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Abstract. We characterize the stochastic dynamics of Neural Learn-
ing to develop Informative Ensemble Kalman Learning. Specifically, an
adaptive Ensemble Kalman Filter replaces backpropagation to quantify
uncertainty and maximize information gain during Learning. Demon-
strating competitive performance on standard datasets, we show Struc-
ture Learning using the Informative Ensemble Kalman Learner quickly
recovers the dynamical equations of the Lorenz-63 system ab initio from
data. Results indicate that extending DDDAS key informative paradigm
to optimize Learning Systems is promising.
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1 Introduction

The use of data to dynamically control an executing model and, conversely,
using the model to control the instrumentation process is a central tenet of
Dynamic Data Driven Applications Systems. Applications such as Cooperative
Autonomous Observing Systems (CAOS) embody this paradigm [1] in a stochas-
tic system’s dynamics and optimization (SDO) loop, maximizing information gain
from model predictions to plan observations or select sensors for improved model
estimation or reduction. Variously called informative-planning, -estimation, or -
sensing, this approach improves nonlinear, high-dimensional stochastic process
modeling and prediction, including systems with epistemic uncertainties.

Learning machines are in demand as surrogate or hybrid models for SDO,
but SDO is rarely applied to Machine Learning. In particular, Neural Learning
dynamics are also stochastic, nonlinear, and high-dimensional. Could DDDAS’
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informative approach help machines learn better or faster? In addition to improv-
ing CAOS, we posit doing so would broadly impact Machine Learning.

From a systems perspective, training a neural network is parameter estima-
tion [14], and backpropagation [10] restates the variational solution to multistage
two-point boundary value problems [2] (2BVP). In practice, Learning implies
stochastic dynamics (e.g., due to mini-batches) and the associated Fokker-Planck
equations describe the evolution of parameter uncertainty. Much like in nonlinear
dynamics, an ensemble approximation to the Fokker-Planck, e.g., the Ensemble
Kalman Filter [3], can train a neural network. The benefits include adjoint-free
Learning, parallelism, and quantified uncertainty.

The uncertainty quantification benefit implies that one could optimize Learn-
ing by maximizing information gain between the training error distribution and
key variables. Doing so unifies several paradigms, including parameter selection
(Feature/Model Selection), input selection (Relevance and Active Learning), and
term/variable selection (Structure Learning). Thus, by analogy to informative
approaches in DDDAS, Informative Learning is the coupling of stochastic learn-
ing dynamics with maximization of information gain.

Although this paradigm is not new from a DDDAS perspective, we cannot
ignore the unifying formalism or practical benefits from a Machine Learning
perspective. Due to space limitations, we refer the reader elsewhere [14] for
details of the stochastic methodology and learning paradigms. Here, we focus on
a few critical numerical examples.

First, we show that an adaptive version of the Ensemble Kalman Learner
is competitive with backpropagation [10] on standard datasets. Second, we use
Informative Ensemble Kalman Learning to learn the structure and parameters of
a neural dynamical system [15]. We use numerical simulations of the Lorenz sys-
tem [6] as training data to demonstrate successful generalization, extrapolation,
and interpretation. We can do this because numerical solutions of dynamical sys-
tems with polynomial nonlinearities have exact Neural Networks [15]. Thus, neu-
ral structure learning reveals the dynamical equations (terms and coefficients).
We show that the Informative Learning approach rapidly learns the Lorenz-63
equations to numerical accuracy, ab initio, from simulated data. It is both uncer-
tainty aware and sparsity promoting but without iterative burdens, which is an
exciting result.

The rest of this paper is as follows. Section 2 describes related work. Section 3
describes Ensemble Kalman Learning, and Sect. 4 uses it for Informative Struc-
ture Learning.

2 Related Work

There are connections between Informative Learning and Active Learning [13].
However, the latter does not embody a stochastic dynamical perspective. Infor-
mative Learning is related to applications in planning and estimation [1]; Learn-
ing has scarcely seen such methodology applied. The application of the Ensemble
Kalman Filter [3] to Learning has received scant interest so far. However, adap-
tive Ensemble Kalman Learning proposed here offers competitive performance,
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and Informative Ensemble Kalman Learning is new. Ensemble Kalman Learning
is itself related to Bayesian Deep Learning [16], but it remains distinct from the
extant methodology that typically emphasizes variational Bayesian approaches
or Bayesian Active Learning [13].

The stochastic dynamics of Learning naturally form a Markov chain [11].
Stochastic gradient descent using Kalman-SGD [7] and Langevin dynamics [17]
have both been developed, but these are unrelated to our work. Finally, learning
physics from data [8] is receiving some attention, but our proposed approach is
new. Neural structure optimization has also received some attention [18], but our
approach still appears to be novel. Note that the presented Informative Ensemble
Kalman Learning paradigm is applicable wherever backpropagation is. In fact,
it can be broadly applied to other learning systems as well.

3 Ensemble Kalman Learning

In this section, we describe a framework for Informative Learning briefly, refer-
ring the reader to details elsewhere [14]. Let us define a standard Neural Network
as a N -stage process [2]:

xl+1 = Fl+1(xl, ul;αl) yN = xN + νN 0 ≤ l < N (1)

where xl ∈ R
nl,x are the layer l nodes, Fl is the function, αl ∈ R

nl,α are the
weights and biases, ul ∈ R

nl,u represents feed-forward (e.g. ResNet) or feed-
back terms (e.g. recurrent network). The vector yN ∈ R

ny refers to (imperfect)
training outputs with additive noise νl ∈ R

nl,ν . All subscripted variables n· are
positive integers. We may refer to the network as a single function embedding
all layers:

xN = FNN (x1, u;α) (2)
Here, α is the collection of network weights and biases, and a training sample
s is ([x1, yN ]s). We are also interested in neural dynamical systems which are
dynamical systems described at least in part by neural networks [15]. A special
case is a discrete-time autonomous system:

xi+1 = F (xi, ui;α) yi = h(xi) + νi (3)

Where xi is the network input at time step i, h is the observation operator and
νi is additive observational noise. These equations also have standard systems
interpretations in terms of state, parameter, and control input and measure-
ment/output vectors. Please note that the network types defined here are nec-
essary to apply DDDAS concepts to Learning in this paper, but the definitions
are incomplete (e.g., missing stochastic neural dynamical system).

Training a neural network using backpropagation, although not commonly
described as such1, is equivalent to solving a two-point boundary value prob-
lem adjoined with the dynamics as mentioned above in Eqs. 1–3. However, it is
challenging to be uncertainty aware or informative this way.
1 See course at http://essg.mit.edu/ml.

http://essg.mit.edu/ml
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An alternative to 2BVP is the ensemble approach [3,9] to Learning, which is
akin to its use in parameter estimation for nonlinear dynamics and admits both
stochastic dynamical and Bayesian estimation perspectives. Specifically, consider
the Ensemble Kalman Filter (EnKF) [3,9], which fundamentally leverages a
sample approximation to gradients for inference.

For the purpose of this discussion, we interpret Eq. 3 as a standard discrete
dynamical system with Gaussian observational noise νi ∼ N (0, R = r2I). Defin-
ing Xi = [xi,1 . . . xi,E ] to be a matrix of E state (column) vector samples obtained
by solving F model equations from an initial condition ensemble at the previous
time step, and define an observational projection Zi = [h(xi,1) . . . h(xi,E)] and
Y = [yi,1 . . . yi,E ] as an ensemble of observations2. We adopt the notation that Q̃
is a deviation matrix obtained by removing the mean column vector of Q from
its columns. Then, the filter state estimate X+

i may be written as

X+
i = Xi + X̃iZ̃

T
i [Z̃iZ̃

T
i + R]−1(Yi − Zi) = XiMx,i (4)

The EnKF in Eq. 4 is a weakly nonlinear update, and it also enables building
Lagged filters and smoothers equivalent to 2BVP [9]. For parameter estimation,
let Ai = [α1 . . . αE ]i be the matrix of parameter samples at time-step i. The
parameters are assumed to persist from one time step to the next in the absence
of observation. Thus, the update is:

A+
i = AiMα,i+k k > 0 (Parameter Estimation) (5)

Here, an initial ensemble of parameters at initial condition and fixed control
input sequence (wlog) is used for a k − step ensemble simulation to derive a
parameter update. The matrix R is just the observational covariance.

Fig. 1. The Ensemble Kalman Learner offers competitive performance on Boston Hous-
ing and MNIST datasets relative to backpropagation.

Parameter estimation immediately provides the basis for neural learning. In
particular, consider A1 to be the initial parameter ensemble (generated with a

2 Perturbed observations are used here for simplicity. This is not strictly necessary.
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first-guess Gaussian distribution) and Bi to be the minibatch of size S at iteration
i. Then,

Ai+1 = Ai
1
S

∑

s∈Bi

Mα,i,s i > 0 (Learning) (6)

In this formulation, Mα,i,s is the update produced at iteration i from the ensem-
ble simulation of neural networks for each parameter ensemble member Ai and
each training sample [x1, yN ]s∈Bi

. Thus S×E parallel simulations are performed.
The “noise model” (R) is used to specify a tolerance or performance index in
achieving training outputs. The resulting Ai+1 are then the parameters at itera-
tion i+1. The same approach are applicable to recurrent systems (with rollout)
and neural dynamical systems. In contrast to 2BVP it is applicable to stochastic
neural dynamical systems and learning systems in general.

Ensemble Kalman Learning has several interesting properties. Network lin-
earization and analytical parameter gradients are unnecessary; loss functions
are not limited. The directly-obtained uncertainty estimates further allow us
to quantify information gain. In contrast to 2BVP, all layer weights update in
parallel. Parallel simulations further reduce computational expense. For small
parameter ensembles, the update is compact.

We conducted examples with the Boston Housing [4] and MNIST [5]
datasets3. For Boston Housing, we use a neural network with two 32-neuron
hidden layers, ReLU activations, least-squares loss function, minibatch of size
16, and 100-member parameter ensemble. IID zero-mean Gaussian with a stan-
dard deviation of 0.01 generates the initial parameter ensemble, and the target
tolerance is r = 0.01. SGD with a learning rate of 0.1 in backpropagation. The
results (see Fig. 1) show that the Ensemble Kalman Learner achieves a converged
error similar to tuned backpropagation within five epochs.

The MNIST dataset [5] network architecture consists of two batch-normalized
convolutional layers, max-pooling, and ReLU activations, followed by a single
ReLU-activated linear layer of width 10, finally followed by a softmax-activated
categorical output layer. We use a least-squares loss function, minibatch size 16,
parameter ensemble size 1000, and a target error tolerance of 0.015 to match the
observed performance of a highly-performing backpropagation-trained network.
Furthermore, the target error tolerance adapts as ensemble variance reduces,
up to a lower bound of 0.0015. SGD, with a learning rate of 1.0, is used for
backpropagation. The Ensemble Kalman Learner achieves a final test accuracy
of 97.1%, competing well with backpropagation at 97.9%. It does this while
maintaining better stability at a high learning rate.

4 DDDAS: Informative Structure Learning

In this section, Informative Ensemble Kalman Learning is developed and applied
to Neural Structure Learning, a difficult problem. For example, just learning
y = x2 with a tanh activation node is hard (tanh has no even Taylor expansion

3 Obtain code from https://github.com/sairavela/EnsembleTrain.git.

https://github.com/sairavela/EnsembleTrain.git
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terms). In general, a poor structural basis, poor interpretability, generalization,
and extrapolation are all confounding factors. However, in the restricted set-
ting of learning the structure of neural dynamical systems [15] trained from the
non-trivial and large class of polynomial dynamics, these issues are overcome.
Neural networks with multiplicative gates [15] represent dynamical systems with
polynomial nonlinearities exactly. Therefore, learning neural structure from data
generated by polynomial dynamics is exactly equal to recovering the polynomial
equations (terms and coefficients). Here, consider the problem of learning neu-
ral structure and parameters from data generated by numerical solutions to the
chaotic Lorenz-63 [6] system4, which is defined as:

ẋ1 = σ(x2 − x1), ẋ2 = ρx1 − x2 − x1x3, ẋ3 = −βx3 + x1x2. (7)

Suppose the starting model is a second-degree polynomial with nine terms
per equation X =

(
x1, x2, x3, x1x2, x1x3, x2x3, x2

1, x2
2, x2

3

)
. There are

thus 27 unknown parameters {aij}, where i indexes x1...3 and j indexes X.
The “true” Lorenz equations are simulated from an arbitrary initial condition
x0 = (−1.1, 2.2,−2.7) with parameters σ = 10, ρ = 28, and β = 8/3, and
time step dt = 0.01. The model equations are also simulated using a parame-
ter ensemble of size 100, each initialized i.i.d. from Gaussian with mean 0 and
variance 100. If the parameter matrix for the kth ensemble member is denoted
Ak :=

[
ak

ij

]
, then AkXt are the predictions. The parameters are then updated

using Eq. 4.
When the Ensemble Kalman Learner estimates all 27 possible parameters,

the model system converges in approximately 85 iterations when we use an ini-
tial parameter mean 0, variance 100, and high-precision/small target variance
of 1 × 10−10. Actual parameters are recovered to within 3 × 10−4 with a pos-
terior variance of 3.2 × 10−7 with the “wrong” term coefficients going to zero.
Convergence was repeatable and, remarkably, required no additional sparsity
constraints.

However, there are clear limitations. The initial model is arguably quite close
to the true model because all true terms are given as options; in other words,
the true model lies within the space of candidate models. In general, this is not
the case, and the dimensionality of the starting model may be quite high.

The following Informative Ensemble Kalman Learning approach is a better.
Instead of automatically updating all terms using Ensemble Kalman Learning,
we automatically select a small initial subset of terms as candidates, then alter-
nate between parameter estimation and term selection until achieving sufficient
prediction accuracy. To select terms, we first quantify the pairwise mutual infor-
mation between each of the structure terms and each of the current model’s three
training error variables. Pairwise conditional mutual information assumes Gaus-
sian ensembles, but other approaches are feasible [12]. After that, greedy term
selection maximizes the cumulative sorted pairwise mutual information while
minimizing the number of terms selected. This is sparsity promoting but nonit-
erative and akin to information selection criteria, and thus faster than classical
4 Code may be found at http://github.com/sairavela/LorenzStructureLearn.

http://github.com/sairavela/LorenzStructureLearn
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Fig. 2. Convergence of the true parameters and variance reduction of chosen terms for
learning the structure of the Lorenz-63 system.

Fig. 3. Survival of terms over iterations. Green are the correct terms, red are unse-
lected, and blue are terms selected and later rejected. (Color figure online)

sparse optimization. The chosen terms augment the system equations. Ensem-
ble Kalman Learning proceeds for a specified variance reduction, at the end of
which terms with parameter values approaching zero leave the system equations.
The selection cycle repeats. Variances are then rescaled and balanced in the new
parameter ensemble, and Ensemble Learning proceeds.
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By alternating the maximization of information gain with Ensemble Learn-
ing, we recover the Lorenz system equations from the initial model ẋ1...3 = 0
within approximately 35 iterations requiring three or fewer selection steps. Not
only is this more efficient but the incremental selection-rejection (prediction-
correction) is automatic and overcomes the dimensionality concern. As shown in
Fig. 2, the true equations were recovered with parameter estimates within 1%.
The final system structure learned is structurally exact: ẋ1 = a11x1 + a12x2,
ẋ2 = a21x1 + a22x2 + a25x1x3, and ẋ3 = a33x3 + a34x1x2. The progression of
term presence in the equations throughout the term selection process can be
seen in Fig. 3.

5 Conclusions

DDDAS’s informative optimization paradigm applies to neural Learning. We
develop adaptive Ensemble Kalman Learning, and results on two standard
datasets were comparable to stochastic gradient descent. Informative Learning
promotes sparsity while maximizing information gain. We applied information
gain to learn the Lorenz system equations ab inito quickly and incrementally
without iterative optimization for selecting terms. In future work, discovering
equations of natural hazards and other tractable inference models for Learning
and Information Gain are of interest.
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