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Preface

Nonlinear Analysis and Global Optimization is devoted to the study of a broad
area of research with strong interdisciplinary flavor in which optimization plays
an important role, as well as to the study of topics that are applied toward the
investigation of optimization problems. More specifically, the present book treats
topics on set-valued analysis, mixed concave–convex sub-superlinear Schrödinger
equation, Schrödinger equations in nonlinear optics, exponentially convex func-
tions, optimal lot size under the occurrence of imperfect quality items, generalized
equilibrium problems, artificial topologies on a relativistic spacetime, equilibrium
points in the restricted three-body problem, optimization models for networks
of organ transplants, network curvature measures, error analysis through energy
minimization and stability problems, Ekeland variational principles in 2-local
Branciari metric spaces, frictional dynamic problems, norm estimates for composite
operators, operator factorization and solution of second-order nonlinear difference
equations, degenerate Kirchhoff-type inclusion problems, and more.

We would like to express our deep thanks to all the authors of contributed book
chapters for participating in this collective effort. We would also like to express our
thanks to the staff of Springer for their help throughout the preparation of this book.

Athens, Greece Themistocles M. Rassias

Gainesville, FL, USA Panos M. Pardalos
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Friction Models in the Framework of
Set-Valued and Convex Analysis

Samir Adly, Daniel Goeleven, and Rachid Oujja

Abstract It is well known that modeling friction forces is a complex problem
and constitutes an important topic in both mechanical engineering and applied
mathematics. In this paper, we show how the approach of Moreau and Pana-
giotopoulos can be used to develop a suitable methodology for the formulation
and the mathematical analysis of various friction models in nonsmooth mechanics.
We study 11 widespread engineering friction models in the context of modern set-
valued and convex analysis. The stability analysis (in the sense of Lyapunov) of a
two-degree-of-freedom mechanical system with dry friction is also discussed.

1 Introduction

The first systematic study of friction is due to the famous italian scientist and artist
Leonardo da Vinci (1452–1519) (see e.g. [14]). He discovered that the friction force
is proportional to load, opposes the motion, and is independent of contact area.
These fundamental results have been rediscovered by Guillaume Amontons (1663–
1705) and developed by Charles-Augustin de Coulomb (1736–1806) [4, 13]. The
Coulomb friction force F is a function of the load and direction of the sliding
velocity v. Arthur Morin (1795–1880) found that the friction at zero sliding speed
(static friction) is larger than the Coulomb friction (dynamic friction) [24]. Osborne
Reynolds (1842–1912) introduced the concept of viscous friction in relation to
lubricated contact [33]. Richard Stribeck (1861–1950) observed that friction force
decreases with the increase of the sliding speed from the static friction to the
Coulomb friction [35]. All these fundamental discoveries have since been the
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subject of much research by the engineering community (see e.g. [6, 7, 17, 20, 25, 26,
30]). Most models of friction are nonsmooth in the sense that the function involved
in the model v �→ F(v) is not continuous at v = 0. The pioneering works of
Jean-Jacques Moreau (1923–2014) and Panagiotis D. Panagiotopoulos (1950–1998)
catalyzed the development of a mathematical framework applicable to the study
of nonsmooth mechanical problems in using advanced results of modern convex
analysis and set-valued analysis (see e.g. [2, 16, 19, 21–23, 28, 29]). The approach
of Moreau and Panagiotopoulos can, in particular, be used to write a precise
and rigorous mathematical model describing the friction force and the stick–slip
phenomenon. This approach using set-valued functions left aside the complicated
transition processes between “stick” and “slip” but led to rigorous mathematical
models like differential inclusions and variational inequalities. However, most
engineers prefer to leave aside some mathematical difficulties and use another
approach that consists of specifying a value of F at 0 that is mechanically consistent.
There are thus two approaches to deal with problems that involve friction: the one
that makes mathematicians happy and the one that makes engineers happy. In this
expository paper, we summarize the two approaches through different models.

2 The Approach of Moreau and Panagiotopoulos

For many discrete mechanical systems with a finite number of degrees of freedom,
the understanding of scalar mechanical laws F : R ⇒ R; v �→ F(v) is very
helpful. Let us here consider a set-valued map F : R ⇒ R, v �→ F(v) whose graph
may present some finite vertical branches.

Our aim in this section is to propose a mathematical relation that describes
a general possibly set-valued graph. The approach for doing that exists in the
literature and has essentially been developed by researchers from the nonsmooth
mechanical community. It has been introduced by J.J. Moreau [21] for the treatment
of monotone set-valued graphs and then extended by P.D. Panagiotopoulos [28]
for the treatment of general set-valued graphs including both monotone and non-
monotone graphs. Note that filling in the graph of a discontinuous function is
a methodology that can also be traced back to J. Rauch [31] for PDEs. This
approach is now used by most engineers to formulate concrete models for highly
nonlinear phenomena in mechanics like adhesion, friction, unilateral contact, and
delamination (see e.g. [29]). It is also used to study nonsmooth switches in electrical
systems (see e.g. [15]).

We may first write

F ∈ F(v), (v ∈ R) (1)

if F : R ⇒ R is some set-valued function. Some abstract model is depicted in
Figure 1.
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Fig. 1 Graph of F

Fig. 2 Graph of the function
τ �→ β(τ)

In our framework, the approach of Moreau and Panagiotopoulos consists of
introducing a possibly discontinuous function β ∈ L∞loc(R;R) such that left limit
β(v−) and right limit β(v+) exist for all v ∈ R, and so that

F(v) = [min{β(v−), β(v+)},max{β(v−), β(v+)}], (v ∈ R). (2)

For example, the function β depicted in Figure 2 is deduced from the set-valued
graph in Figure 1.

Let us now introduce the function Φ : R→ R by the formula:



4 S. Adly et al.

Φ(v) =
∫ v

0
β(τ)dτ, (v ∈ R). (3)

Here, β ∈ L∞loc(R;R), and the function Φ is thus locally Lipschitz. Moreover, a
fundamental result in set-valued analysis due to K.C. Chang (see e.g. [11]) ensures
that

∂Φ(v) = [min{β(v−), β(v+)},max{β(v−), β(v+)}], (v ∈ R).

Here, for v ∈ R, ∂Φ(v) denotes the Clarke’s subdifferential (see e.g. [12]) of Φ at
v defined by

∂Φ(v) := co{ lim
n→+∞Φ ′(vn) : vn → v, vn ∈ DΦ},

where “co” refers to the convex hull and DΦ stands for the set of differentiability
points of Φ. We have

∂Φ(v) = {ξ ∈ R : ξ · h ≤ Φ◦(v;h), ∀h ∈ R},

with

Φ◦(v;h) := lim sup
λ↓0
w→v

Φ(w + λh)−Φ(w)

λ
.

Then,

F(v) = ∂Φ(v), (v ∈ R),

and the relation in (1) can be written as

F ∈ ∂Φ(v), (v ∈ R). (4)

If, in addition, the function Φ is convex, then

∂Φ(v) = {w ∈ R : Φ(h)−Φ(v) ≥ w(h− v),∀h ∈ R},

and Equation (4) reduces to the variational inequality

Φ(h)−Φ(v)− F(h− v) ≥ 0, ∀h ∈ R,

or equivalently

Φ(v + δ)−Φ(v)− Fδ ≥ 0, ∀δ ∈ R.
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Roughly speaking, ∂Φ results from the possibly discontinuous function β by “filling
in the gaps.” In other rough words, Φ appears as a “primitive” of F in the sense that
the “derivative” (in the sense of Clarke) of Φ recovers the set-valued function F.

3 Models of Frictions

We consider a system involving a block of mass m > 0 subjected to some external

force
−→
Fe = Fe

−→
i and which sticks or slips on another fixed body as depicted in

Figure 5. Let us denote, respectively, by x, ẋ, and ẍ the position, velocity, and
acceleration of the sliding body. We have

−→
G = −mg

−→
j ,

and we set

−→
R = −F

−→
i + λ

−→
j .

We have λ = mg, and
−→
F = −F

−→
i denotes the friction force. The constant g =

9.81 (m/s2) is the acceleration of gravity. The equation of motion for the system is

mẍ = Fe − F. (5)

Let us set v = ẋ to denote the sliding velocity. As soon as the system slips then
v �= 0 and F is a function of the sliding velocity v. At v = 0, the system sticks and
F takes a value that is determined by other elements of the system. If F exceeds the
breakaway force level, then the system switches back to the slip mode (Figure 3).

Example 1 (Set-Valued Coulomb Friction Model) The Coulomb model is a very
simple mathematical formulation of the frictional phenomena. It is widely used by
engineers to study systems with dry friction. The Coulomb friction model is also
called Amontons–Coulomb friction model so as to refer to the work by Guillaume
Amontons and Charles-Augustin de Coulomb (see e.g. [5, 20]). The Coulomb model
expresses that friction opposes motion and that its magnitude is independent of the
sliding velocity v = ẋ. The model is

F(v) =
⎧⎨
⎩
−FC if v < 0,

+FC if v > 0,

where FC is the Coulomb friction force proportional to the normal load FN = mg

in the contact, i.e.

FC = μFN



6 S. Adly et al.

Fig. 3 Basic example

with μ > 0. The coefficient μ is called the Coulomb friction coefficient. It is also
called the dynamic friction coefficient. In this model, the value of the friction force
is not specified for zero sliding velocity (v = 0); it can take any value in the interval
[−FC,+FC], i.e.

v = 0 ⇒ F ∈ [−FC,+FC].

We may thus write

F ∈ F(v)

with

F(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−FC if v < 0,

[−FC,+FC] if v = 0,

+FC if v > 0.

The graph of F is depicted in Figure 4. We may deduce from this graph the
function β defined by

β(τ) =
⎧⎨
⎩
−FC if τ < 0,

+FC if τ ≥ 0.
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Fig. 4 Coulomb friction
model

Using the superpotential

ΦC(v) =
∫ v

0
β(τ)dτ = FC |v|,

we may reduce the Coulomb model to the mathematical formula:

F ∈ ∂ΦC(v).

By using this model, one leave aside the complicated transition processes between
“slip” and “stick.” The function Φ is convex and Equation (5) reduces to the
differential inclusion

mẍ − Fe ∈ −∂ΦC(ẋ), (6)

which is equivalent to the evolution variational inequality (of second order):

(mẍ − Fe)(h− ẋ)+ΦC(h)−ΦC(ẋ) ≥ 0, ∀h ∈ R.

Example 2 (Coulomb Friction Model) The approach described in Example 1 gives
a mathematical model that has been the subject of a great number of works in the
mathematical literature. Many tools in convex analysis, optimization, and nonlinear
analysis have indeed been developed to study differential inclusions and variational
inequalities. A value of F at 0 is, however, usually specified in the engineering
literature. The approach consists of expressing that the friction opposes motion as
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long as the force applied Fe is lesser than the friction force. The resulting model is
then given by

F = F(v, Fe)

with

F(v, Fe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−FC if v < 0,

−FC if v = 0 and Fe ≤ −FC,

Fe if v = 0 and − FC < Fe < FC,

+FC if v = 0 and Fe ≥ +FC,

+FC if v > 0.

This model is depicted in the engineering literature as in Figure 4. This leads to a
mathematical interpretation of the model as a set-valued function of the variable v

as in Example 1. It is confusing since F is here a singled-valued function of the two
variables v and Fe. Moreover, the function is discontinuous at (0, Fe), and the sense
of Equation (5) is not obvious. It is however convenient to deduce from Equation (5)
a numerical model and simulate it on a computer.

Example 3 (Viscous Friction Model) The viscous friction model is defined by the
formula:

F = F(v)

with F : R→ R; v �→ F(v) given by

F(v) = kvv,

where kv > 0 is the viscous coefficient. This simple linear model can be considered
as soon as a lubricant is used between the moving body and the fixed one. It can also
be used to represent a damping. Here, F is a single-valued function, and we may
set

β(τ) = kvτ.

Then,

Φ(v) =
∫ v

0
β(τ)dτ = 1

2
kvv

2.
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Equation (5) reduces here to an ordinary differential equation of the form:

mẍ + kvẋ = Fe.

Example 4 (Set-Valued Viscous Coulomb Friction Model) A model integrating the
viscous model and the Coulomb friction model is given by

F ∈ F(v)

with F : R ⇒ R; v �→ F(v) defined by

F(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−FC + kvv if v < 0,

[−FC, FC] if v = 0,

+FC + kvv if v > 0.

The graph of F is depicted in Figure 5. We may thus deduce the function β as

β(τ) = kvτ +
⎧⎨
⎩
−FC if τ < 0,

+FC if τ ≥ 0,

It results that the viscous Coulomb model can be written as

Fig. 5 Viscous Coulomb
friction model
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F ∈ ∂Ψ (v),

where

Ψ (v) =
∫ v

0
β(τ)dτ = 1

2
kvv

2 + FC |v|.

Note that here

∂Ψ (v) = kvv + ∂ΦC(v),

with ΦC as in Example 1:

ΦC(v) = FC |v|.

Equation (5) reduces to the following differential inclusion:

mẍ + kvẋ − Fe ∈ −∂ΦC(ẋ), (7)

which is equivalent to the variational inequality:

(mẍ + kvẋ − Fe)(h− ẋ)+ΦC(h)−ΦC(ẋ) ≥ 0, ∀h ∈ R.

Remark 1 We note that the presence of dry friction in Equations (6) and (7) will
force the trajectory to converge to an equilibrium in finite time (see Figure 6 and
also Remark 2).

Fig. 6 Finite-time convergence of the trajectory to a equilibrium point of the system (7)
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Example 5 (Viscous Coulomb Friction Model) The value of F at 0 in the model of
Example 4 is usually specified in the engineering literature. The resulting model is
then given by (see e.g. [5])

F = F(v, Fe)

with F : R× R→ R; (v, Fe) �→ F(v, Fe) defined by

F(v, Fe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−FC + kvv if v < 0,

−FC if v = 0 and Fe ≤ −FC,

Fe if v = 0 and − FC < Fe < FC,

+FC if v = 0 and Fe ≥ +FC,

+FC + kvv if v > 0.

Example 6 (Friction Model of Anderson, Söderberg, and Björklund) Another
model combining Coulomb and viscous models is given by[5]

F = F(v),

with

F(v) =
⎧⎨
⎩

FC max{ksatv,−1} if v < 0,

FC min{ksatv,+1} if v ≥ 0,

where ksat > 0 is a coefficient that determines how fast the force changes from −
to +. Here, F is a single-valued function (see Figure 7) and is smooth in the sense
that it does not present any discontinuities. We may set β = F and

Φ(v) =
∫ v

0
β(τ)dτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−FCv if v < − 1

ksat

FCv2 if |v| ≤ 1

ksat
,

+FCv if v >
1

ksat
.

We have F = Φ ′(v), and Equation (5) reduces to
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Fig. 7 Combined Coulomb
and viscous friction model

mẍ +Φ ′(ẋ) = Fe.

Example 7 (Set-Valued Stiction Friction Model) Friction acts like a spring when a
small force is applied. This phenomenon is called “stiction.” Note that this term is
a linguistic blend of the words “static” and “friction,” which could also be used to
promote the principles of “Newspeak” of the famous writer George Orwell [27]. A
model of stiction consists of expressing that the transition from stick to slip has to
occur via the maximum static friction force FS = μSFN that may be higher than
the maximum dynamic friction FC = μFN . Here, μS > 0 denotes the friction
coefficient in the slip phase, and FS is called the stiction force.

The model is given by (see Figure 8)

F ∈ F(v)

with F : R× R→ R; (v, Fe) �→ F(v, Fe) is defined by

F(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−FC if v < 0,

[−FS, FS] if v = 0,

+FC if v > 0.

This set-valued function with FS > FC does however not have good mathemati-
cal properties. It can, in particular, not be formulated as the subdifferential neither of
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Fig. 8 Stiction model

a convex function nor of a locally Lypschitz one. Moreover, a transition from stick
to slip is possible for |Fe| < FS , and this is mechanically not consistent [9, 19].

Example 8 (Stiction Friction Model) The stiction friction model is usually used in
specifying the value of F at 0 as in Example 2. The resulting model is then given by
(see e.g. [7])

F = F(v, Fe),

with

F(v, Fe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−FC if v < 0,

−FS if v = 0 and Fe ≤ −FS,

Fe if v = 0 and − FC < Fe < FC,

+FS if v = 0 and Fe ≥ +FS,

+FC if v > 0.

Example 9 (Set-Valued Stribeck Friction Model) Most sliding contacts are lubri-
cated, and Stribeck [35] observed that the friction force does not drop suddenly
when velocity increases but follows a continuous curve as depicted in Figure 9.
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Fig. 9 Set-valued stribeck
friction model

The friction decreases with increased sliding speed until a mixed or full film
situation is reached. Then, the friction can either be constant, increase, or decrease
somewhat with increased sliding speed due to viscous and thermal effects. The
velocity at which the friction force is minimal is called the Stribeck velocity. A
modern set-valued formulation of the Stribeck friction is

F ∈ F(v),

with

F(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ−(v) if v < 0,

[−FS, FS] if v = 0,

ϕ+(v) if v > 0,

where FS > 0 is the maximum static force. The functions ϕ− and ϕ+ are given by
the formulae:

(∀v ≤ 0) : ϕ−(v) = kvv − FC − (FS − FC)e
−| v

vs
|σ

and

(∀v ≥ 0) : ϕ+(v) = kvv + FC + (FS − FC)e
−| v

vs
|σ
,
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where σ > 0 is an empirical exponent and vs > 0 is an empirical coefficient
called the sliding speed coefficient. Different values for σ have been used in the
engineering literature [6]. Armstrong-Hélouvry [6] employs σ = 2. J. Čerkala and
A. Jadlovská [10] use σ = 1 in the study of a two-wheel robot dynamic with
differential chassis. Note also that other models for ϕ− and ϕ+ may be find in the
engineering literature [6]. Let us now set

ϕ(v) =
⎧⎨
⎩

ϕ−(v)+ FS if v < 0,

ϕ+(v)− FS if v ≥ 0.

The function is continuous on R. It is clear on ]−∞, 0[∪]0,+∞[ and it is also true
at 0 since

ϕ(0+) = 0 = ϕ(0−).

We have

F(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ−(v) if v < 0,

[−FS, FS] if v = 0,

ϕ+(v) if v > 0,

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ(v)− FS if v < 0,

[−FS, FS] if v = 0,

ϕ(v)+ FS if v > 0,

= ϕ(v)+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−FS if v < 0,

[−FS, FS] if v = 0,

+FS if v > 0,

= ϕ(v)+ ∂ΦS(v),

where

ΦS(v) = FS |v|.
Equation (5) reduces to the differential inclusion

mẍ − Fe ∈ −ϕ(ẋ)− ∂ΦS(ẋ),

which is equivalent to the evolution variational inequality:

(mẍ − Fe + ϕ(ẋ))(h− ẋ)+ΦS(h)−ΦS(ẋ) ≥ 0, ∀h ∈ R.
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Example 10 (Stribeck Friction Model) The Stribeck friction model is usually used
by engineers in specifying the value of F at 0 as in Example 2. The resulting model
is then given by (see e.g. [7])

F = F(v, Fe),

with

F(v, Fe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ−(v) if v < 0,

−FS if v = 0 and Fe ≤ −FS,

Fe if v = 0 and − FC < Fe < FC,

+FS if v = 0 and Fe ≥ +FS,

ϕ+(v) if v > 0.

Example 11 (Karnopp Friction Model) The Karnopp friction model [17] is a vari-
ant of the stiction friction model which includes a small neighborhood [−D,+D]
of zero velocity. More precisely, the Karnopp model is given by

F = F(v, Fe)

with

F(v, Fe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−FC if v < 0,

−FS if v = 0 and Fe ≤ −FS,

Fe if v ∈ [−D,+D] and − FC < Fe < FC,

+FS if v = 0 and Fe ≥ +FS,

+FC if v > 0.

This model is depicted in the engineering literature as in Figure 10. The idea to
create a dead zone of zero velocity is a remedy of the numerical problem of detecting
when the velocity is equal to zero.

The idea of Karnopp can also be applied to the models described in Exam-
ples 2, 5, and 10. It is widely used in the engineering literature (see e.g. [8, 18,
32, 34, 36, 37]).
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Fig. 10 Karnopp friction
model

4 Stability Analysis of a Two-Degree-of-Freedom Mechanical
System

Let us here consider the following two-degree-of-freedom mechanical system where
two masses are connected with three springs and three dampers as shown in
Figure 11. The equations of motion are given by

⎧⎨
⎩

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2)+ k1x1 + k2(x1 − x2) = −F1,

m2ẍ2 + c2(ẋ2 − ẋ1)+ c3ẋ2 + k2(x2 − x1)+ k3x2 = −F2,

where F1andF2 are friction forces. We suppose that the friction forces F1 and F2
can be described by the Coulomb friction model, i.e.

F1 ∈ ∂Φ1(ẋ1), F2 ∈ ∂Φ2(ẋ2),

where

Φ1(v) = μ1m1g|v|, Φ2(v) = μ2m2g|v| (v ∈ R).

The equations of motion reduce to
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Fig. 11 mi > 0 is the mass of sliding body i (i = 1, 2), ki > 0 is the stiffness of spring i

(i = 1, 2, 3), ci > 0 is the damping coefficient of damper i (i = 1, 2, 3), and μi is a Coulomb
friction coefficient (i = 1, 2)

⎧⎨
⎩

m1ẍ1 + c1ẋ1 + c2(ẋ1 − ẋ2)+ k1x1 + k2(x1 − x2) ∈ −∂Φ1(ẋ1),

m2ẍ2 + c2(ẋ2 − ẋ1)+ c3ẋ2 + k2(x2 − x1)+ k3x2 ∈ −∂Φ2(ẋ2).

(8)

Let us also consider the initial conditions:

x(0) = x0, ẋ(0) = v0, (9)

for some x0, v0 ∈ R. The equations of motion can be written as the following
system:

Mẍ(t)+ Cẋ(t)+Kx(t) = −∂Φ(ẋ(t)) (t ≥ 0), (10)

with

x =
⎛
⎝x1

x2

⎞
⎠ , M =

⎛
⎝m1 0

0 m2

⎞
⎠ ,

C =
⎛
⎝c1 + c2 −c2

−c2 c2 + c3

⎞
⎠ , K =

⎛
⎝k1 + k2 −k2

−k2 k2 + k3

⎞
⎠ ,

and where
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Φ(v) = Φ1(v1)+Φ2(v2) (v = (v1, v2) ∈ R
2).

It is easy to transform this system to the following first-order differential inclusion:

Ẋ(t) ∈ AX(t)− ∂Ξ(X(t)) (t ≥ 0), (11)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

ẋ1

ẋ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−k1 + k2

m1

k2

m1
−c1 + c2

m1

c2

m1

k2

m2
−k2 + k3

m2

c2

m2
−c2 + c3

m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and where Ξ : R4 → R; v = (v1, v2, v3, v4) �→ Ξ(v) is defined by

Ξ(V ) = 1

m1
Φ1(V3)+ 1

m2
Φ2(V4) = μ1g|V3| + μ2g|V4| (V ∈ R

4).

We may thus consider the system:

Ẋ(t) ∈ AX(t)− ∂Ξ(X(t)), (t ≥ 0), (12)

together with the initial condition:

X(0) = X0, (13)

where X0 ∈ R
4. All assumptions of Theorem 3.2.1 (page 49 in [1]) are sat-

isfied, so we conclude that for each initial condition X0 ∈ R
4, there exists a

unique trajectory X ∈ C0([0,+∞[;R4), right differentiable on [0,+∞[, with
Ẋ ∈ L∞loc([0,+∞[;R4) and satisfying (12)–(13). Hence, for each initial position
x0 ∈ R

2 and each initial velocity v0 ∈ R
2, there exists a unique trajectory

x ∈ C1([0,+∞[;R2) such that ẋ is right differentiable on ]0,+∞[, with ẋ ∈
L∞loc([0,+∞[;R2) and satisfying the system in (8). Let us now denote by W the set
of stationary solutions of (8), i.e.

W = {x ∈ R
2 : Kx ∈ −∂Φ(0, 0)}

= {x ∈ R
2 : −μ1m1g ≤ (k1 + k2)x1 − k2x2 ≤ μ1m1g and

−μ2m2g ≤ −k2x1 + (k2 + k3)x2 ≤ μ2m2g}
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= {x ∈ R
2 : |x1| ≤ R1 and |x2| ≤ R2}

with

R1 = (k2 + k3)μ1m1g + k2μ2m2g

k1k2 + k1k3 + k2k3
, R2 = (k1 + k2)μ2m2g + k2μ1m1g

k1k2 + k1k3 + k2k3
.

We say that a stationary solution x̄ ∈ W is stable provided that for any ε > 0, there
exists an η(ε) > 0 such that for any x0 ∈ R

2, v0 ∈ R
2 with

√‖x0 − x̄‖2 + ‖ v0‖2 ≤
η, the solution x(· ; x0, v0) of (8)–(9) satisfies

(∀t ≥ 0) :
√
‖x(t; x0, v0)− x̄‖2 + ‖ẋ(t; x0, v0)‖2 ≤ ε.

If

lim
t→+∞‖x(t; x0, v0)− x̄‖ = 0

and

lim
t→+∞‖ẋ(t; x0, v0)‖ = 0,

then we say that the stationary point x̄ is attractive. A stable and attractive stationary
point x̄ is called asymptotically stable. Since the matrices K and C are both
symmetric and positive definite, we invoke Theorem 4.2.2, page 67 in [1], to
conclude that every stationary solution x̄ ∈ W is Lyapunov stable. Using Theorem
4.2.4 in [1], we can also prove the following attractivity result:

lim
t→+∞ dist(x(t; x0, v0),W) = 0 and lim

t→+∞ ẋ(t; x0, v0) = 0.

Remark 2 Since (0, 0) ∈ Int (∂Φ((0, 0))), it is also possible to show that

lim
t→+∞ x(t; x0, v0) = x̄,

where x̄ ∈ W is a stationary point. If, in addition, −Kx̄ is not in the boundary of
∂Φ(0, 0) = [−μ1m1g,+μ1m1g] × [−μ2m2g,+μ2m2g], then there exists T ≥ 0
such that

(∀t ≥ T ) : x(t; x0, v0) = x̄.

For more details, we refer to Theorem 24.8 in [3].
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A Survey on Markov’s Theorem on Zeros
of Orthogonal Polynomials

Kenier Castillo, Marisa de Souza Costa, and Fernando Rodrigo Rafaeli

Abstract This manuscript is an extended version of the paper by the same authors
who appeared in Castillo et al. (Appl Math Comput 339:390–397, 2018). It briefly
surveys a Markov’s result dating back to the end of the nineteenth century, which is
related to zeros of orthogonal polynomials.

1 Introduction

Markov’s theorem, dating back to the late nineteenth century, furnishes a method
for obtaining information about zeros of orthogonal polynomials from the weight
function related to orthogonality. Formally, adopting modern terminology, his result
is stated as follows (see [27]):

Theorem 1 (Markov [27]) Let {pn(x, t)} be a sequence of polynomials that are
orthogonal on the interval A = (a, b) with respect to the weight function ω(x, t)

that depends on a parameter t , t ∈ B = (c, d), i.e.,

∫ b

a

pn(x, t)pm(x, t)ω(x, t)dx = 0, m �= n.

Suppose that ω(x, t) is positive and has a continuous first derivative with respect to
t for x ∈ A, t ∈ B. Furthermore, assume that

K. Castillo
CMUC, Department of Mathematics, University of Coimbra, Coimbra, Portugal
e-mail: kenier@mat.uc.pt

M. S. Costa · F. R. Rafaeli (�)
FAMAT-UFU, Department of Mathematics, Federal University of Uberlândia, Uberlândia,
Minas Gerais, Brazil
e-mail: marisasc@ufu.br; rafaeli@ufu.br

© Springer Nature Switzerland AG 2021
T. M. Rassias, P. M. Pardalos (eds.), Nonlinear Analysis and Global Optimization,
Springer Optimization and Its Applications 167,
https://doi.org/10.1007/978-3-030-61732-5_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61732-5_2&domain=pdf
mailto:kenier@mat.uc.pt
mailto:marisasc@ufu.br
mailto:rafaeli@ufu.br
https://doi.org/10.1007/978-3-030-61732-5_2


24 K. Castillo et al.

∫ b

a

xk ∂ω

∂t
(x, t)dx, k = 0, 1, . . . , 2n− 1,

converges uniformly for t in every compact subinterval of B. Then, the zeros of
pn(x, t) are increasing (decreasing) functions of t , t ∈ B, provided that

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x, x ∈ A.

Markov’s proof is based on the orthogonality relation (cf. [27, Equation 2])
together with the chain rule (cf. [27, Equation 5]), supposing that the zeros are
defined implicitly as differentiable functions of the parameter. In addition, as an
application of this result, Markov established that the zeros of Jacobi polynomials,
which are orthogonal in (−1, 1) with respect to the weight function ω(x, α, β) =
(1 − x)α(1 + x)β , α, β > −1, are decreasing functions of α and increasing
functions of β. Later, in 1939, Szegő, in his classical book [33, Theorem 6.12.1,
p. 115], provided a different proof of Markov’s theorem. Szegő referred his proof
of Theorem 1 in the following way [33, Footnote 31, p. 116]: “This proof does
not differ essentially from the original one due to A. Markov, although the present
arrangement is somewhat clearer.”. Szegő’s reasoning (argument, approach) is
based on Gauss mechanical quadrature, which was an approach that Stieltjes
suggested to handle the problem, see [32, Section 5, p. 391]. In 1971, Freud (see [12,
Problem 16, p. 133]) formulated a version of Markov’s theorem that is a little more
general, considering sequences of polynomials orthogonal with respect to measures
in the form dα(x, t) = ω(x, t)dν(x). A proof of such result appears in Ismail [15,
Theorem 3.2, p. 183 ] (see also in Ismail’s book [16, Theorem 7.1.1, p. 204]).
Ismail’s argument of the proof is also based on Gauss mechanical quadrature. As
a consequence, Ismail provided monotonicity properties for the zeros of Hahn and
Meixner polynomials (see [16, Theorem 7.1.2, p. 205]). Kroó and Peherstorfer [23,
Theorem 1], in a more general context of approximation theory, extended Markov’s
result to zeros of polynomials that have the minimal Lp-norm. Their approach is
based on the implicit function theorem.

The main concern of this work derives from Markov’s classic 1886 theorem. This
allows the approach to be tailored toward measures with continuous and discrete
parts, thus extending the Markov’s result. This point at issue was posed by Ismail in
his book as an open problem [16, Problem 24.9.1, p. 660] (see also [15, Problem 1,
p. 187]). The question is stated as follows:

Problem 1 Let μ be a positive and nontrivial Radon measure on a compact set
A ⊂ R. Assume that dμ(x, t) has the form

dα(x, t)+ dβ(x, t), (1)
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where dα(x, t) := ω(x, t)dν(x) and dβ(x, t) := ∑∞
i=0 ji(t)δyi (t),

1 with t ∈ B, B
being an open interval on R. Determine sufficient conditions in order for the zeros
of the polynomial Pn(x, t) to be strictly increasing (decreasing) functions of t .

The manuscript is organized in the following way: in Section 2, the main
result is stated and proved; in Section 3, some conclusions are drawn from
the main result, including Markov’s classic theorem, among others; finally, in
Section 4, illustrative examples are given; in Sections 4.1 and 4.2, monotonicity
properties of zeros of polynomials orthogonal with respect measures with discrete
parts are investigated; in Section 4.3, monotonicity properties of zeros of Jacobi,
Gegenbauer, and Laguerre orthogonal polynomials are reviewed; in Section 4.4,
sharp monotonicity properties involving the zeros of Gegenbauer–Hermite, Jacobi–
Laguerre, and Laguerre–Hermite orthogonal polynomials are derived; at last, in
Section 4.5, monotonicity properties of zeros of Charlier, Meixner, Kravchuck, and
Hahn orthogonal polynomials are revisited.

2 Main Result

The next result extends Markov’s theorem to measure with continuous and discrete
parts, giving an answer to Problem 1 (see [5]). For a result in the context of
polynomials that have minimal Lp-norm, see [4, Theorem 1.1].

Theorem 2 Assume the notation and conditions of Problem 1. Assume further the
existence and continuity for each x ∈ A and t ∈ B of (∂ω/∂t)(x, t) and, in addition,
suppose that

G(t, x1, . . . , xn) :=
∞∑
i=0

gi(t, x1, . . . , xn)

converges at t = t0 and

∂G

∂t
(t, x1, . . . , xn) :=

∞∑
i=0

∂gi

∂t
(t, x1, . . . , xn),

∂G

∂xj
(t, x1, . . . , xn) =

∞∑
i=0

∂g

∂xj
(t, x1, . . . , xn),

converge uniformly for t ∈ B, where

1The Dirac measure δy is a positive Radon measure whose support is the set {y}.
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gi(t, x1, . . . , xn) = ji(t)(yi(t)− xk)
−1

n∏
j=1

(yi(t)− xj )
2,

and (x1, . . . , xn) ∈ R
n. Denote by x1(t), . . . , xn(t) the zeros of Pn(x, t). Fix k ∈

{1, . . . , n} and set

dk,i(t) :=
{
yi(t)− xk(t) if yi(t) �= xk(t),

1 if yi(t) = xk(t).

Define the function

Rk,i(t) :=
n∑

j=0

′ 2 − δj,k

yi(t)− xj (t)
,

where the prime means that the sum is over all values j and t for which yi(t) �=
xj (t). Then xk(t) is a strictly increasing function for those values of t such that

1

dk,i(t)

{
j ′i (t)
ji(t)

+ y′i (t)Rk,i(t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

}
≥ 0, (2)

and

1

ω(x, t)

∂ω

∂t
(x, t) (3)

is an increasing function of x ∈ A, provided that at least the inequality (2) is strict
or the function (3) is nonconstant on A.

Proof The proof is based on the implicit function theorem and it is similar to the
Markov’s one.

Let Pn(x, t) = (x − x1(t)) · · · (x − xn(t)) be the nth orthogonal polynomial
with respect to (1). In other words, Pn(x, t) satisfies the following orthogonality
relations:

∫ b

a

q(x)Pn(x, t)ω(x, t)dν(x)+
∞∑
i=0

ji(t)q(yi(t))Pn(yi(t), t) = 0 (q ∈ Pn−1).

(4)

Since Pn(xk(t), t) = 0, by implicit function theorem,

∂Pn

∂x
(xk(t), t)

dxk
dt

(t)+ ∂Pn

∂t
(xk(t), t) = 0,

that is,
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dxk
dt

(t) = −
∂Pn

∂t
(xk(t), t)

∂Pn

∂x
(xk(t), t)

. (5)

Now, take

q(x) = q(x, ν) = Pn(x, ν)

x − xk(ν)
∈ Pn−1,

and substitute it in the derivative of (4) with respect to t , and then let ν → t . The
result is the following:

∫ [Pn(x, t)]2
x − xk(t)

∂ω

∂t
(x, t)dν(x)+

∞∑
i=0

{
j ′i (t)+ ji(t)y

′
i (t)Rk,i(t)

} [Pn(yi(t), t)]2
yi(t)− xk(t)

+
∫

Pn(x, t)

x − xk(t)

∂Pn

∂t
(x, t)ω(x, t)dν(x)

+
∞∑
i=0

ji(t)
Pn(yi(t), t)

yi(t)− xk(t)

∂Pn

∂t
(yi(t), t) = 0. (6)

On the other hand, if one takes

q(x) = q(x, t) =
{
∂Pn

∂t
(x, t)− ∂Pn

∂t
(xk(t), t)

}
1

x − xk(t)
∈ Pn−1,

substitutes it in (4), and subtracts the result from (6), one derives

− ∂Pn

∂t
(xk(t), t)

{∫
Pn(x, t)

x − xk(t)
ω(x, t)dν(x)+

∞∑
i=0

ji(t)
Pn(yi(t), t)

yi(t)− xk(t)

}
=

∫ [Pn(x, t)]2
x − xk(t)

∂ω

∂t
(x, t)dν(x)

+
∞∑
i=0

{
j ′i (t)+ ji(t)y

′
i (t)Rk,i(t)

} [Pn(yi(t), t)]2
yi(t)− xk(t)

. (7)

Now, since

q(x) = q(x, t) =
∂Pn

∂x
(xk(t), t)(x − xk(t))− Pn(x, t)

(x − xk(t))2 ∈ Pn−2,
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by the orthogonality relation (4), one obtains

∂Pn

∂x
(xk(t), t)

{∫
Pn(x, t)

x − xk(t)
ω(x, t)dν(x)+

∞∑
i=0

ji(t)
Pn(yi(t), t)

yi(t)− xk(t)

}
=

∫ [Pn(x, t)]2
(x − xk(t))2

ω(x, t)dν(x)+
∞∑
i=0

ji(t)
[Pn(yi(t), t)]2
(yi(t)− xk(t))2

. (8)

Therefore, substituting (7) and (8) in (5) yields

dxk
dt

(t) =
∫ [Pn(x, t)]2

x − xk(t)

∂ω

∂t
(x, t)dν(x)+

∞∑
i=0

{
j ′i (t)+ ji(t)y

′
i (t)Rk,i(t)

} [Pn(yi(t), t)]2
yi(t)− xk(t)

∫ [Pn(x, t)]2
(x − xk(t))2

ω(x, t)dν(x)+
∞∑
i=0

ji(t)
[Pn(yi(t), t)]2
(yi(t)− xk(t))2

.

.

(9)

Clearly,

1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

∫
Pn(x, t)

2

x − xk(t)
dμ(x, t) = 0. (10)

Subtracting (10) from the numerator of the right-hand side of (9) yields

∫ [Pn(x, t)]2
x − xk(t)

∂ω

∂t
(x, t)dν(x)+

∞∑
i=0

{
j ′i (t)+ ji(t)y

′
i (t)Rk,i(t)

} [Pn(yi(t), t)]2
yi(t)− xk(t)

=
∫ [Pn(x, t)]2

x − xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dν(x)+

+
∞∑
i=0

{
j ′i (t)+ ji(t)y

′
i (t)Rk,i(t)− ji(t)

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

} [Pn(yi(t), t)]2
yi(t)− xk(t)

.

(11)

It only remains to note that

1

x − xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
≥ 0.
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Thus, the sign of x′k(t) is the same sign as the numerator of (9), and the desired
result follows from (11).

3 Markov’s Theorem and Its Descendants

In this section, Markov’s classic theorem is derived from Theorem 2. In addition,
Markov’s theorem for even weight function is revisited too, together with other
results.

The next result brings us back to Markov’s theorem [27] (see also [33, Theorem
6.12.1, p. 115] and [16, Theorem 7.1.1, p. 204]).

Corollary 3.1 Assume the notation and conditions of Theorem 2 under the con-
straint that dμ(x, t) = ω(x, t)dα(x). In this case, (9) becomes

dxk
dt

(t) =

∫ [Pn(x, t)]2
x − xk(t)

∂ω

∂t
(x, t)dν(x)

∫ [Pn(x, t)]2
(x − xk(t))2

ω(x, t)dν(x)

=

∫ [Pn(x, t)]2
x − xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dν(x)

∫ [Pn(x, t)]2
(x − xk(t))2

ω(x, t)dν(x)

.

(12)

Then, xk(t) is a strictly increasing (decreasing) function of t if

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x ∈ A, provided that the last function be
nonconstant on A.

Markov’s result concerning the zeros of polynomials orthogonal with respect to
even weight function was studied by Jordaan, Wang, and Zhou [18, Theorem 2.1].
This case also appears in [23, Corollary 2] in a more general context. For further
results about these polynomials, see [6, Chapter 1, Sections 8 and 9].

Corollary 3.2 (Markov’s Result for Even Weight Function) Assume the notation
and conditions of Theorem 2 under the constraint that dμ(x, t) = ω(x, t) dx.
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Suppose, in addition, that ω(x, t) is an even function of x in A = (−a, a).2 Then,
the positive zeros xk(t) are strictly increasing (decreasing) functions of t if

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x ∈ (0, a), provided that the last function
be nonconstant on (0, a).

Proof Since ω(x, t) is an even function, then Pn(−x, t) = (−1)nPn(x, t) (for
further details, see [6, Chapter 1, Section 8]). Therefore, one can write

P2m(x, t) = Sm(x2, t) and P2m+1(x, t) = x Tm(x2, t),

where Sm and Tm are polynomials of degree m. Let y
(1)
i = y

(1)
i (t) and y

(2)
i =

y
(2)
i (t), i = 1, . . . , m, be the zeros of the polynomials Sm and Tm, respectively. If

xi , i = 1, . . . , [n/2], denote the positive zeros of the polynomial Pn, then

xi =
√
y
(k)
i , i = 1, . . . , [n/2], (13)

where k = 1 if n is even and k = 2 if n is odd. Note that

∫ a

−a

P2r (x, t)P2l (x, t)ω(x, t)dx =
∫ a

−a

Sr(x
2, t)Sl(x

2, t)ω(x, t)dx

= 2
∫ a

0
Sr(x

2, t)Sl(x
2, t)ω(x, t)dx =

∫ a2

0
Sr(y, t)Sl(y, t)

ω(
√
y, t)√
y

dy

and

∫ a

−a

P2r+1(x, t)P2l+1(x, t)ω(x, t)dx =
∫ a

−a

xTr(x
2, t)xTl(x

2, t)ω(x, t)dx

= 2
∫ a

0
Tr(x

2, t)Tl(x
2, t)x2ω(x, t)dx =

∫ a2

0
Tr(y, t)tl(y, t)

√
y ω(

√
y, t)dy.

Since {Pn(x, t)} is a sequence of orthogonal polynomials with respect to an even
weight function ω(x, t) on (−a, a), it follows that {Sn(y, t)} and {Tn(y, t)} are
sequences of orthogonal polynomials on (0, a2) with respect to the weight functions

2In the case that ω(x, t) is an even function in an interval of the form (−a, a), it is well known
that the zeros of the orthogonal polynomials are symmetric with respect to the origin, i.e., xk(t) =
−xn−k+1(t), k = 1, 2, . . . , n.
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ω1(y, t) = ω(
√
y, t)/

√
y and ω2(y, t) = √

y ω(
√
y, t), respectively. Now, it is easy

to see that

1

ω1(y, t)

∂ω1(y, t)

∂t
= 1

ω2(y, t)

∂ω2(y, t)

∂t
= 1

ω(
√
y, t)

∂ω(
√
y, t)

∂t
.

Therefore, since the function (ω(x, t))−1∂ω(x, t)/∂t increases (decreases)
when x increases in (0, a), then the functions (ω1(y, t))

−1∂ω1(y, t)/∂t and
(ω2(y, t))

−1∂ω2(y, t)/∂t increase (decrease) when y increases in (0, a2). So it
follows from Markov’s theorem that the zeros y

(k)
i = y

(k)
i (t), i = 1, . . . , [n/2],

k = 1, 2, increase (decrease) when t increases in B. Then, the result follows from
(13).

In Markov’s theorem, one can consider the end points of the interval of the
orthogonality as functions of the parameter, i.e., a = a(t) and b = b(t). From
this, the following result can be derived:

Corollary 3.3 Assume the notation and conditions of Theorem 2 under the con-
straint that dμ(x, t) = ω(x, t)dx. Furthermore, suppose that a = a(t) and
b = b(t) are functions of t with continuous derivatives of the first order. Then,
xk(t) is a strictly increasing (decreasing) function of t if

1

ω(x, t)

∂ω

∂t
(x, t)

is an increasing (decreasing) function of x ∈ A = (a(t), b(t)), provided that this
last function be nonconstant on A, and both a(t) and b(t) increase (decrease) as t

increases.

Proof By Leibniz’s rule for differentiation under the integral sign, one obtains that
the numerator of the right-hand side of (12) becomes

∫ b(t)

a(t)

[Pn(x, t)]2
x − xk(t)

(
1

ω(x, t)

∂ω

∂t
(x, t)− 1

ω(xk(t), t)

∂ω

∂t
(xk(t), t)

)
ω(x, t)dx

+ P 2
n (b(t), t)

b(t)− xk(t)
ω(b(t), t)b′(t)− P 2

n (a(τ ), t)

a(t)− xk(t)
ω(a(t), t)a′(t). (14)

This establishes the result.

In Corollary 3.3, the hypothesis that the weight function depends on the
parameter t may be replaced by the hypothesis that the weight function does not
depend on t , that is, ω = ω(x). In this case, if both a(t) and b(t) increase
(decrease) with t increases (either a or b can be constant), then xk(t) is an increasing
(decreasing) function of t .
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Some particular cases of measures of the form

dμ(x, t) = dα(x)+ j (t)δy (15)

were frequently considered in the literature (see [13, 20–22, 26, 28]). See [13] for
general results concerning zeros of polynomials orthogonal with respect to (15). A
bit more general case of (15) is presented as follows:

Corollary 3.4 Assume the notation and conditions of Theorem 2 under the con-
straint dμ(x, t) = dα(x) + ∑∞

i=0 ji(t)δyi . Furthermore, suppose that yi , i =
0, 1, . . ., are constants, and j ′i (t) = 0 for i �= l. Define the sets

C−
l := {t ∈ B | j ′l (t) < 0}, C+

l := {t ∈ B | j ′l (t) > 0}.

If xk(t) < yl (respectively, xk(t) > yl) for each t ∈ B, then xk(t) is a strictly
increasing (respectively, decreasing) function of t on C+

l (respectively, on C−
l ). In

other words, each zero xk(t) on the left-hand side of yl is an increasing (decreasing)
function of t on C+

l (C−
l ), whereas each zero xk(t) on the right-hand side of yl is a

decreasing (increasing) function of t on C+
l (C−

l ).

Proof In this case, (9) reduces to

dxk
dt

(t) =
j ′l (t)

[Pn(yl, t)]2
yl − xk(t)∫ [Pn(x, t)]2

(x − xk(t))2 ω(x, t)dν(x)+
∞∑
i=0

ji(t)
[Pn(yi, t)]2
(yi − xk(t))2

.

This establishes the result.

The next result was proved firstly in [3, Theorem 2.2]. In order to derive
monotonicity properties of zeros, the location of the mass point outside A is required
(see Section 4.2 of this manuscript).

Corollary 3.5 Assume the notation and conditions of Theorem 2 under the con-
straint dμ(x, t) = dα(x)+ jδy(t). Define the sets3

B− := {t ∈ B | y(t) ∈ Co(A)c ∧ y′(t) < 0},
B+ := {t ∈ B | y(t) ∈ Co(A)c ∧ y′(t) > 0}.

Then all the zeros of Pn(x, t) are strictly decreasing (respectively, increasing)
functions of t on B− (respectively, on B+).

3Ac := {x ∈ R | x �∈ A} and Co(A) denotes the convex hull of A.
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Proof In this case, (9) reduces to

dxk
dt

(t) =
j y′(t) [Pn(y(t), t)]2

y(t)− xk(t)

n∑
j=0

′ 2 − δj,k

y(t)− xj (t)

∫ [Pn(x, t)]2
(x − xk(t))2 ω(x, t)dν(x)+ j

[Pn(y(t), t)]2
(y(t)− xk(t))2

,

where the prime means that the sum is over all values j and t for which y(t) �= xj (t).
This establishes the result.

4 Some Applications

4.1 Sharp Monotonicity Properties of the Zeros of Orthogonal
Polynomials Derived from Corollary 3.4

Suppose that dμ(x, t) = dx + j1δy1 + j2δy2 + j3δy3 , where j1 = j1(t) = t ,
j2 = j3 = 1, y1 = 2, y2 = 5, and y3 = 7, with A = (−1, 1) and B = (0,∞). Let
{pn} be the sequence of orthogonal polynomials with respect to dμ, i.e.,

∫ 1

−1
pn(x)pm(x)dx + tpn(2)pm(2)+ pn(5)pm(5)+ pn(7)pm(7) = 0, m �= n.

Then, the zeros of the polynomial pn located on the left-hand side of y1 = 2 are
increasing functions of t , while the zeros of pn on the right-hand side of y1 = 2 are
decreasing functions of t , in view of Corollary 3.4.

Table 1 shows the monotonicity of the zeros of p4 from this example. Observe
that two of them are increasing functions of t , while the other ones are decreasing
functions of t .

One can consider an example with an infinite number of mass points. For
instance, the Charlier polynomials {Cn(x, a)} are orthogonal with respect to a
discrete measure whose distribution function has jumps ω(x, a) = ax/x! at x =
0, 1, . . . , with a > 0 (see [16]), that is,

∞∑
x=0

Cm(x, a)Cn(x, a)ω(x, a) = 0, m �= n.

Let {Ck
n(x, a, t)} satisfy the orthogonality relation

∞∑
x=0

Ck
m(x, a, t)Ck

n(x, a, t)ωk(x, a, t) = 0, m �= n, k ≥ 0,
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Table 1 Zeros of the
polynomial p4 as functions
of t

t x1(t) x2(t) x3(t) x4(t)

0.0 −0.655077 0.46887 4.98364 6.99699

0.5 −0.528752 1.07504 4.83155 6.97651

1.0 −0.502388 1.33983 4.75758 6.96841

1.5 −0.491188 1.48640 4.71348 6.96408

2.0 −0.485007 1.57951 4.68410 6.96138

2.5 −0.481092 1.64394 4.66310 6.95953

3.0 −0.478390 1.69121 4.64733 6.95820

3.5 −0.476414 1.72736 4.63504 6.95718

4.0 −0.474906 1.75592 4.62520 6.95638

4.5 −0.473717 1.77906 4.61713 6.95574

5.0 −0.472756 1.79818 4.61040 6.95521

5.5 −0.471962 1.81425 4.60470 6.95477

6.0 −0.471297 1.82795 4.59981 6.95439

6.5 −0.470730 1.83977 4.59557 6.95407

7.0 −0.470242 1.85006 4.59185 6.95379

7.5 −0.469817 1.85911 4.58857 6.95354

8.0 −0.469444 1.86713 4.58565 6.95332

8.5 −0.469113 1.87428 4.58304 6.95313

9.0 −0.468819 1.88071 4.58069 6.95295

9.5 −0.468555 1.88651 4.57856 6.95279

10.0 −0.468316 1.89177 4.57662 6.95265

Table 2 Zeros of the
polynomial C2

4 (x, 1, t) as
functions of t

t x1(t) x2(t) x3(t) x4(t)

0 0.0439673 1.33203 3.07971 5.54429

1 0.0556639 1.53679 2.81524 5.43756

2 0.0594188 1.63309 2.69647 5.40402

3 0.0612692 1.69166 2.62618 5.38764

4 0.0623708 1.73193 2.57873 5.37794

5 0.0631017 1.76169 2.54410 5.37152

6 0.0636219 1.78479 2.51750 5.36697

7 0.0640111 1.80334 2.49630 5.36357

8 0.0643133 1.81864 2.47894 5.36093

9 0.0645547 1.83150 2.46441 5.35883

10 0.0647519 1.84251 2.45204 5.35711

where ωk(x, a, t) = ω(x, a), for x �= k, and ωk(k, a, t) = ω(k, a) + t . Note that
Ck

n(x, a, 0) = Cn(x, a). For n = 4, the zeros of C4(x, 1) are x1 = 0.0439673,
x2 = 1.33203, x3 = 3.07971, and x4 = 5.54429. So, for instance, if one takes
k = 2, by Corollary 3.4, the zeros x1(t) and x2(t) of C2

4(x, 1, t) are increasing
functions of t , while the zeros x3(t) and x4(t) of C2

4(x, 1, t) are decreasing functions
of t , see Table 2.



A Survey on Markov’s Theorem on Zeros of Orthogonal Polynomials 35

4.2 Sharp Monotonicity Properties of the Zeros of Orthogonal
Polynomials Derived from Corollary 3.5

Suppose that dμ(x, t) = dx + 10δy(t), where y(t) = t , with A = (−1, 1) and
B = (−2, 2). Let {pn} be the sequence of orthogonal polynomials with respect to
dμ, i.e.,

∫ 1

−1
pn(x)pm(x)dx + 10pn(t)pm(t) = 0, m �= n.

Then, by Corollary 3.5, the zeros of the polynomial pn are increasing functions of t ,
for t ∈ (−2,−1) ∪ (1, 2). On the other hand, for t ∈ (−1, 1), one cannot guarantee
the monotonicity of these zeros.

Table 3 illustrates the behavior of the zeros x1 = x1(t), x2 = x2(t), x3 = x3(t),
and x4 = x4(t), of p4 from this example. Note that they are not monotonic functions
of t , when it varies in (−1, 1). In this regard, the statements of Theorem 2 and
Corollary 3 in [8] appear to be incorrect.

Table 3 Zeros of the
polynomial p4 as functions
of t

t x1(t) x2(t) x3(t) x4(t)

−2.0 −1.999850 −0.682492 0.142833 0.818103

−1.8 −1.799760 −0.664794 0.158989 0.821979

−1.6 −1.599570 −0.638982 0.179555 0.826752

−1.4 −1.399200 −0.598464 0.206977 0.832897

−1.2 −1.198540 −0.529080 0.246312 0.841409

−1.0 −0.998028 −0.409306 0.306336 0.854084

−0.8 −0.803116 −0.368260 0.329881 0.859152

−0.6 −0.764270 −0.572827 0.299677 0.853545

−0.4 −0.858748 −0.396400 0.335789 0.860400

−0.2 −0.854976 −0.210785 0.301057 0.856301

0.0 −0.846273 −0.098843 0.098843 0.846273

0.2 −0.856301 −0.301057 0.210785 0.854976

0.4 −0.860400 −0.335789 0.396400 0.858748

0.6 −0.853545 −0.299677 0.572827 0.764270

0.8 −0.859152 −0.329881 0.368260 0.803116

1.0 −0.854084 −0.306336 0.409306 0.998028

1.2 −0.841409 −0.246312 0.529080 1.198540

1.4 −0.832897 −0.206977 0.598464 1.399200

1.6 −0.826752 −0.179555 0.638982 1.599570

1.8 −0.821979 −0.158989 0.664794 1.799760

2.0 −0.818103 −0.142833 0.682492 1.999850
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4.3 Monotonicity of the Zeros of Classical Continuous
Orthogonal Polynomials Derived from Corollary 3.1
(Markov’s Theorem)

In this subsection, the classical result established by Markov in 1886 is reviewed. It
concerns the monotonicity of zeros of Jacobi orthogonal polynomials. Moreover, the
results on zeros of Gegenbauer and Laguerre orthogonal polynomials are revisited
too (see Szegő’s book [32, Section 5], and Ismail’s book [16, Chapter 7]).

Example 4.1 (Zeros of Jacobi Polynomials) Let P
(α,β)
n (x) be the nth Jacobi

polynomial that is orthogonal on (−1, 1) with respect to the weight function
ω(x, α, β) = (1 − x)α(1 + x)β , α, β > −1. Then all its zeros are increasing
functions of β and decreasing functions of α, for α, β > −1.

Proof Since

1

ω(x, α, β)

∂ω(x, α, β)

∂α
= ln(1 − x)

is a decreasing function of x and, otherwise,

1

ω(x, α, β)

∂ω(x, α, β)

∂β
= ln(1 + x)

is an increasing function of x, for x ∈ (−1, 1), from Markov’s theorem, the
statements hold.

Figure 1 illustrates the monotonicity of the zeros of P (α,β)
n (x) with respect to β,

while Figure 2 shows the monotonicity of the zeros of P (α,β)
n (x) with respect to α.

Example 4.2 (Zeros of Laguerre Polynomials) Let L
(α)
n (x) be the nth Laguerre

polynomial that is orthogonal on (0,∞) with respect to the weight function
ω(x, α) = xαe−x , α > −1. Then, all its zeros are increasing functions of α, for
α > −1.

Proof In this case,

Fig. 1 Zeros of Jacobi
polynomials as functions of
the parameter β. Graph of the
zeros of P (1,β)

4 (x)
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Fig. 2 Zeros of Jacobi
polynomials as functions of
the parameter α. Graph of the
zeros of P (α,1)

4 (x)

Fig. 3 Zeros of Laguerre
polynomials as functions of
α. Graph of the zeros of
L

(α)
4 (x)

1

ω(x, α)

∂ω(x, α)

∂α
= ln x

is an increasing function of x, for x ∈ (0,∞). So, from Markov’s theorem, the
statement holds.

Figure 3 serves to illustrate the monotonicity of the zeros of Laguerre polynomi-
als with respect to the parameter α.

Example 4.3 (Zeros of Gegenbauer Polynomials) Let P
(λ)
n (x) be the nth Gegen-

bauer (or ultraspherical) polynomial that is orthogonal on (−1, 1) with respect to
the weight function ω(x, λ) = (1−x2)λ−1/2, λ > −1/2. Then, all its positive zeros
are decreasing functions of λ, for λ > −1/2.4

Proof Since ω(x, λ) is an even function and

1

ω(x, λ)

∂ω(x, λ)

∂λ
= ln(1 − x2)

is a decreasing function of x, for x ∈ (0, 1), then, from Markov’s theorem for even
weight function, the statement holds.

Figure 4 shows the behavior of the zeros of P (λ)
4 (x) as functions of λ.

4Because of the symmetry of the zeros of P (λ)
n (x), its negative zeros are increasing functions of λ,

for λ > −1/2.
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Fig. 4 Zeros of Gegenbauer
polynomials as functions of
λ. Graph of the zeros of
P

(λ)
4 (x)

4.4 Sharp Monotonicity Properties of the Zeros of Classical
Continuous Orthogonal Polynomials Derived from
Corollary 3.3

The motivation of the next result goes back to a work of Laforgia [24], raised
in 1981. He proved that the quantities λxn,k(λ) are increasing functions of λ,
for λ ∈ (0, 1), where xn,k(λ), k = 1, . . . , [n/2], are the positive zeros of
Gegenbauer polynomial P (λ)

n (x). Later on, Laforgia [25] conjectured that this result
remains valid for λ ∈ (0,∞). In 1988, Ismail and Letessier [17] conjectured that

(λ + c)
1
2 xn,k(λ), k = 1, . . . , [n/2], increase with λ > 0 for c = 0. Ismail in

[15, Conjecture 3, p. 188], following a suggestion of Askey, conjectured this result
for c = 1, leading up to the ILA conjecture of the title. Ifantis and Siafarikas
[14] showed ILA for k = 1 and λ > −1/2, as well as in [7]. Ahmed, Muldoon,
and Spigler [1] proved this monotonicity result for c = (2n2 + 1)/(4n + 2) and
−1/2 < λ ≤ 3/2. Elbert and Siafarikas [11] extended the result of Ahmed et al.,
showing thus ILA for all λ > −1/2.

Next, using one of the Markov’s descendants’ results, one can prove the
following statement related to ILA conjecture.

OBSERVATION 1 (GEGENBAUER–HERMITE) Let xn,1(λ) > · · · > xn,n(λ) be the

zeros of the Gegenbauer polynomial P (λ)
n (x) and let hn,1 > · · · > hn,n be the zeros

of the Hermite polynomial Hn(x). Then, for all n ∈ N and c ≤ −1/2, the quantities

(λ+ c)
1
2 xn,k(λ), k = 1, . . . , [n/2],

are increasing functions of λ and converge to hn,k when λ goes to infinity. So, for
c = −1/2, one obtains

xn,k(λ) ≤ (λ− 1/2)−
1
2 hn,k, k = 1, . . . , [n/2].

Proof One can assert the asymptotic formula [33, Section 5.6] (see also [19,
formula (2.8.3)])
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lim
λ→∞ λ−n/2P (λ)

n (λ−
1
2 x) = Hn(x)

n! ,

where Hn(x) denotes the nth Hermite orthogonal polynomial. Let hn,k , k =
1, . . . , n, be the zeros of Hn(x) arranged in decreasing order. Thus, that gives

lim
λ→∞ λ

1
2 xn,k(λ) = hn,k.

Therefore, for f = fn(λ) = (λ + c)
1
2 , where c is a constant that may depend on n

but does not depend on λ, equivalently that gives

lim
λ→∞(λ+ c)

1
2 xn,k(λ) = hn,k.

Hence, a natural question arises: is there a value of c such that all the quantities (λ+
c)

1
2 xn,k(λ), k = 1, . . . , [n/2], are monotonic (increasing or decreasing) functions of

λ? To answer this question, one has to perform the exchange of variables x = z/f to
obtain the rescaled Gegenbauer polynomial P (λ)

n (z/f ) orthogonal on (−f, f ) with
respect to the weight function ω(z, λ) = (f 2 − z2)λ−1/2, λ > −1/2, and whose
zeros are zn,k(λ) = fn(λ)xn,k(λ). Then, a straightforward calculation yields

∂f

∂λ
= 1

2(λ+ c)
1
2

> 0

and

∂

∂z

[
1

ω(z, λ)

∂ω(z, λ)

∂λ

]
= 2z[(z2 − f 2)+ (2λ− 1)f ∂f/∂λ]

(f 2 − z2)2 > 0,

for z ∈ (0, f ) and c ≤ −1/2. Therefore, having Corollaries 3.2 and 3.3 in mind, for

c ≤ −1/2, the quantities (λ+c)
1
2 xn,k(λ), k = 1, . . . , [n/2], are increasing functions

of λ and converge to hn,k when λ goes to infinity. Therefore, for c = −1/2, one
obtains

(λ− 1/2)
1
2 xn,k(λ) ≤ hn,k, k = 1, . . . , [n/2],

or equivalently

xn,k(λ) ≤ (λ− 1/2)−
1
2 hn,k, k = 1, . . . , [n/2].

The right-hand side of the above inequalities are upper bounds for the positive
zeros of Gegenbauer polynomials, and they are sharp for large values of λ. See
Figure 5.
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Fig. 5 Graph of the zeros
x4,k(λ) (continuous lines) and
their upper bounds

(λ− 1/2)− 1
2 h4,k (dashed

lines), for k = 1, 2

The next example describes a connection between the zeros of Jacobi and
Laguerre orthogonal polynomials. In [9], using Sturm’s comparison theorem on
solutions of Sturm–Liouville differential equation, it was shown the monotonicity
results for the functions (β + c)(1 − xn,k(α, β)), k = 1, . . . , n, where c =
n+ (α + 1)/2 + (1 − α2)/(4n+ 2α + 2).

OBSERVATION 2 (JACOBI–LAGUERRE) Let xn,1(α, β) > · · · > xn,n(α, β) be the

zeros of P (α,β)
n (x) and let �n,1(α) > · · · > �n,n(α) be the zeros of L(α)

n (x). Then,
for every n ∈ N, 1 ≤ k ≤ n, α > −1, and c ≤ 0, the quantities

(β + c)(1 − xn,k(α, β))/2

are increasing functions of β, for β ∈ (−1,∞), and converge to �n,n−k+1(α) when
β goes to infinity. Moreover, the inequalities

1 − 2

β
�n,n−k+1(α) ≤ xn,k(α, β)

hold.

Proof One can find in the literature [33, Section 5.3] (see also [19, formula (2.8.1)])
the following limit relation between Jacobi and Laguerre polynomials

lim
β→∞P (α,β)

n (1 − 2β−1x) = L(α)
n (x).

Since the zeros are continuous functions of the coefficients of the polynomials, one
derives

lim
β→∞β(1 − xn,k(α, β)) = 2�n,n−k+1(α), k = 1, . . . , n.

Therefore, for f = fn(α, β) = β + c, where c is a constant that may depend on n

and α but does not depend on β, one has equivalently that
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lim
β→∞(β + c)(1 − xn,k(α, β)) = 2�n,n−k+1(α), k = 1, . . . , n.

The purpose is to find the function f in such a way that all the quantities
f (1 − xn,k(α, β)) are monotonic (increasing or decreasing) functions of β. For
this reason, performing the change of variables x = 1 − 2z/f one obtains that
the rescaled Jacobi polynomials P

(α,β)
n (1 − 2z/f ), whose zeros are zn,k(α, β) =

f (1 − xn,k(α, β))/2, k = 1, . . . , n, are orthogonal on (0, f ) with respect to the
weight function ω(z, α, β) = zα(f − z)β , for α, β > −1.

In order to apply the Corollary 3.3 for z ∈ (0, f ), one has to calculate the
following derivatives:

∂f

∂β
= 1 > 0

and

∂

∂z

[
1

ω(z, α, β)

∂ω(z, α, β)

∂β

]
= z− f + β∂f/∂β

(f − z)2
> 0 if and only if c ≤ 0.

Therefore, for c ≤ 0, the quantities (β+c)(1−xn,k(α, β))/2 are increasing functions
of β and converge to �n,n−k+1(α) when β goes to infinity. Thus, for c = 0, one
obtains

β(1 − xn,k(α, β)) ≤ 2�n,n−k+1(α), k = 1, . . . , n,

or equivalently

1 − 2

β
�n,n−k+1(α) ≤ xn,k(α, β), k = 1, . . . , n.

This establishes the theorem.

Note that the left-hand sides of the above inequalities are lower bounds for the
zeros of Jacobi polynomials, and they are sharp for large values of β. See Figures 6
and 7.

Fig. 6 Graph of z4,k(α, β) =
β(1 − x4,k(α, β))/2,
1 ≤ k ≤ 4 (continuous lines).
Observe that each z4,k(α, β)

is an increasing function of β
and goes to �4,n−k+1(α) as
β →∞ (dotted lines)
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Fig. 7 Graph of the zeros
xn,k(α, β) (continuous lines)
and their lower bounds
1 − 2�n,n−k+1(α)/β (dashed
lines), 1 ≤ k ≤ n, for the case
n = 4 and α = 1

The last example of this subsection shows the connection between the zeros of
Laguerre and Hermite orthogonal polynomials. The first result in this topic was
obtained in 1995 by Ifantis and Siafarikas [14]. They showed that �n,1(α)/(α + 1)
decreases with α, for α > −1. In 2003, Natalini and Palumbo [29] proved that
�n,k(α)/

√
α + 2n+ 1 are increasing functions of α, for α ∈ (−1,∞). Moreover,

they established two additional results on monotonicity of the functions of the form
�n,k(α)/α

p, with fix p, and 2 ≤ p ≤ 2n + 1. It was shown in [10] that [�n,k(α) −
(2n + α − 1)]/√2(n+ α − 1) are increasing functions of α, for α ≥ −1/(n − 1).
In addition, when k = 1, it was shown that the last function increases for every
α ∈ (−1,∞).

OBSERVATION 3 (LAGUERRE–HERMITE) Let �n,1(α) > · · · > �n,n(α) be the

zeros of L
(α)
n (x) and let hn,1 > · · · > hn,n be the zeros of Hn(x). Then, for all

n ∈ N and 1 ≤ k ≤ n, the quantities

�n,k(α)− α√
α

are decreasing functions of α, for α > 0, and, moreover, they converge to
√

2hn,k

as α →∞. In addition, the inequalities

�n,k(α) ≥ α +√
2αhn,k

hold for all α > 0.

Proof Remember the limit relation between Laguerre and Hermite polynomials
(see [19, formula (2.11.1)])

lim
α→∞

(
2

α

)n/2

L(α)
n (α + (2α)1/2x) = (−1)n

n! Hn(x).
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Whence it follows that

�n,k(α)− α√
2α

→ hn,k as α →∞.

Therefore, for any constants c and d that may depend on n but does not depend on
α, one can write

�n,k(α)− (α + c)√
α + d

→√
2hn,k as α →∞.

To obtain sharp bounds for the zeros of Laguerre polynomials, one needs to
determine, if possible, the best constants c and d for which the quantities [�n,k(α)−
(α + c)]/√α + d are monotonic (increasing or decreasing) functions of α. The
best constants mean the infimum or supremum of theirs values. To go in this
direction, one has to perform the change of variables x = √

α + dz + α + c to
obtain the rescaled Laguerre polynomial L(α)

n (
√
α + dz+ α + c) that is orthogonal

on (−(α + c)/
√
α + d,+∞) with respect to the weight function ω(z, α) =

(α + c + √
α + dz)α. e−(α+c+√α+dz), α > −1, and whose zeros are zn,k(α) =

[�n,k(α) − (α + c)]/√α + d, 1 ≤ j ≤ n. Now to apply Corollary 3.3 for
z ∈ (−(α + c)/

√
α + d,+∞), one has to calculate the following derivatives:

∂

∂α

[
− α + c√

α + d

]
= −α + 2d − c

2(α + d)
3
2

(16)

and

∂

∂z

[
1

ω(z, α)

∂ω(z, α)

∂α

]
= c(α + 2d − c)+ 2

√
α + d(d − c)z− (α + d)z2

2
√
α + d(α + c +√

α + dz)2
.

(17)
Taking c = d = 0, (16) and (17) become negative for every α > 0. Then,
Corollary 3.3 implies that all the quantities

zn,k(α) = �n,k(α)− α√
α

, 1 ≤ j ≤ n,

are decreasing functions of α, for α > 0. It was provided that zn,k(α) goes to
√

2hn,k

as α →∞, so �n,k(α) ≥ α +√
2αhn,k for all α > 0 and k = 1, . . . , n.

Figure 8 exemplifies the behavior of the zeros zn,k(α) with respect to the
parameter α for c = d = 0. Figure 9 shows the lower bounds for the zeros �n,k(α)

of L(α)
n (x).
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Fig. 8 Graph of
zn,k(α) = �n,k(α)−α√

2α
,

1 ≤ k ≤ n, for n = 4
(continuous lines). Observe
that each z4,k(α) is a
decreasing function of α and
goes to h4,k as α →∞
(dotted lines)

Fig. 9 Graph of the zeros
�n,k(α) (continuous lines) and
their lower bounds
α +√

2αhn,k (dashed lines),
1 ≤ j ≤ n, for the case n = 4

4.5 Monotonicity of the Zeros of Classical Discrete Orthogonal
Polynomials Derived from Corollary 3.1 (Markov’s
Theorem)

In this subsection, the monotonicity of the zeros of the families of classical
orthogonal polynomials of a discrete variable, Charlier, Meixner, Kravchuk, and
Hahn is revisited. Such results can be found in Ismail’s book [16, Chapter 7] (see
also [2]). For further information to this class of polynomials, see [30].

Example 4.4 Let C
(a)
n (x) be the nth Charlier orthogonal polynomial. Then all its

zeros are increasing functions of a, for a ∈ (0,∞).

Proof The Charlier polynomials are orthogonal with respect to ω(x, a) =
ax/�(x + 1) at x = 0, 1, 2, . . .. Let us consider its continuous extension on (0,∞).
Then

1

ω(x, a)

∂ω(x, a)

∂a
= ∂

∂a

[
ln

ax

�(x + 1)

]
= ∂

∂a
[x ln(a)+ ln(�(x + 1))] = x

a

is an increasing function of x, for x ∈ (0,∞). Thus, from Markov’s theorem, one
concludes that the zeros of C(a)

n (x) are increasing function of a, for a > 0.

Figure 10 presents the graph of the zeros of C(a)
4 (x) as functions of the parameter

a. Note that its zeros are increasing functions of a, for a > 0.
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Fig. 10 Zeros of Charlier
polynomials as functions of
the parameter a. Graph of the
zeros of C(a)

4 (x)

30 60
a

40

80

Example 4.5 Let M(β,c)
n (x) be the nth Meixner orthogonal polynomial. Then all its

zeros are increasing functions of both β ∈ (0,∞) and c ∈ (0, 1).

Proof The Meixner polynomials are orthogonal with respect to ω(x, β, c) =
�(x + β)cx/(�(β)�(x + 1)) at x = 0, 1, 2, . . .. To prove the monotonicity of the
zeros of M

(β,c)
n (x) with respect to the parameters β and c, one has to consider

the analytic extension of ω(x, β, c) = �(x + β)cx/(�(β)�(x + 1)) on (0,∞).
Therefore,

lnω(x, β, c) = ln
�(x + β)cx

�(β)�(x + 1)

= ln�(x + β)+ x ln c − ln�(β)− ln�(x + 1). (18)

Computing the derivative of (18) with respect to β, one obtains5

1

ω(x, β, c)

∂ω(x, β, c)

∂β
= ∂ lnω(x, β, c)

∂β
= �′(x + β)

�(x + β)
− �′(β)

�(β)

= x

β(x + β)
+

∞∑
n=1

x

(β + n)(x + β + n)
,

which is an increasing function of x for x ∈ (0,∞), and β > 0. Thus, from
Markov’s theorem, it implies that the zeros of M

(β,c)
n (x) are increasing functions

of β, for β > 0.
On the other hand, differentiating (18) with respect to c, one obtains

5One has the identity
�′(z)
�(z)

= −γ − 1

z
−

∞∑
n=1

[
1

z+ n
− 1

n

]
, where γ is the Euler constant (see

[34, Section 12.3], [31, Chapter 7]).
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Fig. 11 Zeros of Meixner
polynomials as functions of
the parameter β. Graph of the
zeros of M(β,0.4)

5 (x), β > 0

30 60
b

30

60

Fig. 12 Zeros of Meixner
polynomials as functions of
the parameter c. Graph of the
zeros of M(6,c)

5 (x), 0 < c < 1

0.5 1
c

50

100

1

ω(x, β, c)

∂ω(x, β, c)

∂c
= ∂ lnω(x, β, c)

∂c
= x

c
,

which is an increasing function of x for x ∈ (0,∞), and c ∈ (0, 1). Hence, from
Markov’s theorem, one concludes that the zeros of M

(β,c)
n (x) are also increasing

functions of c, for c ∈ (0, 1).

To exemplify the monotonicity of the zeros of Meixner polynomials as functions
of β and c, one presents two graphs. See Figures 11 and 12.

Example 4.6 Let K(p,N)
n (x) be the nth Kravchuck orthogonal polynomial. Then, all

its zeros are increasing functions of the parameter p, for p ∈ (0, 1).

Proof The Kravchuck polynomials are orthogonal with respect to

ω(x, p,N) = �(N + 1)px(1 − p)N−x

�(N + 1 − x)�(x + 1)

at x = 0, 1, 2, . . . , N . Let ω(x, p,N) be the analytic extension on (0, N) of the
Kravchuk weight. Computing the logarithmic derivative of ω(x, p,N) with respect
to p, one obtains



A Survey on Markov’s Theorem on Zeros of Orthogonal Polynomials 47

Fig. 13 Zeros of Kravchuk
polynomials as functions of
the parameter p. Graph of the
zeros K

(p,40)
6 , 0 < p < 1

0.5 1
p

20

40

1

ω(x, p,N)

∂ω(x, p,N)

∂p
= ∂

∂p

[
ln

�(N + 1)px(1 − p)N−x

�(N + 1 − x)�(x + 1)

]

= ∂

∂p
[ln(�(N + 1))+ x ln(p)+ (N − x) ln(1 − p)− ln(�(N + 1 − x))

− ln(�(x + 1))] = x

p
− N − x

1 − p
= x −Np

p(1 − p)
,

which is obviously an increasing function of x, for x ∈ (0, N), and p ∈ (0, 1). Then,
from Markov’s theorem, all the zeros of K

(p,N)
n (x) increase when p increases. See

Figure 13.

Example 4.7 Let P (α,β,N)
n (x) be the nth Hahn orthogonal polynomial. Then, all its

zeros are increasing functions of α ∈ (−1,∞) and decreasing functions of β ∈
(−1,∞).

Proof The Hahn polynomials are orthogonal with respect to

ω(x, α, β,N) = �(α + x + 1)�(β +N − x + 1)

�(α + 1)�(x + 1)�(β + 1)�(N − x + 1)

at x = 0, 1, 2, . . . , N . Let ω(x, α, β,N) be the analytic extension on (0, N) of the
Hahn weight. Then,

ln ω(x, α, β,N) = ln
�(α + x + 1)�(β +N − x + 1)

�(α + 1)�(x + 1)�(β + 1)�(N − x + 1)

= ln�(α + x + 1)+ ln�(β +N − x + 1)− ln�(α + 1)

− ln�(x + 1)− ln�(β + 1)− ln�(N − x + 1).

Since
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1

ω(x, α, β,N)

∂ω(x, α, β,N)

∂α
= ∂ lnω(x, α, β,N)

∂α
= �′(α + x + 1)

�(α + x + 1)
−�′(α+1)

�(α+1)

= x

(α + 1)(x + α + 1)
+

∞∑
n=1

x

(α + n+ 1)(x + α + n+ 1)

is an increasing function of x for x ∈ (0, N), from Markov’s theorem, one derives
that the zeros of P (α,β,N)

n (x) are increasing functions of α, for α ∈ (−1,∞). On the
other hand,

1

ω(x, α, β,N)

∂ω(x, α, β,N)

∂β
= ∂ lnω(x, α, β,N)

∂β

= �′(β +N − x + 1)

�(β +N − x + 1)
− �′(β + 1)

�(β + 1)

= N − x

(β + 1)(β +N − x + 1)
+

∞∑
n=1

N − x

(β + n+ 1)(β +N − x + 1 + n)

is a decreasing function of x for x ∈ (0, N). Thus, from Markov’s theorem,
it implies that the zeros of P

(α,β,N)
n (x) are decreasing functions of β, for β ∈

(−1,∞).

Figures 14 and 15 illustrate these monotonicities.

Fig. 14 Monotonicity of
zeros of Hahn polynomials.
Graphic of the zeros of
P

(α,3,40)
4 (x) as functions of α

20 40
a

20

40

Fig. 15 Monotonicity of
zeros of Hahn polynomials.
Graphic of the zeros of
P

(8,β,40)
4 (x) as functions of β

20 40
b

20

40
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A Review of Two Network Curvature
Measures

Tanima Chatterjee, Bhaskar DasGupta, and Réka Albert

Abstract The curvature of higher-dimensional geometric shapes and topological
spaces is a natural and powerful generalization of its simpler counterpart in planes
and other two-dimensional spaces. Curvature plays a fundamental role in physics,
mathematics, and many other areas. However, graphs are discrete objects that do
not necessarily have an associated natural geometric embedding. There are many
ways in which curvature definitions of a continuous surface or other similar space
can be adapted to graphs depending on what kind of local or global properties
the measure is desired to reflect. In this chapter, we review two such measures,
namely the Gromov-hyperbolic curvature measure and a geometric measure based
on topological associations to higher-dimensional complexes.

1 Introduction

Useful insights for many complex systems are often obtained by representing
them as graphs1 and analyzing them using graph-theoretic and combinatorial
tools [50]. For analyzing graphs, researchers have proposed and evaluated a number
of established graph-theoretic measures such as the degree-based measures, (e.g.,
degree distributions), connectivity-based measures, (e.g., clustering coefficients),
geodesic-based measures (e.g., betweenness centralities), and other more novel
graph-theoretic measures such as in [2, 6, 42]. To simplify exposition for this

1In this chapter, we use the two use the two terms “graph” and “network” interchangeably.
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chapter, our input is an undirected weighted or unweighted graph G = (V ,E) of
n nodes v1, . . . , vn; the adjacency matrix for G is denoted by A(G) = [

a(G)i,j
]

where a(G)i,j = 1 (resp., a(G)i,j = 0) if
{
vi, vj

} ∈ E (resp., if
{
vi, vj

}
/∈ E). The

notations u, v and distH (u, v) denote a shortest path between nodes u and v, and
the distance between nodes u and v in graph H , respectively.

The graph-theoretic measure discussed in this chapter is an appropriate notion
of “network curvature.” A curvature for a graph G for this chapter is a scalar
function C : G �→ R. Curvatures are very natural measures of the anomaly of
higher-dimensional objects used in mainstream physics and mathematics [10, 13].
However, graphs are discrete objects that do not necessarily have an associated
natural geometric embedding. There are many ways in which curvature definitions
of a continuous surface or other similar space can be adapted to graphs depending
on what kind of local or global properties the measure is desired to reflect. More
specifically, we discuss Gromov-hyperbolic curvature (based on the properties of
geodesics and higher-order connectivities) and geometric curvatures (based on
identifying network motifs with geometric complexes), both of which encode non-
trivial higher-order correlation among nodes. Some important characteristics of
these two curvature measures are as follows.

� They depend on non-trivial global network properties, as opposed to measures
such as degree distributions or clustering coefficients that are local in nature or
dense subnetworks that use only pairwise correlations.

� They can mostly be computed efficiently in polynomial time, as opposed to
NP-complete measures such as cliques [29], densest-k-sub-graphs [29], or some
types of community decompositions such as modularity maximization [20].

� When applied to real-world networks, these curvature measures can explain
many phenomena one frequently encounters in real graph-theoretic applications
that are not easily explained by other measures.

2 Gromov-Hyperbolic Curvature

This type of measure for a metric space was originally suggested by Gromov in
the context of group theory [33] by observing that many results concerning the
fundamental group of a Riemann surface hold true in a more general context. The
measure was first defined for infinite continuous metric space via properties of
geodesics (e.g., see the textbook [13]), but was later also adopted for finite graphs.
Usually the measure is defined via geodesic triangles in the following manner.

Definition 1 (Gromov Curvature Measure via Geodesic Triangles) A graph G

has a Gromov curvature (or Gromov-hyperbolicity) of δ
def= δ(G) if and only if

for every three ordered triple of shortest paths (u, v, u,w, v,w), u, v lies in a δ-
neighborhood of u,w ∪ v,w, i.e., for every node x on u, v, there exists a node y

on u,w or v,w such that distG(x, y) ≤ δ.
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Definition 2 (The Class of δ-Gromov-Hyperbolic Graphs) An infinite collection
G of graphs belongs to the class of δ-Gromov-hyperbolic graphs (or, simply δ-
hyperbolic graphs) if and only if any graph G ∈ G has a Gromov curvature of at
most δ.

Informally, any infinite metric space has a finite value of δ if it behaves metrically
in the large scale as a negatively curved Riemannian manifold, and thus the value
of δ can be related to the standard scalar curvature of a hyperbolic manifold.
For example, a simply connected complete Riemannian manifold whose sectional
curvature is below α < 0 has a value of δ = O((−α )−1/2) (see [58]). This is a
justification of using the value δ as a notion of curvature of any metric space.

For the purpose of designing computational algorithms, it is often useful to
consider another alternate but equivalent (“up to a constant multiplicative factor”)
way of defining Gromov curvature for a graph G via the following 4-node
conditions.

Definition 3 (Equivalent Definition of Gromov Curvature via 4-Node Condi-
tions) For a set {u1, u2, u3, u4} of four nodes, let (π1, π2, π3, π4) be a permutation
of {1, 2, 3, 4} denoting a rearrangement of the indices of nodes such that

distG
(
uπ1 , uπ2

)
+distG

(
uπ3, uπ4

)
= Su1,u2,u3,u4

≤
distG

(
uπ1, uπ3

)
+distG

(
uπ2 , uπ4

)
= Mu1,u2,u3,u4

≤
distG

(
uπ1 , uπ4

)
+distG

(
uπ2 , uπ3

)
= Lu1,u2,u3,u4

Let δ̂ = δ̂(G) = maxu1,u2,u3,u4∈V
{
Lu1,u2,u3,u4 − Mu1,u2,u3,u4

}
/2. Then, if G is a

δ-Gromov-hyperbolic graph, then δ/c ≤ δ̂ ≤ c δ for some absolute constant c > 0.

In order to account for the fact that sometimes the value of δ̂(G) may be
a rare deviation from typical values of Lu1,u2,u3,u4 − Mu1,u2,u3,u4 that one
would obtain for most combinations of nodes {u1, u2, u3, u4}, the authors
in [3] defined the average Gromov curvature of a graph G as δave(G) =∑

u1,u2,u3,u4∈V
(
Lu1,u2,u3,u4 − Mu1,u2,u3,u4

)
/
(
n
4

)
such that δave(G) is the expected

value of Lu1,u2,u3,u4 − Mu1,u2,u3,u4 when the four nodes u1, u2, u3, u4 are picked
independently and uniformly at random from the set of all nodes.

It is easy to see that if G is a tree, then δ(G) = δ̂(G) = 0, and δ̂(G) ≤ D/2
where D is the diameter of the given graph. Other examples of graph classes for
which δ(G) and δ̂(G) are small constants include chordal graphs, cactus of cliques,
AT-free graphs, link graphs of simple polygons, and any class of graphs with a fixed
diameter. On the other hand, theoretical investigations have revealed that expanders,
vertex-transitive graphs, and (for certain parameter ranges) classical Erdös-Rényi
random graphs are δ-hyperbolic only for δ = ω(1) [7–9, 45, 47].
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2.1 Topological Characteristics of Gromov-Hyperbolicity
Measure

The Gromov-hyperbolicity measure δ(G) enjoys many non-trivial topological
characteristics. Some examples are as follows.

� The “δ = o(n)” property is not hereditary (and thus also not monotone). For
example, removing a single node or edge can increase/decrease the value of δ

very sharply.
� A small value of δ does not necessarily imply that the graph is a tree. For

example, all bounded-diameter graphs have δ = O(1) irrespective of whether
they are tree or not (however, graphs with δ = O(1) need not be of bounded
diameter). In general, even for small δ, the metric induced by a δ-hyperbolic
graph may be quite far from a tree metric [17].

� A similar popular measure used in both the bioinformatics and theoretical com-
puter science literature is the tree-width measure first introduced by Robertson
and Seymour [57]. However, as observed in [23] and elsewhere, the two measures
are not correlated.

We end this section with a very important topological consequence of small
Gromov-hyperbolicity values of a graph, popularly known as the “divergence of
geodesic rays” property. The result appears in several forms in prior works such
as [3, 7, 13, 33, 45]; we state two such versions. Let B(u, r) denote the set of
nodes contained in a ball of radius r centered at node u in graph G, i.e., B(u, r) =
{v | distG(u, v) ≤ r}
Fact 1 (Cylinder Removal Around a Geodesic) Assume that G is a δ-hyperbolic
graph. Let p and q be two nodes of G such that distG(p, q) = β > 6, and
let p′, q ′ be nodes on a shortest path between p and q such that distG(p, p′) =
distG(p′, q ′) = distG(q ′, q) = β/3. For any 0 < α < 1/4, let C be set of
nodes at a distance of αβ − 1 of a shortest path p′, q ′ between p′ and q ′, i.e.,
let C = {

u | ∃ v ∈ p′, q ′ : distG(u, v) = αβ − 1
}
. Let G−C be the graph obtained

from G by removing the nodes in C. Then, distG−C(p, q) ≥ (β/60) 2αβ/δ .

Fact 2 (Exponential Divergence of Geodesic Rays) Assume that G is a δ-
hyperbolic graph. Suppose that we are given the following:

• three integers κ ≥ 4, α > 0, r > 3κδ, and
• five nodes v, u1, u2, u3, u4 such that distG(v, u1) = distG(v, u2) = r ,

distG(u1, u2) ≥ 3κδ, distG(v, u3)=distG(v, u4)=r+α, and distG(u1, u4)=
distG(u2, u3) = α.

Consider any path Q between u3 and u4 that does not involve a node in⋃
0≤ j ≤ r+α B(v, j). Then, the length |Q| of the path Q satisfies |Q|>2

α
6 δ
+κ+1.

For example, these facts are used by Benjamini in [7] to show that graph classes
with a constant value of δ cannot be expanders and also by Malyshev in [45] to show
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that expander graphs must have Gromov-hyperbolicity at least proportional to their
diameter. Further works on the effect of the hyperbolicity measure δ on expansion
and cut-size bounds on graphs and its algorithmic implications are reported in [21].

2.2 Gromov Curvature of Real-World Networks

Recently, there has been a surge of empirical works measuring and analyzing the
Gromov curvature δ of networks, and many real-world networks (e.g., preferential
attachment networks, networks of high power transceivers in wireless sensor
networks, communication networks at the IP layer and at other levels) were observed
to have a small constant value of δ [5, 35, 36, 46, 55]. Moreover, extreme congestion
at a small number of nodes in a large traffic network that uses the shortest-path
routing was shown in [38] to be caused by a small value of δ of the network. The
authors in [3] computed Gromov-hyperbolicity values for 11 biological networks
(3 transcriptional regulatory, 5 signaling, 1 metabolic, 1 immune response, and 1
oriented protein-protein-interaction networks) and 9 social networks. They reported
that the hyperbolicity values of all except one network are small and statistically
significant. They also reported several interesting experimentally validated implica-
tions of these hyperbolicity values, such as

� Independent pathways that connect a signal to the same output node (e.g.,
transcription factor) are rare, and if multiple pathways exist, then they are
interconnected through cross-talks.

� All the biological networks have central influential small-size node neighbor-
hoods that can be selected to find knock-out nodes to cut off specific up- or
down-regulation.

2.3 Efficient Computation of Gromov Curvature

Using Definition 3 directly one can compute δ(G) in O
(
n4
)

time, but this time
complexity is prohibitive for large graphs. For faster computation, one needs to
define Gromov curvature via an equivalent but more algorithmically amenable
formulation as follows.

Definition 4 (Equivalent Definition of Gromov Curvature via Gromov-Product
Nodes [33]) For any three nodes u, v, and r , the Gromov-product of u and v

anchored at r is defined by

(u|v)r = 1

2

(
dist(u, r)+ dist(v, r)− dist(u, v)

)
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Define the value of Gromov-hyperbolicity “anchored” at a node r as:

δr = max
u,v,w

{
min

{
(u|w)r, (v|w)r

}− (u|v)r
}

Then, the value of Gromov-hyperbolicity of a graph G is defined as

δ
def= δ(G) = max

r
{ δr}

The value of δ(G) computed via Definition 4 is identical to the one computed via
geodesic triangles in Definition 1. It was also shown in [33] that δ(G) ≤ δr ≤ 2δ(G)

for any r . Let ω be the value such that two n × n matrices can be multiplied in
O(nω) time; the smallest current value of ω is 2.373 [64]. The (max,min)-matrix
multiplication of two n× n matrices A and B, denoted by A � B, is defined as:

A � B[i, j ] = max
k

min
{
A[i, k], B[k, j ] }

Duan and Pettie in [24] showed that A � B can be computed in O(n(3+ω)/2) =
O(n2.688) time. Subsequently, Fournier, Ismail, and Vigneron [27] showed that
computation of δr can be cast as computing a (max,min)-matrix multiplication
problem; as a result, one can compute δ(G) and a 2-approximation of δ(G) in
O(n(5+ω)/2) = O(n3.69) and in O(n(3+ω)/2) = O(n2.69) time, respectively. Faster
less accurate approximation is also known, e.g., Chalopin et al. [14] showed that
a 8-approximation of δ(G) can be computed in O(n2) time. On the other hand,
an exact computation of δ(G) involves computing the “all-pairs-shortest-path”
problem which is widely conjectured to take at least Ω(n3) time (and, can be done
in O(n3) time [19]).

2.4 Algorithmic Implications of Small Gromov Curvature

A small value of Gromov curvature δ is often crucial for algorithmic designs;
for example, several routing-related problems or the diameter estimation problem
become easier for graphs with small δ values [16–18, 30]. DasGupta et al. in [21]
discussed further implications of small values of δ for several graph-theoretic
problems. In particular, they showed that a large family of s-t cuts having at most
d O(δ) cut-edges can be found in polynomial time in δ-hyperbolic graphs of n nodes
when d is the maximum degree of any node except s, t and any node within a
distance of 35 δ of s and the distance between s and t is at least Ω(δ log n), and
used such a result to design an approximation algorithm for minimizing bottleneck
edges in a graph.
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2.5 Statistical Validation of Gromov Curvature via “Scaled”
Version

Suppose that δ(G) has been computed for a given graph G of n nodes and it
is indeed a small value compared to the size of the graph. One major task for
empirical researchers is then to determine more precisely if δ(H) is indeed a small
number independent of the size of H for every graph H in the class of graphs
G) to which G belongs (as opposed to δ(H) being small specifically only for the
particular graph H = G in G). For this purpose, we can make use of a “scaled”
version of Gromov curvature [36, 37, 46]. The basic idea is to “scale” the values of
Lu1,u2,u3,u4 − Mu1,u2,u3,u4 in Definition 3 by a suitable scaling factor μu1,u2,u3,u4

such that there exists a constant 0 < ε < 1 with the following property:

the maximum achievable value of
(
Lu1,u2,u3,u4 −Mu1,u2,u3,u4

)
/μu1,u2,u3,u4 is ε in the stan-

dard hyperbolic space or in the Euclidean space, and
(
Lu1,u2,u3,u4 −Mu1,u2,u3,u4

)
/μu1,u2,u3,u4

goes beyond ε in positively curved spaces.

By using theoretical or empirical calculations, the authors in [37] provide the
bounds shown in Figure 1. Following the ideas espoused in [3, 37], assuming G is a
connected graph we can use the following criterion to determine if δ(H) is indeed a
small number independent of the size of H for every graph H ∈ G:

Let 0 < η < 1 be a value indicating the confidence level of our criterion. Then, δ(H) is a
small number independent of the size of H for every graph H ∈ G if and only if

∀Y ∈ {D, L, L+M + S} : ΔY(G) =
number of subset of f our nodes{

ui, uj , uk, u�

}
such that δY

ui ,uj ,uk,u�
> ε(

n
4

) < 1−η

In the above criterion, larger values of η indicate better confidence levels. An
alternative method would be to use the procedure outlines in Section 3.7.

Name Notation mu1,u2,u3,u4 e

diameter-scaled curvature d

d

d

D maxi, j∈{1,2,3,4}
{
distG ui,u j

)}
0.2929

L-scaled curvature L Lu1,u2,u3,u4
√
2−1
2
√
2

(L+M+S)-scaled curvature L+M+S Lu1,u2,u3,u4 +Mu1,u2,u3,u4 +Su1,u2,u3,u4 0.0607

Fig. 1 [37] Various scaled Gromov curvatures
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3 Geometric Curvature

There are many well-known measures of curvature of a continuous surface or other
similar spaces (e.g., curvature of a manifold) that are widely used in many branches
of physics and mathematics. In section 2 we discussed how to relate Gromov
curvature to such other curvature notions indirectly via introduction of its scaled
version. In this section, we describe a notion of geometric curvatures of graphs by
using a correspondence with topological objects in higher dimension.

3.1 Basic Topological Concepts

In this section we review some basic concepts from topology; see introductory
textbooks such as [28, 34] for further information. For concreteness of exposition,
let the underlying metric space be the rrr-dimensional real space R

rR
r

R
r be for some

integer r > 1r > 1r > 1. See Figure 2 for some illustrations of these concepts in R
3.

� A subset S ⊆ R
r is convex if and only if for any pair x, y ∈ S, the convex

combination of x and y is also in S (i.e., λx+ (1− λ)y ∈ S for any real 0 ≤ λ ≤
1).

� A set of k + 1 points x0, . . . , xk ∈ R
r are called affinely independent if and

only if for all α0, . . . , αk ∈ R
∑k

j=0 αjxj = 0 and
∑k

j=0 αj = 0 implies
α0 = · · · = αk = 0.

� The k-simplex generated by a set of k + 1 affinely independent points
x0, . . . , xk ∈ R

r is the subset of R
r S

(
x0, . . . , xk

) = {∑k
j=0 αjxj | ∀ j :

αj ≥ 0 and
∑k

j=0 αj = 1
}

generated by all convex combinations of x0, . . . , xk .
For example, the equation of a k-simplex with unit intercepts is given by∑k

j=0 xj = 1 with xj ≥ 0 for all 0 ≤ j ≤ k.

� Each (�+ 1)-subset
{
xi0 , . . . , xi�

} ⊆ {x0, . . . , xk
}

defines the �-simplex

z

x

y

convex polytope of
intersection of halfspaces
x + y + z ≤ 4

x ≤ 2
z ≤ 3

3y + z ≤ 6
x, y, z ≥ 0

parallel
1-faces

3-simplex S x0, x1, x2, x3

x0

x1

x2

x3

0-face
(node)

1-face
(edge)

2-face

Fig. 2 (Modified from [54]) Illustrations of some topological concepts discussed in Section 3.1
over R3
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S
(
xi0 , . . . , xi�

)
that is called a face of dimension � (or a �-face) of

S
(
x0, . . . , xk

)
. A (k − 1)-face, 1-face, and 0-face is called a facet, an edge,

and a node, respectively.

� A (closed) halfspace is a set of points satisfying
∑r

j=1 ajxj ≤ b for some
a1, . . . , ar , b ∈ R. The convex set obtained by a bounded non-empty intersection
of a finite number of halfspaces is called a convex polytope (called a convex
polygon in two dimensions).

� If the intersection of a halfspace and a convex polytope is a subset of the
halfspace, then it is called a face of the polytope. Of particular interests are
faces of dimensions r − 1, 1, and 0, which are called facets, edges, and nodes
of the polytope, respectively.

� We can define a partial order relation ≺f between faces of various dimensions
of a simplex or a convex polytope in the usual manner: a �-face f � is a parent

of a �′-face f̂
�′

(denoted by f̂
�′ ≺f f �) if f̂

�′
is contained in f �. Similarly, two

�-faces f � and f̂
�

are parallel (denoted by f � ‖f f̂ �) if they have either at least one
common immediate predecessor or at least one common immediate successor (in
the partial order ≺f) but not both

� A simplicial complex (or just a complex) is a topological space constructed by
the union of simplexes via topological associations.

3.2 Topological Association of Networks with a Complex

Informally, a complex is “glued” from nodes, edges, cycles, and other sub-graphs of
the given graph via topological identification. There are many alternate ways such
topological associations can be performed. Here we describe a simple association
as used in [22]; for other possible alternative associations the reader is referred to
papers such as [11, 26, 62, 63].

To begin our topological association, we (topologically) associate a q-simplex
with a (q + 1)-clique Kq+1; for example, 0-simplexes, 1-simplexes, 2-simplexes,
and 3-simplexes are associated with nodes, edges, 3-cycles (triangles), and 4-
cliques, respectively. Next, we would also need the concept of an “order” of a
simplex for more non-trivial topological association. Consider a p-face f p of a q-
simplex. An order d association of such a face, which we will denote by the notation
f

p
d with the additional subscript d, is associated with a sub-graph of at most d nodes

that is obtained by starting with Kp+1 and then optionally replacing each edge by a
path between the two nodes. For example,

� f 0
d is a node of G for all d ≥ 1.

� f 1
2 is an edge, and f 1

d for d > 2 is a path having at most d nodes between two
nodes adjacent in G.
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� f 2
3 is a triangle (cycle of 3 nodes or a 3-cycle), and f 2

d for d > 3 is obtained from
3 nodes by connecting every pair of nodes by a path such that the total number
of nodes in the sub-graph is at most d.

Naturally, the higher the values of p and q are, the more complex are the topological
associations.

3.3 Defining Geometric Curvatures for Elementary
Components of Given Graph

By elementary components of a graph, we mean sub-graphs of small size such
as edges, triangles, 4-cycles, and so forth. In this section, we discuss the case
when the elementary components are edges; the other cases can be found in the
previously cited references. As discussed in Section 3.2, geometric curvatures are
defined by “extrapolating” graphs to higher-dimensional complexes via topological
association. For these associations, it is often useful to assign a positive “weight”
from the interval [0, 1] to every pair of nodes (1-simplexes) and to every node (0-
simplexes) of the graph G = (V ,E). If G comes with its own node or edge weights,
we may use them directly after normalizing them such that all weights lie between
0 and 1. Otherwise, some choices for these weights that may be appropriate are the
following:

(a) For every pair of nodes ei,j = {vi, vj }, a natural choice for the weight would
be wedge(ei,j ) = 1 (resp., wedge(ei,j ) = 0) if {vi, vj } ∈ E (resp., {vi, vj } /∈ E).
One may also consider more refined choices, e.g., wedge(ei,j ) = 1/distG(vi, vj )

or a “distance-thresholded” version of it, which may be useful in the study of
social networks of the “small world” type [62].

(b) A natural choice for the weight of a node vi would be wnode(vi) = 1. A more
sophisticated choice that one may consider is

wnode(vi) =
∑

vj :wedge({vi ,vj })≥γ wedge({vi, vj })∣∣ {wedge(e) | e ∈ E and wedge(e) ≥ γ
} ∣∣

that provides more weight to nodes with higher weighted-degree [62].

Once we have fixed a weighting scheme for 0-simplexes and 1-simplexes, we can
assign weights to higher-dimensional objects such as k-faces as follows:

222-faces: For a triangle, say S(v1, v2, v3) with ei,j = {vi, vj } for i, j ∈ {1, 2, 3},
we may assign its weight based on the area of the triangle [63]:
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w(S(v1, v2, v3))=
[
s
( ∏

i,j∈{1,2,3}
i �=j

(
s−wedge(ei,j )

) )]1/2

where s =
∑

i,j∈{1,2,3}
i �=j

wedge(ei,j )

2

For a polygon of p sides with p > 3, we can first do a triangulation of the
polygon and then add the weights of these triangles to get the weight for the
entire polygon.

kkk-faces for k > 2: We can compute the weight by adding the weights of the (k −
1)-subfaces of this face (for the degenerate case, we will consider subfaces of
dimensions lower than k − 1 also). Alternately, for some cases, we may also use
direct combinatorial formulae for the volume.

Let w(f) denote the weight of an arbitrary face f.

1-Complex-Based Geometric Curvature for a Pair of Nodes

A graph is naturally defined by 1-simplexes (edges) and 0-simplexes (nodes). Thus,
without further topological association, a 1-complex-based Forman’s combinatorial
Ricci curvature for a pair of nodes {vi, vj } is given by [26, 62]:

C 1
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if wedge(ei,j ) = 0

wedge(ei,j )

[
wnode(vi)

wedge(ei,j )
+ wnode(vj )

wedge(ei,j )
—

∑
ei,j1 ,ei1,j

wedge(ei,j1 ) �=0
wedge(ei1,j ) �=0

⎛
⎝ wnode(vi)√(

wedge(ei,j )wedge(ei,j1)
)+ wnode(vj )√(

wedge(ei,j )wedge(ei1,j )
)
⎞
⎠
]
,

otherwise
(1)

2-Complex-Based Geometric Curvature for a Pair of Nodes

For 2-complex-based geometric curvatures, we also include topological associations
with 2-simplexes (cycles of 3 nodes). Let C(vi, vj , vk) denote a cycle of length 3
consisting of the edges {vi, vj }, {vj , vk}, and {vi, vk}. Note that in Equation (1) the
edges ei,j1 and ei1,j in the summation actually satisfy ei,j1‖f ei,j and ei1,j‖f ei,j .
This observation helps us to lead to Forman’s combinatorial Ricci curvature for 2-
complexes [63]:
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C 2
i,j=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if wedge(ei,j ) = 0

wedge(ei,j )

[(∑
vk �=vi ,vj

w(S(vi , vj , vk))

wedge(ei,j )

)
+ wnode(vi )

wedge(ei,j )
+ wnode(vj )

wedge(ei,j )

—
∑

ei1,j1
: ei1,j1

‖fei,j
wedge(ei1,j1

) �=0

∣∣∣∣
∣∣∣∣
∣∣∣∣
∑
vk �=vi ,vj
w(S(vi ,vj ,vk)) �=0

√
wedge(ei,j )wedge(ei,j1 )

w(S(vi , vj , vk))
+
∑

v∈{vi ,vj }∩{vi1 ,vj1
}

wnode(v)√
(wedge(ei,j )wedge(ei1,j1 ))

∣∣∣∣
∣∣∣∣
∣∣∣∣
]
,

otherwise
(2)

Higher-Dimensional Geometric Curvature for a Pair of Nodes

k-complex-based curvature C k
i,j for k > 2 can be defined in a similar manner (e.g.,

a clique of k + 1 nodes correspond to a k-simplex).

3.4 Overall (Scalar) Curvature Value for a Network

One can compute a single scalar value C of geometric curvature based on the values
of C k

i,j values using curvature functions defined by Bloch [11], by using Euler
characteristics [22] or similar other methods. We discuss the simplest unweighted
Euler characteristics based scalar graph curvature as used by DasGupta et al. in [22].
Let Fk

d be the set of all f k
d ’s that are topologically associated as described in

Section 3.2. With such associations via p-faces of order d, the Euler characteristics
of the graph G = (V ,E) and consequently the curvature can be defined as

C
p
d (G)

def=
p∑

k=0

(−1)k
∣∣Fk

d

∣∣

It is easy to see that both C0
d(G) and C1

d(G) are too simplistic to be of use in practice.
Considering the next higher value of p, namely p = 2, and letting C(G) denote the
number of cycles of at most d + 1 nodes in G, we get the following scalar curvature
measure for a given graph G = (V ,E):

C2
d(G) = |V | − |E| + |C(G)| (3)

3.5 Computation of Geometric Curvatures

Let G = (V ,E) be the given connected graph with n nodes and m edges. Using
Equations (1) and (2) and appropriate data structures, C 1

i,j and C 2
i,j can be computed
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roughly in O(m2) and O(m3) times, respectively. More generally, C k
i,j can be

computed in O
(
mO(k)

)
time and C2

d(G) in Equation (3) can be computed in O(md)

time.

3.6 Real-World Networks and Geometric Curvatures

The usefulness of geometric curvatures for real-world networks was demonstrated
in publications such as [59, 62, 63]. Some of these results are as follows.

� Samal et al. in [59] empirically compared geometric curvatures of the type
discussed in this chapter with another notion of network curvature, namely
the Ollivier’s discretization of Ricci curvature [53]. Although the Ollivier-Ricci
curvature measures were developed based on quite different properties of the
classical smooth notion as compared to the geometric curvatures discussed in this
chapter, somewhat surprisingly they found that these two measures are correlated
for many real networks. However, as the authors themselves cautioned in [53],
their results should not be construed as implying that one of these curvature
measures can be used as a universal substitute for the other measure, but merely
that for many real networks using one of these that allow faster implementation
may suffice.

� Weber, Saucan, and Jost in [63] computed a specific version of the geometric
curvatures discussed in this chapter (the “Euler characteristics” with only up to
2-faces of degree 3) for several real-world networks, such as Zachary’s karate
club, social interactions of dolphins, and E. coli transcription networks, and
showed that networks with a high number of high-degree faces have positive
Euler characteristics, whereas low numbers of high-degree faces might hint on
negative Euler characteristics.

3.7 Statistical Validations for all Curvature Measures

We may test the statistical significance of any curvature measure C(G) by computing
its statistical significance value (commonly called p-value) with respect to a null-
hypothesis model of the network. For this purpose, we may use a method as
described below that is similar to that used by many other researchers in the network
science literature (e.g., see [2, 60]). For each graph G, we will generate a large
number q of random graphs G1, . . . ,Gq of the same type as G. There are many
methods for generating such random graphs. Two such methods are as follows.

Generative null-hypothesis models: One most frequently reported topological
characteristics of graphs is the distribution of degrees of nodes. We may select
appropriate degree distributions for our given class of graphs that is consistent
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with the findings in prior literature. For example, based on the known topological
characterizations for biological transcriptional and signaling networks we may
use the following degree distributions [1, 31, 44]:

(a) the in-degree distribution is exponential, and
(b) the out-degree distribution is governed by a power-law.

Random networks with prescribed degree distributions can be generated using
the method by Newman et al. [52].

Non-generative null-hypothesis models: For graphs where a consensus degree
distribution may be difficult to ascertain, we can use the following methods:

� We may generate random networks using a Markov-chain algorithm [39] by
repeatedly swapping randomly chosen compatible pairs of connections in G.

� We may generate random networks from the degree distribution of G using the
method pioneered by Newman and others in [32, 43, 48, 49, 51] that preserves
in expectation the degree distribution of each node.

Once the random graphs G1, . . . ,Gq have been generated, we first compute the
values of C (G1),. . . ,C

(
Gq

)
, and next use a suitable statistical test to determine the

probability that C(G) belongs to the same distribution as C (G1),. . . ,C
(
Gq

)
.

4 Two Applications of Curvature Analysis of Graphs

In this section, we discuss two applications for curvature measures in graphs,
namely in finding critical elementary components and in detecting change points.

4.1 Detecting Critical Elementary Components of Networks

Often real-world networks may have the so-called critical elementary components
(or simply critical components) whose absence alter some significant non-trivial
global property of these networks. For example, there is a rich history in finding
various types of critical components of a network dating back to quantifications of
fault-tolerances or redundancies in electronic circuits or routing networks. Recent
examples of practical application of determining critical components in the context
of systems biology include quantifying redundancies in biological networks [2, 41,
61] and confirming the existence of central influential neighborhoods in biological
networks [3]. Network curvatures can be applied to these kinds of problems by using
the curvature measure as the non-trivial global property of a network. We discuss
below a simple formalization of these types of problems as used in [22] where edges
are elementary components and they can only be added or deleted but not both.
Thus, in this setting, the basic question is to find a subset (optionally among a set of
prescribed edges) whose deletion may change the network curvature significantly.
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This question was formalized as the extremal anomaly detection problem in [22] in
the following manner.

Definition 5 (Extremal Anomaly Detection Problem (EADP) [22]) Given a con-
nected graph G = (V ,E), a curvature measure C : G �→ R, an edge subset Ẽ ⊆ E

such that G \ Ẽ is connected, and a real number γ < C(G) (resp., γ > C(G)) find
an edge subset Ê ⊆ Ẽ of minimum cardinality such that C(G \ Ê) ≤ γ (resp.,
C(G \ Ê) ≥ γ ).

4.2 Detecting Change Points in Dynamic Networks

Another application similar to that in Section 4.1 is related to change-point detection
in dynamic (i.e., time-evolving) networks. Dynamic networks are networks whose
elementary components (such as nodes or edges) are added or removed as the
network evolves over time. Examples of such networks include biological signal
transduction networks with node dynamics, biochemical reaction networks, and
dynamic social networks. The anomaly detection or change-point detection problem
for such networks involves finding elementary components whose addition and/or
removal alters a significant topological property of the network between two
successive time steps. There is an extensive history of research works dealing with
change-point detection problems over the last several decades in the “non-network”
context of time series data [4, 40] with applications to areas such as medical
condition monitoring [12, 65], weather change detection [25, 56], and speech
recognition [15]. Again using edges as elementary components and the assumption
that edges can only be added or deleted but not both, a simple formalization of these
type of problems under the name “Targeted Anomaly Detection Problem” appeared
in [22]. The formalization is as follows.

Definition 6 (Targeted Anomaly Detection Problem (TADP) [22]) Given two
connected graphs G1 = (V ,E1) and G2 = (V ,E2) with E2 ⊂ E1 and a curvature
measure C : G �→ R, an edge subset E3 ⊆ E1 \ E2 of minimum cardinality such
that C(G1 \ E3) = C(G2).

For both these applications (i.e., for both the problems EADP and TADP stated in
the previous two sub-sections), the authors in [22] prove several algorithmic results
for both the cases when C is the Gromov curvature and when C is the geometric
curvature given by Equation (3) with fixed d. Informally, some of the results proved
in [22] are as follows:

� When C is the Gromov curvature, it is NP-hard to design a polynomial time
algorithm to approximate both EADP and TADP within a factor of c n for some
constants c > 0, where n is the number of nodes (the hardness result for EADP

holds only for the case when γ > C).
� The following results hold when C is the geometric curvature:
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� EADP is NP-hard but admits a non-trivial approximation algorithm when
either γ is sufficient larger than C or γ is not too far below C.

� Polynomial time approximation of TADP within a factor of 2 is hard.

5 Conclusion

Notions of curvatures play a fundamental role in physics and mathematics for
visualizing higher-dimensional geometric shapes and topological spaces. However,
usage of curvature measures for networks is not yet very common due to several
reasons such as lack of preferred geometric interpretation of networks and lack
of experimental evidences that may lead to specific desired curvature properties.
In this chapter we have reviewed two curvature measures for networks, namely
the Gromov-hyperbolic and the geometric curvature measures, and two motivating
applications of these curvature measures, and we hope that this review will act as a
stimulator and motivator of further theoretical or empirical research on the exciting
interplay between notions of curvatures from network and non-network domains.
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A Frictional Dynamic Thermal Contact
Problem with Normal Compliance and
Damage

Oanh Chau, Adrien Petrov, Arnaud Heibig, and Manuel Monteiro Marques

Abstract We study a class of non-clamped dynamical problems for visco-elastic
materials, the contact condition is modeled by a normal compliance, with friction,
damage and heat exchange. The weak formulation leads to a general system defined
by a second-order quasi-variational evolution inequality on the displacement field
coupled with a nonlinear evolutional inequality on temperature field and a parabolic
variational inequality on the damage field. We present and establish an existence and
uniqueness result of different fields, by using general results on evolution variational
inequalities, with monotone operators and fixed point methods. Then, we present
a fully discrete numerical scheme of approximation and derive an error estimate.
Finally, various numerical computations are developed.

1 Introduction

Problems involving contact between deformable bodies abound in industry and
everyday life. For this reason, a considerable engineering and mathematical liter-
ature is devoted to dynamic and quasi-static frictional contact problems, including
mathematical modeling, mathematical analysis, numerical analysis and numerical
simulations. The study of contact problems for elastic–visco-elastic materials
within the mathematical analysis framework was introduced in the early reference
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works [5, 8–10]. In these works, numerous types of frictional contact models
with nonlinear visco-elastic or elasto-plastic materials were widely studied, in
the framework of linearized infinitesimal deformations, using abstract variational
inequalities, with monotonicity and convexity.

Further extensions to non-convex contact conditions with non-monotone and
possible multi-valued constitutive laws led to the active domain of non-smooth
mechanic within the framework of the so-called hemivariational inequalities, for
a mathematical as well as mechanical treatment, we refer to [11].

This paper is a continuation work of the results obtained in [3], p. 251. In [3],
the authors studied a problem for the quasi-static contact between an elastic–visco-
plastic body and an obstacle, the contact was clamped on some part of the boundary
and was frictionless, and it was defined by a normal compliance condition with
damage. An existence and uniqueness result on displacement and damage fields has
been established, and also some numerical approximations and simulations have
been presented.

In this work, we study a class of dynamic contact problems with normal
compliance condition and damage, with Coulomb’s friction and thermal effects, for
visco-elastic material. The novelty here is that we investigate a general long memory
material law, depending on time, on the temperature and the damage. Moreover, the
evolution of the temperature is described by a general nonlinear equation, involving
the gradient of temperature and the velocity of deformation, and the associated
boundary condition is defined by an inclusion of sub-differential type in a non-
convex framework. Also, the usual clamped condition has been deleted, so that
Korn’s inequality cannot be applied any more. The problem appears then semi-
coercive and strongly nonlinear due to the frictions. Semi-coercive problems were
first studied in [5] for Coulomb’s friction models, where the inertial term of the
dynamic process has been used in order to compensate the loss of coerciveness in
the a priori estimates. The variational formulation of the mechanical problem leads
to a new non-standard model of system defined by a second-order quasi-variational
inequality on the displacement field, coupled with one nonlinear inequality for the
temperature field and with a variational inequality on the damage field. Then, by
using classical results on evolution variational inequalities, with monotone operators
and adopting fixed point methods frequently used in [2], we prove an existence and
uniqueness of solution on the displacement, damage, and temperature fields.

The paper is organized as follows. In Section 2, we describe the mechanical prob-
lem and specify the assumptions on the data to derive the variational formulation,
and then we state our main existence and uniqueness result. In Section 3, we give the
proof of the claimed result. In Section 4, we introduce a fully discrete approximation
scheme and derive an order error estimate under solution regularity assumptions. In
Section 5, we present some numerical simulations in order to show the evolution
of deformation, of the Von Mise’s norm, of the temperature and the damage in the
body.
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2 The Contact Problem

In this section, we study a class of thermal contact problems with non-clamped
frictional normal compliance condition, for visco-elastic materials. We describe the
mechanical problems, list the assumptions on the data, and derive the corresponding
variational formulations. Then, we state an existence and uniqueness result on
displacement and temperature fields, which we will prove in the next section.

The physical setting is as follows. A visco-elastic body occupies a bounded
domain Ω ⊂ R

d (d = 2, 3) with a Lipschitz boundary Γ that is partitioned into
two disjoint measurable parts, ΓF and Γc. Let [0, T ] be the time interval of interest,
where T > 0. We assume that a volume force of density f 0 acts in Ω × (0, T ) and
that surface tractions of density f F apply on ΓF × (0, T ). The body may come in
contact with an obstacle, the foundation, over the potential contact surface ΓC . The
model of the contact is specified by a general sub-differential boundary condition,
where thermal effects may occur in the frictional contact with the foundation. Our
aim is to describe the dynamic evolution of the body.

Let us recall now some classical notations, see e.g. [5] for further details. We
denote by Sd the space of second-order symmetric tensors on R

d , while “·” and
| · | will represent the inner product and the Euclidean norm on Sd and R

d . Let ν

denote the unit outer normal on Γ . Everywhere in the sequel, the indices i and j

run from 1 to d, summation over repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of the independent variable. We also use the following notation:

H =
(
L2(Ω)

)d
, H = { σ = (σij ) | σij = σji ∈ L2(Ω), 1 ≤ i, j ≤ d},

H1 = {u ∈ H | ε(u) ∈ H }, H1 = { σ ∈ H | Div σ ∈ H }.

Here, ε : H1 −→ H and Div : H1 −→ H are the deformation and the divergence
operators, respectively, defined by

ε(u) = (εij (u)), εij (u) = 1

2
(ui,j + uj,i), Div σ = (σij,j ).

The spaces H , H, H1, and H1 are real Hilbert spaces endowed with the canonical
inner products given by

(u, v)H =
∫
Ω

uivi dx, (σ , τ )H =
∫
Ω

σij τij dx,

(u, v)H1 = (u, v)H+(ε(u), ε(v))H , (σ , τ )H1 = (σ , τ )H+(Div σ ,Div τ )H .
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We recall that C denotes the class of continuous functions; Cm, m ∈ N
∗ the set

of m times continuously differentiable functions; and Wm,p, m ∈ N, 1 ≤ p ≤ +∞
the classical Sobolev spaces.

Now, we consider a visco-elastic body which occupies a bounded domain Ω ⊂
Rd (d = 1, 2, 3) with a Lipschitz boundary Γ that is partitioned into two disjoint
measurable parts, ΓF and ΓC . Let [0, T ] be the time interval of interest, where
T > 0. We assume that a volume force of density f 0 acts in Ω × (0, T ) and that
surface tractions of density f F apply on ΓF×(0, T ). The body may come in contact
with an obstacle, the foundation, over the potential contact surface ΓC , see figure
below.

ν

Γ
3

f
2Γ

1 Γ
2

0
Ω

f

The mathematical contact mechanics

meas(Γ1) = 0; Γ2 = ΓF ; Γ3 = ΓC ; f 2 = f F .

To continue, the mechanical problem is then formulated as follows.
Problem Q: Find a displacement field u : (0, T ) × Ω −→ R

d , a stress field
σ : (0, T )×Ω −→ Sd , a temperature field θ : (0, T )×Ω −→ R+, and a damage
field α : (0, T )×Ω → R such that for a.e. t ∈ (0, T ):

{
σ (t) = A(t)ε(u̇(t))+ G(t)(ε(u(t)), α(t))+ ∫ t

0 B(t − s) (ε(u(s)), α(s)) ds

+Ce(t, θ(t)) in Ω;
(1)

ü(t) = Div σ (t)+ f 0(t) in Ω; (2)

σ (t)ν = f F (t) on ΓF ; (3)

σν(t) = −pν(t, uν(t)− g(t)) on ΓC; (4)



A Frictional Dynamic Thermal Contact Problem with Normal Compliance and Damage 75

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|σ τ (t)| ≤ pτ (t, uν(t)− g(t)) :
|σ τ (t)| < pτ (t, uν(t)− g(t)) ⇒ u̇τ (t) = 0;
|σ τ (t)| = pτ (t, uν(t)− g(t)) ⇒ u̇τ (t) = −λ σ τ (t),

for some λ ≥ 0;

on ΓC; (5)

[α̇(t)− γ �α(t)− φd(σ (t), ε(u(t)), α(t))] (ξ − α(t)) ≥ 0 in Ω, ∀ξ ∈ [0, 1];
(6)

0 ≤ α(t) ≤ 1 in Ω; (7)

∂α

∂ν
(t) = 0 on Γ ; (8)

θ̇ (t)− div(Kc(t,∇θ(t))) = De(t, ε(u̇(t)), θ(t))+ q(t) in Ω; (9)

−Kc(t, x,∇θ(t, x)) ν := Ξ(t, x, θ(t, x)) ∈ ∂ϕ(t, x, θ(t, x)) a.e. x ∈ ΓC;
(10)

θ(t) = 0 on ΓF ; (11)

u(0) = u0; u̇(0) = v0; α(0) = α0; θ(0) = θ0 in Ω. (12)

Equation (1) is the Kelving Voigt’s long memory thermo-visco-elastic consti-
tutive law of the body including the influence of the damage variable. Here, σ

is the stress tensor, A denotes the viscosity operator with, A(t)τ = A(t, ·, τ )
is some function defined on Ω , and G is the elastic operator depending on the
linearized strain tensor ε(u) of infinitesimal deformations and on the damage α,
with G(t)(τ , α) = G(t, ·, τ , α) is some function defined on Ω . For example,

G(t)(τ , α) = G0(t)τ − α Cda(t) in Ω,

where G0(t)τ = G0(t, ·, τ ) is some time-depending elastic tensor function inde-
pendent on the damage, defined on Ω , and Cda(t) is some time-depending damage
tensor. The term B(t)(τ , α) = B(t, ·, τ , α) represents the relaxation tensor time
depending on the linearized strain tensor and the damage, defined on Ω . And the
last tensor Ce(t, θ) := Ce(t, ·, θ) denotes the thermal expansion tensor depending
on time and temperature, defined on Ω . For example,

Ce(t, θ) := −θ Cexp(t) in Ω,

where

Cexp(t) := (cij (t, ·))

is some time-depending expansion tensor defined on Ω , with cij ∈ L∞((0, T )×Ω).
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The model in (2) is the dynamic equation of motion where the mass density
� ≡ 1. Equation (3) is the traction boundary condition.

On the contact surface, the general relation (4) represents the normal compliance
contact condition, where σν denotes the normal stress, uν is the normal displace-
ment, g is the gap between the contact surface and the foundation, and pν is some
normal compliance function defined on (0, T ) × ΓC × R with the convention that
pν(t, r) = pν(t, ·, r) denotes some function defined on ΓC , for a.e. t ∈ (0, T ), for
all r ∈ R. The term uν − g represents, when it is positive, the penetration of the
surface asperities into the foundation.

For example, for a.e. t ∈ (0, T ),

pν(t, ·, r) = cν(t, ·) r+ on ΓC, ∀r ∈ R.

In this formula, the normal stress is proportional to the penetration, with some
positive coefficient cν defined on (0, T ) × ΓC , which is related to the hardness of
the foundation.

Equation (5) represents a general version of Coulomb’s dry friction law, where
σ τ is the tangential stress, pτ is the friction bound measuring the maximal frictional
resistance defined on (0, T )×ΓC ×R, and u̇τ is the tangential velocity. Recall that
pτ (t, r) = pτ (t, ·, r) is some function defined on ΓC , for a.e. t ∈ (0, T ), for all
r ∈ R.

For example, for a.e. t ∈ (0, T ),

pτ (t, ·, r) = μτ (t, ·) cν(t, ·) r+ on ΓC, ∀r ∈ R,

where the friction bound is proportional to the normal stress with some positive
coefficient of friction μτ defined on (0, T )× ΓC .

Following Frémond [6, 7], the damage function α represents the percentage of the
safe part or undamaged part, α = 1 means that the body is undamaged, and α = 0
says that the body is completely damaged. The evolution of the microscopic cracks
responsible for the damage is described by the parabolic differential inclusion (6) of
the damage function α satisfying 0 ≤ α ≤ 1, where γ is a positive constant and φd

is a given constitutive function which describes damage source in the system. The
inequality (6) means

α(t) = 1 ⇒ α̇(t)− γ �α(t)− φd(σ (t), ε(u(t)), α(t)) ≤ 0;

and

α(t) ∈ (0, 1) ⇒ α̇(t)− γ �α(t)− φd(σ (t), ε(u(t)), α(t)) = 0;

and

α(t) = 0 ⇒ α̇(t)− γ �α(t)− φd(σ (t), ε(u(t)), α(t)) ≥ 0.
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Equation (8) represents the homogeneous Neumann boundary condition for the
damage field, see e.g. [3], p. 241.

The differential equation (9) provides the evolution of the temperature field.
There Kc(t,∇θ) := Kc(t, ·,∇θ) is some nonlinear time-depending function of
the temperature gradient ∇θ , which is defined on Ω . For example, denote by

Kc(t, ·) := (kij (t, ·))

the thermal conductivity tensor defined on Ω , we could consider

Kc(t, ·,∇θ) = Kc(t, ·)∇θ.

In the second member, q(t) denotes the density of volume heat sources, whereas

De(t, ε(u̇(t)), θ(t)) := De(t, ·, ε(u̇(t)), θ(t))

is the deformation-viscosity heat, which is a nonlinear function defined on Ω and
which represents the heat generated by the velocity of deformation (viscosity) and
may depend on the temperature.

Example 1

De(t, ε(u̇(t)), θ(t)) = −Cexp(t) : ε(u̇(t)) = −cij (t, ·) εij (u̇(t)). (13)

Example 2

De(t, ε(u̇(t)), θ(t)) = −θ(t, ·) de(t, ·), (14)

with some coefficient de ∈ L∞((0, T )×Ω.R+);

Example 3

De(t, ε(u̇(t)), θ(t)) = −Cexp(t) : ε(u̇(t))− θ(t, ·) de(t, ·). (15)

By assuming the variation of θ(t) small enough, then the heat function
De(t, ε(u̇(t)), θ(t)) may be considered as a formula which is independent of
the temperature.

The associated temperature boundary condition is given by (10) and (11), where
Ξ and ϕ are some functions defined on (0, T )× ΓC × R. Here,

∂ϕ(t, x, r) := ∂ϕ(t, x, ·)(r), ∀(t, x, r) ∈ (0, T )× ΓC × R

denotes the sub-differential on the third variable of ϕ in the locally Lipschitz
framework.
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We recall that for a locally Lipschitz function G : R −→ R, at any point a ∈ R

and for any vector d ∈ R, we can define the following directional derivative with
respect to d:

limτ→0+
G(a + τd)−G(a)

τ
:= G0(a; d). (16)

We have for all a, d ∈ R, for all ξ ∈ ∂G(a):

G0(a; d) ≥ ξ d

and

|G0(a; d)| ≤ |G0(a)| × |d|, |ξ | ≤ |G0(a)|,

where

limh→0, h �=0
G(a + h)−G(a)

h
:= G0(a).

In the case where G is convex on R, we have

G0(a; d) =

⎧⎪⎪⎨
⎪⎪⎩

G′
r (a)d if d > 0

G′
l (a)d if d < 0

0 if d = 0,

and

G0(a) = max{G′
r (a),G

′
l (a)},

where G′
r and G′

l denote the right side and left side derivatives, respectively.
In the sequel, for a.e. (t, x) ∈ (0, T )×Γc, for all (r, s) ∈ R

2, we use the notation

ϕ0(t, x, r; s) := [ϕ(t, x, ·)]0(r; s),

and

ϕ0(t, x, r) := [ϕ(t, x, ·)]0(r).

Taking the previous example for Kc, we have

Kc(t, x,∇θ) ν = kij (t, x)
∂ θ

∂ xj
νi .
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Let us consider, for example,

ϕ(t, x, r) := 1

2
ke(t, x)(r − θR(t, x))

2, ∀(t, x, r) ∈ (0, T )× ΓC × R, (17)

where θR is the temperature of the foundation, and ke is the heat exchange coefficient
between the body and the obstacle. We obtain

Ξ(t, x, r) = ∂ϕ(t, x, r) = ke(t, x) (r − θR(t, x)), (t, x, r) ∈ (0, T )× ΓC × R.

Finally, the data in u0, v0, α0, and θ0 in (12) represent the initial displacement,
velocity, damage, and temperature, respectively.

In view to derive the variational formulation of the mechanical problems (1)–
(12), let us first precise the functional framework. Let

V = H1

be the admissible displacement space, endowed with the inner product given by

(u, v)V = (ε(u), ε(v))H + (u, v)H ∀u, v ∈ V,

and let ‖ · ‖V be the associated norm, i.e.

‖v‖2
V = ‖ε(v)‖2

H + ‖v‖2
H ∀ v ∈ V.

Therefore, (V , ‖ · ‖V ) is a real Hilbert space, where the norm ‖ · ‖V is equivalent to
‖ · ‖(H 1(Ω))d .

Let

E = {η ∈ H 1(Ω), η = 0 on ΓF }

be the admissible temperature space, endowed with the canonical inner product of
H 1(Ω).

By the Sobolev’s trace theorem, there exists a constant c0 > 0 depending only
on Ω , and ΓC such that

‖v‖(L2(ΓC))d ≤ c0 ‖v‖V , ∀ v ∈ V ; and ‖η‖L2(ΓC) ≤ c0 ‖ η‖E, ∀ η ∈ E.

(18)
Next, we denote the set of admissible damage fields by

Kda = {ξ ∈ H 1(Ω),
∂ξ

∂ν
= 0 on Γ, 0 ≤ ξ ≤ 1 a.e. in Ω}.

We use here two Gelfand evolution triples (see e.g. [12], pp. 416) given by

V ⊂ H ≡ H ′ ⊂ V ′, E ⊂ L2(Ω) ≡ (L2(Ω))′ ⊂ E′,

where the inclusions are dense and continuous.
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In the study of the mechanical problems (1)–(12), we assume that the viscosity
operator A : (0, T )×Ω × Sd −→ Sd satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) A(·, ·, τ ) is measurable on (0, T )×Ω, ∀τ ∈ Sd ;
(ii) A(t, x, ·) is continuous on Sd for a.e. (t, x) ∈ (0, T )×Ω;
(iii) there exists mA > 0 such that

(A(t, x, τ 1)−A(t, x, τ 2)) · (τ 1 − τ 2) ≥ mA |τ 1 − τ 2|2,
∀τ 1, τ 2 ∈ Sd, for a.e. (t, x) ∈ (0, T )×Ω;

(iv) there exists cA
0 ∈ L2((0, T )×Ω;R+), cA

1 > 0 such that

|A(t, x, τ )| ≤ cA
0 (t, x)+ cA

1 |τ |,
∀τ ∈ Sd, for a.e. (t, x) ∈ (0, T )×Ω.

(19)

Here, recall that for every t ∈ (0, T ) and τ ∈ Sd , we write by A(t) = A(t, ·, ·)
a functional which is defined on Ω × Sd and A(t) τ = A(t, ·, τ ) some function
defined on Ω .

We suppose that the elasticity operator G : (0, T )×Ω×Sd ×R −→ Sd satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) G(·, ·, τ , λ) is measurable on (0, T )×Ω, ∀τ ∈ Sd, ∀λ ∈ R;
(ii) there exists LG > 0 such that

|G(t, x, τ 1, λ1)− G(t, x, τ 2, λ2)| ≤ LG (|τ 1 − τ 2| + |λ1 − λ2|)
∀τ 1, τ 2 ∈ Sd, ∀λ1, λ2 ∈ R, a.e. (t, x) ∈ (0, T )×Ω ;

(iii) there exists cG
0 ∈ L2((0, T )×Ω;R+), cG

1 ≥ 0, cG
2 ≥ 0 such that

|G(t, x, τ , λ)| ≤ cG
0 (t, x)+ cG

1 |τ | + cG
2 |λ|,

∀τ ∈ Sd, ∀λ ∈ R, a.e. (t, x) ∈ (0, T )×Ω;
(iv) the partial derivatives with respect to the first, third, and fourth

variables of G exist and are bounded.
(20)

We put again G(t)(τ , λ) = G(t, ·, τ , λ) some function defined on Ω for every t ∈
(0, T ), τ ∈ Sd , λ ∈ R.

The relaxation tensor B : (0, T )×Ω × Sd × R −→ Sd satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) B(·, ·, τ , λ) ∈ L∞((0, T )×Ω; Sd), ∀τ ∈ Sd, ∀λ ∈ R;
(ii) there exists LB > 0 such that

|B(t, x, τ 1, λ1)−B(t, x, τ 2, λ2)| ≤ LB (|τ 1 − τ 2| + |λ1 − λ2|)
∀τ 1, τ 2 ∈ Sd, ∀λ1, λ2 ∈ R, a.e. (t, x) ∈ (0, T )×Ω;

(iii) the partial derivative with respect to the first variable of
B exists and is bunded.

(21)
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The body forces and surface tractions satisfy the regularity conditions:

f 0 ∈ W 1,2(0, T ;H), f F ∈ W 1,2(0, T ;L2(ΓF )d). (22)

The gap function g : (0, T )× ΓC −→ R+ verifies

⎧⎪⎨
⎪⎩

(i) g ∈ L∞((0, T )× ΓC; R+);
(ii) the partial derivative with respect to the first variable of

g exists and is bounded.

(23)

The thermal expansion tensor Ce : (0, T )×Ω × R −→ Sd verifies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Ce(·, ·, ϑ) is measurable on (0, T )×Ω, ∀ϑ ∈ R;
(ii) there exists Le > 0 such that

|Ce(t, x, ϑ1)− Ce(t, x, ϑ2)| ≤ Le |ϑ1 − ϑ2|
∀ϑ1, ϑ2 ∈ R, a.e. (t, x) ∈ (0, T )×Ω;

(iii) there exists c
Ce

0 ∈ L∞((0, T )×Ω;R+), c
Ce

1 ≥ 0 such that

|Ce(t, x, ϑ)| ≤ c
Ce

0 (t, x)+ c
Ce

1 |ϑ |,
∀ϑ ∈ R, for a.e. (t, x) ∈ (0, T )×Ω;

(iv) the partial derivatives with respect to the first and third variables
of Ce exist and are bounded.

(24)

Here, we use the notation Ce(t, ϑ) = Ce(t, ·, ϑ) some function defined on Ω , for
all t ∈ (0, T ) and ϑ ∈ R.

The normal compliance function pν : (0, T )× ΓC × R −→ R+ satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) there exists Lν > 0 such that
|pν(t, x, r1)− pν(t, x, r2)| ≤ Lν |r1 − r2|,

∀ r1, r2 ∈ R, a.e. (t, x) ∈ (0, T )× ΓC;
(ii) pν(·, ·, r) is Lebesgue measurable on (0, T )× ΓC, ∀ r ∈ R;
(iii) the mapping pν(·, ·, r) = 0, ∀r ≤ 0;
(iv) the partial derivatives with respect to the first and third variables

of pν exist and are bounded.

(25)

The friction bound function pτ : (0, T )× ΓC × R −→ R+ satisfies
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) there exists Lτ > 0 such that
|pτ (t, x, r1)− pτ (t, x, r2)| ≤ Lτ |r1 − r2|,

∀ r1, r2 ∈ R, a.e. (t, x) ∈ (0, T )× ΓC;
(ii) pτ (·, ·, r) is Lebesgue measurable on (0, T )× ΓC, ∀ r ∈ R;
(iii) the mapping pτ (·, ·, r) = 0, ∀r ≤ 0.

(26)

The damage source φd : Ω × Sd × Sd × [0, 1] −→ R verifies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) there exists Lφ > 0 such that

|φd(x, σ 1, ε1, ξ1)− φd(x, σ 2, ε2, ξ2)| ≤ Lφ (|σ 1 − σ 2| + |ε1 − ε2| + |ξ1 − ξ2|),
∀ σ 1, σ 2, ε1, ε2 ∈ Sd, ∀ξ1, ξ2 ∈ [0, 1], a.e. x ∈ Ω;

(ii) φd(·, σ , ε, ξ) is Lebesgue measurable function on Ω,

∀ σ , ε ∈ Sd, ∀ξ ∈ [0, 1];
(iii) φd(·, 0, 0, 0) ∈ L2(Ω).

(27)

We assume that the nonlinear function Kc : (0, T )×Ω × R
d −→ R

d satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Kc(·, ·, ξ) is measurable on (0, T )×Ω, ∀ξ ∈ R
d ;

(ii) Kc(t, x, ·) is continuous on R
d , a.e. (t, x) ∈ (0, T )×Ω;

(iii) there exists c
Kc

0 ∈ L2((0, T )×Ω;R+), c
Kc

1 ≥ 0, such that

|Kc(t, x, ξ)| ≤ c
Kc

0 (t, x)+ c
Kc

1 |ξ |,
∀ξ ∈ R

d , a.e. (t, x) ∈ (0, T )×Ω;
(iv) there exists mKc

> 0 such that
(Kc(t, x, ξ1)−Kc(t, x, ξ2)) · (ξ1 − ξ2) ≥ mKc

|ξ1 − ξ2|2,
∀ξ1, ξ2 ∈ R

d , a.e. (t, x) ∈ (0, T )×Ω ;
(v) there exists nKc

> 0 such that Kc(t, x, ξ) · ξ ≥ nKc
|ξ |2,

∀ξ ∈ R
d , a.e. (t, x) ∈ (0, T )×Ω.

(28)

We suppose that the deformation-viscosity heat function De : (0, T )×Ω×Sd ×
R −→ R satisfies
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) De(·, ·, τ , ϑ) is measurable on (0, T )×Ω, ∀(τ , ϑ) ∈ Sd × R;
(ii) the function De(t, x, ·, ·) is Lypschitz continuous on Sd × R,

i.e. ∃DV > 0, ∃DT > 0 :
|De(t, x, τ 1, ϑ1)−De(t, x, τ 2, ϑ2)| ≤ DV |τ 1 − τ 2| +DT |ϑ1 − ϑ2|,
∀(τ 1, ϑ1), (τ 2, ϑ2) ∈ Sd × R, for a.e. (t, x) ∈ (0, T )×Ω;

(iii) De(·, ·, 0Sd
, 0) ∈ L∞((0, T )×Ω);

(iv) (De(t, x, τ , ϑ1)−De(t, x, τ , ϑ2)) (ϑ1 − ϑ2) ≤ 0,

∀τ ∈ Sd, ∀ϑ1, ϑ2 ∈ R, a.e. (t, x) ∈ (0, T )×Ω.

(29)
We notice that these conditions are verified in examples (13)–(15).
The heat sources density verifies

q ∈ L2(0, T ;L2(Ω)). (30)

We suppose that the nonlinear functions Ξ, ϕ : (0, T )× ΓC × R −→ R satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Ξ(·, ·, r) and ϕ(·, ·, r) are measurable on (0, T )× ΓC, ∀r ∈ R;
(ii) ϕ(t, x, ·) is locally Lipschitz on R for a.e. (t, x) ∈ (0, T )× ΓC;
(iii) there exists c

ϕ
0 ∈ L2((0, T )× ΓC;R+), c

ϕ
1 ≥ 0, such that

|ϕ0(t, x, r)| ≤ c
ϕ
0 (t, x)+ c

ϕ
1 |r|,

∀r ∈ R, a.e. (t, x) ∈ (0, T )× ΓC;
(iv) (Ξ(t, x, r1)−Ξ(t, x, r2)) (r1 − r2) ≥ 0,

∀r1, r2 ∈ R, a.e. (t, x) ∈ (0, T )× ΓC.

(31)

These assumptions are clearly satisfied in example (17).
Finally, we assume that the initial data satisfy the conditions

u0 ∈ V, v0 ∈ V, θ0 ∈ E, α0 ∈ Kda. (32)

Using Green’s formula, we obtain the following weak formulation of the
mechanical problem Q, defined by a system of second-order quasi-variational
evolution inequality coupled with a first-order evolution equation.

Problem QV : Find a displacement field u : [0, T ] → V , a damage field α :
[0, T ] −→ Kda , and a temperature field θ : [0, T ] → E satisfying for a.e. t ∈
(0, T ):
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈ü(t)+ A(t) u̇(t)+ B(t)(u(t), α(t))+ C(t) θ(t), w − u̇(t)〉V ′×V ,

+(

∫ t

0
B(t − s) (ε(u(s)), α(s)) ds, ε(w)− ε(u̇(t)))H

+jν(t,u(t),w − u̇(t))+ jτ (t,u(t),w)− jτ (t,u(t), u̇(t))

≥ 〈f (t), w − u̇(t)〉V ′×V , ∀w ∈ V.

(33)

{
(α̇(t), ξ − α(t))L2(Ω) + γ (∇α(t),∇ξ −∇α(t))L2(Ω)d

≥ (φd(σ (t), ε(u(t)), α(t)), ξ − α(t))L2(Ω), ∀ ξ ∈ Kda.
(34)

{
< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)

≥< R(t, u̇(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E.
(35)

u(0) = u0, u̇(0) = v0, α(0) = α0, θ(0) = θ0 in Ω. (36)

Here, the operators and functions A(t) : V −→ V ′, B(t) : V × Kda −→
V ′, C(t) : E −→ V ′, jν, jτ : (0, T ) × V 2 −→ R

+, K(t) : E −→ E′,
ψ(t, ·; ·) : E × E −→ R, R(t, ·, ·) : V × E −→ E′, f : (0, T ) −→ V ′,
and Q : (0, T ) −→ E′ are defined by, for all v ∈ V , w ∈ V , ζ ∈ E, η ∈ E,
ξ ∈ Kda , for a.e. t ∈ (0, T ),

〈A(t) v,w〉V ′×V = (A(t)(εv), εw)H;
〈B(t)(v, ξ),w〉V ′×V = (G(t)(εv, ξ), εw)H;
〈C(t)ζ,w〉V ′×V = (Ce(t, ζ(·)), εw)H;
jν(t, v,w) =

∫
ΓC

pν(t, vν − g(t)) wν da;

jτ (t, v,w) =
∫
ΓC

pτ (t, vν − g(t)) |wτ | da;
〈f (t),w〉V ′×V = (f 0(t),w)H + (f F (t),w)(L2(ΓF ))d ;
〈K(t) ζ, η〉E′×E =

∫
Ω

Kc(t,∇ζ ) · ∇η dx;
ψ(t, ζ ; η) =

∫
ΓC

ϕ0(t, x, ζ(x); η(x)) da(x);

〈R(t, v, ζ ), η〉E′×E =
∫
Ω

De(t, ε(v), ζ ) η dx;
〈Q(t), η〉E′×E =

∫
Ω

q(t) η dx.
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We notice that from (31), then the formula ψ(t, ζ ; η) is well defined for all ζ ∈
E, η ∈ E, for a.e. t ∈ (0, T ).

The inequality (35) is a consequence of the following equation:

⎧⎨
⎩

< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +
∫
ΓC

Ξ(t, θ(t))η da

=< R(t, u̇(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E,

(37)

where Ξ(t, r) := Ξ(t, ·, r) for (t, r) ∈ (0, T )× R.
In the case when ϕ(t, x, ·) is differentiable for a.e. (t, x) ∈ (0, T )× Γc, we have

Ξ(t, x, r) = ϕ′(t, x, r) := [ϕ(t, x, ·)]′(r)

for (t, x, r) ∈ (0, T )× ΓC × R.
Then, for all ζ ∈ E and a.e. t ∈ (0, T ), the linear functional

η ∈ E �→ ψ(t, ζ ; η) =
∫
ΓC

Ξ(t, ζ )ηda =
∫
ΓC

ϕ′(t, x, ζ(x))η(x)da(x)

will be denoted by

Φ(t, ζ ) ∈ E′.

The inequality (35) or Equation (37) can be written as

θ̇ (t)+K(t) θ(t)+Φ(t, θ(t)) = R(t, u̇(t), θ(t))+Q(t) in E′.

Our main existence and uniqueness result is the following, which we will prove
in the next section.

Theorem 1 Assume that (19)–(32) hold, and under the condition that

Lτ <
mA√
2 T c2

0

,

then there exists an unique solution {u, α, θ} to problem QV with the regularity:

⎧⎪⎪⎨
⎪⎪⎩

u ∈ C1(0, T ;H) ∩W 1,2(0, T ;V ) ∩W 2,2(0, T ;V ′);
α ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;Kda);
θ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E) ∩W 1,2(0, T ;E′).

(38)
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3 Proof of Theorem 1

The idea is to bring the second-order inequality to a first-order inequality, using
monotone operator, convexity, and fixed point arguments, and will be carried out in
several steps.

Let us introduce the velocity variable

v = u̇.

The system in problem QV is then written as, for a.e. t ∈ (0, T ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = u0 +
∫ t

0
v(s) ds;

〈v̇(t)+ A(t) v(t)+ B(t)(u(t), α(t))+ C(t) θ(t), w − v(t)〉V ′×V ,

+(

∫ t

0
B(t − s) (ε(u(s)), α(s)) ds, ε(w)− ε(v(t)))H

+jν(t,u(t),w − v(t))+ jτ (t,u(t),w)− jτ (t,u(t), v(t))

≥ 〈f (t), w − v(t)〉V ′×V , ∀w ∈ V ;
(α̇(t), ξ − α(t))L2(Ω) + γ (∇α(t),∇ξ −∇α(t))L2(Ω)d

≥ (φd(σ (t), ε(u(t)), α(t)), ξ − α(t))L2(Ω), ∀ ξ ∈ Kda;
< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)

≥< R(t, v(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E;
v(0) = v0, α(0) = α0, θ(0) = θ0 in Ω,

with the regularities:

⎧⎪⎨
⎪⎩

v ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′);
α ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;K);
θ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E) ∩W 1,2(0, T ;E′).

We begin by the following lemma.

Lemma 1 For all η ∈ W 1,2(0, T ;V ′), there exists an unique

vη ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′)

satisfying
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈v̇η(t)+ A(t) vη(t), w − vη(t)〉V ′×V + 〈η(t),w − vη(t)〉V ′×V

+ jτ (t,uη(t),w)− jτ (t,uη(t), vη(t)) ≥ 〈f (t),w − vη(t)〉V ′×V ,

∀w ∈ V, a.e. t ∈ (0, T );
vη(0) = v0,

(39)

where

uη(t) = u0 +
∫ t

0
vη(s) ds, ∀t ∈ [0, T ].

Moreover, if Lτ <
mA√
2 T c2

0
, then ∃c > 0 such that ∀η1, η2 ∈ W 1,2(0, T ;V ′),

∀t ∈ [0, T ]:

‖vη2(t)− vη1(t)‖2
H +

∫ t

0
‖vη2 − vη1‖2

V ≤ c

∫ t

0
‖η1 − η2‖2

V ′ . (40)

Proof Given η ∈ W 1,2(0, T ;V ′) and x ∈ C(0, T ;V ), by using a general result on
parabolic variational inequality (see e.g. [1]), we obtain the existence of a unique
vη x ∈ C(0, T ;H) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ′) satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈v̇η x(t)+ A(t) vη x(t), w − vη x(t)〉V ′×V + 〈η(t),w − vη x(t)〉V ′×V

+ jτ (t, x(t),w)− jτ (t, x(t), vη x(t)) ≥ 〈f (t),w − vη x(t)〉V ′×V ,

∀w ∈ V, a.e. t ∈ (0, T );
vη x(0) = v0.

(41)

Now, let us fix η ∈ W 1,2(0, T ;V ′) and consider Λη : C(0, T ;V ) →
C(0, T ;V ) defined by

∀x ∈ C(0, T ;V ), Ληx (t) = u0 +
∫ t

0
vη x(s) ds.

We check by algebraic manipulation that for all u1,u2,w1,w2 ∈ V , a.e. t ∈
(0, T ), we have

jτ (t,u1,w2)−jτ (t,u1,w1)+jτ (t,u2,w1)−jτ (t,u2,w2) ≤ c1 ‖u2−u1‖V ‖w2−w1‖V ,

where c1 = Lτ c2
0 is involving c0, which is defined by (18).

Let x1, x2 ∈ C(0, T ;V ) be given. Putting in (41) the data x = x1 with w = vη x2

and x = x2 with w = vη x1 , adding then the two inequalities, and integrating over
(0, T ), we obtain, ∀t ∈ [0, T ],
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‖vη x2(t)− vη x1(t)‖2
H +

∫ t

0
‖vη x2(s)− vη x1(s)‖2

V ds

≤ c

∫ t

0
‖x2(s)− x1(s)‖2

V ds + c

∫ t

0
‖vη x2(s)− vη x1(s)‖2

H ds.

Using Gronwall’s inequality (see e.g. [2]), we deduce that

∀x1, x2 ∈ C(0, T ;V ), ∀t ∈ [0, T ], ‖Λη(x2)(t)−Λη(x1)(t)‖2
V ≤ c

∫ t

0
‖x2(s)− x1(s)‖2

V ds.

Thus, by Banach’s fixed point principle, we know that Λη has an unique fixed point
denoted by xη. We then verify that

vη = vη xη

is the unique solution verifying (39).
Now, let η1, η2 ∈ W 1,2(0, T ;V ′). Putting in (39) the data η = η1 with w = vη2

and η = η2 with w = vη1 , adding then the two inequalities and integrating over
(0, T ), and using the inequality

|a b| ≤ ε

4
a2 + 1

ε
b2

for all reals a, b, ε > 0, we obtain for all δ > 0, for all t ∈ [0, T ]:
1

2
‖vη2(t)− vη1(t)‖2

H +mA

∫ t

0
‖vη2(s)− vη1(s)‖2

V ds

≤ mA

∫ t

0
‖vη2(s)− vη1(s)‖2

H ds + c2
1

4δ

∫ t

0
‖uη2(s)− uη1(s)‖2

V ds

+δ

∫ t

0
‖vη2(s)− vη1(s)‖2

V ds +
∫ t

0
‖vη2(s)− vη1(s)‖V ‖η2(s)− η1(s)‖V ′ds.

≤ mA

∫ t

0
‖vη2(s)− vη1(s)‖2

H ds + c2
1

4δ

∫ t

0
‖uη2(s)− uη1(s)‖2

V ds

+2δ
∫ t

0
‖vη2(s)− vη1(s)‖2

V ds + 1

4δ

∫ t

0
‖η2(s)− η1(s)‖2

V ′ds.

Now, verifying that

∫ t

0
‖uη2(s)− uη1(s)‖2

V ds ≤ T 2
∫ t

0
‖vη2(s)− vη1(s)‖2

V ds,

we have
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1

2
‖vη2(t)− vη1(t)‖2

H + (mA − 2δ)
∫ t

0
‖vη2(s)− vη1(s)‖2

V ds

≤ mA
∫ t

0 ‖vη2(s)− vη1(s)‖2
H ds + c2

1
4δ T 2

∫ t

0 ‖vη2(s)− vη1(s)‖2
V ds

+ 1
4δ

∫ t

0 ‖η2(s)− η1(s)‖2
V ′ds.

We deduce (40) from Gronwall’s inequality if

c2
1

4δ
T 2 < mA − 2δ,

i.e.

Lτ <
mA

T c2
0

√
2ς(1 − ς),

where

ς = 2δ

mA
∈]0, 1[.

To conclude, we obtain (40) if ∃ς ∈]0, 1[ such that Lτ <
mA

T c2
0

√
2ς(1 − ς).

This last condition is equivalent to

Lτ <
mA√
2T c2

0

.

 "
Here and below, we denote by c > 0 a generic constant, which value may change

from lines to lines.

Lemma 2 For all η ∈ W 1,2(0, T ;V ′), there exists a unique

θη ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E) ∩W 1,2(0, T ;E′)

satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< θ̇η(t), ζ >E′×E + < K(t) θη(t), ζ >E′×E +
∫
ΓC

Ξ(t, θη(t)) ζ da

=< R(t, vη(t), θη(t)), ζ >E′×E + < Q(t), ζ >E′×E,

∀ ζ ∈ E, a.e. t ∈ (0, T );
θη(0) = θ0.

(42)

Moreover, if Lτ <
mA√
2 T c2

0
, then ∃c > 0 such that ∀η1, η2 ∈ W 1,2(0, T ;V ′):
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‖θη1(t)− θη2(t)‖2
L2(Ω)

≤ c

∫ t

0
‖η1 − η2‖2

V ′ , ∀t ∈ [0, T ]. (43)

Proof Let us fix η ∈ W 1,2(0, T ;V ′). We verify that Q ∈ L2(0, T ;E′).
Let us consider the operator Ψη(t) : E −→ E′ defined for a.e. t ∈ (0, T ) by

⎧⎨
⎩

< Ψη(t) ξ, ζ >E′×E :=< K(t) ξ, ζ >E′×E +
∫
ΓC

Ξ(t, ξ) ζ da− < R(t, vη(t), ξ), ζ >E′×E,

∀ ξ, ζ ∈ E.

Then, the problem is to find θ : (0, T ) −→ E verifying

{
θ̇ (t)+ Ψη(t) θ(t) = Q(t) in E′, a.e. t ∈ (0, T );
θ(0) = θ0.

Using the assumptions (28), (29), and (31), Ψη(t) is strongly monotone for a.e.
t ∈ (0, T ). Therefore, the existence and uniqueness result verifying (42) follows
from classical result on first-order evolution equation (see e.g. [9], pp. 162–164).

Now, for η1, η2 ∈ W 1,2(0, T ;V ′), we have, for a.e. t ∈ (0; T ),

〈θ̇η1 (t)− θ̇η2 (t), θη1 (t)− θη2(t)〉E′×E + 〈K(t) θη1 (t)−K(t) θη2 (t), θη1 (t)− θη2(t)〉E′×E

≤ 〈R(t, vη1(t), θη1 (t))− R(t, vη2 (t), θη2 (t)), θη1 (t)− θη2(t)〉E′×E.

Then, integrating the last property over (0, t), using the strong monotonicity of
K(t) and the Lipschitz continuity of R(t, ·, ·) : V × E −→ E′ independently of
t ∈ (0, T ), we deduce

‖θη1(t)− θη2(t)‖2
L2(Ω)

≤ c

∫ t

0
‖vη1 − vη2‖2

V , ∀t ∈ [0, T ].

The inequality (43) follows then from Lemma 1.  "
Lemma 3 For all μ ∈ L2(0, T ;L2(Ω)), there exists an unique

αμ ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H 1(Ω))

satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(α̇μ(t), ξ − αμ(t))L2(Ω) + γ (∇αμ(t),∇ξ −∇αμ(t))L2(Ω)d

≥ (μ(t), ξ − αμ(t))L2(Ω), ∀ ξ ∈ Kda, a.e. t ∈ (0, T );
αμ(t) ∈ Kda, ∀t ∈ [0, T ];
αμ(0) = α0.

(44)
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Moreover, ∃c > 0 such that ∀μ1, μ2 ∈ L2(0, T ;L2(Ω)):

‖αμ2(t)− αμ1(t)‖2
L2(Ω)

≤ c

∫ t

0
‖μ1 − μ2‖2

L2(Ω)
, ∀t ∈ [0, T ]. (45)

Proof The inequality (44) follows from classical result on parabolic evolution
variational inequalities, see e.g. [1].

Now, for any μ1, μ2 ∈ L2(0, T ;L2(Ω)), putting in (44) the data μ = μ1
with ξ = αμ2 , then μ = μ2 with ξ = αμ1 , adding then the two inequalities, and
integrating over (0, T ), we obtain, ∀t ∈ [0, T ],

1

2
‖αμ1(t)− αμ2(t)‖2

L2(Ω)
+ γ

∫ t

0
‖∇αμ1 −∇αμ2‖2

L2(Ω)d

≤
∫ t

0
‖μ1 − μ2‖L2(Ω)‖αμ1 − αμ2‖L2(Ω).

Thus, the inequality (45) follows from Gronwall’s inequality.  "
Consider X := W 1,2(0, T ;V ′)× L2(0, T ;L2(Ω)), and the operator Λ : X →

X is defined by, for all (η, μ) ∈ X,

Λ(η,μ) = (Λ1(η, μ), Λ2(η, μ));
Λ1(η, μ)(t) = B(t)(uη(t), αμ(t))+D(t)(uη, αμ)+ jν(t,uη(t), ·)+ C(t) θη(t);
Λ2(η, μ)(t) = φd(σ η,μ(t), ε(uη(t)), αμ(t)),

where

〈D(t)(uη, αμ),w〉V ′×V = (

∫ t

0
B(t − s) (ε(uη(s)), αμ(s)) ds, εw)H, ∀w ∈ V ;

and

σ η,μ(t) = A(t)ε(vη(t))+ G(t)(ε(uη(t)), αμ(t))

+
∫ t

0
B(t − s) (ε(uη(s)), αμ(s)) ds + Ce(t, θη(t)).

Lemma 4 Under the condition that Lτ <
mA√
2 T c2

0
, then Λ has a unique fixed point

(η∗, μ∗).

Proof First, we check that from the definition of the operator C(·) and from
hypothesis (24), then there exists c > 0, such that for a.e. t ∈ (0, T ), for all
ξ1, ξ2 ∈ E, we have
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‖C(t) ξ1 − C(t) ξ2‖V ′ ≤ c ‖ξ1 − ξ2‖L2(Ω).

Now, let (η1, μ1) and (η2, μ2) be given in X. We verify that, for a.e. t ∈ (0, T ),

‖Λ(η1, μ1)(t)−Λ(η2, , μ2)(t)‖2
V ′×L2(Ω)

≤ c ‖B(t)(uη1 (t), αμ1 (t))− B(t)(uη2 (t), αμ2 (t))‖2
V ′ + c ‖D(t)(uη1 , αμ1 )−D(t)(uη2 , αμ2 )‖2

V ′

c ‖jν(t,uη1 (t), ·)− jν(t,uη2 (t), ·)‖2
V ′ + c ‖C(t) θη1 (t)− C(t) θη2 (t)‖2

V ′

+‖φd(σ η1,μ1 (t), ε(uη1 (t)), αμ1 (t))− φd(σ η2,μ2 (t), ε(uη2 (t)), αμ2 (t))‖2
L2(Ω)

.

Thus,

‖Λ(η1, μ1)(t)−Λ(η2, , μ2)(t)‖2
V ′×L2(Ω)

≤ c ‖uη1(t)− uη2(t)‖2
V + c ‖αμ1(t)− αμ2(t)‖2

L2(Ω)
+ c ‖θη1(t)− θη2(t)‖2

L2(Ω)

+ c ‖vη1(t)− vη2(t)‖2
H .

We deduce from Lemmas 1–3 that if Lτ <
mA√
2T c2

0
, then ∃c > 0 satisfying, for all

(η1, μ1), (η2, μ2) in X and for all t ∈ [0, T ],

‖Λ(η1, μ1)(t)−Λ(η2, , μ2)(t)‖2
V ′×L2(Ω)

≤ c

∫ t

0
‖η2−η1‖2

V ′+c
∫ t

0
‖μ1−μ2‖2

L2(Ω)
.

Then, using again Banach’s fixed point principle, we obtain that Λ has an unique
fixed point.  "
Proof of Theorem 1 We have now all the ingredients to prove Theorem 1.

We verify then that the functions

u := uη∗ , α := αμ∗ , θ := θη∗

are solutions to problem QV with the regularities in (38), the uniqueness follows
from the uniqueness in Lemmas 1–3.  "

4 Analysis of a Numerical Scheme

In this section, we study a fully discrete numerical approximation scheme of the
variational problem QV . For this purpose, let {u, θ} be the unique solution of the
problem QV , and introduce the velocity variable

v(t) = u̇(t), ∀t ∈ [0, T ].
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Then,

u(t) = u0 +
∫ t

0
v(s) ds, ∀t ∈ [0, T ]. (46)

Here, we make the following additional assumptions on the different data, operators,
and solution fields:

A(·, ·, τ ) ∈ C([0, T ] ×Ω; Sd), ∀τ ∈ Sd;
G(·, ·, τ , λ) ∈ C([0, T ] ×Ω; Sd), ∀(τ , λ) ∈ Sd × R;
Ce(·, ·, ϑ) ∈ C([0, T ] ×Ω; Sd), ∀ϑ ∈ R;
B(·, ·, τ , λ) ∈ C([0, T ] ×Ω; Sd), ∀(τ , λ) ∈ Sd × R;
f 0 ∈ C([0, T ] ×Ω;Rd); f F ∈ C([0, T ] × ΓF ;Rd);
Kc(·, ·, ξ) ∈ C([0, T ] ×Ω;Rd), ∀ξ ∈ R

d;
De(·, ·, τ , ϑ) ∈ C([0, T ] ×Ω;R), ∀(τ , ϑ) ∈ Sd × R;
q ∈ C([0, T ] ×Ω;R+);
v ∈ W 1,1(0, T ;V ) ∩ C1([0, T ];H),

θ ∈ C([0, T ];E) ∩H 2(0, T ;L2(Ω)),

α ∈ C(0, T ;H 2(Ω)) ∩H 2(0, T ;L2(Ω)),

(47)

and for all r, r1, r2 ∈ R, a.e. (t, x) ∈ (0, T )× ΓC :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i) ϕ0(t, x, r; r1 + r2) ≤ ϕ0(t, x, r; r1)+ ϕ0(t, x, r; r2);
(ii) ϕ0(t, x, r2; r1 − r2)+ ϕ0(t, x, r1; r2 − r1) ≤ 0;
(iii) there exists cϕ ≥ 0 such that

ϕ0(t, x, r1; r)+ ϕ0(t, x, r2;−r) ≤ cϕ |(r1 − r2) r|.

(48)

We remark that the example of ϕ given in (17) satisfies hypothesis (48).
From Theorem 1, {v, θ, α} verify, for all t ∈ [0, T ],

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈v̇(t)+ A(t) v(t)+ B(t)(u(t), α(t))+ C(t) θ(t), w − v(t)〉V ′×V ,

+(

∫ t

0
B(t − s) (ε(u(s)), α(s)) ds, ε(w)− ε(v(t)))H

+jν(t,u(t),w − v(t))+ jτ (t,u(t),w)− jτ (t,u(t), v(t))

≥ 〈f (t), w − v(t)〉V ′×V , ∀w ∈ V.

(49)
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{
< θ̇(t), η >E′×E + < K(t) θ(t), η >E′×E +ψ(t, θ(t); η)

≥< R(t, v(t), θ(t)), η >E′×E + < Q(t), η >E′×E, ∀ η ∈ E.
(50)

{
(α̇(t), ξ − α(t))L2(Ω) + γ (∇α(t),∇ξ −∇α(t))L2(Ω)d

≥ (φd(σ (t), ε(u(t)), α(t)), ξ − α(t))L2(Ω), ∀ ξ ∈ Kda.
(51)

v(0) = v0, α(0) = α0, θ(0) = θ0 in Ω. (52)

Now, let V h ⊂ V , Eh ⊂ E, and Kh
da ⊂ Kda be a family of finite dimensional

subspaces, with h > 0 a discretization parameter. We divide the time interval [0, T ]
into N equal parts: tn = n k, n = 0, 1, . . . , N , with the time step k = T/N .
For a continuous operator or function U ∈ C([0, T ];X) with values in a space X,
we use the notation Un = U(tn) ∈ X.
Then, from (49)–(52), we introduce the following fully discrete scheme.

Problem Phk Find vhk = {vhk
n }Nn=0 ⊂ V h, θhk = {θhk

n }Nn=0 ⊂ Eh and αhk =
{αhk

n }Nn=0 ⊂ Kh
da such that

vhk
0 = vh

0, θhk
0 = θh

0 , αhk
0 = αh

0 (53)

and for n = 1, · · · , N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
vhk
n −vhk

n−1
k

, wh − vhk
n

)
H
+ 〈An vhk

n , wh − vhk
n 〉V ′×V

+〈Bn uhk
n−1, wh − vhk

n 〉V ′×V + 〈Cn θhk
n−1, wh − vhk

n 〉V ′×V

+(k
∑n−1

m=0 B(tn − tm) (ε(uhk
m ), αhk

m ), ε(wh)− ε(vhk
n ))H

+jν(tn,u
hk
n−1,w

h − vhk
n )+ jτ (tn,u

hk
n−1,w

h)− jτ (tn,u
hk
n−1, v

hk
n )

≥ 〈f n, wh − vhk
n 〉V ′×V , ∀wh ∈ V h.

(54)

⎧⎨
⎩
(

θhk
n −θhk

n−1
k

, ηh
)
L2(Ω)

+ 〈Kn θhk
n , ηh〉E′×E + ψ(tn, θ

hk
n ; ηh)

≥ 〈R(tn, v
hk
n , θhk

n ), ηh〉E′×E + 〈Qn, η
h〉E′×E, ∀ ηh ∈ Eh.

(55)

{
(
αhk
n −αhk

n−1
k

, ξh − αhk
n )L2(Ω) + γ (∇αhk

n ,∇(ξh − αhk
n ))L2(Ω)d

≥ (φd(σ
hk
n−1, ε(u

hk
n−1), α

hk
n−1), ξ

h − αhk
n )L2(Ω), ∀ ξh ∈ Kh

da,
(56)

where for n = 1, · · · , N ,
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uhk
n = uhk

0 + k

n∑
j=1

vhk
j ; uhk

0 = uh
0 . (57)

{
σ hk

n = An vhk
n + Bn (uhk

n , αhk
n )+ Cn θhk

n + k
∑n−1

m=0 B(tn − tm) (ε(uhk
m ), αhk

m );
σ hk

0 = σ h
0 .

(58)
Here, uh

0 ∈ V h, vh
0 ∈ V h, θh

0 ∈ Eh, αh
0 ∈ Kh

da , and σ h
0 ∈ H are suitable

approximations of the initial values u0, v0, θ0, α0, and σ 0, respectively.
We verify that for n = 1, · · · , N , once uhk

n−1, v
hk
n−1, θ

hk
n−1, α

hk
n−1, andσ hk

n−1 are
known, then we obtain vhk

n by (54), θhk
n by (55), αhk

n by (56), uhk
n by (57) (using

uhk
n = uhk

n−1 + k vhk
n ), and σ hk

n by (58).
We now turn to an error analysis of the numerical solution. Here, we use and

extend the technique developed in [3], p. 241.

Proof We have to estimate the following numerical solution errors, respectively, for
the velocity, temperature, and damage:

vn − vhk
n , θn − θhk

n , αn − αhk
n , 1 ≤ n ≤ N.

First step. Estimate of (αn − αhk
n )1≤n≤N . Let us fix n = 1, · · · , N .

Using (51) with t = tn, ξ = αhk
n and (56) with ξh = ξh

n ∈ Kh
da and then adding the

two inequalities, we obtain after some algebraic manipulation, for some constant
c > 0,

‖αn − αhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖∇(αj − αhk

j )‖2
L2(Ω)

≤ +c ‖u0 − uh
0‖2

V + c ‖σ 0 − σ h
0‖2

H + c ‖α0 − αh
0‖2

L2(Ω)

+c k
∑n

j=1 ‖αj−αj−1
k

− α̇j‖2
L2(Ω)

+ c k
∑n

j=1 ‖αj − αhk
j ‖2

L2(Ω)

+c k2 + c k
∑n−1

j=1 ‖uj − uhk
j ‖2

V + c ε k
∑n−1

j=1 ‖σ j − σ hk
j ‖2

H

+c A2
0 + c k A1 + c k A2 + c k A3 + c k A4,

where ε > 0 is a small parameter which will be chosen later and

A0 := max1≤j≤N ‖αj − ξh
j ‖L2(Ω);

∇A1 :=∑N
j=1 ‖∇(αj − ξh

j )‖2
L2(Ω)

;
A1 :=∑N

j=1 ‖αj − ξh
j ‖2

L2(Ω)
;

A2 :=∑N−1
j=1 ‖(αj+1 − ξh

j+1)− (αj − ξh
j )‖2

L2(Ω)
;

A3 :=∑N
j=1 ‖φd(σ j , ε(uj ), αj )− αj−αj−1

k
+ γj Δαj‖L2(Ω) × ‖αj − ξh

j ‖L2(Ω).
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From (47), we have

k A3 ≤ c A0

and

∥∥∥αj − αj−1

k
− α̇j

∥∥∥
L2(Ω)

≤
∫ tj

tj−1

‖α̈(s)‖L2(Ω) ds, 1 ≤ j ≤ N.

We deduce that

n∑
j=1

‖αj − αj−1

k
− α̇j‖2

L2(Ω)
≤ c k.

From (46) and (57), we have

k
∑n−1

j=1 ‖uj − uhk
j ‖2

V

≤ c ‖u0 − uh
0‖2

V + c k I + c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)
,

where by using (47),

I :=
N∑

j=1

∥∥∥
∫ tj

0
v − k

j∑
i=1

vi

∥∥∥2

V
≤ c k.

From (58), we have for n = 1, · · · , N ,

‖σ n − σ hk
n ‖2

H

≤ c ‖vn − vhk
n ‖2

V + c ‖un − uhk
n ‖2

V + c ‖θn − θhk
n ‖2

L2(Ω)

+‖
∫ tn

0
B(tn − s) (ε(u(s)), α(s)) ds − k

n−1∑
m=0

B(tn − tm) (ε(uhk
m ), αhk

m )‖2
H.

Therefore, we arrive to the following error estimate for the damage:
For some constant c > 0 and for n = 1, · · · , N ,
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‖αn − αhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖∇(αj − αhk

j )‖2
L2(Ω)

≤ +c ‖u0 − uh
0‖2

V + c ‖σ 0 − σ h
0‖2

H + c ‖α0 − αh
0‖2

L2(Ω)

+c k
∑n

j=1 ‖αj − αhk
j ‖2

L2(Ω)

+c k2 + c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)
+c ε k

∑n−1
j=1 ‖vj − vhk

j ‖2
V + c ε k

∑n−1
j=1 ‖θj − θhk

j ‖2
L2(Ω)

+c A0 + c A2
0 + c k∇A1 + c k A1 + c k A2.

(59)

Second step. Estimate of (εn := θn − θhk
n )1≤n≤N .

Let us fix n = 1, · · · , N and denote shortly εj := θj − θhk
j , 1 ≤ j ≤ N . We take

(50), where t = tn and η = −ηh, and add to (55), with ηh ∈ Eh, we have

(
θ̇n − θhk

n −θhk
n−1

k
, ηh

)
L2(Ω)

+ 〈Kn θn −Kn θhk
n , ηh〉E′×E

≤ ψ(tn, θn;−ηh)+ ψ(tn, θ
hk
n ; ηh)+ 〈R(tn, vn, θn)− R(tn, v

hk
n , θhk

n ), ηh〉E′×E.

Taking ηh = ηh
n − θn + εn, then we have

(
εn−εn−1

k
, εn

)
L2(Ω)

+ 〈Kn θn −Kn θhk
n , εn〉E′×E

≤ 〈Kn θn −Kn θhk
n , θn − ηh

n〉E′×E

〈R(tn, vn, θn)− R(tn, v
hk
n , θhk

n ), ηh〉E′×E

+
(
θ̇n − θn−θn−1

k
+ εn−εn−1

k
, θn − ηh

n

)
L2(Ω)

−
(
θ̇n − θn−θn−1

k
, εn

)
L2(Ω)

+ψ(tn, θn;−ηh)+ ψ(tn, θ
hk
n ; ηh).

From (28), we have

|〈Kn θn −Kn θhk
n , θn − ηh

n〉E′×E | ≤ c ‖θn − θhk
n ‖E × ‖θn − ηh

n‖E.

From (29), we have

|〈R(tn, vn, θn)− R(tn, v
hk
n , θhk

n ), ηh〉E′×E |
≤ DV ‖vn − vhk

n ‖V × ‖ηh‖L2(Ω) +DT ‖θn − θhk
n ‖L2(Ω) × ‖ηh‖L2(Ω);

≤ DV ‖vn − vhk
n ‖V × ‖ηh

n − θn‖L2(Ω) +DT ‖θn − θhk
n ‖L2(Ω) × ‖ηh

n − θn‖L2(Ω)

+DV ‖vn − vhk
n ‖V × ‖θn − θhk

n ‖L2(Ω) +DT ‖θn − θhk
n ‖2

L2(Ω)
.

Then, let us denote

B0 := max
1≤n≤N

‖θn − ηh
n‖L2(Ω).
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We have

DV ‖vn−vhk
n ‖V×‖ηh

n−θn‖L2(Ω) ≤ DV ‖vn−vhk
n ‖V B0 ≤ 1

2
D2

V ‖vn−vhk
n ‖2

V+
1

2
B2

0 ;

and for ε1 > 0,

DT ‖θn − θhk
n ‖L2(Ω) × ‖ηh

n − θn‖L2(Ω) ≤ ε1 ‖θn − θhk
n ‖2

L2(Ω)
+ 1

4ε1
(DT B0)

2;

and for ε > 0,

DV ‖vn − vhk
n ‖V × ‖θn − θhk

n ‖L2(Ω) ≤
D2

V

4ε
‖vn − vhk

n ‖2
V + ε ‖θn − θhk

n ‖2
L2(Ω)

.

To continue, by using (48), we obtain

ψ(tn, θn;−ηh)+ ψ(tn, θ
hk
n ; ηh) ≤ c0 cϕ ‖θn − θhk

n ‖E × ‖ηh‖E,

and thus

ψ(tn, θn;−ηh)+ψ(tn, θ
hk
n ; ηh) ≤ c0 cϕ ‖θn− θhkn ‖2

E + c0 cϕ ‖θn− θhkn ‖E ×‖θn− ηhn‖E.

Consider the quantity for n = 1, · · · , N ,

Ξn :=
(εn − εn−1

k
, εn

)
L2(Ω)

+ 〈Kn θn −Kn θhk
n , εn〉E′×E.

We have

Ξn ≥ 1

2k

(
‖εn‖2

L2(Ω)
− ‖εn−1‖2

L2(Ω)

)
+mKc

‖εn‖2
E.

Now, we sum Ξj from j = 1 to j = n.
From (47), we have

n∑
j=1

‖θj − θj−1

k
− θ̇j‖2

L2(Ω)
≤ c k.

Under the condition that

DT + c0 cϕ < mKc
, (60)

we can choose ε and ε1 such that ε + ε1 +DT + c0 cϕ < mKc
.
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After some manipulation, we deduce the following error estimate for the
temperature.
For some constant c > 0 independent of DV and for n = 1, · · · , N ,

‖θn − θhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖θj − θhk

j ‖2
E

≤ c ‖θ0 − θh
0 ‖2

L2(Ω)
+ c B2

0 + c k2 + c k B1 + c B2 Mθ

+c D2
V k

∑n
j=1 ‖vj − vhk

j ‖2
V .

(61)

Here,

Mθ := max1≤n≤N ‖θn − θhk
n ‖L2(Ω),

B1 :=∑N
j=1 ‖θj − ηh

j ‖2
E,

B2 :=∑N
j=1 ‖θj − ηh

j − (θj+1 − ηh
j+1)‖L2(Ω).

Third step. Estimate of (vn − vhk
n )1≤n≤N .

The computation of the estimate for the velocity is similar as in [3], p. 241, which
we refer for details. We mention only the main steps.

We obtain, for some constant c > 0 and for n = 1, · · · , N ,

‖vn − vhk
n ‖2

H + k
∑n

j=1 ‖vj − vhk
j ‖2

V

≤ c ‖v0 − vh
0‖2

H + c ‖u0 − uh
0‖2

V

+c C0 + c k2 + c k (C1 + Ĉ1)+ c C2 Mv

+c k
∑n

j=1 Rhk
j + c k

∑n
j=1 Jhk

νj + c k
∑n

j=1 Jhk
τj

+ε k
∑n−1

j=0 ‖θj − θhk
j ‖2

L2(Ω)
+ c k

∑n−1
j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)
.

Here, we denote by

Mv := max1≤n≤N ‖vn − vhk
n ‖H ;

C0 := max1≤n≤N ‖vn − wh
n‖H ;

C1 :=∑N
j=1 ‖vj − wh

j‖2
V ;

Ĉ1 :=∑N
j=1 ‖vj − wh

j‖V ;
C2 :=∑N−1

j=1 ‖(vj − wh
j )− (vj+1 − wh

j+1)‖H ,

and for n = 1, · · · , N ,
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Rhk
n =

( ∫ tn

0
B(tn − s) ε(u(s)) ds − k

n−1∑
m=0

B(tn − tm) ε(uhk
m ), −ε(en)

)
H

+
(
k
∑n−1

m=0 B(tn − tm) ε(uhk
m ), ε(wh

n)− ε(vn)
)

H
;

and

Jhk
νn = jν(tn,un, v

hk
n − vn)+ jν(tn,u

hk
n−1,w

hk
n − vhk

n );

and

Jhk
τn = jτ (tn,un, v

hk
n )− jτ (tn,un, vn)+ jτ (tn,u

hk
n−1,w

h
n)− jτ (tn,u

hk
n−1, v

hk
n ).

We have, for n = 1, · · · , N ,

k
∑n

j=1 Rhk
j

≤ c k2 + c ‖u0 − uh
0‖2

V + c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)
+ c k (C1 + Ĉ1);

and

k
∑n

j=1 Jhk
νj

≤ c k2 + c ‖u0 − uh
0‖2

V + c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)

+cε k
∑n

j=1 ‖vj − vhk
j ‖2

V + c k C1 + c k Ĉ1;

and

k
∑n

j=1 Jhk
τj

≤ c k2 + c ‖u0 − uh
0‖2

V + c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)

+cε k
∑n

j=1 ‖vj − vhk
j ‖2

V + c k C1 + c k Ĉ1.

Thus, we obtain the following error estimate for the velocity.
For some constant c > 0 and for n = 1, · · · , N ,

‖vn − vhk
n ‖2

H + k
∑n

j=1 ‖vj − vhk
j ‖2

V

≤ c ‖v0 − vh
0‖2

H + c ‖u0 − uh
0‖2

V

+c C0 + c k2 + c k (C1 + Ĉ1)+ c C2 Mv

+c ε k
∑n−1

j=0 ‖θj − θhk
j ‖2

L2(Ω)
+ c ε k

∑n
j=1 ‖vj − vhk

j ‖2
V

+c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)
.

(62)
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To summarize, adding the three inequalities (59), (61), and (62) and choosing
DV and ε small enough, we obtain, for some constant c > 0 and for n = 1, · · · , N ,

‖αn − αhk
n ‖2

L2(Ω)
+ k

∑n
j=1 ‖∇(αj − αhk

j )‖2
L2(Ω)

+ ‖θn − θhk
n ‖2

L2(Ω)

+k
∑n

j=1 ‖θj − θhk
j ‖2

E + ‖vn − vhk
n ‖2

H + k
∑n

j=1 ‖vj − vhk
j ‖2

V

≤ +c ‖u0 − uh
0‖2

V + c ‖v0 − vh
0‖2

H + c ‖σ 0 − σ h
0‖2

H

+c ‖α0 − αh
0‖2

L2(Ω)
+ c ‖θ0 − θh

0 ‖2
L2(Ω)

+c k
∑n

j=1 ‖αj − αhk
j ‖2

L2(Ω)

+c k2 + c k
∑n−1

j=1

(
k
∑j

i=1 ‖vi − vhk
i ‖2

V

)

+c A0 + c A2
0 + c k∇A1 + c k A1 + c k A2 ++c B2

0 + c k B1 + c B2 Mθ

+c C0 + c k C1 + c k Ĉ1 + c C2 Mv.

(63)
To end, let us recall the discrete version of Gronwall’s inequality, see e.g. [2].

Consider a sequence {rn}0≤n≤N ⊂ R
+ and a ∈ R

+.
Assume

rn ≤ a + c k

n−1∑
j=0

rj , 1 ≤ n ≤ N.

Then, we have

rn ≤ (a + c k r0) (1 + c k)n−1 ≤ (a + c k r0) e
c T , 1 ≤ n ≤ N.

Now, from Gronwall’s inequality, using estimation (63) and under condition (60),
we conclude that for DV small enough, then there exists some constant c > 0:

max
1≤n≤N

(
‖αn − αhk

n ‖2
L2(Ω)

+ k

n∑
j=1

‖∇(αj − αhk
j )‖2

L2(Ω)
+ ‖θn − θhk

n ‖2
L2(Ω)

+k
∑n

j=1 ‖θj − θhk
j ‖2

E + ‖vn − vhk
n ‖2

H + k
∑n

j=1 ‖vj − vhk
j ‖2

V

)

≤ +c ‖u0 − uh
0‖2

V + c ‖v0 − vh
0‖2

H + c ‖σ 0 − σ h
0‖2

H

+c ‖α0 − αh
0‖2

L2(Ω)
+ c ‖θ0 − θh

0 ‖2
L2(Ω)

+c k2 + c A0 + c A2
0 + c k∇A1 + c k A1 + c k A2

+c B2
0 + c k B1 + c B2

2 + c C0 + c k C1 + c k Ĉ1 + c C2
2 .

(64)
As a typical example, let us consider Ω ⊂ R

d , d ∈ N
∗, a polygonal domain. Let Th

be a regular finite element partition of Ω . Let V h ⊂ V , Eh ⊂ E, and Kh
da ⊂ Kda be

the finite element spaces consisting of piecewise polynomials of degree ≤ m, with
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m ≥ 1, according to the partition Th. Denote by Πh
V : Hm+1(Ω)d → V h,

Πh
E : Hm+1(Ω) → Eh, and Πh

K : Hm(Ω) → Kh
da the finite element

interpolation operators.

Recall (see e.g. [4]) that

⎧⎪⎪⎨
⎪⎪⎩

‖w −Πh
V w‖Hr(Ω)d ≤ c hm+1−r |w|Hm+1(Ω)d , ∀w ∈ Hm+1(Ω)d;

‖η −Πh
Eη‖Hr(Ω) ≤ c hm+1−r |η|Hm+1(Ω), ∀ η ∈ Hm+1(Ω);

‖ξ −Πh
Kξ‖L2(Ω) ≤ c hm |ξ |Hm(Ω), ∀ ξ ∈ Hm(Ω),

where r = 0 (for which H 0 = L2) or r = 1.
We assume the following additional data and solution regularities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0 ∈ Hm+1(Ω)d; α0 ∈ Hm(Ω);
v ∈ C([0, T ];H 2m+1(Ω)d), v̇ ∈ L1(0, T ;Hm(Ω)d);
θ ∈ C([0, T ];Hm+1(Ω)), θ̇ ∈ W 1,2(0, T ;Hm(Ω));
α̇ ∈ W 1,1(0, T ;Hm(Ω)).

(65)

Then, we choose in (64) the elements

uh
0 = Πh

V u0, vh
0 = Πh

V v0, θh
0 = Πh

E θ0, αh
0 = Πh

K α0,

and

wh
j = Πh

V vj , ηh
j = Πh

E θj , j = 1 · · ·N.

From assumption (65), we have

‖u0 − uh
0‖V ≤ c hm, ‖v0 − vh

0‖H ≤ c hm;
‖θ0 − θhk

0 ‖L2(Ω) ≤ c hm, ‖α0 − αh
0‖L2(Ω) ≤ c hm;

A0 ≤ c hm+1, B0 ≤ c hm+1, C0 ≤ c h2m+1;
k A1 ≤ c h2m, k B1 ≤ c h2m, k C1 ≤ c h2m, k Ĉ1 ≤ c h2m;
A2 ≤ c h2m, B2 ≤ c hm, C2 ≤ c hm.

Using these estimates in (64), we conclude to the following error estimate result.

Theorem 2 We keep the assumptions of Theorem 1. Under the additional assump-
tions (47), (48), and (65), and condition (60), then for DV small enough, we obtain
the error estimate for the corresponding discrete solution {(vhk

n , θhk
n , αhk

n ), 1 ≤
n ≤ N}:
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max1≤n≤N ‖vn − vhk
n ‖H +

(
k
∑N

n=1 ‖vn − vhk
n ‖2

V

)1/2

+max1≤n≤N ‖θn − θhk
n ‖L2(Ω) +

(
k
∑N

n=1 ‖θn − θhk
n ‖2

E

)1/2

+max1≤n≤N ‖αn − αhk
n ‖L2(Ω)

≤ c (h
m+1

2 + k).

In particular, for m = 1, we have

max1≤n≤N ‖vn − vhk
n ‖H +

(
k
∑N

n=1 ‖vn − vhk
n ‖2

V

)1/2

+max1≤n≤N ‖θn − θhk
n ‖L2(Ω) +

(
k
∑N

n=1 ‖θn − θhk
n ‖2

E

)1/2

+max1≤n≤N ‖αn − αhk
n ‖L2(Ω)

≤ c (h+ k).

5 Numerical Computations

In this section, we provide numerical simulations in two-dimensional tests for the
variational problem (QV ) by using Matlab computation codes. We refer to the
previous numerical scheme and use spaces of continuous piecewise affine functions
V h ⊂ V , Eh ⊂ E, and Kh

da ⊂ Kda as families of approximating subspaces.
Here, we consider the following formulas:

G(t)(τ , α) = G0(t) τ − α (dij (t)) in Ω;
Ce(t, θ) := −θ (cij (t)) in Ω;
pν(t, ·, r) = cν(t) r+ on ΓC;
pτ (t, ·, r) = μτ (t) cν(t) r+ on ΓC;
Kc(t,∇θ) = (kij (t))∇θ in Ω;
De(t, v, θ) = −cij (t)

∂ vi
∂ xj

− θ de(t) in Ω;
φd(σ, ε(u), α) = −d1 ‖σ‖VM − d2 Ld(α) in Ω;
ϕ(t, r) = 1

2ke(t) (r − θR(t))
2 on ΓC.

In view of the numerical simulations, we consider a rectangular open set, linear
elastic, and linear visco-elastic operators, for a.e. t ∈ (0, T ):
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Ω = (0, L1)× (0, L2);
ΓF = ({0}×[0, L2]) ∪ ([0, L1]×{L2}) ∪ ({L1} × [0, L2]); ΓC = [0, L1] × {0};
(G0(t) τ )ij = EY (t) rP (t)

1−r2
P (t)

(τ11 + τ22) δij + EY (t)
1+rP (t)

τij , 1 ≤ i, j ≤ 2, τ ∈ S2;
(A(t) τ )ij = μ(t) (τ11 + τ22) δij + η(t) τij , 1 ≤ i, j ≤ 2, τ ∈ S2;
(B(t) τ )ij = B1(t) (τ11 + τ22) δij + B2(t) τij , 1 ≤ i, j ≤ 2, τ ∈ S2.

Here, EY is the Young’s modulus, rP is the Poisson’s ratio of the material, δij
denotes the Kronecker symbol, and μ and η are viscosity constants.

For computations, we considered the following data (IS unity), for t ∈ (0, T ):

L1 = L2 = 1, T = 1;
μ(t)= 3 et , η(t)= 10

1 + t2
, EY (t)= 2

1 + t
, rP (t)= 0.1

1 + t2
, f 0(x, t)=(0, −t);

f F (x, t) = (0, 0), x ∈ {0} × (0, L2);
f F (x, t) = (0.4 t, 0.3

1+t
), x ∈ ((0, L1)× {L2}) ∪ ({L1} × (0, L2));

d11(t) = d22(t) = d12(t) = d21(t) = 1;
c11(t) = c12(t) = c21(t) = t, c22(t) = t2;
k11(t) = 2

1+t
, k22(t) = 1+t

2 , k12(t) = k21(t) = 1;
ke(t) = 1+t

2 , de(t) = t2, q(t) = t;
g(t, x) = x (L1 − x) t, μτ (t, x) = 0.1 x t2,

cν(t, x) = 10 t x2, x = (x, 0) ∈ (0, L1)× {0};
γ = 0.1, d1 = 1/50, d2 = 1/20, Ld(s) = es, 0 ≤ s ≤ 1;
u0 = (0, 0), v0 = (0, 0), α0 = 1, θ0 = 0.

Figure 1 represents the initial configuration.
In Figures 2, 3, and 4, we compute, respectively, the Von Mise norm, which

gives a global measure of the stress, the temperature, and the damage at final time
in the body at final time, for θR = 0, respectively, for short and long memory visco-
elasticity. In Figure 5, we show the evolution of the damage at the particular point
S = (L1, L2) (direction of the surface traction). We observe that the distribution of
these parameters is changing for long memory, the deformation is more important,
as well as for the damage, temperature, and stress in the neighborhood of the point S.

Finally in Figure 6, we show the distribution of the temperature and damage of
the body for larger ground temperature. Here, we observe larger deformation, larger
damage, and larger temperature in the neighborhood of the contact surface.
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Fig. 1 Initial configuration
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Fig. 2 Von Mise norm at final time, θR = 0
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Fig. 3 Temperature field at final time, θR = 0
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Fig. 4 Damage field at final time, θR = 0
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Schrödinger Equation: Survey and
Development of Some New Cases

Riadh Chteoui, Anouar Ben Mabrouk, and Carlo Cattani

Abstract The present chapter is concerned with a whole review of the well known
Schrödinger equation in a mixed case of nonlinearities. We precisely consider
a general nonlinear model characterized by a superposition of linear, sub-linear,
super-linear sometimes concave–convex power laws on the form f (u) = |u|p−1u±
|u|p−1u. In a first part, we develop theoretical results on existence, uniqueness,
classification as well as the behavior of the solutions of the ground state radial
problem according to the power laws and the initial value. Next, in a second part,
some examples are developed with graphical illustrations to confirm the theoretical
results exposed previously. The graphs show coherent states between the theoretical
findings and the numerical illustrations.
The chapter in its whole aim is a review of existing results about the studied
problems reminiscent of some few cases that are not previously developed. We
aim thus it will constitute a good reference especially for beginners in the field
of nonlinear analysis of PDEs.
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1 Introduction

In this chapter nonlinear equations issued from physical problems such as
Schrödinger are considered in a general form of mixed nonlinearities characterized
by the presence of both sub-linear (sometimes concave) and super-linear (convex)
parts. In a first part, we focus on the ground state solutions of the continuous
problem and investigate all possible cases relatively to the nonlinearities powers
existing in the model. Existence, uniqueness, and classification of the solutions will
be studied especially for the radial cases.

In addition we provided some numerical simulations to illustrate and show
graphically the theoretical results.

The principal aim of this work is firstly to develop a whole and complete review
on the models to be presented and to develop the cases that remain unsolved and
thus to provide a complete study that we wish to be useful for researchers from
different fields.

NLS equation is widely studied from both numerical and theoretical points of
view. This is due to its link to real physical phenomena such as Newton’s law
and conservation of energy in classical mechanics, behavior of dynamical systems,
the description of a particle in a non-relativistic setting in quantum mechanics,
combustion, etc.

In the linear classical case, the solutions for Schrödinger equation for example are
somehow known explicitly as in the cubic nonlinear form where the solutions are
expressed as soliton type particles. Classical methods based on kernels especially
Fourier permit to investigate the linear cases and some nonlinear specific ones with
one nonlinearity. However, in the presence of many nonlinearities in the model,
efforts remain to be done to provide a rigorous solution.

The Schrödinger equation in its general form is a prototypical dispersive
nonlinear partial differential equation related to Bose–Einstein condensates and
nonlinear optics, propagation of electric fields in optical fibers, self-focusing and
collapse of Langmuir waves in plasma physics, behavior of rogue waves in oceans.

Based upon the analogy between mechanics and optics, Schrödinger established
the classical derivation of his equation. By developing a perturbation method, he
proved the equivalence between his wave mechanics equation and Heisenberg’s
matrix one, and thus introduced the time dependent version.

However, in the nonlinear case, the structure of the nonlinear Schrödinger
equation is more complicated. It is also related to electromagnetic, ferromagnetic
fields as well as magnums, high-power ultra-short laser self-channeling in matter,
condensed matter theory, dissipative quantum mechanics, film equations, etc.

The Schrödinger equation is in fact a vector equation when separating the real
and imaginary parts of the wave solution. In a specific basis of the state space this
leads to a system of coupled equations. The same situation (system of Schrödinger
equations) may be seen also in simultaneous particles (solitons) propagations or
interactions. See for instance [30, 32, 34, 36, 38].
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Schrödinger’s equation is initially expressed in a linear form as

Δψ + λ(E − V (x))ψ = 0,

where ψ is the wave function, λ = 8π2m
h2 , m is the mass, h is the well known Planck’s

constant, E is the energy, and V is a potential energy.
The nonlinear Schrödinger (NLS) equation is more complicated. A well known

model is the cubic NLS governing finitely many moving particles and which has
been widely studied. It is stated on the form

ih
∂ψ(x, t)

∂t
= − h2

2m
Δψ(x, t)+ V (x, t)ψ(x, t)+Ng|ψ(x, t)|2ψ(x, t). (1)

ψ(r, t) is a complex valued function known as condensate wave. m is the mass
of the particle, V (r, t) the exterior potential, N is the number of particles in the
condensate. g is a coupling coefficient, and finally, V is the potential.

A general form of (1) is also met in plasma’s physics and the study of optic fibers.
Such a generalization is expressed as

ih
∂ψ(x, t)

∂t
= − h2

2m
Δψ(x, t)+ V (x, t)ψ(x, t)+NgF(|ψ(x, t)|)ψ(x, t), (2)

which may be expressed otherwise as

ih
∂ψ(x, t)

∂t
= − h2

2m
Δψ(x, t)+ V (x, t)ψ(x, t)+ aF(|ψ(x, t)|)ψ(x, t), (3)

The parameter a is a constant depending on N , g, h, and m. See [6, 37].
Schrödinger also established the classical derivation of his equation based on

the analogy between mechanics and optics, and closer to De-Broglie’s formalism.
A perturbation method based on Rayleigh in acoustics has been developed and
introduced thus the time dependent equation

ih
∂ψ

∂t
= − h2

2m
Δψ + V (x)ψ − γ | ψ |p−1 ψ in R

N, (N ≥ 2), (4)

where p < pc = 2N

N − 2
for N ≥ 3 and p < +∞ if N = 2. In physical problems, a

cubic nonlinearity corresponding to p = 3 is common and re-meets the well known
Gross–Pitaevskii equation. In [29, 33], the potential V is assumed to be bounded
and possessing a non-degenerate critical point at the origin.
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2 The Stationary Problem

By taking in (4) γ > 0 and h > 0 sufficiently small and using a Lyapunov–
Schmidt type reduction, Oh in [33] proved the existence of standing wave solutions
of problem (4) of the form

ψ(x, t) = e−iEt/hu(x). (5)

This reduces the NLS equation (4) to the semi-linear elliptic equation

− h2

2m
Δu+ (V (x)− E)u = |u|p−1u

which by setting x � hs and z(s) = (2m)
1

p−1 u(x), (p �= 1) becomes

−Δz+ 2m(Vh(x)− E)z = |z|p−1z, (6)

where Vh(x) = V (hx). If furthermore, the potential V is translation-invariant with
respect to some parameter ξ , the Equation (4) becomes invariant under the Galilean
transformation

ψ(x, t) �→ ψ(x − tξ, t) exp(iξ.x/h− 1

2
i|ξ |2t/h)ψ(x − tξ, t).

In this case, it is well known that standing waves reproduce solitary waves traveling
in the direction ξ .

In [35] a ground state solution for problem (6) has been proved to hold under
suitable assumptions on the parameter h and the potential V . The problem reduces
to a semi-linear elliptic equation

−Δu+ V (x)u = f (x, u), x ∈ R
N. (7)

Recently, problem (7) has been re-considered in [9–15] with a mixed model
where no linear term exists, but in the contrary this was replaced by the odd
extension λ|u|q−1u and the nonlinear term f (u) was replaced by an odd extension
|u|p−1u. Some new difficulties appeared in the analysis. Using technical and
direct computations from ODEs and classical inequalities such as Pohozaev’s and
Sobolev’s ones the existence of some lower bound for λ to guarantee the positivity
of solutions has been proved. A classification of radial solutions in some slightly
critical cases relatively to the power p is investigated. The nonlinear function model
is expressed as

f (s) = ±|s|p−1 + λ|s|q−1.
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Associated NLS and heat equations have been also considered in both one and
higher dimensional cases and some numerical developments have been investigated
in two-dimensional case without applying the classical methods such as tri-diagonal
systems. In [10], there has been provided a fascinating method based on Lyapunov–
Sylvester operators which has been compared with classical methods. It is shown to
be efficient from both time and error estimates. (See [9–15]).

Problem (7) has been also re-considered with V sign changing and the non-
linearity on the form f (x, u) = a(x)g(u) with a sub-linear function g(u).
Such problems in R

N arise naturally in various branches of physics and present
challenging mathematical difficulties. Whenever a bounded domain Ω is considered
with Dirichlet boundary condition, multiplicity of solutions has been shown. When
Ω is unbounded and especially on the whole space, the existence and multiplicity
of nontrivial solutions have been widely investigated, both for sub-linear and super-
linear nonlinearities. See [1–5, 8–18, 21–25, 27, 28].

Balabane et al. [7] proved that for each integer k, there is a radial compactly
supported solution with k zeros in its support, provided that

V = −1 and g(u) = |u|−2θu, where θ ∈]0, 1

2
[.

It is also proved the existence of infinitely many solutions for Equation (7) with a
sub-nonlinearity

f (x, u) = |u|p−1u, 0 < p < 1

and where the potentials V and a satisfying V > 0, a > 0, V ∈ (RN,R), a

continuous, a ∈ L
2

1−p (RN), and where

m{x ∈ B(y, r);V (x) ≤ M} → 0 as |y| → +∞, ∀M > 0,

for some r > 0. the measure m stands for the Lebesgue measure on R
N . In the

critical case p = 1 + 4

n
, Carles and Zhang proved the global existence for some

sufficient conditions. The supercritical case p ≥ 1+ 4

n
has been also considered by

Carles who proved the existence of blow up solutions whenever the initial solution
has a negative energy.

In the present chapter we focus on the radial solutions of the stationary problem
associated with an evolutive NLS equation. We consider precisely an elliptic
problem of the form

⎧⎨
⎩
u′′ + d − 1

r
u′ + ug(u) = 0 , r ∈ (0,∞)

u′(0) = 0 , u(0) = a,
(8)
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where a is a real number parameter and g is the model function characterized by
mixed nonlinearities

g(u) = |u|p−1 ± λ|u|q−1. (9)

We will study existence, uniqueness, and classification of the solutions relatively
to the power nonlinearity parameters p, q, the initial value u(0) = a, and the real
parameter λ > 0.

In some specific cases the last parameter λ may be compared to the eigenvalues of
the Laplacian operator Δ. Indeed, for q = 1, the problem becomes a radial version
of

−Δu = |u|p−1u± λu. (10)

For example, positive solutions lead to the famous Brezis–Nirenberg problem

⎧⎨
⎩
Δu+ up + λu = 0 in Ω

u = 0 on ∂Ω

u > 0 in Ω,

(11)

where Ω is a bounded domain with smooth boundary in R
N , N ≥ 3 and p

depending on pc. In this case, the bounds of λ are based in some parts on the
presence of the linear term λu which allows a comparison with the eigenvalues of
−Δ. They are related also to the Rayleigh quotient and the Pohozaev’s identity. Let
λ1 be the first eigenvalue of −Δ in Ω = B the unit ball of RN with zero Dirichlet
boundary condition. It is shown that bounded positive solutions are all radial and
exist only in the following cases,

(i) p < pc and λ < λ1.

(ii) p = pc and λ ∈ (λ∗, λ1), where λ∗ = 0 if N ≥ 4 and λ∗ = λ1

4
if N = 3.

(iii) p > pc and λ ∈ (λ+1 , λ1), for some λ+1 positive.

See for example [19, 20]. In [12, 13] similar results on the existence of positive
bounded solutions of (36) have been established. The main and first difference
with (11) is the absence of the linear term which is replaced by the odd extension
λ|u|q−1u and the positive term up is replaced by its odd extension |u|p−1u. Using
technical and direct computations from (36) and using Pohozaev’s and Sobolev’s
inequalities existence of some bounds for λ and a full classification of radially
symmetric solutions of problem (36) have been established.

In the remaining parts of the present chapter we will adopt the following
notations:

f (u) = ug(u) = |u|p−1u± λ|u|q−1u (12)
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and

F(u) =
∫ u

0
f (s)ds = 1

p + 1
|u|p+1 ± 1

q + 1
|u|q+1.

We define also the functional energy

E(r) = 1

2
u′(r)2 + F(u(r))

which satisfies easily

E′(r) = −d − 1

r
u′(r)2 < 0

which means that it is a non-increasing function of the variable r .
Relatively to the convexity–concavity (sub-linearity/super-linearity) parameters

p and q of the problem there are 10 cases to investigate as shown in Figure 1.
In the rest of the chapter we will consider the defocusing case λ = ∓1 in the
model function f defined by (12). This is always possible by acting a scaling on
the function u in (36). Indeed, for λ > 0 let K,α > 0 be positive real numbers such
that

λ = Kp−q and α2 = Kp−1.

Fig. 1 The different regions relatively to p and q
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The function v defined by u(r) = Kv(αr) satisfies

⎧⎨
⎩
v′′ + N − 1

t
v + |v|p−1v ± |v|q−1v = 0 , t ∈ (0,∞)

v′(0) = 0 , v(0) = a
K
.

(13)

Consequently, in the rest of the chapter our study will focus on the radial problem

⎧⎨
⎩
u′′ + d − 1

t
u+ |u|p−1u− |u|q−1u = 0 , t ∈ (0,∞)

u(0) = a , u′(0) = 0,
(14)

where d ≥ 1 stands for the dimension of the Euclidean space R
d .

2.1 Mixed Sub-linear Defocusing Case 0 < p < q < 1

In this case, we consider the nonlinear model functions g, f , and F with ±λ = −1
and 0 < p < q < 1 as follows:

g(u) = |u|p−1 − |u|q−1,

f (u) = |u|p−1u− |u|q−1u

and

F(u) = 1

p + 1
|u|p+1 − 1

q + 1
|u|q+1.

By analogy with the behavior of the present models, similar problems have been
already studied in [11–14]. Existence, uniqueness, nodal solutions, and group
invariant ones have been studied in detail.

The first result in the present work dealing with nodal radial solutions is stated
as follows. Let

up,q = (
p

q
)

1
q−p , up,q = (

1 + q

1 + p
)

1
q−p and up,q = (

1 − p

1 − q
)

1
q−p .

We have immediately

0 < up,q < 1 < up,q < up,q
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and

f ′(up,q) = F(up,q) = g′(up,q) = 0.

Remark that

• g is even, non-increasing on (0, up,q), and non-decreasing on (up,q,+∞) with
g(1) = 0, lim

u→0
g(u) = +∞ and lim

u→+∞ g(u) = 0.

• f is odd, non-decreasing on (0, up,q), and non-increasing on (up,q,+∞) with
f (0) = f (1) = 0 and lim

u→+∞ f (u) = −∞.

• F is even, non-increasing on (0, 1), and non-decreasing on (1,+∞) with F(0) =
F(up,q) = 0 and lim

u→+∞F(u) = 0.

Theorem 1 Assume that u(0) = a ∈] − 1, 1[\{0}. The solution of problem (14) is
extended to ∞ and oscillatory. Furthermore, there exists (tk)k and (zk)k satisfying
u(zk) = u′(tk) = 0 and

0 = t0 < z1 < t1 < z2 < t2 < . . . < zk < tk < zk+1 < . . . ↑ +∞. (15)

Moreover u(tk) is non-increasing to 0 as k goes to ∞.

Proof Without loss of the generality, we may assume that a ∈ (0, 1). At r = 0, we
get

du′′(0) = −f (a) < 0.

Consequently, u′′(r) < 0 on some small interval (0, δ). This yields that u′(r) < 0
on (0, δ) and that u is non-increasing on (0, δ). Furthermore, u(r) < a, ∀r ∈ (0, δ).
It holds that

− a < u(r) < a, ∀r ∈ (0,∞). (16)

Indeed, if it is not. Let r0 ∈ (0,∞) be the first point such that u(r0) = ±a. At this
point the functional energy E(r) satisfies

E(r0) = 1

2
u′(r0)

2 + F(a) < E(0) = F(a).

As a consequence of (16), we get

g(u(r)) ≥ L = g(a) > 0, ∀r ∈ (0,∞). (17)

Moreover, Equation (16) implies that u cannot remain non-increasing on the whole
interval (0,∞). Let next v be the solution of the problem
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⎧⎨
⎩
v′′ + d − 1

r
v′ + Lv = 0 , r ∈ (0,∞)

v′(0) = 0 , v(0) = a
(18)

It is straightforward that v is oscillatory. So, let ζ < ξ be two consecutive zeros of v
with v(r) > 0 for all r ∈]ζ, ξ [. We will prove that u vanishes at least once on ]ζ, ξ [.
If the latter is not the case, then u(r) < 0 or u(r) > 0 on ]ζ, ξ [. Suppose u(r) > 0.
By multiplying the Equations (36) and (18) by v and u, respectively, and integrating
on ]ζ, ξ [, we obtain

ξd−1ω(ξ)− ζ d−1ω(ζ ) =
∫ ξ

ζ

sd−1(L− f (u(s)))u(s)v(s)ds,

where ω = u′v − uv′. So that

ζ d−1u(ζ )v′(ζ )− ξd−1u(ξ)v′(ξ) < 0

which is not true. Then, since it is well known that v is oscillatory, u is also
oscillatory.

We now prove the existence of the sequence (tk)k . Notice that the existence of tk
follows from a simple application of Rolle’s theorem. Suppose now that u(r) > 0
for r ∈]zk, zk+1[ and that

cardinality({ T ∈]zk, zk+1[ ; u′(t) = 0 }) ≥ 2.

Let ξ < ζ be two consecutive zeros of u′ in ]zk, zk+1[. Then, Equation (36) shows
that f (s) = 0 for s ∈]ξ, ζ [. Which is contradictory since u is not constant on ]ξ, ζ [.
Theorem 2 Whenever u(0) = a > 1, problem (14) has a unique solution u which
is strictly increasing to ∞.

Proof The existence and uniqueness are results of the well known Cauchy–
Lipschitz Theorem which is satisfied here. It suffices to consider the system

⎧⎪⎪⎨
⎪⎪⎩

v = u′

v′ = 1 − d

r
u− f (u)

u(0) = a, v(0) = 0.

Setting next

X =
(
u

v

)
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we get

⎧⎨
⎩

X′ = F̃ (r,X),

X(0) =
(
a

0

)
,

where

F̃ (r,X) =
⎛
⎝ v

1 − d

r
u− f (u)

⎞
⎠ .

It is straightforward that F̃ is Lipschitz continuous relatively to the variable X.
Hence, the application of Cauchy–Lipschitz Theorem follows.

We now study the behavior of the solution u. For r = 0, the Equation (36) yields
that

du′′(0) = −f (a) > 0.

Consequently, u′′(r) > 0 on a small interval (0, δ). Similarly to the previous case,
we conclude that u is non-decreasing on (0, δ). We claim that the solution u remains
non-decreasing on (0,∞). Indeed, if it is not, let r0 > 0 be the first critical point of
u. That is, r0 is the first point satisfying

r0 > 0, u′a(r0) = 0.

We have

(rd−1u′)′ = −rd−1f (u(r)).

Integrating from 0 to r0, we obtain

∫ r0

0
(rd−1u′)′dr = −

∫ r0

0
rd−1f (u(r))dr.

Or equivalently,

∫ r0

0
rd−1f (u(r))dr = 0.

Which leads to a contradiction as f (u(r)) < 0 on (0, r0). Hence, the solution u is
strictly increasing on (0,+∞). If it is bounded, the limit on ∞ will be one of the
zeros of the function f . However, f vanishes at 0 and±1. Observing that u ≥ a > 1
on (0,+∞), we get a contradiction.
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Lemma 1 Whenever u(0) = 1 (respectively, u(0) = 0), problem (36) has the
unique trivial solution u ≡ 1 (respectively, u ≡ 0).

2.2 The Defocusing Sub-linear Case p = 1, 0 < q < 1

In this section we consider the defocusing sub-linear problem

{
u′′ + d−1

r
u′ + u− |u|q−1u = 0 , r ∈ (0,+∞),

u(0) = a , u′(0) = 0.
(19)

In the present case, the generic functions are expressed as follows:

g(u) = 1 − |u|q−1,

f (u) = ug(u) = u− |u|q−1u,

and

F(u) = 1

2
u2 − 1

q + 1
|u|q+1.

The essential points included in the study are

uq = (
1

q
)

1
q−1 < 1 < uq = (

q + 1

2
)

1
q−1 .

The first result in this section is the following.

Theorem 3 Whenever u(0) = a ∈] − 1; 1[\{0}, the problem (19) has a unique
solution which is oscillating around ±1 with a finite number of zeros. Furthermore,
there exist unique sequences (tk)k and (rk)k such that

rk < tk < rk+1, u(rk) = ±1, u′(ζk) = 0, k ≥ 1. (20)

Proof It is easy to see that u is non-decreasing on a small interval (0, δ). If it
remains non-decreasing on (0,∞), two possibilities may occur. u ↗ ∞ or u ↗ 1
as r ↗∞. In the first case, we get for d = 1 and r large enough,

u(r) < − r2

2
+K1r +K2,

for some constants K1 and K2. For d = 2, we obtain similarly,
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u(r) < − r2

4
+K1 log(r)+K2,

for r large enough. Finally, for d > 2

u(r) < − r2

2d
+ K1

rd−2 +K2,

for r large enough, where already K1,K2 are constants in R. Consequently, u →
−∞ as r →∞, which is a contradiction. Now, if the second case occurs, it implies
that u behaves at ∞ like the solution v of the problem

⎧⎨
⎩

v′′ + d − 1

r
v′ + (1 − q)(v − 1) = 0 , r ∈ (0,∞)

v′(0) = 0 , v(0) = a
(21)

Observing that v is oscillatory, we obtain a contradiction.

It results from these cases that u cannot be non-decreasing on the whole interval
(0,∞). So, it is oscillatory. We claim that u oscillates indefinitely around 1. Indeed,
let t1 be the first point in (0,+∞) such that u′(t1) = 0. It holds that u(t1) > 1. If
not, by integrating Equation (36) from 0 to t1 we obtain

0 = −
∫ t1

0
rd−1f (u(r)) > 0,

which is contradictory. Thus, u crosses the line y = 1 once in (0, t1) leading to
a unique point r1 ∈ (0, t1) such that u(r1) = 1. Next, using similar techniques,
we prove that u cannot remain greater than 1 in the rest of its domain. (Consider
the same equation on (t1,+∞) with initial data u(t1) and u′(t1)). Consequently we
prove that there exist unique sequences (tk)k and (rk)k such that

rk < tk < rk+1, u(rk) = 1, u′(ζk) = 0, k ≥ 1. (22)

Next, observing that E is decreasing as a function of r , we deduce that the sequence
of maxima (u(tk))k goes to 1 and therefore u.

Theorem 4 Whenever u(0) = a ∈]1, uq [, the problem (14) has a unique solution
u which is oscillatory around ±1. Furthermore, there exist unique sequences (tk)k
and (rk)k such that

rk < tk < rk+1, u(rk) = ±1, u′(tk) = 0, k ≥ 1. (23)

Proof We proceed as previously by studying the behavior of the solution u at the
origin. We have in the present case
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du′′(0) = −f (a) < 0.

Consequently, u′′(r) < 0 on an interval (0, ε), for some ε with 0 < ε <<< 1.
Hence u′ is non-increasing on (0, ε). Which means that

u′(r) < u′(0) = 0, ∀r ∈ (0, ε).

Therefore, u is non-increasing on (0, ε). We now study the possibility that u remains
or not non-increasing on (0,+∞). Four situations should be investigated.

Case 1. u is decreasing with limit −∞ as r goes to +∞. It follows that
f (u(r)) −→ −∞whenever r −→ +∞. There exists thus r0 > 0 (large enough)
such that

f (u(r)) < −1 , ∀r > r0.

Using Equation (19) this yields that

(rd−1u′)′ > rd−1 , ∀r > r0.

Integrating from r0 to r > r0, we obtain

u′(r) >
r

d
+Kr1−d , ∀r > r0,

where

K = rd−1
0 u′(r0)− rd0

d
.

For d = 1, this results in

u(r) >
r2

2
+Kr − r2

0

2
−Kr0 + u(r0) , ∀r > r0.

Which is contradictory with the fact that lim
r→+∞ u(r) = −∞.

For d = 2, we obtain

u(r) >
r2

4
+K log(r)− r2

0

4
−K log(r0)+ u(r0) , ∀r > r0.

Which is contradictory for the same reason as previously.
For d > 2, we get

u(r) >
r2

2d
+ K

2 − d
r2−d − r2

0

2d
− K

2 − d
r2−d

0 + u(r0) , ∀r > r0.
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Which is contradictory also for the same reason.
Case 2. The solution u is decreasing with limit 1 as r goes to +∞. In this case

considering the behavior of f near the point 1 we get

f (u) = (1 − q)(u− 1)+ (u− 1)ε(u− 1),

where ε(t) → 0 whenever t → 0. So, the solution u behaves like the solution v

of the equation

v′′ + d − 1

r
v + (1 − q)(v − 1) = 0

whenever r →+∞. Hence, as the solution v is oscillating around 1 indefinitely,
we get a contradiction.

Case 3. The solution u is decreasing with limit −1 as r goes to +∞. It may be
checked by similar arguments as the previous case. So, this case cannot occur
also.

Case 4. The solution u is decreasing with limit 0 as r goes to +∞. Consider the
energy functional associated with problem (19),

E(r) = 1

2
u′2(r)+ F(u(r)).

It is straightforward that E is decreasing. Hence,

E(r) < E(0) = F(a) < 0, ∀r > 0.

Consequently,

0 = lim
r→+∞E(r) ≤ E(0) = F(a) < 0.

Which is contradictory. As a result, u is oscillatory. By following similar techniques
as above, we prove the remaining part of the theorem.

The following lemma yields a localization of the critical points tk of u.

Lemma 2 Let a ∈]1, uq [ and u the solution of (19). Let r0 > 0 be the first critical
point of u. Then −a < u(r0) < −1.

Indeed, assume by the contrary that u(r0) ≥ 1. We have

(rd−1u′(r))′ = −rd−1f (u(r)), ∀r.

Integrating on the interval (0, r0) we obtain

0 =
∫ r0

0
(rd−1u′(r))′dr = −

∫ r0

0
rd−1f (u(r))dr < 0.
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Which is a contradiction. Consequently, for the critical point r0, the following
situations should be examined:

1. 0 < u(r0) < 1.
2. u(r0) = 0.
3. −1 < u(r0) < 0.
4. u(r0) = −1.
5. −a < u(r0) < −1.

Case 1: u(r0) = b ∈]0, 1[ and u′(r0) = 0. So, at r = r0 that u′′(r0) = −f (b) >

0. Thus, there exists ε > 0 small enough for which u′′(r) > 0 on (r0 − ε, r0 +
ε). Hence, u′ is non-decreasing on (r0 − ε, r0 + ε). Consequently, r0 is a local
minimum of u. We claim that u is not increasing on the whole interval (r0,+∞).
Indeed, by similar arguments as above, it is straightforward that |u(r)| ≤ a for
all r . Hence, whenever u is increasing on (r0,+∞), it has the only limit l = 1
as r → +∞. Thus, as previously, we prove that u becomes oscillating infinitely
around 1. Which contradicts the fact of being increasing on (r0,+∞). So, let
r1 be the next critical point of u. Two situations may hold. b < u(r1) ≤ 1 or
u(r1) > 1. In the first case, we get immediately

0 =
∫ r1

r0

(rd−1u′)′dr = −
∫ r1

r0

rd−1f (u(r))dr > 0.

Which is contradictory. Hence, the second case occurs. Continuing with similar
techniques, we prove that the solution u is oscillating infinitely around 1.

Case 2: u(r0) = u′(r0) = 0. As a ∈]1, uq ] we get E(a) = F(a) ≤ 0 and
E(r0) = 0 < E(a) which is contradictory.

Case 3: u(r0) = b ∈] − 1, 0[ and u′(r0) = 0. Recall firstly that ∀r ∈ (0,+∞),
we have

−a ≤ u(r) ≤ a.

As a ∈ (1, uq), we get from the behavior of F that F(a) < F(b). Consequently,
E(r0) = F(b) > E(0) = F(a) which is contradictory with the fact that E is
decreasing.

Case 4. u(r0) = −1 and u′(r0) = 0. Let r1 be such that

0 < r1 < r0 and u(r1) = 0.

It holds that u is decreasing on (r1, r0) and that u(r) ∈ (−1, 0) for all r ∈ (r1, r0).
Furthermore, u′(r1) < 0 and f (u(r)) > 0 for all r ∈ (r1, r0). Therefore, by
multiplying Equation (19) by rd−1 and integrating on (r1, r0) we get

0 < −rd−1
1 u′(r1) = −

∫ r0

r1

rd−1f (u(r))dr < 0.



Mixed Concave–Convex Sub-Superlinear Schrödinger Equation: Survey and. . . 125

Which is contradictory.
Case 5. −a < u(r0) = b < −1 and u′(r0) = 0. Whenever a ∈ (1, uq), we get

F(b) > F(a). Which means in terms of energy that E(r0) > E(0). Which is a
contradiction. Next, for a ∈ (uq,+∞), r0 is the first local minimum for u. As
previously, u cannot be increasing on the whole interval (r0,+∞). Let r1 the
next critical point of u. Hence, r1 is a local maximum obviously. By following
similar techniques as above, we prove that u oscillates indefinitely around ±1.

Theorem 5 Whenever u(0) = a ∈]uq,+∞[, the problem (19) has a unique
solution u which is oscillating infinitely around ±1 with its limit being ±1.

Proof Proceeding as previously, it holds that u is non-increasing on a small interval
(0, ε). If it remains non-increasing on the whole interval (0,∞), it should decrease
to the limit 0 as r →∞. Denote

h(r) = −d − 1

r
u′ + uq.

We get in one hand

u′′ + u = h(r).

On the other hand, it is easy to see that h(r) ↓ 0 as r → +∞. Next, from standard
techniques we get

u(r) =
(
C0 −

∫ r

0
h(u(t)) cos tdt

)
cos r +

(
C1 +

∫ r

0
h(u(t)) cos tdt

)
sin r.

It suffices now to prove that the integrals

∫ +∞

0
h(u(t)) cos tdt and

∫ +∞

0
h(u(t)) sin tdt

are convergent which is true due to Abel’s criterion for integrals. Hence, for r →
+∞, we may have the estimation

u ∼ A cos(r)+ B sin(r)

for r large enough, which is contradictory with the monotony of u.

We now study the positions of the critical points of u as previously. Recall firstly
that −a < u(r) < a on (0,∞). Let next r0 > 0 be the first strictly positive critical
point of u. As previously, we may have many situations:

1. u(r0) ≥ 1.
2. 0 < u(r0) < 1.
3. u(r0) = 0.
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4. −1 < u(r0) < 0.
5. u(r0) = −1.
6. −a < u(r0) < −1.

Case 1: u(r0) = b ∈ [1, a[ and u′(r0) = 0. By integrating Equation (36) on the
interval (0, r0) we obtain

0 =
∫ r0

0
(rd−1u′(r))′dr = −

∫ r0

0
rd−1f (u(r))dr < 0.

Which is a contradiction.
Case 2: u(r0) = b ∈]0, 1[ and u′(r0) = 0. It holds at r = r0 that u′′(r0) =
−f (b) > 0. Thus, there exists ε > 0 small enough for which u′′(r) > 0 on
(r0− ε, r0+ ε). Hence, u′ is non-decreasing on (r0− ε, r0+ ε). Consequently, r0
is a local minimum of u. We claim that u is not increasing on the whole interval
(r0,+∞). Indeed, by similar arguments as above, whenever u is increasing
on (r0,+∞), it has the only finite positive limit l = 1 as r → +∞. Thus,
as previously, we prove that u becomes oscillating infinitely around 1. Which
contradicts the fact of being increasing on (r0,+∞). So, let r1 be the next critical
point of u, (r1 > r0). Two situations may hold. b < u(r1) ≤ 1 or u(r1) > 1. In
the first case, we get immediately

0 =
∫ r1

r0

(rd−1u′)′dr = −
∫ r1

r0

rd−1f (u(r))dr > 0.

Which is contradictory. Hence, the second case occurs. Continuing with similar
techniques, we show that the solution u is oscillating infinitely around its limit
being equal to 1.

Case 3: u(r0) = u′(r0) = 0. As a ∈]uq,+∞[, we obtain g(u(r)) → −∞
whenever r → r0. Consequently, for all A > 0, there exists η > 0 small enough
such that

g(u(r)) < −A, ∀r ∈ (r0 − η, r0 + η).

Consequently,

u(r)g(u(r)) < −Au(r), ∀r ∈ (r0 − η, r0 + η).

Which yields that

u′′ + d − 1

r
u′ + ug(u) < u′′ + d − 1

r
u′ −Au, ∀r ∈ (r0 − η, r0 + η). (24)

Now, observe that

u(r0) = u′(r0) = u′′(r0) = 0.
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At the point r = r0, Equation (24) leads to a contradiction.
Case 4: u(r0) = b ∈]−1, 0[ and u′(r0) = 0. As a ∈ (uq,+∞), we get at r = r0,

u′′(r0) = −f (b) < 0. Consequently, u′′(r) remains negative on a small interval
Iε = (r0 − ε, r0 + ε) for some ε > 0 small enough. Hence, u′ is decreasing on
Iε. Which in turn yields that r0 is a local maximum of u. Which is contradictory.

Case 5: u(r0) = −1 and u′(r0) = 0. Let r1 be such that

0 < r1 < r0 and u(r1) = 0.

It holds that u is decreasing on (r1, r0) and that u(r) ∈ (−1, 0) for all r ∈ (r1, r0).
Furthermore, u′(r1) < 0 and f (u(r)) > 0 for all r ∈ (r1, r0). Therefore, by
multiplying Equation (19) by rd−1 and integrating on (r1, r0) we get

0 < −rd−1
1 u′(r1) = −

∫ r0

r1

rd−1f (u(r))dr < 0.

Which is contradictory.
Case 6: −a < u(r0) = b < −1 and u′(r0) = 0. As a ∈ (uq,+∞), r0 is the first

local minimum for u. As previously, u cannot be increasing on the whole interval
(r0,+∞). Let r1 be the next critical point of u. Hence, r1 is a local maximum
obviously. The position of u(r1) may be localized as previously, so that we get
oscillations around ±1.

Theorem 6

1. For all a �= 0, problem (19) has a unique solution u.
2. Whenever u(0) = a ∈ (0, uq), the following situation holds:

u(ζ ) = 0, for some ζ ⇒ u′(ζ ) �= 0.

Furthermore, the solution u cannot be compactly supported.
3. For all a ∈ (0, uq), problem (19) has a unique positive solution u.

Proof

1. We explicit the case a ∈ (0, 1). The remaining cases may be treated by analogue
arguments. Denote

Ma =
{
u ∈ C((0, δ)); a ≤ u(r) ≤ 2a, ∀r ∈ (0, δ)

}
,

where

0 < δ < min
{√ 2

|f ′( a2 )|d
,

√
2

d
,

√
ad

2|f (uq)|
}
. (25)
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It is easy that u satisfies

u(r) = a − r2
∫ 1

0

∫ 1

0
xsd−1f (u(rxs))dsdx.

Denote next Φ : Ma → Ma ∩ C2 defined by

Φ(u(r)) = a − r2
∫ 1

0

∫ 1

0
xsd−1f (u(rxs))dsdx.

Φ is well defined because of the fact that

|φ(u(r))− a| ≤
∣∣∣∣r2
∫ 1

0

∫ 1

0
xsd−1f (u(rxs))dsdx

∣∣∣∣
≤ δ2

d
|f (p)|

<
a

2
.

Hence, Φ(u) ∈ Ma . On the one hand,

Φ(u(r)) = a −
∫ r

0

∫ 1

0
sd−1(f (u(ts))ds)dt

is a primitive of

ϕ(t) = − 1

td−1

∫ t

0
xd−1f (u(x))dx

which is C2 on (0, δ) because of the continuity of the function ψ defined by

ψ(x) = xd−1f (u(x)), x ∈ (0, δ).

We will prove that Φ satisfies the fixed point theorem. Indeed, let u, v ∈ Ma . We
may write that

‖ φ(u)− φ(v) ‖∞ ≤ K ‖ u− v ‖∞ r2
∫ 1

0

∫ 1

0
xsd−1dsdx

≤ K
dδ2

2
‖ u− v ‖∞

where K = max(|f ′ (a
2

)
|, 1). Hence, Φ is contractive due to (25). Thus, Φ has

a unique fixed point u ∈ Ma . Consequently, for all a �= 0, problem (19) has a
unique solution u.
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We will prove now that the solution u of problem (19) is global on (0,+∞).
Suppose by contrast that there exists t0 ∈ (0,+∞) such that

lim
t→t0

|u(t)| = +∞.

As we already know that the energy function E(r) is non-increasing, then

F(u(r)) ≤ E(r) ≤ E(0) = F(a) < 0, ∀r > 0,

which yields that

lim
t→t0

F(|u(t)|) = +∞ < F(a),

which is a contradiction.
2. Assume that the assertion holds. We get

0 = F(u(ζ )) = E(ζ ) < E(0) = F(a) < 0.

Which is a contradiction. Next, whenever the solution u is compactly supported,
it satisfies the assertion above with ζ being the upper bound of its support. So, it
is not possible.

3. We will prove in this part that the solutions already found in Theorem 6 are
strongly related to the initial values in the sense that whenever u(0) = a ∈
(0, uq), the oscillations are around 1 (the positive zero of f ) and that these
solutions remain in fact positive on (o,∞). Indeed, by evaluating the energy
E(r), we get

F(u(r)) ≤ E(r) ≤ E(0) = F(a) < 0, ∀r > 0.

Since F is even and coercive, there exists a unique positive α �= a which satisfies
F(a) = F(α). We immediately get

α ≤ u(r) ≤ a or a ≤ u(r) ≤ α.

Hence, the result follows.

2.3 The Mixed Sub-linear/Linear Case 0 < p < 1 and q = 1

In this case the problem (36) becomes

{
u′′ + d−1

r
u′ + |u|p−1u− u = 0 , r ∈ (0,+∞),

u(0) = a , u′(0) = 0.
(26)
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The key functions will be expressed as

g(u) = |u|p−1 − 1 , f (u) = |u|p−1u− u and F(u) = 1

p + 1
|u|p+1 − 1

2
u2.

Denote similarly to previous cases

up = (
1

p
)

1
p−1 and up = (

p + 1

2
)

1
p−1 .

We observe obviously that

up < 1 < up and f ′(up) = F(up) = 0.

The first main result of this part is stated as follows.

Theorem 7 Whenever u(0) = a ∈] − 1, 1[\{0}, the solution u is oscillating
infinitely around 0. Furthermore, whenever (zk)k is the sequence of the nodes of
u on (0,+∞), we have u′(zk) �= 0.

Proof Without loss of the generality we may assume that a ∈ (0, 1). Let L > 0 be
such that

L = inf
s∈(−a,a)

g(s).

We will apply Sturm’s comparison theorem to prove that u is oscillatory around 0
infinitely on (0,+∞). Indeed, consider the solution v of the problem

{
v′′ + d−1

r
v′ + Lv = 0 , r ∈ (0,+∞),

v(0) = a , v′(0) = 0.
(27)

It is straightforward that v is oscillating around 0 infinitely on (0,+∞). Let ξ < ζ

be two consecutive zeros of v on (0,+∞) and assume that u is non-sign changing
on (ξ, ζ ) (for instance u > 0 on (ξ, ζ )). By multiplying Equations (26) and (27) by
rd−1v and rd−1u, respectively, integrating on (ξ, ζ ) and subtracting we get

0 < ζd−1v′(ζ )u(ζ )− ξd−1v′(ξ)u(ξ) =
∫ ζ

ξ

rd−1[L− g(u)]uvdr < 0

which is a contradiction. As a result, u vanishes at least once on (ξ, ζ ).
We now prove the second part of the Lemma. Assume that for some k the assertion

u(zk) = u′(zk) = 0
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holds. So, for some ε > 0 small enough we have

u′′ + d − 1

r
u′ + ug(u) > u′′ + d − 1

r
u′ + 20u, r ∈ (zk − ε, zk + ε).

At the point r = zk we obtain a contradiction.

We now state the second result.

Theorem 8 Whenever u(0) = a ∈ (1,+∞), the solution u is increasing towards
+∞ on (0,+∞). Furthermore,

u(r) > −f (a)

d
r2 , ∀ r ∈ (0,+∞).

Proof At the origin r = 0 we have du′′(0) = −f (a) > 0. Therefore, u′′(r) > 0
on some interval (0, ε) for some ε > 0 small enough. On this interval we obtain
immediately u′(r) > 0 as it is increasing and u′(0) = 0. Consequently, the solution
u is also increasing on (0, ε). If it did not remain increasing on the whole interval
(0,+∞), let r0 > 0 be the first point such that u′(r0) = 0. Equation (26) multiplied
by rd−1 and integrated on (0, r0) yields that

0 =
∫ r0

0
(rd−1u′)′dr = −

∫ r0

0
(rd−1f (u(r))dr > 0.

Hence, a contradiction. Consequently, u is increasing on (0,+∞).

Let now u∞ = lim
r→+∞ u(r). Assuming that u∞ < +∞ yields that f (u∞) = 0 which

is impossible as u∞ ≥ a > 1. It remains now to prove the last part of the theorem.
Observe that u(r) ≥ a for all r ∈ (0,+∞). Consequently, as f is decreasing on
(1,+∞), we obtain f (u(r)) < f (a) for all r ∈ (0,+∞). Hence,

0 = u′′ + d − 1

r
u′ + f (u(r)) < u′′ + d − 1

r
u′ + f (a), ∀r ∈ (0,+∞).

Therefore,

(rd−1u′)′ + rd−1f (a) > 0, ∀r ∈ (0,+∞).

Integrating on the interval (0, r) we obtain

rd−1u′ > −f (a)

d
rd, ∀r ∈ (0,+∞).

Or equivalently,

u′(r) > −f (a)

d
r, ∀r ∈ (0,+∞).
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As a result,

u(r) > −f (a)

2d
r2, ∀r ∈ (0,+∞).

2.4 A Mixed Sub-linear Defocusing Case o < q < p < 1

Consider the problem

{
u′′ + d−1

r
u′ + |u|p−1u− |u|q−1u = 0 , r ∈ (0,∞)

u(0) = a , u′(0) = 0.
(28)

Denote

g(u) = |u|p−1 − |u|q−1,

f (u) = ug(u) = (|u|p − |u|q)sign(u)

and

F(u) = 1

p + 1
|u|p+1 − 1

q + 1
|u|q+1.

Denote also

up,q = (
q

p
)

1
p−q , up,q = (

1 + p

1 + q
)

1
p−q and up,q = (

1 − q

1 − p
)

1
p−q .

We have immediately

up,q < 1 < up,q < up,q

and

f ′(up,q) = F(up,q) = g′(up,q) = 0.

The following technical lemma is needed:

Lemma 3 For all a ∈ (0, 1) the solution u of problem (28) is not increasing on
(0,+∞). Moreover, u did not reach a again on (0,∞).

Proof Assume that the converse is true. So, the solution u has a limit as r goes
upwards +∞. As a > 0, this limit is either 1 or +∞. In the first case we get

f (u(r)) = (p − q)(u(r)− 1)+ (u(r)− 1)o(u(r)− 1), as r →+∞.
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Consequently, u behaves like the solution v of the problem

v′′ + d − 1

r
v′ + (v − 1) = 0

as r → +∞. As v is oscillatory, u is also. Which is a contradiction of being
increasing. For the second case, this leads to the following assertion:

∀A > 0, ∃ r0 > 0 such that f (u(r)) > A, ∀ r ∈ (r0,+∞).

Consequently,

(rd−1u′)′ < −rd−1A, ∀ r ∈ (r0,+∞).

As a result,

u′(r) < −A

d
r + (

Ard0

d
+ rd−1

0 u′(r0))r
1−d, ∀ r ∈ (r0,+∞).

Which yields that u′(r) → −∞. Which in turn contradicts the fact of u being
increasing.

The last part of the lemma is an easy application of the fact that the energy E(r) is
non-increasing.
As a result of this lemma we get the following first main result.

Theorem 9 ∀a ∈ (0, 1), the solution u is oscillating around 1 infinitely on the
interval (0,+∞) with a finite number of zeros.

Proof As at 0, we have du′′(0) = −f (a) > 0, the solution u starts by increasing
from the origin. As previously, u cannot be increasing on the whole interval
(0,+∞). Let r0 > 0 be its first critical point on ]0,+∞). We claim that u(r0) > 1.
If not, we get from Equation (28)

0 =
∫ r0

0
rd−1f (u(r))dr < 0,

which is contradictory. Consider next the second critical point r1 > r0 of u. Here
also we claim similarly that a < u(r1) < 1. If not, we get in a similar way as
previously

0 =
∫ r1

r0

rd−1f (u(r))dr > 0,

which is contradictory. So, assume that we get rk , k = 0, 1, . . . , n for some n ∈ N

and assume for instance that u is decreasing on (rn−1, rn). We claim that the solution
u cannot be increasing on the whole interval (rn,+∞). Indeed, if this occurs, let L
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be the limit of u(r) as r → +∞. It is straightforward that L �= 1 as u is not
oscillatory. Next, whenever L = +∞ we get as previously

u′(r) < −A

d
r + (

Ardd

d
+ rd−1

d u′(rd))r1−d, ∀ r ∈ (rd ,+∞)

for some A and rd positive large enough. So, a contradiction. So, the two possible
limits are impossible. Thus u is not strictly increasing there. Hence there exists
rn+1 > rn such that u′(rn+1) = 0. Now, similar techniques yield that u(rn+1) > 1.
And so on.

Now assume that we constructed rk , k = 0, 1, . . . , n for some n ∈ N and assume
for instance that u is increasing on (rn−1, rn). We claim that the solution u cannot
be decreasing on the whole interval (rn,+∞). Indeed, if this occurs, let L be the
limit of u(r) as r → +∞. We have in one hand 1 < a ≤ L. In the other hand, the
possible values of L are 0, −1, and −∞ which are in contradiction with the bounds
of it. Thus u is not strictly decreasing there. Hence there exists rn+1 > rn such that
u′(rn+1) = 0. Now, similar techniques yield that a < u(rn+1) < 1. And so on.
As a result u is oscillatory around 1 infinitely on (0,+∞).

Theorem 10 For all a ∈ (1, up,q), the solution u is oscillatory around ±1.

Proof We have at the point r = 0, du′′(0) = −f (a) < 0. Hence, u′′(r) < 0
on some small interval (0, ε). Thus, u′ is decreasing there on (0, ε). Which means
that u′ < 0 on (0, ε). As a result, u is decreasing on (0, ε). Assume that u remains
decreasing on the whole interval (0,+∞). So, it has a limit L at +∞. Now, as |u|
is bounded by a, the limit may be 0 or ±1. The latter cannot occur as it yields that u
is oscillating around ±1 by using the equivalence f (u) = (p − q)(u± 1) near ±1.
Next, whenever L = 0, we recall that

E(r) = 1

2
u′2(r)+ F(u(r)) < F(a) < 0.

Consequently,

0 = E(∞) ≤ F(a) < 0.

Which is contradictory. Let next r0 > 0 be the first critical point of u on (0,+∞).
One of the following situations is true.

(i) u(r0) ∈]0, 1[ and thus u is oscillating infinitely around 1.
(ii) u(r0) ∈] − a,−1[ and thus u is oscillating infinitely around −1.

Assume that the opposite cases occur instead. Whenever u(r0) ≥ 1 we get

0 =
∫ r0

0
(rd−1u′dr = −

∫ r0

0
(rd−1f (u(r))dr < 0.
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Which is impossible. Next, for u(r0) = 0, we get at r = r0,

E(r0) = 0 < E(r) = F(a) < 0.

Which is a contradiction. Now, whenever −1 < u(r0) = b < 0, we get u′′(r0) =
−f (b) < 0. So it remains negative on some small interval (r0−ε, r0+ε). Hence, u′
is decreasing on (r0 − ε, r0 + ε). As u′(r0) = 0, it holds that r0 is a local maximum
of u. Which is contradictory. Assume in the next case that u(r0) = −1. Let r1 be
such that

0 < r1 < r0 , u(r1) = 1.

It is immediate that u′(r1) < 0 and that f (u(r)) < 0 on (r1, r0). Hence, Equation
(28) yields that

0 > rd−1
1 u′(r1) =

∫ r0

r1

(rd−1u′)′dr =
∫ r0

r1

rd−1f (u(r))dr < 0.

Which is a contradiction.

It results from these cases that only the situations (i) and (ii) above may occur.

Theorem 11 For all a ∈ (up,q,+∞), the solution u is oscillatory around ±1 with
finite number of zeros. Furthermore, whenever ζ is a zero of u on (0,+∞), we have
u′(ζ ) �= 0.

Proof We have as previously u is decreasing on (0, ε) for some ε > 0 small enough.
Whenever u remains decreasing on the whole interval (0,+∞), it has a limit L at
+∞. Now, as |u| is bounded by a, the limit may be 0 or ±1. The latter cannot
occur as it yields that u is oscillating around ±1 by using the equivalence f (u) =
(p − q)(u± 1) near ±1. Next, for L = 0, consider the function

g(r) = −d − 1

r
u′ + u− f (u).

Proceeding as previously we get a contradiction. As a result, the solution u is
oscillating.

In the following part, we will determine the possible value around which the
solution u oscillates infinitely.

Lemma 4 The following situation cannot occur. There exist sequences (rk), (tk),
(zk), and (ζk) satisfying

i. t2k−1 < z2k−1 < ζ2k−1 < z2k < t2k < r2k < ζ2k < r2k+1, ∀ k.

ii. u(rk) = −u(zk) = 1, u(tk) = u′(ζk) = 0, ∀ k.

iii. u is increasing strictly on (ζ2k−1, ζ2k) and decreasing strictly on (ζ2k, ζ2k+1),
∀ k.
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Proof Assume by contrast that the situation occurs. Hence, using the functional
energy E(r), we observe that

E(ζk) = F(|u(ζk)|), k ∈ N

is a decreasing sequence. Therefore, (|u(ζk)|)k is also decreasing. As it satisfies
further |u(ζk)| ≥ 1, it is therefore convergent to a limit L ≥ 1. We claim that L = 1.
Indeed, as (ζk) goes to infinity and u′(ζk) = 0 for all k, we should have u′′(ζk) → 0
as k → +∞. This yields from the ODE satisfied by u that f (u(ζk)) → 0 as k →
+∞. So, because of the fact that |u(ζk)| ≥ 1 for all k, the limit should be equal to
1. Observe next that for r large enough and k ∈ N unique such that

ζ2k ≤ r < ζ2k+1

or

ζ2k+1 ≤ r < ζ2k+2,

we have

E(ζ2k) ≤ E(r) < E(ζ2k+1)

or

E(ζ2k+1) ≤ E(r) < E(ζ2k+2),

which means that

lim
r→+∞E(r) = q − p

(1 + p)(1 + q)
.

Similarly, we get

lim
k→+∞E(tk) = q − p

(1 + p)(1 + q)
,

which means that

lim
k→+∞ u′2(tk) = q − p

(1 + p)(1 + q)
< 0

which is a contradiction.

Lemma 5 The following situation cannot occur. There exist sequences (rk)k , (tk)k ,
(ζk)k satisfying

i. t2k−1 < ζ2k−1 < t2k < r2k < ζ2k < r2k+1 < t2k+1, ∀ k.
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ii. u(rk) = 1, u(ζ2k+1) = −1, u(ζ2k) ≥ 1, u(tk) = u′(ζk) = 0, ∀ k.

iii. u is non-decreasing on (ζ2k−1, ζ2k) and non-increasing on (ζ2k, ζ2k+1), ∀ k.

Proof Assume as in Lemma 4 that the situation occurs. Again, using the functional
energy E(r), we show that (E(u(ζ2k)))k is a constant equal to F(−1), which
contradicts its monotony.

Lemma 6 The following situation cannot occur. There exist sequences (rk)k , (tk)k ,
(ζk)k satisfying

i. t2k−1 < ζ2k−1 < t2k < r2k < ζ2k < r2k+1 < t2k+1, ∀ k.

ii. u(rk) = 1, u(ζ2k+1) ∈ (−1, 0), u(ζ2k) ≥ 1, u(tk) = u′(ζk) = 0, ∀ k.

iii. u is non-decreasing on (ζ2k−1, ζ2k) and non-increasing on (ζ2k, ζ2k+1), ∀ k.

Proof Whenever the situation occurs, there holds for each k that u is non-decreasing
on (ζ2k+1 − δ, ζ2k+1) and non-increasing on (ζ2k+1, ζ2k+1 + δ). Which is a
contradiction.

Lemma 7 The following situation cannot occur. There exist sequences (rk), (tk)

satisfying

i. t2k−1 < r2k < t2k < r2k+1 < t2k+1, ∀ k.

ii. u(rk) = 1, u(t2k+1) = 0, u(t2k) ≥ 1, u′(tk) = 0, ∀ k.

iii. u is non-decreasing on (t2k−1, t2k) and non-increasing strictly on (t2k, t2k+1),
∀ k.

Proof This situation is obviously impossible as if not, we get E(t2k+1) = 0,

∀k. However (E(t2k))k converges to F(1) = q − p

(1 + p)(1 + q)
< 0. Which is a

contradiction.

Remark 1 Similar results may be obtained by replacing 1 by −1 in the Lemmas 4–
7. As a result of these situations, we conclude that the solution u of Theorem 11
oscillates around 0, 1, or −1. Furthermore, we have

1. Whenever u oscillates around ±1, it has the limit also ±1, respectively, as r →
∞, and thus has a finite number of zeros.

2. Whenever u oscillates infinitely around 0, it has the limit 0 as r →∞.

We now claim that the last situation (2) in Remark 1 above cannot occur. Indeed,
assume that it occurs and denote

. . . < r2k−1 < ζ2k−1 < r2k < ζ2k < r2k+1 < . . .

such that

u(rk) = u′(ζk) = 0, ∀k.

The following situations hold immediately.
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(i) The sequence (u(ζ2k))k is increasing to 1.
(ii) The sequence (u(ζ2k+1))k is decreasing to −1.

Which yields that the sequence (E(ζk))k is convergent to F(1). Next, because of
the monotony of E(r), we deduce that (E(rk))k is also convergent to F(1) < 0.
However,

E(rk) = 1

2
u′(rk)2 ≥ 0.

Which is a contradiction. In fact we may prove further that whenever u tends to 0 at
∞, it behaves like the solution v of the problem

v′′ + d − 1

r
v′ − |v|q−1v = 0.

Now, recall that v tends to ∞ when r goes to ∞, which is contradictory. This
achieves the proof.

2.5 A Mixed Sub-linear/Super-Linear Defocusing Case
0 < p < 1 < q

In this section, we consider the problem

{
u′′ + d−1

r
u′ + ug(u) = 0 , r ∈ (0,∞),

u(0) = a , u′(0) = 0,
(29)

where g is always the model nonlinear function

g(u) = |u|p−1 − |u|q−1,

with a nonlinear convex part |u|p−1, 0 < p < 1 and a nonlinear (may be concave)
one |u|q−1, q > 1. We also have

f (u) = ug(u) = |u|p−1u− |u|q−1u and F(u) = 1

p + 1
|u|p+1 − 1

q + 1
|u|q+1.

The following points

up,q = (
p

q
)

1
q−p and up,q = (

1 + q

1 + p
)

1
q−p

satisfy
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up,q < 1 < up,q

and

f ′(up,q) = F(up,q) = 0.

Theorem 12 Whenever u(0) = a ∈] − 1, 1[\{0}, the problem (29) has a unique
solution u which is oscillating infinitely around 0. Furthermore, whenever (zk)k is
the sequence of the nodes of u on (0,+∞), we have u′(zk) �= 0.

Proof Let a ∈ (0, 1). Let L > 0 be such that

L = inf
s∈(−a,a)

g(s).

We will apply Sturm’s comparison theorem to prove that u is oscillatory around 0
infinitely on (0,+∞). Indeed, consider the solution v of the problem

{
v′′ + d−1

r
v′ + Lv = 0 , r ∈ (0,+∞),

v(0) = a , v′(0) = 0.
(30)

It is straightforward that v is oscillating around 0 infinitely on (0,+∞). Let ξ < ζ

be two consecutive zeros of v on (0,+∞) and assume that u is non-sign changing
on (ξ, ζ ) (For instance u > 0 on (ξ, ζ )). By multiplying Equations (29) and (30) by
rd−1v and rd−1u, respectively, integrating on (ξ, ζ ) and subtracting we get

0 < ζd−1v′(ζ )u(ζ )− ξd−1v′(ξ)u(ξ) =
∫ ζ

ξ

rd−1[L− g(u)]uvdr < 0

which is a contradiction. As a result, u vanishes at least once on (ξ, ζ ).
We now prove the second part of the Lemma. Assume that for some k the assertion

u(zk) = u′(zk) = 0

holds. So, for some ε > 0 small enough we have

u′′ + d − 1

r
u′ + ug(u) > u′′ + d − 1

r
u′ + u, r ∈ (zk − ε, zk + ε).

At the point r = zk we obtain a contradiction.

Theorem 13 ∀a ∈ (1,+∞), the problem (29) has a unique solution u which is
increasing to ∞.

Proof We have du′′(0) = −f (a) > 0. So u′′ > 0 on some small interval (0, ε).
Hence, u′ is increasing on (0, ε). As u′(0) = 0, so u′ > 0 on (0, ε). Hence, u is
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increasing on (0, ε). Assume that it is not increasing on the whole interval (0,+∞).
Let r0 > 0 be the first critical point on (0,+∞). We get

0 =
∫ r0

0
(rd−1u′)′dr = −

∫ r0

0
rd−1

1 f (u(r))dr > 0.

Which is contradictory. Consequently, u is increasing on (0,+∞) with its limit
being equal to ∞.

2.6 Mixed Super-Linear/Sub-linear Defocusing Case
0 < q < 1 < p

Denote as in the previous cases

up,q = (
p

q
)

1
p−q and up,q = (

1 + p

1 + q
)

1
p−q .

We have

up,q < 1 < u.

Theorem 14 Whenever u(0) = a ∈ (−1, 1), the problem (14) has a unique
solution u which is oscillating infinitely around ±1 with limit ±1. Moreover,
whenever u(r) = ±1 we have u′(r) �= 0.

Proof For a ∈ (0, 1), the solution u starts by increasing on (0, δ) for δ > 0 small
enough. However, due to the energy functional E(r), the potential F(u) and Sturm–
Liouville comparison theorem, the solution u cannot remain increasing on the whole
interval (0,∞). Let r0 > 0 be the first critical point of u on (0,∞). Whenever
u(r0) ≤ 1, we get

0 =
∫ r0

0
(rd−1u′)′dr = −

∫ r0

0
rd−1f (u)dr > 0.

Which is a contradiction. So, u(r0) > 1. Next, let r1 > 0 be the second critical
point of u on (0,∞). The same argument used previously shows that u(r1) < 1.
Continuing the procedure, we show that u is oscillating around 1 infinitely. Applying
the fact that the functional energy E(r) is decreasing, we show that the limit is 1.
Next, using again the functional energy E(r), it holds that whenever u(r) = ±1 we
obtain u′(r) �= 0.

Theorem 15 For u(0) = a ∈ (1, up,q), the problem (14) has a unique solution u

which is oscillating around 1 infinitely on (0,+∞) with its limit being equal to 1.
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Proof At the origin, we have du′′(0) = −f (a) < 0. So, as for some previous
cases, the solution u starts by decreasing on some small interval (0, ε). Assume
that it remains decreasing on the whole interval (0,+∞). So, it has a limit L as
r →+∞. As u is bounded by ±a, this limit is one of the real zeros of the nonlinear
function f . So, L = ±1 or L = 0. The first case where L = ±1 yields that u has
the same behavior at ∞ as the solution v of the problem

u′′ + d − 1

r
u′ + (p − q)(u± 1) = 0,

which is oscillating. This contradicts the fact of being decreasing. Next, whenever
L = 0, we get using the energy E,

0 = F(0) = lim
r→+∞F(u(r)) ≤ E(1) < E(0) = F(0) = 0.

Which is a contradiction. So the solution u is not monotone on the whole interval
(0,∞).

Let next r0 > 0 be the first critical point of u on (0,+∞). As because of the energy,
−a ≤ u(r) ≤ a for all r ∈ (0,+∞), the following situations may hold:

(a.) 1 ≤ u(r0) < a.
(b.) 0 < u(r0) < 1.
(c.) u(r0) = 0.
(d.) −1 < u(r0) < 0.
(e.) u(r0) = −1.
(f.) −a < u(r0) < −1.

We now investigate each case to show its compatibility with the problem (14). The
case (a.) seems to be impossible as it yields that

0 =
∫ r0

0
(rd−1u′)′dr = −

∫ r0

0
rd−1

1 f (u(r))dr < 0,

which is a contradiction. The case (c.) yields that

E(r0) = 0 < E(0) = F(a) < 0.

Which is impossible. The case (d.) yields that on a small interval (r0 − ε, r0 + ε),
we have u is increasing on (r0 − ε, r0) and decreasing on (r0, r0 + ε). Which means
that r0 is a local maximum of u. Which is contradictory.
We now investigate the case (e.) where u(r0) = −1. Let r1 be such that

0 < r1 < r0 and u(r1) = 0.
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It is obvious that u′(r1) < 0. By multiplying next the Equation (36) by rd−1 and
integrating on (r1, r0) we obtain

0 > rd−1
1 u′(1) =

∫ r0

r1

rd−1u′f (u(r))dr > 0.

Which is impossible. Now for the case (f.) which states that −a < u(r0) = b < −1
we get

E(r0) = F(b) < E(0) = F(a).

Which is contradictory with the fact that F(b) > F(a). Consequently, the only
possible case that may occur is (b.).
We now investigate the behavior of the solution in this case. By applying similar
techniques as in the previous sections, it holds that the solution u is oscillating
around 1 infinitely on (0,+∞).

Theorem 16 Whenever u(0) = a ∈ (up,q,+∞), there are three classes of
solutions.

1. non-increasing with limit 0 at infinity (and thus positive) (this class contains also
the compactly supported solutions).

2. oscillating around ±1 with finite number of zeros.

Proof

1. As previously, the solution u starts by decreasing on some small interval
(0, ε). Assume it remains decreasing on the whole domain (0,∞). Its limit

is immediately 0. Denote g(r) = u′′(r)
u(r)

. It is easy to see that g(r) → ∞

whenever r → ∞. Let also G(r) =
∫ r

R

g(t)dt , where R > 0 large enough.

Denote next, X(r) = (u(r) u′(r)). We obtain the two-dimensional one-order

differential equation X′(r) = A(r)X(r), where A(r) =
(

0 1
g(r) 0

)
. Let next

A(r) =
∫ r

R

A(t)dt . We know from classical techniques of differential equations

that X(t) = exp(A(r))X0, where X0 is a constant vector. Next, standard
techniques yield that

u(r) = 1

2
eλ(r)

(
C1 + C2

r − R

λ(r)

)
+ 1

2
e−λ(r)

(
C1 − C2

r

λ(r)

)
,

where λ(r) = √
G(r)(r − R). Next, as u(r) ↓ 0 when r →∞, we should have
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C1 + C2 lim
r→∞

r − R

λ(r)
= 0.

Whenever C2 = 0, we get immediately C1 = 0 and thus u is compactly

supported. For C2 �= 0, we get G(r) ∼ α(r−R) at infinity, where α = C2
1

C2
1

= ω2,

(ω > 0). (In fact we have here also C1 �= 0). As a result, we get u(r) ∼ Ce−ωr

at infinity. Which is the solutions declared (positive and decreasing to 0).
2. We will show now that the solutions which did not remain decreasing on the

whole domain (0,∞) are necessarily oscillating around ±1 infinitely. This may
be shown by following similar techniques as in Section 3.

2.7 Mixed Linear/Super-Linear Defocusing Case p = 1 and
q > 1

In this section we are focusing on the case p = 1 and q > 1. The functions g, f ,
and F are written as follows:

g(u) = 1−|u|q−1, f (u) = ug(u) = u−|u|q−1u and F(u) = 1

2
u2− 1

q + 1
|u|q+1.

In this case, we have two essential points that affect the behavior of these functions
and thus affect in turn the behavior of the solution(s) of problem (14). These are

uq =
(

1

q

)1/(q−1)

and uq ==
(
q + 1

2

)1/(q−1)

.

Remark that

0 < uq < 1 < uq and f ′(uq) = F(uq) = 0.

Theorem 17 Whenever u(0) = a ∈ (−1, 1), the problem (14) has a unique
solution u which is oscillating infinitely around 0.

Proof Denote L = inf
s∈(−a,a)

g(s). It is easy that L > 0 and thus the solution v of the

problem

v′′ + N − 1

r
v′ + Lv = 0, v(0) = a, v′(0) = 0

is oscillating infinitely around 0. As a consequence, the solution u is also oscillating
infinitely around 0 (Sturm–Liouville theory).
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Theorem 18 Whenever u(0) = a ∈ (1,+∞), the problem (14) has a unique
solution u which is strictly increasing to +∞. More precisely,

u(r) ≥ a − f (a)

2d
r2.

Proof The solution u exists and is unique because of the Lipschitz theorem. It is
also easy to see that u is non-decreasing on (0, δ) for some δ > 0 small enough.
Furthermore, because of the energy E(r), the solution u ≥ a on its whole domain.
Hence, it holds from (36) that f (u) ≤ f (a) on (0,∞). Which yields that

u(r) ≥ a − f (a)

2d
r2.

Now, assume that u does not remain strictly increasing and let r0 > 0 its first critical
point. That is, the first point in ]0,+∞[ for which we have u′(r0) = 0, u is strictly
increasing on (0, r0) and strictly decreasing on (r0, r0 + ε) for some ε > 0. Of
course the solution u cannot remain constant on (r0,+∞) also because of Lipschitz
theorem. Now, multiplying the first equation in (36) by rd−1 and integrating from 0
to r0 we get

∫ r0

0
rd−1f (u(r))dr = 0,

which is contradictory as f (u(r)) < 0 on (0, r0).

2.8 Mixed Super-Linear/Linear Defocusing Case q = 1 and
p > 1

In this section we are focusing on the case q = 1 and p > 1. The functions g, f ,
and F are written as follows:

g(u) = 1 − |u|p−1, f (u) = ug(u) = |u|p−1u− u, F (u) = 1

p + 1
|u|p+1 − 1

2
u2.

In this case, we have two essential points

up =
(

1

p

)1/(p−1)

and up =
(
p + 1

2

)1/(p−1)

with

0 < up < 1 < up.
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Theorem 19 Whenever u(0) = a ∈ (−1, 1), the problem (14) has a unique
solution u which is oscillating infinitely around ±1 with limit ±1, respectively.

Proof It is easy to see that u starts as non-decreasing on (0, δ) for some δ > 0 small
enough. Let next a > up be such that F(a) = F(a). Because of the energy E(r) we
conclude that a ≤ u(r) ≤ a on (0,∞). Consequently, if u remains non-decreasing
on the whole interval (0,∞), it should be increasing to its unique limit 1. However,
if this occurs, the solution u will behave at ∞ as the solution v of the system

v′′ + d − 1

r
v′ + (p − 1)(v − 1) = 0, r ∈ (0,∞), v(0) = a, v′(0) = 0

which is oscillating infinitely on (0,∞). Next, let (ζk)k be the sequence of
extremum points of u on its domain (0,∞). Using again the energy E(r) we show
that (u(ζk))k has the limit 1 as k goes to infinity.

Theorem 20 Whenever u(0) = a ∈ (1, up), the problem (14) has a unique solution
u which is oscillating around ±1.

Proof It is easy to show that u(r) ∈]a, a[ for all r > 0, where a is the unique point
in (0, 1) such that F(a) = F(a). Moreover, the solution u is not strictly decreasing
on (0,+∞). Indeed, assume in the contrary that it is. So, it has a limit l as r goes
to +∞. This limit l should be equal to 1. However, in this case, we deduce as
previously that the solution u will have the same behavior as the solution v of the
problem

v′′ + d − 1

r
v′ + (p − 1)(v − 1) = 0, v(0) = a, v′(0) = 0.

Observe now that v is oscillating we get a contradiction with the fact that u is non-
increasing on (0,∞). Next, as the solution u is not strictly decreasing on (0,+∞) it
is oscillating. We will study its behavior relatively to its first critical point which will
be denoted by r0 and b its value there. Hence, for the moment, one of the following
cases may occur:

(i.) b ∈ [1, a[.
(ii.) b ∈]0, 1[.
For the case (i.), we get u(r) ∈ (1, a) for r ∈ (0, r0). By multiplying the Equation
(36) by rd−1 and integrating from 0 to r0 we obtain

∫ r0

0
rd−1f (u(r))dr = 0,

which is contradictory as this integral is positive. Now, it remains as a consequence
the case (ii.), which yields that u is a solution of the problem
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⎧⎨
⎩

u′′ + d − 1

r
u′ + f (u) = 0 , r ∈ (r0,+∞),

u(r0) = b , u′(r0) = 0,

which oscillates around 1.

Theorem 21 Whenever u(0) = a ∈ (up,+∞), there are three classes of
solutions.

1. non-increasing with limit 0 at infinity (and thus positive) (this class contains also
the compactly supported solutions).

2. oscillating around ±1 with finite number of zeros.

Proof

1. As previously, the solution u starts by decreasing on some small interval
(0, ε). Assume it remains decreasing on the whole domain (0,∞). Its limit

is immediately 0. Denote g(r) = u′′(r)
u(r)

. It is easy to see that g(r) → ∞

whenever r → ∞. Let also G(r) =
∫ r

R

g(t)dt , where R > 0 large enough.

Denote next, X(r) = (u(r) u′(r)). We obtain the two-dimensional one-order

differential equation X′(r) = A(r)X(r), where A(r) =
(

0 1
g(r) 0

)
. Let next

A(r) =
∫ r

R

A(t)dt . We know from classical techniques of differential equations

that X(t) = exp(A(r))X0, where X0 is a constant vector. Next, standard
techniques yield that

u(r) = 1

2
eλ(r)

(
C1 + C2

r − R

λ(r)

)
+ 1

2
e−λ(r)

(
C1 − C2

r

λ(r)

)
,

where λ(r) = √
G(r)(r − R). Next, as u(r) ↓ 0 when r →∞, we should have

C1 + C2 lim
r→∞

r − R

λ(r)
= 0.

Whenever C2 = 0, we get immediately C1 = 0 and thus u is compactly

supported. For C2 �= 0, we get G(r) ∼ α(r−R) at infinity, where α = C2
1

C2
1

= ω2,

(ω > 0). (In fact we have here also C1 �= 0). As a result, we get u(r) ∼ Ce−ωr

at infinity. Which is the solutions declared (positive and decreasing to 0).
2. We will show now that the solutions which do not remain decreasing on the

whole domain (0,∞) are necessarily oscillating around ±1 infinitely. This may
be shown by following similar techniques as in Section 3.
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2.9 Mixed Super-Linear/Super-Linear Defocusing Case
1 < p < q

In this section we will study the mixed case 1 < p < q. In this case, we have three
essential points that affect the behavior of the solutions of problem (36). These are

up,q =
(
p

q

)1/(q−p)

, up,q =
(
p − 1

q − 1

)1/(q−p)

and up,q =
(
q + 1

p + 1

)1/(q−p)

.

It holds that

0 < up,q < up,q < 1 < up,q

and

g′(up,q) = f ′(up,q) = F(up,q) = 0.

The first result in this section is stated as follows.

Theorem 22

a. Whenever u(0) = a ∈ (0, 1), the solution u of problem (36) is non-increasing or
oscillating infinitely around 0. Moreover, u has the limit 0 as r →∞.

b. Whenever u(0) = a ∈ (1,∞), the solution u of problem (36) is non-decreasing
with limit 0 as r →∞. Moreover,

u(r) ≥ a − f (a)

2d
r2, ∀ r ≥ 0.

c. Whenever u(0) = a ∈ (−1, 0), the solution u of problem (36) is non-decreasing
or oscillating infinitely around 0. Moreover, u has the limit 0 as r →∞.

d. Whenever u(0) = a ∈ (−∞,−1), the solution u of problem (36) is non-
increasing with limit 0 as r →∞. Moreover,

u(r) ≤ a − f (a)

2d
r2, ∀ r ≥ 0.

Proof Assertions c. and d. may be obtained using the fact that f is an odd function.
So, we will develop only the proofs of assertions a. and b.

Proof of Assertion a. Using the energy functional E(r), it holds that ua(r) ∈] −
a, a[ for all r > 0. The solution u starts by decreasing near 0. Hence, two cases may
occur.

i. u remains decreasing on its whole domain (0,∞).
ii. u is not monotone (decreasing) on its whole domain (0,∞).
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Whenever u satisfies assertion i., it is obvious that it is decreasing to 0 as r → ∞.
Now, assume that assertion ii. holds and let r1 > 0 be the first critical point of u

on (0,∞). We claim that u(r1) < 0. Indeed, if not, we get by integrating Equation
(36),

0 =
∫ r1

0
rd−1f (u(r))dr > 0,

which is a contradiction. So as the claim. Let next r2 > r1 be the next critical point.
We claim here that u(r2) > 0. If not, we get by the same argument

0 =
∫ r2

r1

rd−1f (u(r))dr < 0,

which is a contradiction. Assume now that we have constructed the critical points
r0 = 0 < r1 < . . . < r2n < r2n+1 such that u(r2n) > 0 > u(r2n+1). By applying
the previous technique we get a solution u oscillating around 0. We now prove that
u has the limit 0 in this case also. Indeed, let zk , k ∈ N be the zeros of u in (0,∞).
we get immediately,

E(r2n+2) ≤ E(z2n+1) < E(r2n+1) < E(z2n) < E(r2n),

or equivalently,

F(u(r2n+2)) ≤ u′(z2n+1)
2

2
≤ F(u(r2n+1)) ≤ u′(z2n)

2

2
≤ F(u(r2n)),

which yields immediately that the only limit of u is 0 as r →∞.

Proof of Assertion b. Assume in the contrary that it is not. u starts by increasing
near 0. Let r0 > 0 be the first critical point of u. By multiplying Equation (36) by
rd−1 and integrating from 0 to r0 we obtain

0 =
∫ r0

0
rd−1f (u(r))dr < 0,

which is contradictory. Hence, u is strictly increasing unboundedly. Moreover, it is
straightforward that u ≥ a on [0,∞). Consequently, as f is decreasing on (1,∞),
we get f (u(r)) ≤ f (a), for all r ∈ (0,∞). Consequently

(rd−1u′)′(r) ≥ −rd−1f (a), ∀ r ∈ (0,∞).

By integrating twice on (0, r), we get

u(r) ≥ a − f (a)

2d
r2, ∀ r ≥ 0.
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2.10 Mixed Super-Linear/Super-Linear Defocusing Case
1 < q < p

In this section we consider the problem

⎧⎨
⎩

u′′ + d − 1

r
u′ + |u|p−1u− |u|q−1u = 0 , r ∈ (0,∞)

u(0) = a , u′(0) = 0,
(31)

where 1 < q < p. With the original notations g, f , and F , we get

up,q < up,q < 1 < up,q,

where these points satisfy

g′(up,q) = f ′(up,q) = F(up,q) = 0.

In other words,

up,q =
(
q − 1

p − 1

)1/(p−q)

, up,q =
(
q

p

)1/(p−q)

, up,q =
(
p + 1

q + 1

)1/(p−q)

.

Theorem 23

a. Whenever u(0) = a ∈ (0, up,q), a �= 1, the solution u of problem (36) is
oscillating infinitely around 1. Moreover, u has the limit 1 as r →∞.

b. Whenever u(0) = a ∈ (up,q,∞), the solution u of problem (36) is oscillating
around ±1.

c. Whenever u(0) = a ∈ (−up,q, 0), a �= −1, the solution u of problem (36) is
oscillating infinitely around -1. Moreover, u has the limit −1 as r →∞.

Proof As in the previous section(s), assertion c. may be obtained using the fact that
f is an odd function. So, we will develop only the proofs of assertions a. and b.

Proof of Assertion a. We will split the proof into two cases. So, let firstly, a ∈
(0, 1) and a ∈ (1, up,q) be such that F(a) = F(a). Using the energy functional
E(r), it holds that ua(r) ∈]a, a[ for all r > 0. It is easy to see that u starts by
increasing near 0. If it continues to be non-decreasing on (0,∞), it should have
exactly the limit 1 as r → ∞. Hence, it behaves at ∞ as the solution v of the
problem

v′′ + d − 1

r
v + (p − q)(v − 1) = 0, r ∈ (0,∞), v(0) = a, v′(0) = 0,

which is oscillating. This contradicts the monotony of u. Consequently, u is not
monotone on its whole domain (0,∞). Now, applying similar techniques as in



150 R. Chteoui et al.

previous cases we get a solution u which is oscillating around 1 infinitely with its
limit being equal to 1.
Assume now that a ∈ (1, up,q) and let a ∈ (0, 1) be such that F(a) = F(a). Using
as previously the energy functional E(r), it holds that ua(r) ∈]a, a[ for all r > 0. It
is also easy to see that u starts by decreasing near 0. If it continues to be decreasing
on (0,∞), it should have as in the previous case the limit 1 as r → ∞. Hence, as
previously, u is oscillating, which is contradictory. Consequently, u is not monotone
on its whole domain (0,∞). By applying similar techniques as in previous sections
we get a solution u which is oscillating around 1 infinitely with its limit being equal
to 1.

Proof of Assertion b. The solution u starts by decreasing near 0. As previously,
because of the energy E(r), it holds that u(r) ∈ (−a, a) for all r ≥ 0. Whenever
the solution u remains to be non-increasing on (0,∞) it has the limit 0 as r →∞.
Denote

h(r) = −d − 1

r
u′ − f (u)+ u.

We get in one hand

u′′ + u = h(r).

On the other hand, it is easy to see that h(r) ↓ 0 as r → +∞. So, proceeding as
in Section 3, we get a contradiction. As a result, the solution u is not monotone on
its whole domain (0,∞). Proceeding as in previous sections we conclude that u is
infinitely oscillating around 1 or −1 with a finite number of zeros.

3 Some Graphical Illustrations

In this section we provide some numerical examples that illustrate the theoretical
results presented previously. We will see that as it is stated in the theory the
oscillating behavior, nodes as well as the asymptotic behavior of the solution depend
obviously on the interval of the initial value and the power laws in the nonlinear part
as well as their order.

3.1 Example 1: The Mixed Sub-linear Case 0 < p < q < 1

We consider in this example the case where p = 1
8 , q = 1

4 , and u(0) = a = 0.1.
Remark that 0 < q < p < 1 and u(0) = a ∈ (0, 1). We obtain consequently the
following sub-linear case:
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Fig. 2 The solution u for p = 1
8 , q = 1

4 , and u(0) = 0.1

⎧⎨
⎩
u′′ + d − 1

r
u′ + |u|−7/8u− |u|−3/4u = 0 , r ∈ (0,∞)

u′(0) = 0 , u(0) = a.
(32)

Figure 2 shows the coherence with the theoretical result of Theorem 1 for a = 0.1.
The solution u of problem (32) is oscillating infinitely around 0 with its limit being
0. The same result is confirmed by Figure 3 where we fixed the parameters of the
problem in the same intervals as previously. We precisely fixed p = 1

8 , q = 1
4 , and

u(0) = a = 0.35. Remark that here also 0 < p < q < 1 and u(0) ∈ (0, 1). Next we
consider already for the same sub-linear powers as above the initial conditions out
of the interval (−1, 1). For u(0) = a = 1.1 we get a coherent result with Theorem 2
as shown in Figure 4. The solution is clearly increasing to infinity.

3.2 Example 2: The Mixed Linear/Sub-linear Case p = 1 and
0 < q < 1

We consider in this example the case where p = 1 and q = 1
4 . We will show

that according to the values of these power laws and the initial value u(0) = a

the numerical illustrations are completely coherent with the theoretical results of
Theorems 3, 4, and 5. We obtain consequently the following problem:
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Fig. 3 The solution u for p = 1
8 , q = 1

4 , and u(0) = 0.35

Fig. 4 The solution u for p = 1
8 , q = 1

4 , and u(0) = 1.1
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Fig. 5 The solution u for p = 1, q = 1
4 , and u(0) = 0.1

⎧⎨
⎩
u′′ + d − 1

r
u′ + u− |u|−3/4u = 0 , r ∈ (0,∞)

u′(0) = 0 , u(0) = a.
(33)

In the first case we fix u(0) = a = 0.1 ∈ (0, 1). Figure 5 shows the coherence with
the theoretical result of Theorem 3. The solution u of problem (33) is oscillating
infinitely around 1 with no zeros and thus it constitutes a positive solution. Next
we consider already for the same linear/sub-linear problem with the same powers
as above and the initial conditions out of the interval (−1, 1) but in the interval

(1, uq). Recall that in the present case uq = ( 3
√

8
5 )

4 = 1.8714. In the first case we
fix u(0) = a = 1.8. The result is illustrated by Figure 6 which shows a coherence
with Theorem 4. The third case concerns the same problem (33) with an initial
value u(0) = a = 2 ∈ (uq,∞). The solution is illustrated by Figure 7 which shows
a coherence with Theorem 5. Next we fix u(0) = a = 5.25 ∈ (uq,∞). The solution
is illustrated by Figure 8 which shows a coherence with Theorem 5. Finally, we fix
u(0) = a = 6 ∈ (uq,∞). The solution is illustrated by Figure 9 which shows a
coherence with Theorem 5.
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Fig. 6 The solution u for p = 1, q = 1
4 , and u(0) = 1.8

Fig. 7 The solution u for p = 1, q = 1
4 , and u(0) = 2
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Fig. 8 The solution u for p = 1, q = 1
4 , and u(0) = 5.25

Fig. 9 The solution u for p = 1, q = 1
4 , and u(0) = 6
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3.3 Example 3: The Mixed Sub-linear/Sub-linear Case
0 < q < p < 1

We consider in this example the case where p = 1
2 and q = 1

4 . We will show that
in this case also according to the values of these power laws and the initial value
u(0) = a the numerical illustrations are completely coherent with the theoretical
results of Theorems 9, 10, and 11. We obtain consequently the following case:

⎧⎨
⎩
u′′ + d − 1

r
u′ + |u|−1/2u− |u|−3/4u = 0 , r ∈ (0,∞)

u′(0) = 0 , u(0) = a
(34)

In the first case we fix u(0) = a = 0.75 ∈ (0, 1). Figure 10 shows the
coherence with the theoretical result of Theorem 9. The solution u of problem (34)
is oscillating infinitely around 1 with no zeros. It constitutes consequently a positive
solution. Next we consider already for the same problem with the same powers
as above and the initial conditions out of the interval (−1, 1) but in the interval
(1, up,q). Recall that in the present case up,q = ( 6

5 )
4 = 2.0736. In the first case we

fix u(0) = a = 1.5. The result is illustrated by Figure 11 which shows a coherence
with Theorem 10. The third case concerns the same problem (34) with an initial
value u(0) = a = 6.5 ∈ (up,q,∞). The solution is illustrated by Figure 12 which
shows a coherence with Theorem 11. Next we fix u(0) = a = 6.75 ∈ (up,q,∞).
The solution is illustrated by Figure 13 which shows a coherence with Theorem 11.

Fig. 10 The solution u for p = 1
2 , q = 1

4 , and u(0) = 0.75
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Fig. 11 The solution u for p = 1
2 , q = 1

4 , and u(0) = 1.5

Fig. 12 The solution u for p = 1
2 , q = 1

4 , and u(0) = 6.5
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Fig. 13 The solution u for p = 1
2 , q = 1

4 , and u(0) = 6.75

3.4 Example 4: The Mixed Sub-linear/Linear Case 0 < p < 1
and q = 1

We consider in this example the case where p = 1
4 and q = 1. We will show

that according to the values of these power laws and the initial value u(0) = a

the numerical illustrations are completely coherent with the theoretical results of
Theorems 7 and 8. The following nonlinear problem is studied:

⎧⎨
⎩
u′′ + d − 1

r
u′ + |u|−3/4u− u = 0 , r ∈ (0,∞)

u′(0) = 0 , u(0) = a.
(35)

In the first case we fix u(0) = a = 0.35 ∈ (0, 1). Figure 14 shows the
coherence with the theoretical result of Theorem 7. The solution u of problem (35)
is oscillating infinitely around 1 with no zeros and thus it constitutes a positive
solution.

Next we consider already for the same linear/sub-linear problem with the same
powers as above and the initial conditions out of the interval (1,∞). In the first
case we fix u(0) = a = 1.01. The result is illustrated by Figure 15 which shows
a coherence with Theorem 8. The third case concerns the same problem (35) with
an initial value u(0) = a = 1.25 ∈ (1,∞). The solution is illustrated by Figure 16
which shows a coherence with Theorem 8.
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Fig. 14 The solution u for p = 1
4 , q = 1, and u(0) = 0.35

Fig. 15 The solution u for p = 1
4 , q = 1, and u(0) = 1.01
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Fig. 16 The solution u for p = 1
4 , q = 1, and u(0) = 1.2

4 Conclusion

The present chapter investigates the problem of existence, uniqueness, and classifi-
cation of the solutions of an elliptic problem derived from the famous Schrödinger
equation in a mixed nonlinear case. We precisely considered an elliptic problem of
the form

⎧⎨
⎩
u′′ + d − 1

r
u′ + |u|p−1u− |u|q−1u = 0 , r ∈ (0,∞)

u′(0) = 0 , u(0) = a,
(36)

where a is a real number parameter and real p, q are power laws that may be sub-
linear, super-linear sometimes leading to convex and concave cases. A full study
relatively to these power laws and the initial value u(0) = a has been developed.

As we have mentioned in the introduction, the chapter in its whole aim is a review
of existing results about the studied problems more than a development of new ones
reminiscent of some few cases that are not previously developed. We aim thus it will
constitute a good reference especially for beginners in the field of nonlinear analysis
of PDEs.
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An Optimization Model for a Network
of Organ Transplants with Uncertain
Availability

Gabriella Colajanni and Patrizia Daniele

Abstract Thanks to advances in modern medicine and the presence of an increas-
ingly efficient organizational network, nowadays transplantation can save thousands
of lives every year. In our paper we present a supply chain model with transplant
centers and donor hospitals, where we assume that the medical teams move to the
hospitals, take the organs, and go back to the transplant centers, using the most
suitable transport mode. Since the availability of organs in each donor hospital
is unknown a priori, we introduce a random variable which gives us an expected
value of such an availability. The aim of the model is to obtain a social optimum
in which we intend to minimize the total costs, given by transport costs of both
teams and organs, as well as those of transplant patients, the costs of removal,
of transplantation and of post-transplantation, the costs of disposal of diseased or
non-functioning organs and of the damaged ones, and the penalties. We deduce the
associated variational inequality formulation and an existing result for the solution.
Finally, we present some numerical examples.

1 Introduction

Transplantation is a rapidly evolving sector and represents a true frontier of modern
surgery. In recent years the progress of scientific research has made possible
interventions considered unachievable only a few years ago.

Transplantation is a surgical procedure that involves the replacement of a
damaged or missing organ or tissue with another taken from the same individual
(homotransplant or autograft), from another individual (allograft) or from an
individual of a different species (xenotransplantation). It is often used as a synonym
for grafting (although in this case the transfer of organs or tissues is carried out
without a surgical anastomosis). In this case we talk about “removal” of an organ
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or tissue from a donor organism, whereas the term “explant” must be reserved for
the surgical removal of an organ previously transplanted and removed for various
reasons.

Transplantation is performed in authorized facilities based on certain minimum
structural, technological, and organizational requirements. Thanks to advances
in modern medicine and the presence of an increasingly efficient organizational
network, transplantation today is a routine intervention that can save thousands of
lives every year.

Transplantation is used when severe organ failures or severe blood diseases
cannot be treated with other medical treatments; indeed, transplantation is often
a life-saving therapy, as in the case in which the severe insufficiency concerns the
heart, the liver, the lungs, the intestine. For the kidney and pancreas, transplantation
is the natural replacement therapy, much more effective and tolerable than dialysis or
insulin administration. In other cases, we talk about an “improvement” intervention,
such as for tissue transplantation.

At the base of the transplant there is the donation, a voluntary, conscious, free,
and anonymous act.

Therefore, two phases are identified: the organ removal from a subject called
donor (which can be a living person or died through brain or circulatory death), and
the subsequent transplantation or grafting of the same onto a subject called recipient,
usually with the removal of the sick native counterpart. It is possible to transplant
organs (kidney, liver, heart, lung, intestine), tissues (corneas, bone, cartilage, heart
valve, blood vessels, skin), or complex ensembles (hand).

There are different types of transplants. In this paper we take into account only
the orthotopic transplant (the original malfunctioning organ is removed, and the
donor organ is placed in the same anatomical position as the original organ), which
is more widespread, and we ignore the heterotopic transplant (a new organ is placed
side by side with the old one which is no longer functioning, but remains in its place;
this type of transplant is also called auxiliary).

In almost all countries there is a shortage of organs for transplantation. Countries
often have formal systems to manage the order determination process for recipients
of available organs and organ donors.

The main criterion for donor/recipient matching is obviously that of compati-
bility, based on tissue typing and valued by the scientific leadership in the field;
however, the choice is also influenced by other parameters, such as the age and
general state of health of the recipient (although, in recent years, the improvement
of transplantation techniques has allowed this operation to be performed even in
patients of advanced age).

In most countries, there are various lengths of waiting times that can affect who
receives the organ, due to the different availabilities of organs, medical factors, and
the position on the waiting list or, in some countries, the existence of the targeted
donation.

It should be noted that the number of organs needed for transplants is almost
always insufficient to cover waiting lists quickly, so the mortality rate among the
listed patients can be high.
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In Italy, the National Transplant Center (CNT) is the technical-scientific organi-
zation responsible for coordinating the National Transplant Network, which is used
by the Ministry of Health, the Regions and the Autonomous Provinces.

The CNT carries out functions of guidance, coordination, regulation, training,
and supervision of the transplantation network, as well as operational functions
for the allocation of organs and for national transplant programs (the urgency
program, the pediatric program, the hyperimmune program, the split-liver program,
the cross-over program for kidney, organ exchange with foreign countries, returns
and surpluses).

The National Transplant Network is one of the clinical networks of the Italian
National Health System, that is, an organizational model aimed at taking care of
patients with formalized and coordinated methods among all the professionals and
structures operating in the area.

As already mentioned, at the national level we find the CNT, while at the
regional level there are the Regional or Interregional Centers for Transplantation
(CRT), which are public structures that, among the different tasks, coordinate, on a
regional level, the activities of procurement, donation, and transplant and proceed
with the allocation of organs. In addition, at the local level there are donor hospitals
(public health facilities where organs, tissues, and hematopoietic stem cells are
taken for transplantation purposes) and transplant centers (facilities where there is a
team authorized to perform interventions for transplantation of organs, tissues, and
hematopoietic stem cells).

The Transplant Information System (SIT) is an IT infrastructure for managing
data connected to the activity of the National Transplant Network. The SIT was
established by Law on April 1, 1999 n. 91 under the New Health Information
System; through the SIT it is possible to guarantee the transparency and traceability
of donation, collection, and transplantation processes.

In 2018, 1,924,017 declarations of intention were registered in the SIT; 44,908
are the new donors registered in the Italian Bone Marrow Donor Registry (IBMDR);
1689 are the organ donors (deceased and living) with 318 living donors (there
was an increase of 94%, compared to 20 years ago); 13,482 tissue donors; 268
hematopoietic stem cell donors (registered in the IBMDR registry and cord blood
donations); 3725 organ transplants (deceased and living donors), with 318 living
organ transplants, with an increase of 54% since 1998; 16,468 tissue transplants;
848 hematopoietic stem cell transplants (from unfamiliar donors).

In Italy, as reported in Table 1, the number of transplants is quite high and the
average waiting time has decreased for different types of organs.

Numerous papers confirm the importance of the transplantation topic, which
is highlighted by a lot of research studies in both medical and mathematical
literature. In this latter area some themes are treated, such as: optimization of times,
fundamental in the transplant process (see, for example, [1, 2]); the best allocation
of organs to transplant centers [4, 9, 10]; the management of waiting lists [3, 7]; cost
minimization of each stage of the transplant process [5].

One of the most important aspects throughout all the donation-transplant process
is the logistics which is used to manage and to coordinate all phases which are



166 G. Colajanni and P. Daniele

Table 1 Data on the number
of transplants and the average
waiting time in 2002 and
2018

Number of Waiting time Waiting time

operations in 2002 in 2018

Organ in 2018 (in months) (in months)

Lung 143 14 12

Heart 233 81 13

Liver 1159 7 5

Kidney 1831 32 24

Table 2 Organs and cold
ischemia times

Organ Cold ischemia time

Heart 4–6 h

Lung 4–6 h

Liver 12–18 h

Kidney 48–72 h

Pancreas 12–24 h

necessary to reach the goal as quickly as possible. Logistics concerns with the
medical teams, the organs, the biological materials, and the patients transport.

The organs, once taken, require special procedures for their preservation for a
transplant. The maximum extracorporeal storage time varies from organ to organ
and is based on the storage liquid and the temperature. They can be transported and
stored based on the relative cold ischemia times which are the maximum storage
times after removal and before transplantation. In Table 2 we indicate the main cold
ischemia times. Therefore, logistics is a very important aspect in transplantation
because an improper management can lead to delays and problems during the whole
process.

In this paper, we aim at presenting a mathematical model, based on networks,
which allows us to minimize the total costs associated with organ transplants,
ensuring that ischemia times are respected and entirely using the quantities of organs
available at the donor hospitals, which are random variables.

The paper is structured as follows. In the next section we introduce the network
underlying the organs transplant system, consisting of transplant centers and donor
hospitals which can own different types of available organs. We then present the cost
functions associated with: transportation, organ removals, waste disposals, and post-
transplants. We also deal with the uncertainty of organ availability and we present
the costs associated with penalties. Therefore, we show the mathematical model. In
Section 3 we determine the optimality conditions for the national health service and
derive the variational inequality formulation introducing the Lagrange multipliers
associated with the constraints and we also report existence results for the solution.
In Section 4 we apply the model to some numerical examples.
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2 The Mathematical Model

In this section we first illustrate the network related to the transportation process,
and then, we describe the mathematical model.

The network structure underlying the organs transplant system, depicted in
Figure 1, consists of three tiers of nodes: the first level is represented by the
transplant centers from which the medical teams reach the donor hospitals, which
constitute the second tier, where they perform the organ removal and then the
medical teams and the organs go back to the transplant centers, the third level, where
the organ transplant is performed.

Therefore, the nodes at the highest and at the lowest levels of the network
represent the m transplant centers, with a typical one denoted by i; while the
intermediate level consists of n donor hospitals, with a typical one denoted by j .

We underline that each donor hospital can have S different kinds of available
organs, such as kidney, liver, pancreas, intestine, heart, as well as lungs, and so on
(and we denote by s the typical one).

In the organs transport network we also consider v different transportation
services, such as ambulance, airplane, helicopter, etc., and we denote the typical
one by k. We can remark that in the network the different transportation services are
denoted by parallel edges, since they are not decision makers.

Let gijk be the quantity of medical teams moving from the transplant center i to
the donor hospital j using the k−th transportation service and we group such flows
into the vector G1 ∈ R

mnv+ . Let cTE
ijk be the transportation costs associated with the

medical teams from the transplant center i to the donor hospital j using the k−th
transportation service and we assume cTE

ijk as a function of gijk:

cTE
ijk = cTE

ijk (gijk), ∀i = 1, . . . , m,∀j = 1, . . . , n,∀k = 1, . . . , v.

1 . . . i . . . m Transplant Centers

O11 . . . O1S . . . Oj1. . .Ojs. . .OjS . . . On1 . . . OnS Organs

1 . . . i . . . m Transplant Centers

1 j n Donor Hospitals

Fig. 1 Organs transport network
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Let gij be the amount of organs that the medical teams in the transplant center
i intend to take from the hospital j , and we group such quantities into the vector
G2 ∈ R

mn+ .
As a consequence, the number of medical teams cannot exceed the amount of

organs to be taken, namely:

v∑
k=1

gijk ≤ gij ∀i = 1, . . . , m, ∀j = 1, . . . , n. (1)

Further, we assume that the quantity of organs that all the teams in i intend to take
from j is less than or equal to a large enough upper bound:

gij ≤ M̄ ∀i = 1, . . . , m, ∀j = 1, . . . , n. (2)

Let us assume that we have different kinds of organs (kidney, liver, pancreas,
intestine, heart, as well as lungs, . . . ) and we denote by s the typical one, where
s = 1, . . . , S. Let Ojs be the class of organs of type s available in the donor hospital
j. Then, let g̃jsik be the quantity of organs of the class Ojs sent from the donor
hospital j to the transplant center i using the k−th transportation service and we
group such flows into the vector G3 ∈ R

nSmv+ . Let cTO
jik be the transportation costs

associated with the organs from the donor hospital j to the transplant center i using
the k−th transportation service and we assume cTO

jik as a function of the sum of all
organs sent from j to i via k:

cTO
jik = cTO

jik

(
S∑

s=1

g̃jsik

)
, j = 1, . . . , n, i = 1, . . . , m, k = 1, . . . , v.

We also assume that the number of medical teams moving from i cannot exceed the
number of organs which are transported to i, that is:

n∑
j=1

v∑
k=1

gijk ≤
n∑

j=1

S∑
s=1

v∑
k=1

g̃jsik ∀i = 1, . . . , m. (3)

Let g̃i be the quantity of organs transplanted at the center i and we group such
quantities into the vector G4 ∈ R

m+. Let c̃Si be the health costs due to the transplant
at the center i and we assume such costs as a function of g̃i :

c̃Si = c̃Si (g̃i), ∀i = 1, . . . , m.

Let cPOST
i be the costs incurred in the center i during the post-transplant process

and we assume they are a function of g̃i :

cPOST
i = cPOST

i (g̃i), ∀i = 1, . . . , m.
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Let cWj be the unit special waste disposal cost at the donor hospital j (for instance,
explanted organs which are unfit for transplant). Let βj ∈ [0, 1] be the portion
of explanted organs discarded in the donor hospital j . Further, let c̃Wi be the unit
special waste disposal cost at the transplant center i (for instance, diseased organs
to be replaced).

Let γjik ∈ [0, 1] be the portion of organs reaching the transplant center i, but
which cannot be transplanted, due to damage in the transportation, for instance. As
a consequence, in every transplant center i the quantities of organs which must be
wasted is given by the sum of the quantity of harvested unhealthy organs (that is
equal to g̃i) and the portion of those which are damaged during transport: g̃i +
n∑

j=1

S∑
s=1

v∑
k=1

γjikg̃jsik . Hence, the relationship among g̃i , g̃jsik and γjik is given by

g̃i =
n∑

j=1

v∑
k=1

[(1 − γjik)(

S∑
s=1

g̃jsik)], (4)

namely the number of transplanted organs is the same as the number of transported
organs minus the wasted ones.

Let g̃js denote the quantity of organs of the class Ojs available at the donor
hospital j , which is a random variable with probability density function given by
fjs(t). Let Pjs be the probability distribution function of g̃js , that is:

Pjs(Gjs) = Pjs(g̃js ≤ Gjs) =
∫ Gjs

0
fjs(t)d(t).

Therefore, the expected values of g̃js ,∀j = 1, . . . , n, ∀s = 1, . . . , S, are given by

gjs = E[g̃js] =
∫ ∞

0
tfjs(t)d(t).

We denote by gj =
S∑

s=1

gjs the expected value of the quantity of organs available at

the donor hospital j .
Therefore, the number of medical teams moving to j needs to be less than or

equal to gj , which is the expected value of available organs in j :

m∑
i=1

v∑
k=1

gijk ≤ gj ∀j = 1, . . . , n, (5)

and the number of organs which are transported from the donor hospital j must be
equal to the number of healthy and usable explanted organs:
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m∑
i=1

v∑
k=1

g̃jsik =
(
1 − βj

)
gjs ∀j = 1, . . . , n, ∀s = 1, . . . , S. (6)

In the past, it often happened that a patient entered in a waiting list for an organ
transplant, when he received the call from the transplant center because a compatible
organ was available, he had some difficulties in reaching the transplant center
(because almost always the transplant center is not in the same city of residence).
From the moment in which the patient is convened, it is necessary that he reaches
the transplant center as quickly as possible. Hence, an agreement State-Regions
Agreement 55/CSR of March 25, 2015 has been announced, which provides that the
Regions or the Autonomous Provinces have to take charge of all transports carried
out as part of the collection and transplant activity, including the transport of patient
transplant candidates on the occasion of the received convocation.

We recall that every organ of the type s has a cold ischemia time R̄s . Specifically,
“cold ischemia time during organ transplantation begins when the organ is cooled
with a cold perfusion solution after organ procurement surgery, and ends after the
tissue reaches physiological temperature during implantation procedures” (http://
www.reference.md/files/D050/mD050377.html).

Since quickness is a key factor in the transplant process, we introduce:

• t
p
kijs , which is the time that the patient assigned to the organ in the class Ojs

needs to reach i, via k;
• tj ik, which is the time that the medical team takes to go from j to i, via k;
• tPR

js , which is the time that the team takes to pick up the organ of the class Ojs ;

• R̄s, which is the maximum ischemia time for the organ of type s.

Therefore, when g̃jsik � 0, it results to be:

max{tj ik, tpkijs − tPR
js } ≤ R̄s,

j = 1, . . . , n, s = 1, . . . , S, k = 1, . . . , v, i = 1, . . . , m, p = 1, . . . , P .

(7)
Let yp

kijs ≥ 0 be the number of patients who have to be transported via k, from j to
i, for the transplantation of the organ in the class Ojs , such that:

v∑
z=1

g̃jsiz =
P∑

p=1

v∑
k=1

y
p
kijs, i = 1, . . . , m, j = 1, . . . , n, s = 1, . . . , S, (8)

namely we require that the number of patients who need to be transported to i for
the transplant of the organ in the class Ojs is the same as the number such organs
transported in i.

Hence, constraint (7) can be also rewritten as:

http://www.reference.md/files/D050/mD050377.html
http://www.reference.md/files/D050/mD050377.html
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tj ikg̃jsik ≤ R̄s g̃jsik,

∀j = 1, . . . , n, ∀s = 1, . . . , S, ∀i = 1, . . . , m, ∀k = 1, . . . , v; (9)

t
p
kijsy

p
kijs − tPR

js y
p
kijs ≤ R̄sy

p
kijs ,

∀k = 1, . . . , v, ∀i = 1, . . . , m, ∀j = 1, . . . , n, ∀s = 1, . . . , S, ∀p = 1, . . . , P .

(10)
Let cpkijs be the transportation cost for the patient assigned to the organ in Ojs of
i, via k, and let us assume that such a cost is a function of the number of patients
transported from i via k:

c
p
kijs = c

p
kijs(y

p
kijs)

∀k = 1, . . . , v, ∀i = 1, . . . , m, ∀j = 1, . . . , n, ∀s = 1, . . . , S, ∀p = 1, . . . , P .

Let us denote by %−
j ≡ max{0, g̃j −

m∑
i=1

gij } e %+
j ≡ max{0,

m∑
i=1

gij − g̃j }, ∀j =
1, . . . , n, the lack of medical teams ready for transplant and the excess of medical
teams in j , then we have

E[%−
j ] =

∫ ∞
m∑

i=1

gij

(
t −

m∑
i=1

gij

)
fj (t)d(t), ∀j = 1, . . . , n,

E[%+
j ] =

∫
m∑

i=1

gij

0

(
m∑

i=1

gij − t

)
fj (t)d(t), ∀j = 1, . . . , n.

We also assume that δ− e δ+ are the penalties to be paid in the case of an available
and unused body or an excess of teams, respectively.

Let cSj be the health costs due to the organ removal at the hospital j and we

assume such costs as a function of
m∑

i=1

gij − E[%+
j ]:

cSj = cSj (

m∑
i=1

gij − E[%+
j ]), ∀j = 1, . . . , n.

Thus, the aim of the model consists in finding the optimal quantities of medical
teams that must be moved from the transplant centers to the donor hospitals,
choosing the most appropriate means, the optimal quantities of organs to be taken,
to be transported (choosing the vehicle), and to be implanted, in order to minimize
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transport costs of both teams and organs, as well as those of transplant patients, the
costs of removal, of transplantation, and of post-transplantation, the costs of disposal
of diseased or non-functioning organs and of those damaged, the penalties.

The problem formulation is as follows:

min

{ m∑
i=1

n∑
j=1

v∑
k=1

2cT E
ijk (gijk)+

n∑
j=1

cSj (

m∑
i=1

gij − E[%+
j
])

+
n∑

j=1

m∑
i=1

v∑
k=1

cTO
jik (

S∑
s=1

g̃jsik)+
m∑

i=1

c̃Si (g̃i )+
m∑

i=1

cPOST
i (g̃i )

+
n∑

j=1

cWj βj (

m∑
i=1

gij − E[%+
j
])+

m∑
i=1

c̃Wi ·
⎛
⎝g̃i +

n∑
j=1

v∑
k=1

γjik ·
⎛
⎝ S∑

s=1

g̃jsik

⎞
⎠
⎞
⎠

+
P∑

p=1

v∑
k=1

m∑
i=1

n∑
j=1

S∑
s=1

c
p
kijs

(y
p
kijs

)+
n∑

j=1

δ−E[%−
j
] +

n∑
j=1

δ+E[%+
j
]
}

(11)

subject to the constraints:

gijk ≥ 0 i = 1, . . . , m, j = 1, . . . , n, k = 1, . . . , v; (12)

gij ≥ 0 i = 1, . . . , m, j = 1, . . . , n; (13)

g̃jsik ≥ 0 j = 1, . . . , n, s = 1, . . . , S, i = 1, . . . , m, k = 1, . . . , v; (14)

g̃i ≥ 0 i = 1, . . . , m; (15)

y
p
kijs ≥ 0 k = 1, . . . , v, i = 1, . . . , m,

j = 1, . . . , n, s = 1, . . . , S, p = 1, . . . , P ; (16)

gij ≤ M̄ i = 1, . . . , m, j = 1, . . . , n. (17)

g̃i =
n∑

j=1

v∑
k=1

[(
1 − γjik

) ( S∑
s=1

g̃jsik

)]
i = 1, . . . , m; (18)

m∑
i=1

v∑
k=1

g̃jsik =
(
1 − βj

)
gjs j = 1, . . . , n, s = 1, . . . , S; (19)

tj ikg̃jsik ≤ R̄s g̃jsik

j = 1, . . . , n, s = 1, . . . , S, i = 1, . . . , m, k = 1, . . . , v; (20)
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t
p
kijsy

p
kijs − tPR

js y
p
kijs ≤ R̄sy

p
kijs

k = 1, . . . , v, i = 1, . . . , m, j = 1, . . . , n, s = 1, . . . , S, p = 1, . . . , P ;
(21)

n∑
j=1

v∑
k=1

gijk ≤
n∑

j=1

S∑
s=1

v∑
k=1

g̃jsik i = 1, . . . , m; (22)

v∑
k=1

gijk ≤ gij i = 1, . . . , m, j = 1, . . . , n; (23)

v∑
z=1

g̃jsiz =
P∑

p=1

v∑
k=1

y
p
kijs i = 1, . . . , m, j = 1, . . . , n, s = 1, . . . , S; (24)

3 Variational Inequality

For convenience of expression let

aj =
m∑

i=1

gij , ∀j = 1, . . . , n.

Therefore, for each donor hospital,

∂E[%−
j ]

∂gij

= ∂E[%−
j ]

∂aj
· ∂aj

∂gij

= Pj

(
m∑

i=1

gij

)
− 1,

∀i = 1, . . . , m, ∀j = 1, . . . , n;

∂E[%+
j ]

∂gij

= ∂E[%+
j ]

∂aj
· ∂aj

∂gij

= Pj

(
m∑

i=1

gij

)
,

∀i = 1, . . . , m, ∀j = 1, . . . , n.

We associate the Lagrange multiplier λ1
j with constraint (17) and we denote

the associated optimal Lagrange multiplier by λ1∗
j . Similarly, Lagrange multipliers

λ2
ij , λ

3
js , λ

4
jsik , λ5

pkijs , λ
6
i , λ

7
ij and λ8

ijs are associated with constraints (18)–(24).

We group these Lagrange multipliers into the vectors λ1, . . . , λ8, respectively.
Let K denote the feasible set such that:
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K = {(G1,G2,G3,G4, Y ) ∈ Rmnv+mn+2nSmv+m+PnSvm : (12)–(24) hold}.

Theorem 1 A vector (G1∗,G2∗,G3∗,G4∗, Y ∗) ∈ K is an optimal solution of the
minimization problem (11) under constraints (12)-(24) if and only if there exist
λ1∗ ∈ R

mn+ , λ2∗ ∈ R
m, λ3∗ ∈ R

nS, λ4∗ ∈ R
nSmv+ , λ5∗ ∈ R

PnSvm+ , λ6∗ ∈ R
m+, λ7∗ ∈

R
mn+ , λ8∗ ∈ R

nSm, such that
(G1∗,G2∗,G3∗,G4∗, Y ∗, λ1∗, λ2∗, λ3∗, λ4∗, λ5∗, λ6∗, λ7∗, λ8∗) is a solution to

the following variational inequality:

m∑
i=1

n∑
j=1

v∑
k=1

[
2
∂cTE

ijk (g
∗
ijk)

∂gijk

+ λ6∗
i + λ7∗

ij

]
× [gijk − g∗ijk]

+
m∑

i=1

n∑
j=1

[∂cSj (
m∑

i=1

v∑
k=1

g∗ij − E[%+
j ])

∂gij

+ cWj βj − cWj βj

∂E[%+
j ]

∂gij

+δ−
∂E[%−

j ]
∂gij

+ δ+
∂E[%+

j ]
∂gij

+ λ1∗
ij − λ7∗

ij

]
× [gij − g∗ij ]

+
n∑

j=1

S∑
s=1

m∑
i=1

v∑
k=1

[
∂cTO

jik (g̃
∗
jsik)

∂g̃jsik

+ γjikc̃
W
i + λ2∗

i (1 − γjik)

+λ3∗
js + λ4∗

jsik(tj ik − R̄s)− λ6∗
i − λ8∗

ijs

]
× [g̃jsik − g̃∗jsik]

+
m∑

i=1

[
∂c̃Si (g̃

∗
i )

∂g̃i

+ ∂cPOST
i (g̃∗i )
∂g̃i

+ c̃Wi − λ2∗
i

]
× [g̃i − g̃∗i ]

+
P∑

p=1

v∑
k=1

m∑
i=1

n∑
j=1

S∑
s=1

[
∂c

p
kijs(y

p∗
kijs)

∂y
p
kijs

+ λ5∗
pkijs(t

p
kijs − tPR

js − R̄s)

+λ8∗
ijs

]
× [yp

kijs − y
p∗
kijs]

−
m∑

i=1

n∑
j=1

[
gij − M̄

]
× [λ1

ij − λ1∗
ij ]

−
m∑

i=1

[ n∑
j=1

v∑
k=1

[(
1 − γjik

) ( S∑
s=1

g̃∗jsik

)]
− g̃∗i

]
× [λ2

i − λ2∗
i ]

−
n∑

j=1

S∑
s=1

[ m∑
i=1

v∑
k=1

g̃∗jsik −
(
1 − βj

)
gjs

]
× [λ3

js − λ3∗
js ]
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−
n∑

j=1

S∑
s=1

m∑
i=1

v∑
k=1

[
tj ikg̃

∗
jsik − R̄sg

∗
jsik

]
× [λ4

jsik − λ4∗
jsik]

−
P∑

p=1

v∑
k=1

m∑
i=1

n∑
j=1

S∑
s=1

[
t
p
kijsy

p∗
kijs − tPR

js y
p∗
kijs − R̄sy

p∗
kijs

]
× [λ5

pkijs − λ5∗
pkijs]

−
m∑

i=1

[ n∑
j=1

v∑
k=1

g∗ijk −
n∑

j=1

S∑
s=1

v∑
k=1

g̃∗jsik
]
× [λ6

i − λ6∗
i ]

−
m∑

i=1

n∑
j=1

[ v∑
k=1

g∗ijk − g∗ij
]
× [λ7

ij − λ7∗
ij ]

−
m∑

i=1

n∑
j=1

S∑
s=1

[ v∑
k=1

y∗kijs −
v∑

z=1

g̃∗jsiz
]
× [λ8

ijs − λ8∗
ijs] ≥ 0, (25)

∀(G1,G2,G3,G4, Y, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) ∈ V,where

V = K× R
mn+ × R

m × R
nS × R

nSmv+ × R
PnSvm+ × R

m+ × R
mn+ × R

nSm.

The following theorem ensures the existence of solutions to (25).

Theorem 2 A solution (G1∗,G2∗,G3∗,G4∗, Y ∗, λ1∗, λ2∗, λ3∗, λ4∗, λ5∗, λ6∗, λ7∗,
λ8∗) ∈ V to variational inequality (25) is guaranteed to exist.

Proof The result follows from the classical theory of variational inequalities (see
[8]), since the feasible set is compact and the function that enters the variational
inequality is continuous.

4 Numerical Examples

In order to further illustrate the above model, in this section we present several
simple numerical examples.

In the following examples we consider some quadratic cost functions which in
some sense represent the reality, since the marginal cost functions decrease when a
large number of transplants is performed.

The costs are in thousands of euros and the organs are in dozens of units.
Further, we assume that if the amount of organs transported via k from the

hospital j to the transplant center i is strictly positive, then at least one team has
to move from i to j via k, that is:
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se
S∑

s=1

g̃jsik > 0 ⇒ gijk ≥ 1.

Such a constraint can be expressed as:

S∑
s=1

g̃jsik

(
1 − gijk

) ≤ 0, ∀i = 1, . . . , m, ∀j = 1, . . . , n, ∀k = 1, . . . , v.

(26)
The optimal solutions are calculated using the Matlab program, by applying the
projection-contraction method proposed by Solodov and Tseng (see [13]). The
algorithm was implemented on a laptop with an AMD A6-9225 Radeon R4, 5
compute cores2C+3G, 2.6 GHz processor and 8 GB RAM. For all the analyzed
cases, we have depicted the underlying network and specified the cost functions.

4.1 Example 1

In this example we consider a simple network consisting of one transplant center,
one donor hospital with 2 classes of organs and with two different transportation
modes, as depicted in Figure 2.

The transportation costs associated with the medical teams from the transplant
center 1 to the donor hospital 1 using the first and the second transportation service,
respectively, are

cTE
111(g111) = 0.25 · g2

111 + 0.2 · g111 + 8,

cT E
112(g112) = 1.25 · g2

111 + 1.2 · g111 + 18.

The transportation costs associated with the organs from the donor hospital 1 to the
transplant center 1 using the first and the second transportation service, respectively,

Fig. 2 Organs transport
network: Example 1

1 Transplant Center

1 2

O11 O12 Organs

1 2 1 2

1 Transplant Center

1 Donor Hospital
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are

cTO
111 (g̃1111 + g̃1211) = 0.75 · (g̃1111 + g̃1211)

2 + 0.4 · (g̃1111 + g̃1211)+ 5,

cTO
112 (g̃1112 + g̃1212) = 1.75 · (g̃1112 + g̃1212)

2 + 1.4 · (g̃1112 + g̃1212)+ 25.

The costs for transporting patients assigned to organs, through the first or the second
transportation service, are

c
p

111s(y
p

111s) = (y
p

111s)
2 + y

p

111s + 0.5,

c
p

211s(y
p

211s) = 2 · (yp

211s)
2 + 2 · yp

211s + 1.5.

Furthermore, we assume t111 = 6, t112 = 4, R̄1 = 10, R̄2 = 5, t
p

1111 =
11, t

p

2111 = 6, t
p

1112 = 11, t
p

2112 = 6, tPR
11 = tPR

12 = 3.
The solution is as follows:

g∗111 = 1, g∗112 = 1, g∗11 = 11,

g̃∗1111 = g̃∗1212 = 3, g̃∗1211 = g̃∗1112 = 0, g̃∗1 = 6,

y
p∗
1111 = 2, y

p∗
2111 = 1, y

p∗
1112 = 0, y

p∗
2112 = 3,

λ1∗
1 = 0, λ2∗

1 = 0.01, λ3∗
11 = λ3∗

12 = 0.24,

λ4∗
1111 = 0, λ4∗

1211 = 6.76, λ4∗
1112 = λ4∗

1212 = 0,

λ5∗
p1111 = λ5∗

p2111 = 0, λ5∗
p1112 = 4.53, λ5∗

p2112 = 0,

λ6∗
1 = 0, λ7∗

11 = 0, λ8∗
111 = λ8∗

112 = 0.01.

The elapsed time is 13.39 s.
We note that it is more convenient to use the first transportation service for

bringing the organs of type 1 and the second transportation service (that is more
expensive) for those of type 2 because of the ischemia time.

Instead, it is more suitable to transport patients associated with the second type
of organs always with the second transportation service, while, with regard to the
first type of organ, two patients with the first transportation service and one with the
second.
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Example 1.2

This example has the same data as the previous one, except that now we assume
that the portion of explanted organs discarded in the donor hospital is β1 = 0.5, the
portion of organs reaching the transplant center, but which cannot be transplanted,
is γ111 = γ112 = 0.1 and g̃11, g̃12 ∼ U([0, 8]).

The solution is

g∗111 = 1, g∗112 = 1, g∗11 = 14,

g̃∗1111 = g̃∗1212 = 2, g̃∗1211 = g̃∗1112 = 0, g̃∗1 = 4,

y
p∗
1111 = 1, y

p∗
2111 = 1, y

p∗
1112 = 0, y

p∗
2112 = 2,

λ1∗
1 = 0, λ2∗

1 = 0.0042, λ3∗
11 = λ3∗

12 = 0.16,

λ4∗
1111 = 0, λ4∗

1211 = 4.76, λ4∗
1112 = 0.0027, λ4∗

1212 = 0,

λ5∗
p1111 = λ5∗

p2111 = 0, λ5∗
p1112 = 3.14, λ5∗

p2112 = 0,

λ6∗
1 = 0, λ7∗

11 = 0, λ8∗
111 = 0.0063, λ8∗

112 = 0.0072.

The elapsed time is 16.10 s.
In Figure 3, we show the trend of quantity of organs that the medical teams in i

intend to take from the donor hospital j , when the penalty δ− changes.

4.2 Example 2

In this example we consider a new network consisting of two transplant centers,
five donor hospitals with 2 classes of organs and with two different transportation
modes, as depicted in Figure 4.

The new solution is as follows:

g∗111 = 1.00, g∗112 = 0.98, g∗121 = 1.00, g∗122 = 0.79, g∗131 = 1.00,

g∗132 = 0.98, g∗141 = 1.00, g∗142 = 1.00, g∗151 = 1.00, g∗152 = 0.99,

g∗211 = 1.00, g∗212 = 0.98, g∗221 = 1.00, g∗222 = 1.00, g∗231 = 1.00,

g∗232 = 0.98, g∗241 = 1.00, g∗242 = 0.90, g∗251 = 1.00, g∗252 = 1.00,

g∗11 = 6.96, g∗12 = 6.96, g∗13 = 6.96, g∗14 = 6.96, g∗15 = 6.96,
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Fig. 3 Values of gij when δ− varies

1 2 Transplant Center

O11 O12 O21 O22 O31 O32 O41 O42 O51 O52 Organs

1 2 Transplant Center

1 2 3 4 5 Donor Hospital

Fig. 4 Organs transport network: Example 2

g∗21 = 6.96, g∗22 = 6.96, g∗23 = 6.96, g∗24 = 6.96, g∗25 = 6.96,

g̃∗1111 = 0.81, g̃∗1112 = 0.20, g̃∗1121 = 0.79, g̃∗1122 = 0.20, g̃∗1211 = 0.81,

g̃∗1212 = 0.20, g̃∗1221 = 0.79, g̃∗1222 = 0.20, g̃∗2111 = 1.24, g̃∗2112 = 0.27,

g̃∗2121 = 0.00, g̃∗2122 = 0.49, g̃∗2211 = 0.05, g̃∗2212 = 0.00, g̃∗2221 = 1.95,

g̃∗2222 = 0.00, g̃∗3111 = 0.81, g̃∗3112 = 0.20, g̃∗3121 = 0.79, g̃∗3122 = 0.20,

g̃∗3211 = 0.81, g̃∗3212 = 0.20, g̃∗3221 = 0.79, g̃∗3222 = 0.20, g̃∗4111 = 0.94,
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g̃∗4112 = 0.00, g̃∗4121 = 0.80, g̃∗4122 = 0.26, g̃∗4211 = 0.55, g̃∗4212 = 0.80,

g̃∗4221 = 0.59, g̃∗4222 = 0.05, g̃∗5111 = 0.66, g̃∗5112 = 0.04, g̃∗5121 = 1.30,

g̃∗5122 = 0.00, g̃∗5211 = 1.01, g̃∗5212 = 0.39, g̃∗5221 = 0.00, g̃∗5222 = 0.60,

g̃∗1 = 8.99, g̃∗2 = 9.00,

ỹ1∗
1111 = 0.50, ỹ1∗

1112 = 0.50, ỹ1∗
1121 = 0.67, ỹ1∗

1122 = 0.02, ỹ1∗
1131 = 0.50,

ỹ1∗
1132 = 0.50, ỹ1∗

1141 = 0.47, ỹ1∗
1142 = 0.28, ỹ1∗

1151 = 0.35, ỹ1∗
1152 = 0.63,

ỹ1∗
1211 = 0.49, ỹ1∗

1212 = 0.49, ỹ1∗
1221 = 0.25, ỹ1∗

1222 = 0.00, ỹ1∗
1231 = 0.49,

ỹ1∗
1232 = 0.49, ỹ1∗

1241 = 0.52, ỹ1∗
1242 = 0.32, ỹ1∗

1251 = 0.60, ỹ1∗
1252 = 0.30,

ỹ1∗
2111 = 0.00, ỹ1∗

2112 = 0.00, ỹ1∗
2121 = 0.08, ỹ1∗

2122 = 0.00, ỹ1∗
2131 = 0.00,

ỹ1∗
2132 = 0.00, ỹ1∗

2141 = 0.00, ỹ1∗
2142 = 0.00, ỹ1∗

2151 = 0.00, ỹ1∗
2152 = 0.07,

ỹ1∗
2211 = 0.00, ỹ1∗

2212 = 0.00, ỹ1∗
2221 = 0.00, ỹ1∗

2222 = 0.00, ỹ1∗
2231 = 0.00,

ỹ1∗
2232 = 0.00, ỹ1∗

2241 = 0.01, ỹ1∗
2242 = 0.00, ỹ1∗

2251 = 0.00, ỹ1∗
2251 = 0.00,

ỹ2∗
1111 = 0.50, ỹ2∗

1112 = 0.50, ỹ2∗
1121 = 0.67, ỹ2∗

1122 = 0.02, ỹ2∗
1131 = 0.50,

ỹ2∗
1132 = 0.50, ỹ2∗

1141 = 0.47, ỹ2∗
1142 = 0.28, ỹ2∗

1151 = 0.35, ỹ2∗
1152 = 0.63,

ỹ2∗
1211 = 0.49, ỹ2∗

1212 = 0.49, ỹ2∗
1221 = 0.25, ỹ2∗

1222 = 0.00, ỹ2∗
1231 = 0.49,

ỹ2∗
1232 = 0.49, ỹ2∗

1241 = 0.52, ỹ2∗
1242 = 0.32, ỹ2∗

1251 = 0.60, ỹ2∗
1252 = 0.30,

ỹ2∗
2111 = 0.00, ỹ2∗

2112 = 0.00, ỹ2∗
2121 = 0.08, ỹ2∗

2122 = 0.00, ỹ2∗
2131 = 0.00,

ỹ2∗
2132 = 0.00, ỹ2∗

2141 = 0.00, ỹ2∗
2142 = 0.00, ỹ2∗

2151 = 0.00, ỹ2∗
2152 = 0.07,

ỹ2∗
2211 = 0.00, ỹ2∗

2212 = 0.00, ỹ2∗
2221 = 0.00, ỹ2∗

2222 = 0.00, ỹ2∗
2231 = 0.00,

ỹ2∗
2232 = 0.00, ỹ2∗

2241 = 0.01, ỹ2∗
2242 = 0.00, ỹ2∗

2251 = 0.05, ỹ2∗
2252 = 0.00.

The elapsed time is 1048.45 s.
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5 Conclusions

Thanks to the advances of scientific research and progress in medicine, every year
organ transplants save thousands of lives.

The increase in the number of organ transplantations made necessary to improve
the organization of the whole network. Particularly, time and cost management was
considered fundamental to handle the transplant system and to coordinate all the
process phases which are necessary to reach the goal as quickly as possible.

In this paper, we deal with this important problem of optimizing a network of
organ transplants with uncertain availability.

We analyze the Italian Health System and introduce the network underlying the
organs transplant system. From the transplant centers, the medical teams reach the
donor hospitals which can own different types of available organs. At the donor
hospitals, the medical teams perform the organ removal and then they, together
with the organs, go back to the transplant centers, where the organ transplant is
performed.

As we all know, in each region the waiting lists never run out because the demand
of organs is greater than the availability; moreover, we consider the quantities of
organs available at the donor hospitals as random variables. Therefore, we take
into account the penalties to be paid in the case of lack of medical teams ready
for transplant or excess of teams.

In addition, the cold ischemia time plays an important role in the transplant
process. For this reason we also treat the problem of choosing the appropriate
vehicle, even because the fastest means is often the most expensive, while the
cheapest one could be so slow that it does not allow us to perform the transplant
in time.

As a consequence, the aim of this paper is to present a model, based on networks,
consisting of finding the optimal quantities of medical teams that must move from
the transplant centers to the donor hospitals, choosing the most appropriate means,
the optimal quantities of organs to be taken, to be transported (choosing the vehicle)
and to be implanted, in order to minimize transport costs of both teams and organs,
as well as those of transplant patients, the costs of removal, of transplantation and of
post-transplantation, the costs of disposal of diseased or non-functioning organs and
of those damaged, the penalties. Moreover, our model ensures that the constraints
on cold ischemia times are respected and that the quantities of organs available at
the donor hospitals, which are random variables, are entirely used.

We then determine the optimality conditions for the national health service and
derive the variational inequality formulation introducing the Lagrange multipliers
associated with the constraints and we also report existence results for the solution.
In addition, we also apply the model to some numerical examples.
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In a future work we can examine the role of the Lagrange multipliers associated
with the constraints (see [6, 11, 12]), which turns out to be very useful for the
analysis of the behavior of the decision makers in the network.
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Algebraic Based Techniques as Decision
Making Tools

M. Couceiro, G. Meletiou, and K. Skouri

Abstract This study explores the use of some well-established algebraic structures
as tools in multicriteria decision making. Under a rigorous axiomatic foundation,
a complex decision problem is decomposed into a multilevel hierarchic structure
of objective, criteria, and alternatives. A priority is derived for each element of
the hierarchy, allowing comparisons based on linear rankings, weak orders, and
other order structures. Consensus rules are provided for the final ranking of the
alternatives.

1 Introduction

Group decision making [23, 27, 29] deals with the consolidation and aggregation
of preferences that a set of criteria (or a group of decision-makers) orders a set of
alternatives, aiming to determine the best collective alternative solution. So, it is
required to establish a consensus reaching process to obtain an acceptable common
preference order—collective solution [10, 22]. The consensus has been defined
in different ways in the literature [29]: consensus is defined as a consolidate—
aggregate preference [3], and regards the approaches, tools, and procedures leading
to the final decision [1, 24]. Also, consensus is defined as the full and unanimous
agreement of all the criteria (decision-makers) regarding all the feasible alternatives
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[8], and according to this definition as measure is used the characteristic function
with values 0 (absence consensus) and 1 (full consensus). However, unanimity
may be difficult to achieve, in particular with large and diversified groups of
criteria (or decision-makers). So, the concept of consensus has been viewed in a
more flexible way, which has led to the derivation and use of consensus metrics
[14, 16, 18] aiming to achieve [29]: (1) better partial agreement and (2) the derivation
of the consensus process until an acceptable high level of agreement is attained.
Most of these proposals are closely related to Arrow’s conditions [2, 4] that the
aggregation procedure should fulfil, namely full rationality of the overall preference
relation, unrestricted domain, weak Paretian orderings, independence of irrelevant
alternatives, and the non-dictatorship requirement. In this framework, it should be
noticed the structural identity of social choice and multicriteria decision problems
[15]. It had been established that the basic results of consumer theory could be
reproduced assuming nothing stronger than the ability of indication, for any two
goods, which is preferable to which (i.e. assuming ordinal utility). While, for
Arrow, cardinal utility measure (as it has been established by Von Neumann and
Morgenstern [28]) is not allowed in collective decision making processes due to its
linking with the individual’s attitude toward risk-taking [15].

In this ground, the present study proposes consensus reaching processes, linking
algebraic tools and assuming ordinal scale, that lead to a collective solution in a
multicriteria decision problem. The processes based on median computations and
could be used as an alternative to analytic hierarchy process (AHP) decision tools
within an ordinal scale framework requiring less and easiest computations.

2 Preliminaries

Let A be a (finite) set of elements (the set of alternatives). By X = L(A) we denote
the set of linear orderings of A. Every element <i of X is a decision criterion in
the sense that for <i∈ X, a, b ∈ A, a <i b means that b is preferred than a, or b

dominates a according to the <i criterion.
A consensus procedure is a function F : Xn → X where n is the number of

criteria (decision-makers). Function F merges the n criteria (<1,<2, . . . , <n) �→
F(<1,<2, . . . , <n) =<T into a single one <T .

Following [2] a consensus procedure has to satisfy the following conditions:

(1) Unanimity or Ranking Preservation: For a, b ∈ A, if a <i b, for i = 1, . . . , n,
then a <T b

(2) Independence of Irrelevant Alternatives: Let (<1, . . . , <n) and (<∗
1, . . . , <

∗
n)

be preference profiles. Assume that a, b ∈ A have the same order in <i and <∗
i ,

for all i = 1, . . . , n. Then, a and b have the same order in <T= F(<1, . . . , <n)

and <∗
T= F(<∗

1, . . . , <
∗
n)

(3) Non-dictatorship: There is no i : 1 ≤ i ≤ n s.t. for all profiles (<1, . . . , <n) :
F(<1, . . . , <n) =<i
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However, in the case |A| ≥ 2 the three conditions are incompatible. In other
terms (1) and (2) imply dictatorship [2]. This means that the above conditions pose
limits to the merge of the different preference orders on a set of options into a single
preference order [15]. So, it is natural to pose the questions: Is it just because of
the Independence of Irrelevant Alternatives (condition (2)), or does the underlying
structure play a role? Can the linear ordering <i be generalized? What about if ≤
become partial orders (that is reflexive antisymmetric and transitive), but a and b

are incomparable? What about the relations ≤ become total weak orders, that is
reflexive, transitive and total, that is for all a, b, a and b are always comparable, that
is either a ≤ b or b ≤ a? In this framework, other structures will be examined in
order a collective solution to be derived. These structures overcome the dictatorship
of the above conditions and lead to oligarchy. Median structures have been already
used as tools for study of consensus rules.

3 Median Algebras

In this section a brief introduction on median algebras is presented. A median
algebra is a ternary algebraic structure < M,m > consisting of a non-empty
underlying set M and a ternary operation: m : M3 → M satisfying [5, 19, 25, 26]:

(1) m(a, a, b) = a (Majority),
(2) m(a, b, c) = m(b, a, c) = m(b, c, a) = . . . (Symmetry)
(3) m(a, b,m(c, d, e)) = m(m(a, b, c), d,m(a, b, e)) (Distributivity)

Examples of Median Algebras, that could be useful to decision making,
include:

(i) Linear Orders or Chains: Where m(·, ·, ·) is the betweenness operation
(ii) More general, every distributive lattice (L,∨,∧) is a median algebra with the

self-dual ternary operation m(a, b, c) = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c) = (a ∨
b) ∧ (b ∨ c) ∧ (a ∨ c) [9, 17]

(iii) Median graphs: Connected simple graphs without loops having the property
that for every three vertices {a, b, c} there is exactly one vertex which lies on
shortest path between each pair of vertices in {a, b, c}.

Notice that the concept of a median graph is a common generalization of a tree and
a hypercube.

For every median algebra and an element d ∈ M , one may consider the binary
operation: d̂ : (a, b) �→ m(a, d, b). This operation is a meet semi-lattice operation
and d is its zero, or absorptive element, or lower bound since ad̂d = m(a, d, d) =
m(d, d, a) = dd̂a = d, for all a ∈ M . Also, for e, d ∈ M the (binary) operations
ê, d̂ are mutually distributive [5, §7.3].

The corresponding semi-lattice order related to the operation d̂ is defined as
p ≤d q iff m(p, d, q) = pd̂q = p, for p, q ∈ M . The structure < M,≤d> is a
median semi-lattice in the sense that every principal ideal ↓ p := {q ∈ M : q ≤d p}
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is a distributive lattice and such that for any a, b, c ∈ M the set {a, b, c} has an
upper bound whenever each of its 2-element subsets {a, b}, {b, c}, {c, a} has an
upper bound [5, 7, 25, 26].

Also, every element d ∈ M defines a comparison between the elements of M

and d is the bound of ≤d (Optimal element). Therefore, every element of M is both
an element and a comparison criterion between elements.

The interest in median semi-lattices and their generalization grew out of the study
of taxonomic structures. While, hierarchies, weak hierarchies splits, weak orders are
also mentioned.

Every order of the form ≤d , d ∈ A is compatible with the median structure.
There exist semi-lattice orders that are not of the form ≤d but they preserve the
median operation—for more details see [6]. The median algebra is extended to
ξ(M), its zero completion. All compatible semi-lattice orders can be considered
as comparison criteria between the elements of M .

4 Median Homomorphisms as Consensus Procedures

In this section consensus procedures are presented that based on median homomor-
phism. For A,B median algebras, a median homomorphism is a function f : A →
B satisfying: f (m(a, b, c)) = m(f (a), f (b), f (c)). The median homomorphism
can be characterized as median preserving function. The main idea is to use median
homomorphisms of the form A1×A2×. . .×An → M as consensus procedures. We
require the score of a median profile to be the median of the scores of the profiles.

However, it has to be mentioned that median preserving maps are not necessarily
order-preserving maps. In the special case of the chains (totally ordered sets), a
function is a median homomorphism iff it is order preserving or order reversing.

4.1 Consensus Over Trees

Consider A1, . . . , An, B median algebras and f : A1 × . . . × An → B a
median preserving function that is a consensus procedure. According to [12, 13],
all homomorphisms f are essentially unary iff B is a tree. That means:

(1) If B is a tree, then all consensus are dictatorships.
(2) A non-dictatorship f : A1 × . . .× An → B exists iff B is not a tree.

Since a tree is a median algebra containing no 2-dimensional hypercubes, the above
result motivates for a generalization to median algebras not containing the m-
dimensional hypercube as a subalgebra and so avoiding dictatorship.
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4.2 Consensus Over Hypercube–Free Median Algebras

Consider A1, . . . , An, B median algebras and f : A1 × . . .×An → B a consensus
as above.

According to [11], f is essentially k-ary iff B does not contain the k + 1
dimensional hypercube as a subalgebra. In other terms

1. If B is a hypercube free median algebra, then all consensus are oligarchies
2. A non-oligarchy f : A1 × . . . × An → B exists iff B is not a hypercube free

median algebra.

In this framework the consensus over more than one criterion is allowed.

4.3 Consensus Over Weak Orders

Firstly, the weak order or total preorder will be defined. Let R be a binary relation
over the underlying set A. The term weak order or total preorder is often used for a
relation R satisfying the conditions:

(i) R is reflexive: For all a ∈ A, aRa

(ii) R is transitive: For all a, b, c ∈ A, aRb and bRc imply aRc

(iii) R is total (or complete): For all a, b ∈ A, either aRb or bRa

Since every binary relation is a set of ordered pairs of A, the notation aRb means
(a, b) ∈ R. Therefore, R is a subset of A2. The binary relations on A are partially
ordered by implications, that is R1 ⊆ R2 means that aR1b implies aR2b.

Weak orders are used as preference relations. aRb means that a is preferred than
b, or a dominates b, or a is a better choice than b.

Also, R is a preorder. The relation I ⊆ A2 : aIb iff aRb and bRa is an
equivalence relation. The order relation among the equivalence classes is a total
or linear order. Relation I is called relation of indifference. We can choose either a
or b.

The intersection and union of two binary relations faced as subsets of A2 will be
denoted by ∩ and ∪, respectively. The intersection of two weak orders is always a
transitive and reflexive relation but not always total.

For example, A = {a, b, c}, R1 is the linear ordering a > b > c and R2 is the
ordering b > c > a, then R1 ∩R2 is the ordering b > c and a incomparable to both
b and c, which is not a total relation.

The union of two weak orders is always a reflexive and total relation. However, it
is not always transitive. For example, consider R1 and R2 as above. Then, R1 ∪ R2
is not transitive since cR2aR1b or c > a > b but the couple (c, b) is not included
in R1 ∪ R2. The transitive closure of R1 ∪ R2 is the least weak order containing R1
and R2 and concerning the example it is the complete relation A2.
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Every binary relation on A can be represented by a n× n square matrix with 0, 1
as entries, n = |A|, i.e. A = (αij ), i, j = 1, . . . , n where:

αij =
{

1 if iRj

0 else

In other words, the i, j -th entry is 1 iff i is related to j . For example, |A| = 3, A =
{a, b, c}, the relation b > c > a will be represented by the matrix

⎛
⎝

a b c

a 1 0 0
b 1 1 1
c 1 0 1

⎞
⎠

The relation c < a, c < b, aIb will be represented by the matrix

⎛
⎝

a b c

a 1 1 1
b 1 1 1
c 0 0 1

⎞
⎠

The complete relation aIbIc is described from the matrix

⎛
⎝

a b c

a 1 1 1
b 1 1 1
c 1 1 1

⎞
⎠

Since the entries of the matrices are either 0 or 1 the two elements Boolean
algebra as basic set is used. The operation join (∨) as addition and the operation
meet (∧) as multiplication are employed. For X=(xij )1≤i,j≤n,Y = (yij ), 1≤i,j≤n,
n×n matrices their product is defined as X·Y = Z:=(zij ), where (zij ) = ∨n

k=1(xik∧
ykj ).

The matrix derived from the binary relation R will be denoted by MR . For X =
MR the conditions for R being reflexive and transitive are respectively I ≤ X and
X2 ≤ X, I is the identity matrix. In the case of being reflexive and transitive the
condition becomes X2 = X. Finally, the condition for R is a total relation is X ∨
XT = (1)1≤i,j≤n := 1. The transitive closure of a binary relation is the intersection
of all binary relations containing it. It can be shown that for X = MR the transitive
closure of X is: X∨X2 ∨X3 . . .∨Xn. Also, in the case X reflexive that is X=I∨X
the transitive closure is Xn since X ∨ X2 = X(X ∨ I) = X · X = X2, etc.

The set of all weak orders (or total preorders) over A is denoted by W(A) [20,
21]. According to [20] and [21], the set of weak orders over the underlying set A,
W(A), is a (join) median semi-lattice. The join operation R1 ∨ R2 of two weak
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orders R1 and R2 is the transitive closure of R1 ∪ R2. If we use matrix notations
X1 = MR1 , X2 = MR2 , then the join R1 ∨ R2 can be represented as

MR1∨R2 = (X1 ∨ X2)
n

Also, the meet of R1 and R2 is given as MR1∧R2 = X1 ∧ X2 The meet operation is
a “partial” operation. It is defined only iff X1 ∧ X2 correspond to a total relation.

Operations ∨ and ∧ over W(A) satisfy:

(i) Every principal filter {S ∈ W(A) : S ≥ R} = F(R) is a distributive lattice
(ii) If every pair of the triple {R, S, T } of W(A) has a lower bound, then R, S, T

have a common lower bound in W(A) (Join median semi-lattice)

Also, W(A) is characterized as a semi-Boolean algebra in the sense that every
principal filter F(R) is a Boolean algebra [21].

Since W(A) is a median semi-lattice it is also a median algebra. In the case
|A| = n, it is easy to see that W(A) contains the n− 1-dimensional hypercube as a
subalgebra but it does not contain the n-dimensional hypercube as a subalgebra.

The results provided in Sections 4.2 and 4.3 could be used as consensus rules for
multicriteria decision making as the next section presents.

5 Application

In this section, an example is presented for the use of the above-mentioned median
structures in choosing a leader for a company. There are 3 competing candidates
namely A, B, C and 4 competing criteria, namely: Experience, Education, Harisma,
and Age. The order of candidates according to the above-mentioned criteria are:
Experience: B > A > C, Education: C > A > B, Harisma: A > B > C, and Age:
B > A > C. By using median computations of the four criteria the final ordering
(and so the suitable leader) will be derived. Since the number of criteria is even, we
get the interval [R1, R2] where R1 is the linear ordering: C < A < B and R2 is
the weak ordering: C < A, C < B, AIB. Since the interval contains only its end
points the decision-maker should reject candidate C and choose either B or AIB,
so it is reasonable to choose B since B is the candidate appeared in both alternative
solutions. Notice that the example is motivated by an example showing the use
of the analytic hierarchy process (AHP) (https://en.wikipedia.org/wiki/Analytic_
hierarchy_process_-_leader_example), and the solution provided by the proposed
technique is the same as with AHP. However, the it should be mentioned the
computational simplicity of the proposed technique as the interval scale and the
eigenvectors calculations required by AHP are avoided.

https://en.wikipedia.org/wiki/Analytic_hierarchy_process_-_leader_example
https://en.wikipedia.org/wiki/Analytic_hierarchy_process_-_leader_example
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6 Conclusions

In this study alternative consensus rules based on algebraic tools are presented
in order to make multicriteria decisions. These techniques require only order
scale pairwise comparisons (Boolean operations) and avoid numerical ones as for
example the well know AHP technique. An example is presented leading to a final
decision that coincides with that obtained through AHP process.
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Norm Estimates for the Composite
Operators

Shusen Ding, Guannan Shi, and Yuming Xing

Abstract In this paper, we obtain both local and global Lp norm inequalities and
imbedding inequalities for the composition of the homotopy operator, differential
operator, and Green’s operator applied to differential forms. These inequalities can
be used to study the integrability of the composition of the operators.

1 Introduction

The purpose of this paper is to obtain norm estimates for the composition T ◦ d ◦
G of the homotopy operator T , differential operator d, and Green’s operator G

applied to differential forms. These three operators are key operators in some areas
of mathematics, such as analysis and partial differential equations. We all know that
any differential form u can be expressed as u = T d(u) + dT (u). Thus, G(u) can
be decomposed as G(u) = T dG(u) + dTG(u). However, dTG(u) = (G(u))B
holds for any differential form u defined in a ball B ∈ R

n, and (G(u))B is a closed
form that has received much investigation in recent years, see [1, 5–7]. Thus, we
are motivated to study the composition T dG(u) in this paper. We prove both local
and global Lp norm inequalities and imbedding inequalities for the composition
T ◦ d ◦ G. Specifically, we find that T ◦ d ◦ G(u) has higher integral exponent
than that of u for a differential form u satisfying certain conditions. Our results will
provide efficient ways to estimate the norm of T ◦ d ◦G(u) in terms of the norm of
u or du.
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As extensions of functions, differential forms have been well studied and used in
recent years, see [1, 2, 7]. We continue to use the traditional notations appearing in
[1] throughout this paper. Particularly, let Ω denote a domain and B denote a ball in
R

n, n ≥ 2. Assume that ∧l = ∧l (Rn) is the set of all l-forms in R
n, and

∧ = ∧(Rn) = ⊕n
l=0 ∧l ((Rn))

is a graded algebra with respect to the exterior products. Let D′(Ω,∧l ) be the
space of all differential l-forms in Ω , and Lp(Ω,∧l ) be the space of all l-forms
u(x) = ∑

I uI (x)dxI in Ω satisfying
∫
Ω
|uI |p < ∞ for all ordered l-tuples I ,

l = 1, 2, · · · , n. We will use d : D′(Ω,∧l ) → D′(Ω,∧l+1), l = 0, 1, · · · , n − 1,
to denote the exterior derivative. The Hodge star operator & : ∧k → ∧n−k is defined
as follows. If

ω = ωi1i2···ik (x1, x2, · · · , xn)dxi1 ∧dxi2 ∧· · ·∧dxik = ωIdxI , i1 < i2 < · · · < ik,

is a differential k-form, then

&ω = &(ωi1i2···ik dxi1 ∧ dxi2 ∧ · · · ∧ dxik ) = (−1)
∑

(I )ωI dxJ ,

where I = (i1, i2, · · · , ik), J = {1, 2, · · · , n} − I , and

∑
(I ) = k(k + 1)

2
+

k∑
j=1

ij .

The Hodge codifferential operator d& : D′(Ω,∧l+1) → D′(Ω,∧l ) is defined by
d& = (−1)nl+1 & d& on D′(Ω,∧l+1), l = 0, 1, · · · , n− 1.

For u ∈ D′(Ω,∧l ), the vector-valued differential form

∇u =
(

∂u

∂x1
, · · · , ∂u

∂xn

)

consists of differential forms ∂u
∂xi

∈ D′(Ω,∧l ), where the partial differentiation
is applied to the coefficients of u. Let |E| denote the n-dimensional Lebesgue
measure of a set E ⊆ R

n. For a function u, the average of u over B is defined
by uB = 1

|B|
∫
B
udx. All integrals involved in this paper are the Lebesgue integrals.

Let C∞(Ω,∧l ) be the space of smooth l-forms on Ω and the Green’s operator G be
defined on C∞(Ω,∧l ) by assigning G(u) to be a solution of the Poisson’s equation

ΔG(u) = u−H(u),
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where H is the harmonic projection operator, see [1] and [7] for more results about
Green’s operator. For any subset E ⊂ R

n and p > 1, we use W 1,p(E,∧l ) to denote
the Sobolev space of l-forms, which equals Lp(E,∧l ) ∩ L

p

1 (E,∧l ) with norm

‖u‖W 1,p(E) = ‖u‖W 1,p(E,∧l ) = diam(E)−1‖u‖p,E + ‖∇u‖p,E. (1)

A homotopy operator T : C∞(Ω,∧l ) → C∞(Ω,∧l−1) is defined by averaging
Ky over all points y ∈ Ω:

T u =
∫
Ω

φ(y)Kyudy,

where φ ∈ C∞
0 (Ω) is normalized so that

∫
φ(y)dy = 1, and the linear operator

Ky : C∞(Ω,∧l ) → C∞(Ω,∧l−1) is defined by

(Kyu)(x; ξ1, · · · , ξl−1) =
∫ 1

0
t l−1u(tx + y − ty; x − y, ξ1, · · · , ξl−1)dt.

See [1] and [3] for more details for the homotopy operator. It is also known that for
each differential form u, we have the decomposition

u = d(T u)+ T (du). (2)

‖∇(T u)‖p,Ω ≤ C|Ω|‖u‖p,Ω, and ‖T u‖p,Ω ≤ C|Ω|diam(Ω)‖u‖p,Ω. (3)

We know that any open subset Ω in R
n is the union of a sequence of cubes

Qk , whose sides are parallel to the axes, whose interiors are mutually disjoint, and
whose diameters are approximately proportional to their distances from F , where F

is the complement of Ω in R
n. Specifically, (1) Ω = ∪∞k=1Qk , (2) Q0

j ∩Q0
k = φ if

j �= k, (3) there exist two constants c1, c2 > 0 (we can take c1 = 1, and c2 = 4), so
that c1diam(Qk) ≤ distance(Qk, F ) ≤ c2diam(Qk). Hence, the definition of the
homotopy operator T can be generalized to any domain Ω in R

n: For any x ∈ Ω ,
x ∈ Qk for some k. Let TQk

be the homotopy operator defined on Qk (each cube
is bounded and convex). Thus, we can define the homotopy operator TΩ on any
domain Ω by TΩ =∑∞

k=1 TQk
χQk

(x).

The nonlinear partial differential equation for differential forms

d&A(x, du) = B(x, du) (4)

is called non-homogeneous A-harmonic equation, where A : Ω × ∧l (Rn) →
∧l (Rn) and B : Ω ×∧l (Rn) → ∧l−1(Rn) satisfy the conditions:

|A(x, ξ)| ≤ a|ξ |p−1, A(x, ξ) · ξ ≥ |ξ |p and |B(x, ξ)| ≤ b|ξ |p−1 (5)



196 S. Ding et al.

for almost every x ∈ Ω and all ξ ∈ ∧l (Rn). Here, a, b > 0 are constants and
1 < p < ∞ is a fixed exponent associated with (4). A solution to (4) is an element
u of the Sobolev space W

1,p
loc (Ω,∧l−1) such that

∫
Ω

A(x, du) · dϕ + B(x, du) · ϕ = 0 (6)

for all ϕ ∈ W
1,p
loc (Ω,∧l−1) with compact support. If u is a function (0-form) in R

n,
Equation (4) reduces to

div Ax,∇u) = B(x,∇u). (7)

If the operator B = 0, Equation (4) becomes

d&A(x, du) = 0, (8)

which is called the (homogeneous) A-harmonic equation. Let A : Ω × ∧l (Rn) →
∧l (Rn) be defined by A(x, ξ) = ξ |ξ |p−2 with p > 1. Then, A satisfies the required
conditions, and (8) becomes the p-harmonic equation d&(du|du|p−2) = 0 for
differential forms.

2 Local Integrability

We first prove the local norm inequalities of the composite operator T ◦ d ◦ G in
this section. The following Lemma 1 (Weak Reverse Hölder’s Inequality) appeared
in [4].

Lemma 1 Let u be a solution of the A-harmonic equation (4) in a domain Ω and
0 < s, t < ∞. Then, there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (9)

for all balls B with σB ⊂ Ω for some σ > 1.

The following Lemma 2 appeared in [3].

Lemma 2 Let u ∈ D′(Q,∧l ) and du ∈ Lp(Q,∧l+1). Then u − uQ is in
Lnp/(n−p)(Q,∧l ) and

(∫
Q

|u− uQ|np/(n−p)dx

)(n−p)/np

≤ Cp(n)

(∫
Q

|du|pdx
)1/p

(10)

for Q a cube or a ball in Rn, l = 0, 1, · · · , n− 1, and 1 < p < n.
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The following Lemma 3 appeared in [5].

Lemma 3 Let u be a smooth differential form defined in Ω and 1 < s < ∞. Then,
there exists a positive constant C = C(s), independent of u, such that

‖dd∗G(u)‖s,B + ‖d∗dG(u)‖s,B + ‖dG(u)‖s,B
+‖d∗G(u)‖s,B + ‖G(u)‖s,B ≤ C(s)‖u‖s,B (11)

for any ball B ⊂ Ω .

Now, we prove the following local norm inequality, which will be used to prove
the global inequality in the next section.

Theorem 1 Assume that u ∈ D′(Ω,∧l ), l = 1, 2, · · · , n, 1 < p < n, and T is the
homotopy operator and G is Green’s operator. If u ∈ L

p
loc(Ω,∧l ), then T dG(u) ∈

Ls
loc(Ω,∧l ) for any 0 < s < np/(n − p). Moreover, there exists a constant C,

independent of u, such that

‖T dG(u)‖s,B ≤ C|B|1+1/s+1/n−1/p‖u‖p,σB (12)

for any ball B with σB ⊂ Ω for some σ > 1.

Proof Note that for any constant p > 1 and any differential form u, we have

d(T dG(u)) = (dG(u))B

and

‖(dG(u))B‖p,B ≤ C1‖dG(u)‖p,B ≤ C2‖u‖p,B, (13)

where C1 and C2 are the constants. Applying Lemma 2 to T dG(u) and then using
(3) and Lemma 3, we have

‖T dG(u)− (T dG(u))B‖np/(n−p),B

= (∫
B
|T dG(u)− (T dG(u))B |np/(n−p)dx

)(n−p)/np

≤ C3
(∫

B
|d(T dG(u))|pdx)1/p

≤ C4
(∫

B
|∇(T dG(u))|pdx)1/p

= C5|B|
(∫

B
|dG(u)|pdx)1/p

≤ C6|B|
(∫

B
|u|pdx)1/p .

(14)

We know that (T dG(u))B is a closed form, so it satisfies the Weak Reverse Hölder
Inequality, that is,
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‖(T dG(u))B‖np/(n−p),B ≤ C7|B|−1/n‖(T dG(u))B‖p,σB

≤ C8|B|−1/n‖T dG(u)‖p,σB

≤ C9|B|−1/n|B|1+1/n‖dG(u)‖p,σB

≤ C9|B|‖dG(u)‖p,σB

≤ C10|B|‖u‖p,σB,

(15)

where σ > 1 is a constant. Using Minkowski’s inequality, (14), and (15), we find
that

‖T dG(u)‖np/(n−p),B

≤ ‖T dG(u)− (T dG(u))B‖np/(n−p),B + ‖(T dG(u))B‖np/(n−p),B

≤ C6|B|‖u‖p,B + C10|B|‖u‖p,σB

≤ C11|B|‖u‖p,σB.

(16)

By the monotonic property of the Lp-space, for any s with 0 < s < np/(n − p),
we obtain

(
1

|B|
∫
B

|T dG(u)|sdx
)1/s

≤
(

1

|B|
∫
B

|T dG(u)|np/(n−p)dx

)(n−p)/np

,

that is, it follows that

‖T dG(u)‖s,B ≤ |B|1/s−1/p+1/n‖T dG(u)‖np/(n−p),B . (17)

Combining (16) and (17), we obtain

‖T dG(u)‖s,B ≤ C11|B|1+1/s−1/p+1/n‖u‖p,σB.

We have completed the proof of Theorem 1.  "
We should notice that the above inequality (12) can be written as the following

symmetric version:

(
1

|B|
∫
B

|T dG(u)|sdx
)1/s

≤ C|B|1+1/n
(

1

|B|
∫
σB

|u|pdx
)1/p

. (12′)

Also, from Theorem 1 and Minkowski’s inequality, it follows that

‖T dG(u)− (T dG(u))B‖s,B
≤ ‖T dG(u)‖s,B + ‖(T dG(u))B‖s,B
≤ ‖T dG(u)‖s,B + C1‖T dG(u)‖s,B
≤ C2|B|1+1/s+1/n−1/p‖u‖p,σB.
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Therefore, we obtain the following corollary about the integrability of T dG(u) −
(T dG(u))B .

Corollary 1 Assume that u ∈ D′(Ω,∧l ), l = 1, 2, · · · , n, 1 < p < n, and T is the
homotopy operator and G is Green’s operator. If u ∈ L

p
loc(Ω,∧l ), then T dG(u)−

(T dG(u))B ∈ Ls
loc(Ω,∧l ) for any 0 < s < np/(n − p). Moreover, there exists a

constant C, independent of u, such that

‖T dG(u)− (T dG(u))B‖s,B ≤ C|B|1+1/s+1/n−1/p‖u‖p,σB (18)

for any ball B with σB ⊂ Ω for some σ > 1.

Similarly, we can write (18) in the following symmetric version:

(
1

|B|
∫
B

|T dG(u)− (T dG(u))B |sdx
)1/s

≤ C|B|1+1/n
(

1

|B|
∫
σB

|u|pdx
)1/p

(18′)
for all balls B with σB ⊂ Ω for some σ > 1.

Note that in (12) and (18), the integral exponent s on the left side may be much
larger than the exponent p on the right side since np/(n − p) → ∞ as p → n-,
which gives the higher integrability of the composite operator T ◦ d ◦G for the case
1 < p < n. Next, we prove the higher integrability of T ◦ d ◦G for the case p ≥ n.

Theorem 2 Let u ∈ D′(Ω,∧l ), l = 1, 2, · · · , n, p ≥ n, and T be the homotopy
operator and G be Green’s operator. If u ∈ L

p
loc(Ω,∧l ), then T dG(u) ∈

Ls
loc(Ω,∧l ) for any s > 0. Moreover, there exists a constant C, independent of

u, such that

‖T dG(u)‖s,B ≤ C|B|1+1/s+1/n−1/p‖u‖p,σB (19)

for any ball B with σB ⊂ Ω for some σ > 1.

Proof Let k = max{1, s/p} and choose q = knp/(n + kp). Since n − p ≤ 0, we
have

q − p = p((k(n− p)− n)

n+ kp
< 0, (20)

which means q < p. We also notice that 1 < q = knp/(n + kp) < n. Applying
Lemma 2 to T dG(u), and then using (3) and the monotonic property of the Lp-
space, we find that
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(∫
B
|T dG(u)− (T dG(u))B |nq/(n−q)dx

)(n−q)/nq

≤ C1
(∫

B
|d(T dG(u))|qdx)1/q

≤ C1
(∫

B
|∇(T dG(u))|qdx)1/q

≤ C2|B|‖dG(u)‖q,B
≤ C3|B|‖u‖q,B
≤ C3|B|1+1/q−1/p‖u‖p,B.

(21)

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1. For the
completing purpose, we continue the proof as follows. We know that (T dG(u))B is
a closed form, so it satisfies the Weak Reverse Hölder Inequality, that is

‖(T dG(u))B‖nq/(n−q),B

≤ C4|B|−1/n‖(T dG(u))B‖q,σB

≤ C5|B|−1/n‖T dG(u)‖q,σB

≤ C6|B|−1/n|B|1+1/n‖dG(u)‖q,σB

≤ C6|B|‖dG(u)‖q,σB

≤ C7|B|‖u‖q,σB

≤ C7|B|1+1/q−1/p‖u‖p,σB,

(22)

where σ > 1 is a constant. Using Minkowski’s inequality again, (21), and (22), we
have

‖T dG(u)‖nq/(n−q),B

≤ ‖T dG(u)− (T dG(u))B‖nq/(n−q),B + ‖(T dG(u))B‖nq/(n−q),B

≤ C3|B|1+1/q−1/p‖u‖p,B + C7|B|1+1/q−1/p‖u‖p,σB

≤ C3|B|1+1/q−1/p‖u‖p,σB + C7|B|1+1/q−1/p‖u‖p,σB

≤ C8|B|1+1/q−1/p‖u‖p,σB.

(23)

From the choice of k, we know that nq/(n − q) = kp > s, using the monotonic
property of the Lp-space again and (23),

‖T dG(u)‖s,B ≤ |B|1/s+1/n−1/q‖T dG(u)‖nq/(n−q),B

≤ C8|B|1+1/s+1/n−1/p‖u‖p,σB,

which is equivalent to (19). We have completed the proof of Theorem 2.  "
By the same method, we can obtain the local higher integrability for Green’s

operator G and the composition of the homotopy operator T , differential operator
d, and projection operator H for the case 1 < p < n or p ≥ n, respectively. That
is, using the similar methods, we can prove the following Theorems 3 and 4.

Theorem 3 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, 1 < p <

n, T be the homotopy operator, G be Green’s operator, and H be the projection
operator. If du ∈ L

p
loc(Ω,∧l ), then T dH(u) ∈ Ls

loc(Ω,∧l ) for any 0 < s <
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np/(n− p). Moreover, there exist constants C1 and C2, independent of u, such that

‖T dH(u)‖s,B ≤ C1|B|1+1/s+1/n−1/p‖du‖p,σB (24)

and

‖G(u)‖s,B ≤ C1|B|1/s+1/n−1/p‖u‖p,σB (25)

for any ball B with σB ⊂ Ω for some σ > 1.

Theorem 4 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, p ≥ n, and
T be the homotopy operator and H be the projection operator. If du ∈ L

p
loc(Ω,∧l ),

then T dH(u) ∈ Ls
loc(Ω,∧l ) for any s > 0. Moreover, there exist constants C1 and

C2, independent of u, such that

‖T dH(u)‖s,B ≤ C1|B|1+1/s+1/n−1/p‖du‖p,σB (26)

and

‖G(u)‖s,B ≤ C1|B|1/s+1/n−1/p‖u‖p,σB (27)

for all balls B with σB ⊂ Ω for some σ > 1.

Now, we are ready to prove the higher order imbedding inequality for the
composition T ◦ d ◦G in the case 1 < p < n and the case p ≥ n in the following
Theorems 5 and 6, respectively.

Theorem 5 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, 1 < p < n,
and T be the homotopy operator and G be Green’s operator. If du ∈ L

p
loc(Ω,∧l ),

then T dG(u) ∈ W
1,s
loc (Ω,∧l ) for any 0 < s < np/(n−p). Specifically, there exists

a constant C, independent of u, such that

‖T dG(u)‖W 1,s (B) ≤ C|B|1+1/s+1/n−1/p‖du‖p,σB (28)

and

‖T dG(u)− (T dG(u))B‖W 1,s (B) ≤ C|B|1+1/s+1/n−1/p‖du‖p,σB (29)

for any ball B with σB ⊂ Ω for some σ > 1.

Proof By Definitions (1) and (25), we have
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‖T dG(u)‖W 1,s (B)

= diam(B)−1‖T dG(u)‖s,B + ‖∇T dG(u)‖s,B
≤ diam(B)−1C1|B|1+1/n‖dG(u)‖s,B + C2|B|‖dG(u)‖s,B
= diam(B)−1C1|B|1+1/n‖G(du)‖s,B + C2|B|‖G(du)‖s,B
≤ C3|B|‖G(du)‖s,B
≤ C4|B|1+1/s+1/n−1/p‖du‖p,σB,

(30)

which indicates that (28) holds. Next, we prove that the inequality (29) is also true.
Using (1), (3), and (27) and the fact that dT dG(u) = (dG(u))B , we obtain

‖T dG(u)− (T dG(u))B‖W 1,s (B)

≤ ‖T dT dG(u)‖W 1,s (B)

= (diam(B))−1‖T dT dG(u)‖s,B + ‖∇T dT dG(u)‖s,B
≤ (diam(B))−1C5|B|1+1/n‖dT dG(u)‖s,B + C6|B|‖dT dG(u)‖s,B
≤ C7|B|‖dT dG(u)‖s,B
= C7|B|‖(dG(u))B‖s,B
≤ C8|B|‖dG(u)‖s,B
≤ C8|B|‖G(du)‖s,B
≤ C9|B||B|1/s+1/n−1/p‖du‖p,σB

≤ C10|B|1+1/s+1/n−1/p‖du‖p,σB.

(31)

Thus, (29) also holds. The proof of Theorem 5 has been completed.  "
By the same method as we developed in the proof of Theorem 5, we obtain the

following higher order imbedding for the case p ≥ n.

Theorem 6 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, p ≥ n,
and T be the homotopy operator and G be Green’s operator. If du ∈ L

p
loc(Ω,∧l ),

then T dG(u) ∈ W
1,s
loc (Ω,∧l ) for any s > 0. Moreover, there exists a constant C,

independent of u, such that

‖T dG(u)‖W 1,s (B) ≤ C|B|1+1/s+1/n−1/p‖du‖p,σB (32)

and

‖T dG(u)− (T dG(u))B‖W 1,s (B) ≤ C|B|1+1/s+1/n−1/p‖du‖p,σB (33)

for any ball B with σB ⊂ Ω for some σ > 1.
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3 Global Integrability

In this section, we prove the global higher integrability and the higher order
imbedding inequalities for the composition T ◦ d ◦ G. We need the following
Covering Lemma.

Lemma 4 Each domain Ω has a modified Whitney cover of cubes V = {Qi} such
that

∪i Qi = Ω,
∑
Qi∈V

χ√ 5
4Qi

≤ NχΩ, (34)

and some N > 1, and if Qi ∩Qj �= ∅, then there exists a cube R (this cube need not
be a member of V) in Qi ∩Qj such that Qi ∪Qj ⊂ NR. Moreover, if Ω is δ-John,
then there is a distinguished cube Q0 ∈ V, which can be connected with every cube
Q ∈ V by a chain of cubes Q0,Q1, · · · ,Qk = Q from V and such that Q ⊂ ρQi ,
i = 0, 1, 2, · · · , k, for some ρ = ρ(n, δ).

We first prove the following global Lp norm inequality that indicates that
T dG(u) has a higher order integrability compared with u.

Theorem 7 Let u ∈ D′(Ω,∧l ) be a differential form, l = 12, · · · , n, 1 < p < n

and T be the homotopy operator and G be Green’s operator. If u ∈ Lp(Ω,∧l ),
then T dG(u) ∈ Ls(Ω,∧l ) for any 0 < s < np/(n − p). Moreover, there exists a
constant C, independent of u, such that

‖T dG(u)‖s,Ω ≤ C|Ω|1+1/s+1/n−1/p‖u‖p,Ω (35)

for any convex domain Ω ⊂ R
n with |Ω| < ∞.

Proof From Lemma 4 and Theorem 1 and noticing 1 + 1/s + 1/n− 1/p > 0, we
find that

‖T dG(u)‖s,Ω ≤∑B∈V ‖T dG(u)‖s,B
≤∑B∈V

(
C1|B|1+1/s+1/n−1/p‖u‖p,σB

)
≤∑B∈V

(
C1|Ω|1+1/s+1/n−1/p‖u‖p,σB

)
≤ C2|Ω|1+1/s+1/n−1/pN‖u‖p,Ω

≤ C3|Ω|1+1/s+1/n−1/p‖u‖p,Ω.

(36)

The proof of Theorem 7 has been completed.  "
We already proved the global higher integrability for T ◦ d ◦ G for the case

1 < p < n above. Using Theorem 2 and the same method as we developed above,
we can prove the following global integrability for the case p ≥ n.

Theorem 8 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, p ≥ n,
and T be the homotopy operator and G be Green’s operator. If u ∈ Lp(Ω,∧l ),
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then T dG(u) ∈ Ls(Ω,∧l ) for any s > 0, and inequality (35) holds for any convex
domain Ω ⊂ R

n with |Ω| < ∞.

Theorem 9 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, 1 < p < n,
and T be the homotopy operator and G be Green’s operator. If du ∈ Lp(Ω,∧l ),
then T dG(u) ∈ W 1,s(Ω,∧l ) for any 0 < s < np/(n− p), and, furthermore,

‖T dG(u)‖W 1,s (Ω) ≤ C|Ω|1+1/s+1/n−1/p‖du‖p,Ω (37)

and

‖T dG(u)− (T dG(u))Ω‖W 1,s (Ω) ≤ C|Ω|1+1/s+1/n−1/p‖du‖p,Ω (38)

for any convex domain Ω ⊂ R
n with |Ω| < ∞.

Proof From (25) and Lemma 4 and noticing 1/s + 1/n − 1/p > 0 since 0 < s <

np/(n− p), we have

‖dG(u)‖s,Ω = ‖G(du)‖s,Ω ≤ C1|Ω|1/s+1/n−1/p‖du‖p,Ω (39)

and

‖G(u)‖s,Ω ≤ C2|Ω|1/s+1/n−1/p‖u‖p,Ω. (40)

Using Definitions (1), (3), and (39), we obtain

‖T (G(u))‖W 1,s (Ω)

= (diam(Ω))−1‖T dG(u)‖s,Ω + ‖∇T dG(u)‖s,Ω
≤ (diam(Ω))−1C3|Ω|1+1/n‖dG(u)‖s,Ω + C4|Ω|‖dG(u)‖s,Ω
≤ C5|Ω|‖dG(u)‖s,Ω
= C5|Ω|‖G(du)‖s,Ω
≤ C6|Ω||Ω|1/s+1/n−1/p‖du‖p,Ω

≤ C7|Ω|1+1/s+1/n−1/p‖du‖p,Ω.

(41)

Thus, (37) holds. Next, we prove (38). Using (1), (3), and (39) and Lemma 3, we
find that
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‖T dG(u)− (T dG(u))Ω‖W 1,s (Ω)

= ‖T d(T dG(u))‖W 1,s (Ω)

= (diam(Ω))−1‖T d(T dG(u))‖s,Ω + ‖∇T d(T dG(u))‖s,Ω
≤ (diam(Ω))−1C6|Ω|1+1/n‖dT dG(u)‖s,Ω + C7|Ω|‖dT dG(u)‖s,Ω
≤ C8|Ω|‖dT (dG(u))‖s,Ω
≤ C8|Ω|‖(dG(u))Ω‖s,Ω
≤ C9|Ω|‖G(du)‖s,Ω
≤ C10|Ω|1/s+1/n−1/p‖du‖p,Ω.

(42)

So, the inequality (38) is true. We have completed the proof of Theorem 9.  "
We all know that the imbedding inequality is stronger than the Lp norm

inequality. From the imbedding inequality, we can prove the following Lp norm
inequality with the higher integral exponent on the left hand side.

Corollary 2 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, 1 < p < n,
and T be the homotopy operator and G be Green’s operator. If du ∈ Lp(Ω,∧l ),
then T (G(u))− (T (G(u)))Ω ∈ Ls(Ω,∧l ) for any 0 < s < np/(n− p) and

‖T dG(u)− (T dG(u))Ω‖s,Ω ≤ C‖du‖p,Ω (43)

for any convex domain Ω ⊂ R
n with |Ω| < ∞.

Proof First, note that diam(Ω)‖∇(T dG(u) − (T dG(u))Ω)‖s,Ω ≥ 0. Applying
Theorem 9 and Definition (1), we obtain

‖T dG(u)− (T dG(u))Ω‖s,Ω
≤ ‖T dG(u)− (T dG(u))Ω‖s,Ω + diam(Ω)‖T dG(u)− (T dG(u))Ω‖s,Ω
= diam(Ω)

(
(diam(Ω))−1‖T dG(u)− (T dG(u))Ω‖s,Ω

+‖∇(T dG(u)− (T dG(u))Ω)‖s,Ω
)

= diam(Ω)‖T dG(u)− (T dG(u))Ω‖W 1,s (Ω)

= C1diam(Ω)|Ω|1+1/s+1/n−1/p‖du‖p,Ω

≤ C2|Ω|1+1/s+2/n−1/p‖du‖p,Ω

≤ C3‖du‖p,Ω.

We have completed the proof of Corollary 2.  "
Using the same method as we did in the proof of Theorem 9, we can prove the

global result for the case p ≥ n.

Theorem 10 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, p ≥ n,
and T be the homotopy operator and G be Green’s operator. If u ∈ Lp(Ω,∧l ),
then T (G(u)) ∈ W 1,s(Ω,∧l ) for any s > 0 and

‖T dG(u)‖W 1,s (Ω) ≤ C|Ω|1+1/s+1/n−1/p‖du‖p,Ω (44)
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and

‖T dG(u)− (T dG(u))Ω‖W 1,s (Ω) ≤ C|Ω|1+1/s+1/n−1/p‖du‖p,Ω (45)

for any convex domain Ω ⊂ R
n with |Ω| < ∞.

By the same method as we did for the case 1 < p < n above, we prove the
following Lp norm inequality with the higher integral exponent on the left side for
the case p ≥ n.

Corollary 3 Let u ∈ D′(Ω,∧l ) be a differential form, l = 1, 2, · · · , n, p ≥ n, and
T be the homotopy operator and G be Green’s operator. If du ∈ Lp(Ω,∧l ), then
T (G(u)) ∈ W 1,s(Ω,∧l ) for any s > 0 and

‖T (G(u))− (T (G(u)))Ω‖s,Ω ≤ C‖du‖p,Ω (46)

for any convex domain Ω ⊂ R
n with |Ω| < ∞.

Remark (i) The global inequalities can be proved in more general domains, such
as the Lp-averaging domains and Lϕ(μ)-averaging domains, see [1] for more
properties of these two kinds of domains. (ii) The method developed in this paper
can be used to prove the norm inequalities for other operators.
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A Variational Inequality Based Stochastic
Approximation for Inverse Problems in
Stochastic Partial Differential Equations

Rachel Hawks, Baasansuren Jadamba, Akhtar A. Khan, Miguel Sama,
and Yidan Yang

Abstract The primary objective of this work is to study the inverse problem of
identifying a parameter in partial differential equations with random data. We
explore the nonlinear inverse problem in a variational inequality framework. We
propose a projected-gradient-type stochastic approximation scheme for general
variational inequalities and give a complete convergence analysis under weaker
conditions on the random noise than those commonly imposed in the available liter-
ature. The proposed iterative scheme is tested on the inverse problem of parameter
identification. We provide a derivative characterization of the solution map, which
is used in computing the derivative of the objective map. By employing a finite
element based discretization scheme, we derive the discrete formulas necessary to
test the developed stochastic approximation scheme. Preliminary numerical results
show the efficacy of the developed framework.
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1 Introduction

Let (Ω,F,P) be a probability space, that is, Ω is a nonempty set whose elements
are termed as elementary events, F is a σ -algebra of subsets of Ω, and P a
probability measure. Let D ⊂ R

n be a sufficiently smooth bounded domain and
∂D be the boundary of Ω . Given two random fields a : Ω × D �→ R and
f : Ω ×D → R, we consider the stochastic partial differential equation (SPDE) of
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finding a random field u : Ω ×D → R that almost surely satisfies the following:

−∇ · (a(ω, x)∇u(ω, x)) = f (ω, x), in D, (1a)

u(ω, x) = 0, on ∂D. (1b)

The above SPDE models interesting real-world phenomena and has been studied
in great detail in the deterministic setting. For example, in (1), u may represent
the steady-state temperature at a given point of a body; then a would be a variable
thermal conductivity coefficient, and f an external heat source. The system (1) also
models underground steady-state aquifers in which the parameter a is the aquifer
transmissivity coefficient, u is the hydraulic head, and f is the recharge. Some
details on inverse problems can be found in [6–8, 10, 12, 16, 18, 20–22].

A natural interpretation of (1) is that realizations of the data lead to deterministic
PDEs. That is, for a fixed ω ∈ Ω, SPDE (1), under appropriate conditions, admits a
weak solution u(ω, ·) ∈ H 1

0 (D).

The objective of this work is to study the nonlinear inverse problem of identifying
the parameter a from a measurement of the solution u of (1) by solving a stochastic
optimization problem of the following form:

min
a∈A J(a) := E [J (a, ω)] . (2)

Here A is the set of feasible parameters, which is a subset of a real Hilbert space H ,
J (a, ω) is a misfit function, which we will define shortly, and E is the expectation
with respect to the probability measure.

If the expected value E[J (a, ω)] is readily assessable, either analytically or
numerically, then (2) is practically a deterministic optimization problem that can be
solved by a wide variety of available numerical methods. However, the evaluation of
E[J (a, ω)] is a challenging task. For instance, even when the random vector ω has
a known probability distribution, the computation of the expected value E[J (a, ω)]
could involve computationally expensive multi-dimensional integral evaluations. A
likely scenario is when the function J (a, ω) is known, but the distribution of ω is
unknown, and any information on ω can only be gathered using sampling. Another
challenging situation occurs when the expected value E[J (a, ω)] is not observable,
and it must be evaluated through a simulation process. In all such situations, the
existing methods for deterministic optimization problems are not applicable and
ought to be appropriately modified.

Our objective is to employ the stochastic approximation approach (SAA) in
a Hilbert space setting for solving the nonlinear inverse problem of parameter
identification in stochastic PDEs. The SAA has a long history and has been used
for a wide variety of problems. On the other hand, SPDEs have also received a
great deal of attention in recent years. To the best of our knowledge, this is the first
time that the SAA approach is being used for nonlinear inverse problems. Before
describing the main contributions and our strategy, let us briefly discuss the key
ideas that have been used in these two disciplines.
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During the past several decades, the dynamic field of stochastic approximation,
initiated by the seminal paper by Robbins and Monro [32], witnessed an explosive
growth in numerous directions. To give a brief review of some work relevant to this
research, we note that Kiefer and Wolfowitz [25] extended the stochastic approx-
imation approach to finding a unique minimum/maximum of the one-dimensional
unknown regression function. An informative survey of the earlier developments in
the stochastic approximation is by Lai [27]. Many authors have studied stochastic
approximation in general space inspired by applications in control theory and related
areas. A small sample of such contributions includes the research by Barty, Roy,
and Strugarek [3], Goldstein [17], Kushner and Shwartz [26], Salov [35], Yin and
Zhu [37], where more references can be found. Interesting related results have been
given by Bertsekas and Tsitsiklis [5], Culioli and Cohen [9], and others.

On the other hand, the stochastic PDE-constrained optimization also attracted a
great deal of attention in recent years. Such problems emerged from two sources,
the inverse problems of parameter or source identification and optimal control
problems. For example, Narayanan and Zabaras [2] studied the inverse problem in
the presence of uncertainties in the material data and developed an adjoint approach
based identification process using the spectral stochastic finite element method.
In [38], the authors developed a scalable methodology for the stochastic inverse
problem using a sparse grid collocation approach. In [36], the authors developed a
robust and efficient method by employing generalized polynomial chaos expansion
to identifying uncertain elastic parameters from experimental modal data. In [30],
the authors presented an implicit sampling for parameter identification. In [34],
the authors studied the parameter identification in a Bayesian setting for the
elastoplastic problem. In [31], the authors explored the optimal control problem
for the stochastic diffusion equation. In [24], the authors focused on determining
the optimal thickness subjected to stochastic force. In [1], the authors investigated
the impact of errors and uncertainties of the conductivity on the electrocardiography
imaging solution.

Since the stochastic approximation approach is designed for problems with
either noisy experimental values or noisy samples of the function, it seems ideal
for solving inverse and ill-posed problems. However, the use of the stochastic
approximation approach is mostly non-existent. Note that Bertran [4], who studied
a stochastic projected gradient algorithm in a Hilbert space, gave an application
to optimal control problems where the data was uncertain. A formal study of the
stochastic approximation approach for optimal control in stochastic PDEs was
initiated independently by Martin, Krumschield, and Nobile [29] and Geiersbach
and Pflug [11]. Since the control-to-state map is linear, these problems involve a
convex objective function. On the other hand, the inverse problem we consider in
the present work is nonlinear, and the commonly used output least-squares (OLS)
objective functional is nonconvex, in general. Therefore, the classical results of
convex optimization cannot be combined with the SAA approach. We circumvent
this difficulty by employing a modified output least-squares (MOLS) objective
functional that uses the energy norm and is always convex. The use of the MOLS
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functional permits us to use the stochastic approximation to the inverse problem of
identifying a parameter in stochastic PDEs.

The contents of this paper are organized into five sections. Section 2 presents
a projected gradient scheme for variational inequalities in the general stochastic
approximation framework. We provide complete convergence analysis for the pro-
posed iterative scheme under weaker conditions on the random noise. In Section 3,
we focus on the inverse problem and present three optimization formulations,
namely, the OLS functional, the MOLS, functional, and the equation error (EE)
approach. The primary focus, however, remains on the MOLS approach. Besides
providing technical details on the three functionals in a continuous setting, we
also provide a discretization scheme, including discrete formulas for the objective
functionals and the gradient for the MOLS functional. Two numerical examples,
given in Section 4, demonstrate the feasibility and the efficacy of the developed
framework. The paper concludes with some remarks and a discussion of future
objectives.

2 Stochastic Approximation for Variational Inequalities

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, K ⊂ H be
nonempty, closed, and convex, and F : H �→ H be a given map.

We consider the variational inequality of finding u ∈ K such that

〈F(u), v − u〉 ≥ 0, for all v ∈ K. (3)

We aim to develop iterative methods for (3) in the general framework of
stochastic approximation, that is, when the map F can only be accessed with some
random noise. As a particular case, we will explore the variational inequality of
finding u ∈ K such that

〈E[G(u,ω)], v − u〉 ≥ 0, for every v ∈ K, (4)

where G(·, ·) : Ω ×H �→ H, and E[G(u,ω)] is the expected value of G(u,ω).
Our focus is on the following projected stochastic approximation scheme for (3):

un+1 = PK [un − αn(F (un)+ ωn)], αn > 0. (5)

Here F(un) is the true value of F at un, F (un) + ωn is an approximation of F at
un, and ωn is a stochastic error. In the context of (4), F(un) + ωn = G(un, ωn),

where ωn is a sample of the random variable ω. To be specific, here at iteration n,
we use a sample ωn of ω to calculate G(un, ω) and treat it as an approximation
of E[G(un, ω)] = F(un). Evidently, F(un) can be approximated without any
information on the probability distribution of ω.
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We recall that, given the probability space (Ω,F,P), a filtration {Fn} ⊂ F is an
increasing sequence of σ -algebras. A sequence of random variable {ωn} is termed
to be adapted to a filtration Fn, if and only if, ωn ∈ Fn for all n ∈ N, that is, ωn

is Fn-measurable. Moreover, the natural filtration is the filtration generated by the
sequence {ωn} and is given by Fn = σ(ωn : m ≤ n).

The following result by Robbins and Siegmund [33] will be used shortly:

Lemma 1 Let Fn be an increasing sequence of σ -algebras, and Vn, an, bn, and

cn be nonnegative random variables adapted to Fn. Assume that
∞∑
n=1

an < ∞ and

∞∑
n=1

bn < ∞, almost surely, and

E[Vn+1|Fn] ≤ (1 + an)Vn − cn + bn.

Then {Vn} is almost surely convergent and
∞∑
n=1

cn < ∞, almost surely.

We also need the following notions of monotonicity and continuity:

Definition 1 Given the Hilbert space H , let F : X �→ X∗ be a nonlinear map. The
map F is called:

1. monotone, if

〈Fu− Fv, u− v〉 ≥ 0, for all u, v ∈ X. (6)

2. m-strongly monotone, if there exists a constant m > 0 such that

〈Fu− Fv, u− v〉 ≥ m‖u− v‖2, for all u, v ∈ X. (7)

3. L-Lipschitz continuous, if there exists a constant L > 0 such that

‖Fu− Fv‖ ≤ L‖u− v‖, for all v, v ∈ X. (8)

4. hemicontinuous, if the real function t �→ 〈F(u+tv), w〉 is continuous on [0, 1],
for all u, v,w ∈ X.

The following result provides the convergence analysis for the scheme (5):

Theorem 1 Let H be a real Hilbert space, K ⊂ H be nonempty, closed, and
convex, and F : H �→ H be given. Let {ωn} be an H -valued sequence of random
variables on a probability space (Ω,F,P). Let {un} be the sequence generated by
(5) and Fn := σ(u0, . . . , un) be a filtration on (Ω,F,P) such that {un} is Fn-
measurable. Assume that the following conditions hold:

(A1) There is a constant c > 0 such that ‖F(u)‖ ≤ c(1+‖u‖), for every u ∈ K.
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(A2) F is m-strongly monotone and hemicontinuous.
(A3) There are constants c1 ≥ 0 and c2 > 0 such that

‖E [ωn|Fn] ‖ ≤ c1βn (1 + ‖F(un)‖) , βn > 0, (9)

E

[
‖ωn‖2|Fn

]
≤ c2

(
1 + 1

δn
‖F(un)‖2

)
, δn > 0. (10)

(A4) The sequences {αn}, {βn}, and {δn} of positive reals satisfy:

∑
n∈N

αn = ∞,
∑
n∈N

α2
n < ∞,

∑
n∈N

α2
n

δn
< ∞,

∑
n∈N

αnβn < ∞. (11)

Then, {un} converges, almost surely, to the unique solution ū of (3).

Proof Due to the strong monotonicity of F , variational inequality (3) has a unique
solution ū ∈ K. Then, we have ū = PK(ū), and by (5) and the m-strong
monotonicity of F, we get

‖un+1 − ū‖2 = ‖PK(un − αn(F (un)+ ωn))− PK(ū)‖2

≤ ‖un − ū− αn(F (un)+ ωn)‖2

= ‖un − ū‖2 + α2
n‖F(un)+ ωn‖2 − 2αn〈F(un)+ ωn, un − ū〉

≤ (1 − 2mαn)‖un − ū‖2 + 2α2
n‖F(un)‖2 + 2α2

n‖ωn‖2

− 2αn〈ωn, un − ū〉,

where we used the m-strong monotonicity of F to deduce that

〈F(un), un − ū〉 ≥ m‖un − ū‖2 + 〈F(ū), un − ū〉 ≥ m‖un − ū‖2.

Next, by taking conditional expectation with respect to Fn, we deduce

E [‖ un+1 − ū‖2|Fn] ≤ (1 − 2mαn)‖un − ū‖2 + 2α2
n‖F(un)‖2

+ 2α2
nE

[
‖ωn‖2|Fn

]
+ 2αn‖un − ū‖‖E [ωn|Fn] ‖. (12)

To find bounds on the terms in (12), we begin by noticing that

‖F(un)‖ ≤ c(1 + ‖un‖)
≤ c(1 + ‖ū‖)+ c‖un − ū‖
≤ k1(1 + ‖un − ū‖), (13)

where k1 := c(1 + ‖ū‖), and hence by setting k2 := 4k2
1, we obtain
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2α2
n‖F(un)‖2 ≤ k2α

2
n(1 + ‖un − ū‖2). (14)

Moreover, by the inequality a ≤ 1+a2, which holds for all a ∈ R, and (13), we get

‖un − ū‖‖E [ωn|Fn] ‖ ≤ βn‖un − ū‖(1 + ‖F(un)‖)
≤ βn‖un − ū‖(1 + k1 + k1‖un − ū‖))
≤ βn(1 + k1)‖un − ū‖ + k1βn‖un − ū‖2

≤ βn(1 + k1)(1 + ‖un − ū‖2)+ k1βn‖un − ū‖2

≤ βn(1 + k1)+ (1 + 2k1)βn‖un − ū‖2,

and hence setting k3 := 2(1 + 2k1), we obtain

2αn‖un − ū‖‖E [ωn|Fn] ‖ ≤ k3αnβn(1 + ‖un − ū‖2). (15)

Finally, using (13) again, we obtain

E

[
‖ωn‖2|Fn

]
≤ c2

(
1 + ‖F(un)‖2

δn

)

≤ c2

(
1 + 2k2

1(1 + ‖un − ū‖2)

δn

)

≤ c2 + 2c2k
2
1

δn
(1 + ‖un − ū‖2),

and hence, setting k4 := 4c2k
2
1, we obtain

2α2
nE

[
‖ωn‖2|Fn

]
≤ 2c2α

2
n +

k4α
2
n

δn
+ k4α

2
n

δn
‖un − ū‖2. (16)

Summarizing, due to (12), (14), (15), and (16), there is a constant k > 0 with

E [‖ un+1 − ū‖2|Fn] ≤
(

1 − 2mαn + kα2
n + kαnβn + kα2

n

δn

)
‖un − ū‖2

+ kα2
n + kαnβn + kα2

n

δn
, (17)

which can be written as

E

[
‖un+1 − ū‖2|Fn

]
≤ (1 + an)‖un − ū‖2 − cn + bn,
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where

an := kα2
n + kαnβn + kα2

n

δn
,

bn := kα2
n + kαnβn + kα2

n

δn
,

cn := 2mαn‖un − ū‖2.

Since
∑
n∈N

an < ∞ and
∑
n∈N

bn < ∞, as a consequence of Theorem 1, it follows that

‖un − ū‖2 converges, almost surely, and

∑
n∈N

2mαn‖un − ū‖2 < +∞,

which, due to
∑
n∈N

αn = ∞, confirms that ‖un − ū‖ → 0, almost surely. The proof

is complete.  "
We shall now discuss two special cases of the above result:

Corollary 1 Let H be a real Hilbert space, K ⊂ H be nonempty, closed, and
convex, and F : H �→ H be given. Let {ωn} be an H -valued sequence of random
variables on a probability space (Ω,F,P). Let {un} be the sequence generated by
(5) and Fn := σ(u0, . . . , un) be a filtration on (Ω,F,P) such that {un} is Fn-
measurable. Assume that the following conditions hold:

(C1) F is m-strongly monotone and L-Lipschitz continuous.

(C2) E [ωn|Fn] = 0, and
∑
n

α2
nE

[
‖ωn‖2|Fn

]
< ∞.

(C3) αn ∈ (0, 2m/L2).

Then, {un} converges, almost surely, to the unique solution ū of (3).

Proof Note that ū = PK(ū− αnF (ū)), and hence

‖un+1 − ū‖2 = ‖PK(un − αn(F (un)+ ωn))− PK(ū− αnF (ū))‖2

≤ ‖un − ū− αn(F (un)− F(ū)+ ωn)‖2

≤ ‖un − ū‖2 + α2
n‖F(un)− F(ū)+ ωn‖2

− 2αn〈F(un)− F(ū)+ ωn, un − ū〉
≤ (1 − 2mαn + 2α2

nL
2)‖un − ū‖2 + 2αn‖ωn‖2 − 2αn〈ωn, un − ū〉,

and by taking the expectation past Fn, we deduce
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E [‖ un+1 − ū‖2|Fn] ≤ (1 − 2mαn + 2α2
nL

2)‖un − ū‖2 + α2
nE

[
‖ωn‖2|Fn

]
,

which can be written as

E

[
‖un+1 − ū‖2|Fn

]
≤ (1 + an)‖un − ū‖2 − cn + bn,

where for a positive constant k > 0, we have

an := 0,

bn := α2
nE

[
‖ωn‖2|Fn

]
,

sn := 2(αnm− α2
nL

2),

cn := sn‖un − ū‖2.

Due to imposed conditions, we have
∑
n=∈N

an < ∞, and
∑
n∈N

bn < ∞, almost surely.

As a consequence, ‖un − ū‖2 converges almost surely, and
∞∑
n=1

cn < ∞, almost

surely. Furthermore, since sn is bounded away from zero, we infer that the sequence
{un} converges strongly to ū, almost surely. The proof is complete.  "
Corollary 2 Let H be a real Hilbert space, K ⊂ H be nonempty, closed, and
convex, and F : H �→ H be given. Let {ωn} be an H -valued sequence of random
variables on a probability space (Ω,F,P). Let {un} be the sequence generated by
(5) and Fn := σ(u0, . . . , un) be a filtration on (Ω,F,P) such that {un} is Fn-
measurable.

(H1) There is a constant c > 0 such that ‖F(u)‖ ≤ c(1+‖u‖), for every u ∈ K.

(H2) F is m-strongly monotone and hemicontinuous.

(H3) E [ωn|Fn] = 0, and
∑
n

α2
nE

[
‖ωn‖2|Fn

]
< ∞.

(H4) The sequence {αn} of positive reals satisfies:

∑
n∈N

αn = ∞,
∑
n∈N

α2
n < ∞. (18)

Then, {un} converges, almost surely, to the unique solution ū of (3).

Proof The proof is based on the arguments used above.  "
Remark 1 Hiriart-Urruty [19] extended the stochastic approximation approach to
nonlinear variational inequalities when some random noise contaminated the data.
He proposed a variety of projection-type iterative methods in Hilbert spaces, even
considered variational inequalities with multi-valued maps, and provided several
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convergence theorems in quadratic mean and almost certain sense. Theorem 1 is
given under the same condition F as in [19]; however, we have more general condi-
tions on random noise, which were inspired by Barty, Roy, and Strugarek [3]. Jiang
and Xu [23] initiated a detailed study of the stochastic approximation framework
for the expected value formulation of variational inequalities. Corollary 1 is similar
to the results [23], given for the particular case of an expected value formulation of
a variational inequality.

3 Stochastic Approximation for Inverse Problems

In this section, we will study the inverse problem of identifying a deterministic
parameter in a stochastic partial differential equation. In the final section, we will
discuss the extension of the present framework to the case of a stochastic parameter.

3.1 Optimization Formulation of the Inverse Problem

We recall that given a real Banach space X, a measure space (Ω,F, μ), and an
integer p ∈ [1,∞), the Bochner space Lp(Ω,X) consists of Bochner integrable
functions u : Ω → X with finite pth moment, that is,

‖u‖Lp(Ω,X) :=
(∫

Ω

‖u(ω)‖pXdμ(ω)

)1/p

= E
[‖u(ω)‖pX

]1/p
< ∞.

If p = ∞, then L∞(Ω,X) is the space of Bochner measurable functions u : Ω →
X such that

ess supω∈Ω‖u(ω)‖X < ∞.

For ω ∈ Ω, variational formulation of (1) seeks uω ∈ V := H 1
0 (D) such that

∫
D

a(ω, x)∇uω(a) · ∇vdx =
∫
D

f (ω, x)v dx, for all v ∈ V. (19)

Assume that there are constants k0 and k1 such that

0 < k0 ≤ a(ω, x) ≤ k1 < ∞, a.e. in D ×Ω.

The following is a well-known result for (19):

Lemma 2 Let f ∈ L2(Ω,H−1(D)). Then, there is a positive constant c such that
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‖uω(a)‖H 1
0 (D) ≤ c‖f ‖H−1(D) for a.e. ω ∈ Ω,

‖u(a)‖L2(Ω,H 1
0 (D)) ≤ c‖f ‖

L2(Ω,H−1
0 (D))

.

In the following, we shall assume that a is deterministic. Moreover, for positive
k0 and k1, we define the set of admissible parameters:

A := {a ∈ L∞(D) : 0 < k0 ≤ a(x) ≤ k1 < ∞, x ∈ D
}
. (20)

We now state some technical results. Since these results are stated for realiza-
tions, their proofs are natural generalizations of the results given in [15] for the
corresponding deterministic case.

Theorem 2 For ω ∈ Ω, the map A - a �→ uω(a) is Lipschitz continuous.

Theorem 3 For ω ∈ Ω, and a in the interior of A, the map a �→ uω(a) is
differentiable at a. The derivative δuω := Duω(a)(δa) of uω(a) at a in the direction
δa is the unique solution of the stochastic variational problem: Find δuω ∈ V such
that

∫
D

a(x)∇δuω · ∇vdx = −
∫
D

δa∇uω(a) · ∇v dx, for all v ∈ V. (21)

One of the most commonly used optimization formulations is the following
output least-squares (OLS) objective functional:

Ĵ(a) = 1

2
E

[
‖uω(a)− zω‖2

L2(D)

]
, (22)

where uω(a) is the solution of (19) for a and zω is the measured data.
One of the shortcomings of the above functional is that it is nonconvex, in

general. Although it is known that the gradient of the OLS functional, with the
aid of a regularization, can be made strongly monotone, it runs into the risk of over-
regularizing the identification process, see [14].

We now define the modified output least-squares (MOLS) objective functional:

J(a) = 1

2
E

[∫
D

a(x)∇(uω(a)− zω) · ∇(uω(a)− zω)dx

]
, (23)

where uω(a) is the solution of (19) for a and zω is the measured data.
The following result summarizes some properties of the MOLS objective:

Theorem 4 Let a be in the interior of A. Then:

1. The first derivative of J at a is given by
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DJ(a)(δa) = −1

2
E

[∫
D

δa∇(uω(a)+ zω)∇(uω(a)− zω) dx

]
.

2. The second derivative of J at a is given by

D2
J(a)(δa, δa) = E

[∫
D

a(x)∇uω(a)∇uω(a) dx

]
.

Consequently, the MOLS functional is convex in the interior of the set A.

For the sake of a comparison, we would also describe another commonly
used method, the so-called equation error approach (see [13]), which consists of
minimizing, for ω ∈ Ω , and for the data zω ∈ H 1

0 (D), the quadratic objective
functional:

min
a∈A J̃(a) = 1

2
E

[
‖eω(a, zω)‖2

H 1
0

]
, (24)

where eω(a, uω) ∈ H 1
0 (D) satisfies the following variational problem:

〈eω(a, uω), v〉H 1
0 (D) =

∫
D

a∇uω · ∇v −
∫
D

f (ω, x)v, for all v ∈ H 1
0 (D).

Since the inverse problem of identifying parameters in partial differential
equations is ill-posed, and for a stable identification process, some regularization
is needed. For this, we assume that the set of admissible parameters A belongs to a
Hilbert space that is compactly embedded into L∞(D).

Therefore, we consider the following regularized analogues of the three function-
als described above:

min
a∈A Ĵκ(a) := 1

2
E

[
‖uω(a)− zω‖2

L2(D)

]
+ κ

2
‖a‖2

H , (25)

min
a∈A Jκ(a) := 1

2
E

[∫
D

a(x)∇(uω(a)− zω) · ∇(uω(a)− zω)dx

]
+ κ

2
‖a‖2

H ,

(26)

min
a∈A J̃κ(a) := 1

2
E

[
‖eω(a, zω)‖2

H 1
0

]
+ κ

2
‖a‖2

H . (27)

Here uω(a) is the solution of (19) for a(x), zω is the measured data, κ > 0 is a fixed
regularization parameter, and ‖ · ‖2

H is the regularizer.
Since J is convex and A is closed and convex, the following variational inequality

is a necessary and sufficient optimality condition for (26): Find a ∈ A such that

〈∇J(a), b − a〉 + κ〈a, b − a〉 ≥ 0, for every b ∈ A. (28)
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Note that by defining

J (a, ω) =
∫
D

a(x)∇(uω(a)− zω) · ∇(uω(a)− zω) dx,

we can show that

∇J(a, ω)(δa) = −1

2

∫
D

δa(x)∇(uω(a)+ zω)∇(uω(a)− zω) dx,

and, consequently,

∇J(a) = ∇E [J (a, ω)] = E [∇J (a, ω)] .

Therefore, it follows that

∇Jκ (a) = ∇E [J (a, ω)+ κa] = E [∇J (a, ω)+ κa] = E [G(a, ω)] , (29)

where we set G(a, ω) = ∇J (a, ω)+ κu.

Analogous statements can be made for the OLS objective and the EE objective.

3.2 Discrete Formulas

We will use a standard finite element discretization of the spaces V and H. We
begin, therefore, with a triangulation Th on D. Let Vh and Hh be the spaces of
piecewise linear continuous polynomials relative to Th. Let {φ1, φ2, . . . , φm} and
{ϕ1, ϕ2, . . . , ϕl} be the corresponding bases for Vh and Hh, respectively. The space
Hh is then isomorphic to R

l , and for any a ∈ Hh, we define A ∈ R
l by Ai =

a(xi), i = 1, 2, . . . , l, where the nodal basis {ϕ1, ϕ2, . . . , ϕl} corresponds to the
nodes {x1, x2, . . . , xl}. Conversely, each A ∈ R

l corresponds to a ∈ Hh defined

by a(x) =
l∑

i=1
Aiϕi. Analogously, u ∈ Vh will correspond to U ∈ R

m, where

Ui = u(yi), i = 1, 2, . . . , m, and u =
m∑

i=1
Uiφi, where y1, y2, . . . , ym are the

interior nodes of the finite element mesh (triangulation) Th.
Given a realization/sample ω ∈ Ω , the discrete version of variational problem

(19) seeks U = U(ω,A) ∈ R
m by solving

K(A)U(ω,A) = F(ω),

where K(A) ∈ R
m×m and F(ωn) ∈ R

m are the stiffness matrix and the load vector
defined by
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K(A)i,j =
∫
D

ah(x)∇φj · ∇φidx, for i, j = 1, . . . , m,

F (ω)i =
∫
D

fh(ω, x)φidx, for i = 1, . . . , m.

To compute the gradient of the MOLS objective, it is convenient to define the
so-called adjoint stiffness matrix L(·) ∈ R

m×l by the condition

L(V )A = K(A)V, for every V ∈ R
m, A ∈ R

l .

Then,

∇J (A,ω)(δA) = −1

2
(U(ω,A)+ Z(ω)).K(δA)(U(ω,A)− Z(ω))

= −1

2
δA.L(U(ω,A)+ Z(ω)).(U(ω,A)− Z(ω)),

which yields

∇Jκ(A, ω) = −1

2
L(U(ω,A)+ Z(ω))T (U(ω,A)− Z(ω))+ κ(M+K)A,

where M, K ∈ R
m×m are the corresponding mass and stiffness matrices in Hh:

Mi,j =
∫
D

ϕjϕidx, for i, j = 1, . . . , l,

Ki,j =
∫
D

∇ϕj · ∇ϕidx, for i, j = 1, . . . , l.

The above preparation permits to define the following stochastic approximation
scheme for computing a solution of the discrete variant of (28):

In the classical stochastic gradient, a single sampling is done at each iterative
step. However, in the above algorithm, instead of sampling the random variable at
each step once, at step n, we sample a predetermined number sn times, called the
sample rate, and use the empirical average to approximate the expected value.

4 Computational Experiments

In this section, we present results from our numerical computations. We consider the
domain D = (0, 1) and choose functions a(x) and u(ω, x) = u(Y1(ω), Y2(ω), x)

and compute the corresponding f (ω, x) by f (ω, x) = −(a(x)ux(ω, x))x . We
choose a uniform mesh on (0, 1) with mesh size h = 1/(N + 1), where N stands
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Algorithm 1 Stochastic approximation for parameter identification
1: Choose an initial guess A0 ∈ R

m, positive step-lengths {αn} satisfying (18), the sample rate
{sn} ⊂ N, and initial samples {ω0

j }s0
j=1 of the random variable ω.

2: Given An ∈ A, generate samples {ωn
j }snj=1 of ω and define

An+1 = PA

⎡
⎣An − αn

sn

sn∑
j=1

G
(
ωn

j ,An

)⎤⎦ , (30)

where G is the discrete variant of gradient of the regularized MOLS objective (see (29)).
3: Stop if some stopping criteria are met.

for the number of interior nodes. The same set of piecewise linear finite element
basis functions is used for the representations of a(x) and u(ω, x); therefore,
U(ω,A) ∈ R

N (for a fixed ω) and A ∈ R
N+2 (i.e., m = N + 2). The constraint set

K is defined by

A = {a ∈ H 1(Ω) : a0 ≤ a(x) ≤ a1}.

Example 1 For this example, we choose

a(x) = 1 + x2,

u(ω, x) = Y1(ω)x(1 − x)+ Y2(ω) sin(3πx),

where Y1(ω), Y2(ω) ∼ U [0, 1], i.e., random variables Y1 and Y2 are uniformly
distributed over interval [0, 1]. We choose a0 = 0.5 and a1 = 3 and use N = 99,
sn = 5, αn = 0.5α0/n with α0 = 104 in Algorithm 1 for this example. Iterations
are terminated once the L2 norm of the expected value of the gradient drops below
γ = 10−7. Results of this computation using the MOLS method are shown in
Figure 1. Regularization parameter κ = 10−6 is used to produce these figures.

Example 2 In this example, we choose the same u(ω, x) as in Example 1, but with
a slightly more interesting function a(x) defined by

a(x) = 2 sin(π(x − 0.2))− 2 tanh(20x − 8)+ 4.

Figure 2 shows results of a run using parameters N = 159, sn = 10, α0 = 105,
and κ = 10−7 using the MOLS method. For the constraints, we use a0 = 1 and
a1 = 8. Figure 3 shows some realizations of the random fields u(ω, x) and f (ω, x).
Note that Figures 1 and 2 represent results of a typical simulation. Regularization
parameter κ is chosen after we do several test runs for a particular set of parameter
values. The method gives us a very stable reconstruction of the coefficient a(x) in
each case regardless of the choice of the initial approximate A(0).
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Fig. 1 Example 1: Comparison of exact coefficient a and the approximated coefficient ah using
MOLS method (left) and loglog plot of the error ‖a − ah‖L2 versus iterations (right)
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Fig. 2 Example 2: Comparison of exact coefficient a and the approximated coefficient ah using
MOLS method (left) and loglog plot of the error ‖a − ah‖L2 versus iterations (right)
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Fig. 3 Typical realizations of the random fields u and f from Example 2
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Fig. 4 Example 2: Comparison of exact coefficient a and the approximated coefficient ah using
EE method (left) and loglog plot of the relative error ‖a − ah‖L2/‖a‖L2 versus iterations (right)
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Fig. 5 Example 1: Comparison of exact coefficient a and the approximated coefficient ah using
the OLS method (left) and loglog plot of the norm of the gradient ‖∇J (ah)‖L2 versus iterations
(right)

Results of Computations by EE and OLS Methods We compare the performance
of the MOLS method with those of the OLS and EE methods (see equations (27)
and (25) for regularized objective functional definitions). Figure 4 shows the results
of a run with parameters N = 159, sn = 20, α0 = 106, and κ = 5 · 10−7 for
Example 2 using EE method. The quality of the estimation is excellent and the
results are comparable with those of the MOLS method. No significant gain in the
computational cost for the EE method is observed as our examples are in 1D (these
computations take only a minute or two in MATLAB). However, the EE method
is expected to have considerable computational cost advantage for problems in two
or three space dimensions compared to MOLS and OLS methods. Figure 5 shows
results of a simulation using OLS method for Example 1. Parameter values used
in the computation are N = 99, sn = 1, α0 = 105, and κ = 5 · 10−6. Tolerance
for the L2 norm of the gradient is set to γ = 10−7 (see the right plot in the figure
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referenced above which shows the decrease of this norm as iterations progress). The
quality of the estimation seems to be not as good as the ones we obtained from the
MOLS and EE methods, and there is a mismatch close to the right boundary of the
domain. While applying the OLS method to both examples, we observed that the
method requires a more careful tuning of the parameters compared to the other two
methods we used in our experiments.

5 Concluding Remarks

We developed a stochastic approximation approach for identifying a deterministic
parameter in a stochastic partial differential equation. Besides considering more
general stochastic PDEs such as linear elasticity or fourth-order plate models, a
desirable extension of this work is to identify a stochastic parameter a(ω, x). A
natural approach would be to separate the deterministic and stochastic components
by using the so-called finite-dimensional noise assumption (see [28]). The determin-
istic components can then be identified by extending the stochastic approximation
framework. We aim to pursue this approach in future work.
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34. B. V. Rosić, H.G. Matthies, Identification of properties of stochastic elastoplastic systems, in
Computational Methods in Stochastic Dynamics, vol. 2 (Springer, Dordrecht, 2013), pp. 237–
253

35. G.I. Salov, Stochastic approximation in a Hilbert space in the problem of the detection of the
appearance of an object in a sequence of noisy images. Sib. Zh. Ind. Mat. 12(1), 127–135
(2009)

36. K. Sepahvand, S. Marburg, On construction of uncertain material parameter using generalized
polynomial chaos expansion from experimental data. Proc. IUTAM 6, 4–17 (2013)

37. G. Yin, Y.M. Zhu, On H -valued Robbins–Monro processes. J. Multivar. Anal. 34(1), 116–140
(1990)

38. N. Zabaras, B. Ganapathysubramanian, A scalable framework for the solution of stochastic
inverse problems using a sparse grid collocation approach. J. Comput. Phys. 227(9), 4697–
4735 (2008)



An Iterative Method for a Common
Solution of Split Generalized Equilibrium
Problems and Fixed Points of a Finite
Family of Nonexpansive Mapping

Ihssane Hay, Abdellah Bnouhachem, and Themistocles M. Rassias

Abstract In this paper, we introduce and analyze a general iterative algorithm
for finding an approximate element of the common set of solutions of the split
generalized equilibrium problem and the set of common fixed points of a finite
family of nonexpansive mapping in the setting of real Hilbert space. Under
appropriate conditions, we derive the strong convergence results for this method.
Preliminary numerical experiments are included to verify the theoretical assertions
of the proposed method. The results presented in this paper extend and improve
some well-known results in the literature.

1 Introduction

In the present paper, we always assume that H is a real Hilbert space with inner
product < . >, and norm ‖ . ‖ . Let C be the nonempty closed convex subset of
Hilbert space H. Given two bifunctions F : C×CC −→ H, and ϕ : C×C −→ H,

then the generalized problem is formulated as follows:

{
Find x∗ ∈ C

F(x∗, x)+ ϕ(x∗, x) ≥ 0, ∀x ∈ C,
(1)

and the solution set of the generalized equilibrium problems is denoted by
GEP(F, ϕ).
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This class of problems includes numerous important problems such as optimiza-
tion, classical or mixed equilibrium problems, variational inequalities problems,
Nash equilibrium problems, and others, see, for example, [9, 17, 18, 24, 25, 30, 33].
Many algorithms have been proposed and studied in the current literature, see,
for example, [5, 10, 19, 23, 28, 29, 31]. Recently, motivated by the Moudafi’s
work [8], Kazmi and Rivzi [16] introduced and studied a new form of generalized
equilibrium problem called the split generalized equilibrium problem formulated
as follows: let C and Q be nonempty closed convex subsets of Hilbert spaces H1
and H2, respectively. Given four nonlinear bifunctions F, ϕ : C × C −→ H1, and
G,ψ : Q × Q −→ H2, and a bounded linear operator A : H1 −→ H2, then the
split generalized equilibrium problem is defined as follows:

{
Find x∗ ∈ C

F(x∗, x)+ ϕ(x∗, x) ≥ 0, ∀x ∈ C,
(2)

and

{
Find y∗ = Ax∗ ∈ Q

G(y∗, y)+ ψ(y∗, y) ≥ 0, ∀y ∈ Q.
(3)

Inequalities (2) and (3) constitute a pair of the generalized equilibrium problems
which aim to find a solution x∗ of a generalized equilibrium problem (2) such that
its image y∗ = Ax∗ under a given bounded linear operator A also solves another
generalized equilibrium problem (3). The solution set of the split generalized
equilibrium problems is denoted by

Ω = {z ∈ C; z ∈ GEP(F, ϕ) such that Az ∈ GEP(G,ψ)}.

This class of problems includes several special cases.
For example, if ϕ = 0, ψ = 0, and G = 0, it reduces to the classical equilibrium

problem [6], which we denote by EP(F) its solution set.
On the other hand, if ϕ = 0 and ψ = 0, then the split generalized equilibrium

problem reduces to the following split equilibrium problem:

{
Find x∗ ∈ C

F(x∗, x) ≥ 0, ∀x ∈ C,
(4)

and

{
Find y∗ = Ax∗ ∈ Q

G(y∗, y) ≥ 0, ∀y ∈ Q.
(5)

The solution set of the split equilibrium problem [13] is denoted by
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SEP(F,G) = {z ∈ C; z ∈ EP(F) such that Az ∈ EP(G)}.

If ψ = 0 and G = 0, it reduces to (1). In general, the split generalized equilibrium
problem has had a great influence in the development of various branches of pure
and applied sciences, and attracted the attention of the majority of authors, such as
Deepho et al. [15] who proved a strong convergence to a common solution set of the
split generalized equilibrium problems and the set of solutions of the general system
of the variational inequality problem for two inverse strongly monotone mappings
in real Hilbert spaces. Some strategies have been studied for the split generalized
equilibrium problem, for more details, one can refer [14, 15, 20, 22, 27].

Throughout this paper, motivated by several ongoing works in this direction, we
present an iterative algorithm to find an approximate element of the common set of
solutions of the split generalized equilibrium problem and the set of common fixed
points of a finite family of nonexpansive mappings in the setting of real Hilbert
spaces. We establish a strong convergence theorem for the sequence generated by
the proposed method. In order to verify the theoretical assertions, some numerical
examples are given. Our main result presented in this paper is very general, and it
extends and improves some well-known results in the literature [26, 27], and others.

2 Preliminaries

Let H1 and H2 be two real Hilbert spaces with inner product < . >, and norm
‖ . ‖ . Let C and Q be nonempty closed convex subsets of Hilbert spaces H1 and
H2, respectively.

For every i ∈ {1, . . . , N}, let Fi, ϕi : C × C −→ H1, and Gi,ψi : Q×Q −→
H2, be four bifunctions, and Ai : H1 −→ H2, be a finite family of bounded linear
operators.

For each i ∈ {1, . . . , N}, the split generalized equilibrium problem (SGEP) is
formulated as follows:

{
Find x∗ ∈ C

Fi(x
∗, x)+ ϕi(x

∗, x) ≥ 0, ∀x ∈ C,
(6)

and

{
Find y∗ = Aix

∗ ∈ Q

Gi(y
∗, y)+ ψi(y

∗, y) ≥ 0, ∀y ∈ Q.
(7)

The solution set of the SGEP is denoted by Ω = {z ∈ C; z ∈ GEP(F, ϕ) such that Aiz ∈
GEP(G,ψ)}.
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Definition 1 Let C be the nonempty closed convex subsets of Rn, and v ∈ R
n, then

the projection of v onto C is denoted by PC(v), that is,

PC(v) := arg min {‖ v − u ‖ /u ∈ C} . (8)

Since C is convex and closed, the projection onto C is unique.

Definition 2 The mapping T : C → H is said to be

(a) monotone if

〈T x − Ty, x − y〉 ≥ 0, ∀x, y ∈ C;

(b) strongly monotone if there exists an α > 0 such that

〈T x − Ty, x − y〉 ≥ α‖x − y‖2, ∀x, y ∈ C;

(c) α-inverse strongly monotone if there exists an α > 0 such that

〈T x − Ty, x − y〉 ≥ α‖T x − Ty‖2, ∀x, y ∈ C;

(d) nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C;

(e) k-Lipschitz continuous if there exists a constant k > 0 such that

‖T x − Ty‖ ≤ k‖x − y‖, ∀x, y ∈ C;

(f) contraction on C if there exists a constant 0 ≤ k < 1 such that

‖T x − Ty‖ ≤ k‖x − y‖, ∀x, y ∈ C.

It is well known that every nonexpansive operator T : H → H satisfies, for all
(x, y) ∈ H ×H, the inequality

〈(x − T x)− (y − Ty), T y − T x〉 ≤ 1

2
‖(T x − x)− (T y − y)‖2, (9)

and, therefore, we get, for all (x, y) ∈ H × F(T ),

〈x − T x, y − T x〉 ≤ 1

2
‖T x − x‖2. (10)

Throughout this paper, we always assume that T is a nonexpansive operator on C.
The fixed point problem for the mapping T is to find x ∈ C such that
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T x = x. (11)

For the recent applications, numerical techniques see [1–4, 7]. The fixed point set
of T is denoted by F(T ), and it is well known that F(T ) is closed and convex (see
[32]).

We denote xn −→ q to symbolize strong convergence of the sequence xn to q.

And we denote xn ⇀ q to indicate weak convergence of the sequence xn.

The following results are very useful to prove the convergence of our method.

Lemma 1 Let H be a real Hilbert space, then

(i)
〈
x, y

〉 = 1

2

(
‖ x ‖2 + ‖ y ‖2 − ‖ x − y ‖2

)
,

(ii) ‖ αx + (1 − α)y ‖2= α ‖ x ‖2 +(1 − α) ‖ y ‖2 −α(1 − α) ‖ x − y ‖2, hold
for all α ∈ [0, 1] and x, y ∈ H, such that x �= y.

Assumption 2.1 ([9]) Let F, ϕ : C × C → R be two bifunctions satisfying the
following assumptions:

(A1) F(x, x) = 0 ∀x ∈ C;
(A2) F is monotone, i.e., F(x, y)+ F(y, x) ≤ 0 ∀x, y ∈ C;
(A3) F is upper hemicontinuous, i.e.,

∀x, y, z ∈ C lim
t→0

F(tz+ (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y −→ F(x, y) is convex and lower semicontinuous.
(B1) ϕ(x, x) ≥ 0, for all x ∈ C;
(B2) ϕ is monotone;
(B3) for each x ∈ C, y −→ ϕ(x, y) is convex and lower semicontinuous;
(B4) for each y ∈ C, x −→ ϕ(x, y) is upper semicontinuous.

Lemma 2 ([11]) Let C be nonempty closed convex subset of H, and let F, ϕ be
two bifunctions satisfying Assumption 2.1, then for each x ∈ H, for r > 0, there
exists z ∈ C such that

F(z, y)+ ϕ(z, y)+ 1

r

〈
y − z, z− x

〉 ≥ 0 ∀y ∈ C.

Moreover, define a mapping T
(F,ϕ)
r : H −→ C as follows:

T (F,ϕ)
r (x) =

{
z ∈ C : F(z, y)+ ϕ(z, y)+ 1

r

〈
y − z, z− x

〉 ≥ 0 ∀y ∈ C
}
.

Then for all x ∈ H, we have the following:

(i) T
(F,ϕ)
r is single valued;

(ii) T
(F,ϕ)
r is firmly nonexpansive, i.e., for all x, y ∈ H
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‖ T (F,ϕ)
r (x)− T (F,ϕ)

r (y) ‖2≤ 〈T (F,ϕ)
r (x)− T (F,ϕ)

r (y), x − y
〉;

(iii) F(T
(F,ϕ)
r ) = GEP(F, ϕ);

(iv) GEP(F, ϕ) is compact and convex.

Lemma 3

(i) If T is nonexpansive, then I − T is 1-inverse strongly monotone;
(ii) If T : C −→ C is β-inverse strongly monotone, then for all λ ∈]0, 2β[, I −λT

is nonexpansive.

Lemma 4 ([32]) Let C be a nonempty closed convex subset of a real Hilbert space
H. If T : C → C is a nonexpansive mapping with Fix(T ) �= ∅, then the mapping
I − T is demiclosed at 0, i.e., if {xn} is a sequence in C and weakly converges to x

and if {(I − T )xn} converges strongly to 0, then (I − T )x = 0.

Lemma 5 ([12]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − νn)an + δn,

where {νn} is a sequence in ]0, 1[ and {δn} is a sequence such that

(1)
∑∞

n=1 νn = ∞;
(2)

∑∞
n=1 δn < ∞.

Then, lim
n→∞ an = 0.

3 The Proposed Method and Some Properties

In this section, we suggest and analyze an iterative method for finding an approxi-
mate element of the common set of solutions of the split generalized equilibrium
problem and the set of common fixed points of a finite family of nonexpansive
mappings.

Let H1 and H2 be the two real Hilbert spaces. Let C (respectively, Q) be the
nonempty closed convex subset of H1 (respectively, H2 ). Let Fi, ϕi : C × C −→
H1, and Gi,ψi : Q × Q −→ H2, be the four finite family bifunctions satisfying
Assumption 2.1 such that Gi,ψi is upper semicontinuous in the first argument.
Let Ai : H1 −→ H2, be a finite family of bounded linear operators, and let
Si : C −→ C, be a finite family of nonexpansive mappings. Setting Γ =(
∩N

i=1 F(Si)
)
∩ Ω, where Ω =

{
p ∈ C : p ∈ ∩N

i=1GEP(Fi, ϕi) and Aip ∈
GEP(Gi, ψi), for all i ∈ {1, . . . , N}

}
.

Algorithm 3.1 For a given x1 ∈ C1 = C, arbitrarily, let the iterative sequences
un,i , yn,i and xn be generated by the iterative algorithm
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un,i = T
(Fi ,ϕi )
rn,i

(
I − γA∗

i

(
I − T

(Gi,ψi)
sn,i )Ai)xn,

yn,i = αn,iSixn + (1 − αn,i)un,i ,

Cn+1 = {p ∈ Cn : ‖ yn,i − p ‖ ≤ ‖ xn − p ‖}
xn+1 = γnPCn+1x1 + (1 − γn)yn,i , n ≥ 1.

(12)

Let γ ∈]0, 1

L
], where L = max(L1, L2, . . . , LN) such that Li is the spectral

radius of the operator A∗
i Ai, where A∗

i is the adjoint of Ai, ∀i ∈ {1, 2, . . . , N}. Let
sn,i and rn,i be two positive real sequences, and let αn,i and γn be the two sequences
in ]0, 1[, satisfying the following conditions:

(C1) 0 < a ≤ αn,i , γn ≤ b < 1;
(C2) lim

n→∞αn,i = 0;
(C3) lim

n→∞ γn = 0 and
∑∞

n=1 γn = ∞;
(C4)

∑∞
n=1 |γn+1 − γn| < ∞ and

∑∞
n=1 |αn+1,i − αn,i | < ∞;

(C5) lim
n→∞ inf rn,i > 0 and lim

n→∞ sup sn,i > 0.

Lemma 6 Let {xn} be the sequence generated by Algorithm 3.1. Then

(a) {xn} is well defined for every n ∈ N
∗ and bounded,

(b) Γ ⊂ Cn+1.

Proof We show that the sequence {xn} is well defined for every n ∈ N
∗.

To prove that, we will show that Cn is a closed convex subset for all n ≥ 1.
Clearly, C1 = C is closed convex. Suppose that Ck is closed convex for k ≥ 1;

we prove that so is Ck+1.

Let pm ∈ Ck+1 ⊂ Ck such that pm −→ p then p ∈ Ck (because Ck is closed);
thus, ‖ yk,i − pm ‖≤‖ xk − pm ‖, which implies that

‖ yk,i − p ‖ ≤ ‖ yk,i − pm ‖ + ‖ pm − p ‖
≤ ‖ xk − pm ‖ + ‖ pm − p ‖ .

Taking lim
m→∞ on both sides of the above estimate, we get

lim
m→∞ ‖ yk,i − p ‖=‖ yk,i − p ‖ ≤ lim

m→∞(‖ xk − pm ‖ + ‖ pm − p ‖)
≤ ‖ xk − p ‖ .

Then p ∈ Ck+1, and it follows that Ck+1 is closed.
Now we set p = λx + (1 − λ)y, for every x, y ∈ Ck+1 and λ ∈ [0, 1], then

p ∈ Ck (because Ck is convex).
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By using Lemma 1, we have

‖ yk,i − p ‖2 = ‖ yk,i − λx − (1 − λ)y ‖2

= ‖ λ(yk,i − x)+ (1 − λ)(yk,i − y) ‖2

= λ ‖ yk,i − x ‖2 +(1 − λ) ‖ yk,i − y ‖2 −λ(1 − λ) ‖ y − x ‖2

≤ λ ‖ xk − x ‖2 +(1 − λ) ‖ xk − y ‖2 −λ(1 − λ) ‖ y − xk + xk − x ‖2

= ‖ λ(xk − x)+ (1 − λ)(xk − y) ‖2

= ‖ xk − p ‖2,

thus p ∈ Ck+1 then Ck+1 is convex. Therefore, Cn is closed convex for all n ≥ 1.
Since PCn+1x1 is well defined for every x1 ∈ C, xn is well defined.

Obviously, Γ ⊂ C1. If p ∈ Γ , we have p = T
Fi,ϕi
rn,i p and (I − γA∗

i (I −
T

(Gi,ψi)
sn,i )Ai)p = p, then p ∈ C = C1.

Assume that Γ ⊂ Ck, and we show that Γ ⊂ Ck+1.
We have

‖ A∗
i (I − T (Gi ,ψi )

sn,i
)Aix − A∗

i (I − T (Gi ,ψi )
sn,i

)Aiy ‖2 = ‖ A∗
i (I − T (Gi ,ψi )

sn,i
)(Aix − Aiy) ‖2

= 〈
A∗

i (I − T (Gi ,ψi )
sn,i

)(Aix − Aiy),

A∗
i (I − T (Gi ,ψi )

sn,i
)(Aix − Aiy)

〉

= 〈
(I − T (Gi ,ψi )

sn,i
)(Aix − Aiy),

AiA
∗
i (I − T (Gi ,ψi )

sn,i
)(Aix − Aiy)

〉

≤ L ‖ (I − T (Gi ,ψi )
sn,i

)(Aix − Aiy) ‖2 .

Then

‖ (I − T (Gi,ψi)
sn,i

)(Aix − Aiy) ‖2

≥ 1

L
‖ A∗

i (I − T (Gi,ψi)
sn,i

)Aix − A∗
i (I − T (Gi,ψi)

sn,i
)Aiy ‖2 . (13)

Since T is nonexpansive, it follows from Lemma 3 that I − T is 1-inverse strongly
monotone, then

‖ (I − T (Gi,ψi)
sn,i

)(Aix − Aiy) ‖2 ≤ 〈(I − T (Gi,ψi)
sn,i

)(Aix − Aiy), (Aix − Aiy)
〉

= 〈A∗
i (I − T (Gi,ψi)

sn,i
)(Aix − Aiy), x − y)

〉
,

(14)

and hence using (13) and (14), we obtain
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〈
A∗

i (I − T (Gi,ψi)
sn,i

)(Aix − Aiy), x − y)
〉 ≥ 1

L
‖ A∗

i (I − T (Gi,ψi)
sn,i

)(Aix − Aiy) ‖2;

this implies that

〈
A∗

i (I − T (Gi,ψi)
sn,1

)Aix − A∗
i (I − T (Gi,ψi)

sn,i
)Aiy, x − y)

〉

≥ 1

L
‖A∗

i (I − T (Gi,ψi)
sn,i

)Aix − A∗
i (I − T (Gi,ψi)

sn,i
)Aiy‖2

thus A∗
i (I − T

(Gi,ψi)
sn,i )Ai is

1

L
-inverse strongly monotone, and by using Lemma 3,

we get I − γA∗
i (I − T

(Gi,ψi)
sn,i )Ai , is nonexpansive for each γ ∈]0, 1

L
[. Therefore,

we obtain

‖ un,i − p ‖ = ‖ T (Fi ,ϕi )
rn,i

(
I − γA∗

i

(
I − T (Gi,ψi)

sn,i
)Ai)xn

−T (Fi ,ϕi )
rn,i

(I − γA∗
i (I − T (Gi,ψi)

sn,i
)Ai)p ‖

≤ ‖ xn − p ‖ . (15)

Let p ∈ Γ, then the following results can be immediately obtained from
Lemma 1 ii), nonexpansiveness of Si , and (15)

‖ yk,i − p ‖2=‖ αk,iSixk + (1 − αk,i )uk,i − p ‖2

= αk,i ‖ Sixk − p ‖2 +(1 − αk,i ) ‖ uk,i − p ‖2 −αk,i (1 − αk,i ) ‖ Sixk − uk,i ‖2

= αk,i ‖ Sixk − Sip ‖2 +(1 − αk,i ) ‖ uk,i − p ‖2 −αk,i (1 − αk,i ) ‖ Sixk − uk,i ‖2 (16)

≤ αk,i ‖ xk − p ‖2 +(1 − αk,i ) ‖ uk,i − p ‖2 (17)

≤ αk,i ‖ xk − p ‖2 +(1 − αk,i ) ‖ xk − p ‖2

=‖ xk − p ‖2,

and then we get

‖ yk,i − p ‖≤‖ xk − p ‖, (18)

consequently p ∈ Ck+1, thus Γ ∈ Ck+1. Hence for every n ∈ N
∗, the following

inclusion Γ ⊂ Cn+1 is always satisfied.
Next, we show that the sequence xn is bounded.
Note that ‖ PCn+1x1 − x1 ‖2≤‖ x∗ − x1 ‖2 for all x∗ ∈ Cn+1. In particular, we

have ‖ PCn+1x1 − x1 ‖2≤‖ PΓ x1 − x1 ‖2 . Then, we get

‖ xn+1 − x1 ‖2 = ‖ γn(PCn+1x1 − x1)+ (1 − γn)(yn,i − x1) ‖2

≤ γn ‖ PCn+1x1 − x1 ‖2 +(1 − γn) ‖ yn,i − x1 ‖2
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≤ γn ‖ PΓ x1 − x1 ‖2 +(1 − γn) ‖ xn − x1 ‖2

≤ max{‖ PΓ x1 − x1 ‖2, ‖ xn − x1 ‖2}
≤ max{‖ PΓ x1 − x1 ‖2, ‖ xn−1 − x1 ‖2}

...

≤ max{‖ PΓ x1 − x1 ‖2, ‖ x1 − x1 ‖2}
= ‖ PΓ x1 − x1 ‖2 .

Therefore, it follows from the above inequalities that ‖ xn+1 − x1 ‖< ∞, hence
{xn} is bounded, and so are {yn,i} and {un,i}.  "
Lemma 7 Let {xn} be the sequence generated by Algorithm 3.1. Then, for every
i ∈ {1, . . . , N}, we have

(a) lim
n→∞ ‖ xn+1 − xn ‖= 0;

(b) lim
n→∞ ‖ yn,i − xn ‖= 0;

(c) lim
n→∞ ‖ (I − T

(Gi,ψi)
sn,i )Aixn ‖= 0;

(d) lim
n→∞ ‖ un,i − xn ‖= 0;

(e) lim
n→∞ ‖ Sixn − un,i ‖= 0.

Proof We have

‖ yn,i − yn−1,i ‖=‖ αn,iSixn + (1 − αn,i )un,i − αn−1,iSixn−1 − (1 − αn−1,i )un−1,i ‖
=‖ αn,i (Sixn − Sixn−1)+ (αn,i − αn−1,i )Sixn−1 + (1 − αn,i )(un,i − un−1,i )

+(αn−1,i − αn,i )un−1,i ‖
≤ αn,i ‖ Sixn − Sixn−1 + |αn,i − αn−1,i |(‖ Sixn−1 ‖ + ‖ un−1,i ‖)
+(1 − αn,i ) ‖ un,i − un−1,i ‖
≤ αn,i ‖ xn − xn−1 ‖ +|αn,i − αn−1,i |(‖ Sixn−1 ‖ + ‖ un−1,i ‖)
+(1 − αn,i )(‖ un,i ‖ + ‖ un−1,i ‖). (19)

By using (19) and condition C1), we obtain

‖ xn+1 − xn ‖
=‖ γn(PCn+1x1 − PCn

x1)+ (γn − γn−1)PCn
x1 + γn(yn−1,i − yn,i )+ (γn−1 − γn)yn−1,i

+yn,i − yn−1,i ‖
≤ γn ‖ PCn+1x1 − PCn

x1 ‖ +|γn − γn−1|(‖ PCn
x1 ‖ + ‖ yn−1,i ‖)

+(1 − γn) ‖ yn,i − yn−1,i ‖
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≤ γn ‖ PCn+1x1 − PCn
x1 ‖ +|γn − γn−1|(‖ PCn

x1 ‖ + ‖ yn−1,i ‖)

+(1 − γn)
(
αn,i ‖ xn − xn−1 ‖ +|αn,i − αn−1,i |(‖ Sixn−1 ‖ + ‖ un−1,i ‖)

+(1 − αn,i )(‖ un,i ‖ + ‖ un−1,i ‖)
)

≤‖ PCn+1x1 − PCn
x1 ‖ +|γn − γn−1|(‖ PCn

x1 ‖ + ‖ yn−1,i ‖)

+(1 − γn)
(
‖ xn − xn−1 ‖ +|αn,i − αn−1,i |(‖ Sixn−1 ‖ + ‖ un−1,i ‖)

+ ‖ un,i ‖ + ‖ un−1,i ‖
)

≤ (1 − γn) ‖ xn − xn−1 ‖ +(‖ PCn+1x1 ‖ + ‖ PCn
x1 ‖)

+|γn − γn−1|(‖ PCn
x1 ‖ + ‖ yn−1,i ‖)+ |αn,i − αn−1,i |(‖ Sixn−1 ‖ + ‖ un−1,i ‖)

+ ‖ un,i ‖ + ‖ un−1,i ‖)
≤ (1 − γn) ‖ xn − xn−1 ‖ +M(1 + |γn − γn−1| + |αn,i − αn−1,i | + 1),

where M = max{ supn≥1(‖ PCn+1x1 ‖ + ‖ PCnx1 ‖), supn≥1(‖ PCnx1 ‖ + ‖
yn−1,i ‖), supn≥1(‖ Sixn−1 ‖ + ‖ un−1,i ‖), supn≥1(‖ un,i ‖ + ‖ un−1,i ‖)};
setting δn = M(2 + |γn − γn−1| + |αn,i − αn−1,i |), by using condition C4), it
follows that

∑∞
n=1 δn < ∞, and by condition C3), we get

∑∞
n=1 γn = ∞. Hence

from Lemma 5, we conclude lim
n→∞ ‖ xn+1 − xn ‖= 0, which proves the result (a).

On the other hand, we have

‖ yn,i − xn ‖ ≤ ‖ yn,i − xn+1 ‖ + ‖ xn+1 − xn ‖
= ‖ yn,i − γnPCn+1x1 − (1 − γn)yn,i ‖ + ‖ xn+1 − xn ‖
≤ γn ‖ yn,i − PCn+1x1 ‖ + ‖ xn+1 − xn ‖
≤ γn ‖ xn − PCn+1x1 ‖ + ‖ xn+1 − xn ‖
≤ γn ‖ xn − PΓ x1 ‖ + ‖ xn+1 − xn ‖
≤ γn(‖ xn ‖ + ‖ PΓ x1 ‖)+ ‖ xn+1 − xn ‖ .

This implies by condition (C3), and (a), that lim
n→∞ ‖ yn,i − xn ‖= 0; thus (b) is

proved.
Next, we show the assertion (c). Observe that

‖ un,i − p ‖2

=‖ T (Fi ,ϕi )
rn,i

(
I − γA∗

i

(
I − T (Gi ,ψi )

sn,i
)Ai)xn − T (Fi ,ϕi )

rn,i
(I − γA∗

i (I − T (Gi ,ψi )
sn,i

)Ai)p ‖2

≤‖ xn − p − γA∗
i

(
I − T (Gi ,ψi )

sn,i
)Aixn ‖2

=‖ xn − p ‖2 +γ 2 ‖ A∗
i

(
I − T (Gi ,ψi )

sn,i
)Aixn ‖2 −2γ

〈
xn − p,A∗

i

(
I − T (Gi ,ψi )

sn,i
)Aixn

〉

=‖ xn − p ‖2 +γ 2〈(I − T (Gi ,ψi )
sn,i

)Aixn, AiA
∗
i

(
I − T (Gi ,ψi )

sn,i
)Aixn

〉
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−2γ
〈
Ai(xn − p),

(
I − T (Gi ,ψi )

sn,i
)Aixn

〉

≤‖ xn − p ‖2 +γ 2L ‖ (I − T (Gi ,ψi )
sn,i

)Aixn ‖2

−2γ
〈
Ai(xn − p)+ (I − T (Gi ,ψi )

sn,i
)Aixn − (I − T (Gi ,ψi )

sn,i
)Aixn,

(
I − T (Gi ,ψi )

sn,i
)Aixn

〉

=‖ xn − p ‖2 +γ 2L ‖ (I − T (Gi ,ψi )
sn,i

)Aixn ‖2 −2γ ‖ (I − T (Gi ,ψi )
sn,i

)Aixn ‖2

−2γ
〈
T (Gi ,ψi )
sn,i

Aixn − Aip,
(
I − T (Gi ,ψi )

sn,i
)Aixn

〉
.

Applying (10), we get

‖ un,i − p ‖2

≤‖ xn − p ‖2 +γ 2L ‖ (I − T (Gi,ψi)
sn,i

)Aixn ‖2 −2γ ‖ (I − T (Gi,ψi)
sn,i

)Aixn ‖2

+2γ
1

2
‖ (I − T (Gi,ψi)

sn,i
)Aixn ‖2

=‖ xn − p ‖2 +γ (γL− 1) ‖ (I − T (Gi,ψi)
sn,i

)Aixn ‖2 . (20)

Further, observe that

‖ yn,i − p ‖2

=‖ αn,iSixn + (1 − αn,i )un,i − p ‖2

=‖ αn,i (Sixn − Sip)+ (1 − αn,i )(un,i − p) ‖2

= αn,i ‖ Sixn − Sip ‖2 +(1 − αn,i ) ‖ un,i − p ‖2 −αn,i (1 − αn,i ) ‖ Sixn − un,i ‖2

≤ αn,i ‖ xn − p ‖2 +(1 − αn,i ) ‖ un,i − p ‖2

≤ αn,i ‖ xn − p ‖2 +(1 − αn,i )(‖ xn − p ‖2 +γ (γL− 1) ‖ (I − T
(Gi,ψi)
sn,i )Aixn ‖2)

=‖ xn − p ‖2 +(1 − αn,i )γ (γL− 1) ‖ (I − T
(Gi,ψi)
sn,i )Aixn ‖2).

Hence

(1 − αn,i)(γ (1 − γL) ‖ (I − T (Gi,ψi)
sn,i

)Aixn ‖2) ≤‖ xn − p ‖2 − ‖ yn,i − p ‖2

=‖ xn − yn,i ‖ (‖ xn − p ‖ + ‖ yn,i − p ‖).

Since γ (1 − γL) > 0, using (b) and condition C2), and by letting n −→ ∞, we
obtain the desired result.

Next, we show the assertion (d). From Lemma 2 (ii), for every p ∈ Γ, we obtain

‖ un,i − p ‖2=‖ T
(Fi ,ϕi )
rn,i

(xn − γA∗i (I − T
(Gi ,ψi )
sn,i

)Aixn)− T
(Fi ,ϕi )
rn,i

p ‖2

≤ 〈un,i − p, xn − p − γA∗i (I − T
(Gi ,ψi )
sn,i

)Aixn
〉
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= 1

2

(
‖ un,i − p ‖2 + ‖ xn − p − γA∗i (I − T

(Gi ,ψi )
sn,i

)Aixn ‖2

− ‖ un,i − xn + γA∗i (I − T
(Gi ,ψi )
sn,i

)Aixn ‖2
)

= 1

2

(
‖ un,i − p ‖2 + ‖ xn − p ‖2 −2γ

〈
A∗i (I − T

(Gi ,ψi )
sn,i

)Aixn, un,i − p
〉− ‖ un,i − xn ‖2

)
.

Then

‖ un,i−p ‖2 ≤ ‖ xn−p ‖2 − ‖ un,i−xn ‖2 −2γ
〈
A∗i (I−T

(Gi,ψi)
sn,i )Aixn, un,i−p

〉
.

(21)

Substituting (21) in (17), we obtain

‖ yn,i − p ‖2 ≤ αn,i ‖ xn − p ‖2 +(1 − αn,i)
(
‖ xn − p ‖2 − ‖ un,i − xn ‖2

− 2γ
〈
A∗

i (I − T (Gi,ψi)
sn,i

)Aixn, un,i − p
〉)

= ‖ xn − p ‖2 −(1 − αn,i) ‖ un,i − xn ‖2

−2γ (1 − αn,i)
〈
A∗

i (I − T (Gi,ψi)
sn,i

)Aixn, un,i − p
〉
.

Furthermore,

(1 − αn,i) ‖ un,i − xn ‖2 ≤ ‖ xn − p ‖2 − ‖ yn,i − p ‖2

+2γ (1 − αn,i)
〈
(I − T (Gi,ψi)

sn,i
)Aixn,Ai(p − un,i)

〉
≤ (‖ xn − p ‖ + ‖ yn,i − p ‖) ‖ yn,i − xn ‖
+ 2γ (1 − αn,i) ‖ (I − T (Gi,ψi)

sn,i
)Aixn ‖‖ Ai(p − un,i) ‖ .

Letting n −→ ∞ and using (b), (c), and both conditions (C1) and (C2), then we
get the desired result, i.e., lim

n→∞ ‖ un,i − xn ‖= 0.

Next, we show the assertion (e). Let p ∈ Γ, it follow from (15) and (16) that

‖ yn,i − p ‖2

≤ αn,i ‖ xn − p ‖2 +(1 − αn,i) ‖ un,i − p ‖2 −αn,i(1 − αn,i) ‖ Sixn − un,i ‖2

≤‖ xn − p ‖2 −αn,i(1 − αn,i) ‖ Sixn − un,i ‖2 . (22)

Consequently,

αn,i(1 − αn,i) ‖ Sixn − un,i ‖2 ≤ ‖ xn − p ‖2 − ‖ yn,i − p ‖2

= (‖ xn − p ‖ + ‖ yn,i − p ‖) ‖ xn − yn,i ‖ .
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By condition (C1), it can be easily seen that

a(1 − b) ‖ Sixn − un,i ‖2 ≤ (‖ xn − p ‖ + ‖ yn,i − p ‖) ‖ xn − yn,i ‖ .

Using (b), we conclude that lim
n→∞ ‖ Sixn − un,i ‖= 0.  "

Theorem 1 The sequence {xn} generated by Algorithm 3.1 converges strongly

to q ∈ Γ, where Γ =
(
∩N

i=1 F(Si)
)
∩ Ω, and Ω =

{
p ∈ C : p ∈

∩N
i=1GEP(Fi, ϕi) and Aip ∈ GEP(Gi, ψi), for all i ∈ {1, . . . , N}

}
.

Proof Since {xn} is bounded, then there exist a subsequence xnj
such that xnj

⇀ q.

Next, we show that q ∈ ∩N
i=1F(Si). Since for all i ∈ {1, . . . , N}, we have

‖ Sixnj
− xnj

‖≤‖ Sixnj
−unj

,i ‖ + ‖ unj
,i − xnj

‖ . It follows from (d) and (e)
that lim

j→∞ ‖ Sixnj
−xnj

‖= 0. Using Lemma 4, we get Siq−q = 0, then q ∈ F(Si)

for every i ∈ {1, . . . , N}. Hence, q ∈ ∩N
i=1F(Si).

Furthermore, we show that q ∈ Ω =
{
p ∈ C : p ∈ ∩N

i=1GEP(Fi) and Aip ∈
GEP(Gi) for all i be [1, N ]

}
. First, we will show that for every i ∈ {1, . . . , N},

we have p ∈ ∩N
i=1GEP(Fi). For all i ∈ {1, . . . , N}, we have un,i =

T
(Fi ,ϕi )
rn,i

(
I − γA∗

i

(
I − T

(Gi,ψi)
sn,i )Ai)xn, n ≥ 1.

Then

Fi(un,i , y)+ ϕi(un,i , y)+ 1

rn,i

〈
y − un,i , un,i − xn + γA∗

i (I − T (Gi ,ψi )
sn,i

)Aixn

〉
≥ 0 ∀y ∈ C,

which implies

−Fi(un,i , y)− ϕi(un,i , y) ≤ 1

rn,i

(〈
y − un,i , un,i − xn

〉
+ γ

〈
y − un,i , A

∗
i (I − T (Gi ,ψi )

sn,i
)Aixn

〉)
.

By using the monotonicity of Fi and ϕi , we can write the last inequality as follows:

Fi(y, un,i )+ ϕi(y, un,i ) ≤ 1

rn,i

(〈
y − un,i , un,i − xn

〉
+ γ

〈
y − un,i , A

∗
i (I − T (Gi ,ψi )

sn,i
)Aixn

〉)
.

Therefore,

Fi(y, unj ,i )+ ϕi(y, unj ,i )

≤ 1

rnj ,i

(
‖ y − unj ,i ‖‖ unj ,i − xnj ‖ +γ ‖ y − unj ,i ‖‖ A∗i (I − T

(Gi,ψi)
snj ,i

)Aixnj ‖
)
.

It follows from (c), (d), and the condition (C5) that for every i ∈ {1, . . . , N},
lim

j→∞Fi(y, unj ,i )+ϕi(y, unj ,i) ≤ 0, and since Fi and ϕi are lower semicontinuous,
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we get

∀i ∈ {1, . . . , N}, Fi(y, q)+ ϕi(y, q) ≤ 0, ∀y ∈ C. (23)

Setting yt = ty + (1 − t)q for some 0 < t < 1, then yt ∈ C. Since Fi satisfies
(A1)–(A4) and ϕi satisfies (B1)–(B4), it follows from (23) that

0 ≤ Fi(yt , yt )+ ϕi(yt , yt )

= Fi(yt , ty + (1 − t)q)+ ϕi(yt , ty + (1 − t)q)

≤ t (Fi(yt , y)+ ϕi(yt , y))+ (1 − t)(Fi(yt , q)+ ϕi(yt , q))

≤ t (Fi(yt , y)+ ϕi(yt , y)),

which implies that for all i ∈ {1, . . . , N}, Fi(ty+(1−t)q, y)+ϕi(ty+(1−t)q, y) ≥
0. Letting t → 0+, we obtain that Fi(q, y)+ ϕi(q, y) ≥ 0,∀i ∈ {1, . . . , N}. Then
q ∈ GEP(Fi, ϕi),∀i ∈ {1, . . . , N}; therefore, q ∈ ∩N

i=1GEP(Fi, ϕi).

Next, we show that Aiq ∈ GEP(Gi, ψi),∀i ∈ {1, . . . , N}.
For all i ∈ {1, . . . , N}, we have Ai that is bounded, and since xnj

⇀ q then

Aixnj
⇀ Aiq, it follows from (c) that T (Gi,ψi)

snj ,i
Aixnj

⇀ Aiq. From Lemma 2, we
have

Gi(T
(Gi,ψi)
snj ,i

Aixnj
, z)+ ψi(T

(Gi,ψi)
snj ,i

Aixnj
, z)

+ 1

snj ,i

〈
z− T (Gi,ψi)

snj ,i
Aixnj

, T (Gi,ψi)
snj ,i

Aixnj
− Aixnj

〉
≥ 0 ∀z ∈ Q.

Taking the limit sup on both sides of the above inequality, and using the fact that
Gi,ψi are upper semicontinuous in the first argument and using the condition (C5),
we conclude that for every i ∈ {1, . . . N},

Gi(Aiq, z)+ ψi(Aiq, z) ≥ 0 ∀z ∈ Q,

which implies that Aiq ∈ GEP(Gi, ψi) and hence, q ∈ Ω. Thus, we have q ∈ Γ.

Next, we show that {xn} converges strongly to q ∈ Γ. It follows from (18) that

‖ xn+1 − q ‖2 = ‖ γn(PCn+1x1 − q)+ (1 − γn)(yn,i − q) ‖2

≤ γn ‖ PCn+1x1 − q ‖2 +(1 − γn) ‖ yn,i − q ‖2

≤ ‖ PCn+1x1 − q ‖2 +(1 − γn) ‖ xn − q ‖2

= (1 − γn) ‖ xn − q ‖2 +δn,

where δn =‖ PCn+1x1 − q ‖2 . Since
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{∑∞
n=1 γn = ∞;∑∞
n=1 δn =∑∞

n=1 ‖ PCn+1x1 − q ‖2< ∞.

Thus all the conditions of Lemma 5 are satisfied. Hence, we deduce that lim
n→∞ xn =

q ∈ Γ. And the conclusion of this theorem is proved.  "
Remark 1 Our method is quite general, and it can be considered as an improvement
of several existing algorithms [15, 21, 26, 27].

4 Numerical Example

In order to analyze and better understand the convergence of the new algorithm,
we present in this section a numerical example to prove the performance of our
theoretical results. All codes were written in Matlab.

Let H1 = H2 = R, and let C = [0, 20] and Q =] − ∞, 0] be the two closed
convex subsets of R.

For all i ∈ {1, . . . , N}, we define Ai and Si as follows:

Ai : H1 −→ H1

x −→ 3x

and

Si : C −→ C

x −→ x

10i

and it is obvious that Ai is linear bounded and Si is nonexpansive. Since Si(0) = 0,
then F(Si) = 0.

We define the bifunctions Fi and Gi by

Fi : C × C −→ H1

u, v −→ Fi(u, v) = i(u+ 1)(v − u)

and

Gi : Q×Q −→ H2

x, y −→ Gi(x, y) = i(x − 10)(y − x),

and we define ϕi and ψi as follows:
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ϕi : C × C −→ H1

u, v −→ ϕi(u, v) = iu(v − u)

and

ψi : Q×Q −→ H2

x, y −→ ψi(x, y) = i(x − y).

Let rn,i = n

i(n+ 1)
, sn,i = n

i(2n+ 3)
, αn,i = 1

in
, γn = 1

11(n+ 1)
, and γ = 1

11
.

It is easy to see that Fi, Gi, ϕi, ψi, rn,i , sn,i , αn,i , γn, and γ are satisfying all
conditions of the proposed method.

Assume that N = 1; then all mappings and sequences become
F1, ϕ1 : C × C −→ R such that F1(u, v) = (u + 1)(v − u), and ϕ1(u, v) =

u(v − u), also G1, ψ1 : Q×Q −→ R such that G1(x, y) = (x − 10)(y − x), and

ψ1(x, y) = x − y, and rn,1 = n

n+ 1
, sn,1 = n

2n+ 3
, αn,1 = 1

n
.

In order to facilitate our calculus, we use r1 and s1 instead of rn,1 and sn,1.

First, we estimate z ∈ Q such that z = T
G1,ψ1
s1 Ax, for every x ∈ C.

Indeed G1(z, y)+ ψ1(z, y)+ 1

s1

〈
y − z, z− Ax

〉
≥ 0 (&).

Clearly,

(&) ⇐⇒ (z− 10)(y − z)− (y − z)+ 1

s1

〈
y − z, z− Ax

〉
≥ 0,

⇐⇒ s1(z− 11)(y − z)+ (y − z)(z− 3x) ≥ 0,

⇐⇒ (y − z)(s1(z− 11)+ (z− 3x)) ≥ 0,

⇐⇒ (y − z)(z(s1 + 1)− (11s1 + 3x)) ≥ 0,

and from Lemma 2, we have T
(G1,ψ1)
s1 that is single valued, then z = 11s1 + 3x

s1 + 1
,

which implies that

T (G1,ψ1)
s1

Ax = 11s1 + 3x

s1 + 1
.

Now, we determine w ∈ C, such that w = (I − γA∗(I − T
(G1,ψ1)
s1 )A)x, then

w = x − γ (9x − 3
11s1 + 3x

s1 + 1
).

Now, to compute u = T
(F1,ϕ1)
r1 w, we will find u ∈ C, which satisfies
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F1(u, v)+ ϕ1(u, v)+ 1

r1

〈
v − u, u− w

〉
≥ 0, (&&)

which is equivalent to the following assertions:

(&&) ⇐⇒ r1((u+ 1)(v − u)+ u(v − u))+ (v − u)(u− w) ≥ 0,

⇐⇒ (v − u)(r1(2u+ 1)+ (u− w)) ≥ 0,

⇐⇒ (v − u)(u(2r1 + 1)− (w − r1)) ≥ 0,

and utilizing Lemma 2, we get u = w − r1

2r1 + 1
, which implies that for each n ∈ N

un,1 = 1 − 9γ

2rn,1 + 1
xn + 3γ (11sn,1 + 3xn)

(sn,1 + 1)(2rn,1 + 1)
− rn,1

2rn,1 + 1
.

And

yn,1 = αn,1

10
xn + (1 − αn,1)un,i .

Then

xn+1 = γnPCn+1x1 + (1 − γn)yn,1.

Since for x1 ∈ C = C1, we get 0 ≤ y1,1 ≤ x1 ≤ 20, then C2 = {p ∈
C : |y1,1 − p| ≤ |x1 − p

∣∣} = [
0,

y1,1 + x1

2

]
, and it can be clearly seen that

y1,1 + x1

2
≤ x1, which implies x2 = PC2x1 = yn,1 + x1

2
. Therefore easily get

Cn+1 =
[
0,

yn,1 + xn

2

]
and, consequently, PCn+1x1 = yn,1 + xn

2
. Thus xn+1 can

be rewritten as follows:

xn+1 = γn
yn,1 + xn

2
+ (1 − γn)yn,1.

Hence, the new form of Algorithm 3.1 is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un,1 = 1 − 9γ

2rn,i + 1
xn + 3γ (11sn,i + 3xn)

(sn,i + 1)(2rn,i + 1)
− rn,i

2rn,i + 1
,

yn,1 = αn,i

10
xn + (1 − αn,i)un,i ,

xn+1 = γn
yn,i + xn

2
+ (1 − γn)yn,i , n ≥ 1.

(24)

Table 1 and Figure 1 clearly show the behavior of the sequence xn generated by
the Algorithm 3.1. which converges to the same solution. i.e. 0 ∈ Γ :
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Fig. 1 Convergence of un,1, yn,1, and xn with initial value x1 = 1
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Fig. 2 Convergence of un,2, yn,2, and xn with initial value x1 = 1

Now we assume that N = 2, and thus mappings and sequences above will be
defined as: F2 : C×C −→ R such that F2(u, v) = 2(u+1)(v−u), G2 : Q×Q −→
R such that G2(x, y) = 2(x − 10)(y − x), and then ϕ2 and ψ2 are denoted by

ϕ2(u, v) = 2u(v − u) and ψ2(x, y) = 2(x − y). Similarly, rn,2 = n

2(n+ 1)
,

sn,2 = n

4n+ 6
, and αn,2 = 1

2n
, whereas S2, take the new form:

S2 : C −→ C
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Table 1 The values of un,

yn, and xn with initial value
x1 = 1

Algorithm 3.1

n un yn xn

1 0.43182 0.10000 1.00000

2 0.04224 0.02714 0.12045

3 0.00908 0.00701 0.02855

4 0.00218 0.00182 0.00725

5 0.00054 0.00047 0.00187

6 0.00013 0.00012 0.00048

7 0.00003 0.00003 0.00012

8 0.00000 0.00000 0.00003

9 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.00000

x −→ x

20
.

Evidently, S2 is nonexpansive. Since S2(0) = 0, then F(S2) = 0. Thus
∩N=2

i=1 F(Si) = 0.

By the same process, we firstly estimate z ∈ Q, such that z = T
G2,ψ2
s2 Ax, for all

x ∈ C, and then we get easily

z = 22s2 + 3x

2s2 + 1
.

Next, we determine w ∈ C, such that w = (I − γA∗(I − T
G2,ψ2
s2 )A)x, then

w = x − γ (9x − 3
22s2 + 3x

2s2 + 1
).

At last we estimate u = T
F2,ϕ2
r2 w, and then by similar calculus we get u = w − 2r2

4r2 + 1
,

which finally states

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un,2 = 1 − 9γ

4rn,2 + 1
xn + 3γ (22sn,2 + 3xn)

(2sn,2 + 1)(4rn,2 + 1)
− 2rn,2

4rn,2 + 1
,

yn,2 = αn,2

20
xn + (1 − αn,2)un,2,

xn+1 = γn
yn,2 + xn

2
+ (1 − γn)yn,2, n ≥ 1.

(25)
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Table 2 The values of un,

yn, and xn with initial value
x1 = 1

Algorithm 3.1

n un yn xn

1 0.43182 0.24091 1.00000

2 0.09052 0.07112 0.25816

3 0.02353 0.02022 0.07395

4 0.00626 0.00561 0.02084

5 0.00167 0.00153 0.00575

6 0.00044 0.00041 0.00156

7 0.00011 0.00011 0.00042

8 0.00003 0.00003 0.00011

9 0.00000 0.00000 0.00003

10 0.00000 0.00000 0.00000

Table 3 The values xn with
initial value x1 = 1 with three
different methods

Algorithm 3.1 Algorithm [27] Algorithm [15]

n xn xn xn

1 1.00000 1.00000 1.00000

2 0.12045 0.50000 1.00000

3 0.02855 0.25000 0.75000

4 0.00725 0.12500 0.50000

5 0.00187 0.06250 0.31250

6 0.00048 0.03125 0.18750

7 0.00012 0.01562 0.10938

8 0.00003 0.00781 0.06250

9 0.00000 0.00390 0.03516

10 0.00000 0.00195 0.01953

Similarly Table 2 and Figure 2 show the behavior of the sequence xn generated
by the Algorithm 3.1. Therefore for each i ∈ {1, . . . , N}, xn −→ q = 0 ∈
∩N=2

i=1 F(Si) ∩Ω .
In the following, we compare the proposed method with those in [27] and [15].

Remark 2 Table 3 and Figure 3 show that the sequences {xn} converge to 0, where
{0} = ∩N=2

i=1 F(Si) ∩Ω.

Also Table 3 and Figure 3 show that the convergence of Algorithm 3.1 is faster
than those in [27] and [15].
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Fig. 3 Convergence of xn with initial value x1 = 1, with different number of iterations n

5 Conclusions

In this paper, we suggest and analyze an iterative method for finding the approximate
element of the common set of solutions of the split generalized equilibrium problem
and the set of common fixed points of a finite family of nonexpansive mappings
in real Hilbert space, which can be viewed as a refinement and improvement of
some existing methods for solving split generalized equilibrium problem. Some
existing methods (e.g., [15, 26, 27] ) can be viewed as special cases of Algorithm 3.1.
Therefore, the new algorithm is expected to be widely applicable.
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Abstract In the present work, we study the motion of an infinitesimal body near
the out-of-plane equilibrium points of the restricted three-body problem in which
the angular velocity of the two primary bodies is considered in the case where both
of them are sources of radiation. Firstly, these equilibria are determined numerically,
and then the influence of the system parameters on their positions is examined. Due
to the symmetry of the problem, these points appear in pairs and, depending on
the parameter values, their number may be zero, two, or four. The linear stability
of the out-of-plane equilibrium points is also studied, and it is found that there
are cases where they can be stable. In addition, periodic motion around them is
investigated both analytically and numerically. Specifically, the Lindstedt–Poincaré
method is used in order to obtain a second order analytical solution, while the
families emanating from the out-of-plane equilibrium points are finally computed
numerically either in case where the corresponding equilibrium points are stable or
unstable. For the numerical computation of a three-dimensional periodic orbit, we
apply known unconstrained optimization methods to an objective function that is
formed by the respective periodicity conditions that have to be fulfilled.
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1 Introduction

The restricted three-body problem concerns the motion of a massless body that
moves under the gravitational attraction of two massive bodies, known as the
primary and secondary bodies. The latter two bodies revolve in circular orbits
around their common center of mass, and their motion is not affected by the third
body of infinitesimal mass. It is well known that in the rotating frame this problem
possesses five equilibrium points three of which lie on the line connecting the
primaries and are called collinear points, while the other two form in the plane of
motion equilateral configuration with the primaries and are called triangular points.
For details on the characteristics of the restricted three-body problem, we may refer
here the book by Valtonen and Karttunen [29] as well as the review article by
Musielak and Quarles [10].

During the past, several variants of this classical problem have been proposed in
order to make it more applicable to real systems of Dynamical Astronomy. These
modifications include additional forces other than the gravitational one or take into
account the shape of stars, planets, or moons (see, e.g., [4, 7, 30, 32]). So, a different
version of the restricted three-body problem arises when one or both primaries are
sources of radiation (the photogravitational problem) or when the angular velocity
of the primaries is considered (the Chermnykh’s problem). In the photogravitational
problem, in addition to the five coplanar points of the classical problem, there exist
equilibrium points that lie out of the orbital plane of the two primary bodies. The
existence of such kind of equilibrium points was pointed out by Radzievskii [18] and
several authors based their works on the Radzievskii’s model in order to understand
various issues related to the dynamics of a particle around radiating primaries (e.g.,
[2, 3, 17, 20, 21, 23–26]). The Chermnykh’s problem in which the angular velocity
variation of the primaries is considered has also been discussed in the context of
planar or three-dimensional case with regard to its equilibrium points (see [1, 6, 8,
11, 12, 14, 15], and references therein).

Recently, Perdios et al. [16] examined equilibrium points and related periodic
motions in the restricted three-body problem with angular velocity and radiation
effects. That investigation was performed in the two-dimensional scenario. In this
paper, we wish to study the three-dimensional case of this special modification of the
restricted problem by considering the out-of-plane equilibrium points and especially
the motion around them. Our aim is not to obtain any particular application of this
model but to gain more insight about its dynamics. To do so, we first compute
numerically the number and positions of this kind of equilibrium points and then
determine their stability. We find that in contrast to the classical problem but in
agreement with the photogravitational one the current problem can admit two or four
such equilibria and stability may occur. As we have already mentioned, our work
focuses on the periodic motion around these points; thus, an analytical as well as a
numerical study have also been performed. In particular, for the analytical part of
this paper, we have used the Lindstedt–Poincaré technique so as to obtain a second
order semi-analytical periodic solution that has been used as a seed for the numerical
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part of our work. Specifically, using initial conditions as they are determined by
the analytical solution, the families of three-dimensional periodic orbits emanating
from the out-of-plane equilibrium points have been determined together with their
stability properties. For the numerical computation of the members of these families,
we have followed the work by Kalantonis et al. [9] and have transformed the
root-finding differential correction procedure (usually used for their determination)
to an unconstrained optimization problem applied on an objective function that
is based on the exact periodicity conditions. To accomplish it, we have adopted
the corresponding unconstrained optimization algorithms developed by Broyden–
Fletcher–Goldfarb–Shanno (BFGS) and Davidon–Fletcher–Powell (DFP).

Our paper is organized in five sections. In Section 2, we recall the equations of
motion of the considered dynamical system. In Section 3, the positions of the out-
of-plane equilibrium points are located. Specifically, we discuss the influence of the
four system parameters (mass parameter μ, angular velocity ω, radiation factors
q1 and q2 of the primaries) on the equilibrium points in a parametric way as well
as we study their linear stability. The allowed regions of motion as determined by
the zero velocity curves are also considered. In Section 4, we establish a second
order semi-analytical periodic solution around the out-of-plane equilibrium points.
The numerical determination of the families of three-dimensional periodic solutions
emanating from these points is also presented in the same section. Our paper ends in
Section 5 in which the obtained results and conclusions of the paper are discussed.

2 Equations of Motion

The equations of motion of the infinitesimal mass m3 in the three-dimensional
photogravitational Chermnykh’s restricted three-body problem with the origin
resting at the center of mass, in a rotating system of coordinates, can be described
in the dimensionless variables as (see [16], and references therein)

ẍ − 2ωẏ = ∂Ω

∂x
= ω2x − q1(1 − μ)(x + μ)

r3
1

− q2μ(x + μ− 1)

r3
2

,

ÿ + 2ωẋ = ∂Ω

∂y
= ω2y − q1(1 − μ)y

r3
1

− q2μy

r3
2

,

z̈ = ∂Ω

∂z
= −q1(1 − μ)z

r3
1

− q2μz

r3
2

,

(1)

where dots denote time derivatives and Ω is the potential function in synodic
coordinates:

Ω = 1

2
ω2(x2 + y2)+ q1(1 − μ)

r1
+ q2μ

r2
, (2)
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while

r2
1 = (x + μ)2 + y2 + z2, r2

2 = (x + μ− 1)2 + y2 + z2, (3)

where r1 and r2 are the distances of the third body from the primaries. The parameter
ω ∈ (0,∞) is the angular velocity of the problem, μ is the mass ratio of the
smaller primary to the total mass of the primaries with 0 < μ ≤ 1/2, while
the larger primary is located at the position (−μ, 0, 0) and the second primary at
(1 − μ, 0, 0), correspondingly, and the unit of distance is the distance between the
primaries. The radiation pressure parameters of the primaries q1 and q2 according to
Radzievskii’s theory are expressed by means of the relations qi = 1 − bi, i = 1, 2,
where b1 and b2 are the ratios of the radiation force Fr to the gravitational force
Fg , which results from the gravitation due to the two primary bodies m1 and m2,

respectively. It is interesting to note that for q1 = q2 = ω = 1 we obtain the
classical circular restricted three-body problem. It is clear that if q1,2 = 1 radiation
pressure has no effect, if 0 < q1,2 < 1 gravitational force exceeds radiation, if
q1,2 = 0 radiation force balances the gravitational one, and if q1,2 < 0 then radiation
pressure overrides the gravitational attraction. The energy (Jacobi-like) integral of
this problem is given by the expression:

ẋ2 + ẏ2 + ż2 = 2Ω − C, (4)

where C is the Jacobi constant, while ẋ, ẏ, and ż correspond to the components of
the velocity.

3 Out-of-Plane Equilibrium Points

The equilibrium points out of the plane Oxy can be found by setting all velocity and
acceleration terms equal to zero and solving the right sides of system (1). Obviously,
the second equation of this system is satisfied for y = 0, and we solve the remaining
two equations for y = 0 and z �= 0, namely:

ω2x0 − q1(1 − μ)(x0 + μ)

r3
10

− q2μ(x0 + μ− 1)

r3
20

= 0,

[
q1(1 − μ)

r3
10

+ q2μ

r3
20

]
z0 = 0,

(5)

where the two distances can be deduced to

r2
10 = (x0 + μ)2 + z2

0, r2
20 = (x0 + μ− 1)2 + z2

0, (6)
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and the subscript “0” is used to denote that these quantities have been evaluated at
the equilibrium values. The latter equations for the distances give that

r20

r10
=
(−q2

q1

μ

1 − μ

) 1
3 ≡ k, (7)

which means that if k = constant the locus of these points is an Apollonius circle.
We found that the specific problem may admit up to four equilibrium points in the
(x, z) plane, in particular, Lz

1, L
z
3 for z > 0 and their symmetric points with respect

to the Oxy plane, Lz
2, Lz

4, respectively (i.e., for z < 0). Their positions are hard
to be obtained with analytical expressions; however, they can be approximated by
using any numerical method for solving nonlinear algebraic systems. Note that the
existence, number, and location of these equilibria depend on the parameters ω, μ,

q1, and q2. From Equation (7), it can be easily seen that for the existence of any real
solution the following condition is necessary to hold:

q1 q2 < 0, (8)

which means that the radiation pressure force of just one of the primaries exceeds
its gravitational attraction. We also mention here that in previous studies about the
photogravitational version of the restricted problem a necessary but not sufficient
condition for the existence of the out-of-plane equilibrium points was also to
consider negative values for the radiation factors (see, e.g., [19, 25, 27]).

Next, we shall discuss the positions of the out-of-plane equilibrium points of
the test body under the above condition for angular velocity variation ω ∈ (0, 5],
whereas the radiation factors q1 and q2 vary in the interval qi ∈ [−1, 1], i = 1, 2,
while they always satisfy the condition q1q2 < 0. Our target is not to provide
a systematic search of their location and existence but to detect them for several
combinations of the parameters of the problem so as to generate the corresponding
three-dimensional periodic orbits that originate out of them.

To investigate the influence of the mass parameter and angular velocity on the
positions of the equilibria under consideration, the radiation factor of the first
primary is arbitrary set to be q1 = −0.01, while that of the second primary is
set to be q2 = 0.5, thus satisfying the requested condition (8). The coordinates of
the numerically determined out-of-plane equilibrium points are shown in Table 1
for various values of the angular velocity ω and the mass parameter μ. For mass
parameter μ = 0.1, the locations of the equilibrium points with respect to different
values of ω are presented in the second column of Table 1. We observe that with
the increase of the angular velocity parameter ω, the z-coordinates of the equilibria
decrease while at the same time the x-coordinates approach the origin. The third
and fourth columns of Table 1 show the variational trend of the positions of the
equilibria with the variation of ω for the values of the mass parameter μ = 0.2
and μ = 0.25, respectively. Evidently, the variational trend of the corresponding
positions is similar to the scenario with μ = 0.1 as described previously. It is
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Table 1 The positions (x0,±z0) of the out-of-plane equilibrium points as a function of ω for
q1 = −0.01 and q2 = 0.5

ω μ = 0.1 μ = 0.2 μ = 0.25

0.5 (−0.1093610,±0.690410) (−0.2528320,±0.499293) (−0.320035,±0.448833)

1.0 (−0.0346804,±0.634498) (−0.1019530,±0.416740) (−0.140896,±0.360004)

1.5 (−0.0164374,±0.618705) (−0.0546692,±0.374972) (−0.080534,±0.301557)

2.0 (−0.0094826,±0.612435) (−0.0336957,±0.352851) (−0.051897,±0.264657)

2.5 (−0.0061438,±0.609373) (−0.0226790,±0.340139) (−0.036018,±0.240316)

3.0 (−0.0042958,±0.607664) (−0.0162333,±0.332307) (−0.026338,±0.223632)

3.5 (−0.0031694,±0.606617) (−0.0121607,±0.327197) (−0.020032,±0.211821)

4.0 (−0.0024332,±0.605931) (−0.0094339,±0.323701) (−0.015713,±0.203221)

4.5 (−0.0019262,±0.605457) (−0.0075235,±0.321216) (−0.012634,±0.196805)

5.0 (−0.0015623,±0.605117) (−0.0061355,±0.319391) (−0.010367,±0.191913)

Table 2 The positions (x0,±z0) of the out-of-plane equilibrium points as a function of q2 for
μ = 0.3 and ω = 0.75

q2 q1 = −0.05 q1 = −0.03 q1 = −0.01

1.0 (−0.327184,±0.574423) (−0.349825,±0.471707) (−0.377815,±0.310964)

0.9 (−0.304154,±0.589214) (−0.327545,±0.484068) (−0.356382,±0.321954)

0.8 (−0.279374,±0.605808) (−0.303641,±0.497241) (−0.333459,±0.332499)

0.7 (−0.252452,±0.625177) (−0.277761,±0.511759) (−0.308735,±0.342759)

0.6 (−0.222829,±0.649047) (−0.249413,±0.528542) (−0.281778,±0.353003)

0.5 (−0.189672,±0.680798) (−0.217867,±0.549332) (−0.251962,±0.363741)

0.4 (−0.151654,±0.728114) (−0.181978,±0.577854) (−0.218312,±0.376088)

0.3 (−0.106477,±0.813339) (−0.139772,±0.623759) (−0.179175,±0.392896)

0.2 (−0.050027,±1.045970) (−0.087408,±0.722465) (−0.131332,±0.423550)

also observed from the same table that the positions of these two equilibria vary
in a relatively small range with ω ≥ 1 compared to that with ω < 1 as the mass
parameter μ varies. This indicates that low angular velocity values have greater
impact on the out-of-plane equilibria than the high angular velocity values.

Similarly, for the investigation of the influence of the radiation parameters q1
and q2 on the positions of the out-of-plane equilibrium points, we set for the mass
parameter and angular velocity the values μ = 0.3 and ω = 0.75, respectively.
The coordinates of the corresponding equilibrium points are shown in Table 2 for
increasing values of radiation factors q1 and q2. Recall here that radiation pressure
increases when q1,2 decreases. In particular, the second column of Table 2 shows
the variational trend of the position of the equilibrium points when the values of
μ = 0.3, ω = 0.75, q1 = −0.05 are fixed along with the variation of q2. With
the decrease of the radiation factor q2 from 1 to 0.2, the x-coordinates approach the
origin, while at the same time the values of the z-coordinates increase. The third
and fourth columns of this table show the variational trend of the positions of the
equilibria with the variation of q2 for the same fixed values μ = 0.3, ω = 0.75
but for q1 = −0.03 and q1 = −0.01, respectively. It is obvious that the variational
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Fig. 1 Positions of the positive out-of-plane equilibrium points for (a) fixed values of the radiation
factors q1 = −0.01 and q2 = 0.5 and various values of the mass parameter when the angular
velocity ω varies (b) fixed values of the angular velocity and mass parameters ω = 0.75 and
μ = 0.3, respectively, and various values of the radiation factor q1 when the radiation factor q2
varies

trend of the corresponding equilibria position is similar to the previously discussed
scenario with q1 = −0.05. So, by decreasing the values of the radiation factor q2,
the out-of-plane equilibria move away from the primaries and approach the Oz-axis.

The aforementioned discussion can be summarized in Figure 1, where we plot
the positions of the positive out-of-plane equilibrium points Lz

1. In particular, in
frame (a) of this figure, we show the respective positions when the values of the
radiation factors are kept fixed to q1 = −0.01 and q2 = 0.5, respectively, when
the angular velocity varies and the mass parameter takes the values μ = 0.1, μ =
0.15, μ = 0.2, and μ = 0.25. In frame (b), we present the positions of the out-of-
plane equilibria in the (x, z)-plane as q2 varies, for the fixed values of q1 = −0.05,
q1 = −0.03, and q1 = −0.01, while the remaining parameters are ω = 0.75 and
μ = 0.3. As we see, the variational trend of the equilibria positions in Figure 1a, b is
similar to the corresponding scenarios presented in Tables 1 and 2, respectively. In
Figure 2, we show a representative case where two positive out-of-plane equilibrium
points exist simultaneously, namely the points Lz

1 and Lz
3. The corresponding figure

is illustrated for fixed values of the mass parameter μ = 0.4 and radiation factor
q2 = −1.5 for three specific values of the radiation factor q1, while the angular
velocity ω varies. In the first frame, we present the position of the out-of-plane
equilibrium point Lz

1, while in the second frame the position of the equilibrium
point Lz

3.
In the following, we present, as a matter of interest, the contours of the surface

(4) on the (x, z) plane for zero velocity, which provide the zero velocity curves.
These curves define the areas on this plane where the motion of the test particle is
allowed or forbidden. In particular, in Figure 3, we present the zero velocity curves
for fixed values of μ = 0.1, q1 = −0.01, and q2 = 0.5 and for the three values of
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when the angular velocity ω varies (a) out-of-plane equilibrium point Lz

1, and (b) out-of-plane
equilibrium point Lz
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Fig. 3 Zero velocity curves in the (x, z) plane and locations of the out-of-plane equilibria for (a)
ω = 1, (b) ω = 2, and (c) ω = 2.75, correspondingly. The locations of the primary bodies are
presented too. Note: The values of μ = 0.1, q1 = −0.01, and q2 = 0.5 are fixed for all cases

angular velocity ω = 1, ω = 2, and ω = 5, correspondingly. It can be seen that the
zero velocity curves between the out-of-plane equilibrium points form regions not
allowed to possible motion, which shrink as the angular velocity increases. So, it
results from the equipotential curves of (4) that the value of ω has significant effects
on the topological structure of the forbidden regions to motion of the massless body.
Figure 4 illustrates the zero velocity curves for fixed values of ω = 2, q1 = −0.01,
and q2 = 0.5 and for the three values of mass parameter μ = 0.15, μ = 0.2, and
μ = 0.25, correspondingly. It can be observed that with the increase of the mass
parameter, the zero velocity curves up to the out-of-plane equilibria go approaching
the bigger primary body m1. It means that the regions of forbidden motion shrink
with its increase. In Figure 5, the zero velocity curves for fixed values of μ = 0.3,
q1 = −0.05, and ω = 0.75 and for three values of radiation factor (q2 = 1,
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Fig. 4 Zero velocity curves in the (x, z) plane and locations of the out-of-plane equilibria for (a)
μ = 0.15, (b) μ = 0.2, and (c) μ = 0.25, correspondingly. The locations of the primary bodies
are presented too. Note: The values of ω = 2, q1 = −0.01 and q2 = 0.5 are fixed for all cases
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Fig. 5 Zero velocity curves in the (x, z) plane and locations of the out-of-plane equilibria for (a)
q2 = 1, (b) q2 = 0.5, and (c) q2 = 0.2, correspondingly. The locations of the primary bodies are
presented too. Note: The values of μ = 0.3, ω = 0.75, and q1 = −0.05 are fixed for all cases

q2 = 0.5, and q2 = 0.2) are illustrated. It is clear that the forbidden region of motion
expands as the radiation pressure q2 increases. In Figure 6, we present the zero
velocity curves with μ = 0.3, q2 = 0.9, and ω = 0.75 when the radiation parameter
q1 takes the values q1 = −0.05, q1 = −0.03, and q1 = −0.01, correspondingly.
And in this case, around the dominant primary body m1 and up to the out-of-plane
equilibrium points, the zero velocity curves form small ovals of regions not allowed
to motion, which shrink as the radiation pressure q1 increases.

To determine the linear stability of an out-of-plane equilibrium point Lz
i , i =

1, 2, 3, 4, we transfer the origin to its position (x0, 0, z0) by introducing the new
variables (ξ, η, ζ ) and linearize the equations of motion obtaining:

ξ̈ − 2ωη̇ = Ω
(0)
ξξ ξ +Ω

(0)
ξη η +Ω

(0)
ξζ ζ,

η̈ + 2ωξ̇ = Ω
(0)
ηξ ξ +Ω

(0)
ηη η +Ω

(0)
ηζ ζ,

ζ̈ = Ω
(0)
ζ ξ ξ +Ω

(0)
ζη η +Ω

(0)
ζ ζ ζ,

(9)
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Fig. 6 Zero velocity curves in the (x, z) plane and locations of the out-of-plane equilibria for (a)
q1 = −0.05, (b) q1 = −0.03, and (c) q1 = −0.01, correspondingly. The locations of the primary
bodies are presented too. Note: The values of μ = 0.3, ω = 0.75, and q2 = 0.9 are fixed for all
cases

where the superscript “(0)” indicates that the partial derivatives have been evaluated
at the equilibrium point. Explicitly, the partial derivatives of system (9) are Ω

(0)
ξη =

Ω
(0)
ηξ = Ω

(0)
ηζ = Ω

(0)
ζη = 0 and:

Ω
(0)
ξξ = ω2 − (1 − μ)q1

r3
10

− μq2

r3
20

+ 3(1 − μ)(x0 + μ)2q1

r5
10

+ 3μ(x0 + μ− 1)2q2

r5
20

,

Ω
(0)
ξζ = Ω

(0)
ζ ξ = 3z0

[
(1 − μ)(x0 + μ)q1

r5
10

+ μ(x + μ− 1)q2

r5
20

]
,

Ω(0)
ηη = ω2 − (1 − μ)q1

r3
10

− μq2

r3
20

,

Ω
(0)
ζ ζ = − (1 − μ)q1

r3
10

− μq2

r3
20

+ 3(1 − μ)q1z
2
0

r5
10

+ 3μq2z
2
0

r5
20

,

(10)

with

r2
10 = (x0 + μ)2 + z2

0, r2
20 = (x0 + μ− 1)2 + z2

0. (11)

The characteristic equation corresponding to system (9) is given by

λ6 + aλ4 + bλ2 + c = 0, (12)

where
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Table 3 The eigenvalues λ1,2, λ3,4,5,6 of Equation (12) for the out-of-plane equilibrium points
Lz

1,2

q2 q1 ω μ = 0.1 μ = 0.3

0.9 −0.05 0.75 ±0.17272i, ±(0.10994 ± 0.74811i) ±0.71282i, ±(0.42692 ± 0.70050i)

0.7 −0.04 1.50 ±0.14891i, ±(0.10278 ± 1.49983i) ±0.90444i, ±(0.41697 ± 1.41945i)

0.5 −0.03 2.00 ±0.11696i, ±(0.08193 ± 1.99997i) ±0.71473i, ±(0.37629 ± 1.97134i)

0.3 −0.02 2.75 ±0.07481i, ±(0.05277 ± 2.75000i) ±0.50428i, ±(0.31129 ± 2.74449i)

0.1 −0.01 3.00 ±0.00709i, ±(0.00501 ± 3.00000i) ±0.26538i, ±(0.18066 ± 2.99957i)

Table 4 The eigenvalues λ1,2, λ3,4, λ5,6, of Equation (12) and the corresponding positions of the
out-of-plane equilibrium points Lz

1,2 and Lz
3,4 for the value of the mass parameter μ = 0.4

q2 q1 ω Lz
1,2 Lz

3,4

−1.5 0.9 4.0 ±0.95627i, ±3.09459i, ±4.63779i ±0.14898, ±3.87865i, ±4.12047i

(x, z) = (0.07943819,±0.57904060) (x, z) = (0.00845626,±1.53273515)

−1.4 0.8 4.5 ±0.98123i, ±3.53042i, ±5.20321i ±0.22101, ±4.30972i, ±4.68777i

(x, z) = (0.07485926,±0.48895229) (x, z) = (0.01129513,±1.21242661)

−1.3 0.7 5.0 ±0.95519i, ±4.01241i, ±5.74354i ±0.30080, ±4.72488i, ±5.26934i

(x, z) = (0.07062798,±0.40300427) (x, z) = (0.01412884,±0.97512312)

−1.2 0.6 5.5 ±0.85759i, ±4.56523i, ±6.23885i ±0.38428, ±5.12248i, ±5.86583i

(x, z) = (0.06639573,±0.31682111) (x, z) = (0.01715166,±0.78085851)

a = 4ω2 −Ω
(0)
ξξ −Ω

(0)
ηη −Ω

(0)
ζ ζ ,

b = Ω
(0)
ξξ Ω

(0)
ηη +Ω

(0)
ηη Ω

(0)
ζ ζ +Ω

(0)
ζ ζ Ω

(0)
ξξ − 4ω2Ω

(0)
ζ ζ − [Ω(0)

ξζ ]2,

c = [Ω(0)
ξζ ]2Ω(0)

ηη −Ω
(0)
ξξ Ω

(0)
ηη Ω

(0)
ζ ζ ,

(13)

which is a polynomial of sixth degree in λ. The eigenvalues of the characteristic
equation (12) determine the stability or instability of the respective equilibrium
points. An equilibrium point is linearly stable only when all roots of the characteris-
tic equation for λ are pure imaginary. Otherwise, the equilibrium point is unstable.

As a particular example, we compute the characteristic roots λi, i = 1, 2, . . . , 6,
which are shown in Table 3 for different values of μ and for a wide range of the
remaining parameters ω, q1, and q2. In addition, in Table 4, we provide sample cases
at which the values of the corresponding roots are all purely imaginary (equilibrium
points Lz

1,2), thus leading to stability, while for the equilibria Lz
3,4 we get two

opposite real roots and four imaginary, which means that due to the real roots
these points are unstable. So, our analysis reveals that there are cases in which the
eigenvalues are all imaginary, and this leads to linear stability of the out-of-plane
equilibrium points.
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4 Spatial Periodic Orbits Around the Out-of-Plane
Equilibria

In this section, we describe the evolution of the families of three-dimensional
periodic orbits emanating from the out-of-plane equilibrium points. Our study is
divided into two parts. Firstly, based on the Poincaré-Lindstedt method, a second
order semi-analytical solution of a three-dimensional periodic orbit around these
equilibria will be determined. Then, this semi-analytical solution will be used for the
determination of appropriate initial conditions around these points for the numerical
integration of the full equations of motion (1).

4.1 The Analytical Approximation

In order to obtain the analytical solution, we initially expand the equations of
motion (1) around an out-of-plane equilibrium point up to second order terms
obtaining:

ξ̈ − 2ωη̇ = A100ξ + A001ζ + A101ξζ + A200ξ
2 + A020η

2 + A002ζ
2 = f (ξ, η, ζ ),

η̈ + 2ωξ̇ = B010η + B110ξη + B011ηζ = g(ξ, η, ζ ),

ζ̈ = C100ξ + C001ζ + C200ξ
2 + C020η

2 + C002ζ
2 + C101ξζ = h(ξ, η, ζ ),

(14)

where the coefficients of the first equation are given by the following formulae:

A100 = Ω
(0)
ξξ , A001 = Ω

(0)
ξζ , A020 = A001

2z0
,

A101 = 3z0

[
Q1(

1

r5
10

− 5α2

r7
10

)+Q2(
1

r5
20

− 5β2

r7
20

)

]
,

A200 = 3αQ1(
1

r5
10

+ z2
0 − 4α2

2r7
10

)+ 3βQ2(
1

r5
20

+ z2
0 − 4β2

2r7
20

),

A002 = 3αQ1(α
2 − 4z2

0)

2r7
10

+ 3βQ2(β
2 − 4z2

0)

2r7
20

,

and the coefficients of the second one by

B010 = Ω(0)
ηη , B011 = 3z0(

Q1

r5
10

+ Q2

r5
20

), B110 = A001

2
,

while the coefficients of the third equation have been abbreviated as
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C001 = Ω
(0)
ζ ζ , C100 = Ω

(0)
ζ ξ = A001, C020 = B011

2
, C101 = 2A002,

C200 = 3Q1z0(z
2
0 − 4α2)

2r7
10

+ 3Q2z0(z
2
0 − 4β2)

2r7
20

,

C002 = 3z0

[
Q1(3α2 − 2z2

0)

2r7
10

+ Q2(3β2 − 2z2
0)

2r7
20

]
,

where we have also abbreviated Q1 = q1(1 − μ), Q2 = q2μ, and α = x0 + μ,

β = x0 + μ − 1. We look for solutions of system (14) in powers of a small orbital
parameter ε of the following form:

ξ(τ ) = ξ1ε + ξ2ε
2 + O(ε3),

η(τ ) = η1ε + η2ε
2 + O(ε3), (15)

ζ(τ ) = ζ1ε + ζ2ε
2 + O(ε3),

where time t has been strained through the transformation:

t = (1 + κ)τ, κ = b1ε + b2ε
2 + O(ε3), (16)

and b1 and b2 have to be determined in order to avoid any secular term. So, by
introducing τ as the new variable, system (14) takes the form:

(1 + κ)−2ξ ′′ − 2ω(1 + κ)−1η′ = f (ξ, η, ζ ),

(1 + κ)−2η′′ + 2ω(1 + κ)−1ξ ′ = g(ξ, η, ζ ),

(1 + κ)−2ζ ′′ = h(ξ, η, ζ ).

(17)

By substituting (15) into the above system (17) and by equating the coefficients
of the same powers of ε, we obtain the following two systems. The first system
corresponds to the linear terms with respect to the orbital parameter ε:

ξ ′′1 − 2ωη′1 − A100ξ1 − A001ζ1 = 0,

η′′1 + 2ωξ ′1 − B010η1 = 0, (18)

ζ ′′1 − C001ζ1 − A001ξ1 = 0,

while the second one has been arisen by the second order terms with respect to the
orbital parameter ε:

ξ ′′2 − 2ωη′2 − A100ξ2 − A001ζ2 = A200ξ
2
1 + A101ξ1ζ1 + A002ζ

2
1 + A020η

2
1,

η′′2 + 2ωξ ′2 − B010η2 = B110ξ1η1 + B011η1ζ1, (19)

ζ ′′2 − A001ξ2 − C001ζ2 = C200ξ
2
1 + C002ζ

2
1 + C020η

2
1 + C101ξ1ζ1.
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In order to obtain the second order semi-analytical solution around the out-of-plane
equilibria, the above two systems have to be solved successively. System (18) admits
the following general solution:

ξ1(τ ) =
6∑

i=1

αie
λiτ , η1(τ ) =

6∑
i=1

βie
λiτ , ζ1(τ ) =

6∑
i=1

γ ie
λiτ , (20)

where λi, i = 1, 2, . . . , 6 are the roots of the characteristic equation (12) and αi,

βi, γ i, i = 1, 2, . . . , 6, are arbitrary constants. If a pair of roots of the characteristic
equation are purely imaginary, i.e., λ1,2 = ±w0i, then the special solution of the
general solution (20) corresponding to αi = βi = γ i = 0, i = 3, 4, 5, 6, is
periodic with period T = 2π/w0, with w0 being the respective frequency, and
has the following form:

ξ1(τ ) = x11 + c111 cos(w0τ)+ s111 sin(w0τ),

η1(τ ) = y11 + c121 cos(w0τ)+ s121 sin(w0τ), (21)

ζ1(τ ) = z11 + c131 cos(w0τ)+ s131 sin(w0τ),

where the involved coefficients have to be determined. Substitution of the last
special solution into (18) leads to the requested first order solution:

ξ1(τ ) = s111 sin(w0τ), η1(τ ) = c121 cos(w0τ), ζ1(τ ) = sin(w0τ), (22)

with

s111 = −A001(B010 + w2
0)

Λ
, c121 = −2ωA001w0

Λ
,

and Λ = w4
0+(A100+B010−4ω2)w2

0+A100B010, while the remaining coefficients
of (21) have been eliminated in the process. We substitute now the determined
solution (22) into the RHSs of system (19) and look for a respective second order
solution of the form:

ξ2(τ ) = x21 + c211 cos(w0τ)+ s211 sin(w0τ)+ c212 cos(2w0τ)+ s212 sin(2w0τ),

η2(τ ) = y21 + c221 cos(w0τ)+ s221 sin(w0τ)+ c222 cos(2w0τ)+ s222 sin(2w0τ),

ζ2(τ ) = z21 + c231 cos(w0τ)+ s231 sin(w0τ)+ c232 cos(w0τ)+ s232 sin(w0τ),

(23)

where the unknown coefficients involved in this solution have also to be determined.
The above substitutions result to the following linear system:
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⎡
⎢⎢⎢⎢⎢⎣

−A100 0 0 −A001 0
0 −A100 − 4w2

0 −4ωw0 0 −A001

0 −4ωw0 −B010 − 4w2
0 0 0

−A001 0 0 −C001 0
0 −A001 0 0 −C001 − 4w2

0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x21

c212

s222

z23

c232

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Θ1

Θ2

Θ3

Θ4

Θ5

⎤
⎥⎥⎥⎥⎥⎦

,

where Θi, i = 1, 2, . . . , 5 are given by

Θ1 = 1

4z0
A001c

2
121 +

1

2
[A002 + s111(A101 + A200s111)] ,

Θ2 = 1

4z0
A001c

2
121 −

1

2
[A002 + s111(A101 + A200s111)] ,

Θ3 = 1

2z0
[c121(A001s111 + B011z0)] ,

Θ4 = 1

4

[
B011c

2
121 + 2C002 + 2s111(2A002 + s111C200)

]
,

Θ5 = 1

4

[
B011c

2
121 − 2C002 − 2s111(2A002 + s111C200)

]
,

which has to be solved for the determination of the involved unknown coefficients
of (23), while the remaining coefficients of this solution have been found to be equal
to zero. The requested second order semi-analytical solution is finally obtained in
the form:

ξ2(τ ) = x21 + c212 cos(2w0τ), η2(τ ) = s222 sin(2w0τ),

ζ2(τ ) = z23 + c232 cos(2w0τ), (24)

where the respective coefficients have been determined by solving the aforemen-
tioned linear system and are

x21 = Ψ1

Ψ
, z23 = Ψ2

Ψ
, c212 = Φ1

Φ
, s222 = Φ2

2Φ
, c232 = Φ3

Φ
,

with

Ψ1 = 2z0[s2
111(A200C001 − A001C200)+ s111(A101C001 − 2A001A002)

+A002C001 − A001C002] + A001c
2
121(C001 − B011z0),

Ψ2 = −2z0[s2
111(A001A200 − A100C200)+ s111(A001A101 − 2A002A100)

+A001A002 − A100C002] + c2
121(A100B011z0 − A2

001),

Φ1 = 2z0ϕ2s
2
111(A001C200 − A200ϕ3)− 2z0ϕ2s111(A101C001 − 2A001A002
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+4A101w
2
0)+ A001ϕ2c

2
121(ϕ3 − z0B011)+ 2z0ϕ2(A001C002 − A002ϕ3)

−8ωw0ϕ3c121(A001s111 + z0B011),

Φ2 = −c121(A001s111 + B011z0)
[
A2

001 − A100C001 − 4w2
0(A100 + C001)− 16w4

0

]

−4ωw0z0

[
s111(A101C001 − 2A001A002 + 4A101w

2
0)− A001C002 + A002C001

+4A002w
2
0 + s2

111(A200C001 − A001C200 + 4A200w
2
0)
]

+2ωw0A001c
2
121(ϕ3 − B011z0),

Φ3 = c2
121(B011z0ϕ6 − A2

001ϕ2)+ 2z0s
2
111(A001A200ϕ2 − C200ϕ6)

+8ωw0A
2
001c121s111 + 2z0s111(A001A101ϕ2 − 2A002ϕ6)

+8ωw0z0A001B011c121 + 2A001A002z0ϕ2 − 2z0C002ϕ6,

and

Ψ = 4z0(A
2
001 − A100C001), Φ = 4z0ϕ2A

2
001 − 4z0ϕ3ϕ6,

while we have also set for abbreviation:

ϕ1 = 4w2
0 + A001, ϕ2 = 4w2

0 + B010, ϕ3 = 4w2
0 + C001,

ϕ4 = A100 + B010 + 4ω2, ϕ5 = A100B010 + 16w4
0, ϕ6 = ϕ5 + 4w2

0ϕ4.

Eventually, the resulting second order approximate periodic solution around the out-
of-plane equilibrium points is obtained in the form:

x = x0 + ξ(τ ), y = η(τ), z = z0 + ζ(τ ), (25)

where

ξ(τ ) = s111 sin(w0τ)ε + [x21 + c212 cos(2w0τ)] ε
2,

η(τ ) = c121 cos(w0τ)ε + s222 sin(2w0τ)ε
2, (26)

ζ(τ ) = sin(w0τ)ε + [z23 + c232 cos(2w0τ)] ε
2,

while the particular coefficients of this approximate solution have been determined
as it was discussed in our previous analysis. Note that the coefficients b1 and b2 of
time transformation (16) have been arbitrarily chosen to be equal to zero in order
to avoid secular solutions, which means that finally we get the relation for time
transformation t = τ .

In Figure 7, we show approximate initial conditions of three-dimensional
periodic orbits as they result from our semi-analytical solution (25) for the values
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Fig. 7 The validity of the first (A1) and second (A2) order semi-analytical solutions w.r.t. the
corresponding numerical solution (N) in several projections. The involved solutions have been
computed for the parameter values μ = 0.1, ω = 3, q1 = −0.01, and q2 = 0.5

of the parameters of the problem μ = 0.1, ω = 3, q1 = −0.01, and q2 = 0.5,
in the range of the orbital parameter ε ∈ [0, 0.45]. To establish the validity of our
analysis, the family of three-dimensional periodic orbits, which has been computed
numerically by integrating the full equations of motion (1), is also shown in this
figure. The presented solutions are marked by A1, for the linear terms of (25), A2
for the second order analytical solution, and N for the numerical one, respectively.
As we observe, in all projections, the second order analytical solution A2 is a better
approximation of the numerical one N than the first order analytical solution A1.
Note here that, due to the symmetry of the problem, we have chosen to show in this
figure initial conditions of the form (x0, z0, ẏ0), as it will be explained afterwards

4.2 The Numerical Approximation

We consider a dynamical system expressed by the following system of first order
differential equations:

ẋ = F(x; t), (27)

with x = (x1, x2, . . . , xn) and F = (F1, F2, . . . , Fn) : Rn+1 → R
n, where t is

the independent variable. A solution x of system (27) is periodic of period T if it
satisfies the following conditions:

x(x0; t = 0) = x(x0; t = T ), (28)

where x0 is the initial point of this orbit at t = 0. In general, the above conditions
do not hold; therefore, given of an initial guess x∗0 of the initial point of a periodic
orbit, we seek the necessary corrections of this point such that:

x(x∗0 + δx∗0; t = 0) = x(x∗0 + δx∗0; t = T ∗ + δT ∗). (29)
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In order to solve the above nonlinear system of algebraic equations, we may
minimize the following objective function:

f (x∗0 + δx∗0) =
n∑

i=1

[xi(x∗0 + δx∗0; t = 0)− xi(x∗0 + δx∗0; t = T ∗ + δT ∗)]2, (30)

arising from the corresponding periodicity conditions (29) by using any optimiza-
tion method. For the prediction of a next member orbit that belongs to a family of
periodic orbits, we work as follows. Suppose that the initial conditions x0 and the
period T of the member orbit are already known with a predetermined accuracy.
Then, to find a new periodic orbit of this family, we have to compute appropriate
modifications δx0 and δT of the initial conditions and period, so that the solution
with initial point x0 + δx0 to be periodic with period T + δT thus satisfying the
conditions:

xi(x0 + δx0; t = 0)− xi(x0 + δx0; t = T + δT ) = 0. (31)

By expanding the LHSs of the above equations up to first order terms, we obtain

δx0i +
n∑

j=1

∂xi

∂x0j
δx0i + ∂xi

∂t
δT = 0, i = 1, . . . , n, (32)

and by fixing

n∑
j=1

δx2
0i = d2 = const, (33)

we are able to approximate the δ-modifications by solving (32) and (33), so that
the distance between the initial points of the two periodic solutions remains equal
to d. Obviously, this prediction does not satisfy the periodicity conditions with the
predetermined accuracy; therefore, it can be corrected to give a periodic solution
with initial point x∗0 and period T ∗ by minimizing the objective function f given
in (30) together with the function:

h(x0) = |
n∑

i=1

(x∗0i − x0i )
2 − d2|. (34)

The minimization of h ensures that the distance between the initial points of the two
periodic solutions will remain equal to d.

As an optimization technique for the numerical determination of periodic
solutions around the out-of-plane equilibrium points, we have adopted here the algo-
rithms developed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Davidon–
Fletcher–Powell (DFP), which are briefly described in the following (details for
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these two quasi-Newton methods can be found in, e.g., [5]). Consider the following
set of objective functions:

g(x) = (g1(x), g2(x), . . . gn(x)) .

Minimizing simultaneously all these functions is equivalent to the minimization of
function:

f (x) =
n∑

i=1

g2
i (x),

and for the computation of the minima of function f , we use the numerical
optimization technique:

xk+1 = xk − λkAk∇f (xk), k = 0, 1, 2, . . . , (35)

where

Ak+1 = Ak + rk(rk).

(rk).qk
− Akqk(qk).Ak

(qk).Akqk
+ γ (qk).Akqkuk(uk).,

uk = rk

(rk).qk
− Akqk

(qk).Akqk
, rk = xk+1 − xk, qk = ∇f (xk+1)− ∇f (xk),

with A0 being an arbitrary symmetric and positive definite matrix, usually taken
to be the identity matrix, and λk is the optimal length in the direction pk =
−Ak∇f (xk). For γ = 1, we obtain the BFGS method, while for γ = 0 the DFP
one. The aforementioned technique has been successfully applied by Kalantonis et
al. [9] for the determination of periodic orbits as fixed points on the Poincaré surface
of section in a different model problem of Celestial Mechanics.

In the considered problem, there is the symmetry property with respect to the
Oxz plane, which means that all the determined periodic orbits are symmetric
with it. By exploiting this particular symmetry, we start the integration of the
equations of motion with initial position components on this plane and initial
velocity perpendicular to it and look for a perpendicular intersection of the orbit
with the Oxz plane at the half period, so the mirror theorem will be satisfied (see
[22]). Thus, the conditions that must be fulfilled for an orbit emanating from an
out-of-plane equilibrium point in order to be periodic are

y(x0; t = T/2) = 0, ẋ(x0; t = T/2) = 0, ż(x0; t = T/2) = 0, (36)

where x0 = (x0, y0 = 0, z0, ẋ0 = 0, ẏ0, ż0 = 0) is the initial state vector, i.e.,
at t = 0, and T is the orbit’s period. If these conditions are not satisfied, we seek
for proper corrections δx0, δz0, δẏ0, and δT of the initial state vector and period,
respectively, such that
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g1(δx0, δz0, δẏ0; δT ) = y(x0 + δx0, 0, z0 + δz0, 0, ẏ0 + δẏ0, 0; T/2 + δT ) = 0,

g2(δx0, δz0, δẏ0; δT ) = ẋ(x0 + δx0, 0, z0 + δz0, 0, ẏ0 + δẏ0, 0; T/2 + δT ) = 0,

g3(δx0, δz0, δẏ0; δT ) = ż(x0 + δx0, 0, z0 + δz0, 0, ẏ0 + δẏ0, 0; T/2 + δT ) = 0,

(37)

at half of the period. We then form the objective function:

G(δx0, δz0, δẏ0; δT ) =
3∑

i=1

g2
i (δx0, δz0, δẏ0; δT ) (38)

and apply either the BFGS or DFP algorithms in order to compute the corresponding
corrections as it was discussed previously.

By applying the above mentioned technique, several families of symmetric (w.r.t.
the Oxz plane) periodic orbits emanating from the out-of-plane equilibrium points
have been computed. In order to determine a member of each one of the computed
families in the vicinity of an out-of-plane equilibrium point, we have used the
analytical solution (25) obtained in the previous subsection, for a relatively small
value of the orbital parameter ε, e.g., ε = 0.01, which works as the appropriate
seed for our numerical computations. Then, this approximate orbit is corrected
numerically with the accuracy of eight significant figures and the family is continued
up to its end. Note that the time t in our analytical solution (25) is always selected
such that to obtain y0 = 0, ẋ0 = 0, and ż0 = 0, i.e., to start perpendicularly from
the Oxz plane. Also, for the numerical determination of the stability of a three-
dimensional periodic orbit, we recall here that it can be determined by integrating
numerically the respective variational equations (see, e.g., [28]). Such an orbit will
be stable if the following conditions hold simultaneously [31]:

|P | < 2 and |Q | < 2, (39)

where P,Q = (2 − TrV ±√
Δ)/2, and Δ = (2 − TrV )2 − 2[(2 − TrV )2 + 2 −

TrV 2] + 8, while V is the variational matrix. For stability of a three-dimensional
periodic orbit in the restricted problem, we may also refer to Perdios [13].

So, we have computed the two families emanating from the unstable out-of-plane
equilibrium points Lz

1 for the parameter values μ = 0.1, ω = 3.0, q1 = −0.01,
q2 = 0.5, and μ = 0.3, ω = 0.75, q1 = −0.05, q2 = 0.5, corresponding to
the positions (x0, z0) of the out-of-plane equilibrium points given to the second
column of the sixth row of Tables 1 and 2, respectively. Both families consist of
unstable periodic orbits that continue to exist for large values of z and are presented
in Figure 8 where we plot their respective member orbits.

In Figure 9, we present in the space of initial conditions the characteristic curves
of the families emanating from the out-of-plane equilibrium points Lz

1 and Lz
3,

together with their respective projections (light grey), corresponding to the case
of the parameter values μ = 0.4, ω = 4.0, q1 = 0.9, and q2 = −1.5, which
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Fig. 8 Periodic orbits of the families emanating from the two unstable out-of-plane equilibrium
points Lz

1 for the parameter values (a) μ = 0.1, ω = 3.0, q1 = −0.01, q2 = 0.5 and (b) μ = 0.3,
ω = 0.75, q1 = −0.05, q2 = 0.5

Fig. 9 Characteristic curves of the three families emanating from the stable out-of-plane equilib-
rium points Lz

1 and Lz
3 for μ = 0.4, ω = 4.0, q1 = 0.9, and q2 = −1.5
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Table 5 Initial conditions for the families emanating from the out-of-plane equilibrium points
(0.07943819, 0.57904060) and (0.00845626, 1.53373515) for the parameter values μ = 0.4, ω =
4.0, q1 = 0.9 and q2 = −1.5. For each orbit, we also give the corresponding stability indices P

and Q

Family T/2 x0 z0 ẏ0 P Q

fs 0.67739031 0.07925352 0.57907274 0.00084713 0.99359 −0.54361

0.70518031 −0.30853936 0.76395514 1.55934870 −0.42186 −1.84500

0.86262166 0.00845621 1.53273515 0.00000019 −1.33685 −1.92126

fi 1.01518902 0.07905774 0.57918829 0.00113941 1.99993 0.72469

0.92247511 −0.19670076 0.74723476 0.85158941 0.87442 −1.00011

0.84418676 0.00845617 1.53273515 0.00000033 −1.55292 −2.00368

fl 3.28528233 0.07924189 0.57973515 0.00008423 −0.17409 −1.17465

3.63898863 0.11070274 0.48690961 −0.01352081 0.93780 0.60193

3.28528661 0.07967298 0.57821451 −0.00010256 −0.17403 −1.17470

is presented in the first row of Table 4. For this set of values of the parameters,
there are two out-of-plane equilibrium points (and their corresponding symmetric
w.r.t. the Ox-axis equilibria Lz

2 and Lz
4, as well) one of which (Lz

1) is stable and
the other one (Lz

3) is unstable as it can be established by the respective eigenvalues
presented in that table. From the stable equilibrium point Lz

1, three families emanate
from it, one of which has the short period as it can be obtained from the largest
frequency (denoted by fs in this figure), the other that has the long period arising
from the smallest frequency (denoted by fl in the figure), and the last one of the
intermediate period (denoted by fi , respectively) that corresponds to the remaining
frequency where its value is between the other two. Accordingly, from the unstable
equilibrium point Lz

3, two families emanate from it since its stability analysis has
shown that it possesses two pairs of pure imaginary roots. Therefore, one is the
family of the short period orbits and the other family consists of the long period
orbits. A remarkable result is that two families emanating from the stable out-of-
plane equilibrium point Lz

1 terminate at the unstable out-of-plane equilibrium point
Lz

3 or vice versa interconnecting these equilibria. The third family emanating from
Lz

1 terminates at itself.
In Table 5, we give three initial conditions for sample members of each one of the

three previously mentioned computed families. For each family, the first set of initial
conditions corresponds to a three-dimensional periodic orbit near the beginning
of the family, i.e., in the immediate neighborhood of the equilibrium point, while
the third set to the family’s termination means that it also corresponds to a similar
periodic orbit around the equilibrium. In particular, in this table, we provide the half
of the period T/2, the components of the positions x0, z0, and velocity ẏ0 on the
Oxz plane as well as the stability properties by presenting the values of the stability
indices P and Q as they were defined by (39).
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5 Discussion and Conclusion

We studied the photogravitational Chermnykh’s restricted three-body problem in
terms of its three-dimensional dynamical properties and found that the equations
of motion given in the literature allow the existence of out of the orbital plane
equilibrium points. Our aim was not to obtain any particular application of this
problem but to gain some new dynamical features that have not been observed for
the classical restricted three-body problem. In particular, it was found that due to
the symmetry of the problem the out-of-plane equilibrium points always appear in
pairs so two or four such points may lie on the Oxz plane in symmetrical positions
with respect to the Oxy plane, i.e., in the form (x0,±z0). It was observed that the
involved parameters of the problem not only affect the number and positions of the
corresponding equilibria but they play significant role on their stability since it was
identified that there are values of these parameters for which the respective points
may be linearly stable.

Our main results concentrated on periodic motion around the out-of-plane
equilibrium points. To this purpose, by using the Lindstedt–Poincaré method, we
determined an approximate analytical solution for periodic orbits around them.
This solution was then used for obtaining appropriate initial conditions for the
computation of the whole families of three-dimensional periodic orbits emanating
from these points. In the case of stable equilibrium points, three such families may
originate, one of which has the short period, the other is with the long period,
and the last one that has the period corresponding to the frequency value between
the largest and smallest frequencies. For the numerical determination of a three-
dimensional periodic orbit, the periodicity conditions that must be fulfilled compose
a system of nonlinear algebraic equations, and its solution is usually obtained by
applying any numerical technique for solving such nonlinear systems. However,
in our approach, we used the periodicity conditions in order to derive a proper
objective function and look for optimizing it. For the optimization treatment of the
obtained objective function, we applied the Broyden–Fletcher–Goldfarb–Shanno
and Davidon–Fletcher–Powell algorithms.

The existence of out-of-plane equilibrium points gives rise to new dynamical
features that deserve to be also explored. So, except from periodic orbits around
these points, a case that was studied here, we may look for three-dimensional
homoclinic or heteroclinic connections between these orbits by computing the
relevant invariant manifolds, a case that is of special importance in space mission
design. Another interesting case of motion, which can also be investigated, is
asymptotic motion to the out-of-plane equilibrium points themselves, i.e., to seek
three-dimensional asymptotic solutions that depart asymptotically from an out-of-
plane equilibrium point and arrive asymptotically at the same or another such point.
This case of motion traps for infinite time the particle of infinitesimal mass in
the vicinity of an unstable equilibrium point and may be useful for future space
colonization.
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Optimal Lot Size with Partial
Backlogging Under the Occurrence
of Imperfect Quality Items

G. Karakatsoulis and K. Skouri

Abstract In this study, a continuous review inventory system with deterministic
demand, partial backlogging, and imperfect quality items is considered. More
precisely, the fraction of imperfect quality items is assumed as a random variable
with a known distribution function. The order quantity is subjected to a 100%, error-
free, screening process, with finite screening rate. After inspection, the imperfect
quality items can be classified into two categories: low quality items and defective
items. The demand rate is constant and manifests even during screening period. The
demand during the stockout period is satisfied partially as soon as stock is available
and before the new demand is met. Perfect and imperfect quality items are charged
with different holding cost, giving the chance of different treatment for the two
categories of products. The objective is to find the order quantity that maximizes
the total profit of the system per unit time. Beyond, the analytical properties
are established, the impact of imperfect quality and holding costs differentiation
are examined and the behavior of the relative error using the EOQ with partial
backlogging solution is displayed graphically. Finally, it is shown that this model
can be reduced to other models existing in the literature.

1 Introduction

Supply uncertainty in the raw material and production stages of a supply chain
impacts on the performance and effectiveness of the whole supply chain. In response
to this phenomenon, production-inventory models, which incorporate related issues,
have attracted the interest of researchers in recent years. In the literature, several
forms of supply uncertainty have appeared: Disruption, yield uncertainty, capacity
uncertainty, lead time uncertainty, although the boundaries among them are often
indistinguishable. In this study, supplier’s delivery capacity is considered as a
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random variable, so that each lot may contain a random percentage of imperfect
quality items. The production of imperfect quality items is a common problem in
high-tech and electronic industries. Comprehensive quality control inspections help
to prevent defective products from reaching the customer, causing loss of brand
loyalty and brand trust and then loss in market share. To this end, a piece by piece
inspection could be used to improve quality and minimize or eliminate defects.

In EOQ type models framework, Salameh and Jaber [16] proposed an inventory
model with a random proportion of imperfect quality items in each batch, assuming
that no non-planned stockouts occur. Cárdenas-Barrón et al. [2] amended a flaw
in the optimal order quantity and Goyal and Cárdenas-Barrón [4] proposed an
approximation of the objective function. Papachristos and Konstantaras [12] showed
that the constraint used by Salameh and Jaber [16] does not necessarily prevent
the non-planned shortages. It should be noticed that although this event has small
probability, however, this could be vital for some products like medical equipment.

Another issue concerns the storage of imperfect and perfect quality items. Since,
usually, the imperfect and perfect quality items are stored in different warehouses
with lower running costs, Wahab and Jaber [19] modified the model of Salameh and
Jaber [16] assuming that the holding cost of the imperfect quality items is lower
from the holding cost of the perfect quality items. Rezaei [14] extended the work of
Salameh and Jaber [16] allowing shortages with complete backlogging, but assumed
that the backorders are satisfied immediately as soon as a new batch arrives. This is
not feasible, since upon arrival, it is not known which items are of perfect quality and
which are not. This was corrected by Eroglu and Ozdemir [3], assuming also that the
imperfect quality items can be classified as low quality and defective. Wang et al.
[20] extended the model of Salameh and Jaber [16] assuming partial backlogging.
Jaber et al. [6] and Alamri et al. [1] investigated models with a reduction in the
percentage of imperfect quality items according to a learning curve while Khan
et al. [8] and Konstantaras et al. [10] assumed learning in the inspection. Hauck
and Vörös [5] treated the inspection rate as a decision variable, assuming that the
decision maker could increase the speed of inspection through the corresponding
investment. Jaber et al. [7] assumed zero reorder point and repair of the imperfect
quality items while Taleizadeh et al. [18] assumed partial backlogging with repair
option. A comprehensive review, regarding the extensions/modifications of the EOQ
model for imperfect items, suggested by Salameh and Jaber [16], was provided by
Khan et al. [9].

In this study, the work of Wang et al. [20] is revisited assuming different holding
costs between perfect and imperfect quality items and two classes of imperfect
quality products: low quality and defective. A different solution procedure is
provided (compared to that of Wang et al. [20]) leading to analytical closed-form
solutions. Then, the impact of the imperfect quality items on optimal solution is
examined, through numerical examples, in relation to other model parameters, and
several managerial insights are provided. Also, the relative error of using the EOQ
with partial backlogging solution instead of the optimal one is displayed graphically,
highlighting the profit reduction that could cause an inaccurate model.
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2 Preliminaries

In this section, the main notation and the assumptions, under which the model is
developed, are introduced:

2.1 Assumptions

1. The planning horizon is infinite.
2. The demand rate is known and constant.
3. The lead time is zero.
4. An order, of size Q, is placed once the inventory position drops to B. The time

between two consecutive orders is defined as a cycle and it is of length T .
5. Each batch contains a random percentage of imperfect quality items with a

known probability density function, f (p). The percentage of imperfect quality
items, in a cycle, is independent from the percentage of imperfect quality items
in other cycles. The imperfect quality items contain a known percentage, θ , of
low quality items while the rest are defective.

6. Each lot is subjected to 100% screening process at a finite rate, x, with x > D.
The screening process is assumed to be error-free.

7. During the screening process, the perfect quality items which are found per unit
time, are more than the demand.

8. The imperfect quality items are sold, as a single batch, at a lower price at the
end of the screening process and the defective items are rejected at a cost per
unit.

9. During the shortage period, the demand is partially backlogged at a known rate.
10. The backorders are satisfied before the new demand is met.
11. The holding cost of the imperfect quality items is lower from the holding cost

of the perfect ones, due to different stock keeping requirements.

2.2 Notation

Q Order Quantity (in units) [decision variable]
B Maximum level of backorders [decision variable]
D Demand rate (in units, per unit time)
x Screening rate (in units, per unit time)
b Backordering rate of the demand
s Selling price of the perfect quality items
v Selling price of the low quality items
K Fixed ordering cost (per order)
hg Holding cost of perfect quality items (per unit, per unit time)
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hd Holding cost of imperfect quality items (per unit, per unit time)
cb Backlogging cost (per unit, per unit time)
cls Loss of goodwill cost (per unit)
cr Rejection cost
p Percentage of defective items
f (p) Probability density function of p
θ Percentage of the low quality items in the imperfect items
T Length of cycle
z D/x

A1 1 − p − bz

A 1 − p − z

3 Model Formulation and Optimal Policy Determination

Figure 1a represents the inventory level of perfect quality items and the level
of backorders during a cycle, while Figure 1b represents the inventory level of
imperfect quality items. Specifically, the inventory system operates as follows. At
time zero, a new order of size Q is received and the inventory level is equal to
Q, since the batch received cannot be used immediately in order to satisfy the
backorders, due to quality uncertainty. Then, a screening process starts, which lasts
for t1 + t2 time units. During the time period t1 the unsatisfied demand from the
previous cycle is satisfied in priority to the new demand which is also partially
backlogged. During time period t2, the screening process proceeds, but there are no
backorders any more, so the detected perfect quality items are used in order to satisfy
the new demand. Also, during the screening process, the imperfect quality items are
stored in a separate warehouse and are withdrawn at the end of it (Figure 1b). During
the time period of length t3 the inventory depletes due to constant demand, while
during the time period of length t4 the system allows for shortages, that are partially
backlogged. The reorder interval is comprised of t1, t2, t3, t4 i.e. it is of length T

with T = t1 + t2 + t3 + t4.
The objective is the determination of order quantity and maximum backlogging

level that maximize the system profit per unit time. The profit is comprised of the
revenue generated from the sales of the perfect and low quality items, the fixed
cost per order, the holding costs of the perfect and imperfect items, the backlogging
cost, the loss of goodwill cost, and the rejection cost of the defective items. For
the calculation of system profit per unit time the Renewal Reward Theorem will be
used. Thus, it is necessary to calculate the expected total profit per cycle and the
expected cycle length.
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Ip

y2

y1

t1

t1 + t2

t2 t3 t4

Q

B

pQ

T
time

Inventory level of imperfect
quality items 

(a)  Inventory level of perfect quality items over time

(b)  Inventory level of imperfect quality items over time

time

Fig. 1 The inventory level for perfect (a) and imperfect (b) quality items

3.1 Cycle Length

In this section, the expected cycle length is derived. As it has already been noticed,
the cycle length is
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T = t1 + t2 + t3 + t4 (1)

During the shortage period of length t4, a fraction b of demand is backlogged, while
the rest 1 − b is lost. So,

t4 = B

bD
(2)

Because of the assumption (7), the relation

P((1 − p)x > D) = 1 ⇔ P(p < 1 − z) = 1

must hold.
During the time interval [0, t1], x items are screened per unit time and (1 − p)x

are of perfect quality. Thus, the backlogged quantity of the previous cycle is satisfied
at a rate of (1−p)x. At the same time, the new demand cannot be satisfied and due
to partial backlogging, new backorders are created at a rate b. Hence, at time t1
the accumulated unsatisfied demand of previous cycle, B, is satisfied at a rate of
(1 − p)x − bD, and consequently

t1 = B

(1 − p)x − bD
= B

xA1
(3)

So, taking into account that the inventory level of perfect quality items decreases at
a rate of x, the inventory level at time instant t1 is

y2 = Q− xt1 = Q− B

A1
(4)

Furthermore, during the screening process, Q items are screened at a rate x and the
screening process lasts for t1 + t2 time units so

t1 + t2 = Q

x

Hence,

t2 = Q

x
− t1 = Q

x
− B

xA1
(5)

During [t1, t1+ t2], the demand is D units per unit time, and px imperfect quality
items are identified per unit time. Hence, the inventory level of perfect quality items
decreases at a rate of D+px. At time instant t1 the inventory level of perfect quality
items is y2 (see Figure 1a). Hence, at time instant t1+t2 the inventory level of perfect
quality items is
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y1 = y2 − (D + px)t2 = AQ− A

A1
B (6)

During the time period of length t3 the inventory level depletes at a rate D with
initial inventory level y1. Therefore,

t3 = y1

D
= A

D
Q− A

DA1
B (7)

Finally, from (1), (2), (3), (5), and (7), the cycle length is

T = 1

D

[
(1 − p)Q+ (1 − b)(1 − p)

bA1
B

]
(8)

with expected value

ET = 1

D

[
E(1 − p)Q+ (1 − b)

b
E

(
1 − p

A1

)
B

]
(9)

3.2 Total Profit Formulation

In order to derive the profit, the revenue is firstly calculated. The revenue is
comprised of the sales of perfect and low quality items, so at a cycle the total
revenue is

T Rc(Q,B) = [s(1 − p)+ vpθ ]Q (10)

Then, in order to derive the total cost of the system per cycle, the holding cost and
the shortage cost are calculated.

The inventory level of perfect quality items at time t is

Ip(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q− xt,

y2 − (D + px)t,

y1 −Dt,

0,

t ∈ [0, t1]
t ∈ [t1, t1 + t2]
t ∈ [t1 + t2, t1 + t2 + t3]
t ∈ [t1 + t2 + t3, T ]

(11)

Therefore, the holding cost of the perfect quality items is

hg

2D

[
zQ2 + A(1 − p)

(
Q− B

A1

)2
]

(12)

The inventory level for imperfect quality items is
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Iim(t) =
{
pxt,

0,

t ∈ [0, t1 + t2]
elsewhere.

(13)

So, the holding cost of the imperfect quality items is

hd

2D
pzQ2 (14)

The inventory level during shortages period at time t is described as

I (t) =

⎧⎪⎪⎨
⎪⎪⎩
B − xA1t,

bDt,

0,

t ∈ [0, t1]
t ∈ [t1 + t2 + t3, T ]
elsewhere

(15)

Consequently, the backordering cost per cycle is

cb

2D

(
z

A1
+ 1

b

)
B2 (16)

Moreover, the loss of goodwill cost is

cls
(1 − b)

b
B + cls

(1 − b)z

A1
B (17)

Hence, from (16) and (17) the shortage cost per cycle is

cb

2bD

(
zb

A1
+ 1

)
B2 + cls(1 − b)

b

(
1 + zb

A1

)
B (18)

Finally, taking into account the fixed ordering cost per cycle (i.e. K), the purchase
cost (i.e. cQ), and the rejection cost of the defective items (i.e. cr(1−p)(1− θ)Q),
the total cost of the system per cycle is

T Cc(Q,B) = K + [c + crp(1 − θ)]Q+ hg

2D

[
zQ2 + A(1 − p)

(
Q− B

A1

)2
]

(19)

+ hd

2D
pzQ2 + cb

2bD

(
zb

A1
+ 1

)
B2 + cls(1 − b)

b

(
1 + zb

A1

)
B

(20)

with expected value

ETCc(Q,B) = K + [c + cr (1 − θ)E1]Q+ hgz

2D
Q2 + hg

2D
E3Q

2
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− hg

D
E4QB + hg

2D
E5B

2 + hdz

2D
E(p)Q2

+ cb

2bD
E2B

2 + cls(1 − b)

b
E2B

where

E1 = E(1 − p), E2 = E

(
1 − p

A1

)
, E3 = E [(1 − p)A]

E4 = E

[
(1 − p)A

A1

]
, E5 = E

[
(1 − p)A

A2
1

]

Using Renewal Reward Theorem, the total profit of the system per unit time is
given by

T Put (Q,B) = ETRc(Q,B)− ETCc(Q,B)

ET
(21)

To facilitate the analysis, the transformation X = ET is used, so

Q = D

E1
X − (1 − b)E2

bE1
B (22)

Also, the following quantities are defined:

α = (hgz+ hgE3 + hdzE(p))
(1 − b)2E2

2

b2E2
1

+ hgE5 + cbE2

b
+ 2hgE4(1 − b)E2

bE1

γ = D(1 − b)E2c2

b

δ = (hgz+ hgE3 + hdzE(p))
D2

E2
1

ε = (hgz+ hgE3 + hdzE(p))
D(1 − b)E2

bE2
1

+ DhgE4

E1

Then, the total profit per unit time as a function of (X,B) is

T Put (X,B) = c1D

E1
− γB

DX
− K

X
− δX

2D
+ εB

D
− αB2

2DX
(23)

where c1 = sE1 + vE(p)θ − c − cr (1 − θ)E(p) and c2 = c1

E1
+ cls .
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Obviously, the condition c1 ≥ 0 must hold. Otherwise, the expected income from
the sales would be less than the purchase cost plus the cost of rejection, hence there
should not be any profit from system operation.

3.3 Optimal Policy

Aiming to derive the optimal policy for the system under consideration (i.e. optimal
values for B and X and so for Q), required analytical results are derived. The next
Proposition states properties for the function T Put , useful for the determination of
the optimal policy.

Proposition 1 The function T Put is concave in X for given B and concave in B

for given X. The function T Put is concave in (X,B) if

2KDα > γ 2 (24)

It should be noticed for the EOQ model with partial backlogging, Rosenberg [15]
proved that it is optimal to allow for shortages when a relation connecting the cycle
length of EOQ model without shortages and the lost sales cost holds. To this end,
the model without shortages that is the model analyzed by Wahab and Jaber [19] is
used in order for an analogous relation to be developed. So, let Tw:

TW =
√

2KD

δ
(25)

which, is the cycle length derived by Wahab and Jaber [19]. Using the above
relation (25) the next Proposition provides the optimal policy for the system under
consideration.

Proposition 2

1. If the inequalities

αδ > ε2 (26)

and

TW >
γ

ε
(27)

hold, then

B∗ = −γ

α
+ ε

α

√
2KDα − γ 2

αδ − ε2
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Q∗ = D

E1

√
2KDα − γ 2

αδ − ε2 − (1 − b)E2

bE1
B∗ (28)

If inequality (26) does not hold, then: B∗ = 0, Q∗ = 0

If inequality (27) does not hold, then: B∗ = 0, Q∗ = D

E1
TW

2. If the inequality (24) does not hold, then either there should not be any inventory
system (i.e. Q∗ = 0 and B∗ = 0) or

B∗ = 0

Q∗ =
√

2KD

(hgz+ hgE3 + hdzE(p))

3.4 Special Cases

It is worthwhile to note an additional contribution of the model under consideration;
from this model, the already existing models, presented in Table 1, arise.

4 Numerical Comparisons

In this section, numerical comparisons are presented in order to highlight the
effects of supply uncertainty, holding costs differentiation and backlogging rate to
the optimal policy and profit. To this end, the following set of values for model
parameters are used: D = 1000, hg = 10, K = 500, cb = 5, cls = 1, x = 4000,
b = 0.7, θ = 0.8, s = 50, v = 12, c = 41, and cr = 10. These values are based
on the parametric values used by Wang et al. [20], with required modification. The
modification is necessary since the model investigated by Wang et al. [20] aims to
minimize the total cost, while in the present model the objective is to maximize the
total profit.

Table 1 Special cases arising from the proposed model

If: Resulting model

hd = hg and θ = 1 Wang et al. [20]

hd = hg and b = 1 Eroglu and Ozdemir [3]

cb →∞ and θ = 1 Wahab and Jaber [19]

cb →∞, hd = hg and θ = 1 Maddah and Jaber [11]

hd = hg, θ = 1, x →∞ and cb →∞ Silver [17]

x →∞ and P(p = 0) = 1 Park [13]
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In order to examine the impact, of different holding cost for perfect and imperfect
quality items (i.e. hd �= hg), on the optimal policy and profit, let us set φ =
hd

hg

, φ ∈ [0, 1]. This means that as φ increases the holding cost of imperfect quality

items increases and obviously when φ = 1, perfect and imperfect quality items
have the same holding cost. Figure 2 presents the combined impact of imperfect
quality items holding cost for various values of defective rate, as expressed through
β. For φ a step size of 0.1 is used (φ ∈ [0, 1]), while p ∼ U(0, β), where
β ∈ (0.1, 0.3). Specifically, Figure 2a, c, d present the impact of φ on optimal
profit, Q∗ and B∗ respectively, for various values of β, while Figure 2b presents
DP = T P (Q∗, B∗;φ = i) − T P (Q∗, B∗;φ = 0.1), i = 0.2, ..., 1 (i.e. the
decrease in profit).

It is observed that an increase in hd (for the same level of β) causes a small
decrease in profit, which becomes higher as the imperfect quality rate increases.
The changes in optimal order quantity and maximum backlogging level are also
minor, for the same β. However, the impact of β is considerably high. Notice that
the decrease in profit for the case that corresponds to the parameters pair (φ =
0.9, β = 0.3) related to the pair (φ = 0.1, β = 0.1) is more than 95%. For the same
pairs, the increase in the optimal order quantity is more than 25% and the increase
in maximum backlogging is greater than 80%, a fact that could justify the decrease
in profit, as cost increases due to shortages.

In order to examine the combined effect of the backorder rate, b and the
percentage of the imperfect quality items, on the optimal policy and the optimal
profit, the following values are used: φ = 0.2, θ = 0.8, p ∼ U(0, β), where β

takes values from 0.1 to 0.3 with a step of size 0.05 and b ∈ [0.2, 1]. Figure 3a, c,
d, present the impact of b on optimal profit, Q and B respectively for various values
of β, while Figure 3b presents P inc = T P (Q∗, B∗; b = i) − T P (Q∗, B∗; b =
0.2), i = 0.25, ..., 0.95 (i.e. the increase in profit). The backlogging rate (b) impacts
significantly on the system operation and performance. Precisely, the increase of
backlogging rate leading to increase in profit from 16% to almost 400% depends
on β (the higher impact is caused by higher values of β). Also, the increase in b

causes increase in order quantity (approximately 30% increase depends on β). Low
values of backlogging rate imply low level of maximum backlogging level (B) for
low values of β and higher for higher values of β.

5 Cost Penalty of Employing the EOQ with Partial
Backorders

Because of the simplicity of the EOQ model, it is interesting to explore the impact
in the total profit of the system, if the EOQ with backorders is used (QEOQ,BEOQ)

instead of the optimal decision variable (Q∗, B∗).
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Fig. 2 Impact of the imperfect quality items holding cost for different values of β. (a) Impact of
hd increase (φ = hd/hg, hg constant) on system profit, for various values of β. (b) Impact of hd

(φ = hd/hg, hg constant) increase on system profit decrease, for various values of β. (c) Impact
of hd increase (φ = hd/hg, hg constant) on optimal order quantity, for various values of β. (d)
Impact of hd increase (φ = hd/hg, hg constant) on optimal backlogging quantity, for various
values of β

Notice that for x → ∞, and P(p = 0) = 1 the inequality (26) holds and the
inequality (27) becomes

√
2K

Dh
>

(1 − b)c2

h
(29)

where c2 = s − c + cls .

Suppose that the inequality (29) holds. Then

BEOQ =
−b(1 − b)Dc2 + b

√
h[2KD(h+ bcb)− (1 − b)2c2

2D
2]

bcb

hg + bcb

QEOQ =
√

2KD(h+ bcb)− (1 − b)2D2c2
2

hbcb
− (1 − b)

b
BEOQ (30)

Then computations were performed that depicted in Figure 4 in order to obtain
insight into the effect of ignoring the existence of imperfect quality items on system
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Fig. 3 Impact of backlogging rate, b, for different values of β. (a) Impact of b on system profit, for
various values of β. (b) Impact of b on system profit increase, for various values of β. (c) Impact
of b on optimal order quantity, for various values of β. (d) Impact of b on optimal backlogging
quantity, for various values of β

performance. Thus, the EOQ with partial backlogging is used and the following
performance indicator is calculated:

Δ = T Put (QEOQ,BEOQ)− T Put (Q
∗, B∗)

T Put (Q∗, B∗)
(31)

Figure 4 gives the graphical representation of Δ with respect to β using the same
parametric values as in previous section. From this figure it seems that ignoring
the existence of imperfect quality items may cause significant reduction in system
profit, mainly when the percentage of imperfect quality items increases.

6 Conclusions

Supply uncertainty has become an active research area having considerable effects
on supply chain performance. In this paper, a single-echelon inventory model under
deterministic demand, partial backlogging, and defective items are considered. After
modeling long-run average profit, taking into account that the holding cost of perfect
and imperfect quality items may be different, the optimal policy is determined in
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closed-form. It is worth noting that the form and the solution of this model constitute
a direct extension of several existing models in the literature, among others, the
classical EOQ (with partial backlogging) model if P(p = 0) = 1. In addition, the
numerical results demonstrated the clear outperformance of exact representation of
system (taking into account the supply uncertainty) in relation to classical EOQ with
partial backlogging.

There are several directions for further research. One direction could be to use
this model as an approximation for more complex systems with stochastic demand.
Another research direction could be the consideration of a non-zero stochastic lead
time. Lastly, the consideration of alternative accounting schemes for inventory cost
evaluation (like end-of-cycle costing) could be also of interest.

Appendix

Proof of Proposition 1

∂T Put (X,B)

∂X
= γB

DX2
+ K

X2
− δ

2D
+ αB2

2DX2
(32)

∂T Put (X,B)

∂B
= − γ

DX
+ ε

D
− αB

DX
(33)

∂2T Put (X,B)

∂X2 = − 2γB

DX3 −
2K

X3 − αB2

DX3 (34)

∂2T Put (X,B)

∂B∂X
= γ

DX2 +
αB

DX2 (35)

∂2T Put (X,B)

∂B2
= − α

DX
(36)
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Hence the function T Put is concave in X for B constant, concave in B for X

constant, and the Hessian matrix is negative definite if

2KDα > γ 2 (37)

 "
Proof of Proposition 2 If the inequality (24) holds, then in order to maximize
T Put (X,B) it is sufficient to solve the following system of equations:

αB2 + 2γB − δX2 + 2KD = 0 (38)

αB − εX + γ = 0 (39)

Equation (39) always has the solution:

X∗ = α

ε
B + γ

ε

Replacing X by X∗ in (38)

∂T Put (X,B)

∂X
|X=X∗ = α(ε2 − αδ)B2 + 2γ (ε2 − αδ)B + 2KDε2 − γ 2δ (40)

is obtained. This quantity has two roots if

(ε2 − αδ)(γ 2 − 2KDα) > 0

Because of the inequality (37), the above inequality holds if

ε2 − αδ < 0

or, equivalently

h2
gE

2
4 <

(
hgE5 + cbE2

b

)
[hgz+ hgE3 + hdzE(p)]

One root is always negative. The other is positive if

Tw >
γ

ε

Taking into account the inequality for the concavity of the objective function and
making simplifications, it follows that it is optimal to allow shortages if

(ε2 − αδ)(γ 2 − 2KDα) > 0
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and

Tw >
γ

ε

where TW in (25) is the cycle length in [19] model.
Hence, if the inequalities (26) and (27) hold

B∗ = −γ

α
+ ε

α

√
2KDα − γ 2

αδ − ε2

X∗ =
√

2KDα − γ 2

αδ − ε2

Using the relation (22) the result is obtained.
Otherwise, B∗ = 0 and either there should be an inventory system (i.e. Q∗ > 0)

or not. If inequality (26) does not hold, then
∂T Put (X,B)

∂X
|X=X∗ > 0, thus the

function T Put (X,B) is increasing in X and the maximum value is obtained for
X →∞ which gives

B∗ = 0

Q∗ = 0

If inequality (27) does not hold, then

B∗ = 0

Q∗ =
√

2KD

(hgz+ hgE3 + hdzE(p))

If the inequality (24) does not hold, then either there should not be any inventory

system (i.e. Q∗ = 0 = B∗) or Q∗ =
√

2KD

(hgz+ hgE3 + hdzE(p))
and B∗ = 0.  "
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Error Analysis Through Energy
Minimization and Stability Properties
of Exponential Integrators

Odysseas Kosmas and Dimitrios Vlachos

Abstract In this article, the stability property and the error analysis of higher-
order exponential variational integration are examined and discussed. Toward this
purpose, at first we recall the derivation of these integrators and then address
the eigenvalue problem of the amplification matrix for advantageous choices of
the number of intermediate points employed. Obviously, the latter determines
the order of the numerical accuracy of the method. Following a linear stability
analysis process we show that the methods with at least one intermediate point are
unconditionally stable. Finally, we explore the behavior of the energy errors of the
presented schemes in prominent numerical examples and point out their excellent
efficiency in long term integration.

1 Introduction and Motivation

During the last decades, there have been developed several numerical integration
methods for Lagrangian systems, where the integrator is derived by discretizing
the Hamilton’s principle. This class of integration methods is known as discrete
variational integrators and have specific advantages that make them attractive for
many applications in mechanical systems. They are appropriate for both conserva-
tive and nearly dissipative (forced) systems. The conservative nature of variational
integrators can allow substantially more accurate simulations at lower cost [1–4].

In solving numerical ordinary differential equations, one of the most difficult
problems is related to the development of integrators for highly oscillatory systems
[1]. As is well known, standard numerical schemes may require a huge number of
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time steps to track the oscillations. But, even with small size steps they may alter
the dynamics, unless the chosen method has specific advantages. A useful category
of them is the group of geometric integrators, which are numerical schemes that
preserve some geometric features of the dynamical system. These integrators endow
highly qualified simulations with longer time running without spurious effects (like
bad energy behavior of conservative systems) than the traditional ones [5–10].

Historically, the exponential integrators were initially proposed long ago by
Hersch [11] who constructed the first exponential integrator for linear ordinary
differential equations (ODEs) with constant coefficients. Then Certaine [12] intro-
duced the first multi-step integrator of this type by using a variation of parameters
approach. Roughly speaking, the development of exponential integrators followed
two general directions: (1) those derived to solve first-order ODE systems, and
(2) those derived to solve “directly” second-order differential equations (direct
integrators for second-order DE, where the term direct means without reducing it to
first-order), see [13–16]. Most of these integrators rely on the variation of parameters
approach.

The existence of the exponential function in this kind of integrators justifies the
term exponential integrator firstly used by Hochbruck et al. [15]. Furthermore, a
great number of exponential integrators derived for solving second-order differential
equations with respect to time (e.g. the Newton’s equations of motion that govern
the dynamic equilibrium of elastodynamic systems), are known as Exponential-
Time Integrators (ETI) [17]. Regarding applications for solving the category of
Hamiltonian systems on which we focus in the present work, the exponential
integrators were introduced by Hairer, Lubich, and Wanner [5] and by Leimkuhler
and Reich [6]. In our present paper, special emphasis will be given on the derivation
of advantageous exponential integrators with respect to geometric characteristics
and on the investigation of the stability property and the error analysis of higher-
order exponential variational integration.

In the present, we start by recalling the exponential integrators for Hamiltonian
systems in Section 2. After a short review of the variational integrators we define a
special case of them, namely the exponential variational integrators in Section 3. For
those high-order schemes we then investigate their stability region in Section 4 and,
finally, their numerical convergence via an error analysis in numerical examples.

2 Exponential Integrators for Hamiltonian Systems

Exponential integrators have been introduced in order to solve numerically Hamil-
tonian systems of the form [5, 6]

q̈ +Ωq = g(q), g(q) = −∇U(q), (1)

where Ω is a diagonal matrix which may contain diagonal entries ω with relatively
large modulus. g(q) represent the force field created through the negative gradient
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from the potential function U(q). We further consider that the potential function
U(q) is generally smooth across its domain. Introducing time step h, when focusing
on the long time behavior of the numerical solutions of the above systems, many
authors present solutions for large values of ωh [5].

For such systems it has been shown that an exact discretization of (1) satisfies
the equation [5]

qn+1 − 2 cos(hω)qn + qn−1 = 0. (2)

Thus, by combining those we may write

qn+1 − 2 cos(hω)qn + qn−1 = h2ψ(ωh)g(φ(ωh)qn), (3)

where the functions ψ(ωh) and φ(ωh) are even, real-valued functions satisfying
the conditions ψ(0) = φ(0) = 1. For appropriately defined functions ψ and φ, the
latter equations constitute exponential integrators [14, 16].

3 High-Order Exponential Variational Integrators

In giving a brief overview over the variational integrators, we first consider the
simple case, where the discrete configurations and velocities are defined at the
nodes of a time grid only [4]. Using the notation Q for the configuration manifold,
the derivation of variational integrators uses the discrete Lagrangian map Ld :
Q×Q → R, which may be considered as an approximation of a continuous action
with Lagrangian L : TQ → R, i.e.

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇)dt, (4)

in the time interval [tk, tk+1] ⊂ R. Recalling that, the action sum Sd : QN+1 → R

comes out of the Lagrangian Ld , Sd is defined by

Sd(γd) =
N−1∑
k=0

Ld(qk, qk+1), (5)

with γd = (q0, . . . , qN) representing the discrete trajectory. Next, the discrete
Hamilton principle states that a motion γd for the discrete mechanical system
extremizes the action sum, i.e. δSd = 0. Afterwards, making the differentiation
and rearrangement of the terms in the latter equation and having in mind that both
q0 and qN are fixed, the discrete Euler–Lagrange equations are obtained [4] as

D2Ld(qk−1, qk)+D1Ld(qk, qk+1) = 0, k = 1, . . . , N − 1 . (6)
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The notation DiLd indicates the slot derivative with respect to the argument of Ld .
Those derivatives are used for the definition of the discrete conjugate momentum

at time steps k and k + 1 via the Legendre transforms, i.e.

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), k = 0, . . . , N − 1. (7)

The latter equations, also known as position-momentum form of a variational
integrator, can be used when an initial condition (q0, p0) is known, to obtain (q1, p1)

[4, 8–10].
We can now extend the definitions of the previous section by introducing an

arbitrary number of intermediate points. Those high-order variational integrator
schemes will then be introduced for the Hamiltonian systems of (1) within the
context of the exponential integrators of (3).

To construct high-order methods, we approximate the action integral along the
curve segment between qk and qk+1 using a discrete Lagrangian that depends
only on the end points. This way, we obtain expressions for configurations q

j
k and

velocities q̇
j
k for j = 0, . . . , S − 1, S ∈ N at time t

j
k ∈ [tk, tk+1] by expressing

t
j
k = tk + C

j
k h for Cj

k ∈ [0, 1] such that C0
k = 0, CS−1

k = 1 using

q
j
k = g1(t

j
k )qk + g2(t

j
k )qk+1, q̇

j
k = ġ1(t

j
k )qk + ġ2(t

j
k )qk+1, (8)

where h ∈ R is the time step. For the purposes of our present work, we choose
functions of the form

g1(t
j
k ) = sin

(
u− t

j
k − tk

h
u

)
(sinu)−1, g2(t

j
k ) = sin

(
t
j
k − tk

h
u

)
(sinu)−1 (9)

to represent the oscillatory behavior of the solution [8–10, 18–20]. Then, for the
sake of continuity, the conditions

g1(tk+1) = g2(tk) = 0 (10)

and

g1(tk) = g2(tk+1) = 1 (11)

must be fulfilled. It should be noted that other interpolations (e.g. linear, cubic
splines, etc.) are possible as alternatives to (9), see [9, 10].

Moreover, for any choice of interpolation we define the discrete Lagrangian in
the form of the weighted sum

Ld (qk, qk+1) = h

S−1∑
j=0

wjL
(
q(t

j
k ), q̇(t

j
k )
)
, (12)
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where it can be easily proved that

S−1∑
j=0

wj
(
C

j
k

)m = 1

m+ 1
, (13)

where m = 0, 1, . . . , S − 1 and k = 0, 1, . . . , N − 1 must hold, see e.g. [8, 18].
In applying the above interpolation technique with the trigonometric expressions

(9), the parameter u can be chosen as u = ωh. Furthermore, for problems that
involve a constant and known domain frequency ω, the parameter u can be easily
computed, while for the solution of orbital problems of the general N -body problem,
a new parameter u may be computed by estimating the frequency of the motion of
any moving point mass during the course of motion [9, 10, 18].

Moreover, for the derivation of exponential variational integrators, one may apply
the steps of deducing high-order variational integrators to Hamiltonian system (1).
Then, the discrete Euler–Lagrange equations (6) lead to the expressions

qn+1 +Λ(u, ω, h, S)qn + qn−1 = h2Ψ (ωh)g(Φ(ωh)qn), (14)

where

Λ(u, ω, h, S) =

S−1∑
j=0

wj

[
ġ1(t

j
k )

2 + ġ2(t
j
k )

2 − ω2(g1(t
j
k )

2 + g2(t
j
k )

2)]

S−1∑
j=0

wj

[
ġ1(t

j
k )ġ2(t

j
k )− ω2g1(t

j
k )g2(t

j
k )

] . (15)

In addition, based on the latter two expressions, one may derive exponential
variational integrators that use the configurations q

j
k and velocities q̇

j
k of (8). In

this case we get

Λ(u, ω, h, S) = −2 cos(ωh). (16)

We note that, whenever the latter equation holds, the defined above high-order
variational integrators are of exponential type [8–10, 19–21].

4 Stability Analysis of Exponential Variational Integrators

The investigation of the stability properties of exponential variational integrators
is important. Here, following [6, 7, 22], we restrict ourselves to a linear stability
analysis, and toward this aim, we start by considering the simple case of a
Hamiltonian system (1), i.e. the harmonic oscillator
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q̈ + ω2q = 0. (17)

This system is described by the smooth Lagrangian function

L(q, q̇) = 1

2
q̇2 − 1

2
ω2q2, ω ∈ R. (18)

If we write (17) using the equivalent Hamilton’s equations, we obtain

q̇ = p, ṗ = −ω2q, (19)

where the exact solution can be written as [7]

(
p(t)

q(t)

)
=
(

cos(ωt) −ω sin(ωt)
sin(ωt)

ω
cos(ωt)

)(
p(0)
q(0)

)
= Mω

(
p(0)
q(0)

)
. (20)

But because det(Mω) = 1, the eigenvalues of Mω are λ1,2 = e±iωt and thus |
λ1,2 |= 1.

Next, recalling that a numerical solution is asymptotically stable when the growth
of the solution is asymptotically bounded, a sufficient condition for asymptotic
stability implies that the eigenvalues of Mhω must be on the unit disk of the
complex plane. In addition, they are simple if they lie on the unit circle. In the next
subsections, we investigate the latter property for selected variational integrators.

At this point it is worth noting that, for the Lagrangian of the harmonic oscillator
with frequency ω, the discrete Lagrangian (12) with interpolation functions defined
via (9) reads

Ld (qk, qk+1) =h

2

⎡
⎣S−1∑

j=0

wj
(
ġ1(t

j
k )qk + ġ2(t

j
k )qk+1

)2 −

ω2
S−1∑
j=0

wj
(
g1(t

j
k )qk + g2(t

j
k )qk+1

)2

⎤
⎦ .

(21)

For the latter discrete Lagrangian, the discrete Euler–Lagrange equations (6) yield

qk+1 +

S−1∑
j=0

wj

[
ġ1(t

j
k )

2 + ġ2(t
j
k )

2 − ω2(g1(t
j
k )

2 + g2(t
j
k )

2)]

S−1∑
j=0

wj

[
ġ1(t

j
k )ġ2(t

j
k )− ω2g1(t

j
k )g2(t

j
k )

] qk + qk−1 = 0.

(22)
This expression is explicit for any choice of interpolation functions [23, 24].
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4.1 Exponential Variational Integrator for S = 2

In the special case when no intermediate points are used, i.e. S = 2, t0
k = tk , and

t1
k = tk+1, the coefficients C

j
k and wj described in Section 3 take the values

C0
k = 0, C1

k = 1

w0 = 1

2
, w1 = 1

2
. (23)

Relying on the concrete expressions (6) and (7) and using (8)–(22) and (23), the
eigenvalues λ1,2 of the matrix Mh,ω can be written as

λ1,2 = 2 cos(2ωh)+ 2 ±√
2 cos(4ωh)− 2

4 cos(ωh)
. (24)

Since

2 cos(4ωh)− 2 ≤ 0, ∀ωh ∈ Z, (25)

in order to show the stability of the resulting numerical scheme, we prove the
following theorem.

Theorem 4.1 The phase fitted variational integrator using trigonometric interpo-
lation for S = 2 is stable for ωh �= νπ + π

2 , ν ∈ Z.

Proof

First Case ωh = νπ + π
2 , ν ∈ Z

For these values of ωh, the denominator of the eigenvalues in (24) vanishes,
creating an unstable method, see Figure 1.

Fig. 1 Modulus of the eigenvalues (24) of Mh,ω for the phase fitted variational integrators for
S = 2 for ωh ∈ [−2π, 2π ] and real and imaginary part
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Second Case ωh �= νπ + π
2 , ν ∈ Z

For the case when

2 cos(4ωh)− 2 = 0, (26)

which is equivalent to

ωh = νπ (since ωh �= νπ + π

2
, ν ∈ Z), (27)

the eigenvalues (24) are

λ1,2 = 2 cos(2νπ)+ 2

4 cos(νπ)
= 1. (28)

This means that these choices of ωh create a stable integrator. Furthermore, in the
case when

2 cos(4ωh)− 2 < 0, (29)

which is equivalent to

ωh �= ν
π

2
, ν ∈ Z, (30)

both eigenvalues in (24) are complex numbers. The modulus of the eigenvalues is
|λ1,2|2 = 1 since

|λ1,2|2 =
(

2 cos(2ωh)+ 2

4 cos(ωh)

)2

+
(√

2 cos(4ωh)− 2

4 cos(ωh)

)2

=
(

2 cos(2ωh)+ 2

4 cos(ωh)

)2

+ |2 cos(4ωh)− 2|
(4 cos(ωh))2

= 4 cos2(2ωh)+ 4 + 8 cos(2ωh)+ 2 − 2 cos(4ωh)

(4 cos(ωh))2

using cos(4ωh) = 2 cos2(2ωh)− 1

= 8 cos(2ωh)+ 8

(4 cos(ωh))2

using cos(2ωh) = 2 cos2(ωh)− 1

= 1. (31)

 "
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For an illustration, the stability region of the exponential variational integrator
(22) for S = 2 is shown in Figure 1. It is clear from this figure that for ωh �=
νπ + π

2 , ν ∈ Z the integrator is stable. The unstable choices of ωh are illustrated in
Figure 1.

4.2 Exponential Variational Integrator for S = 3

For the specific case when one intermediate point in each time interval is used,
i.e. S = 3 and t0

k = tk , t1
k = tk + h

2 , and t2
k = tk+1, the coefficients C

j
k and wj

described in Section 3 are

C0
k = 0, C1

k =
1

2
, C2

k = 1,

w0 = 1

6
, w1 = 1

6
, w2 = 1

6
. (32)

Again, by using the discrete Euler–Lagrange equations (6) for the discrete
Lagrangian (21), the eigenvalues of the matrix Mh,ω can be cast in the form

λ1,2 = 2 + cos2 (ωh)− 4

2 cos2
(
ωh
2

)+ 1
± 1

2

√
1

32 cos2
(
ωh
2

)+ 4 cos2 (ωh)

√
Δ3(ω, h). (33)

Then, the function Δ3(ω, h) is given by the expression

Δ3(ω, h) = 4 cos2 (2ωh)− 32 cos2
(
ωh

2

)
+ 32 cos2

(
3ωh

2

)
+ 64 cos2 (ωh)− 68.

(34)
It is worth noting that both eigenvalues λ1,2 of (33) are complex numbers for

ωh �= 6νπ, ν ∈ Z since Δ3(ω, h) < 0 (the period of Δ3(ω, h) is 6π ). Furthermore,
for the validity of the stability for trigonometric interpolation with S = 3, we prove
the following theorem.

Theorem 4.2 The phase fitted variational integrator, that uses trigonometric inter-
polation for S = 3, is stable for any ωh ∈ R.

Proof

First Case ωh = 6νπ, ν ∈ Z

For the special case when ωh = 6νπ we have Δ3(ω, h) = 0 and, the eigenvalues
in (33) lie on the unit circle, because λ1,2 = 1.

Second Case ωh �= 6νπ, ν ∈ Z
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Fig. 2 Modulus of the eigenvalues (33) of Mh,ω for the phase fitted variational integrators for
S = 3 for ωh ∈ [−2π, 2π ] and real and imaginary part

This choice of ωh leads to complex numbers for both eigenvalues of (33) which
now have magnitude equal to unity as |λ1,2|2 = 1, (the proof follows the ONE of
Theorem 4.1).  "

The degree of stability (stability region) of the phase fitted variational integrator
(22) with trigonometric interpolation, for S = 3, is shown in Figure 2. One can
conclude that, for ωh ∈ R, the integrator is unconditionally stable.

5 Error Analysis from Testing the Variational Integrators
in Hamiltonian Systems

The numerical convergence of the proposed variational integrators, may be illus-
trated by considering the harmonic oscillator with frequency ω = 1 which is
described by the Lagrangian (18). For concrete numerical tests, following [9, 10,
25], we choose as initial conditions (q0, p0) = (2, 1) and as time interval [0, 25]. In
Figure 3a, b the evolution of the errors in the position q and the momentum p are
plotted for the Störmer–Verlet [5] and the trigonometric interpolation method with
S = 3 (u = ωh). From the comparison, one can imply that the errors using the
trigonometric interpolation are much smaller (also bounded for all the integration
time) than those obtained by using Störmer–Verlet method of [5, 18, 26–28].

As an additional test, the global errors for the position and momentum compo-
nents at t = 3 and time steps h ∈ {0.05, 0.1, 0.5} are compared in Figure 4 with
the Störmer–Verlet method [5, 18, 27, 28] for the system of harmonic oscillator.
Evidently, while both methods are of the same order, for all the step sizes tested,
smaller errors in position and momentum result when trigonometric interpolation
for u = ωh is employed.
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a b

Fig. 3 Harmonic oscillator with ω = 1, using h = 0.05 and S = 3. (a) Errors in position and
(b) errors in momentum for the Störmer–Verlet [5, 18, 27, 28] and the trigonometric interpolation
method with u = ωh

a b

Fig. 4 Harmonic oscillator with ω = 1 and S = 3. Global errors of (a): the position and (b): the
momentum using three step sizes h for the Störmer–Verlet [5] and the trigonometric interpolation
method with u = ωh

6 Conclusions

In this article, we deal with a special kind of high-order numerical method which
relies on the exponential variational integrators. It is mostly appropriate for Hamil-
tonian systems and for this reason its efficiency is tested in oscillatory problems.
We then explore their linear stability properties of this exponential integrator
via evaluating the eigenvalues of the amplification matrix. Such a consideration
provided us with high confidence level regarding the applicability of these methods
and pointed out that they are stable for a wide range of parameters. Finally, we
investigated the numerical convergence of the exponential integrators via an error
analysis in prominent numerical examples. The conclusion extracted from the latter
application in studying the evolution of the errors in position q and momentum p

through the proposed simulation technique shows a very good behavior.
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A Degenerate Kirchhoff-Type Inclusion
Problem with Nonlocal Operator

Dumitru Motreanu

Abstract The chapter focuses on a Kirchhoff-type elliptic inclusion problem driven
by a generalized nonlocal fractional p-Laplacian whose nonlocal term vanishes
at finitely many points and for which the multivalued term is in the form of the
generalized gradient of a locally Lipschitz function. The corresponding elliptic
equation has been treated in (Liu et al., Existence of solutions to Kirchhoff-
type problem with vanishing nonlocal term and fractional p-Laplacian). Multiple
nontrivial solutions are obtained by applying the nonsmooth critical point theory
combined with truncation techniques.

1 Introduction

Let Ω ⊂ R
N , with N ≥ 1, be a bounded domain with Lipschitz boundary ∂Ω and

fix constants s ∈ (0, 1) and p ∈ (1,+∞) with ps < N . We denote by | · | the
Euclidean norm in R

N and by Bρ(x) the open ball in R
N centered at x ∈ R

N and
of radius ρ > 0.

In the present chapter we study the nonlocal differential inclusion

⎧⎨
⎩

m

(∫
R2N

∣∣u(x)− u(y)
∣∣pK(x − y) dxdy

)
L

p
Ku ∈ [f (u), f (u)] in Ω,

u = 0 on ∂Ω.

(1)

Here we have a continuous function m : [0,+∞) → R that can vanish, a nonlocal
fractional p-Laplace-type operator Lp

K given by
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L
p
Ku(x) := 2 lim

ε↓0

∫
RN\Bε(x)

∣∣u(x)− u(y)
∣∣p−2(

u(x)− u(y)
)
K(x − y) dy

for a.e. x ∈ R
N and corresponding to a function f ∈ L∞loc(R) we have set

f (s) = lim
δ→0

essinf|τ−s|<δf (τ), ∀s ∈ R (2)

and

f (s) = lim
δ→0

esssup|τ−s|<δf (τ), ∀s ∈ R. (3)

We emphasize the degenerate character of (1) which comes from the possibility
of the function m to vanish. It is also worth mentioning that it is essential to take
f ∈ L∞loc(R) in order that (2) and (3) be well defined.

We assume that K verifies the conditions:

(K) K : RN \ {0} → (0,+∞) is a measurable function satisfying

(i) the function x �→ min
{
1, |x|p}K(x) belongs to L1(RN);

(ii) there exists a constant α > 0 such that

K(x) ≥ α|x|−(N+ps), ∀x ∈ R
N\{0}.

An important particular case of the singular kernel K is K(x) = |x|−(N+ps), for
which problem (1) reduces to

⎧⎪⎨
⎪⎩

m

(∫
R2N

∣∣u(x)− u(y)
∣∣p

∣∣x − y
∣∣N+ps

dxdy

)
(−Δ)

p
s u ∈ [f (u), f (u)] in Ω

u = 0 in R
N\Ω,

(4)

where (−Δ)
p
s stands for the fractional p-Laplacian

(−Δ)
p
s u(x) := 2 lim

ε↓0

∫
RN\Bε(x)

∣∣u(x)− u(y)
∣∣p−2(

u(x)− u(y)
)

∣∣x − y
∣∣N+ps

dy

for a.e. x ∈ R
N . In the limit as s → 1− we recover from (−Δ)

p
s the (negative)

p-Laplacian operator −Δp : W 1,p
0 (Ω) → W−1,p′(Ω) = W

1,p
0 (Ω)∗ ( 1

p
+ 1

p′ = 1),
which is given by

〈−Δpu, v〉 =
∫
Ω

|∇u|p−2∇u · ∇v dx for all u, v ∈ W
1,p
0 (Ω).
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If the function f is continuous, then the interval [f (u(x)), f (u(x))] collapses
to the singleton f (u(x)). Consequently, in this case (4) reduces to the quasilinear
Dirichlet equation

⎧⎪⎨
⎪⎩

m

(∫
R2N

∣∣u(x)− u(y)
∣∣p

∣∣x − y
∣∣N+ps

dxdy

)
(−�)

p
s u = f (u) in Ω

u = 0 in R
N\Ω.

(5)

Equation (5) has been examined in [11]. When p = 2 and s → 1−, problem (5)
turns to be the degenerate elliptic equation of Kirchhoff-type

{−m(‖u‖H 1
0 (Ω))Δu = f (u) in Ω

u = 0 on ∂Ω,
(6)

which has been studied by Santos Júnior and Siciliano [22] (see also [8]). The
multivalued problem (1) driven by a nonlocal fractional operator was not considered
before in the literature, not even for the case K(x) = |x|−(N+ps) in (4). It represents
a generalization of all the previous works.

The origin of this type of problems lies in the work of Kirchhoff [10]. Many real
life phenomena are governed by what we nowadays call Kirchhoff-type equations.
Stationary and non-stationary Kirchhoff-type problems are extensively studied for
their rich mathematical insight, see, e.g., [1, 7–9, 13, 20–22]. On the other hand,
much interest is paid in recent years to problems involving fractional and nonlocal
operators, see, e.g., [6, 12, 14–17, 25]. A further development is represented by
dealing with Kirchhoff-type problems driven by nonlocal fractional operators. It
is motivated by accurate models in population dynamics and anomalous diffusion
processes. We briefly review a few works in this direction. Xiang et al. [24]
examined an equation with fractional p-Laplacian and a nonvanishing Kirchhoff
function. Autuori et al. [2] studied a stationary Kirchhoff problem with critical
nonlinearity and Kirchhoff function vanishing at zero. Pan et al. [19] established the
existence of a global solution to a degenerate diffusion problem of Kirchhoff-type.
Xiang et al. [23] pointed out the blow-up for a nonlocal diffusion equation with
Kirchhoff function that vanishes at zero. Liu et al. [11] investigated the nonlocal
equation (5) with multiple points at which the Kirchhoff function m vanishes.

Here we show the existence of multiple solutions to the nonlocal integro-
differential inclusion (1) that are located by using the zeros of the Kirchhoff function
m. It is for the first time when such a property is established for an inclusion
problem. In the particular case of problem (5) the result becomes the theorem
given in [11], so the present work is a generalization of [11].

Our approach consists in building a nonsmooth version of [11]. Specifically, we
rely on the nonsmooth version of mountain-pass theorem stated in [4] (see also
[18, Chapter 3]) instead of the classical mountain-pass theorem. In this respect, we
introduce intermediate problems through suitable truncations and the zeros of the
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Kirchhoff function m. For each intermediate problem we set forth a variational
framework of mountain-pass type and prove the existence of solutions to the
intermediate problems. Then we observe that they are solutions to the original
problem (1), thus achieving the desired conclusion. Essential differences occur with
respect to the treatment for the smooth case in [11]. Basically this is caused by
the fact that here we have to work with the pair of functions (f , f ) introduced
in (2)–(3) in place of the function f . Furthermore, the nonsmooth frame has to
match the functional setting of fractional p-Laplacian-type operators. We illustrate
the applicability of our main result with an example.

The source of inspiration for us was Santos Júnior and Siciliano [22] that dealt
with problem (6). Nevertheless, we have substantially modified the arguments in
[22]. These modifications were necessary because some arguments in [22] were not
accurate. For instance, the fact used in the proof of Proposition 3.1 of [22] consisting
in deriving from the equality f∗(u∗) = 0 that u∗ = 0 is not true (note that if u∗ = s∗
on a set of positive measure, then therein f∗(s∗) = 0 with s∗ > 0 by assumption (f)).
Our reasoning is considerably changed with respect to [22]. Even the hypotheses for
the nonlinearity f (u) are strongly changed. By the way, assumption (f) employed
in [22] is simply dropped.

The rest of the paper is organized as follows. Section 2 contains basic elements
related to the mathematical background. Section 3 presents our hypotheses and
main result. Section 4 studies the associated truncated problems. Section 5 describes
the mountain-pass geometry in connection with the truncated problems. Section 6
discusses the Palais–Smale condition for the Euler functionals corresponding to
the intermediate problems. Section 7 provides the proof of our main result and an
example.

2 Mathematical Background

First we provide some needed prerequisites related to the nonlocal functional
setting. More details can be found in [6, 16, 17].

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω . The notation

|Ω|will designate the Lebesgue measure of Ω . Denote O = (RN \Ω)×(RN \Ω) ⊂
R

2N and Q = R
2N \O and fix constants s ∈ (0, 1) and p ∈ (1,+∞). The fractional

critical exponent p∗s is defined by

p∗s =
{

Np
N−sp

if sp < N

+∞ if sp ≥ N.

Let K : RN \ {0} → (0,+∞) be a singular kernel functional satisfying hypotheses
(K). We note that
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X =
{
u : RN → R measureable : u|Ω ∈ Lp(Ω),

∫
Q

|u(x)− u(y)|pK(x − y) dxdy < ∞
}

is a Banach space equipped with the norm

‖u‖X = ‖u‖Lp(Ω) +
(∫

Q

|u(x)− u(y)|pK(x − y) dxdy

) 1
p

.

The natural space for problem (1) is the closed linear subspace of X given by

X0 :=
{
u ∈ X : u(x) = 0 for a.e. x ∈ R

N \Ω
}
,

which is continuously embedded in Lr(Ω) for all r ∈ [1, p∗s ]. Actually, taking also
into account assumption (K), there exists a constant c0(r) > 0 such that

‖u‖pLr (Ω) ≤ c0(r)

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x − y|N+sp

dxdy ≤ c0(r)

α

∫
Q

|u(x)− u(y)|pK(x − y) dxdy

whenever u ∈ X0. From the preceding inequality with r = p, it holds

(∫
Q

|u(x)− u(y)|pK(x − y) dxdy

) 1
p ≤ ‖u‖X

= ‖u‖Lp(Ω) +
(∫

Q

|u(x)− u(y)|pK(x − y) dxdy

) 1
p

≤
((

c0(p)

α

) 1
p + 1

)(∫
Q

∣∣u(x)− u(y)|pK(x − y) dxdy

) 1
p

for all u ∈ X0. It follows that

‖u‖X0 :=
(∫

Q

|u(x)− u(y)|pK(x − y) dxdy

) 1
p

is an equivalent norm on X0. In the sequel, X0 will be endowed with the norm
‖u‖X0 becoming a reflexive Banach space. Hereafter the notation 〈·, ·〉 stands for
the duality brackets for the dual pair (X∗

0, X0). For any q ∈ [1, p∗s ] we denote by
S(q) > 0 the smallest positive constant such that

‖u‖q := ‖u‖Lq(Ω) ≤ S(q)‖u‖X0 for all u ∈ X0.

The embedding of X0 into Lq(Ω) is compact when q ∈ [1, p∗s ). We mention that
for any u ∈ X0 we have
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u± := max{±u, 0} ∈ X0, u = u+ − u−, |u| = u+ + u−.

For a later use, we denote by r ′ the Hölder conjugate of any r ∈ (1,+∞), i.e.,
r ′ = r

r−1 .
We also recall a few things about the nonsmooth critical point theory for locally

Lipschitz functions for which we refer to [4, 18]. This theory is based on the notion
of generalized gradient (see [5]). The generalized directional derivative of a locally
Lipschitz function Φ : X → R on a Banach space X at u ∈ X in the direction
v ∈ X is defined as

Φ0(u; v) := lim sup
w→u, t→0+

1

t
(Φ(w + tv)−Φ(w)).

The generalized gradient of Φ at u ∈ X is the subset of the dual space X∗ given by

∂Φ(u) :=
{
u∗ ∈ X∗ : 〈u∗, v〉 ≤ Φ0(u; v), ∀ v ∈ X

}
.

A continuous and convex function Φ : X → R is locally Lipschitz and its
generalized gradient ∂Φ : X → 2Y ∗ coincides with the subdifferential of Φ in the
sense of convex analysis. If Φ : X → R is a continuously differentiable function,
its generalized gradient is just the differential DΦ of Φ.

The notion of generalized gradient is needed to handle the multivalued term
[f (u), f (u)] in problem (1). Given f ∈ L∞loc(R), we introduce

F(s) =
∫ s

0
f (t) dt for all s ∈ R.

The function F : R→ R is locally Lipschitz and the generalized gradient ∂F (s) of
F at any s ∈ R is the compact interval in R

∂F (s) = [f (s), f (s)],

where f (s) and f (s) are the functions in (2) and (3), respectively (see, e.g., [5,
Example 2.2.5]).

We also recall the definition of Palais–Smale condition and the statement of
mountain-pass theorem in our nonsmooth setting. We say that a locally Lipschitz
function Φ : X → R on a Banach space X satisfies the Palais–Smale condition
at level c ∈ R (in short, (PS)c condition) if each sequence {un} in X such that
Φ(un) → c and

min
ξ∈∂Φ(un)

‖ξ‖ → 0 as n →∞

possesses a convergent subsequence.
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Theorem 1 Assume that a locally Lipschitz function Φ : X → R on a Banach
space X satisfies the following conditions:

(i) Φ(0) = 0;
(ii) there are constants ρ > 0 and r > 0 such that Φ(u) ≥ r for all u ∈ X with

‖u‖X = ρ;
(iii) there exists an element e ∈ X such that ‖e‖X > ρ and Φ(e) < r;
(iv) Φ satisfies the (PS)c condition for

c = inf
γ∈Γ max

t∈[0,1] I (γ (t)),

where

Γ := {γ ∈ C([0, 1];X) : γ (0) = 0 and γ (1) = e
}
.

Then c ≥ r and c is a critical value of Φ meaning that there exists u ∈ X with
0 ∈ ∂Φ(u) and Φ(u) = c.

3 Statement of Main Result

We formulate our hypotheses on the data in problem (1).

(m) m : [0,+∞) → R is a continuous function such that for the numbers
{t0, t1, . . . , tL} with 0 = t0 < t1 < t2 < . . . < tL there hold

(i) m(tk) = 0 for all k = 0, 1, . . . , L;
(ii) m(t) > 0 for all t ∈ [0, tL] \ {t0, t1, . . . , tL}.

(f) f ∈ L∞loc(R) satisfies the conditions:

|f (t)| ≤ ρf |t |q−1 + cf , ∀ t ∈ R, (7)

with constants q ∈ [1, p∗s ), ρf ≥ 0, and cf ≥ 0;

F(t) :=
∫ t

0
f (s)ds ≤ Cf , ∀ t ∈ R, (8)

with a constant Cf ≥ 0;

μk:= 1

p

∫ tk

tk−1

m(s) ds >
ρf

q
S(q)q t

q
p

k −cf S(1)t
1
p

k , ∀ k ∈ {1, 2, . . . , L}; (9)

tη > 0 for all η ∈ [f (t), f (t)], ∀ t ∈ R \ {0}; (10)
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|Ω|
∫ +∞

0
f (s) ds > μ := max{μ1, . . . , μL}. (11)

Remark 1 Hypothesis (f ) requires to have a suitable balance between the functions
f and m. The strict inequality q < p∗s and assumption (8) are needed for the Palais–
Smale condition. Assumptions (9), (10), and (11) are helpful for the mountain-pass
geometry.

Definition 1 We say that u ∈ X0 is a (weak) solution of problem (1) if

m(‖u‖pX0
)

∫
R2N

∣∣u(x)− u(y)
∣∣p−2(

u(x)− u(y)
)(
v(x)− v(y)

)
K(x − y) dxdy

≥
∫
Ω

min{f (u(x))v(x), f (u(x))v(x)} dx for all v ∈ X0. (12)

By replacing v ∈ X0 with −v it is seen that (12) is equivalent to

m(‖u‖pX0
)

∫
R2N

∣∣u(x)− u(y)
∣∣p−2(

u(x)− u(y)
)(
v(x)− v(y)

)
K(x − y) dxdy

≤ max{f (u(x))v(x), f (u(x))v(x)} dx for all v ∈ X0. (13)

Due to u ∈ X0 and (7) the integrals in Definition 1 exist. Now we are in a position
to state the main result of the paper.

Theorem 2 Assume that the conditions (K), (m) and (f ) are fulfilled. Then
problem (1) has at least L nontrivial solutions u1, . . . , uL ∈ X0 satisfying the
arrangement

0 < ‖u1‖pX0
< t1 < ‖u2‖pX0

< t2 < . . . < tL−1 < ‖uL‖pX0
< tL.

Theorem 2 will be proven through a special variational approach. The starting
point is the energy functional I : X0 → R given by

I (u) := 1

p
M
(‖u‖pX0

)−
∫
Ω

F(u) dx for all u ∈ X0, (14)

where M : [0,∞) → R is the function

M(t) :=
∫ t

0
m(τ) dτ, ∀ t ≥ 0.

Here we prove that it is locally Lipschitz and determine its generalized gradient.

Lemma 1 Under the growth condition (7) with q ∈ [1, p∗s ], the functional I in (14)
verifies:
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(i) I : X0 → R is locally Lipschitz;
(ii) if ξ ∈ ∂I (u), with u ∈ X0, then there exists g ∈ Lq ′(Ω) such that

〈ξ, v〉 (15)

= m(‖u‖pX0
)

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x − y) dxdy

−
∫
Ω

gv dx, ∀ v ∈ X0

and

g(x) ∈ [f (u(x)), f (u(x))] for a.e. x ∈ Ω. (16)

Proof Define J : X0 → R by

J (u) := 1

p
M
(‖u‖pX0

)
for all u ∈ X0. (17)

Let us show that J is Gâteaux differentiable. For u, v ∈ X0 and t ∈ (0, 1), we note

J (u+ tv)− J (u) = 1

p

(
M(‖u+ tv‖pX0

)−M(‖u‖pX0
)
)
.

The mean value theorem provides

σt ∈
(

min{‖u‖pX0
, ‖u+ tv‖pX0

},max{‖u‖pX0
, ‖u+ tv‖pX0

})

such that

M(‖u+ tv‖pX0
)−M(‖u‖pX0

) = m(σt )
(
‖u+ tv‖pX0

− ‖u‖pX0

)
.

We infer that

1

t

(
M(‖u+ tv‖pX0

)−M(‖u‖pX0
)
)

=m(σt )

∫
Q

1

t

[|u(x)−u(y)+t (v(x)−v(y))|p−|u(x)−u(y)|p]K(x − y) dxdy.

Since p > 1, we have

lim
t→0

1

t

[|u(x)− u(y)+ t (v(x)− v(y))|p − |u(x)− u(y)|p]

= p|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y)) for a.e. (x, y) ∈ Q.
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By a well-known convexity inequality, we obtain

[|u(x)− u(y)+ t (v(x)− v(y))|p − |u(x)− u(y)|p]K(x − y)

≤ ξ(x, y) := 2p−1|v(x)− v(y)|pK(x − y) for all t ∈ (0, 1),

with ξ ∈ L1(Q) thanks to v ∈ X0. Applying Lebesgue’s dominated convergence
theorem in conjunction with the continuity of m yields

lim
t→0

1

t

(
M(‖u+ tv‖pX0

)−M(‖u‖pX0
)
)

(18)

= pm(‖u‖pX0
)

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))
(
v(x)− v(y)

)
K(x − y) dxdy.

By (17) and (18) we conclude that J : X0 → R is Gâteaux differentiable.
Next we prove that the Gâteaux differential J ′ : X0 → X∗

0 is continuous. Let
un → u in X0 for some u ∈ X0. Thus un → u in Lp(Ω) and along a relabeled
subsequence un(x) → u(x) for a.e. x ∈ Ω and

hn(x, y) := |un(x)− un(y)|p−2(un(x)− un(y))K(x − y)
1
p′ →

h(x, y) := |u(x)− u(y)|p−2(u(x)− u(y))K(x − y)
1
p′

for a.e. (x, y) ∈ Q. Since the sequence {hn} is bounded in Lp′(Q), Brézis–Lieb
lemma in [3] ensures that

lim
n→∞(‖hn‖p

′
Lp′ (Q)

− ‖hn − h‖p′
Lp′ (Q)

) = ‖h‖p′
Lp′ (Ω)

.

Taking into account the strong convergence un → u in X0, it turns out

lim
n→∞

∫
Q

∣∣∣∣|un(x)−un(y)|p−2(un(x)−un(y))−|u(x)−u(y)|p−2(u(x)−u(y))

∣∣∣∣
p′

×K(x − y) dxdy = lim
n→∞‖hn − h‖p′

Lp′ (Q)
= lim

n→∞(‖un‖pX0
− ‖u‖pX0

) = 0. (19)

By Hölder’s inequality we get

∣∣∣∣
∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x − y) dxdy

∣∣∣∣

≤
∫
Q

|u(x)−u(y)|p−1K(x−y)
p−1
p |v(x)−v(y)|K(x−y)

1
p dxdy ≤ ‖u‖p−1

X0
‖v‖X0 .
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Then, in view of (17) and (18), we arrive at

‖J ′(un)− J ′(u)‖X∗
0
= sup

‖v‖X0≤1
|〈J ′(un)− J ′(u), v〉|

≤ C1

(∫
Q

∣∣∣∣ |un(x)−un(y)|p−2(un(x)−un(y)
)−|u(x)−u(y)|p−2(u(x)−u(y)

) ∣∣∣∣
p′

×K(x − y) dxdy

) 1
p′ +

∣∣∣m(‖un‖pX0
)−m(‖u‖pX0

)

∣∣∣ ‖u‖p−1
X0

, (20)

with a constant C1 > 0. Combining (19) and (20) allows us to conclude that

lim
n→∞‖J ′(un)− J ′(u)‖X∗

0
= 0,

thereby J ∈ C1(X0,R).
Define Ψ : Lq(Ω) → R by

Ψ (u) :=
∫
Ω

F(u) dx for all u ∈ Lq(Ω). (21)

We show that Ψ is Lipschitz continuous on the bounded subsets of Lq(Ω). To this
end, let S be a bounded subset of Lq(Ω) and let u, v ∈ Lq(Ω). Since the function
F is locally Lipschitz, we can use Lebourg’s mean value theorem (see [5]) obtaining

F(u(x))− F(v(x) = ω(u(x)− v(x)) for a.e. x ∈ Ω,

with a real number ω = ω(x) belonging to the open real interval determined by
u(x) and v(x). Then the growth condition (7) implies

|F(u(x))−F(v(x)| ≤ (ρf max{|u(x)|q−1, |v(x)q−1|}+cf )|u(x)−v(x)| for a.e. x ∈ Ω.

Assumption (7), Hölder’s inequality, and (21) imply

|Ψ (u)− Ψ (v)| =
∣∣∣∣
∫
Ω

(F(u)− F(v)) dx

∣∣∣∣
≤
∫
Ω

(ρf max{|u(x)|q−1, |v(x)q−1|} + cf )|u(x)− v(x)| dx

≤ ρf max{‖u‖q−1
Lq(Ω), ‖v‖q−1

Lq(Ω)}‖u− v‖Lq(Ω) + cf |Ω| 1
q′ ‖u− v‖Lq(Ω).
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Since S is a bounded subset of Lq(Ω), it results that the function Ψ in (21)
is Lipschitz continuous on the bounded subsets of Lq(Ω), in particular locally
Lipschitz.

Denote by i : X0 → Lq(Ω) the embedding i(u) = u for all u ∈ X0, which is
linear and continuous. Therefore the restriction Ψ |X0 = Ψ ◦ i is a locally Lipschitz
function on X0. It suffices to note from (14) that I = J − Ψ |X0 for achieving the
proof of part (i).

Taking into account that X0 is dense in Lq(Ω), we have the following formula
regarding the generalized gradient:

∂(Ψ |X0)(u) = i∗∂Ψ (u) for all u ∈ X0,

where i∗ : Lq ′(Ω) → X∗
0 stands for the adjoint of i. The growth condition (7)

allows us to invoke Aubin–Clarke theorem (see [5]) to deduce that for every ξ ∈
∂(Ψ |X0)(u) there exists g ∈ Lq ′(Ω) such that

〈ξ, v〉 =
∫
Ω

g(x)v(x) dx for all v ∈ X0.

Hence (15) and (16) hold true.  "

4 Truncated Problems

Our approach relies on the truncations mk of the function m in (1) given by

mk(t) =
{
m(t) if tk−1 ≤ t < tk

0 elsewhere,
(22)

for k ∈ {1, 2, . . . , L}. Corresponding to the truncations in (22) we formulate the
intermediate fractional Kirchhoff problems

{
mk(‖u‖pX0

)L
p
Ku ∈ [f (u), f (u)] in Ω

u = 0 in R
N \Ω.

(23)

The solutions of (23) are understood in the weak sense of Definition 1. The energy
functional Ik : X0 → R for problem (23) is defined by

Ik(u) = 1

p
Mk(‖u‖pX0

)−
∫
Ω

F(u) dx, (24)

with

Mk(t) =
∫ t

0
mk(τ) dτ. (25)
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For problem (23), Lemma 1 reads as follows.

Lemma 2 Under the growth condition (7) with q ∈ [1, p∗s ], the functional Ik in
(24) verifies:

(i) Ik : X0 → R is locally Lipschitz;
(ii) if ξ ∈ ∂Ik(u), with u ∈ X0, then there exists gk ∈ Lq ′(Ω) such that

〈ξ, v〉 (26)

=mk(‖u‖pX0
)

∫
Q

|u(x)−u(y)|p−2(u(x)−u(y))(v(x)−v(y))K(x−y) dxdy

−
∫
Ω

gkv dx, ∀ v ∈ X0

and

gk(x) ∈ [f (uk(x)), f (uk(x))] for a.e. x ∈ Ω. (27)

A priori estimates for solutions to problem (23) are available as shown below.

Proposition 1 Under the assumptions of Lemma 2 and assuming in addition (10),
if uk ∈ X0 is a nontrivial critical point of Ik , that is 0 ∈ ∂Ik(uk) with uk �= 0, then
it holds

t
1
p

k−1 < ‖uk‖X0 < t
1
p

k . (28)

Proof Suppose by contradiction that ‖uk‖X0 ≥ t
1
p

k or ‖uk‖X0 ≤ t
1
p

k−1. Then from
(23) we infer that mk(‖uk‖pX0

) = 0, which by 0 ∈ ∂Ik(uk) and (26) results in

∫
Ω

gk(x)v(x) dx = 0 for all v ∈ X0,

so gk(x) = 0 for a.e. x ∈ Ω . By hypothesis (10) and in conjunction with (27) we
find that uk(x) = 0 for a.e. x ∈ Ω . This contradicts the fact that uk is nontrivial,
thus completing the proof.  "
Corollary 1 Assume the conditions of Proposition 1. If uk is a nontrivial critical
point of Ik , then uk is a nontrivial weak solution to problem (23) and a nontrivial
weak solution to problem (1). Moreover, if k �= j with k, j ∈ {1, . . . , tL}, then we
get distinct solutions uk �= uj of problem (1).

Proof Let uk ∈ X0 be a nontrivial critical point of Ik . From Proposition 1 we know
that (28) holds true. Then Lemmas 1(ii), 2(ii), and (22) guarantee that ∂Ik(uk) =
∂I (uk), which proves that 0 ∈ ∂I (uk). Hence it holds
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m(‖uk‖pX0
)

∫
Q

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(v(x)− v(y))K(x − y) dxdy

≥
∫
Ω

gkv dx, ∀ v ∈ X0,

with some gk ∈ Lq ′(Ω) satisfying (28), which leads to

m(‖uk‖pX0
)

∫
R2N

|uk(x)−uk(y)|p−2(uk(x)−uk(y))(v(x)−v(y))K(x−y) dxdy

≥
∫
Ω

min{f (uk(x))v(x), f (uk(x))v(x)} dx for all v ∈ X0.

Consequently, uk solves (1) and a fortiori (23). The second assertion in the
statement of corollary is the direct consequence of (28) and the partition
t0 = 0 < t1 < . . . < tL.  "

5 Mountain-Pass Geometry

Now we focus on the geometry of mountain-pass theorem for the functional Ik in
(24), with k = 1, . . . , L.

Lemma 3 Assume the conditions of Lemma 2 and in addition (9), (10), and (11).
Then there hold:

(i) there exist positive constants ϑk and rk such that

Ik(u) ≥ ϑk for all u ∈ X0 with ‖u‖X0 = rk;

(ii) there exists ek ∈ X0 satisfying ek(x) ≥ 0 for a.e. x ∈ Ω , Ik(ek) ≤ 0 < ϑk and
‖ek‖X0 > rk .

Proof

(i) Let u ∈ X0 with ‖u‖pX0
= tk . We invoke (24), (25), (22), (7), and (9) to obtain

Ik(u) = 1

p

∫ tk

tk−1

m(s) ds −
∫
Ω

∫ u(x)

0
f (s) ds dx

≥ μk − ρf

q
‖u‖qLq(Ω) − cf ‖u‖Lq(Ω) ≥ μk − ρf

q
S(q)q t

q
p

k − cf S(1)t
1
p

k > 0.
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Assertion (i) is verified by taking ϑk = μk − ρf

q
S(q)q t

q
p

k − cf S(1)t
1
p

k and

rk = t
1
p

k .
(ii) By assumption (11) there are an open set Ω0 in R

N with Ω0 ⊂ Ω and a constant
β > 0 for which one has

|Ω0|
∫ β

0
f (s) ds ≥ μ. (29)

Fix ξ ∈ C∞
0 (Ω) with ξ ≥ 0 on Ω and ξ ≡ 1 on Ω0. Then, for each k =

1, 2, . . . , L, we can find lk ≥ β such that for ek = lkξ it holds

‖ek‖X0 > t
1
p

k .

Then (24), (25), and (22), the properties of ek , (10), and (29) imply

Ik(ek) = μk −
∫
Ω

∫ ek(s)

0
f (s) ds dx ≤ μk − |Ω0|

∫ β

0
f (s) ds ≤ 0,

thus part (ii) holds true.
 "

Set

ck := inf
γ∈Γk

max
t∈[0,1] Ik(γ (t)), (30)

where

Γk :=
{
γ ∈ C([0, 1], X0) : γ (0) = 0 and γ (1) = ek

}
for k ∈ {1, 2, . . . , L},

with ek in Lemma 3(ii). We estimate from above the minimax values ck .

Lemma 4 Assume the conditions of Lemma 3. Then we have

ck < μk for all k ∈ {1, 2, . . . , L}.

Proof For each k ∈ {1, 2, . . . , L}, consider the path γ ∗k : [0, 1] → X0 defined by
γ ∗k (t) = tek for all t ∈ [0, 1], with ek in Lemma 3(ii), which evidently belongs to
the set Γk . There exists t∗k ∈ (0, 1) such that

Ik(t
∗
k ek) = max

t∈[0,1] Ik(γ
∗
k (t)) = max

t∈[0,1] Ik(tek).

We have t∗k ∈ (0, 1) because Ik(0) = 0, Ik(ek) ≤ 0 and Ik(u) ≥ ϑk > 0 for all
u ∈ X0 with ‖u‖X0 = rk (see Lemma 3). Recall that t∗k ek(x) ≥ 0 for a.e. x ∈ Ω
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and t∗k ek �≡ 0. Then by (30), (24), (25), (22), and (10) we infer that

ck ≤ max
t∈[0,1] Ik(γ

∗
k (t)) = Ik(t

∗
k ek) =

1

p
Mk(‖t∗k ek‖pX0

)−
∫
Ω

F(t∗k ek) dx

<
1

p
Mk(‖t∗k ek‖pX0

) ≤ 1

p

∫ tk

tk−1

m(s) ds = μk,

which completes the proof.  "

6 Palais–Smale Condition

The next statement concerns the validity of (PS)ck condition.

Lemma 5 Assume the conditions in Theorem 2. Then, for each k ∈ {1, 2, . . . , L},
the functional Ik satisfies the (PS)ck condition.

Proof Fix k ∈ {1, 2, . . . , L} and let {un} ⊂ X0 be a (PS)ck sequence for the
functional Ik in (24). This reads as

Ik(un) = 1

p
Mk(‖un‖pX0

)−
∫
Ω

F(un) ds → ck as n →∞ (31)

and

min
ξ∈∂(Ik)(un)

‖ξ‖ → 0 as n →∞. (32)

Since ∂(Ik)(un) is a nonempty weakly compact subset of X∗
0 , the minimum in (32)

is attained giving rise to a sequence ξn ∈ ∂(Ik)(un) with ξn → 0 in X∗
0 . Combining

ξn ∈ ∂(Ik)(un) with Aubin–Clarke theorem (see [5]) ensures that there exists hn ∈
Lq ′(Ω) such that

〈ξn, v〉 (33)

=mk(‖un‖pX0
)

∫
Q

|un(x)−un(y)|p−2(un(x)−un(y))(v(x)−v(y))K(x−y) dxdy

−
∫
Ω

hnv dx, ∀ v ∈ X0

and

hn(x) ∈ ∂F (un(x)) = [f (un(x)), f (un(x))] for a.e. x ∈ Ω. (34)
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We claim that the sequence {un} is bounded in X0. Suppose by contradiction that
for a relabeled subsequence of {un} we have

‖un‖X0 →∞ as n →∞. (35)

According to (35), we may admit that ‖un‖X0 ≥ t
1
p

k . Thus by (22) and (25) it holds
Mk(‖un‖pX0

) = μk . Owing to (35), we see that (31) reduces to

lim
n→∞

∫
Ω

F(un) dx = μk − ck. (36)

From (22) we know that mk(t) = 0 for all t > tk . Hence ξn → 0 in X∗
0 , (33) and

(35) imply that hn → 0 in Lq ′(Ω) as n →∞, thus up to a subsequence hn(x) → 0
for a.e. x ∈ Ω . This ensures that un(x) → 0 as n → ∞ for a.e. x ∈ Ω . Indeed,
arguing pointwise a.e. admit for an x ∈ Ω that along a subsequence un(x) → l with
l �= 0. By (7) and (34) (see also (2) and (3)) we have that the sequence (hn(x)) is
bounded. Since the graph of ∂F is closed in R × R, we deduce from hn(x) → 0
and (34) that

0 ∈ ∂F (l) = [f (l), f (l)]

with l �= 0, which contradicts hypothesis (10). This contradiction confirms that
un(x) → 0 as n →∞ for a.e. x ∈ Ω .

By the continuity of F we have

F(un(x)) → F(0) = 0 for a.e. x ∈ Ω, (37)

while assumption (8) entails

F(un(x)) ≤ Cf for a.e. x ∈ Ω, all n ∈ N. (38)

Relying on (37) and (38) we are allowed to apply Fatou’s Lemma with limit superior
that gives

lim
n→∞

∫
Ω

F(un) dx ≤ 0. (39)

The existence of the limit in (39) is guaranteed by (36). Consequently, from (36)
and (39), we deduce that μk ≤ ck contradicting Lemma 4. Therefore the sequence
{un} is bounded in X0.

Through the reflexivity of X0 there exists a subsequence of {un}, again denoted
{un}, such that

un → wk weakly in X0 and ‖un‖pX0
→ dk as n →∞, (40)
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for some wk ∈ X0 and for a constant dk ≥ 0. Let us prove that

tk−1 < dk ≤ tk, ∀ k = 1, . . . , L, (41)

for which we argue indirectly. Assume tk < dk . By (40) we may suppose ‖un‖X0 ≥
t

1
p

k , so Mk(‖un‖pX0
) = μk according to (22), (25). Note that (31) leads to (36).

Carrying out the argument as before, a contradiction with Lemma 4 arises. If we
admit that dk ≤ tk−1, by (22) and (25) we get

lim
n→∞Mk(‖un‖pX0

) = Mk(dk) = 0.

As above, on the basis of (32), (33), and (34) we derive that un(x) → 0 for a.e. x ∈
Ω along a relabeled subsequence. Complying with assumption (f ) we have q < p∗s ,
which renders from (40) that un → wk strongly in Lq(Ω) and F(un) → F(wk)

strongly in L1(Ω). Altogether we derive that wk = 0 and I (un) → I (wk) = 0.
Then (31) forces ck = 0, which contradicts ck ≥ ϑk > 0 (see Lemma 3(i)). Thus
(41) holds true.

In order to complete the proof it suffices to show that (a subsequence of) {un}
converges strongly to wk in X0. Passing to a relabeled subsequence, in view of (40)
and q < p∗s , we have that un → wk in Lq(Ω), whereas (34) and (7) provide hn →
h weakly in Lq ′(Ω) for some h ∈ Lq ′(Ω). Due to (34) and the (strong×weak)-
closedness of the graph of the generalized gradient ∂Ψ for Ψ in (21), we can infer
that

h(x) ∈ ∂F (wk(x)) = [f (wk(x)), f (wk(x))] for a.e. x ∈ Ω. (42)

Insert v = un and v = wk in (33) and let n →∞ in the resulting equalities. Using
ξn → 0 in X∗

0 , (40), un → wk strongly in Lq(Ω) and hn → h weakly in Lq ′(Ω),
we find that

mk(dk)dk =
∫
Ω

hwk dx and mk(dk)‖wk‖pX0
=
∫
Ω

hwk dx. (43)

It turns out

mk(dk)(‖wk‖pX0
− dk) = 0. (44)

If mk(dk) = 0, then (43) renders

∫
Ω

hwk dx = 0.

Taking into account (42) and assumption (10) results in hwk = 0. Using again
assumption (10), it follows that wk = 0. Then from (36) we infer that μk = ck ,
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which contradicts Lemma 4. This contradiction enables us to deduce from (44) the
equality dk = ‖wk‖pX0

. The uniform convexity of the space X0 and (40) with dk =
‖wk‖pX0

imply that un → wk strongly in X0, thus completing the proof.  "

7 Proof of Theorem 2 and Example

Now we are able to prove Theorem 2. For every k ∈ {1, 2, . . . , L}, consider the
intermediate problem (23) and its associated Euler functional Ik : X0 → R given
by (24), (25). The critical points of Ik coincide with the (weak) solutions of (23).
We observe that the hypotheses of Theorem 1 are verified for the functional Ik on
the Banach space X0. Precisely, Lemma 2 sets forth that Ik ∈ C1(X0,R), whereas
the conditions (i), (ii), (iii) in Theorem 1 are fulfilled for Ik due to Lemma 3.
Condition (iv) in Theorem 1 is satisfied for Ik with c = ck because of Lemma 5. We
are thus allowed to apply Theorem 1 in the case of the locally Lipschitz functional
Ik : X0 → R introduced in (24), (25). Applying Theorem 1 provides the existence
of a nontrivial critical point uk ∈ X0 of Ik in the sense that 0 ∈ ∂I (uk) with
uk �= 0, so the existence of a nontrivial solution uk of the intermediate problem (23)
is guaranteed. Furthermore, as known from Proposition 1, the a priori estimate (28)
is valid. Now, by Corollary 1, it appears that uk is a solution to problem (1) satisfying
the estimate tk−1 < ‖uk‖pX0

< tk . Since this is true for each k ∈ {1, 2, . . . , L}, the
proof of Theorem 2 is complete.

Here is a simple example permitting to identify a class of problems (1) for which
the conditions required in Theorem 2 are fulfilled. A rather general procedure to
construct examples is in this way indicated. Different other schemes can be built up.

Example 1 Fix a measurable function K : R
N \ {0} → (0,+∞) satisfying

hypothesis (K), for instance K(x) = |x|−(N+ps) and fix any function f ∈ L∞loc(R)

verifying the growth and sign requirements in (7), (8), and (10) (their range of
applicability is large). In particular, by (10) we have that

∫ +∞

0
f (s) ds > 0.

Without loss of generality we may suppose in (7) that q > 1, ρf > 0, and cf > 0.
Take finitely many positive numbers 0 = t0 < t1 < t2 < . . . < tL (with any positive
integer L) such that

ρf

q
S(q)q t

q−1
p

k < cf S(1), ∀ k ∈ {1, 2, . . . , L}, (45)

which can be achieved provided each tk > 0 is sufficiently small.
Corresponding to the numbers {t0, t1, . . . , tL} let us choose a continuous function

m̃ : [0,+∞) → R vanishing at {t0, t1, . . . , tL} and being positive on [0, tL] \
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{t0, t1, . . . , tL}, that is, m̃ complies with hypothesis (m). We note from (45) that
setting m = cm̃, with a positive constant c > 0, one has that (9) is automatically
satisfied. In addition, there holds condition (11), i.e.,

|Ω|
∫ +∞

0
f (s) ds >

c

p

∫ tk

tk−1

m̃(s) ds, k = 1, . . . , L,

provided the constant c > 0 is sufficiently small. We conclude for K , f , m and
0 = t0 < t1 < t2 < . . . < tL chosen as above that we can apply Theorem 2 to the
corresponding problem (1).
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Competition for Medical Supplies Under
Stochastic Demand in the Covid-19
Pandemic: A Generalized Nash
Equilibrium Framework

Anna Nagurney, Mojtaba Salarpour, June Dong, and Pritha Dutta

Abstract The Covid-19 pandemic has negatively impacted virtually all economic
and social activities across the globe. Presently, since there is still no vaccine and
no curative treatments for this disease, medical supplies in the form of Personal
Protective Equipment and ventilators are sorely needed for healthcare workers and
certain patients, respectively. The fact that this healthcare disaster is not limited
in time and space has resulted in intense global competition for medical supplies.
In this paper, we construct the first Generalized Nash Equilibrium model with
stochastic demands to model competition among organizations at demand points for
medical supplies. The model includes multiple supply points and multiple demand
points, along with prices of the medical items and generalized costs associated with
transportation. The theoretical constructs are provided and a Variational Equilibrium
utilized to enable alternative variational inequality formulations. A qualitative
analysis is presented and an algorithm proposed, along with convergence results.
Illustrative examples are detailed as well as numerical examples that are solved
with the implemented algorithm. The results reveal the impacts of the addition of
supply points as well as of demand points on the medical item product flows. The
formalism may be adapted to multiple medical items both in the near term and in
the longer term (such as for vaccines).
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1 Introduction

The Covid-19 pandemic, which was declared a pandemic by the World Health
Organization on March 11, 2020 (cf. Secon et al. [60]), has disrupted the globe,
altering economic and social activities and negatively impacting education, travel,
work, and even leisure. Healthcare systems around the world continue to face
great challenges as the battle against the novel coronavirus that causes this disease
continues. The great need for medical items from Personal Protective Equipment
(PPEs) to ventilators and, now, even convalescent plasma has led to intense
competition for medical supplies among healthcare institutions and even regions,
including states, as well as nations. Although a vaccine is not yet available and
a cure does not yet exist, scientific advances are adding to knowledge regarding
possible treatments. However, even when a vaccine becomes available, one can
expect, because of the great demands and potential insufficiency of manufacturing
capacity as well as vaccine components for distribution, that competition will be a
reality for the foreseeable future even for vaccines. The same holds for medicinal
treatments for patients suffering from Covid-19.

Indeed, the competition for PPEs, to start, is reasonable, since it has been
scientifically established that one of the most effective ways to mitigate contagion
associated with the novel coronavirus [26] is to use Personal Protective Equipment
(PPE), for healthcare and other essential workers (see Jacobs et al. [25]) as well
as those in social proximity [8, 23]. China has historically produced half of the
world’s face masks, but with the coronavirus originating in Wuhan, China, the
country dedicated the majority of the supply for their own citizens, whereas other
countries, such as Germany, even banned the export of PPEs [34]. The intense
competition for PPEs led to a dramatic increase in the price, with some prices
rising by more than 1000%, according to the report by The Society for Healthcare
Organization Procurement Professionals [61]. For example (cf. Diaz et al. [10] and
Berklan [5]), the price of N95 masks grew from $0.38 to $5.75 each (a 1413%
increase); isolation protective gowns experienced a price increase from $0.25 to
$5.00 (a 1900% increase), with the price of reusable face shields going from $0.50
to $4.00 (a 700% increase). According to Glenza [17], demand and prices for PPEs,
as of the end of June 2020, are dramatically increasing again across the United
States as coronavirus cases continue to rise in more than half of states. Furthermore,
shortages of PPEs are again being reported in the United States in July as medical
and dental practices reopen and with the reopening of some schools also on the
horizon.

In addition, because the coronavirus SARS-CoV-2 that causes Covid-19 may
result in severe respiratory problems in certain individuals, various healthcare
organizations, including hospitals, were clamoring for ventilators for their patients
[16, 52]. This is an example of, yet, another medical item for which there was and
continues to be intense competition globally, and with limited supply availability
(see [18, 28, 56, 58, 59]). The supply chain for ventilators is quite complex, with
components sourced from different countries.
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There is a growing demand for another medical product that has become critical
in the healthcare system due to the pandemic. It is the plasma or liquid part of blood
obtained from recovered Covid-19 patients, also known as convalescent plasma.
It contains antibodies that can fight the virus SARS-CoV-2 causing the Covid-19
disease [22]. The pandemic has given rise to a rather unique competitive market
for convalescent plasma, as blood banks and hospitals are seeking this antibody-
rich serum to directly transfuse and treat critically ill patients, while pharmaceutical
companies are collecting it to produce plasma-derived medicine such as hyperim-
mune globulin that can act as a cure for Covid-19 patients [2, 42]. Even though both
the efficacy and safety of the treatments are still under investigation worldwide,
there exist studies on patients with other infectious diseases, and severe acute viral
respiratory infections, including those caused by related coronaviruses (SARS-
CoV and MERS-CoV) that found therapeutic benefits of convalescent plasma
[13, 35, 62, 64]. Both the non-profit and profit-making organizations competing
in this market for convalescent plasma are taking measures to raise awareness, to
generate confidence regarding the safety of the donation process, and to recruit
donors [3, 19].

In the United States, according to the guidelines issued by the [15], individuals
who have fully recovered from Covid-19 and have shown no symptoms for at least
2 weeks prior to donation are eligible to donate plasma. In addition to meeting the
regular donor criteria, convalescent plasma donors need to provide documentation
of prior Covid-19 diagnosis. According to Harvard Health Publishing [21], one
donor can produce sufficient plasma to treat three patients. As the world continues
to wait for the availability of vaccines, and more studies show promising results
of convalescent plasma therapy [7, 12, 27], the demand for this product and
competition among hospitals, medical facilities, and pharmaceutical companies for
the limited donor pool is going to become more prominent.

2 Literature Review and Our Contributions

Since the pandemic was declared only several months ago, although for many it
feels like an eternity, the research is nascent, but ongoing and vigorous. Queiroz et
al. [57] presented a research agenda through a structured literature review of Covid-
19-related work and supply chain research on earlier epidemics. Ivanov [24], in
turn, discussed simulation-based research focused on the potential impacts on global
supply chains of the Covid-19 pandemic. Nagurney [39] developed a supply chain
network optimization model for perishable food in the Covid-19 pandemic, which
included the critical labor resource. The model can be used to investigate the impacts
of labor disruptions, due to illnesses, death, etc., on prices and product flows.

In this paper, we construct a competitive game theory network model for medical
supplies inspired by the Covid-19 pandemic. It features salient characteristics of the
realities of this pandemic in terms of competition among organizations/institutions
for supplies under limited capacities globally as well as uncertain demands due to
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the fact that so much about this novel coronavirus remains unknown and is yet to
be discovered. Since the organizations, notably, healthcare ones such as hospitals
and nursing homes but also medical practices, etc., compete with one another for
the limited supplies, given the prices and their associated logistical costs as well as
the expected loss due to possible shortages or surpluses, the model is a Generalized
Nash Equilibrium (GNE) model (cf. Debreu [9]; see also Arrow and Debreu [4])
rather than a Nash equilibrium one (cf. Nash [53, 54]). To date, there have been
very few GNE models in the setting of disaster relief. Here we are dealing with a
global healthcare disaster on a monumental scale, which, unlike other disasters (cf.
Nagurney and Qiang [46], Kotsireas et al. [31, 32]), is not limited in space and time.
Furthermore, our model has stochastic elements.

We emphasize that in the case of Generalized Nash Equilibrium models not only
do the objective functions of the players in the game depend on the strategies of the
other players but the feasible sets do as well (see, e.g., Fischer et al. [14]). Nagurney
et al. [40] constructed the first disaster relief GNE model integrating financial and
logistical aspects of humanitarian organizations’ activities and demonstrated that,
because of the underlying functions, an optimization reformulation was possible.
Subsequently, Nagurney et al. [41] generalized the results to a broader class of func-
tions and used the concept of a Variational Equilibrium (cf. Kulkarni and Shabhang
[33]), which enabled a finite-dimensional variational inequality formulation and
solution procedures. However, these models were deterministic. The first stochastic
GNE model for disaster relief was constructed by Nagurney et al. [48] with each
humanitarian organization facing a two-stage stochastic optimization problem and
with the common, that is, the shared, constraints being on the demand side and
associated with relief items to be delivered to the victims at the various demand
points. There were no bounds on the availability of supplies.

In this paper, in contrast, and as is vividly occurring in the Covid-19 pandemic,
the supplies of the items, which in our model are medical items, are constrained.
Also, the demand for the medical items is uncertain with associated penalties for
shortages or surpluses, with the former expected to be much higher due to potential
loss of life, increased pain and suffering, etc. The constructs that we utilize for
handling the uncertain demands for medical items are based on results of [11], who
introduced a supply chain equilibrium model with random demands, and on the
results of [49] and [43, 44], who focused on optimization models in disaster relief
and healthcare. Nagurney and Nagurney [45] developed a supply chain network
model for disaster relief under cost and demand uncertainty, but again, therein,
there was a single decision-maker and, hence, game theory was not needed. Mete
and Zabinsky [36] introduced a two-stage stochastic optimization model for storage
and distribution of medical supplies but also considered a single decision-maker.
Adida et al. [1] considered hospital stockpiling of medical supplies with a focus
on shortages in the system and a common population. The authors because of their
assumptions could derive closed form expressions for solutions. In our model, there
are multiple independent demand points and they compete for the medical item
supplies with one another. Our model also includes general transportation costs,
and each demand point is subject to uncertain demand for the medical supplies.
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Moreover, our model is a Generalized Nash Equilibrium model and not a Nash
equilibrium model.

Muggy and Heier Stamm [37] provided a review of game theory in humanitarian
operations to that date, and note that there remain many unexplored modeling
research opportunities. The excellent survey article of [20] on multicriteria opti-
mization in humanitarian aid includes references to both deterministic and stochastic
models. The authors, in their future research directions section, emphasize the need
for papers that consider the diverging interests of multiple and sometimes competing
stakeholders. Such a research gap is addressed in this paper.

This remainder of the paper is organized as follows. In Section 3, we present
the Generalized Nash Equilibrium network model for medical supplies and provide
alternative variational inequality formulations of the governing equilibrium condi-
tions. In Section 4, we discuss some qualitative properties of the model as well as the
function that enters the variational inequality that we utilize to solve the numerical
examples in Section 5. Section 6 summarizes our results, presents our conclusions,
and also gives suggestions for future research.

3 The Generalized Nash Equilibrium Network Model
for Medical Supplies Under Stochastic Demand

We consider m locations that are supply locations for the medical supplies, with
a typical supply point denoted by i, and n locations that are demand points, with
a typical demand point denoted by j . Note that supply points can be locations
in different regions, states, or even countries. Demand points are locations where
the medical supplies are needed such as hospitals, nursing homes, medical clinics,
prisons, etc. The bipartite structure of the game theory problem is depicted in
Figure 1. The notation for the model is given in Table 1. All vectors are column
vectors.

The demand for the medical item at the demand points is uncertain due to the
unpredictability of the actual demand at the demand points. The literature contains
examples of supply chain network models with uncertain demand and associated
shortage and surplus penalties (see, e.g., Dong et al. [11], Nagurney et al. (2011),
Nagurney and Masoumi [43], Nagurney et al. [44]). Nagurney and Nagurney [45]
developed a model for disaster relief under cost and demand uncertainty. The
probability distribution of demand for PPEs can be obtained using census data
and/or information gathered during the pandemic disaster preparedness phase.

Before constructing the objective function, we present some needed preliminar-
ies.

Since dj denotes the actual (uncertain) demand at destination point j , we have

Pj (Dj ) = Pj (dj ≤ Dj) =
∫ Dj

0
Fj (t)dt, j = 1, . . . , n, (1)
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Fig. 1 The network structure of the competitive game theory model for medical supplies

where Pj and Fj denote the probability distribution function and the probability
density function of demand at point j , respectively.

Recall from Table 1 that vj is the “projected demand” for the medical item at
demand point j ; j = 1, . . . , n. The amounts of shortage and surplus at demand
point j are calculated, respectively, according to:

%−
j ≡ max{0, dj − vj }, j = 1, . . . , n, (2a)

%+
j ≡ max{0, vj − dj }, j = 1, . . . , n. (2b)

The expected values of shortage and surplus at each demand point are, hence:

E(%−
j ) =

∫ ∞

vj

(t − vj )Fj (t)dt, j = 1, . . . , n, (3a)

E(%+
j ) =

∫ vj

0
(vj − t)Fj (t)dt, j = 1, . . . , n. (3b)

The expected penalty incurred by demand point j due to the shortage and surplus
of the medical item is equal to:

E(λ−j %−
j + λ+j %+

j ) = λ−j E(%−
j )+ λ+j E(%+

j ), j = 1, . . . , n. (4)

We assume that λ+j + λ−j is greater than zero, for each demand point j .
The projected demand at demand point j , vj , is equal to the sum of flows of the

medical item to j , that is:
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Table 1 Notation for the Generalized Nash Equilibrium network model

Notation Definition

qij the amount of the medical item purchased from supply location i by j . We
first group all the i elements {qij } into the vector qj , and then we group
such vectors for all j into the vector q ∈ Rmn+

vj the projected demand at demand point j ; j = 1, . . . , n

dj the actual (uncertain) demand for the medical item at demand location j ;
j = 1, . . . , n

%−
j the amount of shortage of the medical item at demand point j ;

j = 1, . . . , n

%+
j the amount of surplus of the medical item at demand point j ; j = 1, . . . , n

λ−j the unit penalty associated with a shortage of the medical item at demand
point j ; j = 1, . . . , n

λ+j the unit penalty associated with a surplus of the medical item at demand
point j ; j = 1, . . . , n

ρi the price of the medical item at supply location i; i = 1, . . . , m

cij (q) the generalized cost of transportation associated with transporting the
medical item from supply location i to demand location j , which includes
the financial cost, any tariffs/taxes, time, and risk. We group all the
generalized costs into the vector c(q) ∈ Rmn

Si the nonnegative amount of the medical item available for purchase at
supply location i; i = 1, . . . , m

μi the nonnegative Lagrange multiplier associated with the supply constraint
at supply location i. We group the Lagrange multipliers into the vector
μ ∈ Rm+

vj ≡
m∑

i=1

qij , j = 1, . . . , n. (5)

Each demand location j seeks to minimize the total costs associated with the
purchasing of the medical item plus the total cost of transportation plus the expected
cost due to a shortage or surplus at j .

The objective function of each demand point j is, hence, given by

Minimize
m∑

i=1

ρiqij +
m∑

i=1

cij (q)+ λ−j E(%−
j )+ λ+j E(%+

j ) (6)

subject to the following constraints:

n∑
j=1

qij ≤ Si, i = 1, . . . , m, (7)

qij ≥ 0, i = 1, . . . , m. (8)
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The first term in the objective function (6) represents the purchasing costs, whereas
the second term represents the generalized total transportation costs. The third term
in (6) captures the expected cost due to shortage or surplus of the medical items
at the demand point of the organization. We expect that the weight λ−j would be

significantly higher than the weight λ+j for each j since a shortage of the medical
items can result in greater suffering and loss of life.

The constraint (7) represents common, that is, a shared, constraint in that the
demand locations compete for the medical items that are available for purchase at
the supply locations at a maximum available supply. The constraints in (8) are the
nonnegativity assumption on the medical item purchase volumes.

We assume that the total generalized transportation cost functions are con-
tinuously differentiable and convex. Note that, in our model, the transportation
costs can, in general, depend upon the vector of medical item flows since there
is competition for freight service provision in the pandemic.

We now present some preliminaries that allow us to express the partial derivatives
of the expected total shortage and discarding costs of the medical items at the
demand points only in terms of the medical item flow variables. We then prove
that the third term in the Objective Function (6) is also convex.

Note that for each demand point j :

∂E(%−
j )

∂qij
= ∂E(%−

j )

∂vj
× ∂vj

∂qij
, ∀i. (9)

By Leibniz’s integral rule, we have

∂E(%−
j )

∂vj
= ∂

∂vj

(∫ ∞

vj

(t − vj )Fj (t)d(t)

)
=
∫ ∞

vj

∂

∂vj
(t − vj )Fj (t)d(t)

= Pj (vj )− 1, j = 1, . . . , n. (10a)

Therefore,

∂E(%−
j )

∂vj
= Pj

(
m∑

i=1

qij

)
− 1, j = 1, . . . , n. (10b)

On the other hand, we have:

∂vj

∂qij
= ∂

∂qij

m∑
l=1

qlj = 1, ∀i; j = 1, . . . , n. (11)
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Therefore, from (10b) and (11), we conclude that

∂E(%−
j )

∂qij
=
[
Pj

(
m∑

i=1

qij

)
− 1

]
, ∀i; j = 1, . . . , n. (12)

Analogously, for the surplus, we have

∂E(%+
j )

∂qij
= ∂E(%+

j )

∂vj
× ∂vj

∂qij
, ∀i; j = 1, . . . , n, (13)

∂E(%+
j )

∂vj
= ∂

∂vj

(∫ vj

0
(vj − t)Fj (t)d(t)

)
=
∫ vj

0

∂

∂vj
(vj − t)Fj (t)d(t)

= Pj (vj ), j = 1, . . . , n. (14a)

Thus,

∂E(%+
j )

∂vj
= Pj

(
m∑

i=1

qij

)
, j = 1, . . . , n. (14b)

From (14b) and (11), we have

∂E(%+
j )

∂qij
= Pj

(
m∑

i=1

qij

)
, ∀i; j = 1, . . . , n. (15)

Lemma 1 The expected shortage and surplus cost function λ−j E(%−
j )+λ+j E(%+

j )

is convex.

Proof We have

∂2

∂qij 2

[
λ−j E(%−

j )+ λ+j E(%+
j )
]
= λ−j

∂2E(%−
j )

∂qij 2
+ λ+j

∂2E(%+
j )

∂qij 2
, ∀i; j = 1, . . . , n.

(16a)

Substituting the first order derivatives from (12) and (15) into (16a) yields

∂2

∂qij 2

[
λ−j E(%−

j )+ λ+j E(%+
j )
]
= λ−j

∂

∂qij

[
Pj

(
m∑

i=1

qij

)
− 1

]
+ λ+j

∂

∂qij
Pj

(
m∑

i=1

qij

)

= (λ−j + λ+j )Fj

(
m∑

i=1

qij

)
≥ 0, ∀i; j = 1, . . . , n. (16b)
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The above inequality holds provided that (λ−j +λ+j ), i.e., the sum of shortage and

surplus penalties, is positive. Hence, λ−j E(%−
j )+λ+j E(%+

j ), and, as a consequence,
the objective function in (6) are also convex.  "

We refer to the objective function (6) for j as the disutility of j and denote it by
DUj(q); j = 1, . . . , n.

We define the feasible sets Kj ≡ {qj ≥ 0}; j = 1, . . . , n. We define K ≡∏I
i=1 Ki . We also define the feasible set S ≡ {q|q satisfying (7))}, which consist

of the shared constraints.

Definition 1 (Generalized Nash Equilibrium for Medical Items) A vector of
medical items q∗ ∈ K ∩ S is a Generalized Nash Equilibrium if for each demand
point j ; j = 1, . . . , n:

DUj(q
∗
j , q̂

∗
j ) ≤ DUj(qj , q̂

∗
j ), ∀qj ∈ Kj ∩S, (17)

where q̂∗j ≡ (q∗1 , . . . , q∗j−1, q
∗
j+1, . . . , q

∗
n).

According to (17), an equilibrium is established if no demand point has any
incentive to unilaterally change its vector of medical item purchases/shipments.
Observe that in our model not only does the objective function of a demand point
depend not only on the vector of strategies of its own strategies and on those of
the other demand points, but the feasible set does as well. Hence, this model is not
a Nash [53, 54] model, but, rather, it is a Generalized Nash Equilibrium model.
Our model captures the reality of the intense competitive landscape in the Covid-19
pandemic.

Here, we utilize the concept of a Variational Equilibrium, which allows us
to formulate the above GNE conditions as the solution to a finite-dimensional
variational inequality problem. Hence, rather than making use of quasi-variational
inequalities, for which the algorithms are not as advanced, we can apply variational
inequality algorithms to solve numerically the model. Indeed, as emphasized in
Nagurney et al. [50], Nagurney, et al. [47], and Nagurney et al. [39], we can define
a Variational Equilibrium, which is a refinement and a specific type of GNE (cf.
Kulkarni and Shabhang [33]) that enables a variational inequality formulation.

We define the feasible set K ≡ K ∩S.

Definition 2 (Variational Equilibrium) A vector of medical items q∗ ∈ K is a
Variational Equilibrium of the above Generalized Nash Equilibrium problem if it is
a solution to the following variational inequality:

n∑
j=1

m∑
i=1

∂DUj (q
∗)

qij
× (qij − q∗ij ) ≥ 0, ∀q ∈ K, (18)

where 〈·, ·〉 denotes the inner product in mn-dimensional Euclidean space.
In expanded form, the variational inequality in (18) is: determine q∗ ∈ K such

that
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n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj (q
∗)

∂qij
+ λ+j Pj (

m∑
l=1

q∗lj )− λ−j (1 − Pj (

m∑
l=1

q∗lj ))
]
×
[
qij − q∗ij

]
≥ 0, ∀q ∈ K.

(19)

Note that the variational equilibrium guarantees that the Lagrange multipliers
associated with the common constraints are the same for all the demand points. This
feature yields an elegant fairness and equity interpretation, which is very relevant
during this pandemic.

We now put variational inequality (19) into standard form. Recall (cf. Nagurney
[38]) that the finite-dimensional variational inequality problem, VI(F,K), is to
determine a vector X∗ ∈ K ⊂ RN , such that

〈F(X∗),X −X∗〉 ≥ 0, ∀X ∈ K, (20)

where F is a given continuous function from K to RN , and K is a given closed,
convex set.

We let X ≡ q and F(X) be the vector with elements: { ∂DUj (q
∗)

qij
}, ∀j, i with K

as originally defined and N = mn. Then, clearly, variational inequality (19) can be
put into standard form (20), under our assumptions.

Also it is worth noting that the existence of a solution q∗ to variational
inequality (19) is guaranteed under the classical theory (see Kinderlehrer and
Stampacchia [29]) since the function that enters the variational inequality is
continuous and the feasible set K is not only convex but also compact because
the supplies of the medical items are bounded. Hence, the following theorem is
immediate.

Theorem 1 (Existence) A solution to variational inequality (19) exists.

We now provide an alternative variational inequality to (18) (and (19)). We
associate a nonnegative Lagrange multiplier μi with constraint (7), for each supply
location i = 1, . . . , m. We group all the Lagrange multipliers into the vector
μ ∈ Rm+ . We define the feasible set K2 ≡ {(q, μ)|q ≥ 0, μ ≥ 0}.

Then, using arguments as in [47], an alternative variational inequality for (19) is:
determine (q∗, μ∗) ∈ K2 such that

n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj (q
∗)

∂qij
+ λ+j Pj (

m∑
l=1

q∗lj )− λ−j (1 − Pj (

m∑
l=1

q∗lj )+ μ∗i

]
×
[
qij − q∗ij

]

+
m∑

i=1

⎡
⎣Si −

n∑
j=1

q∗ij

⎤
⎦× [μi − μ∗i

] ≥ 0, ∀(q, μ) ∈ K2. (21)

Variational inequality (21) can also be put into standard form (20) if we define
X ≡ (q, μ) and F(X) ≡ (F 1(X), F 2(X)), where F 1(X) has as its (i, j)-th
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component: ρi +∑m
l=1

∂clj (q)

∂qij
+ λ+j Pj (

m∑
l=1

qlj ) − λ−j (1 − Pj (

m∑
l=1

qlj ) + μi ; i =

1, . . . , m; j = 1, . . . , n, and the i-th component of F 2(X) is Si −∑n
j=1 qij , for

i = 1, . . . , m. Furthermore, K ≡ K2 and N = mn+m.

3.1 Illustrative Examples

In this subsection, we present three small numerical examples for illustrative
purposes. These examples are inspired by the Covid-19 pandemic and the associated
challenges in procuring N95 face masks, which are among the most needed medical
products in dealing with this healthcare disaster. We emphasize that the equilibrium
Lagrange multipliers provide valuable information since they represent the shadow
prices of the supply constraints. In particular, if an equilibrium Lagrange multiplier
is positive, then this is the amount of the cost (or the loss) that could be saved with
an extra unit of the supply of the medical item.

Illustrative Example 1 (One Supply Point and One Demand Point) In this
example, there is a single supply point and a single demand point, as depicted in
Figure 2.

The supply point sells 20-pack N95 masks in the form of large bulks of 1000
packs each; therefore, one unit of item flow from the supply point to a demand
point, qij , represents 1000 of 20-pack N95 masks. The demand at the demand point
is uniformly distributed between 100 and 1000 of large bulks. To determine the
price of a unit item flow, ρi at supply point i, we assume that the price of each
20-pack N95 mask during the pandemic is $25, so that the purchase price of each
large bulk is ρ1 = 25,000. Although a face mask is not, under normal conditions,
an expensive product, it has been proved to be essential in reducing the spread of
the virus. Based on this, we assume that, for every 2000 people who do not use
the face mask, one person would die due to the disease. Although it is not easy to
value people’s lives, we assume a $200,000 equivalent for each loss. As a result,

Fig. 2 Network topology for
illustrative Example 1

Supply Point

Demand Point

��

��
1

��

��
1
�
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the penalty, λ−1 , on the shortage of one item flow, which is equivalent to 20,000 N95
masks, is set at $2,000,000. Also, since the supply chain has been severely disrupted
at the time of the declaration of the pandemic, overloading can cause many problems
in transportation and processing at entry points for countries. To prevent this, we
also consider a penalty of λ+1 = 100,000 on surplus item flows. The data for this
example is as follows:

ρ1 = 25,000, S1 = 1000, c11(q) = q2
11 + 3q11, λ−1 = 2,000,000, λ+1 = 100,000.

We can rewrite variational inequality (21) for this example as: determine (q∗, μ∗) ∈
K2 such that:
[

25,000 + 2q∗11 + 3 + 100,000(
q∗11 − 100

900
)− 2,000,000(

1000 − q∗11

900
)+ μ∗1

]

× [q11 − q∗11

]+ [1000 − q∗11

]× [μ1 − μ∗1
] ≥ 0, ∀(q, μ) ∈ K2

.
The solution to the above variational inequality, which we obtained analyti-

cally, is

q∗11 = 945.62, μ∗1 = 0.00.

Observe that the organization at the demand point procures a huge number of
masks because of the great importance of PPEs in preventing the further spread of
the virus and the potential damage that could be caused by an insufficient number of
N95 face masks. The projected demand value v1 = 945.62 lies between the lower
and the upper bounds of the uniform distribution range. Note that the projected
demand is very close to the upper bound. The decision-makers at the organization
at the demand point are aware of the importance of the masks and have assigned a
much larger penalty on a shortage as compared to the surplus penalty. The disutility
of the organization in this logistical operation is equal to 67,543,534.04.

Illustrative Example 2 (Two Supply Points and One Demand Point) In the
second illustrative example, a new supply point has been added to the supply chain
network, as depicted in Figure 3.

Hence, now, the decision-makers at the demand point have two options for
procuring the face masks. The new supply point offers masks for less than half
the price of the other supply point, but its supply capacity is half that of the previous
one. Also, the generalized transportation cost rate from the origin of the N95 masks
of the new supply point to the demand point is higher than the rate of the other
supply point. The data on the new supply point is as follows:
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Fig. 3 Network topology for
illustrative Example 2
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ρ2 = 10,000, S2 = 500, c21(q) = 2q2
21 + 4q21.

Variational inequality (21) can be rewritten as follows for this example: deter-
mine (q∗, μ∗) ∈ K2 such that

[
25,000 + 2q∗11 + 3 + 100,000(

q∗11 + q∗21 − 100

900
)− 2,000,000(

1000 − q∗11 − q∗21

900
)+ μ∗1

]
× [q11 − q∗11

]

+
[

10,000 + 4q∗21 + 4 + 100,000(
q∗11 + q∗21 − 100

900
)− 2,000,000(

1000 − q∗11 − q∗21

900
)+ μ∗2

]
×[q21 − q∗21

]

+ [1000 − q∗11

]× [μ1 − μ∗1
]+ [500 − q∗21

]× [μ2 − μ∗2
] ≥ 0, ∀(q, μ) ∈ K2.

The solution to the above variational inequality, obtained analytically, is

q∗11 = 446.05, q∗21 = 500.00, μ∗1 = 0.00, μ∗2 = 13891.80.

Observe that, with the addition of a new supply point, the decision-makers’
strategy has changed. Since the price of the product offered by the new supply
point is much lower than that at the first supply point, the decision-makers purchase
more items from supply point 2, despite the fact that the generalized transportation
cost to the demand point from supply point 2 is higher than that from supply
point 1. However, the supply capacity of the new supply point is half that of the
first supply point, and we see that all its capacity has been used. Therefore, the
associated equilibrium Lagrange multiplier is positive. Again, the projected demand
falls between the lower and the upper bounds of the uniform distribution and is
closer to the upper bound for the same reason as in the previous example. But,
now, with greater flexibility in the supply chain due to the addition of a new supply
point, the disutility of the organization at the demand point has declined, dropping
to 59,860,548.75.

Illustrative Example 3 (Two Supply Points and Two Demand Points) This
example is constructed from the previous examples, with the difference that now
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Fig. 4 Network topology for
illustrative Example 3
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there are two demand points trying to procure N95 masks and competing over
limited supplies; see Figure 4.

The demand for the new demand point is uniformly distributed between 100
and 500. The generalized transportation cost functions and the penalty coefficients
associated with the second demand point are

c12(q) = 2q2
12 + 3q12, c22(q) = 3q2

22 + 4q22, λ−2 = 2,000,000, λ+2 = 100,000.

Variational inequality (21) for this example is as below: determine (q∗, μ∗) ∈ K2

such that

[
25,000 + 2q∗11 + 3 + 100,000(

q∗11 + q∗21 − 100

900
)− 2,000,000(

1000 − q∗11 − q∗21

900
)+ μ∗1

]
× [q11 − q∗11

]

+
[

10,000 + 4q∗21 + 4 + 100,000(
q∗11 + q∗21 − 100

900
)− 2,000,000(

1000 − q∗11 − q∗21

900
)+ μ∗2

]
×[q21 − q∗21

]

+
[

25,000 + 4q∗12 + 3 + 100,000(
q∗12 + q∗22 − 100

400
)− 2,000,000(

500 − q∗12 − q∗22

400
)+ μ∗1

]
× [q12 − q∗12

]

+
[

10,000 + 6q∗22 + 4 + 100,000(
q∗12 + q∗22 − 100

400
)− 2,000,000(

500 − q∗12 − q∗22

400
)+ μ∗2

]
× [q22 − q∗22

]

+ [1000 − q∗11

]× [μ1 − μ∗1
]+ [500 − q∗21

]× [μ2 − μ∗2
] ≥ 0, ∀(q, μ) ∈ K2.

The solution to this variational inequality, again, obtained analytically, is

q∗11 = 634.14, q∗21 = 311.74, q∗12 = 287.71, q∗22 = 188.26, μ∗1 = 0.00, μ∗2 = 15020.30.

With the addition of another demand point, there is increased competition for
the valuable N95 masks. The strategies of the organization at demand point 1 have
changed as compared to the previous example. It can be seen that the full capacity
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of supply point 2 has not been assigned to demand point 1, since the organization at
demand point 1 now competed with the organization at demand point 2. As a result,
the major part of the demand point 1’s procurement of the N95 masks is from supply
point 1 that has a larger capacity as compared to supply point 2. And, similar to the
previous example, the equilibrium Lagrange multiplier associated with the supply
capacity of supply point 2 is positive since it has sold all its available supply of N95
masks, while the other supply point has not exhausted its capacity. Both demand
points receive a large amount of face masks and their projected demands lie in their
respective uniform probability distribution range. Both projected demands are closer
to the upper bound since the penalty on shortage is much higher than the penalty on
surplus. The addition of a new demand point to the competition has changed the
strategies of the organization at demand point 1, and we can see the impact on its
disutility. Its disutility has now increased to 62,580,546.57. The disutility of the
second demand point is 28,457,845.74.

4 Qualitative Properties and the Algorithm

We now discuss some properties of the model, specifically, those that guarantee that
the conditions for convergence of the modified projection method (cf. Korpelevich
[30] and Nagurney [38]) that we use to compute solutions to numerical examples in
this next section are met. The algorithm is guaranteed to converge to a solution of
variational inequality (21) if the function F(X) that enters the variational inequality
is monotone and Lipschitz continuous and that a solution exists. It was recently
applied to compute solutions to a stochastic game theory model for disaster relief
by Nagurney [39].

Recall that the function F(X) is said to be monotone, if

〈F(X1)− F(X2),X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K. (22)

Theorem 2 (Monotonicity) The function F(X) is monotone, for all X ∈ K, if all
the generalized transportation cost functions cij , i = 1, . . . , m; j = 1, . . . , n, are
convex.

Proof ∀X1, X2 ∈ K, let v1
j =

∑m
i=1 q1

ij and v2
j =

∑m
i=1 q2

ij .

〈F(X1)− F(X2),X1 −X2〉

=
n∑

j=1

m∑
i=1

[
m∑
l=1

∂clj (q
1)

∂qij
−

m∑
l=1

∂clj (q
2)

∂qij

]
× (q1

ij − q2
ij ) (23)
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+
n∑

j=1

(λ+j + λ−j )× (Pj (v
1
j )− Pj (v

2
j ))× (v1

j − v2
j ). (24)

Given the convexity of the generalized transportation cost functions, equation (23)
is greater or equal to zero. Since a probability function Pj , ∀j , is an increasing
function, the expression in equation (24) is greater than or equal to zero. Hence,
F(X) is monotone.  "

If the conditions in Theorem 1 are slightly strengthened so that the vector
function that enters into the variational inequality problem (21) is strictly monotone,
then its solution is unique (see, e.g., Nagurney [38]).

Theorem 3 (Uniqueness) The function F(X) is strictly monotone for all X ∈ K,
if all the generalized transportation cost functions cij ; i = 1, . . . , m; j = 1, . . . , n,
are strictly convex. Then the variational inequality (21) has a unique solution in K.

Theorem 4 (Lipschitz Continuity) If the generalized transportation cost func-
tions cij , for all i and j , have bounded second order partial derivatives, then
the function F(X) that enters the variational inequality problem (21) is Lipschitz
continuous; that is, there exists a constant L > 0, known as the Lipschitz constant,
such that

‖F(X1)− F(X2)‖ ≤ L‖X1 −X2‖, ∀X1, X2 ∈ K. (25)

Proof Since each probability function Pj ; j = 1, . . . , n, is always less than or
equal to 1, the result is direct by applying a mid-value theorem from calculus to the
vector function F(X) that enters the variational inequality problem (21). See also
Nagurney and Zhang [51] and Nagurney [38].  "

The iterative steps of the modified projection method, with τ denoting an
iteration counter, are as follows:

The Modified Projection Method

Step 0: Initialization
Initialize with X0 ∈ K. Set the iteration counter τ := 1 and let β be a scalar such
that 0 < β ≤ 1

L
, where L is the Lipschitz constant.

Step 1: Computation
Compute X̄τ by solving the variational inequality subproblem:

〈X̄τ + βF(Xτ−1)−Xτ−1, X − X̄τ 〉 ≥ 0, ∀X ∈ K. (26)
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Step 2: Adaptation
Compute Xτ by solving the variational inequality subproblem:

〈Xτ + βF(X̄τ )−Xτ−1, X −Xτ 〉 ≥ 0, ∀X ∈ K. (27)

Step 3: Convergence Verification
If |Xτ −Xτ−1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop; otherwise, set
τ := τ + 1 and go to Step 1.

The modified projection method for the model governed by variational inequality
(21) yields closed form expressions for the medical item flows and for the Lagrange
multipliers in both Steps (26) and (27). This is a nice feature for computer
implementation.

Theorem 5 (Convergence) Assume that the function that enters the variational
inequality (21) (or (19)) has at least one solution and all the generalized trans-
portation cost functions are convex, then the modified projection method described
above converges to the solution of the variational inequality (21) (or (19)).

Proof According to Korpelevich [30], the modified projection method converges
to the solution of the variational inequality problem of the form (20), provided
that the function F that enters the variational inequality is monotone and Lipschitz
continuous and that a solution exists. Existence of a solution follows from Theo-
rem 1. Monotonicity follows Theorem 2. Lipschitz continuity, in turn, follows from
Theorem 4.  "

We now provide the explicit formulae for the medical item flows and the
Lagrange multipliers at iteration τ for Step 1. The analogues for Step 2 can be
easily derived accordingly.

Specifically, we have:

Explicit Formula for the Medical Item Flow for Each i, j at Iteration τ of Step 1
Determine q̄τ

ij for each i, j at Step 1 iteration τ according to:

q̄τ
ij = max{0, qτ−1

ij
+β(−ρi−

m∑
l=1

∂clj (q
τ−1)

∂qij
−λ+

j
Pj (

m∑
l=1

qτ−1
lj

)+λ−
j
(1−Pj (

m∑
l=1

qτ−1
lj

))−μτ−1
i

)}.

(28)

Explicit Formula for the Lagrange Multiplier for Each i at Iteration τ of Step 1
Determine μ̄τ

i for each i at Step 1 iteration τ according to:

μ̄τ
i = max{0, μτ−1

i + β(−Si +
n∑

j=1

qτ−1
ij )}. (29)
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5 Numerical Examples

In this section, we apply the modified projection method to compute solutions
to numerical examples. The algorithm was implemented in FORTRAN, and the
computer system used was a Linux system at the University of Massachusetts
Amherst. We initialized the algorithm by setting all the medical item flows and the
Lagrange multipliers to 0.00. The convergence condition for all the examples was
that the absolute value of two successive variable iterates was less than or equal to
10−8. The β parameter in the modified projection method was set to: 0.1.

The examples are of increasing complexity. We report all the input and the output
data for transparency purposes and reproducibility.

In this section, we focus on procurement of N95 masks but in the scenario of
increasing demand among smaller healthcare organizations in the form of medical
practices. With the pandemic in the USA continuing in the summer of 2020 and
with the opening of schools and universities to a certain degree on the horizon, there
are increased pressures on the procurement of PPEs. In particular, we reference the
following news article by O’Connell [55]; see also Wan [63].

Numerical Example 1 (One Supply Point and One Demand Point) In the first
numerical example, for which we computed the solution using the code that we
implemented, there is a single supply point and a single demand point as in the
network in Figure 2. The qij s are in units since these medical practices are small
relative to hospitals, etc. We assumed a uniform probability distribution in the range
[100, 1000] at the demand point. The additional data for this example are

ρ1 = 2, S1 = 1000, c11(q) = .005q2
11 + .01q11, λ−1 = 1000, λ+1 = 10.

The computed equilibrium solution is

q∗11 = 980.56, μ∗1 = 0.00.

The projected demand of 980.56 is close to the upper bound of the probability
distribution at the demand point.

Numerical Example 2 (One Supply Point and Two Demand Points) This exam-
ple has the same data as those in Numerical Example 1 except for added data for the
second demand point. The network topology is as in Figure 5.

The probability distribution at the second demand point had the same lower and
upper bounds as in the first demand point.

This example has the same data as Numerical Example 1 except for the following
additional data for the new demand point:

c12(q) = .01q2
12 + .02, λ−2 = 1000, λ+2 = 10.

The network topology for this example is as in Figure 5.
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Fig. 5 Network topology for
Numerical Example 2
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The modified projection method converged to the following equilibrium solution:

q∗11 = 502.20, q∗12 = 497.80, μ∗1 = 541.61.

With increased competition for N95 mask supplies from the second demand
point, the first demand point has a large reduction in procured supplies, as compared
to the volume received in Numerical Example 1. The available supply of 1000
N95 masks is exhausted between the two demand points, and, hence, the associated
Lagrange multiplier μ∗1 is positive. The equilibrium conditions hold with excellent
accuracy.

Numerical Example 3 (Two Supply Points and Two Demand Points) In Numer-
ical Example 3, we considered the impacts of the addition of a second supply point
to Numerical Example 2. The topology was as in Figure 4. Hence, the data are as
above with the following additions:

S2 = 500, ρ2 = 3, c21(q) = .015q2
21 + .03, c22(q) = .02q2

22 + .04q22.

The modified projection method yielded the following equilibrium solution:

q∗11 = 526.31, q∗12 = 473.69, q∗21 = 225.57, q∗22 = 274.43, μ∗1 = 261.17, μ∗2 = 258.65.

With the addition of a new supply point, both demand points gain significantly in
terms of the volume of N95 that each procures and the supplies at each supply point
are fully sold out. As a result, both equilibrium Lagrange multipliers are positive.

Numerical Example 4 (Two Supply Points and Three Demand Points) Numer-
ical Example 4 was constructed from Numerical Example 3 with demand point 3
added, as in Figure 6.

Numerical Example 4 has the same data as Numerical Example 3 but with the
addition of data for demand point 3 as follows:

c13(q) = .01q2
13+.02q13, c23(q) = .015q2

23+.03q23, λ−3 = 1000, λ+3 = 10.
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Fig. 6 Network topology for
numerical Example 4

Supply Points

Demand Points

1 2

1 2 3

�
�

�
�

��

����������������

����������������

�
�

�
�

���

Supply Points

Demand Points

1 2

1 2 3 4

�
�

�
�

��

����������������

��������������������������

����������������

�
�

�
�

��

����������������

Fig. 7 Network topology for Numerical Example 5

The probability distribution for the N95 masks associated with demand point 3 is
uniform with a lower bound of 200 and an upper bound of 1000.

The modified projection method yielded the following equilibrium solution:

q∗11 = 360.11, q∗12 = 318.83, q∗13 = 321.06,

q∗21 = 122.29, q∗22 = 161.10, q∗23 = 216.62, μ∗1 = 565.25, μ∗2 = 564.16.

Observe that with increasing competition for the N95 masks with another
demand point, both demand points 1 and 2 experience decreases in procurement
of supplies. The two supply points again fully sell out of their N95 masks, and the
associated equilibrium Lagrange multipliers are both positive.

Numerical Example 5 (Two Supply Points and Four Demand Points) In the
final example, Numerical Example 5, we consider yet another demand point in
addition to the demand points in Numerical Example 4. Please refer to Figure 7.
Smaller medical practices are increasingly concerned about being able to secure the
much needed PPEs to protect the health of their employees and the viability of their
practices.

The data for this example is as the data for Numerical Example 4, and the
probability distribution structure for the demand at demand point is the same, with
the following additional data for the new demand point 4:
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c14(q) = .015q2
14 + .03q14, c24(q) = .025q2

24 + .05q24, λ−4 = 1000, λ+4 = 10.

The modified projection method now yielded the following equilibrium solution:

q∗11 = 260.73, q∗12 = 229.36, q∗13 = 251.22, q∗14 = 258.69,

q∗21 = 79.57, q∗22 = 109.17, q∗23 = 160.46, q∗24 = 150.81, μ∗1 = 725.71, μ∗2 = 724.91.

Again, the equilibrium conditions hold with excellent accuracy for this example,
as was the case for all the other numerical example computed solutions. The
suppliers of the N95 sell out their supplies. However, the demand points lose in
terms of supply procurement for their organizations with the increased demand and
competition from and yet another demand point.

We emphasize that although the above numerical examples are stylized, our
mathematical, computational framework enables the investigation of numerous
scenarios and sensitivity analyses. For example, one can consider the impacts of
the removal of supply points and/or demand points; the addition of supply and/or
demand points; changes in the prices of the medical item under study, as well as
changes to the generalized transportation costs. Furthermore, one can investigate
the impacts of alternative probability distribution functions.

The above numerical results are consistent with what one can expect to observe
in reality in terms of how organizations would procure critical medical supplies
such as N95 masks under demand unpredictability and competition. The findings
confirm that more supply points with sufficient supplies are needed to ensure that
organizations are not deprived of critical supplies due to competition. As a result of
this competition and limited local availability, in particular, in the case of supplies
such as masks and even coronavirus test kits, we are seeing several countries now
setting up local production sites [6].

6 Summary and Conclusions and Suggestions for Future
Research

Medical supplies are essential in the battle against the coronavirus that causes
Covid-19. The demand for medical supplies globally from PPEs to ventilators has
created an intense competition. PPEs are essential in protecting healthcare workers,
and it now has been recognized that masks can reduce the transmission of the novel
coronavirus. Ventilators, on the other hand, can be life saving for patients with
severe cases of Covid-19, and convalescent plasma has become a possible interim
treatment. With the pandemic, supply chains, including those for medical items,
have been disrupted adding to the intense competition for such supplies.

The Covid-19 pandemic is not limited to space or time, and, therefore, there have
been many shortages of medical items. In order to elucidate the competition for such



Competition for Medical Supplies Under Stochastic Demand in the Covid-19. . . 353

supplies in this pandemic, we developed a Generalized Nash Equilibrium model that
consists of multiple supply points for the medical items and multiple demand points
with the demand at the latter being stochastic. Using some recently introduced
machinery, we were able to provide alternative variational inequality formulations of
the equilibrium conditions. We then utilized the variational inequality with not only
medical item product flows as variables but also the Lagrange multipliers associated
with the supply capacities of the medical items at the supply point. We studied the
model both qualitatively and quantitatively—the latter through illustrative examples
that we were able to solve analytically as well as via numerical examples for
which we utilized an algorithm that we proposed. The algorithm, for which we
also provided convergence results, resolved the variational inequality problem into
a series of subproblems for which closed form expressions in the variables were
identified.

This work adds to the literature on game theory models for disaster relief with the
specific features of the Covid-19 pandemic. It can be applied to study the network
economics of a spectrum of medical items, both in the near term and in the longer
term, as when vaccines as well as medicines for Covid-19 become available. We
also highlight possible extensions of this work. For example, the model is amenable
to extension to multiple medical items. It would also be very interesting to have the
supplies be elastic, that is, as a function of price. We leave such research endeavors
for the future.
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Relative Strongly Exponentially Convex
Functions

Muhammad Aslam Noor, Khalida Inayat Noor, and Themistocles M. Rassias

Abstract In this paper, we define and consider some new concepts of the strongly
exponentially convex functions involving an arbitrary negative bifunction. Some
properties of these strongly exponentially convex functions are investigated under
suitable conditions. It is shown that the difference of strongly exponentially convex
functions and strongly exponentially affine functions is again an exponentially
convex function. Results obtained in this paper can be viewed as refinement and
improvement of previously known results

1 Introduction

Convexity theory has played a fundamental role in the development of various
mathematical and engineering sciences. This theory provides us a powerful tool to
tackle unrelated complicated problems in a unified and general framework. Convex
functions and convex sets have been generalized and extended in different directions
using novel and innovative ideas. This theory has applications in almost every field
and continues to stimulate research in every direction. Polyak [27] introduced the
strongly convex functions in the optimization theory, which inspired a great deal of
interest. Karmardian[14] used the strongly convex functions to discuss the unique
existence of a solution of the nonlinear complementarity problems. Zu and Marcotte
[30] used strongly convex functions in the convergence analysis of the iterative
methods for solving variational inequalities and equilibrium problems. Nikodem
and Pales [19] investigated the characterization of the inner product spaces using
the strongly convex functions, which can be viewed as a novel and innovative
application. It is also known that the minimum of the strongly convex functions
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is unique. Qu and Li [28] investigated the exponentially stability of primal-dual
gradient dynamics using the concept of strongly convex functions. Awan et al. [6–
9] and Noor et al. [24] have derived Hermite–Hadamard type inequalities for various
classes of strongly convex functions, which provide upper and lower estimates for
the integrand. For more applications and properties of the strongly convex functions,
cf. [1–4, 6–11, 14–20, 22–24, 27, 28, 30] and the references therein.

Closely related to the log-convex functions, we have the concept of exponentially
convex (concave) functions, and the origin of exponentially convex functions can
be traced back to Bernstein [11]. Avriel [5] introduced and studied the concept of
r-convex functions. For further properties of the r-convex functions, see Zhao et
al.[30] and the references therein. Antczak [4] also explored the application in the
mathematical programming and optimization. The exponentially convex functions
have important applications in information theory, big data analysis, machine
learning, and statistic (cf. [2, 4, 25]) and the references therein. Exponentially
convex(concave) functions can be considered as a significant extension of the
convex functions. Pal and Wong [25] have discussed its role in information geom-
etry and statistics. Antczak [4] introduced these exponentially convex functions
implicitly and discussed their role in mathematical programming. Alirazaie and
Mathur [2], Dragomir and Gomm [13], Noor et al. [20, 21], and Rashid et al. [29]
have derived Hermite–Hadamard type integral inequalities for these exponentially
convex functions. Noor and Noor [22] introduced and considered some new class
of strongly exponentially convex functions involving an arbitrary bifunction, where
several concepts of monotonicity were discussed.

Inspired by the work of Adamek [1], Nikodem et al. [19], and Noor et al.
[20, 22, 23], we introduce a new class of strongly exponentially convex functions
involving a exponentially bifunction, which is called the relative strongly expo-
nentially convex function. We establish the relationship between these classes and
derive some new results under some mild conditions. We have also investigated the
optimality conditions for the relative strongly exponentially convex functions. It is
shown that the minimum of the differentiable exponentially convex function can
be characterized by a class of variational inequalities, which is called exponential
variational inequality. It is shown that the difference of strongly exponentially con-
vex functions and strongly exponentially affine functions is again an exponentially
convex function. It is expected that relative strongly exponentially convex functions
can have similar applications in optimization theory and variational inequalities to
the ones that strongly convex functions have.

2 Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H . We denote by 〈·, ·〉 and
‖ · ‖ the inner product and norm, respectively. Let F : K → R be a continuous
function.

We now recall some well known and basic concepts and results, cf. [12, 18, 26].
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Definition 1 ([18]) The set K in H is said to be convex set, if

u+ t (v − u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

We now consider a class of exponentially convex functions.

Definition 2 A function F is said to be exponentially convex function, if

eF((1−t)a+tb) ≤ (1 − t)eF(a) + teF (b), ∀a, b ∈ K, t ∈ [0, 1]. (1)

Definition 2 can be stated in the following equivalent form, which is due to Antczak
[4].

Definition 3 A function F is said to be exponentially convex function, if

eF((1−t)a+tb) ≤ log[(1 − t)eF(a) + teF (b)], ∀a, b ∈ K, t ∈ [0, 1]. (2)

We would like to mention that the function f (x) = ex is not a convex function, but
it is an exponentially convex function.

We now define the exponentially convex functions on the interval I [a, b], which
is mainly due to Noor and Noor [21–23].

Definition 4 Let I = [a, b]. Then F is exponentially convex function, if and
only if,

∣∣∣∣∣∣
1 1 1
a x b

eF(a) eF(x) eF(b)

∣∣∣∣∣∣ ≥ 0; a ≤ x ≤ b.

One can easily show that the following are equivalent:

1. F is exponentially convex function.

2. eF(x) ≤ eF(a) + eF(b)−eF(a)

b−a
(x − a).

3. eF(x) ≤ b−x
b−a

eF(a) + x−a
b−a

eF(b).

4. eF(x)−eF(a)

x−a
≤ eF(b)−eF(a)

b−a
.

5. (b − x)eF(a) + (a − b)eF(x) + (x − a)eF(b)) ≥ 0.
6. eF(a)

(b−a)(a−x)
+ eF(x)

(x−b)(a−x)
+ eF(b

(b−a)(x−b)
≥ 0,

where

x = (1 − t)a + tb ∈ [0, 1].

Remark 1 If the exponentially convex function F is differentiable, then, from

eF(x) ≤ eF(a) + eF(b) − eF(a)

b − a
(x − a),
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we have

〈F ′(a)eF(a), b − a〉 ≤ eF(b) − eF(a),

where F ′(.) is the differential of the function F.

For the applications of the exponentially convex (concave) functions in the
mathematical programming and information theory, see Antczak [4] and Alirezaei
and Mathar[2].

We now introduce the concept of the strongly exponentially convex functions
involving an arbitrary bifunction, which is the main motivation of this paper.

Definition 5 The function F on the convex set K is said to be relative strongly
exponentially convex with respect to an arbitrary bifunction F(., .), if there exists a
constant μ > 0, such that

eF(u+t (v−u)) ≤ (1 − t)eF (u)+ teF (v)− μt(1 − t)eF (v,u), ∀u, v ∈ K, t ∈ [0, 1]. (3)

The function F is said to be relative strongly exponentially concave, if and only if,
−F is strongly exponentially convex.

If t = 1
2 and μ = 1, then

eF( u+v
2 ) ≤ eF (u)+ eF (v)

2
− 1

4
eF(v,u), ∀u, v ∈ K. (4)

The function F is called the relative strongly exponentially J -convex function.
We also introduce the concept of strongly exponentially affine convex functions.

Definition 6 The function F on the convex set K is said to be relative strongly
exponentially affine convex involving the arbitrary bifunction F(., .), if there exists
a constant μ > 0, such that

eF(u+t (v−u))=(1−t)eF(u)+teF (v)−μt(1 − t)eF(v,u), ∀u, v ∈ K, t ∈ [0, 1]. (5)

Also, we say that the function F is relative strongly exponentially affine J -convex
function, if

eF( u+v
2 ) = eF(u) + eF(v)

2
− 1

4
μeF(v,u), ∀u, v ∈ K. (6)

We now discuss some special cases of strongly exponentially convex functions.

I. If eF(v−u) = ‖v − u‖2, then

eF(u+t (v−u)) ≤ (1−t)eF(u)+teF (v)−μt(1−t)‖v−u‖2, ∀u, v ∈ K, t ∈ [0, 1],

which is called the strongly exponentially convex function introduced and
studied by Noor and Noor [23].
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II. If eF(v−u) = F(v, u), then

eF(u+t (v−u)) ≤ (1−t)eF (u)+teF (v)−μt(1−t)F (v−u), ∀u, v ∈ K, t ∈ [0, 1], (7)

which is known as strongly exponentially convex function involving the
bifunction F(v, u), see Noor and Noor [22].

For the properties of the strongly convex functions in optimization, Inequalities, and
equilibrium problems, cf. [1, 3–8, 10–22, 25–28, 30] and the references therein.

Definition 7 The function F on the convex set K is said to be relative strongly
exponentially quasi-convex involving the bifunction F(v, u), if there exists a
constant μ > 0 such that

eF(u+t (v−u)) ≤ max{eF(u), eF(v)} − μt(1 − t)eF(v,u), ∀u, v ∈ K, t ∈ [0, 1].

Definition 8 The function F on the convex set K is said to be relative strongly
exponentially log-convex with respect to an arbitrary bifunction F(v, u), if there
exist a constant μ > 0 such that

eF(u+t (v−u)) ≤ (eF(u))1−t (eF (v))t − μt(1 − t)eF(v,u), ∀u, v ∈ K, t ∈ [0, 1],
where F(·) > 0.

From this definition, we have

eF(u+t (v−u)) ≤ (eF(u))1−t (eF (v))t − μt(1 − t)eF(v,u),

= (1 − t)eF(u) + teF (v) − μt(1 − t)eF(v,u).

This shows that every strongly exponentially convex function is a strongly exponen-
tially convex function, but the converse is not true.

In fact, we have

eF(u+t (v−u)) ≤ (eF(u))1−t (eF (v))t − μt(1 − t)eF(v,u)

≤ (1 − t)eF(u) + teF (v) − μt(1 − t)eF(v,u)

≤ max{eF(u), eF(v)} − μt(1 − t)eF(v,u).

This shows that every strongly exponentially log-convex function is a strongly
exponentially convex function, and every strongly exponentially convex function is
a strongly exponentially quasi-convex function. However, the converse is not true.

Definition 9 A differentiable function F on the convex set K is said to be strongly
exponentially pseudo-convex function, if and only if there exists a constant μ > 0
such that

〈eF(u)F ′(u), v − u〉 + μeF(v,u) ≥ 0
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⇒
eF(v) − eF(u) ≥ 0, ∀u, v ∈ K.

We also need the following assumptions regarding the bifunction F(., .), which
plays a crucial role in the derivation of our results.
Condition N. Assume that the function F(., .) satisfies these assumptions:

eF(u,u+t (v−u)) = t2eF(v,u)

eF(v,u+t (v−u)) = (1 − t)2eF(v,u), ∀u, v ∈ K, t ∈ [0, 1].

Definition 10 An exponential function F is said to be homogeneous of degree 2, if

eF(λx) = λ2eF(x), ∀λ ∈ Rn.

3 Main Results

In this section, we consider some basic properties of generalized strongly convex
functions.

Theorem 1 Let F be a differentiable function on the convex set K and condition N
holds. Then the function F is relative strongly exponentially convex function, if and
only if,

eF(v) − eF(u) ≥ 〈eF(u)F ′(u), v − u〉 + μeF(v,u), ∀v, u ∈ K. (8)

Proof Let F be a relative strongly exponentially convex function on the convex set
K . Then

eF(u+t (v−u)) ≤ (1 − t)eF(u) + teF (v) − t (1 − t)μeF(v,u), ∀u, v ∈ K,

which can be written as

eF(v) − eF(u) ≥ {e
F(u+t (v−u)) − eF(u)

t
} + (1 − t)μeF(v,u).

Taking the limit in the above inequality as t → 0, we have

eF(v) − eF(u) ≥ 〈eF(u)F ′(u), v − u)〉 + μeF(v,u),

which is (8), the required result.
Conversely, let (8) hold. Then ∀u, v ∈ K, t ∈ [0, 1], vt = u + t (v − u) ∈ K,

and using condition N, we have
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eF(v) − eF(vt ) ≥ 〈eF(vt )F ′(vt ), v − vt )〉 + μeF(vt−u)

= (1 − t)〈eF(vt )F ′(vt ), v − u〉 + μ(1 − t)2eF(v,u). (9)

In a similar way, we have

eF(u) − eF(vt ) ≥ 〈eF(vt )F ′(vt ), u− vt )〉 + μeF(u−vt )

= −t〈eF(vt )F ′(vt ), v − u〉 + μt2eF(v,u). (10)

Multiplying (9) by t and (10) by (1 − t) and adding the resultant, we have

eF(u+t (v−u)) ≤ (1 − t)eF(u) + teF (v) − t (1 − t)μeF(v,u),

showing that F is a relative strongly exponentially convex function.  "
Theorem 2 Let F be a differentiable relative strongly exponentially convex func-
tion and condition N holds. Then, (8) holds, if and only if,

〈eF(u)F ′(u)− eF(v)F ′(v), u− v〉 ≥ 2μeF(v,u), ∀u, v ∈ K. (11)

Proof Let F be a relative strongly exponentially convex function on the convex set
K. Then, from Theorem 3.1, we have

eF(v) − eF(u) ≥ 〈eF(u)F ′(u), v − u〉 + μeF(v,u), ∀u, v ∈ K. (12)

Changing the role of u and v in (12), we have

eF(u) − eF(v) ≥ 〈eF(v)F ′(v), u− v)〉 + μeF(v,u), ∀u, v ∈ K. (13)

Adding (12) and (13), we have

〈eF(u)F ′(u)− eF(v)F ′(v), u− v〉 ≥ 2μeF(v,u),

the required (11).
Conversely, let F ′ satisfy (11). Then, from (17), we have

〈eF(v)F ′(v), u− v〉 ≤ 〈eF(u)F ′(u), u− v)〉 − 2μeF(v,u). (14)

Since K is a convex set, ∀u, v ∈ K , t ∈ [0, 1], vt = u+ t (v − u) ∈ K.

Taking v = vt in (14) and using condition N, we have

〈eF(vt )F ′(vt ), u− vt 〉 ≤ 〈eF(u)F ′(u), u− vt 〉 − 2μeF(u,vt )

= −t〈eF(u)F ′(u), v − u〉 − 2t2μeF(v,u),

which implies that
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〈eF(vt )F ′(vt ), v − u〉 ≥ 〈eF(u)F ′(u), v − u〉 + 2tμeF(v,u). (15)

Consider the auxiliary function

g(t) = eF(u+t (v−u)),

from which, we have

g(1) = eF(v), g(0) = eF(u).

Then, from (15), we have

g′(t) = 〈eF(vt )F ′(vt , v − u〉
≥ 〈eF(u)F ′(u), v − u〉 + 2μteF(v,u). (16)

Integrating (16) between 0 and 1, we have

g(1)− g(0) =
∫ 1

0
g′(t)dt ≥ 〈eF(u)F ′(u), v − u〉 + μeF(v,u).

Thus, it follows that

eF(v) − eF(u) ≥ 〈eF(u)F ′(u), v − u〉 + μeF(v,u),

which is (8) as required.  "
Theorems 1 and 2 enable us to introduce the following new concepts.

Definition 11 The differential F ′(.) of the strongly exponentially convex functions
is said to be relative strongly exponentially monotone, if

〈eF(u)F ′(u)− eF(v)F ′(v), u− v〉 ≥ μeF(v,u),∀u, v ∈ H.

Definition 12 The differential F ′(.) of the exponentially convex functions is said
to be exponentially monotone, if

〈eF(u)F ′(u)− eF(v)F ′(v), u− v〉 ≥ 0,∀u, v ∈ H.

Definition 13 The differential F ′(.) of the relative strongly exponentially convex
functions is said to be relative strongly exponentially pseudomonotone, if

〈eF(u)F ′(u), v − u〉 ≥ 0

implies that
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〈eF(v)F ′(v), v − u〉 ≥ μeF(v,u), ∀u, v ∈ H. (17)

We now give a necessary condition for the relative strongly exponentially pseudo-
convex function.

Theorem 3 Let F ′ be a relative strongly exponentially pseudomonotone and con-
dition N holds. Then, F is a relative strongly exponentially pseudo-invex function.

Proof Let F ′ be a relative strongly exponentially pseudomonotone operator. Then,
∀u, v ∈ K,

〈eF(u)F ′(u), v − u〉 ≥ 0

implies that

〈eF(v)F ′(v), v − u〉 ≥ μeF(v,u). (18)

Since K is a convex set, ∀u, v ∈ K, t ∈ [0, 1], vt = u+ t (v − u) ∈ K.

Taking v = vt in (18) and using condition N, we have

〈eF(vt )F ′(vt ), v − u〉 ≥ tμeF(v,u). (19)

Consider the auxiliary function

g(t) = eF(u+t (v−u)) = eF(vt ), ∀u, v ∈ K, t ∈ [0, 1],

which is differentiable, since F is a differentiable function. Then, using (19), we
have

g′(t) = 〈eF(vt )F ′(vt ), v − u)〉 ≥ tμeF(v,u).

Integrating the above relation between 0 and 1, we have

g(1)− g(0) =
∫ 1

0
g′(t)dt ≥ μ

2
eF(v,u),

that is,

eF(v) − eF(u) ≥ μ

2
eF(v,u),

showing that F is a relative strongly exponentially pseudo-convex function.  "
Definition 14 The function F is said to be sharply relative strongly exponentially
pseudo- convex, if there exists a constant μ > 0, such that

〈eF(u)F ′(u), v − u〉 ≥ 0
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⇒
F(v) ≥ eF(v+t (u−v)) + μt(1 − t)eF(v,u) ∀u, v ∈ K, t ∈ [0, 1].

Theorem 4 Let F be a sharply relative strongly exponentially pseudo-convex
function on K with a constant μ > 0. Then

〈eF(v)F ′(v), v − u〉 ≥ μeF(v,u) ∀u, v ∈ K.

Proof Let F be a sharply relative strongly exponentially pseudo-convex function.
Then

eF(v) ≥ eF(v+t (u−v)) + μt(1 − t)eF(v,u), ∀u, v ∈ K, t ∈ [0, 1],

from which, we have

{e
F(v+t (u−v)) − eF(v)

t
} + μt(1 − t)eF(v,u) ≤ 0.

Taking the limit in the above inequality, as t → 0, we have

〈eF(v)F ′(v), v − u〉 ≥ μeF(v,u),

which is the required result.  "
We now discuss the optimality condition for the differentiable relative strongly

exponentially convex functions, which is the main motivation of our next result.

Theorem 5 Let F be a differentiable relative strongly exponentially convex
function with modulus μ > 0. If u ∈ K is the minimum of the function F, then

eF(v) − eF(u) ≥ μeF(v,u), ∀u, v ∈ K. (20)

Proof Let u ∈ K be a minimum of the function F. Then

F(u) ≤ F(v),∀v ∈ K,

from which, we have

eF(u) ≤ eF(v),∀v ∈ K. (21)

Since K is a convex set, so, ∀u, v ∈ K, t ∈ [0, 1],

vt = (1 − t)u+ tv ∈ K.

Taking v = vt in (21), we have
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0 ≤ lim
t→0

{e
F(u+t (v−u)) − eF(u)

t
} = 〈eF(u)F ′(u), v − u〉. (22)

Since F is a differentiable relative strongly exponentially convex function, so

eF(u+t (v−u)) ≤ eF(u) + t (eF(v) − eF(u))

−μt(1 − t)eF(v,u), u, v ∈ K, t ∈ [0, 1],

from which, using (22), we have

eF(v) − eF(u) ≥ lim
t→0

{e
F(u+t (v−u)) − eF(u)

t
} + μeF(v,u).

= 〈eF(u)F ′(u), v − u〉 + μeF(v,u)

≥ μeF(v,u),

the required result (20).  "
Remark 2 We would like to mention that, if

〈eF(u)F ′(u), v − u〉 + μeF(v,u) ≥ 0, ∀u, v ∈ K,

then u ∈ K is the minimum of the function F.

We would like to emphasize that the minimum u ∈ K of the exponentially convex
functions can be characterized by the inequality

〈eF(u)F ′(u), v − u〉 ≥ 0,∀v ∈ K, (23)

which is called the exponential variational inequality and appears to be a new one. It
is an interesting problem to study the existence of a unique solution of the inequality
(23) and its applications.

Definition 15 A function F is said to be an exponentially pseudo-convex function,
if there exists a strictly positive bifunction b(., .), such that

eF(v) < eF(u)

⇒
eF(u+t (v−u)) < eF(u) + t (t − 1)b(v, u),∀u, v ∈ K, t ∈ [0, 1].

Theorem 6 If the function F is an exponentially convex function such that eF(v) <

eF(u), then F is a relative strongly exponentially pseudo-convex function.

Proof Since eF(v) < eF(u) and F is a relative strongly exponentially convex
function, so ∀u, v ∈ K, t ∈ [0, 1], we have
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eF(u+t (v−u)) ≤ eF(u) + t (eF(v) − eF(u))− μt(1 − t)eF(v,u)

< eF(u) + t (1 − t)(eF(v) − eF(u))− μt(1 − t)eF(v,u)

= eF(u) + t (t − 1)(eF(u) − eF(v))− μt(1 − t)eF(v,u)

< eF(u) + t (t − 1)b(u, v)− μt(1 − t)eF(v,u),

where b(u, v) = eF(u)−eF(v) > 0, the required result. This shows that the function
F is the relative strongly exponentially convex function.  "
It is well known that each strongly convex function is of the form f ± ‖.‖2, where
f is a convex function. A similar result is proved for relative strongly exponentially
convex functions. In this direction, we have:

Theorem 7 Let f be a relative strongly exponentially affine function. Then F is
a relative strongly exponentially convex function, if and only if, g = F − f is an
exponentially convex function.

Proof Let f be a relative strongly exponentially affine function. Then

ef ((1−t)u+tv) = (1 − t)ef (u) + tef (v) − μt(1 − t)eF(v,u). (24)

From the relative strongly exponentially convexity of F, we have

eF((1−t)u+tv) ≤ (1 − t)eF(u) + teF (v) − μt(1 − t)eF(v,u). (25)

From (24 ) and (25), we have

eF((1−t)u+tv) − ef ((1−t)u+tv) ≤ (1 − t)(eF(u) − ef (u))+ t (eF(v) − ef (v)), (26)

from which, it follows that

eg((1−t)u+tv) = eF((1−t)u+tv)) − ef ((1−t)u+tv)

≤ (1 − t)(eF(u) − ef (u))+ t (eF(v) − ef (v)),

which shows that g = F − f is an exponentially convex function.
The inverse implication is obvious.  "
We would like to remark that one can show that a function F is a relative strongly
exponentially convex function, if and only if, F is a relative strongly exponentially
affine function essentially using the technique of Adamek [1] and Noor et al. [17].

We would like to note that the relative strongly exponentially convex function is
also a Wright strongly convex function. From Definition 5, we have

eF((1−t)u+tv) + eF(tu+(1−t)v) ≤ 1

2
{eF (u)+ eF (v)} − 2μt(1 − t)eF(v,u),∀u, v ∈ K, t ∈ [0, 1],
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which is called the relative Wright strongly exponentially convex function. It is an
interesting problem to study the properties and applications of the relative Wright
strongly exponentially convex functions.

Definition 16 For a given function F, we consider the exponentially quadratic
equation:

eF(x+y) + eF(y−x) = 2eF(x) + 2eF(y), ∀x, y ∈ Rn. (27)

We now prove the equivalence between the strongly exponentially J -convex
functions and the exponentially quadratic equations.

Theorem 8 Let F be a even and exponentially homogeneous function of degree 2.
Then the function F is a strongly exponentially J -convex function, that is

eF( u+v
2 ) ≤ 1

2
[eFu) + eF(v)] − 1

4
eF(v−u),∀u, v ∈ Rn,

if and only if, F is an exponentially quadratic equation (27).

Proof Let F be a strongly exponentially J -convex function. Then

eF( u+v
2 ) ≤ eF (u)+ eF (v)

2
− 1

4
eF(v−u), ∀u, v ∈ Rn,

from which, it follows that

eF(u+v) + eF(v−u) ≤ 2eF(u) + 2eF(v), ∀u, v ∈ Rn, (28)

where we have used the fact that F is a exponentially homogenous function of
degree 2.

Taking u+v = w, v−u = z, in (28) and using the fact that F is exponentially
homogeneous, we have

2eF(w) + 2eF(z) ≤ eF(w+z) + eF(w−x), ∀w, z ∈ Rn. (29)

From the inequalities (28) and (29), we have

eF(u+v) + eF(v−u) = 2eF(u) + 2eF(v), ∀u, v ∈ Rn,

which is the exponentially quadratic equation (27).
Converse is obvious.  "

Remark 3 If F(u) = ‖u‖2, then the exponentially quadratic equations (27)
reduce to

e‖u+v‖2 + e‖v−u||2 = 2e‖u||2 + 2e‖v‖2
, ∀u, v ∈ Rn,
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which is called the exponentially parallelogram law. This means that the space Rn

is an exponentially inner product space, see Nikodem and Pales [19].

4 Conclusion

In this paper, we have introduced and studied a new class of exponentially convex
functions involving an arbitrary bifunction, which is called the relative strongly
exponentially convex function. We have studied the basic properties of these
functions. Several new and interesting results have been obtained. It is shown that
the optimality conditions of the differentiable relative strongly exponentially convex
functions can be characterized by a class of variational inequalities, which are called
exponentially variational inequalities. The qualitative study of the exponentially
variational inequalities is an interesting problem for future research. It is expected
that the ideas and techniques of this paper may motivate further research.
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Properties of Exponentially m-Convex
Functions

Muhammad Aslam Noor and Khalida Inayat Noor

Abstract In this paper, we define and introduce some new concepts of the
exponentially m-convex functions involving a fixed constant m ∈ (0, 1]. We
investigate several properties of the exponentially m-convex functions and discuss
their relations with convex functions. Optimality conditions are characterized by
a class of variational inequalities. Several interesting results characterizing the
exponentially m-convex functions are obtained. Results obtained in this paper can
be viewed as significant improvement of previously known results.

1 Introduction

Convexity theory describes a broad spectrum of very interesting developments
involving a link among various fields of mathematics, physics, economics, and
engineering sciences. Some of these developments have made mutually enriching
contacts with other fields. This theory provides us several new and powerful
techniques to solve a wide class of linear and nonlinear problems. It reveals the
fundamental facts on the qualitative behavior of solutions regarding its existence,
uniqueness, and regularity to important classes of problems. Convexity also enabled
us to develop highly efficient and powerful new numerical methods to solve
nonlinear problems, see [1–9, 11–18, 23]. In recent years, various extensions and
generalizations of convex functions and convex sets have been considered and
studied using innovative ideas and techniques. It is known that more accurate
inequalities can be obtained using the logarithmically convex functions than the
convex functions. Closely related to the log-convex functions, we have the concept
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of exponentially convex(concave) functions, and the origin of exponentially convex
functions can be traced back to Bernstein [6]. Avriel [4] introduced and studied the
concept of r-convex functions, where as the (r, p)-convex functions were studied
by Antczak [3]. For further properties of the r-convex functions, see Zhao et al.
[25] and the references therein. Exponentially convex functions have important
applications in information theory, big data analysis, machine learning, and statistic.
See [1, 2, 20, 21, 24, 25] and the references therein. Motivated and inspired by the
ongoing research in this interesting, applicable, and dynamic field, Noor and Noor
[13–15] considered the concept of exponentially convex functions and discussed
the basic properties of the exponentially convex functions. It is worth mentioning
that these exponentially convex functions[13–15] are distinctly different from the
exponentially convex functions considered and studied by Berstein [6], Awan
et al.[5], and Pecaric et al.[19, 21]. For example, the definition of exponential
convexity in Noor and Noor [13–15] is quite different from Bernstein’s since,
for example, F(x)= log x is exponentially convex in Noor’s sense but not in
Bernstein’s since it is not convex. The sum of two exponentially convex functions
may not be exponentially convex functions. For example, functions log x and −x

are exponentially convex on (0, 2), but their sum log x − x is not.
Toader[25] introduced the concept of m-convex sets and m-convex functions,

which inspired a great deal of research activities. The m-convex functions unify the
convex functions and starlike convex functions. For the properties, generalizations,
applications, and other aspects of m-convex functions, see [18].

We would like to mention that the concepts of exponentially convex functions
and m-convex are two different generalizations of the convex functions. Motivated
by this fact, we introduce a new class of convex functions involving a mixed constant
m ∈ (0.1], which is called the exponentially m-convex functions. We have shown
that the exponentially m-convex(m-concave) functions have nice properties which
convex functions enjoy. Several new concepts have been introduced and investi-
gated. We show that the local minimum of the exponentially m-convex functions
is the global minimum. The optimal conditions of the differentiable exponentially
convex functions can be characterized by a class of variational inequalities, which
is itself an interesting outcome of our main results. The difference (sum) of the
exponentially convex function and exponentially affine convex function is again
an exponentially convex function. The ideas and techniques of this paper may be
starting point for further research in these areas.

2 Preliminary Results

Let K be a non-empty closed set in a real inner product space H . We denote by 〈·, ·〉
and ‖ · ‖ the inner product and norm, respectively. Let F : K → H be a continuous
function. We denote by m ∈ (0, 1], unless otherwise specified.
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Definition 1 ([24]) The set K in H is said to be m-convex set, if

(1 − t)u+ tmv ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

We now introduce new concepts of m-convex functions and exponentially m-convex
functions.

Definition 2 A function F is said to be m-convex function, if

F((1 − t)u+ tmv) ≤ (1 − t)F (u)+ tF (mv), ∀u, v ∈ K, t ∈ [0, 1]. (1)

Definition 3 A function F is said to be exponentially m-convex function, if

eF((1−t)u+tmv) ≤ (1 − t)eF(u) + teF (mv), ∀u, v ∈ K, t ∈ [0, 1]. (2)

We remark that Definition 3 can be rewritten in the following equivalent form.

Definition 4 A function F is said to be exponentially m-convex function, if

eF((1−t)u+tmv) ≤ log[(1 − t)eF(u) + teF (mv)], ∀u, v ∈ K, t ∈ [0, 1]. (3)

A function is called the exponentially m-concave function f , if −f is an expo-
nentially m-convex function. It is obvious that theses two concepts are equivalent.
These equivalent formulations have been used to discuss various aspects of the
exponentially convex functions.

For m = 1, we obtain the classes of exponentially convex functions investigated
by Antczak[3]. It is worth mentioning that one can also deduce the concept of
exponentially convex functions introduced by Bernstein[6] and Avriel [4] from
Antczak [3]. For the applications of the exponentially convex functions in the
mathematical programming and information theory, see Antczak [3], Alirezaei and
Mathar[2], and Pal et al. [17]. For the applications of the exponentially concave
function in the communication and information theory, we have the following
example.
Example [2]: The error function

erf (x) = 2√
π

∫ x

0
e−t2

dt

becomes an exponentially concave function in the form erf (
√
x), x ≥ 0, which

describes the bit/symbol error probability of communication systems depending
on the square root of the underlying signal-to-noise ratio. This shows that the
exponentially concave functions can play important part in communication theory
and information theory.

Definition 5 ([2]) A function F is said to be exponentially affine m-convex
function, if
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eF((1−t)u+tmv) = (1 − t)eF(u) + teF (mv), ∀u, v ∈ K, t ∈ [0, 1].

Definition 6 The function F on the convex set K is said to be exponentially quasi
m-convex, if

eF(u+t (mv−u)) ≤ max{eF(u), eF(mv)}, ∀u, v ∈ K, t ∈ [0, 1].

Definition 7 The function F on the convex set K is said to be exponentially log
m-convex, if

eF(u+t (mv−u)) ≤ (eF u))1−t (eF v))t , ∀u, v ∈ K, t ∈ [0, 1].

From the above definitions, we have

eF(u+t (mv−u)) ≤ (eF u))1−t (eF v))t

≤ (1 − t)eF(u) + teF (mv))

≤ max{eF(u), eF(mv)}.

This shows that
every exponentially log m-convex function
⇒ exponentially m-convex function ⇒ exponentially m-convex

function.
However, the converse is not true.

Let K = I = [a,mb] be the interval. We now define the exponentially convex
functions on I .

Definition 8 Let I = [a,mb]. Then, F is an exponentially m-convex function, if
and only if,

∣∣∣∣∣∣
1 1 1
a x mb

eF(a) eF(x) eF(mb)

∣∣∣∣∣∣ ≥ 0; a ≤ x ≤ b.

One can easily show that the following are equivalent:

1. F is an exponentially convex function.

2. eF(x) ≤ eF(a) + eF(mb)−eF(a)

mb−a
(x − a).

3. eF(x)−eF(a)

x−a
≤ eF(mb)−eF(a)

mb−a
.

4. (mb − x)eF(a) + (a −mb)eF(x) + (x − a)eF(mb)) ≥ 0.
5.

F(a)

(mb−a)(a−x)
+ eF(x)

(x−mb)(a−x)
+ eF(mb

(mb−a)(x−mb)
≤ 0,

where x = (1 − t)a + tmb ∈ [a,mb].
If F is a differentiable exponentially m-convex function, then
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eF(mv) − eF(u) ≥ 〈eF(u)F ′(u),mv − u〉, ∀u,mv ∈ [a,mb].

We would like to point that the exponentially m-convex is also Wright strongly
m-convex functions. From the definition of exponentially m-convex functions, we
have

eF((1−t)u+tmv) + eF(tu+(1−t)mv) ≤ {eF (u)+ eF (mv)},∀u, v ∈ K, t ∈ [0, 1],

which is called the Wright exponentially m-convex function. It is an interesting
problem to study the properties and applications of the Wright exponentially convex
functions.

Using the technique of Toader[24], Rashid et al. [22] introduced the following
concept of exponentially m-convex functions:

Definition 9 ([22]) A function F is said to be an exponentially m-convex function
in the Toader’s sense, if

eF((1−t)u+tmv) ≤ (1 − t)eF(u) +mteF(v), ∀u, v ∈ K, t ∈ [0, 1]. (4)

We remark that Definition 9 can be rewritten in the following equivalent form.

Definition 10 ([22]) A function F is said to be an exponentially m-convex function
in the Toader’s sense, if

eF((1−t)u+tmv) ≤ log[(1 − t)eF(u) + tmeF(v)], ∀u, v ∈ K, t ∈ [0, 1]. (5)

We would like to point out that these two concepts defined in Definitions 3 and
9 are equivalent, if the function eF(mv) = meF(v), that is, the function F is
exponentially homogeneous. Consequently, all the results proved in this paper can
be extended for the exponentially m-convex functions in the Toader’s sense with
suitable modifications.

3 Main Results

In this section, we consider some basic properties of generalized strongly convex
functions.

Theorem 1 Let I = [a, b] ⊂ R be an interval containing zero, and let m ∈ (0, ] be
a constant. Let a, b, c ∈ I be points such that a ≤ mc ≤ b. Then, the exponentially
m-convex function satisfies the inequality

∫ b

a

eF(x)dx ≤ mc − a

2
eF(a) + b −mc

2
eF(b) + b − a

2
eF(mc). (6)
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Proof Assume that a ≤ x ≤ mc. Then, from (4), we have

∫ mc

a

eF(x)dx ≤
∫ mc

a

mc − x

mc − a
eF(a)dx +

∫ mc

a

x − a

mc − a
eF(mc)dx

= mc − a

2

(
f (a)+ f (mc)

)
. (7)

In a similar way, for mc ≤ x ≤ b, we have

∫ b

mc

eF(x)dx ≤
∫ b

mc

mc − x

mc − a
eF(mc)dx +

∫ b

mc

x − a

mc − a
eF(b)dx

= mc − a

2

(
F(b)+ F(mc)

)
. (8)

From (7 ) and (8), we have

∫ b

a

eF(x)dx =
∫ mc

a

eF(x)dx +
∫ b

mc

eF(x)dx

= mc − a

2

(
F(a)+ F(mc)

)+ mc − a

2

(
F(b)+ F(mc)

)

= mc − a

mc − a
eF(a) + b −mc

2
eF(b) + b − a

2
eF(mc),

the required (6).

Remark 1 For the interval I = a, b] containing zero, one can choose a point c ∈
[a, b] in (6), since mc ∈ [a, b]. Using this information, we can obtain the following
inequality for the exponentially m-convex functions for the case c = a or b = c.

∫ b

a

eF(x)dx ≤ mb − a

2
eF(a) + b −ma

2
eF(b),

from which, we can have

∫ b

a

eF(x)dx ≤ b − a

2
{eF(a) + eF(b)}.

Theorem 2 Let F be a strictly exponentially m-convex function. Then, any local
minimum of F is a global minimum.

Proof Let the exponentially convex function F have a local minimum at u ∈ K.

Assume the contrary, that is, F(mv) < F(u) for some mv ∈ K. Since F is
exponentially convex, then

eF(u+t (mv−u)) < teF(mv) + (1 − t)eF(u), for 0 < t < 1.
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Thus,

eF(u+t (mv−u)) − eF(u) < t[eF(mv) − eF(u)] < 0,

from which it follows that

eF(u+t (mv−u)) < eF(u),

for arbitrary small t > 0, contradicting the local minimum.

Theorem 3 If the function F on the m-convex set K is exponentially m-convex,
then the level set Lα = {u ∈ K : eF(u) ≤ α, α ∈ R} is a m-convex set.

Proof Let u,mv ∈ Lα. Then, eF(u) ≤ α and eF(mv) ≤ α. Now, ∀t ∈ (0, 1), w =
u + t (mv − u) ∈ K, since K is a m-convex set. Thus, by the exponentially m-
convexity of F, we have

Fe(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv)

≤ (1 − t)α + tα = α,

from which it follows that u+ t (mv − u) ∈ Lα . Hence, Lα is a m-convex set.

Theorem 4 The function F is exponentially m-convex, if and only if,

epi(F ) = {(u, α) : u ∈ K : eF(u) ≤ α, α ∈ R}

is a m-convex set.

Proof Assume that F is exponentially convex. Let (u, α), (mv, β) ∈ epi(F ).

Then, it follows that eF(u) ≤ α and eF(mv) ≤ β. Thus, ∀t ∈ [0, 1], u,mv ∈ K,

we have

eF(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv)

≤ (1 − t)α + tβ,

which implies that

(u+ t (mv − u), (1 − t)α + tβ) ∈ epi(F ).

Thus, epi(F ) is a m-convex set. Conversely, let epi(F ) be a convex set. Let u,mv ∈
K. Then, (u, eF(u)) ∈ epi(F ) and (mv, eF(mv)) ∈ epi(F ). Since epi(F ) is a m-
convex set, we must have

(u+ t (mv − u), (1 − t)eF(u) + teF (mv)) ∈ epi(F ),
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which implies that

eF(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv).

This shows that F is an exponentially m-convex function.

Theorem 5 The function F is exponentially quasi m-convex, if and only if, the level
set Lα = {u ∈ K,α ∈ R : eF(u) ≤ α} is a m-convex set.

Proof Let u,mv ∈ Lα. Then, u,mv ∈ K and max(eF(u), eF(mv)) ≤ α. Now, for
t ∈ (0, 1), w = u + t (mv − u) ∈ K, we have to prove that u + t (mv − u) ∈ Lα.

By the exponentially quasi m-convexity of F, we have

eF(u+t (mv−u)) ≤ max (eF(u), eF(mv)) ≤ α,

which implies that u + t (mv − u) ∈ Lα, showing that the level set Lα is indeed a
m-convex set.

Conversely, assume that Lα is a m-convex set. Then, for any u,mv ∈ Lα, t ∈
[0, 1], u+ t (mv − u) ∈ Lα. Let u,mv ∈ Lα for

α = max(eF(u), eF(mv)) and eF(mv) ≤ eF(u).

Then, from the definition of the level set Lα , it follows that

eF(u+t (mv−u)) ≤ max (eF(u), eF(mv)) ≤ α.

Thus, F is an exponentially quasi m-convex function. This completes the proof.

Theorem 6 Let F be an exponentially m-convex function. Let μ = infu∈K F(u).
Then, the set E = {u ∈ K : eF(u) = μ} is a m-convex set of K. If F is strictly
exponentially m-convex, then E is a singleton.

Proof Let u,mv ∈ E. For 0 < t < 1, let w = u + t (mv − u). Since F is an
exponentially m-convex function, then

F(w) = eF(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv)

= tμ+ (1 − t)μ = μ,

which implies that w ∈ E, and hence E is a m-convex set. For the second part,
assume to the contrary that F(u) = F(mv) = μ. Since K is a m-convex set, then
for 0 < t < 1, u + t (mv − u) ∈ K. Furthermore, since F is strictly exponentially
m-convex,

eF(u+t (mv−u)) < (1 − t)eF(u) + teF (mv)

= (1 − t)μ+ tμ = μ.
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This contradicts the fact that μ = infu∈K F(u), and hence the result follows.

Theorem 7 If F is an exponentially m-convex function such that
eF(mv) < eF(u),∀u,mv ∈ K, then F is a strictly exponentially quasi m-convex

function.

Proof By the exponentially m-convexity of the function F ,
∀u,mv ∈ K,m, t ∈ [0, 1], we have

eF(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv) < eF (u),

since eF(mv) < eF(u), which shows that the function F is strictly exponentially
quasi m-convex.

We now discuss some properties of the differentiable exponentially m-convex
functions.

Theorem 8 Let F be a differentiable function on the m-convex set K. Then, the
function F is an exponentially m-convex function, if and only if,

eF(mv) − eF(u) ≥ 〈eF(u)F ′(u),mv − u〉, ∀mv, u ∈ K. (9)

Proof Let F be an exponentially m-convex function. Then,

eF(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv), ∀u,mv ∈ K,

which can be written as

eF(mv) − eF(u) ≥ {e
F(u+t (mv−u)) − eF(u)

t
}.

Taking the limit in the above inequality as t → 0, we have

eF(mv) − eF(u) ≥ 〈eF(u)F ′(u),mv − u)〉,

which is (9), the required result.
Conversely, let (9) hold. Then,
∀u,mv ∈ K, t ∈ [0, 1], vt = u+ t (mv − u) ∈ K, we have

eF(mv) − eF(vt ) ≥ 〈eF(vt )F ′(vt ),mv − vt )〉
= (1 − t)〈eF(vt )F ′(vt ),mv − u〉. (10)

In a similar way, we have

eF(u) − eF(vt ) ≥ 〈eF(vt )F ′(vt ), u− vt )〉
= −t〈eF(vt )F ′(vt ),mv − u〉. (11)
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Multiplying (10) by t and (11) by (1 − t) and adding the resultant, we have

eF(u+t (mv−u)) ≤ (1 − t)eF(u) + teF (mv),

showing that F is an exponentially m-convex function.

Remark 2 From (9), we have

eF(mv)−F(u) − 1 ≥ 〈F ′(u),mv − u〉, ∀mv, u ∈ K,

which can be written as

F(mv)− F(u) ≥ log{1 + 〈F ′(u),mv − u〉} ∀mv, u ∈ K. (12)

Changing the role of u and mv in (12), we also have

F(u)− F(mv) ≥ log{1 + 〈F ′(mv), u−mv〉} ∀v, u ∈ K. (13)

Adding (12) and (13), we have

〈F ′(u)− F ′(mv), u−mv〉 ≥ (〈F ′(u)u−mv〉)(〈F ′(mv), u−mv〉),

which expresses the monotonicity of the differential F ′(.) of the exponentially m-
convex function.

Theorem 8 enables us to introduce the concept of the exponentially m-monotone
operators, which appears to be new ones.

Definition 11 The differential F ′(.) is said to be exponentially m-monotone, if

〈eF(u)F ′(u)− eF(mv)F ′(mv), u−mv〉 ≥ 0, ∀u,mv ∈ H.

Definition 12 The differential F ′(.) is said to be exponentially pseudo m-
monotone, if

〈eF(u)F ′(u),mv − u〉 ≥ 0, ⇒ 〈eF(mv)F ′(mv),mv − u〉 ≥ 0, ∀u,mv ∈ H.

From these definitions, it follows that exponentially monotonicity implies exponen-
tially pseudo m-monotonicity, but the converse is not true.

Theorem 9 Let F be differentiable on the m-convex set K . Then, (9) holds, if and
only if, F ′(.) satisfies

〈eF(u)F ′(u)− eF(mv)F ′(mv), u−mv〉 ≥ 0, ∀u,mv ∈ K. (14)

Proof Let F be an exponentially convex function on the m-convex set K. Then,
from Theorem 3.1, we have



Exponentially m-Convex Functions 383

eF(mv) − eF(u) ≥ 〈eF(u)F ′(u),mv − u〉, ∀u,mv ∈ K. (15)

Changing the role of u and mv in (15), we have

eF(u) − eF(mv) ≥ 〈eF(mv)F ′(mv), u−mv)〉, ∀u,mv ∈ K. (16)

Adding (15) and (16), we have

〈eF(u)F ′(u)− eF(mv)F ′(mv), u−mv〉 ≥ 0,

which shows that F ′ is exponentially monotone.
Conversely, from (14), we have

〈eF(mv)F ′(mv), u−mv〉 ≤ 〈eF(u)F ′(u), u−mv)〉. (17)

Since K is a m-convex set, ∀u,mv ∈ K, t ∈ [0, 1] vt = u+ t (mv − u) ∈ K.

Taking v = vt in (17), we have

〈eF(vt )F ′(vt ), u− vt 〉 ≤ 〈eF(u)F ′(u), u− vt 〉
= −t〈eF(u)F ′(u),mv − u〉,

which implies that

〈eF(vt )F ′(vt ),mv − u〉 ≥ 〈eF(u)F ′(u), v − u〉. (18)

Consider the auxiliary function

g(t) = eF(u+t (mv−u)),

from which, we have

g(1) = eF(mv), g(0) = eF(u).

Then, from (18), we have

g′(t) = 〈eF(vt )F ′(vt ,mv − u〉 ≥ 〈eF(u)F ′(u),mv − u〉. (19)

Integrating (19) between 0 and 1, we have

g(1)− g(0) =
∫ 1

0
g′(t)dt ≥ 〈eF(u)F ′(u),mv − u〉.
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Thus, it follows that

eF(mv) − eF(u) ≥ 〈eF(u)F ′(u),mv − u〉,

which is the required (9).

We now give a necessary condition for exponentially pseudo m-convex functions.

Theorem 10 Let F ′ be exponentially pseudo m-monotone. Then, F is an exponen-
tially pseudo m-convex function.

Proof Let F ′(.) be an exponentially pseudo m-monotone function. Then,
∀u,mv ∈ K,

〈eF(u)F ′(u),mv − u〉 ≥ 0.

implies that

〈eF(mv)F ′(mv),mv − u〉 ≥ 0. (20)

Since K is a m-convex set, ∀u,mv ∈ K, t ∈ [0, 1], vt = u+ t (mv − u) ∈ K.

Taking v = vt in (20), we have

〈eF(vt )F ′(vt ),mv − u〉 ≥ 0. (21)

Consider the auxiliary function

g(t) = eF(u+t (mv−u)) = eF(vt ), ∀u,mv ∈ K, t ∈ [0, 1],

which is differentiable, since F is a differentiable function. Then, using (21), we
have

g′(t) = 〈eF(vt )F ′(vt ),mv − u)〉 ≥ 0.

Integrating the above relation between 0 and 1, we have

g(1)− g(0) =
∫ 1

0
g′(t)dt ≥ 0,

that is,

eF(mv) − eF(u) ≥ 0,

showing that F is an exponentially pseudo m-convex function.

Definition 13 The function F is said to be sharply exponentially pseudo m-convex,
if there exists a constant μ > 0 such that
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〈eF(u)F ′(u),mv − u〉 ≥ 0

⇒
eF(mv) ≥ eF(u+t (mv−u)), ∀u,mv ∈ K, t ∈ [0, 1].

Theorem 11 Let F be a sharply exponentially pseudo m-convex function on K.

Then,

〈eF(mv)F ′(mv),mv − u〉 ≥ 0, ∀u,mv ∈ K.

Proof Let F be a sharply exponentially pseudo m-convex function on K . Then,

eF(mv) ≥ eF(u+t (mv−u)), ∀u,mv ∈ K, t ∈ [0, 1],

from which, we have

0 ≤ lim
t→0

{e
F(u+t (mv−u)) − eF(mv)

t
}

= 〈eF(mv)F ′(mv),mv − u〉,

the required result.

Definition 14 A function F is said to be a pseudo m-convex function, if there exists
a strictly positive bifunction b(., .), such that

eF(mv) < eF(u)

⇒
eF(u+t (mv−u)) < eF(u) + t (t − 1)b(mv, u),∀u,mv ∈ K, t ∈ [0, 1].

Theorem 12 If the function F is exponentially convex function such that eF(v) <

eF(u), then the function F is exponentially pseudo convex.

Proof Since eF(v) < eF(u) and F is an exponentially convex function, then
∀u, v ∈ K, t ∈ [0, 1], we have

eF(u+(1−t)(v,u)) ≤ eF(u) + t (eF(mv) − eF(u))

< eF(u) + t (1 − t)(eF(mv) − eF(u))

= eF(u) + t (t − 1)(eF(u) − eF(mv)))

< eF(u) + t (t − 1)b(u,mv),

where b(u, v) = eF(u) − eF(mv) > 0, the required result. This shows that the
function F is an exponentially m-convex function.
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We now discuss the optimality condition for the differentiable exponentially
convex functions, which is the main motivation of our next result.

Theorem 13 Let F be a differentiable exponentially m-convex function. Then, u ∈
K is the minimum of the function F, if and only if, u ∈ K satisfies the inequality

〈eF(u)F ′(u),mv − u〉 ≥ 0, ∀u,mv ∈ K. (22)

Proof Let u ∈ K be a minimum of the function F. Then,

F(u) ≤ F(mv),∀mv ∈ K,

from which, we have

eF(u) ≤ eF(mv),∀mv ∈ K. (23)

Since K is a m-convex set, then, ∀u,mv ∈ K, t ∈ [0, 1],

vt = (1 − t)u+ tmv ∈ K.

Taking v = vt in (23), we have

0 ≤ lim
t→0

{e
F(u+t (mv−u)) − eF(u)

t
} = 〈eF(u)F ′(u),mv − u〉. (24)

Since F is differentiable exponentially m-convex function, then

eF(u+t (mv−u)) ≤ eF(u) + t (eF(mv) − eF(u), u,mv ∈ K, t ∈ [0, 1],

from which, using (24), we have

eF(mv) − eF(u) ≥ lim
t→0

{e
F(u+t (mv−u)) − eF(u)

t
}

= 〈eF(u)F ′(u),mv − u〉 ≥ 0,

from which, we have

eF(mv) − eF(u) ≥ 0,

which implies that

F(u) ≤ F(mv), ∀mv ∈ K.

This shows that u ∈ K is the minimum of the differentiable exponentially m-convex
function, the required result.



Exponentially m-Convex Functions 387

Remark 3 The inequality of the type (22) is called the exponentially variational
inequality and appears to be new one. For the applications, formulations, numerical
methods, and other aspects of variational inequalities, see Noor [10, 11] and Noor
et al.[16].

We now show that the difference of exponentially convex function and exponentially
affine convex function is again an exponentially convex function.

Theorem 14 Let f be an exponentially affine m-convex function. Then, F is an
exponentially m-convex function, if and only if, g = F − f is an exponentially
m-convex function.

Proof Let f be an exponentially affine convex function. Then,

ef ((1−t)u+tmv) = (1 − t)ef (u) + tef (mv), ∀u,mv ∈ K, t ∈ [0, 1]. (25)

From the exponentially m-convexity of F, we have

eF((1−t)u+tmv) ≤ (1 − t)eF(u) + teF (mv), ∀u,mv ∈ K, t ∈ [0, 1]. (26)

From (25 ) and (26), we have

eF((1−t)u+tmv)−ef ((1−t)u+tmv) ≤ (1−t)(eF(u)−ef (u))+t (eF(mv)−ef (mv)), (27)

from which it follows that

eg((1−t)u+tmv) = eF((1−t)u+tmv) − ef ((1−t)u+tmv)

≤ (1 − t)(eF(u) − ef (u))+ t (eF(mv) − ef (mv)),

which shows that g = F − f is an exponentially m-convex function.
The inverse implication is obvious.

4 Conclusion

In this paper, we have introduced and studied a new class of convex functions, which
is called the exponentially m-convex function. It has been shown that exponentially
m-convex functions enjoy several properties which convex functions have. We have
shown that the minimum of the differentiable exponentially m-convex functions
can be characterized by a new class of variational inequalities, which is called
the exponentially variational inequality. One can explore the applications of the
exponentially variational inequalities. This may stimulate further research.
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Natural vs. Artificial Topologies on a
Relativistic Spacetime

Kyriakos Papadopoulos

Abstract Consider a set M equipped with a structure ∗. We call a natural topology
T∗, on (M, ∗), the topology induced by ∗. For example, a natural topology for a
metric space (X, d) is a topology Td induced by the metric d, and for a linearly
ordered set (X,<), a natural topology should be the topology T< that is induced by
the order <. This fundamental property, for a topology to be called “natural,” has
been largely ignored while studying topological properties of spacetime manifolds
(M, g), where g is the Lorentz “metric,” and the manifold topology TM has been
used as a natural topology, ignoring the spacetime “metric” g. In this survey, we
review critically candidate topologies for a relativistic spacetime manifold, and we
pose open questions and conjectures with the aim to establish a complete guide on
the latest results in the field and give the foundations for future discussions. We
discuss the criticism against the manifold topology, a criticism that was initiated by
people like Zeeman, Göbel, Hawking-King-McCarthy and others, and we examine
what should be meant by the term “natural topology” for a spacetime. Since the
common criticism against spacetime topologies, other than the manifold topology,
claims that there has not been established yet a physical theory to justify such
topologies, we give examples of seemingly physical phenomena, under the manifold
topology, which are actually purely effects depending on the choice of the topology;
the Limit Curve Theorem, which is linked to singularity theorems in general
relativity, and the Gao–Wald type of “time dilation” are such examples.

1 Motivation: The Topologization Problem

Almost six decades from the first papers on Einstein’s theory of relativity, and
simultaneously with the appearance of the first results on spacetime singularities,
a freshly new discussion was initiated on whether the manifold topology should be
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called a natural topology for a spacetime or not. A spacetime (M, g), in general
relativity, is a four-dimensional, time-oriented, connected, Cd manifold, which is
equipped with a Cd−1 Lorentz “metric” g1 (see, for example, [23]). Thus, the
problem of assigning a spacetime (M, g) to a natural topology should take into
account the Lorentz tensor field g. This idea lies on the principle that if one considers
a set M equipped with a structure ∗, then a natural topology TM (or T∗), on (M, ∗),
should be induced by ∗; otherwise, such a topology cannot be called a natural
topology on (M, ∗).2

A serious problem that appears when one uses the manifold topology as a natural
topology TM , for a spacetime (M, g), is that TM is a natural topology for the
manifold M , as it is induced by the metric structure of the manifold, but it is not
natural in (M, g), where g is the Lorentz “metric.” As a consequence, the manifold
topology does not incorporate the causal structure of the spacetime and, under this
topology, the spacetime itself carries properties that might not be as natural as we
once thought to be. In Section 2, we will review the obvious differences between
TM and appropriate candidates for a spacetime topology and how the properties of
TM are incompatible with the structure of light cone, a structure which corresponds
to each point in the spacetime. In Section 3, we will mention issues related to
the singularity problem in general relativity and how the choice of an appropriate
natural topology might influence the way that we view singularities. We will extend
the discussion to naked singularities and the world of wormholes, all in the frame of
spacetime topology. In Section 4, we will see a mysterious duality between spacelike
and timelike, with respect to two dual order relations in a spacetime, each of which
it induces a topology which is dual, in a particular sense, to the other. This section,
as well as the previous one, will give a lot of space for questions that we will list in
the concluding Section 5.

There is a general confusion of the meaning of the term “natural,” in topology,
and this has led to a sequence of misunderstandings in the field of spacetime
geometry. In a discussion like this one, a topology is not just a tool, but something
vital for the description of a spacetime as a mathematical entity. It is evident that
under appropriate topologies, a spacetime cannot admit singularities and several
other effects, including, for example, the Gao–Wald “time-dilation,” which is related
to a property called causal pseudo-convexity; such effects are a result of the
exclusive use of the manifold metric topology instead of a topology which embodies
the causal and conformal structure of spacetime. A finer topology, than the manifold
one, might not be related in a straightforward way to the metric structure of the
manifold (as it might not be metrizable), but it contains coarser topologies, such as
the usual manifold metric topology, which can do this job.

1The term metric, for the Lorentz tensor field, is an abuse of language, as was also pointed by
Zeeman in [29], but it is so widely used that we will put it in quotes, in order to distinguish from
the Riemannian metric.
2This problem, in the case of the orderability of a set is addressed in [11] and [12].
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The Riemannian metric itself has proven to have a significance in theories like the
Wick rotation (for a critical review on this topic, see, for example, Penrose [24]), but
a topology that is induced by the Riemannian metric is far from being called natural
in a spacetime. In this chapter, we will restrict our entire discussion to general
relativity, and even if we are against the use of the term “natural” for the manifold
topology, we should highlight that an appropriate Riemannian metric will still play a
significant role in the construction of (really) natural spacetime topologies, different
from the manifold one.

2 What Is (or Should be) the Role of Spacetime Topology?

In order to answer the question of the title in this section, we first need to list
properties of the manifold topology TM that make it an inappropriate choice for
a natural topology for a spacetime M . Zeeman, in 1967 (see [29]), pointed that

1. The Minkowski space, (M, g), has M = R
4, and under the Euclidean topology

TR4 , on R
4, it is locally homogeneous (in the sense that it looks, topologically,

the same at any point). The Minkowski space is not just the set M though; it is
the pair (M, g) and this is not a locally homogeneous space; at each point, there
corresponds a light cone, which separates spacelike from timelike vectors.

2. The group of all homeomorphisms of (M, g) under the Euclidean topology TR4

is vast and has no known physical meaning. An appropriate topology should
associate the group of homeomorphisms with the Lorentz group and dilatations.

Göbel, in 1976, generalized the arguments of Zeeman for curved spacetimes,
highlighting that the manifold topology (the analogue of the Euclidean topology in
the case of the flat Minkowski space) is artificial both in a mathematical and in a
physical sense. He added that experts were primarily concerned with Riemannian
structures, where the manifold topology is indeed natural, and not with spaces
with a pseudo-Riemannian metric (Lorentz metric is a particular example). It is
rather interesting the comment that Göbel adds that it is not plausible to consider a
spacetime as locally Euclidean and there is no justification why it should be: “There
are no experiments known to justify a Euclidean topology along lightlike geodesics.”

So, Zeeman, as a solution to the problems that he pointed out, came up with
a topology that mimics the Euclidean space R

4, in the sense that it induces the
one-dimensional Euclidean topology on R and the three-dimensional Euclidean
topology on R

3. He named this topology “the Fine topology F on Minkowski space
M” and defined it to be the finest topology on M , which induces the one-dimensional
Euclidean topology on every time axis and the three-dimensional Euclidean topol-
ogy on every space axis. Zeeman’s intuition worked pretty successfully, since he
proved that, under F , the group of homeomorphisms of M is the Lorentz group
with translations and dilatations, a significant result, indeed.

Göbel (see [6]) extended Zeeman’s result to general relativity, by giving the
definition of the analogue of F : let M be a spacetime manifold, TM its manifold
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topology, and let S be a collection of subsets of M . A set A ⊂ M is open in
Z(S, TM), a topology in the class Z − G of Zeeman-Göbel, if A ∩ B is open in
(B, TM |B), the subspace topology of the manifold topology (M, TM) with respect to
(B, TM), for all B ∈ S. The finest such topology, call it F, is the general relativistic
analogue of F . Under F, and without any restrictions on the spacetime M , Göbel
showed that the group of all homeomorphisms of M is the group of all homothetic
transformations of M , leading to the fact that a homeomorphism, under F, is an
isometry.

Hawking, King and McCarthy (and in communication with Göbel) in [7]
emphasized that the standard manifold topology merely characterizes continuity
properties and proposed a topology that determines the causal, differential and
conformal structures of spacetime but criticized Zeeman–Göbel topologies Z − G

of having the following disadvantages:

1. A three-dimensional section of simultaneity has no meaning in terms of physi-
cally plausible experiments.

2. While the isometry and conformal groups of M are significantly physical, it is
not necessarily clear that this is so for the homothecy group of M .

3. F is technically complicated; in particular, the fact that no point has a countable
neighbourhood basis makes F hard to calculate with.

We believe that point number 3, of Hawking–King–McCarthy, is not so fruitful;
one cannot expect to have a natural topology (as we defined the term “natural” in
Section 1) and simultaneously “easy to use”; if the topology is difficult to handle
with, this can be due to the complicated structure of the universe set in which the
topology is defined.

The topology that Hawking–King–McCarthy proposed is widely known as the
Path topology on a spacetime and is defined as follows. For each x ∈ M and each
open neighbourhood U of x, let I (p,U) denote the set of points connected to p

by a timelike path lying in U and by K(p,U) the set I (p,U) ∪ {x}. By choosing
an arbitrary Riemannian metric h on M , let Bε(x) denote an open ball centred at x
with radius ε > 0, with respect to h. The Path topology P, on M , is defined to be
the finest topology such that the induced topology on every timelike curve coincides
with the topology induced from the manifold topology. Hawking et al. proved that
the sets of the form K(p,U) ∩ Bε(x) form a basis for the topology P, giving to
P properties, like P has an explicit neighbourhood basis, P is strictly finer than
TM and incomparable to F and the P-continuous paths are Feynman paths (for
proofs of these statements, see [7]), and overall advantages, like P determines both
the causal, differential and conformal structure of M , making calculations linked to
these structures purely topological.

Low has shown that the Limit Curve Theorem (LCM) does not hold under P,
and because of this result, he considered P as a not fruitful topology (for details,
see [9]). We have a bit of a disagreement on this conclusion, and we will discuss
about it, in particular, in the next section.
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A list of people3 have studied different topologies in the class Z − G, using
tools from general topology. There is a little concern about this study: even if it is
interesting to know the topological properties of several Zeeman–Göbel topologies,
there is a lack of unity in notation and a common motivation is absent, throughout
the existing literature; there are scattered results on whether a separation axiom is
satisfied or not, results with respect to connectedness, metrizability, etc., but there is
a lack of a main question. The question, in our opinion, should be not to simply find
alternative “better”4 topologies to the manifold topology TM , but to justify which is
the most natural topology for a spacetime manifold. There is an obvious qualitative
difference between the two approaches.

As an example of this general problem, we mention the Fermat Real Line
•
R, which was defined by Giordano and Kunzinger5 as a possible alternative to

Synthetic Differential Geometry, aiming to develop new foundations of smooth
differential geometry for finite- and infinite-dimensional spaces. Two different
topologies were introduced on this line, the so-called “Omega Topology” and the
“Fermat Topology”; the first topology is generated by a complete metric and is
linked to the differentiation of smooth functions on infinitesimals, and the latter
one is generated by a complete pseudo-metric and is linked to the differentiation of
non-standard smooth functions. Both topologies play a different role, but none of
them is a natural topology for •

R; a linearly ordered set should be assigned to its
natural topology which is induced by the order. So, it is easy for a confusion about
which properties are “natural” to appear; for example, continuity properties, under
a topology different from the natural topology, might not hold within the natural
topology. A simple example that illustrates this issue in spacetime geometry is given
by the Zeno sequences, in [29].

In the sequence of papers, [1, 16, 17, 19] and [20], the authors aim to estab-
lish a common background for the topologization problem of a spacetime. This
background is the Lorentz “metric” and the structure of the light cone, where one
can define the chronological order 2, the causal order ≺, the relation horismos →
and also the chorological order <; for the last one, see in particular [1], and for
a complete list of relations R depending on the light cone, see [20]. One can use
the following weak version of the interval topology, in order to get the induced
topology from such a relation R on a spacetime M . For a set X, consider the
sets I+(x) = {y ∈ X : xRy} and I−(x) = {y ∈ X : yRx}, as well as the
collections S+ = {X \ I−(x) : x ∈ X} and S− = {X \ I+(x) : x ∈ X}. A
basic-open set U in the weak interval topology T in is defined as U = A ∩ B,
where A ∈ S+ and B ∈ S−; in other words, S+ ∪ S− forms a subbase for
T in. Such topologies were constructed in [16, 19] and [1], covering the cases of

3For example, Nada, Agarwal, Shrivastava, Dossena and Williams; for a complete list of names
and articles, see [26].
4“Better” in a topological sense: that is, topologies easier to work with and rich in topological
properties.
5For a short survey, see Section 5, from [13].
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horismos, chronology, causality and chorology (which are lightlike, timelike, causal
and spacelike relations, respectively). Such topologies belong to the class Z−G, as
we have shown in [19]. The seemingly real problem that for each point there exists,
for each of these topologies, respectively, a local base of unbounded open sets, is
solved, by considering the least topology that contains both the manifold topology
and a topology T in; this topology is called the join topology or, as it was misnamed
by Reed in [25], the “intersection topology” between two given topologies and is
defined to be the topology with base {U1 ∩ U2 : U1 ∈ T1 and U2 ∈ T2}, where T1
and T2 are topologies on some set X. One can use De Morgan’s laws to show that a
base for the join topology can also be given by {U1 ∩ U2 : U1 ∈ B1 and U2 ∈ B2},
where B1 is a base for the topology T1 and B2 is a base for the topology T2. In [1],
we have shown that the join topology between TM and the weak interval topology
which is induced by the reflexive chorological order ≤ is actually the Path topology
of Hawking–King–McCarthy which, in turn, belongs to the class Z − G and has,
locally, an order structure. There is a kind of a dual such topology, studied in [16],
which is the join topology between TM and the reflexive chronological order; this
topology, again, has a locally ordered structure.

We now have enough information to dig a bit deeper in the subject and talk about
spacetime singularities.

3 Singularities, Naked Singularities and a Kind
of Unexpected Gravitational Time Delay Effects

“Time stays long enough for anyone who will use
it.”—Leonardo da Vinci

In the previous section, we discussed the role of spacetime topology, as a part
of the structure of spacetime, and we stressed that, if one sees a spacetime as a
mathematical entity, the spacetime topology should be natural. Since the structure
of null cone cannot be recovered by the manifold topology,6 we have excluded the
manifold topology as a natural candidate topology for a spacetime. There are more
serious issues though, in this discussion, that should not be neglected. For example,
the Path topology P on a spacetime manifold M is finer than the manifold topology
TM , it belongs to the class Z−G and it has locally an order structure that connects
it with the time cone, but the Limit Curve Theorem (LCT) does not hold under P
(see [9] and for a further discussion, [17]). It is evident that the singularity problem
depends on the spacetime topology; one can support this, by looking, for example,
the use of the LCT in basic singularity theorems (see [10, 28] as well as [22]). In
particular, the LCT, under the manifold topology, states that if γn is a sequence of

6We refer, again, to [29] for a rigorous proof.
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causal curves, xn is a point on γn, for each n, and if x is a limit point of {xn}, then
there is an endless causal curve γ , passing through x, which is a limit curve of the
sequence γn. The failure of this theorem to hold is very important, because it avoids
basic contradiction arguments that are present in the proofs of (in our knowledge)
all singularity theorems. The fact that the LCT holds under TM does not make the
manifold topology a natural topology though. The failure of LCT to hold under a
more proper spacetime topology, like P, for example, should ring a bell about the
appearance of singularities in the basic singularity theorems: do these singularity
theorems depend exclusively from the use of the manifold topology? Are they a
purely topological effect that sieges to exist if one considers a more appropriate
topology?

The above question has almost certainly a positive answer for classical singular-
ity theorems like in [22]. This is not so obvious though, at least for the case of naked
singularities, if one considers the questions raised by Kip S. Thorne in [27]; the laws
of general relativity do not enforce chronology protection: it is easy to find solutions
to the Einstein field equation that have closed timelike curves (CTCs—for example,
Van Stockum’s spacetime, Gödel’s solution of the Einstein equation, etc.). Physicists
have generally dismissed such solutions as unphysical ones, but Thorne sees nothing
unphysical in them.7 Here, we will copy a very important paragraph in our opinion,
from this mentioned paper: It would be rather surprising to me, if Nature uses one
protection mechanism in one situation (e.g. collapsing, spinning bodies), a different
one in another situation (e.g. moving cosmic strings) and a third mechanism in a
third situation (e.g. the interior of a spinning black hole). More likely, there is one
universal mechanism that always does the job, if other mechanisms fail. We feel
that such a “universal mechanism” is the topology of the spacetime. For example,
exactly as the Path topology P prevents a spacetime from satisfying the classical
singularity theorems (due to the failure of LCT), in a similar way, Low has proved
that a spacetime is nakedly singular, if the space of causal curves is non-Hausdorff
(Proposition 3.1, [8]) as well as the following two propositions, which bring the
discussion about singularities into a purely topological context:

Proposition 1 For a strongly causal spacetime M , the following are equivalent:

1. M has no geodesically accessible singularities.
2. M is causally pseudo-convex.
3. The space of causal geodesics C, of M , is Hausdorff.

Proposition 2 A strongly causal spacetime M is globally hyperbolic, iff its space
of smooth endless causal curves is Hausdorff.

This is really a place that one has to dig a bit deeper; since the Einstein’s field
equation permits solutions that bring us in front of CTCs, one has to place the
problem of “rejecting specific solutions as unphysical” to topology; we are tempted
to conjecture that, if there is a final and definite answer about which is the natural

7For more details, and Thorne’s arguments, read Section 3, from [27].
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topology for a spacetime, then if under such a topology there is no (interior
topological) mechanism to avoid CTCs, then one should not have the right to reject
such solutions with CTCs as unphysical. If, on the other hand, under the natural
topology of a spacetime, classical singularities fail to hold, then one has the right to
claim that such theorems have no physical meaning.

Here, we feel also commenting about the “in fashion” technique to increase the
spacetime dimensions, in order to “make the zeros disappear” (for a discussion,
see [21]). As an example, in [2] and [3], the authors have built a model of a five-
dimensional space, whose conformal infinity is our four-dimensional spacetime, its
“ambient boundary.” The aim of this model was to create a topological environment
where basic singularity theorems would not hold any longer (see, in particular, [3]
and [4] as well as [14]). The authors finally concluded that the topology on the
ambient boundary should be the Fine Zeeman topology F ; we have corrected this
erratum in [14], as the F refers to special relativity while Göbel’s general relativistic
analogue F would be a more appropriate topology to use in a curved spacetime. We
have also mentioned that the argument that the “lack” of “Euclidean-open-balls”
does not necessarily imply the lack of singularities is incorrect. First of all, in a
curved spacetime, an open ball will be defined via a Riemannian metric and not
through the natural Euclidean metric. Second, since the topologies in the class Z−G

are finer than the manifold topology TM , it is obvious that every open set in TM will
also be open in a topology T in Z−G; such errata, which are not rare in models in
spacetime geometry, show why we need to take methods of general topology more
seriously.8 The authors of [2] and [3] though have had an interesting idea to sort
of “force” the ambient boundary, in their model, to be equipped with a topology
in Zeeman–Göbel class, so that the LCT does not hold (that would work with the
Path topology P, for example, as we have already mentioned). And here comes
the critical question: why is there a need then to increase the spacetime dimensions,
while such a topology would “hide the infinities” already in four dimensions?

To bring this discussion a bit further, in Proposition 1, there is a connection
between pseudo-convexity and geodesically accessible singularities.

Definition 1 A spacetime M is causally pseudo-convex if, for any compact set K in
M , there exists another compact set K ′ in M , such that any causal geodesic segment
with endpoints in K lies in K ′.

A step further from our discussion on singularities will be a discussion on some
kind of “time dilation” phenomena, in general relativity, which were noticed by Sijie
Gao and Robert M. Wald in [5]. We focus our attention in the theorem below.

Theorem 1 (Gao–Wald) Let (M, gab) be a null geodesically complete spacetime,
satisfying the null energy condition (NEC) and the null generic condition (NGC).
Then, given any compact region K ⊂ M , there exists another compact region K ′

8For a critical survey on this discussion, we refer to [18].
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containing K , such that if q, p /∈ K ′ and q ∈ J+(p) − I+(p), then any causal
curve γ connecting p to q cannot intersect the region K ′.

Gao and Wald claim that their theorem contains some suggestion of a general
“time delay” phenomena in general relativity, but since K ′ could be far larger than
K , it is difficult to make a strong argument for this kind of interpretation of the
theorem. In [15], we have interpreted Gao–Wald theorem in terms of sliced spaces,
and we have shown that K ′ can be chosen as a “small enough” causal diamond
containing K . There is a more general issue here though: for the proof of Gao–Wald
theorem, the role of the manifold topology TM is vital. Based on simple topological
arguments (see [15]), we see that if one used, for example, the Path topology P,
or any topology in the class Z−G, the Gao–Wald theorem will fail to hold, and so
some of the corollaries that follow like, for example, the one (Corollary 1 from [5]),
which states that there is an absence of particle horizons, in a class of cosmological
models, will fail as well.

We believe that the evidence that classical spacetime singularities depending
on LCM, naked singularities depending on causal pseudo-convexity and “time-
dilation” effects of the type of Gao–Wald, are all topological effects is strong, and
thus such results are more topological in their nature and “less physical.”

4 A Duality Between Timelike–Spacelike Events: Between
“Chronos” and “Choros”

In article [1], we have studied a duality between two order relations, in Minkowski
spacetime M: the chronological order 2 and the “chorological”9 order <, as well
as their induced topologies. In order to define these orders, we need to have a closer
look to the light cone of an event x first.

For an event x ∈ M, we define the following sets:

1. CT (x) = {y : y = x or Q(y − x) < 0} the time cone of x,
2. CL(x) = {y : Q(y − x) = 0} the light cone of x,
3. CS(x) = {y : y = x or Q(y − x) > 0}, the space cone10 of x,
4. CLT (x) = CT (x)∪CL(x) the union of the time and light cones of x, also known

as the causal cone of x, and
5. CLS(x) = CS(x) ∪ CL(x) the union of the space and light cones of x.

In [20], we present all possible relations (to our knowledge), in M, that are
related to the Lorentz “metric” and their induced topologies. Here, we will highlight
the following to ones: x 2 y iff y ∈ CT+(x) (chronology) and for non-causally

9Choros stands for space, in Greek, like chronos stands for time.
10Here, the word “cone” is used in a generalized sense, i.e. it is a cone on I × S

n−2 in Minkowski
space Mn.
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related events x, y ∈ M , x < y iff y ∈ CS+(x), where we have defined CS+(x) for
some fixed choice of m ∈ M (chorology). For a precise and analytical mathematical
description of the partition of the space cone CS(x) into two spaces, CS+(x) and
CS−(x), we refer to [1]. Here, we will comment on the significance of this duality,
without focusing on its technical details. In particular, Zeeman, in [29], stated three
alternative topologies to his Fine topology F . Several authors, all listed in [26], have
worked on these topologies, and in particular, in [19] and [1], we have shown that
these topologies are join topologies of the Euclidean topology R

4 and a particular
weak interval topology; the topology that has a local base of open sets of the form
Bε(x) ∩ CT (x), of bounded time cones (of a radius ε > 0) by Euclidean balls,
is the join of the topology on R

4 and the weak interval topology generated by <,
while the topology that has a local base of open sets of the form Bε(x) ∩ CS(x), of
bounded space cones, is the join of the topology on R

4 and a weak interval topology
generated by 2. In a few words, we have two topologies in Z − G (or, to be more
precise, in Z) such that, the one is generated by open sets that are bounded time
cones and the other by space cones and, respectively, the one has locally an order
structure by a spacelike (chorological) order while the other (which is generated by
bounded space cones) by a timelike (chronological) order.

We conjecture that this duality exists in curved spacetimes, as well, but one will
need to find an alternative route to define a partition of tilted space cones, to that
one that we followed in [1], and create a spacelike orientation dual to timelike
orientation. We believe that there is strong evidence that this problem is consistent;
wherever there is (relativistic) spacetime, there are events, and wherever there are
events, there are light cones 11 and there can be relations depending on the light
cone, such as chronology 2, causality ≺ and horismos →. Since the space cone
is defined in Minkowski space M as the complement of the causal cone, one has
to define general relativistic analogues of the half-planes P+(x) and P−(x) that
we defined in [1]. A general relativistic analogue of < will certainly be of a high
interest, as one would be able to talk about a duality between timelike and spacelike,
in the frame of general relativity, something that might give insights about the
passage from locality to nonlocality.

5 Questions

The preceding four sections raise more questions than to those that are supposed to
answer.

11Indeed, there are solutions of the Einstein’s field equation in general relativity, which imply an
extreme tilt of the light cones that lead, for example, to CTCs: independently of whether there exists
a chronology protection mechanism in a more general frame, something that was conjectured by
Hawking, or if such solutions are once accepted (see [27]), we should underline that our discussion
lies within the scope of general relativity and not where the theory collapses within a singularity.
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1. As we mentioned in Section 3, the LCT holds under TM and not under P. In
fact, there is a wider range of topologies within Z − G where LCT fails to
hold, while there are other topologies where LCT holds.12 Roughly speaking,
we have topologies that incorporate the causal structure of a spacetime, and the
classical singularity theorems cannot be formed, while—on the other hand—
these singularity theorems are formed when using other topologies, like TM ,
for example, which do not incorporate the causal structure of the spacetime
but are linked with the metric of the manifold structure. One could probably
view this phenomenon from the perspective of Google Earth: depending from
the choice available in the package, one could view satellite photos of the Earth
in significant detail while, with the use of a different choice, one could make a
road system appear, intervening with the satellite picture or, with another choice,
one could simply view the civil map of a city with the anaglyph disappearing
completely.

It might be that different topologies reveal a different perspective of space-
time, but is there a topology that is actually the smallest one from all these
spacetime topologies that contains all the information that each one of them
contains?

2. Given the topologies in the class Z − G, the general relativistic analogue F, of
the Fine topology F , is incomparable with several of them, including P; it might
be that the condition for a topology to belong to the Zeeman–Göbel class might
exclude topologies that have a significance and might be appropriate candidates
to be called natural topologies. There are such topologies that are mentioned in
[8], such as the topologies T0 and T1, which by themselves belong to a class that
contains finer topologies than each of them, respectively, which are defined on
the space of smooth endless causal curves, in a very natural way, indeed; a further
study of these topologies is needed, as they give the topological conditions for
a spacetime to be globally hyperbolic (Proposition 4.3, from [8]) and connect
global hyperbolicity to metrizability (Proposition 4.4).

3. Given a general relativistic analogue to the partition of the space cone that we
studied in [1] (which is, still, an open question), it would be interesting to know
if the spacelike geodesics form a submanifold, study their topology, as well
as their convergence. Given a +−ve spacelike orientation, dual to the timelike
orientation, is there a duality in results regarding the space of timelike or causal
geodesics with the spacelike ones? A similar question holds for the space of
endless spacelike curves (always under the frame of [1]) and a possible duality
to results concerning the space of causal endless curves. Before attempting any
study related to this general question, one should not forget that acausal is a
global property, while spacelike is a local one.

4. An idea, which was first communicated with the mathematician Santanu Achar-
jee, is to consider a spacetime as a bitopological space choosing, for example,
the manifold topology and another appropriate spacetime topology (for example,

12See [17] for an introductory discussion on this particular problem.
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in the class of Z − G) to serve the definition of bitopological space. It would be
interesting to examine if such a topology incorporates the causal, differential and
conformal structure of a spacetime and if it is useful to handle with.

5. Kip Thorn’s comments, in [27], on rotating contracting bodies and CTCs are
linked to the Einstein’s field equation and are seemingly independent from the
topology of a spacetime. In the Low’s work, in [8], it is clear that the naked
singularities are a topological effect. How could one connect these two seemingly
different results?

6. Having stated the previous question, on particular solutions to the Einstein’s field
equation leading to CTCs, it is tempting to pose the following related question.
In a spacetime manifold, is there a metrizable topology finer than the manifold
and coarser than the Fine one?

There is some criticism about diminishing returns: why one should continue a
study on the topology of a spacetime, if we have not concluded to something general
and fruitful yet. We dare to write that such a question is not fruitful, because the
topological problems that were mentioned in this chapter, including the singularity
problems that are topological in nature, are too crucial to be ignored.

Acknowledgments The author wishes to thank Rolf Suabedissen, from Oxford, for being kind
to reply to our topological questions, even if they were elementary; the author is grateful for his
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On the Approximation of Monotone
Variational Inequalities in Lp Spaces
with Probability Measure

Mauro Passacantando and Fabio Raciti

Abstract In this paper we propose an approximation procedure for a class of mono-
tone variational inequalities in probabilistic Lebesgue spaces. The implementation
of the functional approximation in Lp, with p > 2, leads to a finite dimensional
variational inequality whose structure is different from the one obtained in the case
p = 2, already treated in the literature. The proposed computational scheme is
applied to the random traffic equilibrium problem with polynomial cost functions.

1 Introduction

In many equilibrium problems arising in applied sciences, the data are often not
known with precision and this uncertainty can be modeled by using some probability
distributions. In this paper we are interested in the variational inequality approach
to equilibrium problems which has been very fruitful in the last decades. Motivated
by the need to cope with uncertain data, many authors have developed various
approaches to the theory of random variational inequalities (the term stochastic
variational inequalities is also used by numerous authors). Our contribution falls
in the so-called Lp approach to random variational inequalities introduced in [6, 7]
and subsequently developed in a series of papers [4, 5, 8–10, 12]. A comparison
of the rigorous Lp approach with a sample-path approach has been carried out
in [11]. In this last paper, the authors also proposed a regularization method to
deal with the case where the operator is monotone but not strictly monotone and
applied their results to the traffic equilibrium problem with linear cost functions,
which is modeled by a variational inequality in L2. In this case, the regularization
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term is the identity operator, i.e., the Riesz isometry, and after a discretization
procedure the original infinite dimensional variational inequality is transformed in
a large number of independent finite dimensional variational inequalities. To the
best of our knowledge, the above mentioned abstract regularization procedure has
not yet been applied to random variational inequalities in Lp, with p > 2. In this
paper, we show that when p > 2 the structure of the regularizing duality operator
does not allow to split the Lp variational inequality into a large number of finite
dimensional variational inequalities. Instead, it can be approximated by a single
variational inequality whose operator F : RL → R

L has a special structure such
that all the summands in F , excepted the regularization term, depend on a number
of variables which is much smaller than L. As an application of our results, we
investigate the random traffic equilibrium problem with polynomial cost functions.

The paper is organized as follows. First, we give an overview of the Lp approach
for random variational inequalities in Section 2.1. Then, in Section 2 we describe
a functional approximation scheme combined with a regularization procedure to
find approximated solutions of a random monotone variational inequality, while its
implementation in Lp spaces, with p > 2, is analyzed in detail in Section 2.3. In
Section 3 we apply the results illustrated in Section 2 to the random traffic network
equilibrium problem with polynomial cost functions. The deterministic version of
the problem and its variational inequality formulation are recalled in Section 3.1.
Section 3.2 is devoted to the stochastic version of the problem, where both the
traffic demand and the travel cost functions may include random perturbations, and
a stochastic variational inequality formulation is given. Finally, the regularization
and approximation procedures described in Section 2 have been applied to some
instances of the random traffic network equilibrium problem in order to show the
impact of different probability distributions of the random data on the average cost
at equilibrium.

2 Regularization of Random Variational Inequalities

This section is devoted to the regularization and approximation procedures for
random monotone variational inequalities. In particular, Section 2.1 is an overview
of the Lp approach for random variational inequalities; Section 2.2 describes a
functional approximation scheme combined with a regularization procedure to
find approximated solutions of a random monotone variational inequality, while
in Section 2.3 we discuss in detail the implementation of the regularization and
approximation procedures in Lp spaces with p > 2.
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2.1 Random Variational Inequalities in Probabilistic Lebesgue
Spaces

Let (Ω,A, P ) be a probability space, A,B : Rk → R
k two given mappings and

b, c ∈ R
k two given vectors. Moreover, let R and S be two real-valued random

variables defined on Ω , D a random vector in R
m and G ∈ R

m×k a given matrix.
For any ω ∈ Ω we define a random set

M(ω) := {x ∈ R
k : Gx ≤ D(ω)}.

Consider the following random variational inequality: for almost every ω ∈ Ω, find
x̂ := x̂(ω) ∈ M(ω) such that

(S(ω)A(x̂)+ B(x̂) ).(z− x̂) ≥ (R(ω) c + b ).(z− x̂), ∀ z ∈ M(ω). (1)

To facilitate the foregoing discussion, we set

T (ω, x) := S(ω)A(x)+ B(x).

We assume that A,B, and S are such that the map T : Ω × R
k �→ R

k is
a Carathéodory function, that is, for each fixed x ∈ R

k the function T (·, x) is
measurable with respect to the σ -algebra A, whereas for almost every ω ∈ Ω the
function T (ω, ·) is continuous. We also assume that T (ω, ·) is monotone for every
ω ∈ Ω , i.e.,

(T (ω, x)− T (ω, y)).(x − y) ≥ 0, ∀ x, y ∈ R
k, ∀ ω ∈ Ω. (2)

If (1) is uniquely solvable, then conditions can be given to ensure that the solution
belongs to an Lp space for some p ≥ 2. This allows us to compute statistical
quantities such as mean values and variances of the solution. Since we are only
interested in solutions with finite first- and second-order moments, another approach
is to consider an integral variational inequality instead of the parametric variational
inequality (1).

Thus, for a fixed p ≥ 2, consider the Banach space Lp(Ω,P,Rk) of random
vectors V from Ω to R

k such that the expectation (p-moment) is given by

EP (‖V ‖p) =
∫
Ω

‖V (ω)‖pdP (ω) < ∞.

For subsequent developments, we assume the following growth condition:

‖T (ω, z)‖ ≤ α(ω)+ β(ω)‖z‖p−1, ∀ z ∈ R
k, for some p ≥ 2, (3)
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where α ∈ Lq(Ω,P ) and β ∈ L∞(Ω, P ) where p−1 + q−1 = 1. Due to the
above growth condition, the Nemytskii operator T̂ associated with T acts from
Lp(Ω,P,Rk) to Lq(Ω,P,Rk), and is defined by

T̂ (V )(ω) := T (ω, V (ω)), ω ∈ Ω. (4)

It will be useful to notice that if T (ω, ·) is monotone for each ω, then T̂ is monotone
form Lp(Ω,P,Rk) to Lq(Ω,P,Rk), i.e.,

∫
[T (ω, V (ω))− T (ω,U(ω)) ]. (V (ω)− U(ω) )dP (ω) ≥ 0

holds for all U,V ∈ Lp(Ω,P,Rk). Assuming D ∈ L
p
m(Ω) := Lp(Ω,P,Rm), we

introduce the following nonempty, closed and convex subset of Lp
k (Ω):

MP := {V ∈ L
p
k (Ω) : GV (ω) ≤ D(ω), P − a.s.}.

Let S(ω) ∈ L∞, 0 < s < S(ω) < s, and R(ω) ∈ Lq . Equipped with these
notations, we consider the following Lp formulation of (1): find Û ∈ MP such that
for every V ∈ MP we have

∫
Ω

(S(ω)A[Û (ω)] + B[Û (ω))].(V (ω)− Û (ω)) dP (ω)

≥
∫
Ω

(b + R(ω) c).(V (ω)− Û (ω))dP (ω).

(5)

If problems (1) and (5) admit a unique solution, then they are equivalent provided
that the solution of (1) belongs to Lp.

To get rid of the abstract sample space Ω , we consider the joint distribution
P of the random vector (R, S,D) and work with the special probability space
(Rd ,B(Rd),P), where d := 2 + m and B is the Borel σ -algebra on R

d . For
simplicity, we assume that R, S, and D are independent random vectors and we set

r = R(ω), s = S(ω), t = D(ω), y = (r, s, t).

For each y ∈ R
d , we define the set

M(y) := {x ∈ R
k : Gx ≤ t}.

The pointwise formulation of the variational inequality reads: find x̂ such that
x̂(y) ∈ M(y), P-a.s., and for P-almost every y ∈ R

d and for every x ∈ M(y),

we have

(s A[x̂(y)] + B[x̂(y)]).(x − x̂(y)) ≥ (rc + b).(x − x̂(y)) . (6)
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In order to obtain the integral formulation of (6), consider the space Lp(Rd ,P,Rk)

and introduce the closed and convex set

MP := {v ∈ Lp(Rd ,P,Rk) : Gv(r, s, t) ≤ t, P− a.s.}.

Without any loss of generality, we assume that R ∈ Lq(Ω,P ) and D ∈
Lp(Ω,P,Rm) are nonnegative (otherwise we can use the standard decomposition
in the positive part and the negative part). Moreover, we assume that the support
(i.e., the set of possible outcomes) of S ∈ L∞(Ω, P ) is the interval [s, s[⊂ (0,∞).

With these ingredients, we consider the variational inequality problem of finding
û ∈ MP such that for every v ∈ MP we have

∫ ∞

0

∫ s

s

∫
R

m+
(s A[û(y)] + B[û(y)]).(v(y)− û(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R

m+
(b + r c).(v(y)− û(y)) dP(y).

(7)

We conclude this section by recalling the following general result that ensures the
solvability of an infinite dimensional variational inequality like (5) or (7) (see [13]
for a recent survey on existence results for variational inequalities).

Theorem 1 Let E be a reflexive Banach space and let E∗ denote its topological
dual space. We denote the duality pairing between E and E∗ by 〈·, ·〉E,E∗ . Let K
be a nonempty, closed, and convex subset of E, and A : K → E∗ be monotone
and continuous on finite dimensional subspaces of K . Consider the variational
inequality problem of finding u ∈ K such that

〈Au, v − u〉E,E∗ ≥ 0, ∀ v ∈ K.

Then, a necessary and sufficient condition for the above problem to be solvable is
the existence of δ > 0 such that at least a solution of the variational inequality:

find uδ ∈ Kδ such that 〈Auδ, v − uδ〉E,E∗ ≥ 0, ∀ v ∈ Kδ

satisfies ‖uδ‖ < δ, where Kδ = {v ∈ K : ‖v‖ ≤ δ}.
In the next section, we show how the set MP can be approximated by a sequence

{Mn
P
} of finite dimensional sets, and the functions r and s can be approximated by

the sequences {ρn} and {σn} of step functions, with ρn → ρ in Lp and σn → σ in
L∞, respectively, where ρ(r, s, t) = r and σ(r, s, t) = s. When the solution of (7)
is unique, we can compute a sequence of step functions ûn which converges strongly
to û under suitable hypotheses.
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2.2 A Functional Approximation Scheme for the Random
Variational Inequality

We start with a discretization of the space X := Lp(Rd ,P,Rk). We introduce a
sequence {πn} of partitions of the support

Υ := [0,∞[×[s, s[×R
m+

of the probability measure P induced by the random elements R, S, and D. For this,
we set

πn = (πR
n , πS

n , π
D
n ),

where

πR
n := (r0

n, . . . , r
NR

n
n ), πS

n := (s0
n, . . . , s

NS
n

n ), πDi
n := (t0

n,i , . . . , t
N

Di
n

n,i ),

0 = r0
n < r1

n < . . . r
NR

n
n = n,

s = s0
n < s1

n < . . . s
NS

n
n = s,

0 = t0
n,i < t1

n,i < . . . t
N

Di
n

n,i = n (i = 1, . . . , m),

|πR
n | := max{rjn − r

j−1
n : j = 1, . . . , NR

n } → 0 (n →∞),

|πS
n | := max{skn − sk−1

n : k = 1, . . . , NS
n } → 0 (n →∞),

|πDi
n | := max{thi

n,i − t
hi−1
n,i : hi = 1, . . . , NDi

n } → 0 (i = 1, . . . , m; n →∞).

These partitions give rise to an exhausting sequence {Υn} of subsets of Υ , where
each Υn is given by the finite disjoint union of the intervals:

In
jkh := [rj−1

n , r
j
n [×[sk−1

n , skn[×In
h ,

where we use the multi-index h = (h1, · · · , hm) and

In
h :=

m∏
i=1

[thi−1
n,i , t

hi

n,i[.

For each n ∈ N, we consider the space of the R
l-valued step functions on Υn,

extended by 0 outside of Υn:
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Xl
n :=

⎧⎨
⎩vn : vn(r, s, t) =

∑
j

∑
k

∑
h

vn
jkh1In

jkh
(r, s, t), vn

jkh ∈ R
l

⎫⎬
⎭ ,

where 1I denotes the {0, 1}-valued characteristic function of a subset I . To
approximate an arbitrary function w ∈ Lp(Rd ,P,R), we employ the mean value
truncation operator μn

0 associated with the partition πn given by

μn
0w :=

NR
n∑

j=1

NS
n∑

k=1

∑
h

(μn
jkhw) 1In

jkh
, (8)

where

μn
jkhw :=

⎧⎪⎨
⎪⎩

1

P(Ijkh)

∫
In
jkh

w(y) dP(y), if P(In
jkh) > 0,

0, otherwise.

Analogously, for a Lp vector function v = (v1, . . . , vl), we define

μn
0v := (μn

0v1, . . . , μ
n
0vl),

for which one can prove that μn
0v converges to v in Lp(Rd ,P,Rl ).

To construct approximations for the set

MP =
{
v ∈ Lp(Rd ,P,Rk) : Gv(r, s, t) ≤ t , P− a.s.

}
,

we introduce the orthogonal projector q : (r, s, t) ∈ R
d �→ t ∈ R

m and define, for
each elementary cell In

jkh, the quantities

qn
jkh = (μn

jkhq) ∈ R
m and (μn

0q) =
∑
jkh

qn
jkh 1In

jkh
∈ Xm

n .

This leads to the following sequence of polyhedra

Mn
P
:= {v ∈ Xk

n : Gvn
jkh ≤ qn

jkh, ∀j, k, h}.

Since our objective is to approximate the random variables R and S, we introduce

ρn =
NR

n∑
j=1

r
j−1
n 1[rj−1

n ,r
j
n [ ∈ X1

n and σn =
NS

n∑
k=1

sk−1
n 1[sk−1

n ,skn[ ∈ X1
n.
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Notice that

σn(r, s, t) → σ(r, s, t)=s in L∞(Rd ,P), ρn(r, s, t) → ρ(r, s, t)=r in Lp(Rd ,P).

Combining the above ingredients, for any n ∈ N we consider the following
discretized variational inequality: find ûn := ûn(y) ∈ Mn

P
such that, for every

vn ∈ Mn
P

, we have

∫ ∞

0

∫ s

s

∫
Rd

[σn(y)A(ûn)+ B(ûn)].[vn − ûn] dP(y)

≥
∫ ∞

0

∫ s

s

∫
Rd

[b + ρn(y) c].[vn − ûn] dP(y).
(9)

We also assume that the probability measures PR , PS , and PDi
have the probability

densities ϕR , ϕS and ϕDi
, with i = 1, . . . , m, respectively. Therefore, for i =

1, . . . , m, we have

dPR(r) = ϕR(r) dr, dPS(s) = ϕS(s) ds, dPDi
(ti) = ϕDi

(ti) dti .

In absence of strict monotonicity, the solution of (5) and (7) is not unique. In this
case (which often occurs in our application) the previous approximation procedure
must be coupled with a regularization scheme as follows. We choose a sequence
{εn} of regularization parameters and choose the regularization map to be the duality
map J : Lp(Rd ,P,Rk) → Lq(Rd ,P,Rk). We assume that εn > 0 for every n ∈ N

and that εn ↓ 0 as n →∞.

We can then consider, for any n ∈ N, the following regularized stochastic
variational inequality: find wn = w

εn
n (y) ∈ Mn

P
such that, for every vn ∈ Mn

P
,

we have

∫ ∞

0

∫ s

s

∫
R

m+

(
σn(y)A[wn(y)]+B[wn(y)]+εnJ (wn(y))

).
(vn(y)− wn(y)) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R

m+
(b + ρn(y) c)

.(vn(y)− wn(y)) dP(y).

(10)

As usual, the solution wn will be referred to as the regularized solution. Weak and
strong convergence of wn to the minimal-norm solution of (7) can be proved under
suitable hypotheses (see below). We also recall (see, e.g., [1]) that in Lp we have

J (u) = ‖u‖2−p
Lp |u|p−2 u.

We recall the following convergence result (see [8]).
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Theorem 2 Assume that the growth condition (3) holds and T (ω, ·) is strongly
monotone, uniformly with respect to ω ∈ Ω , that is there exists τ > 0 such that

(T (ω, x)− T (ω, y)).(x − y) ≥ τ‖x − y‖2 ∀ x, y, a.e. ω ∈ Ω.

Then the sequence {ûn}, where ûn is the unique solution of (9), converges strongly
in Lp(Rd ,P,Rk) to the unique solution û of (7).

The following results (see [11]) highlight some of the features of the regularized
solutions.

Theorem 3 The following statements hold.

1. For every n ∈ N, the regularized stochastic variational inequality (10) has the
unique solution wn.

2. Any weak limit of the sequence of regularized solutions {wn} is a solution of (7).
3. The sequence of regularized solutions {wn} is bounded provided that the fol-

lowing coercivity condition holds: there exists a bounded sequence {δn}, with
δn ∈ Mn

P
, such that

∫∞
0

∫ s

s

∫
R

m+[σn(y)A(un(y))+ B(un(y))].(un(y)− δn(y)) dP(y)

‖un‖ → ∞

as ‖un‖ → ∞.

To obtain strong convergence, we need to use the concept of fast Mosco
convergence [14], as given by the following definition.

Definition 1 Let X be a normed space, let {Kn} be a sequence of closed and convex
subsets of X and let K ⊂ X be closed and convex. Let {εn} be a sequence of positive
real numbers such that εn → 0. The sequence {Kn} is said to converge to K in the
fast Mosco sense, related to εn, if

1. For each x ∈ K , ∃{xn} ∈ Kn such that ε−1
n ‖xn − x‖ → 0;

2. For {xm} ⊂ X, if {xm} weakly converges to x ∈ K , then ∃{zm} ∈ K such that
ε−1
m (zm − xm) weakly converges to 0.

Theorem 4 Assume that Mn
P

converges to MP in the fast Mosco sense related to εn.
Moreover, assume that ε−1

n ‖σn − σ‖ → 0 and ε−1
n ‖ρn − ρ‖ → 0 as n →∞. Then

the sequence of regularized solutions {wn} converges strongly to the minimal-norm
solution of the stochastic variational inequality (7), provided that {wn} is bounded.

2.3 Implementation

In this section, we derive an equivalent form of the regularized stochastic variational
inequality (10) suitable for being solved on a computer. We first rewrite (10) for the
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reader convenience: given any n ∈ N, find wn = w
εn
n (y) ∈ Mn

P
such that, for every

vn ∈ Mn
P

, we have

∫ ∞

0

∫ s

s

∫
R

m+

(
σn(y)A[wn] + B[wn] + εnJ (wn)

).
(vn − wn) dP(y)

≥
∫ ∞

0

∫ s

s

∫
R

m+
(b + ρn(y) c)

.(vn − wn) dP(y).

The solution of (10) is a step function which is determined by its constant (vector)
values in each elementary cell In

jlh. Since for each partition of the support of P we
have

[0,∞[×[s, s̄[×R
m+ =

⋃
j,l,h

I n
jlh,

we can write (10) as

∑
j

∑
l

∑
h

∫
In
jlh

(
σn(y)A[wn] + B[wn] + εnJ (wn)

).
(vn − wn) dP(y)

≥
∑
j

∑
l

∑
h

∫
In
jlh

(b + ρn(y) c)
.(vn − wn) dP(y).

(11)

Bearing in mind that the components of A[w] and B[w] are multivariate polynomi-
als in w2, . . . , wn, and that vn

jlh denotes the constant vector value of vn(y) in the
cell In

jlh, the value of A[w] in In
jlh can be written as Avn

jlh and, analogously, the
value of B[w] in In

jlh can be written as Bvn
jlh.

For the subsequent development it is useful to notice that for a step function
w ∈ Xk

n, we have

‖w‖Lp =
⎡
⎣∑

j

∑
l

∑
h

(√
(w1j lh)2 + . . .+ (wkjlh)2

)p

P(In
jlh)

⎤
⎦

1/p

.

Let us denote with Ln the total number of the cells In
jlh induced by the partition

πn and group all the values wn
jlh, for any j, l, h, in a vector which, with abuse of

notation, we denote (wn
1 , . . . , w

n
Ln

) ∈ R
k×Ln , i.e., we use the same symbol for both

a step function of Xk
n and its associated vector of Rk×Ln which describes its constant

values on each cell. Moreover, we make the position

‖w‖2−p
Lp = f (wn

1 , . . . , w
n
Ln

).
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A way of ordering the elements wn
jlh into a vector (wn

α)α ∈ R
k×Ln will be specified

later and is fundamental for the implementation of our approximation procedure.
We can thus associate to the set of step functions Mn

P
, the set

Mn = {vn ∈ R
k×Ln : vn

jlh ∈ Mn
jlh, ∀j, l, h},

where

Mn
jlh = {vn

jlh ∈ R
k : Gvn

jlh ≤ q̄n
j lh}, ∀ j, l, h.

Equipped with these notations, (11) can be equivalently written as

∑
j

∑
l

∑
h

sl−1
n A[wn

jlh].(vn
jlh − wn

jlh)P(I
n
jlh)+

∑
j

∑
l

∑
h

B[wn
jlh].(vn

jlh − wn
jlh)P(I

n
jlh)

+εn
∑
j

∑
l

∑
h

f (wn
1 , . . . , w

n
Ln

)|wn
jlh|p−2 (wn

jlh)
.(vn

jlh − wn
jlh)P(I

n
jlh)

≥
∑
j

∑
l

∑
h

(b. + r
j−1
n c.)(vn

jlh − wn
jlh)P(I

n
jlh).

(12)

In (12) we can choose vn
jlh = wn

jlh for all the cells excepted one, so as to simplify
the factor P(In

jlh). However, the resulting inequality cannot be interpreted as a
variational inequality on a single cell, because the term f involves the variables
of all the cells. We can then sum again the resulting expression over the indices
j, l, h and obtain

∑
j

∑
l

∑
h

sl−1
n A[wn

jlh].(vn
jlh − vn

jlh)+
∑
j

∑
l

∑
h

B[wn
jlh].(vn

jlh − vn
jlh)

+εn
∑
j

∑
l

∑
h

f (wn
1 , . . . , w

n
Ln

)|wn
jlh|p−2 (wn

jlh)
.(vn

jlh − vn
jlh)

≥
∑
j

∑
l

∑
h

(b. + r
j−1
n c.)(vn

jlh − vn
jlh).

(13)

Let us notice that if p = 2 the variational inequality above can be split into a large
number of independent variational inequalities in R

k , one for each elementary cell
Ijlh (see, e.g., [11]). This decomposition is not possible for p > 2 but, in this
case, the last expression represents a variational inequality in R

k×Ln with a special
structure. In order to specify the structure of the operator of (13), as well as the
constant term in the right hand side, so as to obtain a computational scheme that
can be implemented in a straightforward manner, we need to specify a way in which
the two (scalar) indices j, l and the multi-index h are mapped into a single index α.
Thus, remember that:
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j = 1, . . . , NR
n , l = 1, . . . , NS

n , hi = 1, . . . , NDi
n , i = 1, . . . , m,

and define

α = 1+ (j − 1)+ (l − 1)NR
n + (h1 − 1)NR

n NS
n + · · · + (hm − 1)NR

n NS
n

m−1∏
i=1

NDi
n .

(14)

On the other hand, from any given value of α ∈ {1, 2, . . . , Ln}, we can derive the
corresponding indices j, l, h. This can be done in various ways and here we describe
a sequential algorithm. We recall that 3a/b4 denotes the result of the integer division
of a divided by b, while amod b denotes the remainder. Define α1 = α − 1 and
compute

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j = (α1 mod NR
n )+ 1, α2 =

⌊
α1/N

R
n

⌋
,

l = (α2 mod NS
n )+ 1, α3 =

⌊
α2/N

S
n

⌋
,

h1 = (α3 mod N
D1
n )+ 1, α4 =

⌊
α3/N

D1
n

⌋
,

...
...

hm = (αm+2 mod Nm
n )+ 1.

If we denote

T n
l = sl−1

n A+ B and enj = b + r
j−1
n c, (15)

then (13) can be written as

∑
α

[T n
α (wn

α)].(vn
α − wn

α)+ εn
∑
α

f (wn)|wn
α|p−2(wn

α)
.(vn

α − wn
α)

≥
∑
α

(enα)
.(vn

α − wn
α).

(16)

Notice that the expressions for T n
α and enα can be derived from (15) by using

the inversion of formula (14) given above. Finally, we remark that any of the
numerous algorithms for finite dimensional variational inequalities can be exploited
for solving (16).
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3 Application to the Traffic Network Equilibrium Problem
with Random Data

In this section we apply the results shown in Section 2 to the traffic network equi-
librium problem with random data. First, we recall the deterministic version of the
problem and its variational inequality formulation (Section 3.1). Section 3.2 deals
with the problem where both the traffic demand and the travel cost functions include
random perturbations and a stochastic variational inequality formulation is given.
Moreover, we prove a convergence result for the average cost at equilibrium by
exploiting the approximation and regularization procedure described in Section 2.2.
Finally, Section 3.3 is devoted to some numerical experiments showing the impact
of different probability distributions of the random data on the average cost at
equilibrium.

3.1 An Outline of the Traffic Network Equilibrium Problem

We now recall the basic definitions and the variational inequality formulation of a
network equilibrium flow (see, e.g., [3, 17]). For a comprehensive treatment of all
the mathematical aspects of the traffic network equilibrium problem, we refer the
interested reader to the classical book of Patriksson [16]. A traffic network consists
of a triple G = (N,A,W), where N = {N1, . . . , Np} is the set of nodes, A =
{a1, . . . , an} represents the set of direct arcs (also called links) connecting pairs of
nodes, and W = {W1, . . . ,Wm} ⊆ N ×N is the set of the origin-destination (O-D)
pairs. The flow on the link ai is denoted by fi and we group all the link flows in a
vector f = (f1, . . . , fn). A path (or route) is defined as a set of consecutive links
and we assume that each O-D pair Wj is connected by rj paths whose set is denoted
by Pj . All the paths in the network are grouped into a vector (R1, . . . , Rk). The
link structure of the paths can be described by using the link-path incidence matrix
Δ = (δir ), i = 1, . . . , n, r = 1, . . . , k, with entries δir = 1, if ai ∈ Rr , and 0
otherwise. To each path Rr it is associated a flow Fr . The path flows are grouped
into a vector (F1, . . . , Fk) which is called the network path flow (or simply, the
network flow if it is clear that we refer to paths). The flow fi on the link ai is equal
to the sum of the flows on the paths containing ai , so that f = ΔF . The unit cost
of traveling through ai is a real function ci(f ) ≥ 0 of the flows on the network,
so that c(f ) = (c1(f ), . . . , cn(f )) denotes the link cost vector on the network.
The meaning of the cost is usually that of travel time and, in the simplest case, the
generic component ci only depends on fi . A very popular link cost function was
introduced by the Bureau of Public Roads [2] and explicitly take into account the
link capacities. More precisely, the travel cost for link ai is given by



416 M. Passacantando and F. Raciti

ci(fi) = t0
i

[
1 + γ

(
fi

ui

)β
]
, (17)

where ui describes the capacity of link ai , t0
i is the free flow travel time on link ai ,

while β and γ are positive parameters. Analogously, one can define a cost on the
paths as C(F) = (C1(F ), . . . , Ck(F )). Usually, Cr(F ) is just the sum of the costs
on the links which build that path:

Cr(F ) =
n∑

i=1

δirci(f ),

or in compact form C(F) = Δ.c(ΔF). For each pair Wj , there is a given traffic
demand Dj > 0, so that D = (D1, . . . , Dm) is the demand vector of the network.
Feasible path flows are nonnegative and satisfy the demands, i.e., belong to the set

K = {F ∈ R
k : F ≥ 0 and ΦF = D}, (18)

where Φ is the pair-path incidence matrix whose entries, for j = 1, . . . , m, r =
1, . . . , k, are

ϕjr =
{

1, if the path Rr connects the pair Wj,

0, elsewhere.

The notion of a user traffic equilibrium is given by the following definition.

Definition 2 A network flow H ∈ K is a Wardrop equilibrium if, for each O-D pair
Wj and for each pair of paths Rr,Rs which connect Wj , the following implication
holds:

Cr(H) > Cs(H) ⇒ Hr = 0;

that is, if traveling along the path Rr takes more time than traveling along Rs , then
the flow along Rr vanishes.

Remark 1 Among the various paths which connect a given O-D pair Wj some will
carry a positive flow and others zero flow. It follows from the previous definition
that, for a given O-D pair, the travel cost is the same for all nonzero flow paths,
otherwise users would choose a path with a lower cost. Hence, H is a Wardrop
equilibrium if for each O-D pair Wj there exists λj ∈ R such that

Cr(H)

{
= λj , if Hr > 0,

≥ λj , if Hr = 0.
(19)



On the Approximation of Monotone Variational Inequalities in Lp Spaces 417

Hence, λj denotes the equilibrium cost shared by all the used paths connecting Wj .
The variational inequality formulation of the Wardrop equilibrium is given by the
following result (see, e.g., [3]).

Theorem 5 A network flow H ∈ K is a Wardrop equilibrium iff it satisfies the
variational inequality

C(H).(F −H) ≥ 0, ∀ F ∈ K. (20)

Sometimes it is useful to decompose the scalar product in (20) according to the
various O-D pairs Wj :

m∑
j=1

∑
r∈Pj

Cr(H) (Fr −Hr) ≥ 0, ∀ F ∈ K.

For the subsequent development the monotonicity properties of the cost operators
will be exploited. We recall them in this section for the reader convenience.

Definition 3 A map T : Rk → R
k is said monotone if

(T (x)− T (y)).(x − y) ≥ 0, ∀ x, y ∈ R
k,

and strictly monotone if the equality holds only for x = y. T is said strongly
monotone if there exists τ > 0 such that

(T (x)− T (y)).(x − y) ≥ τ‖x − y‖2, ∀ x, y ∈ R
k.

The strict monotonicity assumption of the link cost functions is commonly used
because it models the congestion effect. However, this does not necessarily imply
the strict monotonicity of the path cost functions, as the following lemma shows.

Lemma 1

1. If c is monotone, then C is monotone.
2. If c is strictly monotone and Δ has full column rank, then C is strictly monotone.
3. If c is strongly monotone and Δ has full column rank, then C is strongly

monotone.

Proof

1. If F 1, F 2 ∈ K , then

[F 1 − F 2].[C(F 1)− C(F 2)] = [F 1 − F 2].Δ.[c(ΔF 1)− c(ΔF 2)]
= [ΔF 1 −ΔF 2].[c(ΔF 1)− c(ΔF 2)]
≥ 0.
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2. If F 1 �= F 2, then ΔF 1 �= ΔF 2 since Δ has full column rank, hence

[F 1 − F 2].[C(F 1)− C(F 2)] = [F 1 − F 2].Δ.[c(ΔF 1)− c(ΔF 2)]
= [ΔF 1 −ΔF 2].[c(ΔF 1)− c(ΔF 2)]
> 0.

3. Let F 1, F 2 ∈ K . The strong monotonicity of c implies that there exists τ > 0
such that

[F 1 − F 2].[C(F 1)− C(F 2)] = [F 1 − F 2].Δ.[c(ΔF 1)− (ΔF 2)]
= [ΔF 1 −ΔF 2].[c(ΔF 1)− c(ΔF 2)]
≥ τ‖ΔF 1 −ΔF 2‖2

= τ(F 1 − F 2).Δ.Δ(F 1 − F 2)

≥ τλmin(Δ
.Δ)‖F 1 − F 2‖2,

where λmin(Δ
.Δ), which denotes the minimum eigenvalue of Δ.Δ, is positive

since Δ has full column rank.  "

3.2 The Stochastic VI Formulation of the Traffic Network
Equilibrium Problem

We now consider the traffic network equilibrium problem where both the demand
and the costs are affected by random perturbations.

Let Ω be a sample space and P be a probability measure on Ω , and consider
the following feasible set which takes into consideration random fluctuations of the
demand:

K(ω) = {F ∈ R
k : F ≥ 0, ΦF = D(ω)}, ω ∈ Ω.

Moreover, let C : Ω × R
k �→ R

k be the random cost function. We can thus
introduce ω as a random parameter in (20) and consider the problem of finding a
vector H(ω) ∈ K(ω) such that, P − a.s:

C(ω,H(ω)).(F −H(ω)) ≥ 0, ∀ F ∈ K(ω). (21)

Definition 4 A random vector H ∈ K(ω) is a random Wardrop equilibrium if for
P -almost every ω ∈ Ω , for each O-D pair Wj and for each pair of paths Rr,Rs

which connect Wj , the following implication holds:
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Cr(ω, (H(ω)) > Cs(ω, (H(ω))) ⇒ Hr(ω) = 0. (22)

Consider then the set

KP = {F ∈ Lp(Ω,P,Rk) : Fr(ω) ≥ 0, P .− a.s., ∀ r = 1, . . . , k,

ΦF(ω) = D(ω), P .− a.s.},

which is convex, closed, and bounded, hence weakly compact. Furthermore, assume
that the cost function C satisfies the growth condition:

‖C(ω, z)‖ ≤ α(ω)+ β(ω)‖z‖p−1, ∀ z ∈ R
k, P .− a.s., (23)

for some α ∈ Lq(Ω,P ), β ∈ L∞(Ω, P ), p−1 + q−1 = 1.

Remark 2 We note that polynomial cost functions are often used to model the
network congestion, e.g., the BPR cost functions (17), hence condition (23) is
naturally satisfied. In particular, with linear costs the functional setting is the Hilbert
space L2.

The Carathéodory function C gives rise to a Nemytskii map Ĉ : Lp(Ω,P,Rk) →
Lq(Ω,P,Rk) defined through the usual position

Ĉ(F )(ω) = C(ω, F (ω)), (24)

and, with abuse of a notation, instead of Ĉ, the same symbol C is often used for both
the Carathéodory function and the Nemytskii map that it induces. We thus consider
the following integral variational inequality: find H ∈ KP such that

∫
Ω

C(ω,H(ω) ).(F −H(ω) )dP (ω) ≥ 0, ∀ F ∈ KP . (25)

A solution of (25) satisfies the random Wardrop conditions in the sense shown by
the following lemma (see [12] for the proof).

Lemma 2 If H ∈ KP is a solution of (25), then H is a random Wardrop
equilibrium.

As a consequence of the previous lemma, we get that there exists a vector
function λ ∈ Lp(Ω,P,Rm) such that

Cl(ω,H(ω)) = λj (ω) (26)

for any O-D pair Wj and any path Rl connecting Wj , with Hl(ω) > 0, P -almost
surely.

In order to better address the modeling and computational aspects, we specify
how the deterministic and the random variables appear in the operator structure.
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More precisely, we assume that the operator is the sum of a purely deterministic term
and of a random term, where randomness acts as a modulation. With the specifying
of the constant term in the operator explicitly, we have

C(ω,H(ω)) = S(ω)A[H(ω)] + B[H(ω)] − b − R(ω)c, (27)

where S ∈ L∞(Ω, P ), R ∈ Lq(Ω), A,B : Lp(Ω,P,Rk) → Lq(Ω,P,Rk),

b, c ∈ R
k . The integral variational inequality (25) now reads

∫
Ω

( S(ω)(A[H(ω)]). + (B[H(ω)]). )(F −H(ω))dP (ω)

≥
∫
Ω

( b. + R(ω)c.)(F −H(ω))dP (ω), ∀ F ∈ KP .

(28)

The average cost at equilibrium is defined as

EP [λ] =
∫
Ω

λ(ω)dP (ω), (29)

where λ = λ(ω) = (λ1(ω), . . . , λm(ω) ) is defined as in (26).

Remark 3 Let us note that the integral in (29) is different from zero under the
natural assumption that in each path Rr there is a link where the cost is bounded
from below by a positive number (uniformly in ω ∈ Ω). This hypothesis is fulfilled
in real networks because the cost is positive for positive flows, but also the cost at
zero flow (called the free flow time) is positive, because it represents the travel time
without congestion.

As already explained in the previous section, the random vector t = D(ω) and
the two random variables r = R(ω) and s = S(ω) generate a probability P in
the image space R

2+m of (r, s, t) from the probability P on the abstract sample
space Ω . Hence, we can express the earlier defined quantities in terms of the image
space variables, thus obtaining functions which can be approximated through a
discretization procedure. The integration now runs over the image space variables,
but to keep notation simple we just write

∫
instead of

∫∞
0

∫ s

s

∫
R

m+ . The transformed
expression reads as follows:

EP[λ] =
∫

λ(r, s, t)dP(r, s, t), (30)

Let us recall that the solution H = H(r, s, t) of the stochastic variational
inequality which describes the network equilibrium can be approximated using the
procedure explained in Section 2.2 by a sequence {Hn} of step functions such that
Hn → H in Lp, as n →∞. In the next result we give converging approximations
for the mean values defined previously.
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Theorem 6 For any n ∈ N, we denote

Cn[ρn, σn,H
n(r, s, t)] = σnA[Hn(r, s, t)] + B[H(r, s, t)] − b − ρnc

and

λn(r, s, t) = (λn
1(r, s, t), . . . , λ

n
m(r, s, t)),

where λn
j (r, s, t) = Cn

l [ρn, σn,H
n(r, s, t)] for all paths Rl connecting Wj , for

which Hn
l (r, s, t) > 0, P-a.s.. Let ρ(r, s, t) = r, σ (r, s, t) = s. If ρn → ρ strongly

in Lq , σn → σ strongly in L∞, and Hn → H strongly in Lp, then the sequence

{EP[λn]}n =
{∫

λn(r, s, t)dP(r, s, t)

}
n

converges to EP[λ], as n →∞. Moreover, Var(λn) → Var(λ).

Proof Since Hn → H strongly in Lp, it follows that A[Hn] → A[H ] and

B[Hn] → B[H ], strongly in Lq = L
p

p−1 because of the continuity of the Nemytskii
operators A and B. Moreover, ρn → ρ strongly in Lq and σn → σ strongly in L∞.
As a consequence,

σnA[Hn] + B[Hn] − b − ρnc → σA[H ] + B[H ] − b − ρc

strongly in Lq , and also strongly in L1 because P is a probability measure. Hence,
for each i = 1, . . . , k, we get Cn

i [ρn, σn,H
n] → Ci[r, s,H ] strongly in L1.

Moreover, since p > 2 strong convergence in Lp also implies convergence of
variances and, by the definitions of λ and λn, the thesis is proved.  "

3.3 Numerical Experiments

We now report some numerical tests obtained by implementing the approximation
and regularization procedures described in the previous sections. We consider a
stochastic framework where both the traffic demands and the cost functions are
affected by random perturbations. In particular, we assume that the random Wardrop
equilibria depend on random vectors r = R(ω) and t = D(ω). The numerical
computation of random Wardrop equilibria has been performed by implementing
in Matlab 2018a the approximation and regularization procedures described in
Section 2.2 combined with the algorithm designed in [15] for deterministic Wardrop
equilibria.

Example 1 We consider the network consisting of 5 nodes and 6 links shown in
Figure 1. We assume that (1,5) is the only O-D pair and the traffic demand is
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Fig. 1 Test network of
Example 1
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D = 100 + δ, where δ is a random variable which varies in the interval [−10, 10]
with either uniform distribution or truncated normal distribution with mean 0 and
standard deviation 2.5.

The deterministic link cost functions are of the BPR form (17) defined as follows:

c1 = 0.5
[
1 + 0.15 (f1/5)4] , c2 = 1 + 0.15 (f2/10)4 ,

c3 = 0.5
[
1 + 0.15 (f3/5)4] , c4 = 0.5

[
1 + 0.15 (f4/5)4] ,

c5 = 1 + 0.15 (f5/10)4 , c6 = 0.5
[
1 + 0.15 (f6/10)4] .

The O-D pair is connected by four paths. We assume that the path cost operator
is defined as in (27), where S = 0, B(H) − b represents the deterministic path
costs corresponding to the above link cost functions, while c = −(1, . . . , 1) and
r = R(ω) is a random variable which varies in the interval [0, 200] with either
uniform distribution or truncated normal distribution with mean 100 and standard
deviation 25.

Notice that in this case the link-path incidence matrix Δ has not full column
rank and the path cost operator is monotone but not strongly monotone. Moreover,
since the deterministic part of the path cost operator is polynomial with degree
4, the operator C satisfies the growth condition (23) with p = 5. Therefore, the
approximated regularized variational inequality (13) cannot be decomposed into a
large number of small size variational inequalities.

Both the intervals [−10, 10] and [0, 200] have been partitioned into NI subin-
tervals in the approximation procedure and the regularization parameter ε has been
chosen equal to 1/(NI )

6.

Table 1 shows the convergence of the mean values and standard deviations of the
cost at equilibrium λ for increasing values of NI , assuming that the random variables
δ and r vary with uniform distribution. Similarly, Table 2 shows the mean values and
standard deviations of λ, when δ and r vary with truncated normal distribution.

Example 2 We now consider the grid network shown in Figure 2 consisting of
36 nodes and 60 links. We assume that there are three O-D pairs: (1,18), (13,30),
(19,36) with traffic demands equal to D = d+δ(1, 1, 1), where d = (150, 100, 200)
and δ is a random variable which varies in the interval [−50, 50]with either uniform
distribution or truncated normal distribution with mean 0 and standard deviation 10.
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Table 1 Mean values and
standard deviation of the cost
at equilibrium when the
random variables vary with
uniform distribution

Cost at equilibrium

NI Mean value Std deviation

5 545.825 121.69

10 546.146 123.68

15 546.205 124.04

20 546.226 124.17

25 546.236 124.23

30 546.241 124.26

Table 2 Mean values and
standard deviation of the cost
at equilibrium when the
random variables vary with
truncated normal distribution

Cost at equilibrium

NI Mean value Std deviation

5 537.218 48.54

10 537.469 52.12

15 537.524 52.87

20 537.544 53.15

25 537.553 53.27

30 537.559 53.34

Fig. 2 Test network of
Example 2

The deterministic link cost functions are of the BPR form (17) with γ = 0.15
and β = 4 for all the links, while t0

i = 1 and ui = 50 for any i = 1, . . . , 30, and
t0
i = 5 and ui = 100 for any i = 31, . . . , 60.

We assume that the path cost operator is defined as in (27), where S = 0,
B(H) − b represents the deterministic path costs corresponding to the above link
cost functions, while c = −(1, . . . , 1) and r = R(ω) is a random variable which
varies in the interval [0, 20] with either uniform distribution or truncated normal
distribution with mean 10 and standard deviation 2.

Notice that the link-path incidence matrix Δ has not full column rank since the
total number of paths is greater than the number of links. Hence, the path cost
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Table 3 Mean values and
standard deviations of the
costs at equilibrium when the
random variables vary with
uniform distribution

Costs at equilibrium

Mean values Std deviations

NI (1,18) (13,30) (19,36) (1,18) (13,30) (19,36)

5 19.860 22.011 22.735 3.366 4.869 5.080

10 19.940 22.044 22.833 3.456 4.942 5.229

15 19.970 22.073 22.867 3.476 4.997 5.251

20 19.974 22.078 22.871 3.481 5.012 5.256

25 19.976 22.080 22.873 3.483 5.018 5.259

Table 4 Mean values and
standard deviations of the
costs at equilibrium when the
random variables vary with
truncated normal distribution

Costs at equilibrium

Mean values Std deviations

NI (1,18) (13,30) (19,36) (1,18) (13,30) (19,36)

5 19.089 20.854 21.574 0.973 1.335 1.513

10 19.112 20.901 21.626 1.082 1.534 1.653

15 19.121 20.907 21.633 1.106 1.563 1.692

20 19.134 20.911 21.639 1.112 1.573 1.705

25 19.140 20.913 21.644 1.114 1.589 1.708

operator is monotone but not strongly monotone. Moreover, similarly to Example 1,
the cost operator satisfies the growth condition (23) with p = 5.

Both the intervals [−50, 50] and [0, 20] have been partitioned into NI subinter-
vals in the approximation procedure and the regularization parameter ε has been
chosen equal to 1/(NI )

6.
Tables 3 and 4 show the convergence of the mean values and standard deviations

of the costs at equilibrium λ of the three O-D pairs, assuming that the random vari-
ables δ and r vary with uniform distribution or with truncated normal distribution,
respectively.
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Operator Factorization and Solution of
Second-Order Nonlinear Difference
Equations with Variable Coefficients and
Multipoint Constraints

E. Providas

Abstract A method for constructing solutions to boundary value problems for
a class of second-order nonlinear difference equations with variable coefficients
together with multipoint conditions is presented. The technique is based on the
decomposition of the nonlinear difference equation into linear components of the
same or lower order and the factorization of the associated second-order linear
difference operators. The efficiency of the procedure is demonstrated by considering
several examples.

1 Introduction

Nonlinear difference equations arise often in mathematical modeling of phenomena
and processes in natural sciences, economics, and social sciences, see, for exam-
ple, [4–6, 8, 16] and the references therein.

In general, there exist no universal methods for solving nonlinear difference
equations, and, moreover, most of them cannot be solved explicitly. However, there
are some types of nonlinear difference equations which can be solved in closed form
by transforming them to linear difference equations. The majority of these are first-
order equations with constant or variable coefficients and higher-order equations
with constant coefficients. Difference equations of order m ≥ 2 with variable
coefficients, even for linear equations, are in general difficult to solve exactly [8].

Some explicit formulae for second-order and mth-order linear difference equa-
tions with arbitrarily varying coefficients have been reported, respectively, in [14,
22] and [3, 13, 15]. Algorithms for solving linear recurrence equations with
polynomial coefficients are surveyed in [21]. The factorization method has also been
used to solve both differential equations [10, 23, 26] and second-order difference
equations [7, 12]. Multipoint boundary value problems for difference equations
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have been studied intensively over the last three decades. For example, in the
pioneering article [9], existence of solutions and iterative schemes for obtaining
approximate solutions to mth-order linear difference equations subject to multipoint
conditions are discussed. Nonlocal boundary value problems for discrete systems
of general first-order equations have been studied in [1, 24]. Solutions for second-
order difference problems with nonlocal boundary conditions, following different
approaches, have been addressed in [2, 19, 20, 25]. Existence and non-existence of
positive solutions for second-order nonlinear difference equations subject to multi-
point boundary conditions have been investigated in [11]. Finally, the papers [17, 18]
are devoted to factorization method for solving multipoint problems for second-
order linear difference equations with polynomial coefficients.

This paper is concerned with the exact solution of a class of linear and nonlinear
second-order difference equations with variable coefficients coupled with multipoint
constraints by the operator factorization method. Specifically, in Section 2, we
present the operator factorization method for solving the second-order linear
difference equation

y(n+ 2)+ p(n)y(n+ 1)+ q(n)y(n) = f (n), n ∈ N, (1)

subject to multipoint constraints

μi1y(1)+ μi2y(2)+ · · · + μily(l) = βi, i = 1, 2, l ≥ 2, (2)

where N = {1, 2, 3, . . .}, the coefficients p(n) and q(n) and the nonhomogeneous
term f (n) are given functions (sequences) of n, y(n) is an unknown function, and
μij , βi ∈ R, i = 1, 2, j = 1, . . . , l. In Section 3, we deal with the construction of
explicit solutions to second-order nonlinear difference equations of the kinds

F

(
y(n+ 2)

y(n)
, n

)
= F (x(n), n) = x2(n)+a(n)x(n)+b(n) = 0, n ∈ N, (3)

and

y(n+ 2)y(n+ 1)+ [q(n)y(n+ 1)− t (n)y(n+ 2)] y(n)− q(n)t (n)y2(n) = 0,
(4)

where the nonlinear function F is a second-degree polynomial function of x(n) =
y(n + 2)/y(n) and the coefficients a(n), b(n), q(n) and t (n) are given functions
(sequences) of n, along with the multipoint conditions (2). Equations (3) and (4) can
be decomposed into linear second-order difference equations, which under certain
conditions can be solved by the abovementioned operator factorization method.
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2 Factorization Method

Let N = {1, 2, 3, . . .} denote the set of positive non-zero integers, y(n) : N→ R be
a discrete function (sequence), and S be the space of all functions y(n) defined on
N.

Let L1, L2 : S → S be two first-order linear difference operators defined by

L1y(n) = [E − r(n)] y(n), D(L1) = S, (5)

L2y(n) = [E − s(n)] y(n), D(L2) = S, (6)

respectively, where the independent variable n ∈ N, Ey(n) = y(n+ 1) denotes the
shift operator and the coefficients r(n), s(n) �= 0 ∈ S. Consider the composition,

L1L2y(n) = L1 (L2y(n))

= [E − r(n)] ([E − s(n)] y(n))

=
[
E2 − (r(n)+ s(n+ 1)) E + r(n)s(n)

]
y(n), (7)

where Ejy(n) = y(n+j), j = 1, 2. Hence, we can state the following proposition.

Proposition 1 Let the second-order linear difference operator L : S → S be
defined by

Ly(n) =
[
E2 + p(n)E + q(n)

]
y(n), D(L) = S, (8)

where n ∈ N, the coefficients p(n), q(n) ∈ S, q(n) �= 0, and y(n) ∈ S. If there exist
functions r(n), s(n) ∈ S, which satisfy the nonlinear equations

r(n)+ s(n+ 1) = −p(n), (9)

r(n)s(n) = q(n), (10)

then the operator L can be factorized into two first-order linear difference operators
L1, L2 : S → S,

L1y(n) = [E − r(n)] y(n), L2y(n) = [E − s(n)] y(n), (11)

with D(L1) = S and D(L2) = S, respectively, such that

Ly(n) = L1L2y(n). (12)

Let the standard second-order discrete initial value problem

Ly(n) = f (n), y(1) = β1, y(2) = β2, (13)
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where β1, β2 ∈ R, f (n) ∈ S is a forcing function, and y(n) ∈ S is the sought
function describing the response of the system modeled by (13). If relations (9) and
(10) are satisfied, then by Proposition 1, we have

L1L2y(n) = f (n), y(1) = β1, y(2) = β2. (14)

By setting L2y(n) = z(n), problem (13) can be factorized into the following two
first-order initial value problems,

L1z(n) = f (n), z(1) = β2 − s(1)β1, (15)

L2y(n) = z(n), y(1) = β1 . (16)

Problem (15) can be solved analytically with respect to z(n) by using the standard
techniques for first-order initial value problems [8]. Substituting z(n) into (16) and
solving in like manner, we can obtain the solution of the initial value problem (16)
in closed form, which is the solution of the second-order initial value problem (13).
To formalize this procedure, we prove the next lemma.

Lemma 1 Let L be the second-order linear difference operator in (8) and L̂ be its
restriction on

D(L̂) = {y(n) : y(n) ∈ D(L), y(1) = β1, y(2) = β2}, (17)

where β1, β2 ∈ R. If conditions (9) and (10) are satisfied, then

(i) The operator L̂ can be factorized as

L̂y(n) = L̂1L̂2y(n), (18)

where L̂1 and L̂2 are restrictions of the first-order linear difference operators
L1 and L2, defined in (5) and (6), on

D(L̂1) = {z(n) : z(n) ∈ D(L1), z(1) = β2 − s(1)β1}, (19)

D(L̂2) = {y(n) : y(n) ∈ D(L2), y(1) = β1}, (20)

respectively.
(ii) The unique solution of the initial value problem

L̂y(n) = f (n), (21)

where f (n) ∈ S is a known function, can be obtained in closed form by

y(n) = L̂−1f (n) = L̂−1
2 L̂−1

1 f (n), (22)
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where

z(n) = L̂−1
1 f (n) =

[
n−1∏
i=1

r(i)

]
z(1)+

n−1∑
j=1

⎡
⎣ n−1∏

i=j+1

r(i)

⎤
⎦ f (j), (23)

and

y(n) = L̂−1
2 z(n) =

[
n−1∏
i=1

s(i)

]
y(1)+

n−1∑
j=1

⎡
⎣ n−1∏

i=j+1

s(i)

⎤
⎦ z(j). (24)

Proof

(i) By Proposition 1, we have Ly(n) = L1L2y(n). Since the operator L̂ is a
restriction of L and the operators L̂1 and L̂2 are restrictions of the operators L1
and L2, respectively, it suffices to show that D(L̂) = D(L̂1L̂2). By using (19)
and (20), we obtain

D(L̂1L̂2) =
{
y(n) : y(n) ∈ D(L̂2), L̂2y(n) ∈ D(L̂1)

}
= {

y(n) : y(n) ∈ D(L2), y(1) = β1, y(n+ 1)− s(n)y(n) ∈ D(L̂1)
}

= {y(n) : y(n) ∈ S, y(1) = β1, y(2)− s(1)y(1) = β2 − s(1)β1}
= {y(n) : y(n) ∈ S, y(1) = β1, y(2) = β2} . (25)

Thus, if y(n) ∈ D(L̂1L̂2), then y(n) ∈ D(L̂), which implies D(L̂1L̂2) ⊂
D(L̂). Let now y(n) ∈ D(L̂), then y(n) ∈ D(L) = S, y(1) = β1, y(2) = β2.
It follows that L̂2y(n) = y(n + 1) − s(n)y(n) ∈ D(L̂1) since y(n), y(n +
1), s(n) ∈ S and y(2) − s(1)y(1) = β2 − s(1)β1, and then from (25), it is
concluded that y(n) ∈ D(L̂1L̂2), which means D(L̂) ⊂ D(L̂1L̂2). Hence,
D(L̂) = D(L̂1L̂2).

(ii) Setting L̂2y(n) = z(n), we get the initial value problem L̂1z(n) = f (n). The
latter possesses exactly one solution, namely z(n) = L̂−1

1 f (n) as in (23), see,
for example, in [8]. By substituting z(n) into the former and solving in an
analogous way, we obtain (24), which is the solution (22) of the second-order
initial value problem (21).  "

Consider now the second-order linear difference equation,

Ly(n) = y(n+ 2)+ p(n)y(n+ 1)+ q(n)y(n) = f (n), n ∈ N, (26)

subject to multipoint boundary conditions

μi1y(1)+ μi2y(2)+ · · · + μily(l) = βi, i = 1, 2, l ≥ 2, (27)
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where μij , βi ∈ R, i = 1, 2, j = 1, . . . , l. Set up the following system of l

algebraic equations,

q(n)y(n)+ p(n)y(n+ 1)+ y(n+ 2) = f (n), n = 1, 2, . . . , l − 2,

μi1y(1)+ μi2y(2)+ · · · + μily(l) = βi, i = 1, 2, l ≥ 2. (28)

By using the last equation to eliminate the appearance of y(l) from the other l − 1
equations and then using the (l − 1)th equation to eliminate y(l − 1) from each of
the other l − 2 equations and repeating the same process, we finally get

y(i) = β̂i , i = 1, 2, (29)

where β̂1, β̂2 ∈ R. Thus, the multipoint boundary value problem (26), (27) can be
reshaped into initial value problem

Ly(n) = f (n), y(1) = β̂1, y(2) = β̂2, (30)

which can be solved by means of Lemma 1, if relations (9) and (10) are satisfied.
We prove the next theorem.

Theorem 1 Let L be the second-order linear difference operator in (8) and P̂ be
its restriction on

D(P̂ ) = {y(n) : y(n) ∈ D(L),

μi1y(1)+ μi2y(2)+ · · · + μily(l) = βi, i = 1, 2, l ≥ 2}, (31)

where μij , βi ∈ R, i = 1, 2, j = 1, . . . , l. Assume that conditions (9) and (10) are
satisfied, and let

det W = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1) p(1) 1 0 · · · 0

0 q(2) p(2) 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 q(l − 2) p(l − 2) 1
μ11 μ12 · · · μ1,l−2 μ1,l−1 μ1l

μ21 μ22 · · · μ2,l−2 μ2,l−1 μ2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= 0, (32)

and Ŵ = W−1. Then,

(i) The operator P̂ can be factorized as follows:

P̂ y(n) = P̂1P̂2y(n), (33)

where P̂1 and P̂2 are restrictions of the two first-order linear difference
operators L1 and L2, defined in (5) and (6), on
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D(P̂1) = {z(n) : z(n) ∈ S, z(1) = β̂2 − s(1)β̂1}, (34)

D(P̂2) = {y(n) : y(n) ∈ S, y(1) = β̂1}, (35)

respectively, where

β̂i =
l−2∑
j=1

ŵij f (j)+
l∑

j=l−1

ŵij βj−l+2, i = 1, 2. (36)

(ii) The unique solution of the multipoint boundary value problem

P̂ y(n) = f (n), (37)

where f (n) ∈ S is a given function, can be obtained in closed form by

y(n) = P̂−1f (n) = P̂−1
2 P̂−1

1 f (n), (38)

where

z(n) = P̂−1
1 f (n) =

[
n−1∏
i=1

r(i)

](
β̂2 − s(1)β̂1

)
+

n−1∑
j=1

⎡
⎣ n−1∏

i=j+1

r(i)

⎤
⎦ f (j),

(39)
and

y(n) = P̂−1
2 z(n) =

[
n−1∏
i=1

s(i)

]
β̂1 +

n−1∑
j=1

⎡
⎣ n−1∏

i=j+1

s(i)

⎤
⎦ z(j). (40)

Proof

(i) We write Equation (28) in the compact matrix form

Wy = f, (41)

where the l × l matrix

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1) p(1) 1 0 · · · 0

0 q(2) p(2) 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 q(l − 2) p(l − 2) 1
μ11 μ12 · · · μ1,l−2 μ1,l−1 μ1l

μ21 μ22 · · · μ2,l−2 μ2,l−1 μ2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and the l-vectors

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(1)
y(2)
...

y(l − 2)
y(l − 1)

y(l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (1)
f (2)
...

f (l − 2)
β1

β2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If det W �= 0, then the system of Equation (41) can be solved uniquely with
respect to y, namely

y = W−1f = Ŵf =
⎡
⎢⎣

ŵ11 · · · ŵ1l
...

. . .
...

ŵl1 · · · ŵll

⎤
⎥⎦ f,

from where, we get

y(i) =
l−2∑
j=1

ŵij f (j)+
l∑

j=l−1

ŵij βj−l+2, i = 1, 2,

or

y(i) = β̂i , i = 1, 2, (42)

where

β̂i =
l−2∑
j=1

ŵij f (j)+
l∑

j=l−1

ŵij βj−l+2, i = 1, 2. (43)

Hence, by means of (42) and (43), the multipoint boundary value problem (37)
degenerates to initial value problem

P̂ y(n) = Ly(n) = y(n+ 2)+ p(n)y(n+ 1)+ q(n)y(n) = f (n),

D(P̂ ) = {y(n) : y(n) ∈ S, y(1) = β̂1, y(2) = β̂2}. (44)

By assumption, Equations (9) and (10) hold true, and therefore by Lemma 1,
the operator P̂ can be factorized as in (33)–(35).

(ii) Application of Lemma 1 yields the solution formulae (38)–(40).  "



Nonlinear Difference Equations with Variable Coefficients and Multipoint Constraints 435

3 Second-Order Nonlinear Difference Equations

In this section, we elaborate on a technique for solving two types of multipoint
nonlinear problems for second-order difference equations, which can be written
as products of linear second-order difference equations, by using the operator
factorization method presented in the previous section.

3.1 Type I

First, consider the second-order nonlinear difference equation

y2(n+ 2)+ a(n)y(n+ 2)y(n)+ b(n)y2(n) = 0, n ∈ N, (45)

subject to two general multipoint constraints

μi1y(1)+ μi2y(2)+ · · · + μily(l) = βi, i = 1, 2, (46)

where μij , βi ∈ R, i = 1, 2, j = 1, . . . , l, and l ≥ 2.
The difference equation (45) can be put in the form

F

(
y(n+ 2)

y(n)
, n

)
= F (x(n), n) = x2(n)+ a(n)x(n)+ b(n) = 0, n ∈ N,

where x(n) = y(n + 2)/y(n) and the nonlinear function F is a second degree
polynomial of x(n). Then,

[
x(n)+ q−(n)

] [
x(n)+ q+(n)

] = 0,

where q−(n), q+(n) ∈ S and a(n) = q−(n) + q+(n), b(n) = q−(n)q+(n), and
therefore, Equation (45) can be written as

[
y(n+ 2)+ q−(n)y(n)

] [
y(n+ 2)+ q+(n)y(n)

] = 0. (47)

It follows that, either

y(n+ 2)+ q−(n)y(n) = 0, n ∈ N (48)

or

y(n+ 2)+ q+(n)y(n) = 0, n ∈ N. (49)

Thus, the solutions of the multipoint nonlinear problem (45), (46) may be obtained
by solving the two multipoint linear difference problems (48), (46) and (49), (46).
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Additionally, if relations (9) and (10) are satisfied, namely

r−(n)+ s−(n+ 1) = 0, r−(n)s−(n) = q−(n), (50)

meaning there exists a function s−(n) such that q−(n) = −s−(n+ 1)s−(n), and

det W− = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q−(1) 0 1 0 · · · 0

0 q−(2) 0 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 q−(l − 2) 0 1
μ11 μ12 · · · μ1,l−2 μ1,l−1 μ1l

μ21 μ22 · · · μ2,l−2 μ2,l−1 μ2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= 0, (51)

then the problem (48), (46) can be solved by using Theorem 1.
Similarly, if the equations

r+(n)+ s+(n+ 1) = 0, r+(n)s+(n) = q+(n), (52)

are fulfilled, i.e. there exists a function s+(n) such that q+(n) = −s+(n+ 1)s+(n),
and

det W+ = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q+(1) 0 1 0 · · · 0

0 q+(2) 0 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 q+(l − 2) 0 1
μ11 μ12 · · · μ1,l−2 μ1,l−1 μ1l

μ21 μ22 · · · μ2,l−2 μ2,l−1 μ2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= 0, (53)

then the solution to problem (49), (46) may be obtained also by Theorem 1.
To illustrate the use of this technique, we contemplate the following example.

Example 1 Find the solutions of the multipoint nonlinear problem

y2(n+ 2)− 2(n+ 1)2y(n+ 2)y(n)+ n(n+ 1)2(n+ 2)y2(n) = 0, n ≥ 1,

y(1) = 1
1000 , 3y(4)− 10y(5) = − 3

20 . (54)

Observe that the difference equation in (54) is of the kind (45), and therefore it
can be written as in (47) with

q−(n) = −n(n+ 1), q+(n) = −(n+ 1)(n+ 2).

Thus, we get the following two multipoint linear problems:
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P̂−y(n) = y(n+ 2)− n(n+ 1)y(n) = 0, n ≥ 1,

D(P̂−) =
{
y(n) ∈ S : y(1) = 1

1000
, 3y(4)− 10y(5) = − 3

20

}
, (55)

and

P̂+y(n) = y(n+ 2)− (n+ 1)(n+ 2)y(n) = 0, n ≥ 1,

D(P̂+) =
{
y(n) ∈ S : y(1) = 1

1000
, 3y(4)− 10y(5) = − 3

20

}
. (56)

Take first problem (55). Equation (50) is satisfied for

r−(n) = −s−(n+ 1), s−(n) = n,

while by setting up the system

⎡
⎢⎢⎢⎢⎢⎣

−2 0 1 0 0
0 −6 0 1 0
0 0 −12 0 1
1 0 0 0 0
0 0 0 3 −10

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

y(1)
y(2)
y(3)
y(4)
y(5)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
1

1000
− 3

20

⎞
⎟⎟⎟⎟⎟⎠

,

we get det W− = 18 �= 0, i.e. the criterion (51) is also fulfilled. Hence, Theorem 1
is applicable. Inversion of the system yields

y(1) = β̂1 = 1

1000
, y(2) = β̂2 = 1

200
.

Therefore, problem (55) can be factorized as follows:

P̂−y(n) = P̂−
1 P̂−

2 y(n) = 0, n ≥ 1,

where

P̂−
1 z(n) = z(n+ 1)+ (n+ 1)z(n) = 0, n ≥ 1,

D(P̂−
1 ) =

{
z(n) ∈ S : z(1) = β̂2 − s−(1)β̂1 = 1

250

}
, (57)

and

P̂−
2 y(n) = y(n+ 1)− ny(n) = z(n), n ≥ 1,

D(P̂−
2 ) =

{
y(n) ∈ S : y(1) = β̂1 = 1

1000

}
. (58)
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By means of (39) and (40), we have

z(n) = (−1)n−1 n!
250

, n ≥ 1,

and

y(n) = [3 + 2(−1)n](n− 1)!
1000

, n ≥ 1,

which is one of the solutions of the given multipoint nonlinear problem (54).
Take now problem (56), which can be solved in a similar manner to acquire a

second solution of problem (54). Actually, the relation (52) is satisfied for

r+(n) = −s+(n+ 1), s+(n) = n+ 1,

and (53) holds true, since the system

⎡
⎢⎢⎢⎢⎢⎣

−6 0 1 0 0
0 −12 0 1 0
0 0 −20 0 1
1 0 0 0 0
0 0 0 3 −10

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

y(1)
y(2)
y(3)
y(4)
y(5)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
1

1000
− 3

20

⎞
⎟⎟⎟⎟⎟⎠

is nonsingular, det W+ = 36 �= 0. Therefore, Theorem 1 applies. Accordingly,

y(1) = β̂1 = 1

1000
, y(2) = β̂2 = 7

240
,

and problem (56) can be factorized as follows:

P̂+y(n) = P̂+
1 P̂+

2 y(n) = 0, n ≥ 1,

where

P̂+
1 z(n) = z(n+ 1)+ (n+ 2)z(n) = 0, n ≥ 1,

D(P̂+
1 ) =

{
z(n) ∈ S : z(1) = β̂2 − s(1)β̂1 = 163

6000

}
, (59)

and

P̂+
2 y(n) = y(n+ 1)− (n+ 1)y(n) = z(n), n ≥ 1,

D(P̂+
2 ) =

{
y(n) ∈ S : y(1) = β̂1 = 1

1000

}
. (60)
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By using (39) and (40), we obtain

z(n) = (−1)n−1 163(n+ 1)!
12,000

, n ≥ 1,

and

y(n) = [187 + 163(−1)n]n!
24,000

, n ≥ 1,

which is the second solution of the given multipoint nonlinear problem (54).

3.2 Type II

Consider the second-order nonlinear difference equation

y(n+ 2)y(n+ 1)+ [q(n)y(n+ 1)− t (n)y(n+ 2)] y(n)− q(n)t (n)y2(n) = 0,
(61)

subject to multipoint constraints

μi1y(1)+ μi2y(2)+ · · · + μily(l) = βi, i = 1, 2. (62)

Equation (61) can be written as

[y(n+ 2)+ q(n)y(n)] [y(n+ 1)− t (n)y(n)] = 0,

and hence, either

y(n+ 2)+ q(n)y(n) = 0 (63)

or

y(n+ 1)− t (n)y(n) = 0. (64)

Thus, the solutions of the nonlinear problem (61), (62) can be obtained by solving
the second-order linear problem (63), (62) and the first-order linear problem (64),
(62).

By solving the second-order linear problem (63) and (62), we may employ
Theorem 1 if the relations (9) and (10) are satisfied, i.e.

r(n)+ s(n+ 1) = 0, r(n)s(n) = q(n), (65)
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and

det W = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1) 0 1 0 · · · 0

0 q(2) 0 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 q(l − 2) 0 1
μ11 μ12 · · · μ1,l−2 μ1,l−1 μ1l

μ21 μ22 · · · μ2,l−2 μ2,l−1 μ2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= 0. (66)

The first-order linear problem (64) and (62) may be solved by standard means by
transferring the multipoint constraints into a compatible initial condition.

To show the implementation of this procedure, we consider the following
example problem.

Example 2 Let the nonlinear problem

y(n+ 2)y(n+ 1)−
[

n
n+2y(n+ 1)+ 2ny(n+ 2)

]
y(n)+ n2n

n+2y
2(n) = 0,

y(1) = y(4), y(6)− y(3) = 1
3 . (67)

The second-order nonlinear difference equation in (67) is of the type (61) with

q(n) = − n

n+ 2
, t (n) = 2n,

and it can be decomposed as

[
y(n+ 2)− n

n+ 2
y(n)

] [
y(n+ 1)− 2ny(n)

] = 0.

Thus, we have the following two multipoint linear problems:

P̂ y(n) = y(n+ 2)− n

n+ 2
y(n) = 0, n ≥ 1,

D(P̂ ) =
{
y(n) ∈ S : y(1) = y(4), y(6)− y(3) = 1

3

}
, (68)

and

T̂ y(n) = y(n+ 1)− 2ny(n) = 0, n ≥ 1,

D(T̂ ) =
{
y(n) ∈ S : y(1) = y(4), y(6)− y(3) = 1

3

}
. (69)
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The second-order linear problem (68) is factorable; actually, relation (65) is
satisfied for

r(n) = −s(n+ 1), s(n) = n

n+ 1
,

and the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
3 0 1 0 0 0

0 − 1
2 0 1 0 0

0 0 − 3
5 0 1 0

0 0 0 − 2
3 0 1

1 0 0 −1 0 0
0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y(1)
y(2)
y(3)
y(4)
y(5)
y(6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is nonsingular, det W = 1/6 �= 0. Therefore, Theorem 1 applies. Accordingly,

y(1) = β̂1 = 1, y(2) = β̂2 = 2,

and problem (68) can be factorized as follows:

P̂ y(n) = P̂1P̂2y(n) = 0, n ≥ 1,

where

P̂1z(n) = z(n+ 1)+ n+ 1

n+ 2
z(n) = 0, n ≥ 1,

D(P̂1) =
{
z(n) ∈ S : z(1) = β̂2 − s(1)β̂1 = 3

2

}
, (70)

and

P̂2y(n) = y(n+ 1)− n

n+ 1
y(n) = z(n), n ≥ 1,

D(P̂2) =
{
y(n) ∈ S : y(1) = β̂1 = 1

}
. (71)

By using (39) and (40), we get

z(n) = (−1)n−1 3

n+ 1
, n ≥ 1,

and

y(n) = 5 + 3(−1)n

2n
, n ≥ 1,

which is a solution of the given nonlinear problem (67).
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For the first-order linear problem (69), we construct the system Wy = f, viz.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 0
0 −4 1 0 0 0
0 0 −8 1 0 0
0 0 0 −16 1 0
0 0 0 0 −32 1
1 0 0 −1 0 0
0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y(1)
y(2)
y(3)
y(4)
y(5)
y(6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rank of the augmented matrix [W f] is greater than that of matrix W, and hence
no solution exists to Wy = f. Therefore, the first-order linear problem (69) has no
solution.
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An Invitation to the Study
of a Uniqueness Problem

Biagio Ricceri

Abstract In this very short chapter, we provide a strong motivation for the study of
the following problem: given a real normed space E, a closed, convex, unbounded
set X ⊆ E, and a function f : X → X, find suitable conditions under which, for
each y ∈ X, the function

x → ‖x − f (x)‖ − ‖y − f (x)‖

has at most one global minimum in X.

The aim of this very short chapter is merely to stimulate the study of the following
uniqueness problem related to an unconventional way of finding fixed points based
on a minimax approach.

Problem 1 Let E be a real normed space, X ⊆ E a closed, convex, and unbounded
set, and f : X → X a given function. Find suitable conditions under which, for
each y ∈ X, the function

x → ‖x − f (x)‖ − ‖y − f (x)‖

has at most one global minimum in X.

A real-valued function g on a topological space S is said to be inf-compact (resp.,
sup-compact) if, for each r ∈ R, the set {x ∈ S : g(x) ≤ r} (resp., {x ∈ S : g(x) ≥
r}) is compact.

Let A be a subset of a normed space E. A function f : A → E is said to be
sequentially weakly strongly continuous if, for every x ∈ A and for every sequence
{xn} in A converging weakly to x, the sequence {f (xn)} converges strongly to f (x).
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The motivation for studying Problem 1 is provided by Theorem 2 below which
is a consequence of the following general result:

Theorem 1 Let X be a non-empty convex set in a real vector space and let J :
X × X → R be a function such that J (x, x) = 0 for all x ∈ X, J (·, y) has at
most one global minimum in X for all y ∈ X and J (x, ·) is concave in X for all
x ∈ X. Furthermore, assume that there are two topologies τ1, τ2 in X such that the
following conditions are satisfied:

(a) J (·, y) is τ1-lower semicontinuous and τ1-inf-compact for all y ∈ X ;
(b) J (x, ·) is τ2-upper semicontinuous for all x ∈ X and, for some x0 ∈ X, J (x0, ·)

is τ2-sup-compact.

Then, there exists a point x∗ ∈ X that is, at the same time, the only global
minimum of J (·, x∗) and a global maximum of J (x∗, ·). In particular, x∗ is a fixed
point of any function f : X → X satisfying

J (f (x), x) ≤ sup
y∈X

J (x, y) (1)

for all x ∈ X.

Proof Let us apply Theorem 1.2 of [1], considering X with the topology τ1. Then,
that result ensures that

sup
y∈X

inf
x∈X J (x, y) = inf

x∈X sup
y∈X

J (x, y) . (2)

In view of (a), the function x → supy∈X J (x, y) has a global minimum in X, say
x∗. Moreover, due to (b), the function y → infx∈X J (x, y) has a global maximum
in X, say y∗. Therefore, by (2), we have

J (x∗, y) ≤ J (x∗, y∗) < J (x, y∗) (3)

for all x, y ∈ X, with x �= x∗. From (3), it follows that x∗ = y∗. Indeed, if x∗ �= y∗,
we would have

J (x∗, x∗) < J (y∗, y∗) ,

against the assumption that J is zero on the diagonal. So, we have

J (x∗, y) ≤ 0 < J(x, x∗) (4)

for all x, y ∈ X, with x �= x∗. Hence, x∗ is the only global minimum of J (·, x∗)
and, at the same time, a global maximum of J (x∗, ·). Now, let f : X → X be any
function satisfying (1). We claim that x∗ = f (x∗). Indeed, if x∗ �= f (x∗), by (4),
we would have
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sup
y∈X

J (x∗, y) < J (f (x∗), x∗)

against (1). �
As we said, an application of Theorem 1 gives the following result, which is the

motivation for studying Problem 1:

Theorem 2 Let E be a real reflexive Banach space, let X ⊆ E be a closed,
convex, and unbounded set, and let f : X → X be a sequentially weakly strongly
continuous function such that

lim sup
‖x‖→+∞

‖f (x)‖
‖x‖ <

1

2
. (5)

Assume also that, for each y ∈ X, the function

x → ‖x − f (x)‖ − ‖y − f (x)‖

has at most one global minimum in X.
Then, f has a unique fixed point x∗, which satisfies

‖x∗ − f (x)‖ < ‖x − f (x)‖

for all x ∈ X \ {x∗}.
Proof Consider the function J : X ×X → R defined by

J (x, y) = ‖x − f (x)‖ − ‖y − f (x)‖

for all x, y ∈ X. Fix y ∈ X. For each x ∈ X \ {0}, we have

J (x, y) ≥ ‖x‖ − 2‖f (x)‖ − ‖y‖ = ‖x‖
(

1 − 2
‖f (x)‖
‖x‖

)
− ‖y‖ ,

and so, in view of (5), it follows that

lim‖x‖→+∞ J (x, y) = +∞ . (6)

Further, let x ∈ X and let {xn} be a sequence in X converging weakly to x. Since,
by assumption, {f (xn)} converges strongly to f (x), {xn−f (xn)} converges weakly
to x − f (x), and so

‖x − f (x)‖ ≤ lim inf
n→∞ ‖xn − f (xn)‖ .
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As a consequence, we have

J (x, y) ≤ lim inf
n→∞ ‖xn − f (xn)‖ − lim

n→∞‖f (xn)− y‖ = lim inf
n→∞ J (xn, y) . (7)

At this point, taking (6), (7), and the reflexivity of E into account, we see that all
assumptions of Theorem 1 are satisfied, provided both τ1 and τ2 are the relative
weak topology in X. Finally, notice that

J (f (x), x) = ‖f (f (x))− f (x)‖ − ‖f (f (x))− x‖ ≤ ‖x − f (x)‖ = sup
y∈X

J (x, y)

for all x ∈ X. Hence, f has a unique fixed point x∗, which satisfies

‖x∗ − f (x)‖ < ‖x − f (x)‖

for all x ∈ X \ {x∗}, as claimed. �
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Schrödinger Equations in Nonlinear
Optics

Martin Schechter

Abstract Using global optimization, we are able to find nontrivial solutions of the
nonlinear steady-state Schrödinger equation arising in optics for wide ranges of the
parameters. Our results hold in arbitrary dimensions.

1 Introduction

The study of light waves propagating in a photorefractive crystal leads to the
following equation over a periodic domain Ω ⊂ R

2:

Δu = Pu

1 + V (x)+ |u|2 + λu, (1)

where P and λ are parameters, and V (x) is a nonnegative function periodic in Ω

(cf. [18]). The solution u is to be periodic in Ω with the same periods as those of
Ω. This equation has the trivial solution u = 0. It was studied in [18, 19], where it
was shown that there is a continuous energy or wavenumber spectrum that allows
the existence of steady-state solutions. In particular, they showed that

1. If P > 0, there is a constant δ > 0 such that Equation (1) has a nontrivial
solution provided 0 < −λ < δ.

2. If P < 0 and 0 < λ < −P/(1+V0), then Equation (1) has a nontrivial solution.
3. If P < 0 and λ ≥ −P/(1 + v0), then (1) has only the trivial solution.

Here,

V0 = max
x∈Ω

V (x), v0 = min
x∈Ω

V (x).
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Wave propagation in nonlinear periodic lattices has been studied by many
researchers (cf., e.g., [1–8, 13, 15–18] and their bibliographies.)

In [13], we studied (1) in the following way. Let a(x) = 1/(1 + V (x)), and
assume that a(x) is positive and bounded: 0 < m0 ≤ a(x) ≤ m1 < ∞. Then, (1)
becomes

Δu = Pau

1 + a|u|2 + λu. (2)

In stating our results, we made use of the following considerations. Let Ω be a
bounded periodic domain in R

n, n ≥ 1. Consider the operator −Δ on functions
in L2(Ω) having the same periods as Ω. The spectrum of −Δ consists of isolated
eigenvalues of finite multiplicity:

0 = λ0 < λ1 < · · · < λ� < · · · ,
with eigenfunctions in L∞(Ω). Let λ�, � ≥ 0, be one of these eigenvalues, and
define

N =
⊕
λ≤λ�

E(λ), M = N⊥,

where E(λ) is the eigenspace corresponding to λ.

We proved

Theorem 1

1. If P > 0, λ < 0, and there is an � ≥ 0 such that λ� + m1P ≤ |λ| < λ�+1 +
m0P, |λ| > λ�+1, then (1) has a nontrivial solution.

2. If P < 0, λ < 0, and there is an � ≥ 0 such that λ� + m0P < |λ| ≤ λ�+1 +
m1P, |λ| < λ�, then (1) has a nontrivial solution.

3. If P > 0, λ < 0, and 0 < |λ| < m0P, then (1) has a nontrivial solution.
4. If P < 0, λ > 0, and 0 < λ < m0|P |, then (1) has a nontrivial solution.

In the present paper, we wish to cover some remaining situations not mentioned
in [13, 18, 19] as well as extend their results to higher dimensions. We shall show
that there are many intervals of the parameters in which nontrivial solutions exist.
Our results are true in any dimension.

We now extend the results of [13] in the following way. We remove the
assumptions on a(x) and assume only that V (x) is a positive function in L1(Ω).

We prove

Theorem 2 If P < 0, λ > 0, and

λ|Ω| + P

∫
Ω

1

1 + V
dx < 0,

then (1) has a nontrivial solution.
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Theorem 3 If P > 0, λ < 0,

λ+ P
1

1 + V
≥ 0 a.e.,

and

λ|Ω| + P

∫
Ω

1

1 + V
dx > 0,

then (1) has a nontrivial solution.

Theorems 2 and 3 will be proved using the lemmas of the next section.

2 Some Lemmas

In proving our results, we shall make use of the following lemmas (cf., e.g., [9, 12,
14]). For the definition of linking, cf. [9].

Lemma 1 If G(u) ∈ C1(E,R) and

b0 = inf
E

G > −∞, (3)

then there is a sequence satisfying

G(uk) → b0, (1 + ‖uk‖E)G′(uk) → 0. (4)

Lemma 2 The sets ‖u‖E = R > 0 and {e1, e2} link each other provided ‖e1‖E <

R and ‖e2‖E > R.

Lemma 3 If A links B, and G(u) ∈ C1(E,R) satisfies

a0 = sup
A

G ≤ b0 = inf
B

G, (5)

then there is a sequence {uk} such that

G(uk) → c ≥ b0, (1 + ‖uk‖E)‖G′(uk)‖ → 0. (6)

We let E be the subspace of H 1,2(Ω) consisting of those functions having the
same periodicity as Ω with norm given by

‖w‖2
E = ‖∇w‖2 + ‖w‖2.
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Define

IV (u) = 1

P
‖∇u‖2 + λ

P
‖u‖2 +

∫
Ω

ln{1 + V (x)+ |u|2} dx. (7)

Then,

(I ′V (u), v)/2 = 1

P
(∇u,∇v)+ λ

P
(u, v)+

∫
Ω

u

1 + V + u2
v dx. (8)

We have

Lemma 4 If G(u) = IV (u) is given by (7), then every sequence satisfying (6) has
a subsequence converging in E. Consequently, there is a u ∈ E such that IV (u) = c

and I ′V (u) = 0.

Proof The sequence satisfies

IV (uk) = 1

P
‖∇uk‖2 + λ

P
‖uk‖2 +

∫
Ω

ln{1 + V + |uk|2} dx → c, (9)

(I ′V (uk), v)/2 = 1

P
(∇uk,∇v)+ λ

P
(uk, v)+

∫
Ω

uk

1 + V + u2
k

v dx → 0, (10)

and

(I ′V (uk), uk)/2 = 1

P
(∇uk,∇uk)+ λ

P
(uk, uk)+

∫
Ω

u2
k

1 + V + u2
k

dx → 0. (11)

Thus,

∫
Ω

H(x, uk) dx → c, (12)

where

H(x, t) = ln(1 + V + t2)− t2

1 + V + t2
. (13)

Let ρk = ‖uk‖E. Assume first that ρk → ∞. Let ũk = uk/ρk. Then, ‖ũk‖E = 1.
Hence, there is a renamed subsequence such that ũk ⇀ ũ in E, and ũk → ũ in
L2(Ω) and a.e. By (11),

P(I ′V (uk), uk)/2 = ‖∇uk‖2 + λ‖uk‖2 + P

∫
Ω

u2
k

1 + V + u2
k

dx → 0. (14)
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Hence,

1 = ‖ũk‖2
E ≤ |P(I ′V (uk), uk)/2ρ2

k |

+ |1 − λ| · ‖ũk‖2 + |P |
∫
Ω

ũ2
k

1 + V + u2
k

dx

≤ [|1 − λ| + |P |] · ‖ũk‖2.

In the limit, we have

1 ≤ [|1 − λ| + |P |] · ‖ũ‖2.

This shows that ũ �≡ 0. Let Ω0 be the subset of Ω where ũ(x) �= 0. Then, |Ω0| �= 0
and |uk(x)| → ∞ when x ∈ Ω0. Consequently,

0 ≤ H(x, uk) →∞, x ∈ Ω0.

Thus,

∫
Ω

H(x, uk) dx =
∫
Ω0

H(x, uk) dx +
∫
Ω\Ω0

H(x, uk) dx

≥
∫
Ω0

H(x, uk) dx →∞.

This contradicts (12). Thus, the sequence satisfying (6) is bounded in E. Hence,
there is a renamed subsequence such that uk ⇀ u in E, and uk → u in L2(Ω) and
a.e. Taking the limit in (10), we obtain

(I ′V (u), v)/2 = 1

P
(∇u,∇v)+ λ

P
(u, v)+

∫
Ω

uv

1 + V + u2 dx = 0, v ∈ E. (15)

Thus, u satisfies I ′V (u) = 0. Since u ∈ E, it satisfies

(I ′V (u), u)/2 = 1

P
(∇u,∇u)+ λ

P
(u, u)+

∫
Ω

u2

1 + V + u2 dx = 0. (16)

Also, from the limit in (11), we have

lim
1

P
‖∇uk‖2 = lim(I ′V (uk), uk)/2

− lim[ λ
P
‖uk‖2 +

∫
Ω

u2
k

1 + V + u2
k

dx]
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=− [ λ
P
‖u‖2 +

∫
Ω

u2

1 + V + u2
dx]

= 1

P
‖∇u‖2.

Consequently, ∇uk → ∇u in L2(Ω). This shows that IV uk) → IV (u). Hence,
IV (u) = c.

Lemma 5 If I ′V (u) = 0, then u is a solution of (1).

Proof From (15), we see that

|(∇u,∇v)| ≤ C‖v‖, v ∈ E.

From the fact that the functions and Ω are periodic with the same period, it follows
that u ∈ H 2,2(Ω) and satisfies (1) (cf., e.g., [10]).

Lemma 6
∫
Ω

ln(1 + V + u2)dx/‖u‖2
H → 0, ‖u‖H →∞. (17)

Proof Suppose vk ∈ H is a sequence such that ρk = ‖vk‖H →∞. Let ṽk = vk/ρk.

Then, ‖ṽk‖H = 1. Hence, there is a renamed subsequence such that ṽk ⇀ ṽ in H,

and ṽk → ṽ in L2(Ω) and a.e. Now,

ln(1 + v2
k + V )

ρ2
k

= ln(1 + v2
k + V )

v2
k + V

[ṽ2
k + (V/ρ2

k )] → 0 a.e.,

and it is dominated a.e. by ṽ2
k + (V/ρ2

k ) → ṽ2 in L1(Ω). Thus,

∫
Ω

ln(1 + v2
k + V )

ρ2
k

dx → 0.

Lemma 7 If

IV (u) = ‖u‖2
H −

∫
Ω

ln(1 + V + u2) dx,

then

IV (v) →∞ as ‖v‖H →∞. (18)



Nonlinear Optics 455

Proof We have

IV (u)/‖u‖2
H = 1 −

∫
Ω

ln(1 + V + u2)dx/‖u‖2
H → 1, ‖u‖H →∞

by Lemma 6. This gives (18).

Lemma 8 If uk ∈ H is a sequence such that ρk = ‖uk‖H → 0, ũk = uk/ρk, and
ũk → ũ in L2(Ω) and a.e., then

∫
Ω

[ln(1 + V + u2
k)− ln(1 + V )]dx/‖uk‖2

H →
∫
Ω

1

1 + V
ũ2(x)dx. (19)

Proof Suppose uk ∈ H is a sequence such that ρk = ‖uk‖H → 0. In particular,
there is a renamed subsequence such that uk → 0 a.e. Let ũk = uk/ρk. Then,
‖ũk‖H = 1. Hence, there is a renamed subsequence such that ũk ⇀ ũ ∈ H, and
ũk → ũ in L2(Ω) and a.e. Now,

ln(1 + V + u2
k)− ln(1 + V )

ρ2
k

= ln(1 + u2
k/(1 + V ))

u2
k/(1 + V )

ũ2
k

1 + V

→ 1

1 + V
ũ2 a.e.,

and it is dominated a.e. by ũ2
k/(1 + V ) → ũ2/(1 + V ) in L1(Ω). Thus,

∫
Ω

ln(1 + V + u2
k)− ln(1 + V )

ρ2
k

dx →
∫
Ω

1

1 + V
ũ2dx.

3 Proof of Theorem 2

Let

IV (v) = 1

P
‖∇v‖2 + λ

P
‖v‖2 +

∫
Ω

ln{1 + v2 + V } dx, v ∈ H. (20)

Then,

(I ′V (v), g)/2 = 1

P
(∇v,∇g)+ λ

P
(v, g)+

∫
Ω

vg

1 + v2 + V
dx. (21)

If I ′V (v) = 0, then v satisfies

Δv = Pv

1 + v2 + V
+ λv, (22)
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which is (1). If we can find a solution v �= 0 of I ′V (v) = 0, then we shall have a
solution of (1). To find such a solution, we first note that by Lemma 7

PIV (v) →∞ as ‖v‖H →∞. (23)

Let the sequence uk ∈ H satisfy

PIV (uk) ↘ α = inf
H

PIV

(which may be −∞). By (23), ρk = ‖uk‖H is bounded. Hence, there is a renamed
subsequence such that uk ⇀ u0 in H, and uk → u0 in L2(Ω), and a.e. Thus,

‖∇uk‖2 =PIV (uk)− λ‖uk‖2 − P

∫
Ω

ln{1 + u2
k + V } dx

→ α − λ‖u0‖2 − P

∫
Ω

ln{1 + u2
0 + V } dx,

showing that α is finite. By Lemma 1, there is a sequence {vk} such that

PIV (vk) → α, (1 + ‖vk‖H )‖I ′V (vk)‖ → 0. (24)

By Lemma 4, it has a subsequence converging in H. Consequently, there is a v ∈ H

such that PIV (v) = α and I ′V (v) = 0. We must show that v �= 0. Let

ψ(t) = λ|Ω|t + P

∫
Ω

ln(1 + V + t) dx.

Then,

ψ(0) = P

∫
Ω

ln(1 + V )dx, ψ ′(0) = λ|Ω| + P

∫
Ω

1

1 + V
dx < 0.

Hence, there is a constant t > 0 such that ψ(t) < ψ(0). Thus, there is a constant c
such that

PIV (v) = α ≤ PIV (c) = ψ(c2)

< ψ(0) = P

∫
Ω

ln(1 + V )dx = PIV (0).

This shows that v �= 0. Thus, we have a solution v �= 0 of (1). This completes the
proof.
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4 Proof of Theorem 3

First, we show that

α = lim inf‖u‖H→0
[PIV (u)− PIV (0)]/‖u‖2

H > 0, u ∈ H.

Suppose vk ∈ H is a sequence such that ρk = ‖vk‖H → 0 and

PIV (vk)− PIV (0)]/‖vk‖2 → α.

Let ṽk = vk/ρk. Then, ‖ṽk‖H = 1. Hence, there is a renamed subsequence such
that ṽk ⇀ ṽ in H, and ṽk → ṽ in L2(Ω) and a.e., and

PIV (vk)− PIV (0)]/‖vk‖2
H → α.

By Lemma 8,

∫
Ω

[ln(1 + V + v2
k )− ln(1 + V )]dx/‖vk‖2

H →
∫
Ω

1

1 + V
ṽ2(x)dx. (25)

Hence, we have

PIV (vk)− PIV (0)]/‖vk‖2
H = 1 + (λ− 1)‖ṽk‖2

+
∫
Ω

[ln(1 + V + v2
k )− ln(1 + V )]dx/ρ2

k

→ 1 + (λ− 1)‖ṽ‖2 +
∫
Ω

1

1 + V
ṽ2(x)dx

= α.

Thus,

(1 − ‖ṽ‖2
H )+ ‖∇ṽ‖2 +

∫
Ω

[λ+ P/(1 + V )]ṽ2dx = α.

Since each of these terms is nonnegative, we see that α ≥ 0. Moreover, the only
way it can vanish is if 1 = ‖ṽ‖2

H , ‖∇ṽ‖ = 0, and

∫
Ω

[λ+ P/(1 + V )]ṽ2dx = 0.

But this would mean that ṽ = c, c2|Ω| = 1, and
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λ|Ω| + P

∫
Ω

1

1 + V
dx = 0,

contrary to hypothesis. Since α > 0, there are positive numbers ρ, ε such that

PIV (v)− PIV (0) > ε, ‖v‖H = ρ.

Moreover, we have

PIV (c) = c2[λ|Ω| +
∫
Ω

ln(1 + V + c2)

c2 ]dx →−∞, c →∞.

Thus, we have functions v1, v2 ∈ H such that ‖v1‖H < ρ, ‖v2‖H > ρ, and

PIV (vi) < inf‖u‖H=ρ
P IV (u).

We can now apply Lemmas 2, 3, and 4 to reach the desired conclusion.
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Ekeland Variational Principles in 2-Local
Branciari Metric Spaces

Mihai Turinici

Abstract An Ekeland Variational Principle is stated over a class of local and 2-local
Branciari metric spaces, and its relationships with the Dependent Choice Principle
are discussed. Applications to Caristi–Kirk fixed point theorems over such a setting
are also being considered.

AMS Subject Classification 49J53 (Primary), 54H25 (Secondary)

1 Introduction

Let X be a nonempty set, and d : X ×X → R+ := [0,∞[ be a metric over it; then
(X, d) is called a metric space. Further, let ϕ : X → R ∪ {∞} be regular:

(r-1) ϕ is inf-proper (Dom(ϕ) �= ∅ and inf[ϕ(X)] > −∞),

(r-2) ϕ is d-lsc (lim infn ϕ(xn) ≥ ϕ(x), whenever xn
d−→ x).

The following 1974 statement in Ekeland [16] (referred to as Ekeland’s variational
principle; in short, EVP) is our starting point.

Theorem 1 Let the precise conditions hold; and X be d-complete. Then, for each
u ∈ Dom(ϕ), there exists v = v(u) ∈ Dom(ϕ), with

(11-a) d(u, v) ≤ ϕ(u)− ϕ(v) (hence ϕ(u) ≥ ϕ(v)),
(11-b) d(v, x) > ϕ(v)− ϕ(x), for all x ∈ X \ {v}.
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Note that with respect to the Brøndsted (quasi-) order [8]

(Br-ord) (x, y ∈ X) x ≤ y iff d(x, y)+ ϕ(y) ≤ ϕ(x),

the point v ∈ X appearing in (11-b) is maximal; so that (EVP) is nothing but a
variant of the Zorn–Bourbaki maximal statement [5, 45] in the way proposed by
Brezis–Browder ordering principle [7] (in short, BB); hence, (EVP) is deductible
from (BB). Concerning the reverse inclusion, note that (BB) is obtainable from
the Dependent Choice Principle (in short, DC) due to Bernays [4] and Tarski [35]
on the one hand, and (EVP) implies (DC), on the other hand; hence, summing up
(cf. Brunner [9] and Turinici [42])

(DC) ⇒ (BB) ⇒ (EVP) ⇒ (DC)
(wherefrom, all these principles are mutually equivalent).

As a consequence of such practical and theoretical conclusions, (EVP) found
some basic applications to control and optimization, generalized differential cal-
culus, critical point theory, and global analysis; we refer to the 1979 paper by
Ekeland [17] for a survey of these. So, it cannot be surprising that, soon after its
formulation, many extensions of (EVP) were proposed. For example, the (pseudo-)
metrical one consists of the conditions imposed upon the ambient metric d over
X being relaxed. A basic result in this direction has been stated in Tataru [36],
via Ekeland-type techniques; subsequent extensions of it were obtained by Altman
[2], Turinici [37], Kang and Park [23], and Kada et al. [22], among many others.
Since all these are obtainable from (DC), it follows from the above that a deduction
of them from (EVP) is possible; see Turinici [42] for details. Further, a functional
extension of (EVP) was obtained by Zhong [44] and refined in Bao and Khanh [3];
however, as precise by Turinici [40], it is nothing but a variant of (EVP). Finally,
the dimensional way of extension refers to the ambient space (R) of ϕ(X) being
substituted by a (topological or not) vector space; an account of the results in this
area is to be found in the 1986 paper by Nemeth [30], and the 2003 monograph by
Goepfert et al. [18, Ch 3]; see also Chen et al. [11, 12]. Note that the scalarization-
type method used there allows us to reducing most “sequential” statements in the
area to (BB) [hence, ultimately, to (EVP)]. However, this device cannot cover the
1989 variational principle in Khanh [25]; but, for “higher order” versions of (DC)
taken as in Wolk [43], this works.

In the following, a variant of Ekeland Variational Principle is formulated over a
class of local Branciari metric spaces introduced as in Turinici [41]. The outlines
of this method were implicitly discussed (under the Caristi–Kirk setting [10]) in a
recent paper by Alamri et al. [1], at the level of Branciari metric spaces [6]; but, the
proposed setting seems to be new. As we will see, the obtained variational principle
is nothing but a logical equivalent of the standard (EVP); however, it may be useful
in practice. Further aspects of these facts will be discussed elsewhere.
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2 Dependent Choice Principles

Throughout this exposition, the axiomatic system in use is Zermelo–Fraenkel’s
(abbreviated: ZF); cf. Cohen [13, Ch 2]. The notations and basic facts to be
considered are standard. Some important ones are described below.

(A) Let X be a nonempty set. By a relation over X, we mean any (nonempty)
part R ⊆ X × X; then, (X,R) will be referred to as a relational structure.
For simplicity, we sometimes write (x, y) ∈ R as xRy. Note that R may be
regarded as a mapping between X and exp[X] (=the class of all subsets in X).
In fact, denote

X(x,R) = {y ∈ X; xRy} (the section of R through x), x ∈ X:

then, the desired mapping representation is (R(x) = X(x,R); x ∈ X). A basic
example of such object is

I = {(x, x); x ∈ X} [the identical relation over X].

Given the relations R, S over X, define their product R ◦S as

(x, z) ∈ R ◦S, if there exists y ∈ X with (x, y) ∈ R, (y, z) ∈ S.

Also, for each relation R on X, denote

R−1 = {(x, y) ∈ X ×X; (y, x) ∈ R} (the inverse of R).

Finally, given the relations R and S over X, let us say that R is coarser than S (or,
equivalently: S is finer than R), provided

R ⊆ S; that is, xRy implies xSy.

Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I ⊆ R,
(P2) R is irreflexive: R ∩I = ∅,
(P3) R is transitive: R ◦R ⊆ R,
(P4) R is symmetric: R−1 = R,
(P5) R is antisymmetric: R−1 ∩R ⊆ I.

This yields the classes of relations to be used; the following ones are important for
our developments:

(C0) R is amorphous (i.e., it has no specific properties),
(C1) R is a quasi-order (reflexive and transitive),
(C2) R is a strict order (irreflexive and transitive),
(C3) R is an equivalence (reflexive, transitive, symmetric),
(C4) R is a (partial) order (reflexive, transitive, antisymmetric),
(C5) R is the trivial relation (i.e., R = X ×X).
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(B) A basic example of relational structure is to be constructed as below. Let

N := {0, 1, . . .}, where (0 = ∅, 1 = {0}, 2 = {0, 1}, . . . ),

denote the set of natural numbers. Technically speaking, the basic (algebraic and
order) structures over N may be obtained by means of the (immediate) successor
function suc : N → N , and the following Peano properties (deductible in our
axiomatic system (ZF)):

(pea-1) (0 ∈ N and) 0 /∈ suc(N),
(pea-2) suc(.) is injective (suc(n) = suc(m) implies n = m),
(pea-3) if M ⊆ N is such that [0 ∈ M] and [suc(M) ⊆ M], then M = N .

[Note that, in the absence of our axiomatic setting, these properties become the well-
known Peano axioms, as described in Halmos [19, Ch 12]; we do not give details.]
In fact, starting from these properties, one may construct, in a recurrent way, an
addition (a, b) �→ a + b over N , according to

(∀m ∈ N ): m+ 0 = m; m+ suc(n) = suc(m+ n).

This, in turn, makes possible the introduction of a (partial) order relation (≤) over
N , as

(m, n ∈ N ): m ≤ n iff m+ p = n, for some p ∈ N .

Concerning the properties of this structure, the most important one writes

(N,≤) is well ordered:
any (nonempty) subset of N has a first element.

hence, in particular, (N,≤) is (partially) ordered. Denote, for simplicity,

N(r,≤) = {n ∈ N; r ≤ n} = {r, r + 1, . . . , }, r ∈ N ,
N(r,>) = {n ∈ N; r > n} = {0, . . . , r − 1}, r ∈ N(1,≤);

the latter one is referred to as the initial interval (in N ) induced by r . Any set P

with P ∼ N (in the sense: there exists a bijection from P to N ) will be referred
to as effectively denumerable. In addition, given some natural number n ≥ 1, any
set Q with Q ∼ N(n,>) will be said to be n-finite; when n is generic here, we say
that Q is finite. Finally, the (nonempty) set Y is called (at most) denumerable iff it
is either effectively denumerable or finite.

Let X be a nonempty set. By a sequence in X, we mean any mapping x : N → X;
where, as already precise, N := {0, 1, . . .} is the set of natural numbers. For
simplicity reasons, it will be useful to denote it as (x(n); n ≥ 0), or (xn; n ≥ 0);
moreover, when no confusion can arise, we further simplify this notation as (x(n))

or (xn), respectively. Given such an object, (xn; n ≥ 0), any sequence (yn :=
xi(n); n ≥ 0) with (i(n)) = divergent (i(n) →∞ as n →∞) will be referred to as
a subsequence of (xn; n ≥ 0). Note that the relation “subsequence of” is transitive:

(zn)=subsequence of (yn) and (yn)=subsequence of (xn)
imply (zn)=subsequence of (xn).
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(C) Remember that an outstanding part of (ZF) is the Axiom of Choice (abbreviated:
AC); which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each function
F : J → exp(X), there exists a (selective) function
f : J → X, with f (ν) ∈ F(ν), for each ν ∈ J .

(Here, exp(X) stands for the class of all nonempty elements in exp[X].) Sometimes,
when the ambient set X is endowed with denumerable-type structures, the case of
J = N will suffice for all choice reasonings; and the existence of such a selective
function may be determined by using a weaker form of (AC), called: Dependent
Choice principle (in short, DC). Call the relation R over X, proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.

Then, R is to be viewed as a mapping between X and exp(X), and the couple (X,R)

will be referred to as a proper relational structure. Further, given a ∈ X, let us say
that the sequence (xn; n ≥ 0) in X is (a;R)-iterative, provided

x0 = a and xnRxn+1 (i.e., xn+1 ∈ R(xn)), for all n.

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X,
there is at least one (a,R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [4] and Tarski [35]—is
deductible from (AC), but not conversely; cf. Wolk [43]. Moreover, by the devel-
opments in Moskhovakis [29, Ch 8] and Schechter [33, Ch 6], the reduced system
(ZF-AC+DC) is comprehensive enough so as to cover the “usual” mathematics; see
also Moore [28, Appendix 2].

Let (Rn; n ≥ 0) be a sequence of relations on X. Given a ∈ X, let us say that
the sequence (xn; n ≥ 0) in X is (a; (Rn; n ≥ 0))-iterative, provided

x0 = a and xnRnxn+1 (i.e., xn+1 ∈ Rn(xn)), for all n.

The following Diagonal Dependent Choice principle (in short, DDC) is available.

Proposition 2 Let (Rn; n ≥ 0) be a sequence of proper relations on X. Then, for
each a ∈ X, there exists at least one (a; (Rn; n ≥ 0))-iterative sequence in X.

Clearly, (DDC) includes (DC), to which it reduces when (Rn; n ≥ 0) is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P = N ×X, and let S be the relation over P introduced as

S(i, x) = {i + 1} ×Ri (x), (i, x) ∈ P .

It will suffice applying (DC) to (P,S) and b := (0, a) ∈ P to get the conclusion in
our statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as: Selected Dependent Choice principle (in short, SDC).

Proposition 3 Let the map F : N → exp(X) and the relation R over X fulfill

(∀n ∈ N ): R(x) ∩ F(n+ 1) �= ∅, for all x ∈ F(n).
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Then, for each a ∈ F(0), there exists a sequence (x(n); n ≥ 0) in X, with

x(0) = a, x(n) ∈ F(n), x(n+ 1) ∈ R(x(n)), ∀n.

As before, (SDC) ⇒ (DC) (⇐⇒ (DDC)); just take (F(n) = X, n ∈ N ). But,
the reciprocal is also true, in the sense: (DDC) ⇒ (SDC). This follows from

Proof of Proposition 3 Let the premises of (SDC) be true. Define a sequence of
relations (Rn; n ≥ 0) over X as: for each n ≥ 0,

Rn(x) = R(x) ∩ F(n+ 1), if x ∈ F(n),
Rn(x) = {x}, otherwise (x ∈ X \ F(n)).

Clearly, Rn is proper, for all n ≥ 0. So, by (DDC), it follows that, for the starting
a ∈ F(0), there exists an (a, (Rn; n ≥ 0))-iterative sequence (x(n); n ≥ 0) in X.
This, along with the very definition above, gives all desired conclusions.

In particular, when R = X × X, the regularity condition imposed in (SDC)
holds. The corresponding variant of the underlying statement is just (AC(N)) (=the
Denumerable Axiom of Choice). Precisely, we have

Proposition 4 Let F : N → exp(X) be a function. Then, for each a ∈ F(0), there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ∈ N .

As a consequence of the above facts, (DC) ⇒ (AC(N)) in (ZF-AC). A direct
verification of this is obtainable by taking Q = N ×X and introducing the relation
R over it, according to:

R(n, x) = {n+ 1} × F(n+ 1), n ∈ N , x ∈ X;

we do not give details. The reciprocal of the written inclusion is not true; see
Moskhovakis [29, Ch 8, Sect 8.25] for details.

3 Conv-Cauchy Structures

Let X be a nonempty set. Call the subset Y of X almost-singleton (in short,
asingleton) provided y1, y2 ∈ Y implies y1 = y2, and singleton if, in addition,
Y is nonempty; note that in this case Y = {y}, for some y ∈ X.

Let S(X) stand for the class of all sequences (xn) in X. By a (sequential)
convergence structure on X, we mean any part C of S(X)×X, with the properties
(cf. Kasahara [24]):

(conv-1) C is hereditary:
((xn); x) ∈ C ⇒ ((yn); x) ∈ C, for each subsequence (yn) of (xn),
(conv-2) C is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) fulfills ((xn); u) ∈ C.

For (xn) in S(X) and x ∈ X, we write ((xn); x) ∈ C as xn
C−→ x; this reads

(xn), C-converges to x (also referred to as: x is the C-limit of (xn)).
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The set of all such x is denoted C− limn(xn); when it is nonempty, we say that (xn)
is C-convergent. The following condition is to be optionally considered here:

(conv-3) C is separated:
C− limn(xn) is an asingleton, for each sequence (xn);

when it holds, xn
C−→ z will be also written as C− limn(xn) = z.

Further, by a (sequential) Cauchy structure on X, we shall mean any part H of
S(X) with (cf. Turinici [38]):

(Cauchy-1) H is hereditary:
(xn) ∈ H ⇒ (yn) ∈ H, for each subsequence (yn) of (xn)
(Cauchy-2) H is reflexive: for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) fulfills (xn) ∈ H.

Each element of H will be referred to as a H-Cauchy sequence in X.
Finally, given the couple (C,H) as before, we shall say that it is a conv-Cauchy

structure on X. The natural conditions about the conv-Cauchy structure (C,H) to
be considered here are

(CC-1) (C,H) is regular: each C-convergent sequence is H-Cauchy,
(CC-2) (C,H) is complete: each H-Cauchy sequence is C-convergent.

A standard way of introducing such structures is the (pseudo) metrical one. Let
d : X ×X → R+ be a (r-s)-symmetric over X; i.e.,

(rss-1) d is symmetric: d(x, y) = d(y, x), ∀x, y ∈ X,
(rss-2) d is reflexive sufficient: x = y ⇐⇒ d(x, y) = 0;

in this case, (X, d) is called a (r-s)-symmetric space. Given the sequence (xn) in

X and the point x ∈ X, we say that (xn), d-converges to x (written as xn
d−→ x)

provided d(xn, x) → 0 as n →∞; i.e.,

∀ε > 0, ∃i = i(ε): i ≤ n ⇒ d(xn, x) < ε.

By this very definition, we have the hereditary and reflexive properties:

(d-conv-1) ((
d−→) is hereditary)

xn
d−→ x implies yn

d−→ x, for each subsequence (yn) of (xn),

(d-conv-2) ((
d−→) is reflexive) for each u ∈ X,

the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u.

As a consequence, (
d−→) is a sequential convergence on X. The set of all such

limit points of (xn) will be denoted limn(xn); if it is nonempty, then (xn) is called
d-convergent. The following condition about this structure is to be considered:

(d-conv-3) (
d−→) is separated (referred to as d is separated):

limn(xn) is an asingleton, for each sequence (xn) in X.

Note that, by the conditions imposed upon d, this is not in general true. However,
under the extra property
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(tri) d is triangular: d(x, y) ≤ d(x, z)+ d(z, y), ∀x, y, z ∈ X;

(when d becomes a metric on X), the separated property holds.
Further, call the sequence (xn), d-Cauchy when

limn sup{d(xn, xn+m);m ≥ 1} = 0; that is,
∀ε > 0, ∃j = j (ε): j ≤ n < p ⇒ d(xn, xp) < ε;

the class of all these will be denoted as Cauchy(d). As before, we have the
hereditary and reflexive properties:

(d-Cauchy-1) (Cauchy(d) is hereditary)
(xn) is d-Cauchy implies (yn) is d-Cauchy,
for each subsequence (yn) of (xn),
(d-Cauchy-2) (Cauchy(d) is reflexive) for each u ∈ X,
the constant sequence (xn = u; n ≥ 0) is d-Cauchy;

hence, Cauchy(d) is a Cauchy structure on X.

Now—according to the general setting—call the couple ((
d−→), Cauchy(d)), a

conv-Cauchy structure induced by d. The following regularity conditions about this
structure are to be considered:

(CC-1) d is regular: each d-convergent sequence in X is d-Cauchy,
(CC-2) d is complete: each d-Cauchy sequence in X is d-convergent.

Generally, none of these is holding under our framework; however, the former one
is retainable if (in addition) d is triangular (see above).

Let again (X, d) be a (r-s)-symmetric space. In the following, some classes of
sequences (related to the d-Cauchy ones) are introduced:

(I) Let K be some nonempty subset of N(1,≤). Given the sequence (xn), call it
(d,K)-asymptotic, provided

limn d(xn, xn+i ) = 0, for each i ∈ K .

In particular, the (d, {1})-asymptotic property will be called d-asymptotic; and the
(d,N(1,≤))-asymptotic one is referred to as d-strongly-asymptotic. Clearly,

(for each sequence (xn) in X):
d-Cauchy ⇒ d-strongly-asymptotic ⇒ d-asymptotic;

but, none of the converse properties is available. Concerning this aspect, a basic
situation to be discussed is the metrical one.

Proposition 5 Supposed that, in addition, d is triangular (hence, a metric) on X.
Then, for each sequence (xn) in X,

(xn) is d-asymptotic iff (xn) is d-strongly-asymptotic.

Proof Let i ∈ N(1,≤) be arbitrary fixed. By the triangular inequality,

d(xn, xn+i ) ≤ ρn + . . .+ ρn+i−1, ∀n, where (ρn = d(xn, xn+1); n ≥ 0).
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By the imposed hypothesis, the right member of this relation tends to zero as n →
∞; wherefrom, all is clear.

(II) Given ν ∈ N(1,≤), let us say that (xn) is (d, ν)-Cauchy, provided

for each ε > 0, there exists h = h(ε) ≥ 0, such that
n ≥ h and j ≥ 0 imply d(xn, xn+1+jν) < ε.

By this definition, we have

(for each sequence (xn) in X):
d-Cauchy implies (d, ν)-Cauchy, for each ν ∈ N(1,≤);

but, the converse is not in general true. Concerning this aspect, a natural question is
to establish conditions under which the reciprocal inclusion holds. The simplest one
is again d=triangular; as results from

Proposition 6 Supposed that, in addition, d is triangular (hence, a metric) on X.
Then, for each sequence (xn) in X, and each ν ≥ 1,

(xn) is d-Cauchy iff (xn) is (d, ν)-Cauchy.

Proof The case ν = 1 is clear; so, without loss, one may assume that ν ≥ 2.
Suppose that (xn) is (d, ν)-Cauchy; hence, in particular, d-asymptotic. Given ε > 0,
there must be some h = h(ε) ≥ 0, such that

d(xn, xn+1+jν) < ε/3ν, for all n ≥ h, j ≥ 0;
hence, in particular, ρn := d(xn, xn+1) < ε/3ν, for all n ≥ h.

Let m > n be arbitrary fixed. The case of m ∈ {n+ 1 + jν; j ≥ 0} yields

d(xn, xm) = d(xn, xn+1+jν) < ε/3ν < ε.

It remains the case of m /∈ {n+ 1 + jν; j ≥ 0}; when, one has the representation

m = n+ 1 + jν + k, for some j ≥ 0, k ∈ {1, . . . , ν − 1}.
In this case, the triangular inequality gives (under the notation q = n+ 1 + jν)

d(xn, xm) ≤ d(xn, xq)+ ρq + . . .+ ρq+k−1 < (k + 1)ε/3ν ≤ ε/3 < ε,

and the conclusion follows.

(III) Let us say that the sequence (xn) is d-telescopic Cauchy, when
∑

n d(xn, xn+1)(= d(x0, x1)+ d(x1, x2)+ . . .) < ∞.

The relationship with the d-Cauchy property is to be clarified in a triangular setting.

Proposition 7 Supposed that, in addition, d is triangular (hence, a metric) on X.
Then, for each sequence (xn) in X,

(xn) is d-telescopic Cauchy implies (xn) is d-Cauchy.

The reciprocal is not in general true.
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Proof

(i) By hypothesis, we have under the notation (ρn := d(xn, xn+1); n ≥ 0)

σn :=∑k≥n ρk → 0 as n →∞.

In this case, for each n,m ≥ 0 with n < m,

d(xn, xm) ≤ ρn + ρn+1 + . . .+ ρm−1 ≤ σn,

and this, along with the property of (σn), gives the needed conclusion.
(ii) Let (X, d) be the real axis with its standard metric. The (real) sequence (xn =

(−1)n/(n+ 1); n ≥ 0) fulfills

limn(xn) = 0; hence, (xn) is d-Cauchy.

On the other hand, by the properties of harmonic series,∑
n d(xn, xn+1) =∑n[1/(n+ 1)+ 1/(n+ 2)] ≥∑n 1/(n+ 1) = ∞;

hence, (xn) is not d-telescopic Cauchy. The proof is thereby complete.

4 Local and 2-Local Branciari Metric Spaces

In the following, some technical facts about local and 2-local Branciari metric
spaces are being discussed. Their exposition will necessitate some conventions and
auxiliary facts.

Let X be a nonempty set, and d : X ×X → R+ be a mapping with

(symm) d is symmetric [d(x, y) = d(y, x), ∀x, y ∈ X];
(r-s) d is reflexive sufficient [x = y ⇐⇒ d(x, y) = 0];

we then say that d is a reflexive sufficient symmetric (in short, (r-s)-symmetric), and
(X, d) is a (r-s)-symmetric space.

Given k ≥ 1, any ordered system C = (x1, . . . , xk) in Xk will be called a k-
chain of X; the class of all these is denoted as chain(X; k). Given such an object,
put [C] = {x1, . . . , xk} (the set of all points belonging to this k-chain); clearly,
the alternative card([C]) < k (when k > 1) cannot be avoided. If card([C]) = k,
then C will be referred to as a full k-chain (in X); denote the class of all these as
fchain(X; k). In particular, any point a ∈ X may be identified with a full 1-chain of
X. For any C ∈ chain(X; k), where k ≥ 2, denote

Λ(C) = d(x1, x2)+ . . .+ d(xk−1, xk), if C = (x1, . . . , xk)

(the “length” of C). Given h ≥ 1 and the h-chain D = (y1, . . . , yh) in X, let (C;D)

stand for the (k + h)-chain E = (z1, . . . , zk+h) in X introduced as

zi = xi , 1 ≤ i ≤ k; zk+j = yj , 1 ≤ j ≤ h;

it will be referred to as the “product” between C and D. This operation may be
extended to a finite family of such objects.
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Let (X, d) be a (r-s)-symmetric space. For an efficient handling of convergence
and Cauchy properties, a sort of triangular condition upon d must be added. The
simplest one writes

(1-tri) d is 1-triangular [d(x, y) ≤ d(x, z)+ d(z, y), ∀x, y, z ∈ X];

in this case, (X, d) will be called a 1-triangular metric space. Clearly, 1-triangular
(r-s)-symmetric is nothing else than triangular (r-s)-symmetric; and 1-triangular
metric space is identical with (standard) metric space. A natural extension of 1-
triangular condition is the one introduced as in Branciari [6]

(nu-tri) d(., .) is ν-triangular (where ν ≥ 1):
d(x, y) ≤ Λ(x;C; y), for all x, y ∈ X,
and all C ∈ fchain(X; ν), with (x;C; y) ∈ fchain(X; ν + 2);

then, the couple (X, d) is referred to as a ν-triangular metric space. When ν ≥ 1 is
generic here, we say that d(., .) is a Branciari metric on X; and (X, d) will be called
a Branciari metric space.

A local version of these conventions is as follows. Given M ∈ exp(X), let us say
that h ∈ N(1,≤) is a Branciari constant for it, provided

d(x, y) ≤ Λ(x;C; y), for all x, y ∈ M , x �= y,
and all C ∈ fchain(M;h), with (x;C; y) ∈ fchain(M;h+ 2).

Denote, for simplicity,

(B-M) B(M)= the class of all Branciari constants for M ,
(B-M-min) νB(M) = min B(M) (where min(∅) = −∞);

the latter of these will be referred to as the minimal Branciari constant for M . When
B(M) �= ∅, we say that M ∈ exp(X) is Branciari compatible; then, clearly, νB(M)

exists as an element of N(1,≤).
Having these precise, let us say that the (r-s)-symmetric d(., .) is a local Branciari

metric when it has the “local” triangular property:

each effectively denumerable part M ∈ exp(X) is Branciari compatible:
there exists h ≥ 1 such that d(x, y) ≤ Λ(x;C; y), for all x, y ∈ M , x �= y, and
all C ∈ fchain(M;h), with (x;C; y) ∈ fchain(M;h+ 2);

in this case, (X, d) will be referred to as a local Branciari metric space. If follows
by this very definition that (for any (r-s)-symmetric d)

(d is Branciari metric) implies (d is local Branciari metric),

and a corresponding relationship is to be retained between their associated spaces.
The reciprocal is not in general true; because, the index appearing in the definition
of local Branciari metric d(., .) depends on the (effectively denumerable) subset M
of X involved there.

A 2-local version of this concept is the following. Let M be some nonempty part
of X. Given x, y ∈ M , x �= y, let us say that k ∈ N(1,≤) is a Branciari constant
for (x, y) over M , provided
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d(x, y) ≤ Λ(x;C; y),
for all C ∈ fchain(M; k) with (x;C; y) ∈ fchain(M; k + 2).

Denote, for M ∈ exp(X), and (x, y ∈ M , x �= y),

(B-M-2) LM(x, y)= the class of all Branciari constants for (x, y) over M ,
(B-M-2-min) νM(x, y) = min LM(x, y) (where min(∅) = −∞);

the later of these will be referred to as the minimal Branciari constant for (x, y)

on M . When LM(x, y) �= ∅, we say that the couple (x, y) is Branciari compatible
over M; then, clearly, νM(x, y) exists as an element of N(1,≤).

Having these precise, let us say that the (r-s)-symmetric d(., .) is a 2-local
Branciari metric, when it has the “2-local” triangular property:

for each effectively denumerable part M ∈ exp(X) and each x, y ∈ M with
x �= y, we have that (x, y) is Branciari compatible over M: there exists k ≥ 1
such that d(x, y) ≤ Λ(x;C; y), for all C ∈ chain(M; k), with (x;C; y) ∈
fchain(M; k + 2);

in this case, (X, d) will be referred to as a 2-local Branciari metric space. If follows
by this very definition that (for any (r-s)-symmetric d)

(d is local Branciari metric) implies (d is 2-local Branciari metric);

and a corresponding relationship is to be retained between their associated spaces.
The reciprocal inclusion is not in general true; because, the index appearing in the
definition of 2-local Branciari metric d(., .) depends on the couples (x, y) taken
from the (effectively denumerable) subset M of X involved there.

Now, according to Suzuki [34], a topological study of Branciari metric spaces
is not ultimately possible; and the conclusion remains valid for local and 2-local
Branciari metric spaces as well. As a consequence, the natural way of handling these
objects is the conv-Cauchy one; its basic lines are to be sketched as follows. Let

(X, d) be a 2-local Branciari metric space. Define a d-convergence structure (
d−→)

and d-Cauchy structure Cauchy(d) over X in the above discussed way. Namely,
given the sequence (xn) in X and the point x ∈ X, we say that (xn), d-converges to

x (written as xn
d−→ x) if d(xn, x) → 0 as n →∞; i.e.,

∀ε > 0, ∃i = i(ε): i ≤ n ⇒ d(xn, x) < ε.

The set of all such points x will be denoted limn(xn); when it is nonempty, (xn)

is called d-convergent. Note that (
d−→) is not (in general) separated even if the 2-

triangular inequality holds; precisely—cf. Samet [32]—there exist sequences (xn)

in X with limn(xn) having at least two (distinct) points. Further, call the sequence
(xn), d-Cauchy when d(xm, xn) → 0 as m, n →∞, m < n; i.e.,

∀ε > 0, ∃j = j (ε): j ≤ m < n ⇒ d(xm, xn) < ε.

Finally, let us say that the couple ((
d−→), Cauchy(d)) is the conv-Cauchy structure

generated by d. Note that (in general) this conv-Cauchy structure is not regular,
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even if d is 2-triangular; precisely (cf. the quoted paper), there exist d-convergent
sequences that are not d-Cauchy. Finally, call (xn; n ≥ 0)

(asy) d-asymptotic, when limn d(xn, xn+1) = 0,
(s-asy) d-strongly-asymptotic, if limn d(xn, xn+i ) = 0, ∀i ≥ 1.

Clearly, the generic relationships are valid

(∀ sequence): d-Cauchy ⇒ d-strongly-asymptotic ⇒ d-asymptotic,

but the converse relations are not in general true.
As already precise, the (nonempty) set of limit points for a convergent sequence

is not in general a singleton. So, we may ask of which supplementary conditions
upon this sequence are needed so as to retain such a property. The following answer
to this is available. (See also Jleli and Samet [21] or Kirk and Shahzad [26, 27], for
a number of related aspects.)

Theorem 2 Let (X, d) be a 2-local Branciari metric space. Then, for each
sequence (xn) in X,

(41-a) limn(xn) is an asingleton, if (xn) is d-asymptotic and full,
(41-b) limn(xn) is an asingleton, whenever (xn) is d-Cauchy.

Proof There are two parts to be discussed.

Part 1. Let (xn) be a d-asymptotic full sequence in X. Further, let u, v be two
points in limn(xn) with u �= v. By the full property of (xn),

(∃h ≥ 0): {u, v} ∩ {xn; n ≥ h} = ∅.

Denote for simplicity M = {u, v} ∪ {xn; n ≥ h}. From the 2-local Branciari
property of d(., .), there exists the minimal Branciari constant α := νM(u, v) ≥ 1
of (u, v) on M . But then, combining with the α-triangular inequality for (u, v),
one gets

d(u, v) ≤ d(u, xn+1)+ . . .+ d(xn+α, v), for all n ≥ h.

Passing to limit as n → ∞ yields d(u, v) = 0 (by the choice of u, v and the
d-asymptotic property of (xn)). But then, u = v; an impossible situation.

Part 2. Let (xn) be a d-Cauchy sequence in X. Assume by contradiction that
limn(xn) has at least two distinct points:

∃u, v ∈ X with u �= v, such that xn
d−→ u, xn

d−→ v.

Step 2-1. Denote A = {n ∈ N; xn = u}, B = {n ∈ N; xn = v}. We claim that both
A and B are finite. In fact, if A is effectively denumerable, then A = {i(n); n ≥
0}, where (i(n); n ≥ 0) is strictly ascending and (xi(n) = u, ∀n ≥ 0). Since,
on the other hand, xi(n) → v as n → ∞, we must have d(u, v) = 0, so that
u = v, contradiction. An identical reasoning is applicable when B is effectively
denumerable, hence the claim. As a consequence, there exists some index p ∈ N ,
such that
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{xn; n ≥ p} ∩ {u, v} = ∅ (xn �= u and xn �= v, for all n ≥ p).

Step 2-2. Put h(0) = p, and

S[0] = {n ≥ h(0); xn = xh(0)}; hence, h(0) ∈ S[0].
We claim that the set S[0] is finite. For, otherwise, it has the representation S[0] =
{j (n); n ≥ 0}, where (j (n); n ≥ 0) is strictly ascending and (xj (n) = xh(0), ∀n).
Combining with the convergence hypothesis, one derives

xh(0) = u, xh(0) = v; wherefrom, u = v, contradiction.

Hence, S[0] is indeed finite; wherefrom, H(0) = max S[0] exists; moreover, the
rank h(1) := H(0)+ 1 fulfills

h(0) < h(1), {xn; n ≥ h(1)} ∩ {xh(0)} = ∅, so that xh(1) /∈ {xh(0)}.
Further, denote

S[1] = {n ≥ h(1); xn = xh(1)}; hence, h(1) ∈ S[1].
By a very similar argument, S[1] is finite too; wherefrom, H(1) = max S[1]
exists; moreover, the rank h(2) := H(1)+ 1 fulfills

h(0) < h(1) < h(2), {xn; n ≥ h(2)} ∩ {xh(0), xh(1)} = ∅;
hence, in particular, xh(2) /∈ {xh(0), xh(1)}.

The procedure may continue indefinitely; it yields—inductively—a strictly
ascending rank sequence (h(n); n ≥ 0), such that the subsequence (yn :=
xh(n); n ≥ 0) of (xn; n ≥ 0) fulfills

(p-1) (yn) is full, u, v ∈ limn(yn), and {u, v} ∩ {yn; n ≥ 0} = ∅,
(p-2) (yn) is d-Cauchy; hence, d-asymptotic (limn d(yn, yn+1) = 0).

But then, from the preceding stage, we get a contradiction, hence the conclusion.

Remember that if e : X × X → R+ is a metric on X, the mapping (x, y) �→
e(x, y) is continuous, in the sense:

xn
e−→ x, yn

e−→ y imply e(xn, yn) → e(x, y).

Unfortunately, for a local and/or 2-local Branciari metric d(., .), this property is no
longer valid. However, two partial versions of it are available.

The first of these refers to 2-local Branciari metric spaces.

Proposition 8 Let (X, d) be a 2- local Branciari metric space. If the full d-
telescopic d-Cauchy sequence (xn; n ≥ 0) in X and the points u, v ∈ X are such
that

{xn; n ≥ 0} ∩ {u, v} = ∅ (i.e., xn �= u and xn �= v, ∀n),

then, necessarily,

xn
d−→ u implies d(xn, v) → d(u, v).
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Proof The case u = v is clear; so, without any loss, one may assume that u �= v.
By the d-telescopic Cauchy property of (xn),∑

n≥0 ρn < ∞, where (ρn := d(xn, xn+1); n ≥ 0);
hence, limn σn = 0, where (σn :=∑k≥n ρk; n ≥ 0).

Denote M = {u, v} ∪ {xn; n ≥ 0}; this is an effectively denumerable part of X.
Then, let α := νM(u, v) ≥ 1 stand for the minimal Branciari constant of (u, v) over
M; note that this constant is independent of the α-chains in M0 = {xn; n ≥ 0}.
Finally, put for simplicity

(γn := d(xn, u); n ≥ 0) (hence, limn γn = 0),
(Γn := sup{γk; k ≥ n}; n ≥ 0) (hence, (Γn) is descending and limn Γn = 0).

For the arbitrary fixed n ≥ 0, we have (combining with the 2-local triangular
property relative to d)

d(u, v) ≤ Λ(u; xn+1, . . . , xn+α, v) =
γn+1 +Λ(xn+1, . . . , xn+α)+ d(xn+α, v) ≤ Γn + σn + d(xn+α, v).

Further, let β := νM(xn+α, v) ≥ 1 stand for the minimal Branciari constant of
(xn+α, v) over M; clearly, it depends on the (starting) index n. By the 2-local
triangular property once again,

d(xn+α, v) ≤ Λ(xn+α, . . . , xn+α+β−1, u, v) =
Λ(xn+α, . . . , xn+α+β−1)+ γn+α+β−1 + d(u, v) ≤
σn+α + γn+α+β−1 + d(u, v) ≤ σn + Γn + d(u, v).

Combining these inequalities yields

d(u, v)− σn − Γn ≤ d(xn+α, v) ≤ d(u, v)+ σn + Γn, ∀n,

and this finally yields

limn d(xn+α, v) = d(u, v) (as limn σn = limn Γn = 0),

which is nothing else than the desired conclusion.

Further, the second of these answers refers to local Branciari metric spaces. As it
would be expected, the working hypothesis about our sequence can be weakened.

Proposition 9 Let (X, d) be a local Branciari metric space. If the full d-asymptotic
sequence (xn; n ≥ 0) in X and the points u, v ∈ X are such that

{xn; n ≥ 0} ∩ {u, v} = ∅ (i.e., xn �= u and xn �= v, ∀n),

then, necessarily,

xn
d−→ u implies d(xn, v) → d(u, v).

Proof As before, the case u = v is clear; so, without any loss, one may assume that
u �= v. Denote M = {u, v} ∪ {xn; n ≥ 0}, and let α := νB(M) ≥ 1 be the minimal
Branciari constant for M (existing by the local Branciari property of d). Denote

An := (xn+1, . . . , xn+α), Bn = (xn+α, . . . , xn+1), n ≥ 0.
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For each n ≥ 0, An and Bn are full α-chains in X. By the α-triangular inequality
applied to the full (α + 2)-chains (u;An; v) and (Bn; u; v), respectively, we have

d(u, v) ≤ Λ(u;An; v) = Λ(u;An)+ d(xn+α, v),
d(xn+α, v) ≤ Λ(Bn; u; v) = Λ(Bn; u)+ d(u, v);

or, equivalently,

d(u, v)−Λ(u;An) ≤ d(xn+α, v) ≤ d(u, v)+Λ(Bn; u).
Moreover, from the d-asymptotic and d-convergence (toward u) hypotheses,

Λ(u;An) → 0 and Λ(Bn; u) → 0, as n →∞;

so, by simply combining these,

d(xn+α, v) → d(u, v), as n →∞;

wherefrom, the desired conclusion holds. The proof is complete.

We close this section with an auxiliary fact to be used later.

Proposition 10 Let (X, d) be a 2-local Branciari metric space. Further, let the full
sequence (xn) in X and the points z,w ∈ X be such that

z �= w and {z,w} ∩ {xn; n ≥ 0} = ∅.

Then, for each index m ∈ N , there exists a strictly ascending rank sequence
(r(n); n ≥ 0) in N(m,<), with

(rela) d(xm,w) ≤ Λ(xm, . . . , xr(0), . . . , xr(n), z, w), for each n ≥ 0.

Proof Denote M = {z,w} ∪ {xn; n ≥ 0}. There are two steps to be passed:

(I) First, let us show that (rela-0) holds; that is,

(rela-0) ∀m, ∃r(0) > m, with d(xm,w) ≤ Λ(xm, . . . , xr(0), z, w).

To do this, fix some m ≥ 0, and let γ := νM(xm,w) ≥ 1 stand for the minimal
Branciari constant of (xm,w) over M . Two alternatives occur:

(I-1) Suppose that γ > 1; hence, γ ≥ 2. Then,

d(xm,w) ≤ Λ(xm, . . . , xm+γ−1, z, w).

Putting r(0) = m+ γ − 1, we derive (rela-0), because

r(0) ≥ m+ 1 > m, hence the claim.

(I-2) Suppose that γ = 1. For the moment,

d(xm,w) ≤ Λ(xm, z,w) = d(xm, z)+ d(z,w).

Let δ := νM(xm, z) ≥ 1 stand for the minimal Branciari constant of (xm, z)

over M . We thus have

d(xm, z) ≤ Λ(xm, . . . , xm+δ, z);

so, replacing in the preceding relation,
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d(xm,w) ≤ Λ(xm, . . . , xm+δ, z, w).

Putting r(0) = m+ δ, we get (rela-0), because

r(0) > m (in view of δ ≥ 1 > 0), hence the claim.

(II) Starting from (rela-0), let α(0) := νM(xr(0), z) ≥ 1 stand for the minimal
Branciari constant of (xr(0), z) over M . We have (by definition)

d(xr(0), z) ≤ Λ(xr(0), . . . , xr(0)+α(0), z);

so, combining with (rela-0), one derives

d(xm,w) ≤ Λ(xm, . . . , xr(0), . . . , xr(1), z, w),
where r(1) = r(0)+ α(0) > r(0);

so, (rela-1) holds. Further, starting from (rela-1), let α(1) = νM(xr(1), z) ≥ 1
stand for the minimal Branciari constant of (xr(1), z) over M . We have (by
definition)

d(xr(1), z) ≤ Λ(xr(1), . . . , xr(1)+α(1), z);

so, combining with (rela-1), one derives

d(xm,w) ≤ Λ(xm, . . . , xr(0), . . . , xr(1), . . . , xr(2), z, w),
where r(2) = r(1)+ α(1) > r(1),

which tells us that (rela-2) holds. This procedure may continue indefinitely
and yields—by a finite induction technique—the desired conclusion.

In particular, the 2-local Branciari metric property for (X, d) is fulfilled under a
local Branciari metric property of the same. We thus have

Proposition 11 Let (X, d) be a local Branciari metric space. Further, let the full
sequence (xn) in X and the points z,w ∈ X be such that

z �= w and {z,w} ∩ {xn; n ≥ 0} = ∅.

Then, for each index m ∈ N , there exists a strictly ascending rank sequence
(r(n); n ≥ 0) in N(m,<), with

(rela) d(xm,w) ≤ Λ(xm, . . . , xr(0), . . . , xr(n), z, w), for each n ≥ 0.

In particular, the local Branciari metric property for (X, d) is fulfilled under
a Branciari metric property of the same. This yields a corresponding version of
statement above over such structures; we do not give details.

5 Main Result

Let X be a nonempty set, and d : X ×X → R+ be a mapping with

(symm) d is symmetric [d(x, y) = d(y, x), ∀x, y ∈ X],
(r-s) d is reflexive sufficient [x = y ⇐⇒ d(x, y) = 0];
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we then say that d is a reflexive sufficient symmetric (in short, (r-s)-symmetric), and
(X, d) is a (r-s)-symmetric space.

Suppose that we fixed such a structure, and Further, let ϕ : X → R be a function.
Define a relation ∇ over X as

(x, y ∈ X): x∇y iff d(x, y) ≤ ϕ(x)− ϕ(y).

Clearly, the following properties hold (by the choice of d):

(na-r) ∇ is reflexive: x∇x, ∀x ∈ X,
(na-as) ∇ is antisymmetric: x∇y and y∇x imply x = y.

In other words: ∇ has all properties of a (partial) order, excepting transitivity. And,
if d is triangular (hence, a metric), ∇ is transitive as well; hence, a (partial) order.
Let also ∇̃ stand for the irreflexive part of ∇, namely,

x∇̃y iff x∇y and x �= y.

This convention comes from ∇̃ being irreflexive. Moreover, if d is triangular (hence,
a metric), ∇̃ is transitive too; hence, a strict order on X.

Having this precise, define a maximality property over X under the standard way:
call the point z ∈ X, ∇-maximal if

X(z,∇) = {z}; or, equivalently: X(z, ∇̃) = ∅;

the class of all such elements will be denoted as max(X,∇). For practical reasons,
it would be useful to determine conditions under which

(a-Zorn) ∇ is an almost Zorn relation: max(X,∇) is nonempty.

For the metrical framework, the conditions in question involve completeness of our
ambient space (X, d) and lower semicontinuity of the objective function ϕ. It is
natural then to ask whether these are in effect over the (local and) 2-local Branciari
setting too. As we will see, a positive answer to this is essentially available. Further
aspects occasioned by our developments are also discussed.

Let (X, d) be a 2-local Branciari metric space. Remember that the sequence (xn)

is d-telescopic Cauchy, when∑
n d(xn, xn+1)(= d(x0, x1)+ d(x1, x2)+ . . .) < ∞.

Then, let us say that X is full d-telescopic complete, when

(f-tele-com) each full d-telescopic Cauchy sequence is d-convergent.

Note that, by a previous result, the set limn(xn) for any such sequence (xn) is an
asingleton. Further, let us say that the function ϕ : X → R is full d-lsc, provided

lim infn ϕ(xn) ≥ ϕ(z), for each full sequence (xn) in X with xn
d−→ z.

We may now state the main result of this exposition (called: Ekeland Variational
Principle for 2-local Branciari metric spaces; in short, (EVP-2-loc-Bms)).

Theorem 3 Let the 2-local Branciari metric space (X, d) and the (objective)
function ϕ : X → R be such that
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(51-i) X is full d-telescopic complete,
(51-ii) ϕ is bounded from below and full d-lsc.

Then, in the reduced axiomatic system (ZF-AC+DC),

the associated relation ∇ is an almost Zorn one: max(X,∇) �= ∅.

Proof Suppose by contradiction that this is not true:

(51-iii) X(x, ∇̃) is nonempty, for each x ∈ X.

Define a sequence of relations (Rn; n ≥ 0) over X according to

(∀n): xRny iff x∇̃y and ϕ(y) < infϕ(X(x, ∇̃))+ 2−n.

We claim that

(∀n): Rn(x) �= ∅, ∀x ∈ X (i.e., Rn is proper).

In fact, let x ∈ X be arbitrary fixed, and put M = X(x, ∇̃). By the infimum
definition, we have

∀ε > 0, ∃z ∈ M (hence, x∇̃z), such that ϕ(z) < infϕ(M)+ ε;

and this, applied to the sequence (εn := 2−n; n ≥ 0), proves our claim. As a
consequence, the Diagonal Dependent Choice principle (DDC) is applicable here;
so, given the starting point u0 ∈ X, there exists a sequence (un; n ≥ 0) in X with

(∀n): unRnun+1; that is,
un∇̃un+1 and ϕ(un+1) < infϕ(X(un, ∇̃))+ 2−n.

By the former of these relations, we have

(∀n): un �= un+1 and d(un, un+1) ≤ ϕ(un)− ϕ(un+1).

Note that, as a first consequence of this,

ϕ(un) > ϕ(un+1), ∀n; whence, (ϕ(xn); n ≥ 0) is strictly descending,
so that (un; n ≥ 0) is full.

On the other hand, as a second consequence of this,

(ϕ(xn); n ≥ 0) is (strictly descending) bounded,
so that (un) is d-telescopic Cauchy in X.

Combining with the full d-telescopic completeness property of X, we have

un
d−→ z as n →∞, for some z ∈ X;

in addition, since (un) is d-asymptotic, the point z ∈ X is uniquely determined. On
the other hand, as ϕ is full d-lsc, we get (via (ϕ(un))= strictly descending)

ϕ(z) ≤ lim infn ϕ(un) = limn ϕ(un); whence, ϕ(z) < ϕ(un), ∀n.

Note that, until now, the 2-local Branciari metric space condition was not used.
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Finally, take some w ∈ X(z, ∇̃) (nonempty, by hypothesis); we have

0 < d(z,w) ≤ ϕ(z)− ϕ(w); wherefrom (by the above)
(∀n): (ϕ(un) >)ϕ(z) > ϕ(w), so that un �= z and un �= w.

Let m ≥ 0 be arbitrary fixed. By the 2-local Branciari metric condition upon d (and
an auxiliary fact), there exists a strictly ascending rank sequence (r(n)) in N(m,<),
such that

(rela) d(um,w) ≤ Λ(um, . . . , ur(n), z, w) =
Λ(um . . . , ur(n))+ d(ur(n), z)+ d(z,w), for each n ≥ 0.

But then, by the very definition of our relation (∇),

d(um,w) ≤ ϕ(um)− ϕ(ur(n))+ d(ur(n), z)+ ϕ(z)− ϕ(w)

≤ ϕ(um)− ϕ(z)+ d(ur(n), z)+ ϕ(z)− ϕ(w) =
ϕ(um)− ϕ(w)+ d(ur(n), z), for each n ≥ 0.

Passing to limit as n →∞, one derives

(∀m): d(um,w) ≤ ϕ(um)− ϕ(w), so that w ∈ X(um, ∇̃) (via um �= w).

But then, according to the definition of (un), one gets

ϕ(z) < ϕ(um+1) < ϕ(w)+ 2−m, for all m; whence
ϕ(z) ≤ limm ϕ(um) ≤ ϕ(w) (passing to limit as m →∞).

This, however, is impossible, in view of w ∈ X(z, ∇̃) ⇒ ϕ(w) < ϕ(z). Hence,
our working hypothesis (51-iii) cannot be accepted, and conclusion follows.

As a direct consequence of this, the following fixed point statement (referred
to as Caristi–Kirk fixed point theorem on 2-local Branciari metric spaces; in short,
(CK-2-loc-Bms)) is available.

Theorem 4 Let the 2-local Branciari metric space (X, d), the function ϕ : X → R,
and the self-map T : X → X be such that

(52-i) X is full d-telescopic complete,
(52-ii) ϕ is bounded from below and full d-lsc,

(52-iii) T is ϕ-progressive: d(x, T x) ≤ ϕ(x)− ϕ(T x), ∀x ∈ X.

Then, in the reduced axiomatic system (ZF-AC+DC),

(52-a) the associated relation ∇ is an almost Zorn one: max(X,∇) �= ∅,
(52-b) we necessarily have max(X,∇) ⊆ Fix(T ); whence, T has at least one fixed

point in X.

Proof Let z ∈ max(X,∇) be arbitrary fixed. As z∇T z, we must have z = T z, and
the proof is complete.

In particular, the 2-local Branciari metric space property is deductible from the
local Branciari metric one. Combining with Ekeland Variational Principle for 2-
local Branciari metric spaces (EVP-2-loc-Bms), one gets the following practical
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statement (called: Ekeland Variational Principle for local Branciari metric spaces;
in short, (EVP-loc-Bms)).

Theorem 5 Let the local Branciari metric space (X, d) and the function ϕ : X →
R be such that

(53-i) X is full d-telescopic complete,
(53-ii) ϕ is bounded from below and full d-lsc.

Then, in the reduced axiomatic system (ZF-AC+DC),

the associated relation ∇ is an almost Zorn one: max(X,∇) �= ∅.

At the same time, combining with Caristi–Kirk fixed point theorem on 2-local
Branciari metric spaces (CK-2-loc-Bms), one gets the practical statement below
(referred to as Caristi–Kirk fixed point theorem on local Branciari metric spaces; in
short, (CK-loc-Bms)).

Theorem 6 Let the local Branciari metric space (X, d), the function ϕ : X → R,
and the self-map T : X → X be such that

(54-i) X is full d-telescopic complete,
(54-ii) ϕ is bounded from below and full d-lsc,

(54-iii) T is ϕ-progressive: d(x, T x) ≤ ϕ(x)− ϕ(T x), ∀x ∈ X.

Then, in the reduced axiomatic system (ZF-AC+DC),

(54-a) the associated relation ∇ is an almost Zorn one: max(X,∇) �= ∅,
(54-b) we necessarily have max(X,∇) ⊆ Fix(T ); whence, T has at least one fixed

point in X.

In particular, the local Branciari metric property for d is fulfilled when d is a
Branciari metric. The corresponding version of Caristi–Kirk fixed point theorem on
local Branciari metric spaces (CK-loc-Bms) is just the statement in Alamri et al. [1],
proved via similar methods.

Finally, note that various circumstances under which the full d-telescopic
completeness condition is to be fulfilled were indicated in the quoted paper. On the
other hand, we stress that functional versions of these results in the way described
by Park and Bae [31] or Turinici [39] are not yet possible in this setting. Further
aspects will be delineated elsewhere.

6 Equivalence Statements

Let (X, d) be a (standard) metric space, and ϕ : X → R be a function. The relation
(≤) over X introduced as

x ≤ y iff d(x, y) ≤ ϕ(x)− ϕ(y)
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is reflexive, transitive, and antisymmetric; hence, a (partial) order on X. Let also
(<) stand for the irreflexive part of (≤); namely,

x < y iff x∇y and x �= y.

Clearly, (<) is (irreflexive and) transitive; hence, a strict order on X.
Having this precise, define a maximality property over X as: call the point z ∈ X,

(≤)-maximal, if

X(z,≤) = {z}; or, equivalently: X(z,<) = ∅;

the class of all such elements will be denoted as max(X,≤). As before, it would be
useful to determine conditions under which

(a-Zorn) (≤) is an almost Zorn (partial) order: max(X,≤) is nonempty.

In this direction, as a direct consequence of our previous developments, the
following statement (referred to as generic Ekeland Variational Principle; in short,
(EVP-gen)) is available.

Theorem 7 Suppose that (in the precise context)

(61-i) X is d-complete: each d-Cauchy sequence is d-convergent,
(61-ii) ϕ is bounded from below and d-lsc.

Then, necessarily, (≤) is an almost Zorn relation, in the reduced axiomatic system
(ZF-AC+DC).

Proof Clearly, (X, d) is a local Branciari metric space. In addition, by the posed
hypothesis, one trivially has

X is full d-telescopic complete and ϕ is bounded below, full d-lsc.

Summing up, Ekeland Variational Principle for local Branciari metric spaces (EVP-
loc-Bms) is applicable here, and, from this, we are done.

It remains now to establish the relationships between this generic principle and
(EVP). An appropriate answer to this is contained in

Proposition 12 Under these conventions, we have

(EVP-gen) ⇐⇒ (EVP), in (ZF-AC).

Proof The right to left inclusion is clear; so, it remains to establish the left to right
inclusion. Let the metric space (X, d) be such that X is d-complete, and let the
(extended valued) function ϕ : X → R ∪ {∞} be regular; i.e.,

(r-1) ϕ is inf-proper (Dom(ϕ) �= ∅ and inf[ϕ(M)] > −∞),

(r-2) ϕ is d-lsc (lim infn ϕ(xn) ≥ ϕ(x), whenever xn
d−→ x).

Denote by (≤) the Brøndsted quasi-order

(Br-ord) x ≤ y iff d(x, y)+ ϕ(y) ≤ ϕ(x);
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clearly, (≤) is a (partial) order on Dom(ϕ). Let u ∈ Dom(ϕ) be fixed in the sequel,
and put Xu = X(u,≤); as Xu ⊆ Dom(ϕ), one has that (≤) is a (partial) order on
Xu. Let again ϕ stand for the restriction of ϕ over Xu. We claim that (EVP-gen) is
applicable over Xu and (the restriction of) ϕ.

(I) By the imposed conditions, Xu is a closed part of X. Let (yn) be a d-Cauchy
sequence in Xu; hence, in particular,

d(u, yn) ≤ ϕ(u)− ϕ(yn), for all n.

By the completeness hypothesis,

yn
d−→ z as n →∞, for some z ∈ X.

Passing to limit in the equivalent relation

ϕ(yn) ≤ ϕ(u)− d(u, yn), for all n,

gives (by the metrical properties of d)

ϕ(z) ≤ lim infn ϕ(yn) ≤ ϕ(u)− limn d(u, yn) = ϕ(u)− d(u, z);
that is, z ∈ Xu.

This, by the arbitrariness of our sequence, proves that Xu is d-complete.
(II) Clearly, the restriction ϕ : Xu → R is a bounded from below function endowed

with the d-lsc property on Xu.
Putting these together, it follows that (EVP-gen) is indeed applicable over Xu

and (the restriction of) ϕ. This tells us that there exists some v ∈ Xu with

d(v,w) > ϕ(v)− ϕ(w), for all w ∈ Xu, w �= v.

Now, the very relation v ∈ Xu yields the first conclusion in (EVP). For the
second one, let x ∈ X \ {v} be arbitrary fixed. If, by absurd,

d(v, x) ≤ ϕ(v)− ϕ(x) (i.e., v ≤ x),

it results (via u ≤ v) that u ≤ x; or, equivalently, x ∈ Xu. This, however,
contradicts the previous relation involving v, and, then, we are done.

By the developments above, we have [in the strongly reduced Zermelo–Fraenkel
system (ZF-AC)] the inclusions

(i-1) (DC) ⇒ (EVP-2-loc-Bms) ⇒ (EVP-loc-Bms),
(i-2) (EVP-loc-Bms) ⇒ (EVP-gen) ⇒ (EVP).

So, it is natural asking whether these inclusion chains may be reversed. At a first
glance, a negative answer is expectable, because (DC) is “too general” with respect
to (EVP). However, the situation is exactly opposite; i.e., (EVP) includes (DC); and
then we closed the circle between all such principles. An early result of this type
was provided in 1987 by Brunner [9]; for a different answer to the same, we refer
to the 1999 paper by Dodu and Morillon [15]. It is our aim in the following to show
that a further extension of this last result is possible, in the sense: (DC) is deductible
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from a certain Lipschitz-bounded countable version of (EVP). Some preliminaries
are needed.

Let (X,≤) be a partially ordered structure. Remember that z ∈ X is (≤)-
maximal, if z ≤ w ∈ X implies z = w; the class of all these will be denoted as
max(X,≤). In this case, we say that (≤) is a Zorn order when

max(X,≤) is (nonempty and) cofinal in X

(for each u ∈ X, there exists v ∈ max(X,≤) with u ≤ v).

In particular, when d(., .) is a (standard) metric on X and ϕ : X → R+ is some
function, a good example of partial order on X is that introduced by the convention

x ≤(d,ϕ) y iff d(x, y) ≤ ϕ(x)− ϕ(y);

referred to as the Brøndsted order [8] attached to the couple (d, ϕ). Further, let us
say that ϕ is d-Lipschitz, provided

|ϕ(x)− ϕ(y)| ≤ Ld(x, y), ∀x, y ∈ X, for some L > 0;

note that any such function is uniformly continuous on X.
The following stronger variant of (EVP) enters into this discussion.

Theorem 8 Let the metric space (X, d) and the function ϕ : X → R+ satisfy

(62-i) X is d-bounded and d-complete,
(62-ii) ϕ is d-Lipschitz (hence, bounded),

(62-iii) ϕ(X) is (at most) countable.

Then, (≤(d,ϕ)) is a Zorn order.

We call this, the Lipschitz-bounded countable version of (EVP) (in short, (EVP-
Lbc)). By the above developments, we thus have

(DC) ⇒ (EVP) ⇒ (EVP-Lbc).

The remarkable fact to be added is that this last principle yields (DC); so—as
precise—it completes the circle between all these.

Proposition 13 We have, in the strongly reduced system (ZF-AC),

(EVP-Lbc) ⇒ (DC); or: (DC) is deductible in (ZF-AC)+(EVP-Lbc).

As a consequence of this,

(62-1) the variational principles (EVP-2-loc-Bms), (EVP-loc-Bms), and (EVP-gen)
are equivalent to both (DC) and (EVP); hence, necessarily, equivalent to
each other,

(62-2) any maximal/variational principle (VP) with (DC) ⇒ (VP) ⇒ (EVP) is
equivalent to both (DC) and (EVP).

In particular, when the boundedness and Lipschitz properties are ignored, this
result is just the one in Dodu and Morillon [15]. Further aspects may be found in
the paper by Turinici [42].
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Summing up, all variational principles in this exposition (derived from (DC))—as
well as many other ones, described in Hyers et al. [20, Ch 5]—are nothing but logical
equivalents of (EVP). So, it is natural to ask whether the remaining (sequential)
ones—including the Smooth Variational Principle in Deville and Ghoussoub [14]—
are endowed as well with such a property. The answer to this is affirmative; further
aspects will be delineated elsewhere.
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