 in 5. (12)

Equation (1) is the Kelving Voigt’s long memory thermo-visco-elastic consti-
tutive law of the body including the influence of the damage variable. Here, o
is the stress tensor, <7 denotes the viscosity operator with, @A)t = HAt, -, 1)
is some function defined on £2, and ¢ is the elastic operator depending on the
linearized strain tensor &€ (u) of infinitesimal deformations and on the damage «,
with ¥(t) (T, o) = Yt, -, T, @) is some function defined on £2. For example,

Yt)(t,0) = L)t —a Cyu(t) in £2,

where ¥ T = @ (t, -, T) is some time-depending elastic tensor function inde-
pendent on the damage, defined on £2, and Cy,(¢) is some time-depending damage
tensor. The term Z(t)(t,a) = A(t, -, T, o) represents the relaxation tensor time
depending on the linearized strain tensor and the damage, defined on §2. And the
last tensor C,(¢,0) := C,(t, -, 6) denotes the thermal expansion tensor depending
on time and temperature, defined on 2. For example,

Co(t,0) :== —0 Coxp(t) in£2,
where
Cexp(t) = (Cij(l, )

is some time-depending expansion tensor defined on §2, with ¢;; € L*°((0, T) x £2).
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The model in (2) is the dynamic equation of motion where the mass density
o = 1. Equation (3) is the traction boundary condition.

On the contact surface, the general relation (4) represents the normal compliance
contact condition, where o, denotes the normal stress, u, is the normal displace-
ment, g is the gap between the contact surface and the foundation, and p, is some
normal compliance function defined on (0, T) x I'c x R with the convention that
pv(t,r) = py(t, -, r) denotes some function defined on I, for a.e. t € (0, T), for
all r € R. The term u, — g represents, when it is positive, the penetration of the
surface asperities into the foundation.

For example, for a.e. r € (0, T),

p(t,-,r)=cy(t,)ry onlg¢, Vr e R.

In this formula, the normal stress is proportional to the penetration, with some
positive coefficient ¢, defined on (0, ) x I'¢c, which is related to the hardness of
the foundation.

Equation (5) represents a general version of Coulomb’s dry friction law, where
o ; is the tangential stress, p; is the friction bound measuring the maximal frictional
resistance defined on (0, T) x I'c x R, and i is the tangential velocity. Recall that
pc(t,r) = p(t,-, r)is some function defined on I¢c, for a.e. t € (0, T), for all
r € R.

For example, for a.e. t € (0, T),

Pr(ta‘ar)ZMr(t")Cv(ta')r-i- OnFCa VFGR,

where the friction bound is proportional to the normal stress with some positive
coefficient of friction u, defined on (0, T') x Ic.

Following Frémond [6, 7], the damage function « represents the percentage of the
safe part or undamaged part, « = 1 means that the body is undamaged, and @ = 0
says that the body is completely damaged. The evolution of the microscopic cracks
responsible for the damage is described by the parabolic differential inclusion (6) of
the damage function « satisfying 0 < « < 1, where y is a positive constant and ¢,
is a given constitutive function which describes damage source in the system. The
inequality (6) means

a() =1 = a@) —y La(r) — ¢i(o (1), (1)), a(1)) < 0;
and
a(t) € 0, 1) = a@®) — y Aa(r) — ¢a(o (1), e (1)), a(r)) = 0;
and

a() =0 = a@®) —y Aa(t) — ¢a(o (1), e(()), (1)) = 0.
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Equation (8) represents the homogeneous Neumann boundary condition for the
damage field, see e.g. [3], p. 241.

The differential equation (9) provides the evolution of the temperature field.
There #.(t, VO) := J.(t,-, VO) is some nonlinear time-depending function of
the temperature gradient V6, which is defined on 2. For example, denote by

Kc(t, ) = (kij(z,-))
the thermal conductivity tensor defined on §2, we could consider
Je(t, -, VO) = K (t,-) V0.
In the second member, ¢ (¢) denotes the density of volume heat sources, whereas
D,(t, e (1)), 0(1)) := De(t, -, €(u(1)), 6(1))
is the deformation-viscosity heat, which is a nonlinear function defined on £2 and

which represents the heat generated by the velocity of deformation (viscosity) and
may depend on the temperature.

Example 1
De(t, e(u(1)), 0(1)) = —Cexp(t) : e(@(t)) = —cij(t, -) &ij (@(1)). (13)

Example 2
D,(t, e(u(r)), 6(1)) = —0(t, ) de(t, -), (14)

with some coefficient d, € L*((0, T) x 2.R");
Example 3

D (t,e(u(1)), 0(1)) = —Cexp(t) : €(u(t)) — 0(t, ) de(t, ). 15)

By assuming the variation of 6(f) small enough, then the heat function
D, (t,e(u(t)),0(t)) may be considered as a formula which is independent of
the temperature.

The associated temperature boundary condition is given by (10) and (11), where
& and ¢ are some functions defined on (0, T) x I'c x R. Here,

op(t,x,r):=dp(t,x,)(r), Y(t,x,r) € (0,T) x I'c xR

denotes the sub-differential on the third variable of ¢ in the locally Lipschitz
framework.
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We recall that for a locally Lipschitz function G : R — R, at any pointa € R

and for any vector d € R, we can define the following directional derivative with
respect to d:

Tim, o, 2T ”i) — 6@ _ % a). (16)
We have for all a, d € R, forall £ € G (a):
Ga:d) > &d
and
1G%a; d)| <1G%@)| x |d|,  [€] <1G°(a)],
where
TR NAGE h; —G@ _ 6%,

In the case where G is convex on R, we have
G.(ayd if d>0
G%a;d) = { Gj(a)d if d<0
0 if d=0,
and
G'(a) = max{G/(a), G)(a)},

where G, and G, denote the right side and left side derivatives, respectively.
In the sequel, for a.e. (¢,x) € (0, T) x I, forall (r,s) € R2, we use the notation

@Ot x, 15 5) == [p(t, x, )1°(r; s),

and

o0, x,r) == [o, x, )1°(r).

Taking the previous example for .#;, we have

a6
H(t,x,VO)v = kij(t, x) — v;.
3Xj



A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage 79

Let us consider, for example,
1
p(t,x,r) = zke(t,x)(r — Or(t, x))%, Y(t,x,7) € (0,T) x I'c xR, (17)

where O, is the temperature of the foundation, and %, is the heat exchange coefficient
between the body and the obstacle. We obtain

Et,x,r)=0p(t,x,r) =k, (t,x) r —Or(t,x)), (t,x,7) € (0,T) x I'c xR,

Finally, the data in ug, vg, g, and 6y in (12) represent the initial displacement,
velocity, damage, and temperature, respectively.

In view to derive the variational formulation of the mechanical problems (1)-
(12), let us first precise the functional framework. Let

V =H
be the admissible displacement space, endowed with the inner product given by
(u,v)y = (), e() r+ W, v)u  Vu,v eV,
and let || - ||y be the associated norm, i.e.
oIy = le@)%+ Ivl; ~ VYveV.
Therefore, (V, || - ||v) is a real Hilbert space, where the norm || - ||y is equivalent to

I a2y
Let

E={neH' (®2),n=0 on Ir)
be the admissible temperature space, endowed with the canonical inner product of
HY(2).

By the Sobolev’s trace theorem, there exists a constant cp > 0 depending only
on £2, and I'¢ such that

Ivll2repye = collvlly, Yo e Vi and nllg2ry < collnlle, Vo€ E.

(18)
Next, we denote the set of admissible damage fields by
1 43 :
Haga =1 €H (.{2),8—=00nF, 0<é&<lae. in 2}
v

We use here two Gelfand evolution triples (see e.g. [12], pp. 416) given by
VCH=H cV', EcCL*Q)=(L*R)) CE,

where the inclusions are dense and continuous.
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In the study of the mechanical problems (1)-(12), we assume that the viscosity
operator &7 : (0, T) x 2 x S; —> Sy satisfies
(i) -, -, ) is measurable on (0, T') x £2, VT € Sy;
(ii) «At, x, -) is continuous on Sy for a.e. (¢, x) € (0, T) x £2;

(iii) there exists m > 0 such that
(A, x,T1) — A1, x,72) - (T1 — T2) = my|T1 — 127,

19
V1, 12 € Sy, forae. (r,x) € (0,T) x £2; (19)

(iv) there exists c(‘)"%e L?((0,T) x £2;: R™), c‘l‘/ > 0 such that
|t x, T)| < (1, %) + |,

YVt € Sy, forae. (r,x) € (0,T) x £2.

Here, recall that for every t € (0,T) and T € Sy, we write by oAt) = At, -, -)
a functional which is defined on 2 x S; and «/t) T = ¢, -, T) some function
defined on £2.

We suppose that the elasticity operator & : (0, T) x 2 x Sg x R — §; satisfies

(i) 4, -, T, A) is measurable on (0, T) x 2, VTt € S4, VA € R;

(ii) there exists Lg > 0 such that
|9t x, T1, 01) — A1, x, T2, 22)| < Ly (Jt1 — 72| + A1 — A20)
Vti, T2 € Sq, YA, M2 €R, ae. (t,x) € (0,T) x £2;

(iii) there exists ¢ € L?((0, T) x £2;RY), ¢ >0, ¢f > 0 such that
G(t, x, T, M| <, %)+ x|+ T Al
YVt eS;, VAeR, ae.(t,x) € (0,T) x £2;

(iv) the partial derivatives with respect to the first, third, and fourth
variables of ¢ exist and are bounded.

(20)
We put again ¥t)(t, L) = ¥t, -, T, A) some function defined on §2 for every ¢ €
O,7T), T e S;, \elR.
The relaxation tensor & : (0, T) x 2 x S; x R — S, satisfies

G BC,-,t,A) € L0, T) x 2; S4), VT € Sg, VA € R;

(ii) there exists L g > 0 such that
|B(t, x,T1, A1) — B, x, T2, \2)| < Ly (lt1 — 12| + |21 — A2])
Vti, 72 € Sq4, VAL, My eR, ae. (t,x) € (0,T) x £2;

(iii) the partial derivative with respect to the first variable of
A exists and is bunded.

ey
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The body forces and surface tractions satisfy the regularity conditions:
foe WO T H),  fre WO, T: L2(ITP))). (22)
The gap function g : (0, T) x I'c —> R verifies

(i) g € L=((0, T) x I'c; RF);
(ii) the partial derivative with respect to the first variable of (23)
g exists and is bounded.

The thermal expansion tensor C, : (0, T) x £2 x R — S verifies

(i) Ce(-, -, ¥) is measurable on (0, T') x £2, VO € R;
(i) there exists L, > 0 such that
|Ce(t, %, 01) — Celt, x, 92)| < L |91 — 2]
Vi, 9 €R, a.e. (t,x) € (0, T) x £2;
(iii) there exists ¢5¢ € L®((0, T) x £2; RY), ¢i* > 0 such that 24)
|Celt, %, 9)] < cg° (2, %) + €1 9],
V9 € R, forae. (t,x) € (0,T) x £2;

(iv) the partial derivatives with respect to the first and third variables
of C, exist and are bounded.

Here, we use the notation C,(t, ) = C.(t, -, ) some function defined on £2, for
allt € (0,T)and ¥ € R.
The normal compliance function p, : (0, T) x It x R — R satisfies

(i) there exists L, > 0 such that
|pU(t’x7r]) - pv(t9x7r2)| S Lvlrl _r2|9
Vri,rpeR, ae. (t,x) € (0,T) x I¢c;

@i1) py(-, -, r) is Lebesgue measurable on (0, T) x I¢c, Vr € R; (25)
(iii) the mapping p, (-, -, 7) =0, Vr <0;

(iv) the partial derivatives with respect to the first and third variables
of p, exist and are bounded.

The friction bound function p; : (0,T) x I'c x R — R, satisfies
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(i) there exists L; > 0 such that
|pr(t,x,7r1) — pr(t, x,12)| < Le|ri —ral,
Vri,rpeR, ae. (t,x) € (0,T) x Ic; (26)
@ii) p (-, -, r) is Lebesgue measurable on (0, T) x I'c, Vr € R;

(iii) the mapping p,(-,-,r) =0, Vr <0.

The damage source ¢g : 2 x Sz x Sg x [0, 1] —> R verifies

(i) there exists Ly > 0 such that
[pa(x,01,€1,81) — Pa(x,02,€2,8)| < Ly (lo] — 02|+ |e] — e2] + 151 — &2,
Voi1,0,€1,62 € S5, Y€1, & €[0,1], ae . x € £2;
27

(i) ¢4(-, 0, €, &) is Lebesgue measurable function on §2,

Vo,e €S;, VE€[0,1];

(iii) ¢4 (-, 0,0,0) € L*(£2).
We assume that the nonlinear function .7, : (0, T) x 2 x R? — R satisfies

(i) Hi(-, -, €) is measurable on (0, T) x §2, V& € R%;
(ii) (¢, x, -) is continuous on RY, ae. (t,x) e (0,T) x £2;
(iii) there exists c{‘ e L2((0,T) x £2; R1), c‘l)g” > 0, such that
| Ao, %, 8)] < i (2, %) + ¢ e,
V& € RY, ae. (t,x) € (0, T) x £2; (28)

(iv) there exists m _y; > 0 such that
(He(t, x,E1) — He(t,x,6)) - (1 — &) = my |&1 — &I,
V&, £ € RY, ae. (t,x) € (0,T) x 2

(v) there exists n_y, > O suchthat JZ.(¢t,x,&) - & > ny, |E|2,
VEeRY, ae. (t,x) € (0,T) x 2.

We suppose that the deformation-viscosity heat function D, : (0, T) x £2 x Sz X
R — R satisfies
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(1) D.(-, -, T, %) is measurable on (0, T) x £2, V(t,?) € S; x R;

(ii) the function D, (¢, x, -, -) is Lypschitz continuous on Sy x R,
i.e.dDy > 0, 3Dy > 0:

[De(t, x,7T1,01) — De(t, X, T2, 92)| < Dy |11 — 72| + Dr [0 — 92|,
Y(t1,01), (12,92) € Sy xR, forae. (t,x) € (0,T) x £2;
(iil) D.(-, -, 0s,,0) € L*°((0, T) x £2);
(V) (De(t, x, T, 01) — D, (1, x,T,92)) (91 — ¥2) <0,
YVt e Sy, Vi, ! €eR, ae.(t,x) € (0,T) x £2.

(29)
We notice that these conditions are verified in examples (13)—(15).
The heat sources density verifies
g € L*(0, T; L*(22)). (30)

We suppose that the nonlinear functions =, ¢ : (0, T) x I'c x R — R satisfy

i) &(,-,r)and ¢(-, -, r) are measurable on (0, T) x I'¢c, Vr € R;
(ii) ¢(t, x, -) is locally Lipschitz on R for a.e. (t,x) € (0,T) x I¢;
(iii) there exists ¢ € L2((0, T) x I'c; RY), ¢/ >0, such that
00t x, 7)| < cf (2, ) + ¢ Il 31)
VreR, ae. (t,x) € (0,T) x I¢;
iv) (Z@, x,r) — &, x,r2) (rn —r2) =0,

Vri, melR, ae. (t,x) e (0,T) x I¢.

These assumptions are clearly satisfied in example (17).
Finally, we assume that the initial data satisfy the conditions

up €V, v eV, 6ekE, oyeHyy. (32)

Using Green’s formula, we obtain the following weak formulation of the
mechanical problem Q, defined by a system of second-order quasi-variational
evolution inequality coupled with a first-order evolution equation.

Problem QV': Find a displacement field # : [0, 7] — V, a damage field « :
[0, T] — %44, and a temperature field 6 : [0, T] — E satisfying for a.e. t €
0, 7T):
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(@(t) + A@) a(t) + B@)(u(r), a(r)) + C@) (1), w —a(t))v/xv,

1
+(/0 Bt —s) (e(u(s)), a(s)) ds, e(w) — e@()))

(33)
vt u(®), w — @) + j- (¢, u), w) — jo(r, u(@), ()
= (f(®), w—u(@)yxy, Vwe V.
(@(t),§ —a() 22 +v (Va@), VE = Va(t))2(g) (34)
= (¢a(o (1), e (1), a(1),§ —a()) 22y, VE € Hia.
<60),n >pxe+ < K@®)0@),n>pxp +¥(,000); 1) (35)
2 < R(tv u(t)s e(t))7 77 >E/><E + < Q(t)7 77 >E/><E7 VU € E
u©) =uy, #0)=vy, a0 =ay 60O =60 in K. (36)

Here, the operators and functions A(t) : V —> V/, B(t) : V x Hy, —>
V,C@t) : E— V' j,j: : (0,T) x V2 — Rt K(t) : E — E/,
¥(t,3) : EXE — R, R(t,-,) : VXE — E, f : (0T — V|,
and Q : (0,T) —> E’ are defined by, forallv € V,w € V,{ € E,n € E,
& e Ky, forae. t € (0,7T),

(A v, wyrxy = (A1) (eV), €W) 75
(B((v,8), wyyxy = (A1) (v, §), ew) s
(COE wyyrsy = (Ce(t, £()), ew)

Ju(t, v, w)=/ pu(t, vy — g(t) wy da;
I'c

Je (&, v, w) =/ pr(t, vy — g(t)) lwelda;
I'c

(f@), w)vixy = (fo®), wny + (f p(t), )12y
K@), e =/Q Helt, VE) -V dx;

Yt ¢in) = /F (. x, £(x): n(x)) da(x);

(R(t, . 0). M ExE =/Q D,(t,e(v), ) ndx:

<Q(r>,n>EfxE=/Qq(t)ndx.
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We notice that from (31), then the formula v (¢, ¢; 1) is well defined for all ¢ €
E,n € E,forae.t € (0, 7).
The inequality (35) is a consequence of the following equation:

<0),n >pxe+ < KOO, >pxk +/ E(r,0(t)nda
re (37)
=< R(ts u(t)79(t))v 77 >E/><E + < Q(t)v 77 >E/><E’ VTY € Ea

where & (t,r) := E(t,-,r) for (t,r) € (0,T) x R.
In the case when ¢(t, x, ) is differentiable for a.e. (¢, x) € (0, T) x I;, we have

E(tvxar) = (p/(tvx5r) = [(p(tsx’ )]/(r)
for (t,x,r) € (0,T) x I'c xR.

Then, for all { € E and a.e. t € (0, T), the linear functional

nGEHw(t,f;n)=f

I'c

E(t, {nda = / ¢ (1, %, ¢ () da)

I'c
will be denoted by
d(t,¢) e E.
The inequality (35) or Equation (37) can be written as
6(t) + K (1) 0(r) + ®(1,0(t)) = R(t, u(r),0(r)) + Q(t) in E'.

Our main existence and uniqueness result is the following, which we will prove
in the next section.

Theorem 1 Assume that (19)—(32) hold, and under the condition that

Mgy

L, < —2
2T

then there exists an unique solution {u, «, 6} to problem QV with the regularity:

ueC O T; Hynwh20,T; V) n W20, T; V');
o« € WHA0, T3 L2(82) N L0, T: Haa): (38)
0€CO,T;L*(2)NL*0,T; EYNWh2(0, T; E').
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3 Proof of Theorem 1

The idea is to bring the second-order inequality to a first-order inequality, using
monotone operator, convexity, and fixed point arguments, and will be carried out in
several steps.

Let us introduce the velocity variable

v=1.

The system in problem QV is then written as, for a.e. t € (0, T),

t
u(r>=uo+/ v(s) ds;
0
(@) +ADv@) + B@) (@), a@) +C@)O@), w—v())yxv,
+(/ Bt —s) (e(s)), a(s)) ds, e(w) —e(v(@)))
+h u®),w—v®)+ j. @t u(), w) — j (¢, u®), v())
>{f@®), w—v@))yxy, Ywe V;
(@), & —a®) 2+ v Va(), VE = Va() 2gy
> (pa(0 (1), eu(r), a(t), & —a(t) 22y, YE € Hua;

<0(t),n>pxe + < KOO, n>pxp +¥(t,0(0);n)
Z< R(tv v(t),@(t)), )’] >E’><E + < Q(I)? T} >E’><E7 V77 e E’
v(0) =v9g, a(0)=0ap, 60)=6 in £,

with the regularities:

veCO,T; HYNL2O,T; V)NWL2, T; V'),
ae W20, T: L2 (2)) N L™, T; K);
0eCOT; L22)NL20,T; EyNnWL2(0, T; E').

We begin by the following lemma.

Lemmal Foralln e Wl'z(O, T; V'), there exists an unique
v, € CO,T; HYNL*©0, T; V)N W20, T; V')

satisfying
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(0 (1) + A@) vy (1), w — vy () yrxy + (M), w — v, (1)) yrxy
+ et uy (), w) — jo (¢, uy (), vy (1) = (f(@), w —v,(D))yxv,
YweV, aete(0T7);

(39)

v, (0) = vy,

where

t

u,,(t)=u0+/0 v,(s)ds, Viel0,T].

Moreover; if Ly < % then 3¢ > 0 such that Vi, 1o € WH2(0,T; V'),
0
vVt e [0, T]:

t t
||vn2<r)—vn.(r)||%,+/ ||vn2—v,,]||"‘v5c[ Im — ml3. (40)
0 0

Proof Givenn € W-2(0,T; V/)andx € C(0, T; V), by using a general result on
parabolic variational inequality (see e.g. [1]), we obtain the existence of a unique
v, € C(0,T; H)N L%(0, T; V) N Wh2(0, T; V') satisfying
(i’nx(t) +FA@) vy (1), w— vy (D)yrxy + (@), w— vnx(t»v/xv
+ e, x(@), w) — j: (£, x(2), vr]x(t)) >(f®),w— vnx(t»V/xV,
YVweV, aete(0,T);

(41)

vy x(0) = vog.

Now, let us fix n € W1'2(O, T;V’) and consider Ay, @ CO,T;V) —
C(0, T; V) defined by

t
Vx e C0O,T;V), Ayx(t) =ug ~|—f v, x(s)ds.
0

We check by algebraic manipulation that for all u, uy, wi, wy, € V, ae. t €
(0, T), we have

Je@ uyp, wo)—jr(t,ug, w)+jo (t, up, wi) —jr (¢, up, wy) < cq lupg—uylly lwr—wily,

where ¢; = L, c(z) is involving cg, which is defined by (18).

Let x1,x2 € C(0,T; V) be given. Putting in (41) the data x = x| with w = v, ,,
and x = xp with w = v,,,, adding then the two inequalities, and integrating over
(0, T), we obtain, Vt € [0, T'],
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t
19152 = 00 Oy + [ 190106) = 1 0
' 2 ' 2
<c /0 llx2(s) —x1($)llyds + ¢ /0 vy, (8) — vy ()17 ds.
Using Gronwall’s inequality (see e.g. [2]), we deduce that

t
Vai,x € C(0,T; V), Ve € [0, T), [ Ay(x2)(t) — Ay} < ¢ /0 lx2(s) — x1 ()| ds.

Thus, by Banach’s fixed point principle, we know that A; has an unique fixed point
denoted by x,. We then verify that

Uy = l)nxr]

is the unique solution verifying (39).

Now, let 1, 72 € W1-2(0, T; V'). Putting in (39) the data n = 11 with w = v,,
and n = ny with w = vy, adding then the two inequalities and integrating over
(0, T'), and using the inequality

1
lab| < Sa?+ = 1>
4 €
for all reals a, b, ¢ > 0, we obtain forall§ > 0, forallt € [0, T]:

1 t
5 100 () = vy, (O3 + mey fo 1932 (5) = gy ()1l

ot
45
'

+36 /0 10, (8) = vy, ()13 ds +/0 [0y, () = vy () NIv [Im2(s) — n1(s)llv-ds.

t t
< my /0 03, (5) — vy ()13 ds + /0 ey, (5) — wy, ()13 ds
t

t

2
‘ 2
— ey, (s) — wy, ()5, ds

45 Jo
!

1 t
+28 / ||vn2(s)—vm(s>||2vds+5 / Im2(s) — m ()13 ds.
0 0

t
<myy /0 1o (5) — oy ()12 ds +

Now, verifying that

t

t
fo ity (5) =t )13 ds < T2 /0 1o (5) — vy, ()1 ds,

we have
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1 2 ! 2
3 vy, (1) — vy (D17 + (m 7 — 28) vy, (s) — v, () Iy ds
0
J
t c t
<y Jo 10(8) = vy O ds + 35 T [5 [05,(5) = vy (), ds

o im(s) — i ()I3,ds.

We deduce (40) from Gronwall’s inequality if

c2
L72 < m,— 28,
48 '
i.e.
mgy
L: < —v2s(1=9),
Tc0
where

28
c=— €l0, 1[.
mgy

To conclude, we obtain (40) if 3¢ €]0, 1[ such that L, < ';—fg J2¢(1 = ¢).
0
This last condition is equivalent to

mgy
< —
f \/ETcg

O

Here and below, we denote by ¢ > 0 a generic constant, which value may change
from lines to lines.

Lemma 2 Foralln e W1*2(O, T; V'), there exists a unique
6, € C(0, T; L*(£2)) N L*(0, T; E) N W"2(0, T; E')
satisfying

<6y(1), ¢ >pxp + < K@) 6,(1),{ >k +/ E(1,0y(1) ¢ da

I'c
=< R, vy(1),0,1)), ¢ >pxg + < 0, >p'xE, (42)
V¢ €eE, aete(0,T);
6,(0) = 6.

Moreover, if L, < % then 3¢ > 0 such that¥ny, 1, € W-2(0, T: V'):
0
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t
1606 =0 gy < [ —ml €07 43)

Proof Letus fix n € WH2(0, T; V). We verify that Q € L?(0, T; E').
Let us consider the operator ¥, (t) : £ —> E’ defined for a.e. t € (0, T) by

I'c

<&, ¢ >pxp=< K1), >pxE +/ B, &) ¢da— < R(t,v,y(1),8), ¢ >E'xE,
V& ¢ €E.

Then, the problem is to find 8 : (0, T) — E verifying

6(t) + (1) 6(1) = Q) in E', aete(0,T);
6(0) = 6.
Using the assumptions (28), (29), and (31), ¥, () is strongly monotone for a.e.
t € (0, T). Therefore, the existence and uniqueness result verifying (42) follows
from classical result on first-order evolution equation (see e.g. [9], pp. 162—-164).
Now, for n1, m2 € W1’2(0, T: V"), we have, fora.e. t € (0; T),
(ém(t) - 9n2(t), Ony (1) — Oy D) Er s + (K () Oy, (1) — K(2) Oy (1), Oy (1) — Opy (D) E'x E

= (R, vy (1), 0y (1)) — R(E, 035 (2), Oy (1)), Oy (1) — Oy (D)) B/ -

Then, integrating the last property over (0, ¢), using the strong monotonicity of
K (¢) and the Lipschitz continuity of R(¢,-,:) : V x E —> E’ independently of
t € (0, T), we deduce

t
16y, (0) = By, (D25 < € / oy — vyl V2 €0, T1.
0

The inequality (43) follows then from Lemma 1. O

Lemma3 Forall u € L2(0, T: L2(£2)), there exists an unique

a, € W20, T; L2(2)) N L*(0, T; H'(2))

satisfying

(Ol.u(l‘),é — Olﬂ(t))LZ(Q) + Y (VOZM(I), Vé — Votu(t))Lz(_Q)d
2 (/’L(t)v‘i: - au(t))L2(9)7 Vé € ‘z/dav aete (09 T)a (44)
au(t) € Hga, VYt el0,T];

a,(0) = ap.
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Moreover, Ic > 0 such that VL1, Uy € L2(0, T; Lz(.Q)):

t
s 6) = @y D123 ) = € /0 I — 2l Ve €lOTL  @5)

Proof The inequality (44) follows from classical result on parabolic evolution
variational inequalities, see e.g. [1].

Now, for any pi, oy € L(0, T; L*(£2)), putting in (44) the data u = p
with § = ay,, then u = po with § = oy, adding then the two inequalities, and
integrating over (0, T'), we obtain, V¢ € [0, T],

t

1
EH(XHI(I) - auz(t)HiZ(_Q) + Y A ”vaﬂl - VaMZH%Z(Q)d

t
< fo 1 — p2ll 2o e — @ l2a)-

Thus, the inequality (45) follows from Gronwall’s inequality. O

Consider X := W]’2(0, T:V') x LZ(O, T; LZ(SZ)), and the operator A : X —
X is defined by, for all (n, n) € X,

A, ) = (A1(n, w), A2(n, ));
A1(n, ) (@) = B@)(uy (@), o, () + D) (uy, ap) + ju(t, uy (@), -) + Ct) 6,(1);
A2(7), M)(t) = d)d(an,u(t)’ e(un(t)), aﬂ(t))v

where
(D) (uy, ap), wyyrxy = (/Ot Bt —s) (e(un(s)), auls)) ds, ew) s Yw € V;
and

0y, (t) = A1)ey (1)) + A1) (e(uy (1)), o (?))

t
+ /() Bt —5) (€ (5)), au(s))ds + Ce(t, 0, (1)).

Lemma 4 Under the condition that L, < % then A has a unique fixed point
0

(", u).

Proof First, we check that from the definition of the operator C(-) and from

hypothesis (24), then there exists ¢ > 0, such that for a.e. t € (0, T), for all
&1, & € E, we have
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IC@) & — C@)&Nv < clldr — &2
Now, let (11, 1) and (12, u2) be given in X. We verify that, fora.e. r € (0, T),

LAG, 1) (@) = A2, 1) D1, 120
< cIB@) @y, (1), oy (1)) — B(0)(tyy (1), 2y )3 + € 1D Wy, o)) — D)ty i) |13,
vt g (1), = ot ugy (1), )3, + ¢ [[C @) 0y, (1) — C(1) 0y, (D3,

+||¢d(an1,p.1 (t)v E(Mm (l))a A,y (t)) - ¢d(ar]2,//_2 (l)v s(unz (t))5 Ay ([))HiZ(Q)

Thus,

1A, 1)@ = A2, s kDD 1200,
< ¢ lluy, ) = wy, O + ¢l () = e, D172y + € 167, ) = O3, D175
+ ¢ vy, (1) = vy, (DI,

We deduce from Lemmas 1-3 that if L, < %, then 3¢ > 0 satisfying, for all
0

(M1, 1), (M2, p2) in X and for all ¢ € [0, T,

t t
LAGH, ) O=AG2, , 1D 120y S € /0 Ilma—n1ll5 e /0 li=p2172 -

Then, using again Banach’s fixed point principle, we obtain that A has an unique
fixed point. o

Proof of Theorem 1 We have now all the ingredients to prove Theorem 1.
We verify then that the functions

U=y, a:i=0ayx, 0:=0p

are solutions to problem QV with the regularities in (38), the uniqueness follows
from the uniqueness in Lemmas 1-3. O

4 Analysis of a Numerical Scheme

In this section, we study a fully discrete numerical approximation scheme of the
variational problem QV. For this purpose, let {u, 6} be the unique solution of the
problem QV, and introduce the velocity variable

v(t) =u(), Vtel0,T].
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Then,
t
u(t) =ug —i—/ v(s)ds, Vtel0,T]. (46)
0

Here, we make the following additional assumptions on the different data, operators,
and solution fields:

A, -, 1) € C([0, T] x 2; Sq), VT € Sy
A1, M) e C(0,T] x £2; 84), Y(r, L) € Sg xR;

Co(-, -, 9) € C([0, T] x £2; Sg), V9 € R;

B(-,-, 1, 1) € C([0,T] x 2:Sg), Y(1, 1) € Sq x R;

foeCU0, TIx 2:RY);  freC(0,T] x I'r; RY);

He(, - §) € C(0, T] x 2;RY), V& € RY,; 47)
D.(-,-,7,9) e C(0,T] x 2;R), V(,9) € Sqg xR;

q € C([0, T] x £2; R);

ve Wb, T; V)nCl(0,T]: H),

6 € C([0,T]; E)N H*(0, T; L>(£2)),

a e C0,T; HX(2)) N H*(0, T; L*(2)),

and forallr,r;,m € R, ae. (t,x) € (0,T) x Ic:

(i) @, x, s r +12) <0, x, ) + 0%, x, 1 )
.o 0 0

i t,x,ror1 —r) + @t x,ri;r—rp) <0;

(i) ¢°( 2571 —12) + ¢ ( 1:72 —1r1) 48)
(iii) there exists ¢® > 0 such that

@Ot %, 115 7) + @0t x, 123 —1) < |(r1 —r2) 7.

We remark that the example of ¢ given in (17) satisfies hypothesis (48).
From Theorem 1, {v, 6, a} verify, for all r € [0, T],

(@) + A v(@) + BO) (), ) + CO)O@), w—v())v/xv,

t
([ A=) ), ) ds, 2w) — 001 )

+iv u@), w—v(@) + (¢ u®), w) — j(t,u®), v())
>(f@), w—v{))yxy, Ywe V.
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<60),n >pxe+ < K@®0@),n>pxp +¥(1,0(0); 1) (50)
2< R(tv v(t)ﬂe(t))7n>E/><E+< Q(t)7n>E/><Eﬂ V’? GE
(@(1), & — a() 20 + v (Va(t), VE = Va(t)) 120y 1)
> (¢a(o (1), &), a(1),§ —a(®)2), V& € Haa.
v(0) =v9, a0)=0ap, 60)=6 in £. (52)

Now, let vh ¢ V,E" Cc E, and sza C Ay, be a family of finite dimensional
subspaces, with 4 > 0 a discretization parameter. We divide the time interval [0, T']
into N equal parts: t, =nk,n =0, 1,..., N, with the time step k = T /N.

For a continuous operator or function U € C([0, T']; X) with values in a space X,
we use the notation U, = U (¢,) € X.

Then, from (49)—(52), we introduce the following fully discrete scheme.

Problem P Find v = {/}}V =~ c vk ght = (oI} = c EM and ot =
{akyN_ - % such that

vk =, otk =0l ok =af (53)
and forn=1,---, N,

hk _ o hk
1 h hk hk h hk
(T wh = olk) (Al w0y

+(Bn un 1 wh_vhk>v’xv+<cn9,f 1 h_vhk>V/><V
+(k Yoz %(rn — 1) (), o). e(") — eW))) S
+jv(tn, u u, ], wh — vhk) + Jr (tu, nk 1» h) — Jr(ta, nk 1» vﬁk)

> (f, wh—vhk)v/xv, Vw' e vh.

(% 1) o K O 0 e+ 0 6055 1)
) e nome * ne (55)
> (R(tn, 2%, 00%), 0" prse +(Qno ") prxe. Y € EM.
othk hk A hk " i
{(”—”1%' —a, )LZ(Q)+V(V05 V(E — o, ))LZ(Q)(I (56)
> (¢d(0n l,s(u ) O( ) Eh _C( )LZ(Q)s Vé:h E%Za,

where forn =1,--- , N,
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_uO —{—ka —ug. (57)

= Ap VMK + By ulk, ) + C 01 + ke Y0 Bty — 1) (€ @), ib);
gk — ol
(58)

Here, ug c Vh, vg e Vh, 9{; e E", aé’ € H,,, and ag € J¢ are suitable
approximations of the initial values ug, vg, 6y, oo, and ao, respectively.

We verify that forn = 1,---, N, once uﬁk Y 1,9,fk1, hk anda " are
known, then we obtain v/ by (54), 6% by (55), a”* by (56), uhk by (57) (using
uﬁk = uzk_l + kvhk) and o by (58).

We now turn to an error analys1s of the numerical solution. Here, we use and
extend the technique developed in [3], p. 241.

Proof We have to estimate the following numerical solution errors, respectively, for
the velocity, temperature, and damage:

vn—vhk 0,1—9,/,11‘, oy — ol 1<n<N.

n nv =

First step. Estimate of («,, — afl‘k)ls,,SN. Letusfixn=1,---,N.

Using (51) with t = 1,, & = &/ and (56) with £" = &" € J#" and then adding the
two inequalities, we obtain after some algebraic manipulation, for some constant
c>0,

letn — @112, ) + Kk X5y 1V @) — )2, )
< +cllug — ugllf +clloo — o412+ ¢ lao — o 12,
ek Y I = @l ) + ek Gy llay — oM, o)
ek +ck Y02) lluy — w4 cek Y] oy — o2,
+c A+ ck Al +ck Ay +ck A3+ ck Ay,

where ¢ > 0 is a small parameter which will be chosen later and

Ap = maxi<j<y lloj — Sh”LZ(Q);

VA= 20 IV@) = EDIG o)

Ap=Y0 ) ey - gl lle(m;

Ay = Z?I:_ll (a1 — 5,"1+1) —(j — E1'1)”2L2(9);

N
Ay =0 Ida(o ), e)), o)) — L=+ y) Al o) X llaj = §7 12 q)-
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From (47), we have

k Az <cAo
and
| g S/Ij 1) 20y ds. 1< <N.
k L2(2) tj-1
We deduce that

n

€ — i
J J 2

D= =l S k.

j=1

From (46) and (57), we have
kTN Ny — kR
< cllug = whll} + ek I+ ck T2 (KL o — I3,

where by using (47),

2
<ck.
v

N t J
I:=ZH/ v—kai
=170 i=1

From (58), we have forn =1,--- , N,

2
lon — a2,

2 2 2
< clvy — v )2 + ¢ lluy — ul™ )2 + c 16, — 6%

L2(R2)
ty n—1
+I / Bty — 5) (€@(s)), a(s)) ds —k Y Blty — t) (epl), ap) |5
0 m=0

Therefore, we arrive to the following error estimate for the damage:
For some constant¢c > O and forn =1,--- , N,
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letn = o 175 ) + & X5y IV (@) — 9172 )
< +cllwo = uglly, +clloo — gl + cllao — af 172,
n . hk
+Ck2j—1 ”aj ”LZ(Q) (59)

tek? 4 ek Y ( Sy = o4)

_ hk 2 n—1 hk
teek Y01 oy =I5 + ek X500 16 — 07417, o)
+cAg+cAl+ck VA +ck Al +ck As.

Second step. Estimate of (g, := 6,, — 65’")15,,5 N-
Letus fixn = 1,---, N and denote shortly ¢; := 0; — 9]}.”‘, 1 <j < N.We take

(50), where t = t, and n = —nh, and add to (55), with nh € E", we have

;-6 hk o h
(n_—»n>L2(Q)+<Kn9n_Kne s )E’XE

< ¥ (ty, n;_nh)'l'l/f(tnyehk, nh)+(R(tn:vn79n) R(t,, Zk’enhk) nh>E’xE‘

Taking n* = n,ﬁ‘ — 6, + &,, then we have

(* £n>L2(Q) + (K — Kn 035, en)
< <Kn '9n - Kn efkv 9n - ng)E’XE
(R(tn, vn, 0p) — R(ty, V1%, 01%), "y pro e

no-n

) [ En—En— h . Op—06,—
+(9n - I3 =1 —+ T], en - nn>L2(Q) — (9,, T " £n)L2(Q)
FY (tn, Ons —1") + W (t, O1F; ).

From (28), we have
(K On — Kn O, 6, — /Yl < 1160 — 0/ 11 E X 160 — 01 E.
From (29), we have
(R (tn, U, On) — R(ty, 0%, 01%) Y g |
< Dy llv, — o™ lv x "2y + D1 160 = 0% 1202 X 10" 1202
< Dy |v, — ”zk”V X ||7)Z - 9n||L2(Q) + Dr (|6, — 9hk||L2(_(2) X ||77£', - 6’n||1,2(_(2)
+Dv [vn = Vi llv X 160 = 614112 (2) + D1 160 = 6,*1175 -

Then, let us denote

By := max |6, —yll2e)-
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We have

1 1
hk h hk 2 hk 2 2
Dy ||vn_”n lv x ||nn_9n||L2(_Q) < Dy ”vn_vn lv Bo < 5 DV ”vn_”n ”V+§ B()§

and for € > 0,

1
D1 116x = 6,% 11 2y X Imy = Oall 202 < €1 160 — 03511720, + Ge (Pr Bo)%;

and for € > 0,

D2
hk hk v hk 2 hk )2
Dy flon = v llv X 160 = 0,7 120 = =100 = 07l + €160 = 0,712

To continue, by using (48), we obtain
Yt Ons —1") + ¥ (00, 0753 ") < coc? 160 — 635112 x 10" |1,
and thus

U ltn, Ons =)+ (tn, 015 0"y < co 1160 — 01% 1% + o ¢ 100 — 1K1 x 1160 — I -

Consider the quantity forn =1,--- , N,

[

En — En—1
n = (% en)Lz(m + (Kn 0y — Ky 9;% €n)E'XE-

We have

=
=/

2 2 5
"= 2k (”8"”L2(9) - ”8”—1”L2(9)) +my llenllg-

Now, we sum & from j =1to j =n.
From (47), we have

n

;i —0i_1 .
2= =0l < ck.
j=1

Under the condition that
Dr +coc? <my, (60)

we can choose € and €| such that € + € + Dy +coc? < m y,.



A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage 99

After some manipulation, we deduce the following error estimate for the
temperature.
For some constant ¢ > 0 independent of Dy and forn =1,--- , N,

16n — 61172 ) + K 251 16 — 6741

< c||90—961||i2(9)+cB§+ck2+ckBl+cB2M9 (61)
+e Dy k Yy llvy — v

Here,

My = maxi<u<n 16x — 0%l 122
N
Byi= Y0 110, — 13,

N
By =37 1 116; =) — @1 — 0 Dl

Third step. Estimate of (v,, — vﬁk)linSN.
The computation of the estimate for the velocity is similar as in [3], p. 241, which
we refer for details. We mention only the main steps.

We obtain, for some constant ¢ > O and forn =1,--- , N,
low — 03I, + & X5y vy = oI
< cllvo — vl + clluo — ufli}
+cCo+ ck*+ck(Ci+C)) +cCy M,y
k hk hk
+ck2'}:1 %’i’ +ck2’}:1 Iy +ck27:1 I

ek Y20 10; — 0112, ) + ek YT (k Y i - vf‘kH%,).
Here, we denote by

M, :=maxi<u<p llvn — v

Co := maxi<p<n v — wZ”H;

Cri= Y00 vy — whiiy;

Cri=201 v —whiy;

Cr =Y ) —wh) — Wi — w0l e,

andforn=1,---, N,
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/ Bty — ) e(u(s)) ds — k Z Bl = 1) ). —e(en))

m=0

(ki B0 — ) e@li), e(wl) — ev,)

7
and
TIE = (s g, vIE = 0,) + iyt | wlE —
and
Jhrlfzjr(tn,un’ vzk)_jt(tna Uy, vy) + jr(tn, ufl,]i]a )_]‘[(tnv n 1 n)
We have, forn =1, --- , N,
n k
ij:l %?
< ek +cllug — ully + ck Y02} (K, o — o3 ) + ek (€1 + Co;
and
hk
DB
< ¢k +cllup — ulll3 +ck Y1) (kz v —vhk||2)
+eek Yy v, —v’;k||2v+ckcl +ckCi;
and

kY, I
< ek +cllug -l + ck X2} (KL o — of13)

+eek Yh_) llv; —v’}knzv +ckCy+ckCy.

Thus, we obtain the following error estimate for the velocity.
For some constant ¢ > O and forn =1,--- , N,

o, — vk I3 + kX5 vy — o315,
< cllvo — vgli3; + ¢ llwo — ug 3,
+cCo4ck?+ck(Cy+C1)+cCaM, (62)
-1
teek Y520 16 — 0717 q) Feek Xy vy =I5
+CkZ ( Z =1 ||vl_vhk||2>
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To summarize, adding the three inequalities (59), (61), and (62) and choosing
Dy and & small enough, we obtain, for some constant ¢ > O and forn =1,--- , N,

lotn — e 1172 )+ 2Ty 1@ = s o) + 160 = 6151172
kY0105 — 011+ llow — K13, + kX vy — o3
< e lluo —ugly + ¢ llvo — vl +clloo — o3,

e lleo = agll7a o) +cllfo = 65172 o)

FeR S ey — R,

+ck?+ck Z;’;i (k Zij:l lvi — v?k”%/)
+c Ao+ cAf+ck VA +ck A+ ck Ay ++cBj +ck By +c By My
+cCo+ckCi+ckCi+cCoM,.
(63)
To end, let us recall the discrete version of Gronwall’s inequality, see e.g. [2].

Consider a sequence {r,}o<p<y C RT anda € R*.
Assume

n—1
rm<a+ckY rj, 1<n<N.
j=0

Then, we have
rm<(@+ckro)(1+ck)" ' <@+ckrg)eT, 1<n<N.

Now, from Gronwall’s inequality, using estimation (63) and under condition (60),
we conclude that for Dy small enough, then there exists some constant ¢ > 0:

n
__hky2 o kN2 _ phky2
max. (||an o 11720, +kZl||V<aJ N2y + 160 = 61511720,
J:
hk 2 2 hk 2
+h 31 165 = 07511E + v — v 4+ kY ey — v ”v)
hy2 hy2 hy2
< +clluo —uylly +cllvo —vylly +clloo — 00”%

2
LX)

+ck? +cAg+cAF+ck VA +ck A+ ck Ay

e llao — 125, + ¢ 160 — 6

+cBE +ckBi+cB2+cCo+ckCi+ckCi+cCl.
(64)
As a typical example, let us consider £2 € R?, d € N*, a polygonal domain. Let T
be a regular finite element partition of §2. Let vh c V,E" c E,and %g,a C Ky, be
the finite element spaces consisting of piecewise polynomials of degree < m, with
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m > 1, according to the partition 7. Denote by mal . H™(@2)4 — vh,
mar . H"(Q) — EM' and It : H™(2) — % the finite element
interpolation operators.

Recall (see e.g. [4]) that

lw — IT{wl gy < ch™ M [wlguri g, Yw € H™ M (2)4;
I — Mpnllar @) < ch™ 7 Inlgmi gy, Y€ H"HH(R);
€ — IME&ll 200y < ch™ [Elum(@). V& € H™(£2),

where r = 0 (for which H® = L?) or r = 1.

We assume the following additional data and solution regularities:
ug € H™t(2)4:  ap e H™(2);
v e C(0, T]; H" (@)%, e L'(0,T: H™(2)%);
0 € C(0,T]; H"1(2)), 6 € W20, T; H™(2));
& e WhN0, T; H™(R2)).

(65)

Then, we choose in (64) the elements
ug = 17"} uop, vg = H"} v, 65’ = 17,}11 6o, ocg = th( oo,
and
wh =M}, nf=mpe;, j=1---N.
From assumption (65), we have

o — ullly < ch™, vg—vlllm < ch™;
160 — 605 1 1200y < ch™,  llatg — ol 120y < ¢ h™;

Ag <ch™', By <ch™!, Co<ch?™tl

kA  <ch™ kB <ch™ kC<ch®™, kCi<ch®;

Ay <ch¥™, By <ch™, Cy<ch™.

Using these estimates in (64), we conclude to the following error estimate result.

Theorem 2 We keep the assumptions of Theorem 1. Under the additional assump-
tions (47), (48), and (65), and condition (60), then for Dy small enough, we obtain
the error estimate for the corresponding discrete solution {(vfllk , 0,}:" s oszk), 1 <
n<N}:
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172
N
e L R (D R 7 1)

12
+maxi<p<n [10n — 0151|200y + (k o 16 — 9%”%)
+maxi<p<n oy — Olffklle(Q)

<c™ 4 k).

In particular, for m = 1, we have

1/2
N
maxi <z o0 = 08l + (K0 v = of13)

1/2
N

+max; << 16, = 6%l 20 + (K 0L, 16, — 02 13)
+maxi<p<n llan — affk“LZ(_Q)

<c(h+k).

5 Numerical Computations

In this section, we provide numerical simulations in two-dimensional tests for the
variational problem (QV) by using Matlab computation codes. We refer to the
previous numerical scheme and use spaces of continuous piecewise affine functions
Vi cV,E" C E,and Jﬁza C K4, as families of approximating subspaces.
Here, we consider the following formulas:

Y)(t,0) =L T —a(dij@) in 2

Ce(t,0) :=—0(c;j(t)) in £;

pv(ts'vr)=cv(t)r+ on FC’

pe(t,,r) =put)cy(®)ry on Ig;

He(t,V0) = (kjj(t)) V8 in £2;

De(1,v,0) = —¢ij (1) §7- —0de(t) in 2

¢a(o,e(m),a) = —di|lollyvy —da Lg(@) in £2;

o(t.r) = 3ke(t) (r — O(1))* on [Ie.

In view of the numerical simulations, we consider a rectangular open set, linear
elastic, and linear visco-elastic operators, for a.e. r € (0, T'):
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£2=(0, L) x (0, L2);

= ({0}x[0, L2D) U ([0, LiIx{L2}) U ({L1} x [0, L2]);  I'c = [0, L1] x {0}
@O 1)) = B (00 + ) ) + T, 16 <2 TeSy
(A1) T)ij = pu@) (T +12) 8 +n®) 7j, 1=<i, j<2, T€8y
(BM)1)ij = B1(t) (t1 + 122) 8ij + Ba(®) Tj, 1 =i, j<2, 1€
Here, Ey is the Young’s modulus, rp is the Poisson’s ratio of the material, §;;

denotes the Kronecker symbol, and © and 5 are viscosity constants.
For computations, we considered the following data (IS unity), for r € (0, T'):

L1=L2=1, T=1,

woy=3e", @)= j_oz, Ey(1)= _zi_ s rp()=——=, [folx, )=, —1);
fr(x,1)=1(0,0), xe€{0}x(0, L)

frx, 1) =041, 1+,) x € ((0, L) x {L2}) U ({L1} x (0, L2));

din(t) = dn(t) = din@) =dy @) = 1;

cin() = cp®) =cult) =1, cn) =1%

k() = 5, k@ =, ko0 =kn@) =1;

ke() =Y, do(t)=1% q@)=t

0.1
1412’

gt,x) =x (L1 —x)t, p(t,x)=0.1x12,

c(t,x) =10tx%, x=(x,0) e (0,L) x {0};

y =0.1, d| =1/50, dy = 1/20, Ly(s) =¢€*, 0<s < 1;
up=(0,0), v9=(0,0), a=1 6 =0.

Figure 1 represents the initial configuration.

In Figures 2, 3, and 4, we compute, respectively, the Von Mise norm, which
gives a global measure of the stress, the temperature, and the damage at final time
in the body at final time, for g = 0, respectively, for short and long memory visco-
elasticity. In Figure 5, we show the evolution of the damage at the particular point
S = (L1, L») (direction of the surface traction). We observe that the distribution of
these parameters is changing for long memory, the deformation is more important,
as well as for the damage, temperature, and stress in the neighborhood of the point S.

Finally in Figure 6, we show the distribution of the temperature and damage of
the body for larger ground temperature. Here, we observe larger deformation, larger
damage, and larger temperature in the neighborhood of the contact surface.
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Fig. 1 Initial configuration
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