
Frederica Darema
Erik Blasch
Sai Ravela
Alex Aved (Eds.)

LN
CS

 1
23

12

Third International Conference, DDDAS 2020
Boston, MA, USA, October 2–4, 2020
Proceedings

Dynamic Data Driven 
Applications Systems



Lecture Notes in Computer Science 12312

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Frederica Darema • Erik Blasch •

Sai Ravela • Alex Aved (Eds.)

Dynamic Data Driven
Applications Systems
Third International Conference, DDDAS 2020
Boston, MA, USA, October 2–4, 2020
Proceedings

123



Editors
Frederica Darema
InfoSybiotic Systems Society
Bethesda, MD, USA

Erik Blasch
Air Force Office of Scientific Research
Arlington, VA, USA

Sai Ravela
Massachusetts Institute of Technology
Cambridge, MA, USA

Alex Aved
Air Force Research Laboratories
Rome, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-61724-0 ISBN 978-3-030-61725-7 (eBook)
https://doi.org/10.1007/978-3-030-61725-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7930-9304
https://orcid.org/0000-0001-6894-6108
https://orcid.org/0000-0002-6303-9936
https://orcid.org/0000-0002-7015-7359
https://doi.org/10.1007/978-3-030-61725-7


Preface

The Dynamic Data Driven Applications Systems (DDDAS 2020) conference show-
cases scientific research advances and technology capabilities stemming from the
DDDAS paradigm, whereby instrumentation data are dynamically integrated into an
executing application model, and in reverse, the executing model controls the
instrumentation.

DDDAS/InfoSymbiotics1 plays a key role in advancing capabilities in many
application areas; driving innovation in a great many methodological areas ranging
from foundational methods such as filtering, estimation, and uncertainty quantification
to applications approaches; and coordinating system-level design, including repre-
sentation models, network control, and sensor management. DDDAS incorporates
comprehensive principle- and physics-based models, instrumentation (including sens-
ing and actuation), planning and control methods, as well as theory involving models’
convergence properties, uncertainty quantification, observation, and sampling. Over the
last two decades, the DDDAS paradigm has shown the ability to engender new
capabilities in aerospace, materials sciences, biosciences, geosciences and space sci-
ences, resilient security, and cyber systems for critical infrastructures such as
power-grids. The scope of application areas ranges from the nano-scale to the
extra-terra-scale.

DDDAS permeates a great many areas: statistical estimation, machine learning,
informative planning, decision support, network analysis, and big data. DDDAS also
emphasizes foundational aspects in systems thinking with an overarching objective and
the ability to judiciously structure, dynamically adapt, and optimally exploit resources.
The DDDAS paradigm has influenced the extension of existing methods such as data
assimilation and the digital twin, which have evolved to incorporate the adaptive
aspects of DDDAS into their definitions. Other recent techniques such as generative
adversarial networks (GANs) resemble the DDDAS paradigm by generating data from
models and discriminating the information for enhanced system performance. For test
and evaluation, DDDAS creates capabilities for lifetime assessment and optimization
of the performance of components and systems. Also, a number of recent and emerging
algorithms in machine learning, and other methods and approaches, such as informative
sensing, informative estimation, informative planning, targeted observation, active
learning, relevance feedback, recommender systems, stochastic modeling, reinforce-
ment learning, and feature selection – applying and/or adopting the essence of the
DDDAS paradigm, which includes high-dimensional simulation/modeling in order to
facilitate data-driven exploitation and decision making dynamically, adaptively, and in
real-time. Moreover, in addition to the homonymous DDDAS-based agencies spon-
sored initiatives and programs (which started in 2000), other initiatives such as

1 InfoSymbiotic Systems or InfoSymbiotics are terms introduced to denote DDDAS.



cyber-physical systems (which started in 2006 by the embedded systems community)
can benefit from the more comprehensive approaches of the DDDAS paradigm.

The DDDAS/InfoSymbiotics conference series is a forum that presents novel
directions, reports innovative solutions, and documents advanced opportunities over a
wide set of scientific and engineering application areas. A consequence of the growing
interest, activities, and advances in DDDAS, the DDDAS2020 conference showcases
21 peer-reviewed plenary presentations, 14 peer-reviewed posters, 5 keynote presen-
tations, and 3 panels from experts in academia, industry, and government sectors. The
proceedings include the keynotes’ overview papers, the panels’ abstracts, and the
accepted papers. All presentation slides are posted at the DDDAS website (www.
1dddas.org).

DDDAS 2020 follows from past DDDAS conferences and workshops, starting with
the March 2000 National Science Foundation (NSF) DDDAS Workshop and subse-
quent DDDAS conferences, and DDDAS workshops in conjunction with conferences
since 2003. Starting in 2018, efforts and results over the years are also discussed more
extensively in a series of Springer handbooks on DDDAS.

We are thankful to all the contributors of this conference, including the keynote
speakers and panelists, those who submitted abstracts and papers for their research
work and authoring the papers included in these proceedings, and to the reviewers
of the two-stage papers selection process.

August 2020 Frederica Darema
Erik Blasch
Alex Aved
Sai Ravela

The original version of the book was revised: The typo in the main title was corrected.
The correction to the book is available at https://doi.org/10.1007/978-3-030-61725-7_44
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Keynotes



Predictive Digital Twins: Where Dynamic
Data-Driven Learning Meets Physics-Based

Modeling

Michael G. Kapteyn1 and Karen E. Willcox2(B)

1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 University of Texas at Austin, Austin, TX 78712, USA

kwillcox@oden.utexas.edu

Abstract. A digital twin is an evolving virtual model that mirrors an individual
physical asset throughout its lifecycle. An asset-specific model is a powerful tool
to underpin intelligent automation and drive key decisions. The formulations and
methods of dynamic data-driven application systems (DDDAS) have a key role
to play in the tasks of inference, assimilation, prediction, control, and planning
that enable the digital twin paradigm. Of particular importance is a tight feed-
back loop between models and data, which has long been a central concept in
DDDAS. This keynote talk presents an approach to create, update, and deploy
data-driven physics-based digital twins. We demonstrate the approach through
the development of a structural digital twin for a custom-built unmanned aerial
vehicle.

Keywords: Digital twin · DDDAS · Unmanned aerial vehicle

1 Key Elements of Our Mathematical Representation of a Digital
Twin

A digital twin is an evolving virtual model that mirrors an individual physical asset
throughout its lifecycle. An asset-specificmodel is a powerful tool to underpin intelligent
automation and drive key decisions. The formulations and methods of dynamic data-
driven application systems (DDDAS) have a key role to play in the tasks of inference,
assimilation, prediction, control, and planning that enable the digital twin paradigm.
Of particular importance is a tight feedback loop between models and data, which has
long been a central concept in DDDAS. This keynote talk presents an approach to create,
update, and deploy data-driven physics-based digital twins.Wedemonstrate the approach
through the development of a structural digital twin for a custom-built unmanned aerial
vehicle.

Key elements of our mathematical representation of a digital twin are:

State. We consider the evolution of the system over time. The physical asset refers
to the physical component, system, or process for which we are providing decision
support. We denote its state at time-step t by S_t ∈ S, where S is the physical state

© Springer Nature Switzerland AG 2020
F. Darema et al. (Eds.): DDDAS 2020, LNCS 12312, pp. 3–7, 2020.
https://doi.org/10.1007/978-3-030-61725-7_1
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4 M. G. Kapteyn and K. E. Willcox

space. In general, the asset state will be only partially and indirectly observable through
observational data. The digital twin is a parametrized model or set of coupled models
representing the physical asset, and evolving over time. The digital twin state comprises
the parameters of these models, denoted at time-step t by D_t ∈ D_t, where D_t is the
digital twin state space at time-step t. The digital twin state space may be adapted on the
fly as new asset states are discovered or encountered. Due tomodel inadequacy, typically
we have that D_t ⊂ S.

Observational data. The digital twin state is informed by observational data received
from the physical asset. The observational data might include sensor data, physical
inspection data, information from diagnostic or error reporting systems, etc. We also
define a reference observation, generated using the digital twin to produce a prediction
of the observational data.

Control. The control input defines actions that change the instantaneous state of the
physical asset directly or change the operating conditions of the asset, thereby influenc-
ing the state evolution dynamics. Control inputs could also influence the observational
data that is generated by an asset, either instantaneously (e.g., deciding to perform an
inspection of the asset) or in the future (e.g., installing a new sensor). These control
inputs could be issued autonomously by the digital twin or by a human operator. In the
latter case, the role of the digital twin is to provide decision support. In this case the
digital twin might still act as an interface to the physical asset, accepting a high-level
directive from an operator and converting this into a valid control input before issuing
it to the physical asset.

Reward. The reward quantifies preference of different states or trajectories of the
asset-twin system, and could reflect a combination of performance, cost, uncertainty,
tracking targets, etc.

With the state, observational data, control, and reward,we fully define the digital twin
mathematical framework. However, the complexity of representing an entire physical
asset remains a significant challenge. In particular, the physical asset state might require
thousands or even millions of parameters to fully define it – parameters that will change
during design, manufacture, and operation as the system is realized and then as it ages.
Not only is the state of high dimension, it also embodies complex aspects of the asset
across multiple spatial and temporal scales. Further, uncertainty plays a critical role in
digital twin creation and decision-making. Uncertainty must be represented and tracked
in all elements.

It thus remains a significant research challenge to translate this digital twin mathe-
matical framework into robust, interpretable, scalable and efficient algorithms – algo-
rithms that can handle the extreme high dimensionality and the level of complexity
involved in building a digital twin of an entire aircraft. We do this by viewing the digi-
tal twin state through the lens of physics-based models. Physics-based models innately
embed the concepts of time, space and causality. In doing so, they inherently define
low-dimensional manifolds on which physical processes evolve, bringing structure to
an otherwise intractable solution space of vast dimension.
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Our use case builds a structural digital twin of an unmanned aerial vehicle (UAV).
Monitoring the condition of critical engineering assets has for centuries been an impor-
tant task for any engineering system whose condition changes over time due to envi-
ronmental influences and/or operating wear and tear. Applications across land, sea, air,
and space include vehicles (aircraft, engines, spacecraft, ships, etc.), civil infrastruc-
ture (bridges, buildings, railways, etc.), energy generation infrastructure (wind turbines,
nuclear reactors, etc.), the nuclear stockpile, off-shore platforms, and many more. His-
torically, this monitoring has been manual, but the advent of pervasive in situ sensors
and wireless communication technology enables DDDAS in all these applications—a
new age of predictive maintenance, condition-based monitoring, and intelligent decision
support, with the promise of saving money, time, and errors.

To illustrate our approach, we use the digital twin for dynamic in-flight decision-
making to replan a safe mission in response to vehicle structural damage. The predictive
digital twin is built from a library of component-based reduced-order models that are
derived from high-fidelity finite element simulations of the vehicle in a range of pris-
tine and damaged states. The digital twin is deployed and updated using interpretable
machine learning. Specifically, we use optimal classification trees to train a scalable
and interpretable data-driven classifier (Fig. 1). In operation, the classifier takes as input
vehicle sensor data, and then infers which physics-based reduced models in the model
library are the best candidates to compose an updated digital twin. Figure 2 shows snap-
shots of the approach at work, using strain measurements to dynamically update the
estimate of the vehicle’s structural health and then driving mission replanning.

Fig. 1. We use a library of reduced-order models to generate training data to train an optimal
classification tree. In operation, the classifier takes as input vehicle sensor data, and then infers
which physics-based reduced models in the model library are the best candidates to compose an
updated digital twin. The classifier also provides a foundation for adaptive sensing strategies.
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Fig. 2. In this scenario, the UAV undergoes damage to the wing and must dynamically replan its
mission to take a less aggressive flight path (Kapteyn et al. 2020).

Acknowledgements. The authors gratefully acknowledge the support of AFOSR grant FA9550-
16-1-0108 under the Dynamic Data Driven Application Systems Program and the SUTD-MIT
International Design Center.
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Dynamic Data-Driven Application Systems
for NASA’s Science Mission Directorate

Michael S. Seablom(B), Florence W. Tan, and Jacqueline J. LeMoigne

NASA Headquarters, Washington, DC 20546, USA
michael.s.seablom@nasa.gov

Abstract. NASA’s Earth Science Technology Office (ESTO) is prioritizing a
“New Observing Strategy” to help mitigate the risk, cost, size and development
time of future Earth Sciencemissions and their corresponding information systems
and to increase the use of NASA’s Earth Science data. The strategy consists of
exploiting distributed spacecraft, constellations, and “sensor webs” to enable new
observation measurements and information products. Although the overarching
concept has been studied for nearly 20 years, the emergence of low-cost small
spacecraft through commercial platforms and high quality, miniaturized science
instruments makes possible domain-specific scientific investigations. When cou-
pled with numerical prediction models, these types of spacecraft will enable new
scientific investigations of phenomena that previously could not have been studied
or would have been too expensive to study.

Keywords: Reference mission · Autonomous systems · Simulation

1 Introduction

In 2018, NASA’s Science Mission Directorate (SMD) jointly hosted the Workshop
on Autonomy for NASA Science Missions with Carnegie Mellon University to bring
together scientists, NASA program managers, and experts in the field of autonomous
systems. Its purpose was to increase awareness across NASA science disciplines of the
growing capabilities of autonomous systems in industry and academia, and to stimulate
thought on how these emerging technologies can contribute to more capable and more
affordable science missions in the future. Eight teams were established to define design
reference missions targeted for the period 2028–2033 for Astrophysics, Earth Science,
Heliophysics, Mars, the Moon, Ocean Worlds, Small Bodies, and Venus. The teams
were led by research experts in each area, and each team included a technologist in the
field of autonomy. Following a two-day discussion, the teams presented their ideas for
mission concepts that not only incorporated the current state-of-the-art in autonomy, but
also attempted to anticipate the growth of such capabilities during the targeted period.
With specific instructions for the participants to operate unconstrained from concerns
over risk-averse management or limitations of budget, the teams were able to produce
a set of fascinating mission concepts that could be delivered with realistic, concomitant
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technologies. For many of the design reference missions, key elements included the sit-
uational awareness, self-awareness, reasoning, and acting that can be delivered through
coupled models and sensing systems, which is at the core of dynamic data-driven appli-
cation systems (DDDAS). We will discuss some of these mission concepts and their
relevance to NASA Science.

The suggested use of DDDAS for the Agency’s science missions, however, pre-
dates the 2018 AutonomyWorkshop. In 2002 NASA’s Earth Science Technology Office
(ESTO) convened a study [1] to identify key capabilities of an advanced Earth observa-
tion system that could significantly extend the skill of operational weather forecasts. The
results of that study identified a uniquely-coupled “sensor web” observing system that
would greatly enhance present-dayEarth-observing capabilities of satellites, aircraft, and
ground-based in situ observations. The sensor web was formally defined by ESTO to be
“a coherent set of heterogeneous, loosely-coupled, distributed observing nodes intercon-
nected by a communications fabric that can collectively behave as a single dynamically
adaptive and reconfigurable observing system. Such an observing system would enable
coordinatedmeasurements frommultiple vantage points and could be commanded either
manually or through autonomous means, such as from a numerical model, allowing for
adaptive targeting of rapidly evolving, transient, or variable meteorological features to
improve the ability to monitor, understand, and predict their evolution. It would also
enable measurements earmarked at critical regions of the atmosphere that are highly
sensitive to data analysis errors, thus offering the potential for significant improvements
in the predictive skill of numerical weather forecasts. ESTO recognized that implemen-
tation of an operational sensor web would not only involve technical cost and risk but
also would require changes to the culture of how flight missions were designed and
operated. For over a decade, ESTO funded a number of sensor web projects, including
the development of a mission-planning simulator that would quantitatively assess the
added value of coordinated observations. The simulator was designed to provide the
capability to perform low-cost engineering and design trade studies using synthetic data
generated by observing system simulation experiments (OSSEs). Another aspect of the
investment strategy was to invest in prototype applications to implement key features of
a sensor web, with the dual goals of developing a sensor web reference architecture as
well as supporting useful science activities that would produce immediate benefit. The
development of the simulator and the implementation of the prototypes both helped to
build a foundation for the missions discussed at the Autonomy Workshop.

1.1 Sensor Web Simulator

The simulator was designed and built under ESTO funding from 2008–2010 and is
described in detail by Talabac [1]. A hurricane use case was established to demonstrate
the key functions of a sensor web that employed three future observing platforms: a tro-
pospheric wind lidar, the operational GOES-R imager, and a next-generation ocean wind
scatterometer (NGS). Adaptive targeting, necessary to collect data at specific regions
of the atmosphere containing meteorological features of interest, was implemented by
designing the spacecraft with the ability to repoint the wind lidar from its standard nadir
position. The use case consisted of a two-week period with active tropical cyclone activ-
ity as depicted by an OSSE nature run. A vortex detection algorithm was applied to
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synthetic NGS data over regions in the Atlantic basin. An algorithm to compute sur-
face vorticity was used to provide early detection of potential cyclogenesis, and a list of
candidate targets within the NGS swath coverage area was created. The wind lidar was
then tasked to target those regions, and the GOES-R imager was placed in rapid-scan
“Mesoscale Imaging Mode” to produce high temporal resolution cloud motion vector
winds (CMV) over the targets. The NGS data, winds from the lidar, and the CMVwinds
would then be assimilated to determine if an improved track forecast would result from
the collection of the “best” possible data to capture development of a tropical cyclone.
We will discuss the design of the simulator with its associated use case resulted in a
number of lessons learned, including:

• In an operational mode, DDDAS implementations are limited by the ability of the
initial guess and the predictability of the future state of the system. In this instance the
hurricane intensity forecast was not very good, and resulted in undesirable feedbacks
from subsequently poor data targeting.

• In a research mode, simulation of DDDAS implementations can help determine
optimal observing strategies that can identify where more accurate predictions are
needed.

• The diversity of the various applications (i.e., the very large software systems needed
for prediction and data analysis, along with simulation of future instruments via
OSSEs) increases the complexity of DDDAS and necessitates that each component
be implemented as a separate service.

1.2 DDDAS Implemented for the Namibia Flood Pilot

A multi-phase ESTO investment that developed functional sensor web capabilities
designed for direct societal benefit was the Sensor Web 3G (third generation of the
architecture) led by Mandl [2]. The project developed a set of interconnected services to
process data from Earth observing sensors and provide custom data products for science
applications. The architecture consisted of interfaces compliant with Open Geospatial
Consortium (OGC) standards, thereby providing scientists an easy-to-use environment
to control ground and onboard sensors that allow creation, installation, and triggering
of science processing algorithms seamlessly in order to process data in real time. The
concept was implemented based on a flood disaster use case in which an algorithm was
developed to identify floodwater extent based upon hyper-spectral imagery. The algo-
rithm classified water in the imagery as either clear or murky, the latter assumed to be
floodwater.

Following disastrous flooding in Namibia in 2009 the “Namibia Flood SensorWeb”
project was established to integrate key remote sensing assets into a flood-monitoring,
early warning decision support system. There weremany lessons learned from the exper-
iment, most notably the requirement for rapid turnaround of data products and the need
for quality assurance during every step of the processing. We will discuss these and also
how the project also demonstrated the value of customized data products, which were
particularly useful for addressing the unique characteristics of Namibian flooding, as
well as the successful implementation of sensor web capabilities for tasking satellite
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assets such as Earth Observing One (EO-1) and Radarsat to obtain timely delivery of
hyper-spectral imagery and synthetic aperture radar data, respectively.

1.3 Ocean Worlds and DDDAS

Beyond the Earth, a key goal of SMD is to craft newmissions to identify evidence of pre-
vious or extant life in other parts of our solar system. The discovery of evidence for large
quantities of liquid water on several bodies in our solar system has led to “ocean worlds”,
or the icy moons of Jupiter and Saturn, becoming key astrobiology targets, for which
many of our key science questions require in situmeasurements both at the surface and in
the liquid seas below. The challenges involved in implementing robotic subsurface mis-
sions on Ocean Worlds are immense, and advanced autonomy may be among the most
demanding technology developments that will be required. Ocean Worlds present an
environment that is uncertain, dynamic, and communication-constrained, which requires
autonomy that is adaptive, reactive, and resilient. For example, the dynamic nature of
plume ejecta on Enceladus or the harsh radiation of Europa prohibit human-in-the-loop
control, especially during long-duration communication blackouts such as the two-week
period during solar conjunction. Ocean World probes must be equipped to learn from
their interactions with the environment, react to imminent hazards, and make real-time
decisions to respond to anomalies. We will discuss one element of this mission con-
cept, the Crevasse Explorer, which is designed to examine the plume material on the
surface. Exploring crevasses and the nearby surfaces creates many challenges including
resisting plume forces, dealing with the phase change of water, water vapor occluded
imaging, constrained dynamic environments, liquid mobility, and others. The opera-
tions and scientific discovery will require deep autonomous capabilities to work in this
environment.

Acknowledgments. The contribution of the Ocean Worlds design reference mission was made
possible by the contributions of Rebecca Castano, Tom Cwik, and Bill McKinnon of the NASA
Jet Propulsion Laboratory; by William Diamond and Pablo Sobron of the SETI Institute; by
DavidWettergreen of CarnegieMellonUniversity, David Smyth of Honeybee Robotics, Geranimo
Vaillanueva of theNASAGoddard Space Flight Center, and JonathanWeinberg of Ball Aerospace.
The full text of this mission concept is available at https://science.nasa.gov under “Autonomy
Workshop”.
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Abstract. Three years ago (DDDASat the 2017ASMEMeeting)we looked at the
speaker’s top ten list of how DDDAS can save the world. Now as we adjust to life
under the COVID-19 pandemic and a 2020 Conference in the virtual format, our
world literally seeks rescue/saving. Under these circumstances, we revisit the top
ten list and first consider briefly the dynamic data-driven aspects of the COVID-19
challenges from the speaker’s experiences in the biotech/pharma industry and then
move on to the more optimistic challenge of securing our energy future and life
after the pandemic.

1 Introduction

In the 2014 and 2017DDDASconferences, the speaker (corresponding author) presented
a top ten list of ways that DDDAS can save the world, and the list included biomedical
and energy related themes. The biomedical themes are certainly timely given the current
priority of overcoming COVID-19 and merit a few brief remarks in a presentation that
is primarily focused on the energy land- scape. The challenge of suppressing transmis-
sion of a highly infectious virus and avoiding severe economic disruptions lies at the
intersection of science and governmental policies. The dynamic stream of health data
from an array of sources with associated uncertainties presents itself as a classic DDDAS
problem for optimization of societal outcomes – overcoming the pandemic withminimal
economic damage.

The main theme of the presentation is the remarkable transformation of the oil and
gas (O&G) energy sector thanks to the shale revolution [1]. We consider the classical
division of this sector as upstream, midstream and downstream segments and the past,
present and future of DDDAS for each of these segments.

The applications of DDDAS in O&G have been regarded as one of the strategies to
help advance the industry for the future energy. The concepts for Dynamic Data Driven
Applications Systems (DDDAS) have developed formore than two decades startingwith
an initial NSF workshop in 2000 that brought together researchers in many disciplines
[2]. The initial workshop aimed to instantiate systems-level opportunities by employing
the power of modeling and hardware advances [2, 3].
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Fig. 1. Examples of DDDAS in all processes of O&G: upstream – well drilling (robotic solutions
and artificial intelligence); midstream – pipeline transportation (internet of things framework)
and optimization techniques for the pipeline managements; and downstream – refinery operations
using big data.

The early development of DDDAS in O&G has shown progress and applications in
oil exploration [4] and oilfield reservoir management [5–7]. For in- stance, the DDDAS
were applied to oil well placement [8], where the dynamic data-driven steering of
the reservoir optimization processes determined optimal well placement and config-
uration. Additionally, the developed DDDAS-based detection and simulation system
has improved oil spill simulation and provided decision-making information and tech-
nical support for the remote sensing of the oil spills [9, 10]. For another application
in the midstream process, DDDAS has integrated trajectory prediction and accelerated
microscopic traffic simulation for monitoring transportation systems [11]. Therefore, the
successful implementation of DDDAS depends on other hardware and software tech-
nologies such as remote sensors and advanced algorithms (e.g. reservoir simulation [12]
and optimization methods).

This extended abstract briefly discusses the current applications of DDDAS in the
petroleum industry (scheme in Fig. 1). Note that this proceeding, by no means, covers
all aspects of DDDAS in O&G industry, where we only show- case the existing practices
combiningwith emerging technologies: upstream –well drilling (intelligent robotics and
artificial intelligence); midstream – pipeline transportation (internet of things frame-
work) and optimization techniques for the pipeline managements; and downstream
– refinery operations (big data). Finally, we conclude to discuss the future directions
towards the DDDAS in the O&G industry.

2 DDDAS Applications in Upstream, Midstream and Downstream

2.1 Upstream

Due to the huge daily expenses, oil well drilling is considered to be one of the most
expensive operations in the exploration value chain [13]. Current intelligent drilling
technologies are composed of many high-tech systems associated with DDDAS, such
as intelligent robots, artificial intelligence (AI) and more. Incorporation of intelligent



14 S. Wang and S. Kim

drilling aims to achieve the speed, efficiency, and quality of drillingwhile simultaneously
reducing drilling accidents and expenses. In the following, we would like to summarize
how technologies of robotic solutions and AI have advanced the well drilling operations.

First of all, robotic solution can handle increasing challenges for the O&G industry,
such as lower recovery factors [14, 15], operations in extreme environ- mental condi-
tions and business profitability. Robotics blend with new technical innovations espe-
cially designed for the industry such as intelligent drilling rigs and smart inspection. For
instance, down-hole robots consist of miniature parts assemblies including sensors, actu-
ator and guidance systems. Intelligent robot- s are able to precisely detect down-hole
petro-physical parameters under high pressure high temperature conditions and relay
them back to surface in real time, which helps determine the quality and quantity of
hydrocarbons in the reservoir [16].

Secondly, the oil well drilling can be optimized by the application of AI with com-
plex, non-linear and uncertain control parameters [13, 17]. In recent years, the devel-
opment and upgrade of precise generic models and efficient data processing methods
to prescribe a near-accurate impression of drilling operations when direct and real-time
data are unavailable. Artificial intelligent tools are employed for the ease of operations
and reduction of unnecessary expenses from selecting drill bit type all the way to the
mapping of well trajectories [17].

2.2 Midstream

The midstream sector involves the transportation and storage of crude oil/refined
petroleum-based products using pipelines, trucks and tanks [18].Most of energy projects
rely on pipelines because they can safely and efficiently transport the nation’s energy
products. Therefore, the development of the intelligent operations (e.g. internet of things
- IOT) associated with DDDAS largely focuses on the pipeline system [19–21]. In
this section, we first focus the pipeline technology developments with respect to the
IOT modules. Next, a discussion of the current optimization methods for pipeline with
configuration constraints.

An integrated IoT framework for an oil pipeline transportation system applies online
monitoring and control to the entire oil pipeline transport system from the inlet to the
delivery station [22, 23]. A smart IoT module collects pressure and flow rate data during
oil transportation through pipelines by remote control [22]. It collects suitable real-
time field data from oil stations and then the data are transmitted to both the cloud and
field supervision center. Based on the analysis of received data, a feedback signal will
control the valve to regulate both pressure and flow rate for any abnormality during
oil transportation. The IoT framework also aims to detect or diagnose any catastrophic
failure because of cracks, leakage, and/or blockage during the whole oil field transport
system through the IoT module [22].

In addition to the IOT solutions in pipeline systems, there are necessary optimization
methods during the pipeline planning activities. Optimization techniques are the tools
that assist decisionmaking and pipeline implementation [24]. For themidstreampipeline
management, Nygreen and Haugen have surveyed the mathematical programming mod-
els in Norwegian petroleum field [25]. Bohannon [26] proposed a linear programming
model for optimum drilling and facility expansion schedules for multi-reservoir pipeline



Revisiting the Top Ten Ways that DDDAS Can Save the World 15

systems. In another example, Neiro and Pinto [27] developed a complex multi-period
mixed-integer-non-linear programming model for petroleum supply chain, including
nodes representing refineries, terminals, and pipeline networks. Together, the extension
of these methods can address more complex, highly dimensional pipeline problems in
the near future.

2.3 Downstream

For the downstreamof the refinery,wediscuss the big data analytics applied in optimizing
processes for maintaining the efficient energy consumption. For the refinery of the shale
deposits, we will discuss recent efforts (i.e. CISTAR (NSF- ERC)) on bridging the
transition to a sustainable energy future with fuels and chemicals from the stranded light
hydrocarbons in shale O&G.

The big data analytics have a significant place in the petroleum downstream industry.
Big data can be useful in prognostic foresight for the various areas of the refineries such
as maintenance & repair, operations, finance, and life cycle management [28]. Prognos-
tic analytics help refineries in short-term and long-term scheduling of maintenance and
repairs along with staff planning and allocations. Additionally, within life cycle man-
agement, big data covers the remaining useful life which includes optimal exploitation
and replacement [28].

For the supply chain from the shale deposits to the refinery [1], there is a significant
technological gap in our current ability to efficiently and responsibly upgrade light
hydrocarbon (LHC) reserves to chemicals and fuels, especially at the small scale typical
of many shale O&G production sites.We note a recent transformative engineered system
(i.e. CISTAR) which plans to convert LHC from shale resources to liquid chemicals and
transportation fuels through smaller, modular, local, and highly networked processing
plants [29]. This technology along DDDAS can be accomplished through new coupled
reactions and separation processes that are both efficient and flexible [30, 31].

3 Conclusion

This extended abstract briefly discussed the current applications of DDDAS within the
O&G industry. In today’s petroleum industry, companies and corporations are looking
for strategies of maximum operation efficiency and asset protection. The applications of
DDDAS have offered significant opportunities in all processes of the petroleum indus-
try. In the upstream sector, the intelligent robotics facilitate the well drilling. In the
midstream, both IOT and optimization algorithms have been applied to the pipelines.
Finally, the downstream applies big data to optimize the processes of refineries; for
the shale O&G, the recent initiative (CISTAR) applies the DDDAS to the small mod-
ular/distributed units to efficiently upgrade the light hydrocarbon feedstock to more
profitable products. The future applications of DDDAS in the O&G industry could gain
traction by focusing on the operation efficiency, the environmental carbon footprint and
many other practices.

Acknowledgement. We thank the CISTAR NSF-ERC team and Director Fabio Ribeiro for
insightful discussions on the downstream shale revolution. We also thank Nathan Schultheiss
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for extensive discussions on the current state of the upstream and midstream O&G; this extended
abstract is a summary version of a longer DDDAS O&G chapter.
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Abstract. Wildland fires and related hazards are increasing globally. A com-
mon observation across these large events is that fire behavior is changing to be
more destructive, making applied fire research more important and time critical.
Significant improvements towards modeling of the extent and dynamics of evolv-
ing plethora of fire related environmental hazards, and their socio-economic and
human impacts can be made through intelligent integration of modern data and
computing technologies with techniques for data management, machine learning
and fire modeling. However, there are still challenges and opportunities in inte-
gration of the scientific discoveries and data-driven methods for hazards with the
advances in technology and computing in a way that provides and enables differ-
ent modalities of sensing and computing. The WIFIRE cyberinfrastructure took
the first steps to tackle this problem with a goal to create an integrated system,
data and visualization services, andworkflows forwildfiremonitoring, simulation,
and response. Today, WIFIRE provides an end-to-end management infrastructure
from the data sensing and collection to artificial intelligence and modeling efforts
using a continuum of computing methods that integrate edge, cloud, and high-
performance computing. Through this cyberinfrastructure, the WIFIRE project
provides data driven knowledge for a wide range of public and private sector
users enabling scientific, municipal, and educational use. This paper (based on the
keynote by the author) reviews some of our recent work on building this dynamic
data driven cyberinfrastructure and impactful application solution architectures
that showcase integration of a variety of existing technologies and collaborative
expertise.

Keywords: Dynamic data-driven workflows ·Wildfire modeling · Artificial
intelligence · Knowledge management · Geospatial · Disaster management

1 Systems for AI-Integrated Dynamic Data-Driven Applications

FromIoT to extreme scale computing connected by software definednetworking, the data
and computing ecosystem has never had more potential for real-time integration of AI
with applications that can be steered using data. These data-driven applications include
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observations and social media data driven environmental and societal applications as
well as closed loop simulations in many areas of science including material science,
climate, high-energy, physics and chemistry. Although there are commonalities between
these applications, most examples in this domain are built as a specialized integrated
application involving many expertise driven components for data management, data
analysis, machine learning, simulation, computing and workflow management. While
some steps of such applications still require high capacity computing and data, the steps
that depend on responsiveness to data, e.g., for data preparation and artificial intelligence
(AI), often need to run on demand or continuously on specialized chips including GPUs,
TPUs and FPGAs running in cloud or edge platforms. In addition, the growing data
volumes from a variety of sources with various speeds and privacy requirements make it
difficult or at times impossible to transport and integrated data centrally. Such specialized
nature of these different steps due to challenges of portability, latency, privacy, data
locality and performance optimization resulted in the need for newmethods and research
for dynamic data-driven application (DDDA) integration in the digital continuum.

Many research challenges and opportunities exist for collaborative team science,
workflow composition and data management to realize the vision of streamlined, scal-
able, repeatable, responsible and explainable integration of AI in DDDA applications.
These challenges and opportunities include intelligent infrastructure and systems with
capabilities to enable dynamic scheduling and resource optimization, composable ser-
vices that can run on intelligent systems, and automated workflowmanagement software
that can compose and steer dynamic applications that can adapt to changing conditions in
a data-driven fashion while integrating many tools to explore, analyze and utilize data.
This paper focuses on an example AI-integrated wildland fire application, describes
some of the new systems that enabled these applications, and overviews a dynamic data
driven workflow for AI-integrated fire modeling ensembles.

2 WIFIRE: Composable AI-Integrated Services for Dynamic Data
Driven Workflows at the Digital Continuum

Wildfires hazards are growing due a number of factors.Modeling the dynamic and extent
of the wildfire hazards is more important than ever with applications in wildfire miti-
gation, preparedness, response and recovery. Due to the changing behavior of wildfires,
understanding the dynamics of the behavior of a fire while it is happening is an important
area and a DDDA using real-time data. Cataloging, curating, sharing and discovering
data and optimizing the integration of data sets for application-optimized modeling tools
are potentially the biggest enablers for further progress in data-driven wildland fire sci-
ence. AMoore Foundation CommunityWorkshop in April 2019 [1] identified “a shared,
integrated platform for diverse sources of data, intelligence and information” as the top
requirement for a “Fire Immediate Response System”. TheNSF-fundedWIFIRE project
[2] (wifire.ucsd.edu) took the first steps to tackle this problem, successfully creating an
integrated workflow-driven system for wildfire monitoring, simulation, and response.
Today, WIFIRE provides an end-to-end management cyberinfrastructure (CI) with inte-
grated data collection, knowledgemanagement andmodeling to enable scientific,munic-
ipal and educational use in partnerships with data providers, science communities, fire
practitioners and government organizations to solve problems in wildland fire.

https://wifire.ucsd.edu/
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Fig. 1. AWIFIRE workflow for AI-integrated fire modeling in the digital continuum.

One of the important research directions for WIFIRE is dynamic data-driven fire
modeling using real-time big data [3]. Fire modeling requires integration of data related
to weather and landscape including topography and fuel characteristics. Depending on
the fire modeling approach (empirical vs. physics-based), the data can come from field
and remote observations, predictive models of weather and fuel, and operational systems
providing a real-time view of the progression of an ongoing fire. When combined, these
data sources enable learning about the dynamics of a fire incident and ability to adjust fire
models based on these event-specific dynamics. WIFIRE’s workflows [3–5] combine AI
and other geospatial data management methods together with fire modeling ensembles
in a real-time closed-loop fashion. The composed data services and the results of these
workflows aremade available to communities of used through amapping platform called
Firemap [6] (firemap.sdsc.edu).

Figure 1 shows a conceptual version of this workflow bringing together AI methods
(e.g., [7]) to curate and prepare environmental data for fire modeling using a variety
of modeling methods. The data include fire imagery (overhead aircraft and drones,
ground-based cameras and satellites), fuel (at various resolutions) and weather (weather
stations and model products). The steps indicated as AI convert data into insight with
uncertainty that can then be used for model parameterization and adjustments using
data assimilation techniques [3, 4]. The workflow represented in Fig. 1 is also a typical
example where edge, cloud and high-performance supercomputing capabilities come
together in an integrated AI-driven fire behavior modeling ensemble. Typically, the
computing for the smoke and perimeter generation takes place in an environment built
for big data and/or edge computing while the fire modeling and AI training needs to
take place in a high-throughput or high-performance environment depending on the fire
modeling codes that need to be executed. Currently, WIFIRE uses a combination of on-
prem, edge (e.g., SAGE and CHASE-CI), cloud (e.g., Chameleon and AWS) and HPC
(e.g., Comet and Expanse) environments. Figure 1 depicts this integrated workflow and
various steps in relation to the type of underlying execution infrastructure required to
run these applications.

https://firemap.sdsc.edu/
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3 Conclusions

The WIFIRE Cyberinfrastructure and associated AI, computing and data services
demonstrate the possibility of generalized CI for closed-loop DDDA workflows.
Although there are challenges is middleware, the evolving ecosystem of software and
hardware environments enable intelligent integration of solutions in this area as well as
smart resource optimization using AI.

Acknowledgements. The author thanks to and acknowledges the NSF grants (#1331615 for
WIFIRE, #1730158 for CHASE-CI, #1935984 for SAGEAI on the Edge, #1928224 for Expanse),
the WIFIRE team, and the support of various WIFIRE partners.
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Abstract. The advent of third aviation revolution that is seeking to enable trans-
portation where users have access to immediate and flexible air travel. The users
dictate trip origin, destination and timing. One of the major components of this
vision is urban air mobility (UAM) for the masses. UAM means a safe and effi-
cient system for vehicles to move passengers and cargo within a city. In order to
reach UAM’s full market potential the vehicle will have to be autonomous. One of
the primary challenges of autonomous flight is dealing with off-nominal events,
both common and unforeseen; thus, intelligent contingency management (ICM)
is one of the enabling technologies. In this context, the vehicle has to be aware of
its internal state and external environment at all times, ascertain its capability and
make decisions about mission completion or modification. All of these functions
require data to model and assess the environment and then take actions based on
these models. Necessarily, there is uncertainty associated with the data and the
models generated from it. Since we are dealing with safety-critical systems, one
of the main challenges of ICM is to generate sufficient data and to minimize its
uncertainty to enable practical and safe decision making. We propose an over-
all architecture that incorporates deterministic and learning algorithm together
to assess vehicle capabilities, project these into the future and make decision on
mission management level. A layered approach allows for mature parts and tech-
nologies to be integrated into early highly automated vehicle before the final state
of autonomy is reached.

Keywords: Autonomy · Contingency management · Data-driven modeling ·
Decision making

1 Introduction to Urban Air Mobility

The advent of third aviation revolution that is seeking to enable transportationwhere users
have access to immediate and flexible air travel. The users dictate trip origin, destination
and timing. One of the major components of this vision is urban air mobility (UAM) for
the masses. UAMmeans a safe and efficient system for vehicles to move passengers and
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cargo within a city. UAM is not a new concept, currently there are helicopter services
within large metropolitan areas that shuttle a small set of users between predefined set of
destinations. The paradigm shift in this new incarnation of UAM is the democratization
of the service (Fig. 1) [1]. Thus, at its core, UAM refers to the aerial movement of
people, cargo and information, from one point in an urban landscape to another. UAM
has the potential to reduce emergency response time, aid in combatting congestion in
dense, urban cores characterized by impasses (e.g., bridges and tunnels), and improve
the comfort and speed of travel. The adoption of electric vehicle technologies will likely
set an industry standard, and will act to reduce emissions in metropolitan areas.

Fig. 1. Urban Air Mobility notional mission

UAM also has the potential to enable a suite of advanced aerial mobility missions
in the surrounding metropolitan areas, such as suburban and rural communities. As the
technologies of UAM mature, the ability to facility intra-city transportation for short
takeoff and landing applications, as well as operations such as package delivery for
medical transport, will act to unlock opportunities for social and economic engagement
in all areas of the nation.

The ability to access the airspace above urban areas for commercial opportunities via
small unmanned aerial systems (UAS) under the FAA’s Part 107 has created an industry,
which has been assessed to be worth $22 billion worldwide [2]. These operations are
mostly limited to surveying and surveillance applications, such as agricultural, infras-
tructure inspection, journalism, film making and law enforcement. Initial cargo carrying
operations, in rural areas, have just begun in the US, and are projected to become a dom-
inant economic driver in urban and suburban areas. This UAS industry has catalyzed
interest in passenger carrying UAM operations, and there has been many valuations of
the market, which may be worth $15.2 billion USD by 2030 [3].

In this effort, we focus on a concept of operations that will involve passenger car-
rying vehicles operating in an urban environment. We consider an intermediate state
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of operations, that is defined by 100s of simultaneous operations; expanded networks
including high-capacity UAM ports; many UTM inspired ATM [Aircraft Traffic Man-
agement] services available, simplified requirements for pilot certification; low-visibility
operations.” [4]. Note that this vision requires that several key assumptions be made,
specifically regarding the increasing level of autonomous operation exhibited by the
vehicle, as well as for UAM airspace management.

We assume the ‘intermediate’ UAM mission to be comprised of a vehicle, which
takes off from a pre-prepared landing site (e.g., a UAM port), and travels to another pre-
prepared landing site. There is appropriate communications, navigation and surveillance
infrastructure available to enable multiple simultaneous operations at a UAM port (and
to enable 100 simultaneous operations in the urban airspace). The vehicle has some level
of human supervision, be it remote or in the cockpit. However, the supposition of a highly
trained pilot may no longer be valid, and the role is that of an operator. The vehicle may
encounter disturbances (e.g., weather events) and disruptions (e.g., restricted airspace)
in the course of its journey, and may have to deal with contingencies (e.g., faults and
failures) in an increasingly autonomous fashion.

We assume the ‘intermediate’ UAM mission to be comprised of a vehicle, which
takes off from a pre-prepared landing site (e.g., a UAM port), and travels to another pre-
prepared landing site. There is appropriate communications, navigation and surveillance
infrastructure available to enable multiple simultaneous operations at a UAM port (and
to enable 100 simultaneous operations in the urban airspace). The vehicle has some level
of human supervision, be it remote or in the cockpit. However, the supposition of a highly
trained pilot may no longer be valid, and the role is that of an operator. The vehicle may
encounter disturbances (e.g., weather events) and disruptions (e.g., restricted airspace)
in the course of its journey, and may have to deal with contingencies (e.g., faults and
failures) in an increasingly autonomous fashion.

There are several challenges posed by UAM operations; these challenges can be
broadly broken out into airspace-oriented challenges, vehicle-oriented challenges, com-
munity integration challenges and cross-cutting challenges. Airspace challenges include,
but are not limited to, designing the airspace and operational procedures for UAM oper-
ations, including the design and operation of UAM ports and necessary supporting
infrastructure, as well as disruption and fleet management, along with urban weather
prediction. Vehicle challenges include safety, certification and noise qualities, as well
as addressing issues such as increasing automation, manufacturing and supply chain
issues, and maintenance. Community integration concerns are focused around public
acceptance of the operations, their integration into a multi-modal transportation system
and infrastructure (and the incorporation of smart cities technologies), as well as the
local regulatory environment. Broad challenges such as the safety, certification, auton-
omy and infrastructure required for UAM operations cut across all stakeholders in the
UAM ecosystem, and will require integrative solutions.

Two primary vehicle-oriented challenges center around the use of electric technolo-
gies, specifically for propulsion and control (e.g., electric vertical takeoff and landing
vehicles (eVTOL)) and increasing levels of autonomy. The wide design space of these
vehicles has led to multi-rotor paradigms, such as distributed electric propulsion. Cur-
rently, tools and technologies for the design, modelling, simulation, testing, verification
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and validation of these systems need to be developed. Specifically, the ability to certify
these unconventional systems, some of which will require synthetic stability and control,
and will operate in novel ways, is paramount to gaining access to the NAS. Additionally,
with various sources [Boeing, Airbus] predicting a significant pilot shortage by 2030 for
conventional commercial aircraft operations, with 400,000 to 750,000 additional pilots
being needed, it is unclear where the trained pilots necessary to operate these vehicles
will be found. Similarly, as these operations scale to the point where they will be prof-
itable, it has been suggested that an increasingly autonomous operational paradigm will
be required [5, 6].

2 Approach to Intelligent Contingency Management

We consider an architecture and associated functionality, see Fig. 2, that would allow the
vehicle to safely achieve its mission, fly from pt. A to pt. B under all vehicle-allowable
weather conditions, in a high-density airspace complex urban environment, and react
appropriately to off-nominal situations and contingencies without direct human con-
trol. Currently contingency management is highly prescribed, rule-based approach. We
are interested in exploring an intelligent contingency management that can appropri-
ately handle unanticipated situations. This approach considers some emerging tech-
niques machine learning and explores their integration into safety-critical systems and
associated levels of safety assurance.

Fundamental to this architecture is a set of software components, each relying on a
set of adaptive models that maintain a two-way interaction between model and system
measurements. At the highest level, these components maintain models of the vehicle:

• Present Capability: Based on dynamic physical vehicle models and models of vehicle
safety

• Future state:Basedon reachabilitymodels andderivative data about PresentCapability
• Mission Execution: Based on predictive vehicle flight models for decision making
under uncertainty

Each component reflects the DDDAS paradigm, by using real-time data to enhance
the vehicle’s function in a manner congruent to its real-world context.

The collective state of the corresponding models for each component guide the
incorporation of relevant data into the respective component during flight, as well as into
the other system components. Furthermore, for computational feasibility, the level of
fidelity for which data is analyzed and decision-making occurs is based on these models.
Data flowing into a component improves the accuracy of its models and derivative
analyses. Data flowing out to other components improve precision of predictions and
control.
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Abstract. One of the key elements of DDDAS is the ability to create a feedback
control loop from the sensory system to the model to enable more accurate and
fast data-driven analysis. When constructing such a framework, it is especially
important to provide an efficient, filtered data stream to the model. To address this
need, this investigation describes a DDDAS-based Digital Twin IoT Framework
which comprises three layers, namely the Edge, Fog and Cloud. The Edge is
composed of either commercial sensing data acquisition systems or by sensors
without any commercial system being involved. The Edge layer is connected to
the Fog which is a decentralized computing layer that consists of an in-house
built Internet of Things (IoT) device. Within the Fog, real-time data is aggregated,
parsed, filtered, and passed through a layer of user-defined algorithms. These
algorithms can be either predefined ormade using an interactive algorithmbuilding
application. The main goal of the algorithms used at the Fog, is to reduce the
incoming data and classify it into known classes. This process allows a real-time
data flow to the Cloud, as only important decision-making components of the
data is propagated. The algorithms are trained in the Cloud layer using historic
data to enable stronger confidence in Prognostics and Remaining Useful Life
(RUL) calculations. The Cloud is also responsible for hosting a user interface
(UI) to interact with the Edge and Fog Layers and the Digital Twin model. The
UI enables users to start, stop, and modify their data acquisition and visualize
their analytics in (near) real-time. In the proposed study, sensing data obtained
through mechanical testing using a carbon composite will be leveraged for the
framework. Diagnostics and Prognostics leveraging a probability framework will
be conducted on the sensor data.

Keywords: Digital Twin · Internet of Things · Fog computing · Edge
computing ·Machine learning · Data processing · Diagnostics

1 Introduction

Both the material characteristics and the failure processes in the case of fiber rein-
forced composites (FRPs) are complex and highly variable depending onmanufacturing,
processing, geometrical and usage parameters which result in unique challenges when
monitoring, simulating or predicting their failure [1]. In this context, diagnostics and
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prognostics methods vary in several ways related to the targeted length scale, the ability
to relate local damage with global behavior and the potential to issue real time prognosis
of incubated, incipient or evolving damage. Furthermore, there are significant differences
between sensingmethods that are used on actual composite structures for inspections and
condition-based maintenance, and those that focus on material and mechanical behavior
characterization which could only be applied at laboratory conditions [2–5]. Therefore,
a wide range of descriptive and predictive tools have been developed with the objective
of supporting multiple phases of composite material development and use [1–4, 6, 7].

What is understood currently is that prognostics must account for the stochastic
and coupled, also often nonlinear, effects that govern the progressive failure process
in composites [8]. Hence any data acquired from experimental testing of composites
and is used to either fit prognostic parameters or perform statistical inference is typi-
cally subject to a high amount of variance. Consequently, monitoring of the progressive
damage of composites is highly intricate and multiscale, making physics-based models
either computationally expensive for live prediction or specialized to account for specific
damage occurring between the micro and macroscale [8, 9]. This is especially true in
the case that the convolution levels make it difficult to discriminate between noise and
actual damage [10].

In this context, dynamic and data-driven predictions ultimately present a paradigm
shift from reactive or time-based maintenance systems to condition-based maintenance
(CBM). Specifically, CBM is a form of maintenance that takes real time system infor-
mation to make maintenance-based decisions [4]. The goal of CBM is both to reduce the
amount of unnecessary inspections and maintenance operations as well as to enhance
system monitoring which in turn improves system reliability [6]. One of the formats
for which CBM can be introduced to a system and or structure is health prognostics.
The goal of health prognostics is to establish a metric of system health that can predict
the RUL of the system. Such health prognostic frameworks consist of four distinct pro-
cesses: data acquisition, health index (HI) development, health stage division and RUL
predictions [4]. For a given system, sensor data is acquired and then processed to obtain
the HI, at which point this HI will be the target of prediction for any chosen model.
These models can be statistical, use artificial intelligence, physics-based models or be a
hybrid of any of the above [4].

In terms of the construction of a HI, while multiple data-driven prognostics using
sensors have been used for FRPs, the virtual HI produced generally have difficulty
relating to hypothetical levels of damage [4]. This means that while the amount of
damage in a FRP starts increasing it is difficult to account for the significance of certain
damage modes as well as certain states of damage [1].

The objective of this investigation, therefore, targets the development of a data-driven
modeling framework that can provide real time HI and RUL predictions for composite
materials commonly used in aerospace-oriented applications. To achieve this goal the
approach presented in this manuscript is based on: i) using sensing data including such
obtained by mechanical testing and nondestructive evaluation (NDE), ii) leveraging an
DDDAS-based Digital Twin IoT Framework enabling real-time usage of such datasets,
iii) developing a data-preprocessing methods to create diagnostics information in the
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form of a HI capable to provide estimates of progressive failure, and iv) implement-
ing a combined statistical/probabilistic approach based on a Hidden Markov Model
(HMM) coupled to an Adaptive Neuro-Fuzzy Inference System (ANFIS) to provide
RUL estimates.

2 Approach

2.1 DDDAS-Based Digital Twin IoT System Framework

The DDDAS-based Digital Twin IoT System framework is divided into three layers
namely, the Edge, Fog, and Cloud (Fig. 1) to limit the information sent to the Cloud
and to maintain a real-time flow. The onsite network hosts the Edge and Fog layers.
Specifically, the Edge layer contains sensing which in this case includes the mechanical
testing frame, and the Acoustic Emission (AE), Infrared Thermography (IRT), and Dig-
ital Image Correlation (DIC) monitoring systems, as well as processes that convert data
into a .txt format so that could be used as inputs into the Fog layer. The Fog layer contains
computing units that are parallelized for the specific tasks of filtering, classifying and
aggregating data into the cloud. In addition, the data filtered data is visualized at the
Fog layer to allow the user the capability of checking the full suite of features from the
monitoring systems. Finally, the Cloud layer consolidates filtered data and uses NDE
data classification as well as measured strain data to input into the HMM and ANFIS
models for prediction of RUL. The data sent to the Cloud will be leveraged by the Digital
Twin model to visualize the physical conditions of the components or environment.

Fig. 1. DDDAS-based Digital Twin IoT System Framework

In the implementation of this novel DDDAS-based Digital Twin IoT System Frame-
work, the Edge nodes connect to the Fog layer over the Samba protocol. Samba is a free
software re-implementation of the SMB networking protocol. In computer network-
ing, Server Message Block (SMB) functions as an application-layer or presentation-
layer network protocol. The SMB protocol is mainly used for providing shared access
to files, printers, serial ports and miscellaneous communications between nodes on a
network. The SMB protocol generally works with Windows platforms, however the
re-implementation in the Samba protocol allows client-server connections between win-
dows and Unix platforms. Thereby making a pathway over which files can be shared
between the project’s Edge layer and the Fog layer.

The Fog layer contains three Raspberry Pi’s that are parallelized for specific tasks.
Raspberry Pi 2 receives sensor data in the form of raw .txt files from the Edge layer. This
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data is then classified by a Support Vector Machine (SVM) model and filtered according
to features identified in the diagnostic portion for further analysis setting aside features
that do not provide analytical relevance. Raspberry Pi 1 provides a low-level diagnostic
report based on the filtered data, while Raspberry Pi 3 transmits data into the Cloud.
The Cloud consolidates filtered data and uses data classification as well as Cumulative
Mahalanobis Squared Distance (CMSD) calculations to input into the HMMandANFIS
models for prediction of RUL. In this way the DDDAS-based Digital Twin IoT System
Framework serves as a mechanism not only for reducing latency of prediction but also
provides a network for converting data into information, storing this data and sharing
across platforms.

2.2 DDDAS-Based Digital Twin IoT Computational Framework

In FRPs, damage can be evaluated based on discrete degradation states and their inter-
actions. These states are computed, for example, in physics-based models to describe
the progressively evolving damage. The overall goal, therefore, of any failure prediction
model is to recognize such states and to examine transitions between them.To accomplish
this goal, a DDDAS-based Digital Twin IoT Computational Framework was developed,
a general overview of which is shown in Fig. 2 in relation to the system described earlier.
Specifically, this prognostic model is a combination of a HMM and ANFIS models that
ultimately provide the RUL estimates. The data exploration, diagnostic training, and
prognostics training are all implemented offline at the Cloud to provide the model for
the live case.

Fig. 2. DDDAS-based Digital Twin IoT Computational Framework

Specifically, the data exploration and diagnostic training results in a supervised
classifier of incoming sensing data as well as an outlier metric, namely the Mahalanobis
Squared Distance, to evaluate the full feature space of a given signal (Fig. 2). The
CMSD has been shown by the authors that can be used to visualize damage evolution
leveraging AE data [11, 12]. Taking the CMSDs for all tests and normalizing them
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creates an indicator which displays key points of extensive degradation and is used as
the health index (HI) in this approach which will be used to train the ANFIS part of the
model.

The HMM produces a probabilistic relationship between classifications of signals
and several hidden states. This relationship is used to identify the current state of degra-
dation as well as project the next set of potential (hidden) states. This is accomplished
by describing relationships between the hidden states and signal classifications via a
transition matrix and an emission matrix. Specifically, the transition matrix defines the
probability that the systemwill either remain at a given state or transition to another one.
The emission matrix gives the probability that given a certain observation, a system is
at a given state. In this case, the observation used to identify a damage state within the
emission matrix is classifications of signal.

To identify hidden states given a set of observations these are “decoded” using the
Viterbi algorithm [13]. The Viterbi algorithm provides the ability to predict states given
a known observation sequence. To forecast damage states a different calculation must
be provided from traditional Markov chain theory. In a live case the HMM will be
updated to the current state with the Viterbi algorithm for each incoming signal. Then
the initial probability will be updated according to the most recent value. This provides
the DDDAS-based Digital Twin IoT Computational Framework the ability to predict the
sequence of damage states to failure.

Once an HMM can provide damage state probabilities and CMSD values are post-
processed into a HI, the following data combined with strain data and sensor data from
DIC, can be used to train theANFIS (Fig. 2). The steps to fuzzy reasoning start with input
variables that are compared with membership functions to obtain membership values.
The membership functions used in the following prognostic architecture are Gaussian
bell membership functions with have the following form:

An(x) = 1

1+ ∣
∣ x−c

a

∣
∣
2b

(1)

where a and b define thewidth of the curve based on themaximumandminimumvalue of
the input while c locates the center. The variables a, b and c of the membership function
are tuned during training to capture the effect of the input on the output [14]. Combin-
ing the membership values by multiplication gives a firing strength of each rule. The
membership values are also used to assess if-then rules that can trigger adaptive neural
network regression the location of inputs within the membership functions define the
activation of two different functions that have their own respective adaptive neurons. This
gives theANFIS architecture the ability to dynamically shift regression based on how the
functions anticipate. Firing strengths are combined for a weighted average for ultimate
outputs. The ANFIS architecture is then trained using a hybrid learning method which
combines the backpropagation method and least squares estimation. Combining these
two optimization techniques avoids common caveats of other methods which includes
getting trapped in local minima and very slow training [14].Moreover, this ANFIS archi-
tecture is trained using the damage state probabilities quantified by the HMM, as well
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as other experimental inputs that relate to the health index at any given point through-
out monitoring. Finally, the forecasting of the HI and RUL occurs by forecasting the
probability of HMM state until the HI reaches 0.

3 Results

A carbon fiber reinforced polymer composite (CFRP) was used in this manuscript (Hex-
ply IM7/8552), consisted of a 16-ply layup of 8552 epoxy resin reinforced with unidi-
rectional IM7 carbon fiber prepreg sheets both manufactured by Hexcel. Tensile tests
using straight edge were conducted based on ASTM 3039 [15–18]. All specimens had a
final nominal thickness of 5 mm, a width of 25 mm and a length of 250 mm in the load-
ing direction. All specimens were loaded until failure using an MTS 370.10 Landmark
servo-hydraulic load frame equipped with a 100kN load cell. For monotonic testing load
was applied in displacement control at a rate of 2 mm/min based on ASTM 3039, while
the specimens were monitored by AE at the Edge. Waveform files are then read by the
Edge as voltage verus time .txt files.

The diagnostic training utilized the reduced feature space to perform the outlier
analysis that ultimately produces a health index and the clustered results to train a SVM
with a Gaussian kernel. Once the GMM clusters are analyzed to associate different
classes with different damage types the clusters can then be used to train a SVM that
can associate new damage signals with the clusters for live signal classification. The
health index and classifications of signal from clustering provide diagnostic information
related to damage from the experiment. The following input was trained under 10 Epochs
to obtain 6 if-then rules and slightly outperformed the other variable set. The Epochs
were increased to 50 to find that the model was repeatable and was not subject to a
local minimum. The final target process for the ANFIS Model is identified by Fig. 4.
According to Fig. 4 the goal of the architecture is to use strain data and weighted average
probability of state to calculate the health index at each point within the RUL. The RUL
in the following case is measured through strain to directly compare models, however
the same approach can easily be applied for RUL in terms of time.

Fig. 4. Resulting Forecasting for One Test
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The resulting predictions for straight edge specimen HIs are predicted post test. The
results find that while ANFIS does suffer from certain instabilities directly associated
with variation in damage states between specimens the overall accuracy described by
mean squared error seen in Table 1. Such instabilities were self-corrected towards the end
of the test and provided accurate RUL (when compared with the available mechanical
test data). The table below provides the mean squared error between the predicted and
forecasted sections.

Table 1. Mean Squared Error (MSE) for Straight Edge Test

Full MSE (%) 1.3720

Prediction MSE (%) 1.27E-03

Forecasting MSE (%) 1.407202

RUL Error (%) 1.3106

4 Conclusion

By leveraging the proposed DDDAS-based Digital Twin IoT Framework and data pre-
processing methods that combine diagnostics and prognostics, RUL estimates were able
to be found with acceptable errors. Future work includes using actual aircraft, naval or
infrastructure components, as well as further real-time data collection and processing
methods to strengthen the predictive and scalability aspects of the approach.
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Abstract. This paper presents a hardware testbed that furthers the
development of a dynamic data-driven application system (DDDAS). In
particular, the focus of this testbed is on enabling a self-aware unmanned
aerial vehicle (UAV). Self-awareness in this context refers to the abil-
ity of the vehicle to collect information about itself and use this infor-
mation to alter the way it completes missions via on-board dynamic
decision-making. Prior work has focused on developing computational
methods that enable a digital twin of this vehicle, and demonstration of
the resulting self-aware capability via simulation. This work presents a
hardware testbed and associated experimental methodology for data col-
lection, analysis, and demonstration of the self-aware UAV concept. The
hardware testbed includes custom-built carbon fiber wings, the design
of which have been validated via flight test. A sensor suite composed
of wireless high frequency dynamic strain sensors has been developed
and demonstrated using benchtop experiments. The proposed DDDAS
architecture, which includes previously developed computational meth-
ods, has the potential to enable two-way coupling between estimation
of the UAV structural state and dynamic mission replanning; capability
that is critical for realizing the self-aware UAV concept.

Keywords: DDDAS · Digital twin · Self-aware unmanned vehicle

1 Introduction

This work presents a custom-built hardware testbed and experimental setup to
support the development of a digital-twin-enabled self-aware unmanned aerial
vehicle (UAV). A self-aware aerospace vehicle is one that can leverage online
sensor data to dynamically gather information about its structural health, and
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respond intelligently by replanning its mission [12]. Dynamic Data-Driven Appli-
cation Systems (DDDAS) concepts and algorithms provide an essential founda-
tion for achieving the vision of a self-aware UAV [1]. A DDDAS is a system
that has the ability to dynamically incorporate data into an executing applica-
tion model, and in reverse, use the application model to dynamically steer the
measurement process [2,4].

The digital twin paradigm embodies the concept of a DDDAS and has seen
increasing attention in recent years [3,10], with promising aerospace applications
in structural health monitoring and aircraft sustainment [5,8], simulation-based
vehicle certification [5,13], and fleet management [5,11]. Inspired by these works,
an approach has recently been proposed to enable the self-aware UAV concept
by constructing a predictive digital twin of the vehicle [7]. The proposed digital
twin is based on a high-fidelity component-based reduced-order structural model
of the airframe. This model is capable of simulating the structural response of
the airframe and characterizing the structural limits of the aircraft in a range
of states. The digital twin is enabled by dynamically updating the structural
state via online sensor data and using the updated structural model for rapid
analysis and prediction. Adaptation of the digital twin is achieved by training
interpretable machine learning classifiers offline and using these classifiers online
to rapidly infer which structural state best explains the observed sensor data.

To date this approach has shown promising results in simulation. However,
experimental investigations into the type of sensor-driven damage detection and
characterization required to achieve this functionality have shown limited suc-
cess. In particular, it has been shown that damage detection and characterization
places high demand on sensing capability and robustness as well as computa-
tional efficiency of the data assimilation process, even for limited damage cases
on simplified wing structures [9]. Thus, the need remains to validate the pro-
posed digital-twin-enabled self-aware UAV concept experimentally. To this end,
this work presents a hardware testbed and experimental setup for data collec-
tion and demonstration of the digital twin concept. Through experimentation
with the hardware testbed, we aim to: 1) Develop a data acquisition architecture
that produces high-quality data capable of enabling the self-aware capability 2)
Identify challenges and limitations that might hinder the success of these com-
putational methods when applied to experimental data; 3) Develop strategies for
adapting and integrating the various computational methods to overcome these
challenges; and 4) Successfully implement and validate these approaches on the
testbed in order to demonstrate the effectiveness of the end-to-end DDDAS.

2 Hardware Testbed

This section describes the aircraft testbed system created to begin working
through the integration challenges presented by the self-aware vehicle technology.
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2.1 Overview

The testbed aircraft consists of a Telemaster aircraft kit (fuselage, landing gear,
empennage), but outfitted with custom-designed and manufactured carbon fiber
wings with custom sensors and avionics (Pixhawk autopilot, custom-built sensor
boards, off-the-shelf power hardware). The fuselage-wing joint consists of a metal
tube fitting so that different wings could be swapped onto the aircraft with
minimal effort and in a rapid succession, such that multiple wings can be tested
within a single flight test session. It was envisioned that this capability would
enable several wings – from a pristine ‘baseline’ wing configuration through
progressively more damaged wings – to be tested over the course of a single
flight test, so that the same flight conditions and platform could be used to both
collect sensor data and to test the DDDAS algorithms in real flight conditions.

2.2 Structural Design

The driving design requirement of the testbed aircraft was that the wing provide
a structurally-similar response to a larger, more advanced Low-Cost Attritable
Aircraft Technology (LCAAT) wing structure. Thus, even at the smaller scale,
the preferred structural design of the wing used techniques similar to that of the
larger LCAAT wing (albeit with reduced flight performance). The design crite-
ria for the wings included: hollow carbon-fiber construction, 12-foot wingspan,
plywood wing tip and root ribs, and inclusion of ailerons and flaps. The wing
uses a constant 9% thick airfoil section representative of typical profiles at the
mid-subsonic speed range (NACA 2309). The wing structure is split into 4 bays
where the boundaries of each are designated by the plywood ribs. A split flap-
eron (carbon laid up over a foam core) is located in the outer two bays. The
wing spar was sized for a maximum tip deflection in a 4G pull-up maneuver and
the wing skins were sized for buckling in a 4G pull-up maneuver. Finally, the
wing was designed to have access panels on the bottom skin so that any sensors,
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Fig. 1. Schematic of the designed and manufactured wing structure.



40 S. J. Salinger et al.

wiring, or other hardware could be placed or modified after the wing has been
constructed and assembled. Figure 1 contains a schematic of the wing structure.

2.3 Flight Test: Validation and Initial Data Collection

Figure 2 shows the final manufactured aircraft during a series of flight tests.

Fig. 2. The custom-built self-aware UAV hardware testbed.

The first flight test conducted for the testbed aircraft consisted of a full
system assembly and checkout at the field, as well as a maiden flight. The maiden
flight of the testbed aircraft was primarily used to verify that all flight hardware
functioned properly in-flight and to verify that the aircraft is fully controllable
and flies as anticipated. Thus, a relatively benign flight path was flown – takeoff
and climb to 300 ft AGL, fly general racetrack patterns with banks limited to 30◦

for up to 6 min of flight time, and a typical descent and landing. For this maiden
flight the testbed aircraft was outfitted with a preliminary sensor suite consisting
of twenty-four uniaxial strain gauges mounted on the top surface of the right
wing, as shown in Fig. 1. However, analysis of this data showed that the measured
strain had a low signal-to-noise ratio, and thus did not correlate well with z-
acceleration (i.e. aircraft maneuver) data as one would expect. Finite element
simulations of the wing during the design phase showed that differences in wing
deflection caused by damage would be much smaller than any differences due
to varying aircraft maneuvers. Thus, this result suggests that a more advanced
sensing architecture is necessary in order to detect damage in-flight.

3 Development and Testing of DDDAS Sensing
Architecture

The maiden flight of the testbed aircraft revealed that a more advanced sensing
architecture is required to enable the self-aware UAV DDDAS. This section
presents a recent effort to develop such an architecture.



A Hardware Testbed for Dynamic Data-Driven Aerospace Digital Twins 41

3.1 Experimental Setup and Sensor Technology

A bench-top experimental setup was developed with the hardware testbed that
enables controlled experiments and collection of realistic sensor data for the
aircraft. In the bench-top setup, the wings are mounted upside-down to a wooden
mount that mimics the fuselage. The opportunity also exists to mount the electric
motor from the testbed onto this fuselage mount in order to excite vibrations in
the wings that are characteristic of those expected in-flight. The experimental
setup for these tests is shown in Fig. 3.

Fig. 3. Experimental setup and wireless sensor used for data collection in this research.

Based on the data collected during the validation test-flight, the decision was
made to switch from the traditional uniaxial strain gauges mounted on the top
surface of the right wing, to a set of dual high frequency dynamic strain sensors
mounted on the bottom surface of the left wing. The primary motivation for this
change was the improved signal-to-noise ratio. The wings on the testbed vehicle
are relatively flexible, so the strains observed in-flight are typically dynamic with
significant high frequency content. In this setting the dynamic strain gauges
provide increased sensitivity, as well as reduced susceptibility to electromagnetic
noise, and thus a higher signal-to-noise ratio.

The dynamic strain sensors used in this work are embedded in a set of wire-
less, self-adhering sensor suites, one of which is shown in detail in Fig. 3. In addi-
tion to the dynamic strain sensors, each wireless sensor includes temperature,
pressure, and humidity sensors, as well as a 3-axis accelerometer and gyroscope.
In addition, the sensors have a built-in analog-to-digital converter, bluetooth
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transmitter, and long-life battery. The wireless nature of the sensors provides
additional benefits such as reduced weight, system complexity, and aerodynamic
drag due to the absence of wires and other sensor hardware. Preliminary data for
this work was collected using one of these wireless sensors, but the form factor
and ease of installation would allow for many of these sensors to be used.

3.2 Proof-of-Concept Results

As shown in Fig. 3, there is a removable access panel, originally intended for
modifications to sensing hardware. However, this component also allows the
testbed to represent a scenario in which the access panel is unintentionally left
open or entirely detached. Customizing this panel also allows for emulation of
different structural states. For example, a flexible panel emulates a reduction in
stiffness in the wing skin caused by damage or degradation. In preliminary data
collection, both the thickness and elastic modulus of the panel were varied. In
particular, the cases tested were carbon fiber panels of two different thicknesses,
a PVC panel, a nylon panel, and a reference case with no access panel attached.
The material properties of the varying panels are provided in Table 1.

Table 1. Material properties of different access panel cases.

Material Thickness Elastic modulus

Thick carbon fiber 1/16” 2400 ksi

Thin carbon fiber 1/32” 2400 ksi

PVC 1/16” 450 ksi

Nylon 1/16” 400 ksi

In the preliminary data collection, a small hammer is tapped at the impact
location site (indicated in Fig. 3) to induce high frequency vibrations in the wing,
and one of the wireless sensors collects data through the vibration sensor at a
sampling frequency 5000 Hz. This hammer impact test is repeated using the
different access panels described in Table 1.

The goal of these experiments is to process the sensor data from the hammer
impact tests in order to extract features containing information about the struc-
tural response of the wing, and demonstrate how these features can be used to
estimate the structural state of the wing, in this case represented by the access
panel properties. Figure 4 shows the vibration sensor output for each case after
filtering with 250 Hz high-pass filter (top). The high-pass filtered data shows that
there is a variation of high frequency content between each access panel case.
This can be more clearly seen in Fig. 4 (bottom), which shows the integrated
high-pass filtered sensor output for two trials of each of the panel cases.

The integrated filter output shows a clear trend based on the access panel
stiffness. As the stiffness of the panel is reduced, the integrated filter output
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Fig. 4. Preliminary experimental results. Top: High-pass filtered vibration sensor out-
put. Vertical offsets are added to better show the difference between cases. Bottom:
Integrated high-pass filtered sensor data (two repeated trials for each case).

Fig. 5. Information model for the proposed DDDAS architecture.

decreases with respect to time. The two trials show a fair degree of consistency,
however in future work more data will be collected to ensure consistency and
provide a more complete dataset. These preliminary experiments demonstrate
that the wireless sensors are capable of detecting differences in the structural
response of the wing, even when the difference in the underlying structural state
is small; in this case only the properties of the (relatively small) access panel
are varied. In future, the data collected using these bench-top experiments will
be integrated into the self-aware UAV DDDAS framework, which is summarized
by the information model shown in Fig. 5. In this framework, the experimental
data will be used in conjunction with structural models to train a classifier [6,7]
in which features extracted from in-flight sensor data (in this case the amount of
high-frequency content) can be used to estimate the structural state of the wing
(in this case which access panel is attached to the wing). Online, this classifier
can be used as part of a digital twin that enables condition-aware sensing and
dynamic mission replanning, thus enabling the UAV to become self-aware.
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4 Conclusion

This work presented a hardware testbed to support the development of a self-
aware UAV. The hardware testbed aircraft system was successfully designed,
manufactured, and flight-tested. A sensor architecture was developed that lever-
ages wireless self-adhering dynamic strain sensors capable of measuring high fre-
quency vibrations in the structural response of the wing. Bench-top experiments
were conducted and the resulting data suggests that the degree of high-frequency
content provides a useful feature for classifying the structural state of the wing.
The development of a fully functional aircraft system capable of generating high
quality experimental data serves as a key enabler towards validating and verify-
ing the DDDAS approach for a fully self-aware aircraft system. Future work will
involve leveraging the experimental testbed to further advance and demonstrate
the DDDAS paradigm in the context of self-aware aircraft structures.

Acknowledgments. The authors thank Gray Riley and Alexander Vladimir Ander-
sen of Aurora Flight Sciences for their contributions to the development of the testbed
aircraft. This work was supported in part by AFOSR grant FA9550-16-1-0108 under
the Dynamic Data-Driven Application Systems Program, the MIT-SUTD International
Design Center, and a Cockrell School of Engineering graduate fellowship.

References

1. Allaire, D., Biros, G., Chambers, J., Ghattas, O., Kordonowy, D., Willcox, K.:
Dynamic data driven methods for self-aware aerospace vehicles. Procedia Comput.
Sci. 9, 1206–1210 (2012)

2. Blasch, E., Ravela, S., Aved, A. (eds.): Handbook of Dynamic Data Driven Applica-
tions Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9

3. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P.,
Bradley, D. (eds.) Mechatronic Futures. Challenges and Solutions for Mechatronic
Systems and their Designers, pp. 59–74. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-32156-1 5

4. Darema, F.: Dynamic data driven applications systems: a new paradigm for appli-
cation simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6 86

5. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and US
air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures
Conference 14th AIAA, p. 1818 (2012)

6. Kapteyn, M., Knezevic, D., Huynh, D., Tran, M., Willcox, K.: Data-driven physics-
based digital twins via a library of component-based reduced-order models. Int. J.
Numer. Methods Eng. (2020)

7. Kapteyn, M.G., Knezevic, D.J., Willcox, K.: Toward predictive digital twins via
component-based reduced-order models and interpretable machine learning. In:
AIAA Scitech 2020 Forum, p. 0418 (2020)

8. Li, C., Mahadevan, S., Ling, Y., Choze, S., Wang, L.: Dynamic Bayesian network
for aircraft wing health monitoring digital twin. AIAA J. 55(3), 930–941 (2017)

https://doi.org/10.1007/978-3-319-95504-9
https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-540-24688-6_86


A Hardware Testbed for Dynamic Data-Driven Aerospace Digital Twins 45

9. Martins, B.L., Kosmatka, J.B.: Health monitoring of aerospace structures via
dynamic strain measurements: an experimental demonstration. In: AIAA Scitech
2020 Forum, p. 0701 (2020)

10. Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers
from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

11. Reifsnider, K., Majumdar, P.: Multiphysics stimulated simulation digital twin
methods for fleet management. In: 54th AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, p. 1578 (2013)

12. Singh, V., Willcox, K.E.: Methodology for path planning with dynamic data-driven
flight capability estimation. AIAA J. 55, 2727–2738 (2017)

13. Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering air-
craft structural life prediction using a digital twin. Int. J. Aerosp. Eng. (2011)



Plenary Presentations - Section 2:
Environment Cognizant Adaptive-

Planning Systems



A DDDAS Protocol for Real-Time
Large-Scale UAS Flight Coordination

David Sacharny , Thomas C. Henderson(B) , and Ejay Guo

The University of Utah, Salt Lake City, UT 84112, USA
{sacharny,tch}@cs.utah.edu, ejay.guo@gmail.com,

http://www.cs.utah.edu/~tch

Abstract. NASA engineers have published a number of system require-
ments in an effort to enable dense operations of unmanned aircraft sys-
tems (UAS) in urban environments [7,8]. These requirements describe
a free-flight model, where operators are afforded the maximum flexi-
bility to design individually optimal trajectories, with the caveat that
all operations must be strategically deconflicted prior to flight. Strategic
deconfliction reduces the probability of having to perform tactical decon-
flicton using onboard sensors and real-time algorithms to avoid conflicts.
Such approaches require a common protocol to guarantee that UAS do
not collide, but do not scale well. Thus, UAS Service Suppliers (USS)
must deconflict their planned trajectories pairwise prior to flight in order
to achieve strategic deconfliction. We propose a communication-based
protocol to coordinate airspace during flight. We present a dynamic dis-
tributed protocol for reactive conflict management that serves a similar
purpose, albeit functioning at a time-horizon in between strategic decon-
fliction and sensor-based conflict management. This DDDAS inspired
approach obviates the need for any centralized control by having each
UAS maintain a model of its environment, and exploiting sensing and
communication resources as dictated by the lane-based model.

Keywords: UAS traffic management · Tactical deconfliction · DDDAS

1 Introduction

In a seminal article describing the purpose and scope of dynamic data-driven
applications systems (DDDAS), Darema describes a motivating example where
injecting experimental data into a long-running computation (informing oil
exploration decisions) could be performed in an online manner to produce better
results [3]. An online program in the DDDAS paradigm accepts data whenever
it is available and could also inform the measurement process to improve sys-
tem efficiency. The computational effort required to produce good decisions is
also a motivating factor for the development of a DDDAS approach to traffic
management described in this paper.

NASA and the FAA are making a concerted effort to develop an Unmanned
Aircraft System (UAS) Traffic Management (UTM) system to enable large-scale
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UAS exploitation in urban environments. The UTM is organized in terms of UAS
operators who manage their flights through UAS Service Suppliers (USS). These
service suppliers must declare the geographic region of their flights (in terms of
4D trajectories of space-time), and moreover, must strategically deconflict their
flights pairwise with all other UAS flights in the region (we call this method
FAA-NASA Strategic Deconfliction or FNSD). This can easily lead to quite
complex path planning and coordination problems, and also requires USS to
share data which would best be kept private. We have introduced a lane-based
organizational structure for a UTM in which a set of lanes are defined (much
like a ground road network), and then a USS simply reserves a sequence of lanes
from takeoff site to destination site [5,11]. In that work, we demonstrated a lane
reservation system that efficiently guarantees strategic deconfliction, however
that only applies to flights that have yet to be active in the airspace. Active
flights experience a more dynamic situation, where contingencies (possible future
events, usually causing problems or making further plans necessary) can occur.

Contingencies are communicated to agents in an online fashion, either by tac-
tical avoidance sensors such as radar and sonar, or as information from author-
ities and other agents. Both sources can result in undesirable system responses,
for example cascading effects due to high-density operations [6] and unstable
control response due to the structure of the information flow [4]. We describe
here the Lane Strategic Deconfliction algorithm (called LSD), and show that it
has very low complexity, and allows for quite acceptable lane stream properties.
Overall, contingencies that lead to a violation of safe separation represent the
most critical element to consider in the design of a large-scale traffic manage-
ment system. Safe separation requires agents to plan collision-free paths, which
in the most general case of multiple-agent planning is PSPACE-hard. Even the
more narrow problem of tuning velocity profiles is NP-hard [1].

In this paper we consider a lane-based airspace model that enables the prop-
agation of contingency information in a well-defined manner. UAS plan locally
in real-time within lanes, broadcasting contingencies (as deceleration events)
to neighboring lanes that are likely to be effected. Unlike car-following mod-
els [9], information from a contingency can reach multiple agents at the same,
yet enabling agents to react in a similarly predictable way. The theoretical con-
tribution of this paper provides an efficient real-time algorithm for strategic
deconfliction and applies a solution in terms of ground-delay (delaying access
to the airspace network) or air-delay. The experimental section of this paper
demonstrates the ability to resolve conflicts within a simulated environment.

1.1 Lane-Based UTM

A central issue concerning the DDDAS paradigm is the choice of model, and how
information is represented, distributed, and consumed. The lane-based airspace
structure is a model for the configuration of UAS in space and time and contrasts
with other proposed models, such as the grid-based structure proposed by NASA.
For example, in a grid model UAS share position information (through a USS
as a proxy) within cells of a grid, and it is incumbent on USS to determine
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whether changes to trajectories could impact operations in neighboring cells. In
other words, the flow of information between cells is not explicit in the model
and represents a major point of uncertainty in the system. This contrasts to the
lane-based approach, where impacts of trajectory changes (the dynamic data
in this system) within a lane propagate in a well-defined manner throughout
the lane network. The lane-based approach imposes a clear downstream and
upstream direction to the information flow because lanes form a graph structure
that mirrors the possible paths by UAS. The representation of trajectories in
the lane-based approach is simple, as described below, and limits the amount
of information that must be shared between aircraft to ensure safe separation.
Finally, utilities can be defined in a straightforward way for both the UTM
and UAS; e.g., the distance between all flights is important for the UTM, while
maintaining desired speed and distance to destination characterize the utility of
a configuration for a UAS.

Given a set of ground launch and land sites, a set of one-way lanes is defined
which provides a path from any launch to any land site. A lane is a directed
3D vector with its tail as the entry point to the lane and its head as the exit
point. A flight path is a sequence of lanes starting with a vertical launch lane
and ending with a vertical land lane. A crucial constraint on lanes is that every
vertex (entry or exit point) has either in-degree 1 or out-degree 1; this allows the
deconfliction of flights by considering lanes as opposed to nodes in the network.

In order for two UAS to be safe, they must at no time be closer than some
minimal Euclidean distance, called dS . We assume that lanes are defined so that
no two lanes have points closer than dS unless the two lanes share an endpoint.
Figure 1 shows the simple lane layout used in the set of experiments described
below. There are 51 lanes, along with 10 launch lanes and 10 land lanes.

1.2 Contingencies

Both approaches (FNSD and LSD) are subject to the problem of contingen-
cies when a UAS flight departs from its nominal plan (e.g., slows down, goes
off course, etc.). Due to the complexity of the UTM system, predicting the
effects of contingencies is a major impediment to the wide-spread integration of
UAS into the urban airspace. The currently published protocol for mitigating
many contingencies requires the UAS to try to return directly to its launch site
[2]. However, this trajectory may not be strategically deconflicted and requires
obstacle detection and avoidance along the way.

The lane-based model, together with the coordination protocol proposed in
this paper, offer methods to mitigate such a contingency and also provides tech-
niques to analyze the possible outcomes of different contingencies. The well-
defined structure of lanes suggest that only a restricted set of contingency trajec-
tories need to be considered, those that follow the lane structure and those that
do not. For example, addressing contingencies where UAS must exit a lane could
include designating emergency side lanes where a UAS can wait, or dynamic
landing lane creation to go to the nearest safe landing site. In the case that the
UAS can still follow lanes, the simulations demonstrated in the experimental
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Fig. 1. Set of UAS on airways during discrete event simulation. Red dots represent
UAS in Flight; blue lanes are launch lanes (Color figure online).

section of this paper offer a method to understand the possible outcomes. In
[11] an analysis of the impact of lane density on the delay of a requested lane
reservation was shown to be an instance of a process of random space filling,
sometimes referred to as Renyi’s parking problem [10]. The lane-based structure
imposes constraints on the network that make this analysis possible and could
inform what a safe operating density for the UTM should be.

The proposed real-time tactical deconfliction method described in this paper
simply modifies UAS speeds throughout the network in such a way as to avoid
conflict. This method effectively absorbs contingencies when the UAS agent is
still capable of following lanes. In the event of a contingency where a UAS cannot
still follow lanes, the impact is minimized because non-contingent operations
remain within the lane structure.

2 Real-Time Tactical Deconfliction

Each lane has a set of neighboring lanes with which it shares an endpoint. A
flight in a given lane is tactically deconflicted if there is no point in its trajectory
along the lane such that it is within distance dS of any flight in a neighboring
lane. This can be efficiently checked using the Closest Point of Approach (CPA)
algorithm as follows. Let two lanes, L1 and L2, be defined by vectors S̄1 and
S̄2, where S̄1 ≡ −−−→

P̄1P̄2 and S̄2 ≡ −−−→
Q̄1Q̄2. The trajectories of flights f1 and f2

in lane L1 and L2, with velocities v̄ and w̄, are defined as P̄ (t) = P̄1 + tv̄ and
Q̄(t) = Q̄1+tw̄. Since the velocities are v̄ = s1(P̄2−P̄1)

|P̄2−P̄1| and w̄ = s2(Q̄2−Q̄1)
|Q̄2−Q̄1| , where

s1 and s2 are the respective speeds of f1 and f2, then the time, tmin, when the
two flights are closest in their trajectories is:
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tmin =
−(P̄1 − Q̄1) · (v̄ − w̄)

| v̄ − w̄ |2

If tmin is found for t ∈ [tcurrent, tmin TOA], where tmin TOA is the minimum time
of arrival at the end of the lane for flights f1 and f2, then the minimum distance,
dmin, between the flights across these intervals is just | P̄ (tmin) − Q̄(tmin) |. If
dmin < dS , then a conflict exists between the two flights. Figure 2 illustrates the
CPA method.

Fig. 2. CPA algorithm: two flights at closest points Ptmin and Qtmin .

If a flight, f1, has a conflict with flight f2, then the two flights can be decon-
flicted as follows:

Deconflict Pair

while conflict(f1,f2)
reduce speed, s1, of f1
if s1 < smin

then flight f1 fails

This allows the definition of the Closest Point of Approach Deconfliction (CPAD)
algorithm:

Algorithm 1: Closest Point of Approach
1 ∀ active flight, f
2 if f enters a new lane
3 OR a neighboring flight has slowed
4 OR f has reduced speed on its own
5 then call Deconflict Pair for all flights in neighboring lanes
6 if f has reduced speed
7 then f broadcasts this information.

2.1 Approximate Global Deconfliction Using CPAD

Global tactical deconfliction is achieved by having each UAS run the CPAD algo-
rithm. CPAD does not guarantee strategic deconfliction (i.e., that no two flights
get within distance dS across the entire set of current flight plans), however,
it does guarantee that no two flights are ever within distance dS of each other
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at any time. The benefits of this approach include that there is no centralized
flight planning, no sharing of detailed flight info between USS, and robustness in
the face of contingencies. The cost of the approach is that some flights may be
forced to fail; however, this can be mitigated by choosing appropriate lane struc-
ture, controlling the number of flights, and eventually by dynamic flight route
selection (currently the lane sequence is fixed). Certain communication require-
ments are imposed, however, the data shared between flights is essentially their
telemetry data which the FAA-NASA UTM requires broadcasting anyway.

3 Experiments

A discrete event simulation is run which allows specification of the simulation
time interval, [0, tmax], and the number of flights, nf . One unit distance corre-
sponds to 50 ft, and one unit time corresponds to 10 s. Two maximum speeds
are considered: 5 and 9, which correspond to about 17 and 30 mph, respectively.
Each flight has randomly selected launch and land sites, as well as a random
desired launch time. The desired speed is set to a max speed of 5 units distance
per unit time. A fixed 3× 4 grid of lanes at altitude 10 units are serviced by 10
launch lanes and 10 land lanes (see Fig. 1).

When a flight plan is created for a flight, it consists of a sequence of lanes
and for each a specific Time of Departure (TOD: departs entry point to lane)
and Time of Arrival (TOA: arrives exit point of lane). The next event is just the
flight with the earliest TOA in its current lane, unless it has not yet launched
in which case it is the current launch time. The launch times of the flights are
uniformly distributed across the simulation time interval. Note that if a flight
cannot launch at its desired launch time due to conflicts in the launch lane, then
it is rescheduled to a later time (with fixed delay). Once an event is selected, all
flights are advanced according to their respective speeds in their current lanes.
Next, the flights are deconflicted.

We consider two aspects for study: (1) maximum simulated time (set to 100
and 200 units), and (2) maximum UAS speed (set to 5 and 9 units distance
per unit time). These correspond to about 17 and 33 min, and 17 and 31 mph,
respectively. The number of flights is chosen to equal the maximum time since
this represents on average one launch per launch site every 50 s. Given a max
time, UAS max speed, and number of flights, the simulation is run using the
CPAD algorithm. Table 1 gives the data for five representative runs, as well as
the means.

As can be seen, these results indicate that the CPAD algorithm works well in
these scenarios with only one flight failure in all of the experiments (3000 flights
overall). Moreover, the average speed is quite near the maximum allowed speed,
and there are very few delays (68 out of 3000). The most critical parameter for
algorithm performance is the maximum speed of the UAS. Other trends revealed
in the data include that the longer the time period, the more flights complete
their mission, and the fewer flights are delayed or in the air (on average).
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Table 1. Delays and failures in experimental simulations

tmax nf smax Wait Fly Done Fail Avg speed Delays

100 100 5 1 18 81 0 4.98 2

2 12 86 0 4.98 2

0 15 85 0 4.99 1

0 11 89 0 4.98 2

1 18 81 0 4.96 4

Means 0.8 14.8 84.4 0 4.98 2.2

100 100 9 0 11 89 0 8.98 1

1 8 91 0 8.94 2

0 12 88 0 8.99 0

0 6 94 0 8.99 0

0 11 88 1 8.98 0

Means 0.2 9.6 90 0.2 8.98 0.6

200 200 5 0 14 186 0 4.96 6

0 11 189 0 4.97 8

0 17 183 0 4.98 6

1 13 186 0 4.99 10

0 6 194 0 4.96 9

Means 0.2 12.2 187.6 0 4.97 8.6

200 200 9 0 7 193 0 8.96 4

1 6 193 0 8.97 2

0 8 192 0 8.97 4

0 7 193 0 8.98 3

0 4 196 0 8.97 2

Means 0.2 6.4 193.4 0 8.97 3

4 Conclusions and Future Work

The lane-based approach provides a viable model for large-scale urban air traffic,
and CPAD closes the symbiotic DDDAS feedback loop to update the model based
on measurements and communication as required by the model. The results here
lay the foundation for a further study into the role of DDDAS in large-scale
unmanned traffic management. System designers must consider the impact of
airspace structure on information flow as well as the accessibility of the network
(as measured in delay in this paper). This paper demonstrates the importance
of considering the structure of the descretization of the configuration space and
how a real-time dynamic flight deconfliction algorithm can operate under strong
assumptions about the space/time structure of the environment. Future issues
to be explored include: (1) a broader set of experiments will be run to study the
role of the number of lanes, the distribution of flights over lanes, etc., as well
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as a sensitivity analysis of the experimental parameters, (2) flights are assigned
a complete sequence of lanes in this study, but we intend to explore the appli-
cation of the software defined networking paradigm to dynamically select the
lane sequence, (3) the structural properties of the airway network also play a
role in facilitating flight deconfliction, and those parameters will be studied,
(4) experiments will be conducted on realistic airways scenarios; e.g., the Utah
Department of Transportation is exploring the use of the lane-based approach
in Utah, where the airways are located above roadways, and (5) CPAD imposes
communication requirements on the aircraft, and this aspect will also be studied
in terms of the likelihood of failure to communicate correctly and its impact on
deconfliction.
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Abstract. This work presents the investigation and critical assessment,
within the framework of Dynamic Data Driven Applications Systems
(DDDAS), of two probabilistic state awareness approaches for fly-by-
feel aerial vehicles based on (i) stochastic adaptive time-dependent time
series models and (ii) Bayesian learning via homoscedastic and het-
eroscedastic Gaussian process regression models (GPRMs). Stochastic
time-dependent autoregressive (TAR) time series models with adaptive
parameters are estimated via a recursive maximum likelihood (RML)
scheme and used to represent the dynamic response of a self-sensing
composite wing under varying flight states. Bayesian learning based on
homoscedastic and heteroscedastic versions of GPRM is assessed via the
ability to represent the nonlinear mapping between the flight state and
the vibration signal energy of the wing. The experimental assessment is
based on a prototype self-sensing UAV wing that is subjected to a series
of wind tunnel experiments under multiple flight states.

1 Introduction

Future intelligent aerial vehicles will be able to “feel,” “think,” and “react” in real
time based on high-resolution ubiquitous sensing leading to autonomous opera-
tion based on unprecedented self-awareness and self-diagnostic capabilities. But
flight in complex dynamic environments requires unprecedented levels of sensing,
awareness and diagnostic capabilities. Such capabilities can be enabled via the
concept of “fly-by-feel” aerial vehicles, i.e., vehicles that can “feel,” “think,” and
“react” inspired by avian flight. Such systems fall within the core of Dynamic
Data-Driven Application Systems (DDDAS) concept as they have to dynami-
cally incorporate real-time data into the modeling, learning and decision making
application phases, and in reverse, steer the data measurement process based on
the system’s dynamic data integration and interpretation [3–5,8].

Towards the “fly-by-feel” concept, in this study two dynamic data-driven
state awareness approaches based on stochastic time series models and Bayesian
Gaussian process regression models (GPRMs) are presented and experimentally

c© Springer Nature Switzerland AG 2020
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assessed on a prototype self-sensing composite wing subjected to a series of
wind tunnel experiments under multiple flight states –defined by a pair of angle
of attack (AoA) and airspeed [8,9]. Adaptive parametric time-dependent autore-
gressive (TAR) models are used to represent the time-varying dynamics of the
wing as it undergoes different flight states. Model parameter estimation is based
on a recursive maximum likelihood (RML) statistical scheme that allows the AR
parameters to adapt with time in order to capture the non-stationary dynamic
response of the wing [12,14]. In addition, non-parametric Bayesian learning via
GPRMs [10,13] is used to “learn” the nonlinear relationship between sensor sig-
nal energy and the flight state, as defined by the AoA and airspeed (GPRM
covariates). Both homoscedastic [1,13], i.e. model observations’ noise is assumed
constant throughout the input space, and heteroscedastic [10], i.e. considering
input-dependent variance, GPRM versions are presented and critically assessed.

This study is a continuation of recent DDDAS work by the authors and co-
workers [3,4,7,8], with the main novel contributions related to addressing the
DDDAS fly-by-feel state awareness concept within (i) a non-stationary frame-
work via adaptive time series models with unstructured time-dependent param-
eter evolution, and (ii) a Bayesian learning framework that represents the rela-
tionship between several flight-state inputs (covariates) and data-driven flight-
state-sensitive features accounting for potential input-dependent noise variance.

2 Bayesian Learning via Gaussian Process Regression

Being kernel-based linear regression models, GPRMs allow for the modeling of
complex, nonlinear relationships between observations (targets) and covariates
(inputs), and the extraction of prediction confidence intervals (CIs) at a rela-
tively small computational cost [13]. As a result, they have been widely used
in many applications in the machine learning community [13] and recently in
Structural Health Monitoring (SHM) applications [1,2]. However, the inherent
and oftentimes unrealistic assumption of a fixed noise variance across the input
space [13, Chapter 2, pp. 16] that governs standard (homoscedastic) GPRMs,
makes them inappropriate in modeling many real-life processes. As such, het-
eroscedastic GPRMs have been proposed [6,10] that allow for input-dependent
variance with the cost that the predictive density and marginal likelihood are
no longer analytically tractable [10].

2.1 Homoscedastic Gaussian Process Regression

In this section, a concise overview of homoscedastic GPRMs will be provided.
For a full treatment, the reader is directed to [13]. Given a training data set
D containing n inputs-observation pairs {(xi ∈ R

D, yi ∈ R, i = 1, 2, 3, . . . , n}, a
standard GPRM can be formulated as follows:

y = f (x) + ε, f (x) ∼ GP(m(x), k(x, x′)), ε ∼ iidN(0, σ2
n ) (1)
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where, in a Bayesian setting, a GP prior with mean m(x) and covariance k(x, x′)
is placed on the latent function f (x), and an independent, identically-distributed
(iid), zero-mean Gaussian prior with variance σ2

n is placed on the noise term ε .
N(·, ·) indicates normal distribution with the indicated mean and variance. The
mean m(x) may be set to zero and the squared exponential covariance function
(kernel) is used for the latent function GP k(x, x′) = σ2

0 exp(− 1
2 (x − x′)TΛ−1

(x −

x′)). σ2
0 is the output variance and Λ−1 designates the inverse of a diagonal

matrix of the characteristic input length scales corresponding to each dimension
(D, i.e each covariate) in the input data.

Training involves optimizing the hyperparameters (θ ≡ σ2
0 ,Λ, σ

2
n), which is

typically done via Type II Maximum Likelihood [13, Chapter 5, pp. 109], whereas
the marginal likelihood (evidence) of the training observations is maximized, or
its negative log is minimized with respect to θ:

− log p(y|X, θ) = −
1
2
yT (KXX + σ2

n I)
−1y −

1
2

log |KXX + σ2
n I| −

n
2

log 2π (2)

Prediction can be achieved by assuming joint Gaussian distribution between
the training observations y, and a test observation (to be predicted) at the set
of test inputs (x∗) [13].

2.2 Heteroscedastic Gaussian Process Regression

One of the inherent drawbacks of homoscedastic GPRMs is the assumption of a
fixed noise variance throughout the input space, which, in many real-life applica-
tions, is impractical. Thus, a number of extensions have been proposed to allow
for the noise variance to vary with the input within a heteroscedastic GP (HGP)
framework. In this work, we have implemented the variational inference that is
based on variational Bayes and Gaussian approximation [10]:

y = f (x) + ε(x), ε ∼ N(0, r(x)) (3)

The added complexity of the heteroscedastic formulation results in not analyt-
ically tractable marginal likelihood and predictive distribution. One of the pro-
posed approaches for their approximation was put forward by Lázaro-Gredilla
and Titsias and is based on variational inference [10].

For training, the number of free variational heteroscedastic GPRM (VHG-
PRM) parameters to be determined becomes n + n(n + 1)/2, which makes the
training process computationally exhaustive. Thus, Lázaro-Gredilla and Titsias
[10] proposed a reparametrization of μ and Σ at the maxima of the marginal
variational bound. The predictive distribution for a new point in terms of the
first two moments can be calculated analytically [10].

2.3 GPRM-based Flight Awareness Results

The demonstration and assessment of the methods presented is based on wind-
tunnel experiments for a self-sensing composite UAV wing under varying AoA
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Fig. 1. Indicative GPRM results: (a) standard and (b) variational heteroscedastic
(right) GPRMs representing the evolution of signal energy vs AoA (set airspeed of
15 m/s; top row); and (c) (d) airspeed (set AoA of 10 deg; bottom row).

Table 1. Performance of standard GPRMs and VHGPRMs based on validation data.

GPRM Input Standard GPRMs VHGPRMs

AoA – MSEa 5.7337 5.7624

AoA – NMSEb 0.0947 0.0952

AS – MSE 0.0822 0.0816

AS – NMSE 0.1124 0.1115
aMean Square Error; bNormalized Mean Square
Error [10].

(from 0 to 17◦) and airspeed (0 m/s to 20 m/s); for details see [8,9]. Embed-
ded piezoelectric sensors recorded stochastic vibration 90, 000-sample-long (90 s)
signals (sampling frequency fs = 100 Hz) for which the signal energy for vary-
ing time-windows was calculated (indicative results are currently presented for
one-second-long windows). Model inputs (covariates) are represented via a flight
state vector consisting of the AoA and airspeed values, and the signal energy is
the output. For training, after an initial investigation in terms of model effec-
tiveness versus computational cost, 1000 signal energy points were randomly
selected under the considered flight states, and 486 and 183 test points were
used for the AoA and airspeed, respectively. In the said format, the trained
GPRMs are capable of predicting signal energy for a given flight state; however,
the flight state can be identified via the trained GPRMs based on the predictive
confidence intervals (CIs) at the test signal energies and the calculation of the
probability that a point sampled from the predictive distribution of each set of
flight states falls within the calculated CIs. The flight state that has the highest
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probability is determined as the actual state corresponding to the observed test
signal energy. Figure 1 presents indicative GPRM results for the standard and
VHGPRM cases for varying AoA (top row; Fig. 1a and b) and airspeed (bottom
row; Fig. 1c and d). It can be readily observed that the VHGPRM predictive
mean and variance can accurately represent the evolution of the signal energy
along with the corresponding variance that varies with the input state. On the
other hand, the standard GPRM, as expected, fails to capture the predictive
variance, as evident by either too narrow or too broad CIs.

Figure 2 presents indicative results of the flight state prediction based on the
standard and VHGPRM models. It can be observed that the VHGPRM provides
more accurate predictions especially in the case of the airspeed for which the
standard GPRM fails to capture the variance (see Fig. 1). Table 1 presents the
comparison of the standard GPRM and VHGPRM performance.

Fig. 2. Indicative flight state probabilities: (top) AoA predictions at an airspeed of
15m/s for (a) standard and (b) VHGPRM models; (bottom) airspeed predictions at
an AoA of 10◦ for (c) standard and (d) VHGPRM models.

3 Adaptive Modeling via Time-Dependent AR Models

The dynamic response of aerial vehicles is governed by non-stationary stochas-
tic vibrations under varying operating and environmental states characterized
by time-dependent (evolutionary) characteristics. From a physical standpoint,
non-stationary behavior is due to time-dependent and/or inherently non-linear
dynamics. Non-stationary models can be based on non-parametric or paramet-
ric representations [11,12,14]; for a review of non-stationary random vibration
modeling and analysis see [12]. In this study, TAR models are used to repre-
sent stochastic time-varying vibration signals recorded from piezoelectric sensors
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embedded within the composite layup of the wing under the aforementioned
flight states (for details see [7,9]). TAR models resemble their stationary AR
counterparts allowing their parameters depend upon time and can adapt based
on the time-dependent dynamics of the system [12]. A TAR(na) model, with na
designating its AR order, is thus of the form:

y[t] +
na∑

i=1

ai[t] · y[t − i] = e[t] with e[t] ∼ iidN
(
0, σ2

e [t]
)

(4)

with t designating discrete time, y[t] the signal to be modeled, e[t] an (unob-
servable) uncorrelated innovations sequence with zero mean and time-dependent
variance σ2

e [t], and ai[t], the time-dependent AR model parameters. The TAR
representation imposes no “structure” on the evolution of its parameters, which
are thus “free” to change with time, and is thus directly parameterized in terms
of time-dependent parameters ai[t] and innovations variance σ2

e [t].
Given a single, N-sample-long, non-stationary signal record {y[1], . . . , y[N]},

TAR model identification involves selecting the corresponding model structure,
and estimating the model parameters ai[t] and the innovations variance σ2

e [t]
that “best” fit the available data. The TAR model is parameterized via the
parameter vector θ[t] = [a1[t] . . . ana[t]] to be estimated based on the recorded
non-stationary signal. For a detailed review see [12]. In this work, parameter
estimation is based on an exponentially weighted prediction error criterion and a
recursive estimation scheme accomplished via the recursive maximum likelihood
(RML) method [11,12].
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Fig. 3. Top: indicative non-stationary signals under continuously varying (a) airspeed
and (b) AoA. Bottom: RML-TAR(40)0.998-based time-dependent power spectral den-
sity estimates under continuously varying (a) airspeed and (b) AoA.
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3.1 Adaptive TAR-Based Flight Awareness Results

The parametric identification via TAR models is based on 60, 100 (601 s) and
6, 100 (61 s) sample-long response signals (sampling frequency fs = 100 Hz) under
continuously varying AoA (from 0 to 15◦) and airspeed (decreasing from 20 m/s
to 0 m/s), respectively, recorded via embedded piezoelectric sensors (see Fig. 3a
and b). The model structure selection problem, i.e. determination of the model
order and forgetting factor [12], is based on the successive estimation of TAR(na)
models for orders na = 2, . . . , 50 and forgetting factors 0.900, . . . , 0.999, with
the best model selected based on the combined consideration of the Bayesian
Information Criterion [12] and the comparison with the corresponding non-
parametric power spectral density (PSD) estimates. This process resulted in
RML-TAR(40)0.998 models for representing the non-stationary dynamics due to
time-dependent evolution of the AoA and airspeed of the wing.

Figure 3c and d presents indicative RML-TAR(40)0.998-based time-dependent
PSD estimates for continuously varying airspeed and AoA, respectively. Observe
the time-dependent nature of the wing dynamics; in the case of varying airspeed
(Fig. 3c) observe the separation of 9 Hz natural frequency at 20 s, as the two
vibrational modes are decoupled as the airspeed decreases and the aeroelas-
tic flutter diminishes. Figure 4(a–c) presents the first three RML-TAR(40)0.998-
based time-dependent AR parameters along with their estimated 95% CIs for a
close-up time window of one second. Again, the time-dependent nature of the
parameters is evident with the evolution of the flight state dynamics. In addi-

Fig. 4. Top (a–c): RML-TAR(40)0.998-based time-dependent evolution of three indica-
tive model parameters. Bottom (d–e): identified RML-TAR(40)0.998-based time-
dependent (d) natural frequencies and (e) damping rations in the [0 − 15]Hz range.
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tion, observe the narrow confidence intervals of the model parameters that are
based on the recursive estimation of the parameter covariance matrix. Figure 4d
and e depicts RML-TAR(40)0.998-based the time-dependent natural frequencies
of the wing and their identified damping ratios within the frequency bandwidth
of [0− 15]Hz. Again, observe the time-dependent nature of the identified modes
based on the RML-TAR model and compare with Fig. 3.

4 Conclusions

The investigation and assessment of non-parametric Bayesian Gaussian process
regression homoscedastic and variational heteroscedastic models, and adaptive
time-dependent models for flight awareness, were presented based on experi-
mental data collected from a UAV wing during wind tunnel experiments under
varying flight states. The VHGPRMs outperformed their homoscedastic counter-
parts in terms of the predictive input-dependent variance estimation accuracy.
Stochastic adaptive RML-TAR models were shown to be capable of identify-
ing the time-dependent stochastic wing vibration dynamics under continuously
varying AoA and airspeed by imposing no structure on the time evolution of
their parameters. Ongoing work addresses the investigation of time-dependent
stochastic models that impose structured stochastic (parameters are random
variables allowed to change with time) and deterministic (parameters are pro-
jected on time-dependent functional subspaces) evolution on their parameters.
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Abstract. Aircraft of all types, and especially small UAS, are significantly
affected by atmospheric motion. Employing numerical weather models and trajec-
tory planning algorithms that reason over model uncertainty can allow an aircraft
to safely and efficiently traverse a complex, uncertain environment. However, even
paths robust to a priori uncertainty may be inferior to trajectories planned using
an environmental model refined using in situ observations. This work develops a
dynamic data driven applications system (DDDAS) architecture that uses the air-
craft as a sensor to the environmental state and updates a model of the wind field
model through trajectory execution. A Monte Carlo Rapidly-Exploring Random
Tree (MCRRT) algorithm plans a set of probabilistically safe paths and predicts
the distribution of their cost. Decision-making at the tasking level directs aircraft
on paths which are possibly suboptimal with respect to a single mission in order
to sample the environment and update the model. This tasking reconfigures the
observations gathered to target portions of the environment relevant to mission
execution. Initial simulations show that this approach is able to reduce error in the
modeled environment.

Keywords: Dynamic data driven applications systems · Flight planning · Wind
field uncertainty · Online

1 Introduction

The atmospheric environment can significantly affect the performance of all aircraft,
especially small uninhabited aircraft systems (sUAS) which frequently fly slowly in the
turbulent lower atmosphere [1–3]. Flight planning algorithms which consider weather
forecast predictions when simulating the aircraft dynamics can account for the expected
effect of weather on a mission [4]; however, forecasting at the scale of sUAS missions is
complicated by uncertain boundary conditions and subgrid-scale dynamics which affect
resolved-scalemotion. Themean error in high resolutionwind forecasts is approximately
2.5 ms−1 [5, 6], more than 10% of the flight speed of many sUAS. This wind field error
makes it likely that the a priori predicted cost of performing a flight plan has significant
error. It is also possible that a trajectory which is optimal in the predicted wind field is
suboptimal in the true environment.

© Springer Nature Switzerland AG 2020
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Fig. 1. The DDDAS paradigm applied to maintaining an environmental model which is used to
plan and assign trajectories to small UAS navigating an urban environment.

One approach to managing this error is to use the uncertain forecast as an input
in a probabilistic planner which penalizes the resulting cost distribution, resulting in
high-confidence paths [7]. Another approach is to consider the uncertainty introduced
by atmospheric disturbances in transitions between nearby states. The planning problem
can then be viewed as a Markov Decision Process and dynamic programming can be
used to find policies which efficiently reach a goal [8]. These methods can produce
trajectories that are robust to uncertainty in the wind field but do not seek information
about the environment which can be used to inform the path of subsequent missions.

The dynamic data driven applications system (DDDAS) paradigm [9, 10] provides
a framework for updating data-driven models with online observations to inform deci-
sion making in subsequent missions. This framework has been applied to energy-aware
trajectory optimization [11] and self-aware probabilistic trajectory planning [12] in sys-
tems that integrate observations into atmospheric and flight envelope models during
flight. Despite updating data-driven models in near-real-time for informed path plan-
ning, these systems do not generate trajectories that improve model uncertainty. The
DDDAS paradigm has been applied to gathering wind field information, but only in the
case where the aircraft’s sole objective is to explore the wind field [13].

Thiswork introduces aDDDASarchitecture for trajectory planning over atmospheric
models tomeetmission requirementswhile avoiding obstacles and gathering information
to improve the atmospheric model (Fig. 1). Prior to each mission the atmospheric model
is sampled. A probabilistic planner uses these samples to produce a candidate set of
efficient trajectories which are safe with respect to random wind disturbances. A task
assignment algorithm then assigns a trajectory from the candidate set to the aircraft.
By sampling the model used for planning and the cost for task assignment the aircraft
is tasked to visit regions where uncertainty produces variation in the trajectory and its
cost. During a mission the wind can be inferred from the difference between inertial
and air-relative velocity measured by the aircraft. These observations are assimilated by
the atmospheric modeling system during trajectory execution to reduce uncertainty in
the environmental state. The updated model is made available for subsequent mission
planning, closing the DDDAS loop.
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2 Probabilistic Planning

A key component of the system is a planner for the aircraft mission which provides
multiple candidate trajectories and the distribution of cost predicted for each. TheMonte
Carlo Rapidly-Exploring Random Tree (MCRRT) takes a particle approach to planning,
which allows the distribution of the vehicle states and cost to be estimated based on a data-
driven environment model. The branching, randomly exploring nature of the MCRRT
algorithm allows the trajectory quality to be refined as computational resources permit
and identifies a number of trajectories which can be provided to the task assignment
algorithm.

Figure 2 shows how the MCRRT algorithm operates. A random position is sampled
in the problem space and the optimal parent belief state is chosen from the search tree
based on a cost function.

Fig. 2. The Monte Carlo RRT plans multiple candidate paths, returning vehicle belief states and
cost estimates for each path.

The turbulent wind motion is sampled for each particle composing the parent belief
state, and a closed loop dynamic simulation drives each particle toward the reference
position. The closed loop model consists of a Dubin’s aircraft model [14] modified to
consider wind and a look-ahead path-following controller [15]. Each resulting trajectory
is characterized by its state distribution and cost distribution.

Safety of the trajectory distribution is reasoned over probabilistically using the col-
lision status of each particle’s trajectory to estimate the probability of safety from the
root of the search tree to each belief state. Belief states that cause the path to violate
the safety chance constraint, Psafe ≥ 1 − ε, where ε is a user-defined threshold, are
discarded. Belief states that satisfy the safety chance constraint are added to the search
tree.

A path is found when the mean value of a belief state in the search tree is extended
into the goal region. When the randomly sampled position falls in the goal region, the
optimal parent is chosen from belief states that have not yet been extended towards the
goal to increase the likelihood of diverse paths reaching the goal region. The planner is
run for a fixed time tmax , and all resulting paths are sent to the task assignment algorithm.
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3 Trajectory Assignment for Exploration

To gather information about the environment while accomplishing a mission, the system
needs to generate and assign trajectories that balance gathering information about the
environmentwithmission completion. This balance is a commonproblemwhenplanning
in uncertain environments. A common approach to achieve this balance is to provide a
bonus in the cost function for exploration, based on the model uncertainty in the regions
traversed by a trajectory [13]. This approach requires a weight be chosen for the bonus
term in the cost function, and often this weight must be tuned manually to achieve
satisfactory performance.

The approach taken in this application is to realize wind fields from the probabilistic
model of the environment. These sampled models are used by several MCRRT instances
in parallel. The planners run for a fixed period and return one ormore solutions which are
described by particle trajectories, capturing the distribution of cost for a given trajectory.
The task assignment system must then make a choice over the resulting set of candidate
trajectories.

The choice of an action from a candidate set with uncertain cost describes the multi-
armed bandit problem. Optimal solutions to this problem exist when the choices and
their reward distributions are constant [16]. Because unique trajectories are returned
by the planner after each run, the action space is effectively infinite in dimension and
strong claims of convergence to the optimal value cannot be made. A finite number of
trajectories is returned, however, as well as a probabilistic description of the cost of each
trajectory. A trajectory is chosen by randomly sampling a cost from the distribution at
the terminal node of each candidate and selecting the trajectory corresponding to the
minimum of the sampled costs. While this does not explicitly value the information
gathered, the sampling step approximates a selection rule which matches probability of
selection with probability that a trajectory is optimal. This approach was explored by
Granmo and Berg for non-stationary problems [17]. The trajectory selection process is
depicted in Fig. 3.

Fig. 3. Trajectory costs are sampled from the particle distribution at the terminal node. The
trajectory from which the minimum cost was sampled is selected for execution.
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4 Environment Model

The final component of the system is an environmental model which can be sampled for
planning and can be updated using in situ observations gathered by the sUAS. Model-
assimilation approaches such as the Ensemble Kalman filter (EnKF) provide probabilis-
tic forecasts of the environmental state and the ability to refine state estimates as new
observations are available [18].

Because the focus of this work is integrating the planning and assignment algorithms,
a surrogate system is employedwhich uses aKalman filter to estimateweights for a priori
defined basis functions which are used tomodel the deterministic component of the wind
field [19]. This provides capability outwardly similar to an EnKF while being simpler to
implement for testing. It can also be used in applicationswhere computational limitations
preclude the use of a full EnKF weather model, though the approach used here can only
interpolate rather than predict the atmospheric state.

Both the true and estimated environment are modeled as a uniform flowwith random
perturbations superimposed. The perturbations are described by Gaussian radial basis
functions. To simulate an environment where all of the degrees of freedom are not
perfectly captured, as is common in weather models, the model includes half the number
of basis functions as the true environment and the bases are not located at the same points.
The true wind field does not evolve with time in the simulations performed in this paper.

5 Simulations

Theweather model,MCRRT planner, and task assignment algorithm are implemented in
a numerical simulation where a fleet of sUAS must traverse a complex wind field while
minimizing travel time, simulating package delivery or resupply. The weather model is
initialized with no knowledge of the environment and model covariance which reflects
climatological variation in the wind.

To approximate an sUAS with a closed-loop control system the aircraft dynamics in
both planning and simulation are simplified to first order with decoupled longitudinal
and lateral motion. Aircraft states are inertial position, heading, and airspeed. Control
inputs are turn rate, climb rate and speed rate. Environmental inputs are the mean wind
components and random wind disturbances. To simplify the simulation the wind vector
is directly observed, with additive noise equivalent to inferring it from the difference of
inertial and air-relative velocity, and is used to update the environmental model.

Simulations are conducted in an urban environment approximating Minneapolis,
Minnesota (Fig. 4). Each mission begins at the same point and flies to a point located
1.2 km away. Missions are completed sequentially so that each trajectory is planned
using the environmental model as it was estimated after the previous mission. Reusing
the same start and goal points requires the system to actively gather information about
the environment. The takeoff and landing are neglected – missions begin and end at
flying speed and 10 m altitude.
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Fig. 4. One hundred sequential simulations are conducted in an urban environment approximating
Minneapolis, Minnesota.

6 Results

Figure 4 shows flight paths taken by the aircraft in one hundred simulations. A qualitative
examination of the paths shows that most missions follow one of several heavily used
routes while a few missions fly much farther. The commonly used trajectories have
similar cost, so randomly sampling trajectory costs will frequently result in selection
of one of these routes. The longer trajectories result from infrequent instances where
the planner uses a possible but not likely realization of the environment in which these
regions have very favorable winds.

Figure 5 shows themean absolute error between the true andmodeledwind field used
for planning, averaged over each mission. The large initial error is rapidly eliminated as
the filter accurately estimates the uniform wind field component after a single mission.
Correcting overfitting of the perturbations requires several more missions, with the wind

Fig. 5. Mean absolute error between the modeled wind and true wind experienced by the aircraft
during each mission.
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field error converging after ten missions. Occasional spikes (e.g. run 41) occur when the
aircraft is tasked to an information-gathering trajectory through a poorly explored part
of the wind field.

7 Conclusions

This paper presents the development of a dynamic data driven applications system for
sUAS operations in urban environments which integrates planning, task assignment, and
a weather model updated with in situ observations. By sampling wind fields from a prob-
abilistic environmental model, using a particle-based trajectory planner, and selecting
trajectories on the basis of sampled costs, the system can generate trajectories which
visit potentially favorable regions in the environment while accomplishing a mission.
Simulations in an urban environment show that the system is able to reduce thewind field
error experienced by a group of sUAS completing missions representative of delivery
or resupply.

The framework developed is intended to enable further investigation of the DDDAS
paradigmapplied to flight in uncertainwind fields. Further research is intended to explore
the performance of MCRRT in comparison to other probabilistic planners, the use of
time-varying and more realistic wind fields, incorporation of a physics-based model-
assimilation system, and the effect that improving the wind field estimate has on mission
performance. Finally, the system is being implemented on an sUAS for field testing.
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Abstract. As climate change progresses and the global population continues to
increase, meeting the energy demand is an issue that has been brought to the fore-
front of the conversation. Microgrids (MGs) are groundbreaking tools that have
risen in popularity to combat this crisis by capitalizing on renewable, distributed
energy resources to efficiently satisfy the energy demand from environmental sen-
sors via telemetry. In this work, we present a deviation clustering (DC) algorithm
within a dynamic data-driven application systems (DDDAS) framework to reduce
the length of the MG dispatch model’s planning horizon while retaining the tem-
poral characteristics of the initial load profile. The DDDAS framework allows for
the adjustment of the current dispatch decisions in near real-time. We develop
two modules embedded within this framework; the first is a proposed rule-based
policy (RBP) that modifies the sensing strategy and the second is the DC algo-
rithmwhich reduces the execution time of theMG simulation. Numerical analysis
was conducted on the IEEE-18 bus test network to assess the performance of the
proposed framework and determine an appropriate threshold for clustering. The
limitations of the presented framework were also determined by comparing the
tradeoff between its the speed of the solver’s solution time and the accuracy of
the resulting solution. The results indicate a decrease in solution time within the
desired accuracy limitswhenusing the proposed approach as opposed to traditional
load dispatch.

Keywords: Microgrids · Clustering algorithms · Data analytics · Climate
change · Distributed feedback devices

1 Introduction

Energy surety remains the primary concern for many countries. In the wake of existing
factors such as the rising global population [1], high frequency of natural disasters [2],
and accelerating climate change due to carbon emissions (CO2) [3], the utilization of dis-
tributed energy resources (DERs) into existingmain grid technology is essential to effec-
tively sustain the global population.Moreover, unexpected factors such as theCOVID-19
virus [4] have re-emphasized the need for a quicker response to real-time situations as
many people continually remain in quarantine consuming power (hence increasing res-
idential demand). This dilemma presents both a challenge to reliable energy systems in
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times of crisis and an opportunity to utilize a load profile generated by the quarantined
clusters for operational planning. Thus, understanding the parallel characteristics across
various applications, is crucial for innovation [5]. Microgrids are sub-networks that
utilize DERs in parallel with the main grid to efficiently dispatch power, ensuring reli-
able distribution with quicker response time than their traditional, manual counterparts.
Therefore, the challenge to obtain real-time situational awareness requires the regulation
of large heterogeneous data for anomaly detection within the microgrid (MG) system.
Consequently, the MG simulation will need to steer the instrumentation to acquire the
most relevant sensory data at the appropriate fidelity for near real-time decision making.

The powerful paradigm, Dynamic Data-Driven Application Systems (DDDAS), first
introduced by [6] resolves this challenge in a holistic manner [7]. DDDAS equips the
proposed framework with the ability to ascertain how the system and environmental
data should be harvested as the MG simulation receives near real-time data from the
MG system. Furthermore, DDDAS has had tremendous success across a vast and diverse
spectrumof fields [4]. Examples of these fields includematerialsmodeling [8], aerospace
engineering [9], cybersecurity [10], smart cities [11, 12], cloud-data access [13, 14] and
energy-aware optimization [1, 3, 15]. Similarly, derivatives of DDDAS such as [16, 17]
are utilized within the context of bulk-power systems by dynamically receiving data
into an executing MG simulation and utilizing an online learning algorithm to feed the
database for faster future computations.

However, rapid future computations incur an engineering tradeoff between computa-
tional resources and the desired accuracy within an appropriate time as the MG dispatch
model scales. For large scale bulk-power systems, this approach becomes less applica-
ble as the error rises for a highly clustered load profile or becomes too computationally
expensive to solve the initial load profile. Hence, it is imperative to efficiently cluster
the initial load profile and consequently, the number of timesteps (blocks) throughout
the planning horizon within an acceptable margin of error. Among the variety of clus-
tering techniques, the most common is k-means use by [18] on spatial data to aggregate
similar load profiles, and achieve accurate long-term load forecasts based on land use
or location. However, [19] clusters based on the user’s load characteristics to reduce the
complexity of communication between the grid and the users. Previous studies through-
out the literature further note the relationship between the scale of the MG dispatch
model and the number of blocks that define the planning horizon [20].

Main contributions of this work are twofold. First, a rule-based policy (RBP) is pre-
sented to integrate the transmission system operator (TSO) into the considered DDDAS
framework. Despite DDDAS’s autonomous operational design for efficacy, anomalous
data derived from various sensors (in error or fault) could result in blackouts, load spikes
and/or a series of events leading toward an unplanned islanding. Thus, a human-in-
the-loop system could be necessary. This necessity is represented by the TSO and is
embedded within the proposed DDDAS framework. Second is the deviation clustering
(DC) algorithmwhich clusters the initial load profile based on the standard deviation (σ )

of similar load levels, enhancing the MG simulation’s execution time. An engineering
tradeoff between the speed of the solver’s solution time and the accuracy of the resulting
solution was developed to evaluate this performance of the presented approach.
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This study is organized as follows. In Sect. 2, the various modules embedded in the
MG framework design are outlined including the rule-based policy and the deviation
clustering algorithm. In Sect. 3, numerical analysis is used to examine the engineering
tradeoff between the speed of the solver’s solution time and the accuracy of the resulting
solution along with the benefit of using the DC algorithm. Finally, Sect. 4 concludes the
results of this study.

2 Microgrid Framework Design

The proposed framework can be described via three cycles (see Fig. 1.). Cycle 1 is
the main loop that integrates the MG Simulation with the DC algorithm and the RBP.
Initially, near real-time data from the MG system is fed into the MG Simulation. The
simulation produces the load profile according to the received data, which is then fed
into the DC algorithm. After DC processes the initial load profile, the newly clustered
profile is sent to the RBP as depicted in Fig. 1.

Fig. 1. Proposed MG operational planning within a DDDAS framework

The RBP then determines whether to continue the operation with cycle 2 or cycle 3,
which reflects autonomous operation or some degree of TSO intervention, respectively.
The MG dispatch model used in cycle 2 is based on [16] with an extension for energy
storage capabilities. Both cycles 2 and 3 are mutually exclusive, and the unselected cycle
will become inactive. As cycle 1 recursively scrutinizes the data according to the RBP,
cycle 2 typically follows utilizing the MG dispatch model for decision-making unless
the MG simulation receives anomalous data; In this case, cycle 3 would be chosen to
involve some degree of TSO intervention.

The DDDAS paradigm supports this symbiotic, feedback loop requesting informa-
tion unique to potential anomalies while receiving near real-time data. This two-way
communication feature of DDDAS helps to better mimic the real-world MG system by
capturing the current system’s state and investigating extreme values to revise the current
MG dispatch decisions. The RBP determines the operation plan, categorized by the risk
associated with data, where the conditions are predicated on the tradeoff of using the
DC algorithm.

2.1 Rule-Based Policy

In Fig. 2, which is nested in Fig. 1, the proposed RBP chooses which cycle should be
used to determine the MG operational plan based on the load input error before and
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after clustering (Dt). The RBP is categorized into three major abnormality levels as low,
medium, and high. Cycle 2 utilizes the MG dispatch model decisions when there is
low risk for efficiency. However, cycle 3 integrates the TSO when there is a potentially
higher risk. TSOmay then follow the suggested courses of action from the RBP or make
an informed decision having been provided with alternatives. The courses of action
associated with each abnormality level are outlined in Fig. 2 and a subset of the initial
load reflecting public safety facilities (Dcrit) is energized despite the risk.

Fig. 2. Rule-based policy to determine MG operational plan

2.2 Deviation Clustering Algorithm

Deviation Clustering (DC) is an algorithm used to cluster the initial load profile to
reduce the length of the planning horizon while retaining the initial load’s temporal
characteristics as explained in Table 1.

Table 1. Algorithm for Deviation Clustering.

Input: x load profile, σ threshold

1. Initialize counter
2. Initialize an empty array (no load profile)
3. Add the first element of x to the empty array
4. Conduct a pairwise comparison between the elements of x
5. If the pair’s standard deviation is < σ , cluster the load
6. Else add the current element from x to begin new cluster
7. Conduct another pairwise comparison on x
8. If the elements in the pair are not equal, increase the counter
Output: the clustered load profile, the new planning horizon in blocks

In summary, DC clusters the load profile based on the standard deviation (σ ) of
sub-clusters throughout the planning horizon, where σ is the threshold value for all sub-
clusters. As σ increases, so does the size of each sub-cluster resulting in fewer blocks to
define the planning horizon. Moreover, the clustering occurs chronologically to preserve
the temporal characteristics of the initial load profile.
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3 Numerical Analysis

The IEEE-18 is selected as the testbed for this study where the data can be found at
[22] for replicability purposes. After collecting the data, the proposed approach for
MG operational planning was applied to examine the effects of implementing the DC
algorithm within a DDDAS framework.

3.1 Deviation Clustering Tradeoff

When utilizing the DC algorithm, a varying degree of distortion in the initial load pro-
file was observed by incrementing the sigma value as shown in Fig. 3. As previously
mentioned, sigma value (σ ) is a threshold for all sub-clusters.

Fig. 3. Tradeoff analysis between reducing the planning horizon (block count) and retaining the
initial information (input error) at various sigma values (σ)

In Fig. 3, the sigma value (σ) acts as a control parameter for the DC algorithm
used to adjust the degree of clustering. The resultant level of distortion is captured by
the input error and the resultant length of the planning horizon is captured by block
count simultaneously. Input error captures change in the load profile between the MG
simulation and the MG system as previously mentioned in Fig. 2. Block count is defined
as BC = 24 blocks/thourswhere its minimum is set as 24 blocks per day. Notably, this
approach scales to consider smaller hourly time-steps. This allows for the realization
of short-term MG operational planning. For example, a 1-min schedule would contain
1440 blocks, since BC = 24 blocks/1/60 h = 1440 blocks. Hence, it is imperative
to find a suitable (σ) which effectively utilizes computational resources during nominal
operation.

Similarly, the intersection between the block count and input error reflects the σ at
which the tradeoff no longer exists because it shares an equivalent response relative to
their scales. Since the σ is directly proportional to the input error but inversely propor-
tional to the block count, the point of intersection (POI) will vary for each initial load
profile. A single replication of the load profile was used in Fig. 3 and the best σ was
determined to within [0, 30], which up to the POI; this interval reflects low to medium
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risk and gives preference toward accuracy instead of speed. Conversely, a high risk is
associated with σ outside [0, 30] which reflect preference toward speed instead of accu-
racy. Designating the appropriate range based on the POI updates σ and consequently
the proposed DC and RBP modules according to the most recent data. Additionally, this
preferred region of operation can be adjusted before the POI by the TSO as a safety
factor.

3.2 Utility of Deviation Clustering
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Fig. 4. DC’s effect on solution time for the MG Dispatch model

In Fig. 4, we observe a decrease in solution time at higher σ values which consequently
enhances the execution speed of theMGapplication reaffirming the previous observation
in Fig. 3. The speed ratio is defined as the solution time of traditional dispatch where σ=
0 divided by the new solution time post deviation clustering, to capture any improvement.
For example, a speed ratio of 2 at σ = 15 indicates that clustering at σ = 15 results in
obtaining a solution twice as fast compared to traditional dispatch σ = 0. Conversely, σ
results are directly proportional to the speed ratios which validates their use as control
parameters for clustering and consequently the scale of theMGdispatchmodel. It should
be noted that this benefit of obtaining a faster solution is limited by level of risk incurred
previously mentioned in Fig. 3 and reflected in Table 2 with increasing output error,
where output error is the error change in dispatch decision with the initial, unfiltered
load profile. The MG simulation benefit of solution speed and limitation of information
distortion using the DC module are summarized in Table 2, for the TSO to determine
acceptable risk independent of the regions outlined by the proposed RBP module in
Fig. 2.
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Table 2. Summary of the DC effect on the MG application.

Load Profile Block Count Input Error Speed Ratio Output Error

Sigma = 0 24 – – –

Sigma = 15 16 3.7 2 2.8

Sigma = 30 10 17.4 3 7.23

Sigma = 60 6 35.2 7 9.6

4 Conclusion

This study presents a symbiotic benefit between amicrogrid simulation and its execution
in relation to data updated from a real system, within a dynamic data-driven application
systems (DDDAS) framework. The DDDAS paradigm was applied to a microgrid (MG)
simulation using two modules, a deviation clustering (DC) algorithm to reduce the
dispatch model’s scale, consequently enhancing the MG simulation’s execution time,
and a rule-based policy (RBP) to blend the transmission system operator (TSO) with
smart grid operation design. Figure 1 provides an overview of all the modules within the
proposedDDDAS framework forMGoperational planning. The proposedDC algorithm
clusters the initial load profile using the standard deviation as a control parameter for
each sub-cluster.

Numerical analysis was conducted on the IEEE-18 bus test network and standard
deviationwithin [0, 30]was selected based on the engineering tradeoff between the speed
of the solver’s solution time and the accuracy of the resulting solution. Furthermore, it
was observed that the temporal characteristics of the initial load profile were retained at
σ= 15 but not σ= 60 since the input error increases from 3.7% to 35.2%. Moreover, the
DC algorithm generates a solution 50% faster with a 3.7% risk at σ= 15 when compared
to traditional forms of microgrid dispatch. Numeral analysis has shown that standard
deviation was directly proportional to input error but inversely proportional to block
count, which reflects distortion in the load profile and the length of the planning horizon,
respectively. Hence, these intervals can be used to develop conditions for the proposed
RBP and detect anomalies other than those resulting the DC algorithm including the
ones resulting in load spikes, blackouts and/or unplanned islanding.
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Abstract. This paper describes an approach to apply the dynamic data-
driven applications systems (DDDAS) paradigm to enhance cyber secu-
rity and resilience of wide-area monitoring systems in electrical grids.
In particular, we explore a DDDAS-aware application to self-heal pha-
sor measurement unit (PMU) networks that monitor the states of power
systems in real-time. The application is built on top of a novel software-
defined networking (SDN) architecture. The main components include
a dynamic data-driven model that efficiently abstracts the PMU net-
work behavior at run time and an optimization-based solution to quickly
reconfigure network connections to restore the power system observabil-
ity. The application also compresses network updates of the recovery plan
to further reduce the recovery time. We develop a prototype system in
a container-based network testbed and evaluate the recovery time of the
self-healing application using the IEEE 30-bus system.

Keywords: Dynamic data driven application systems ·
Software-defined networking · Phasor measurement unit · Smart grid
resilience and security

1 Introduction

Phase measurement units (PMU) have been increasingly and rapidly deployed
in the wide-area monitoring systems to capture the states of electric grids in
real-time. PMUs are time-synchronized by GPS timestamps and measure power
system states, such as magnitudes and phase angles of current and voltage at
each bus, at rates between 30 and 240 Hz. The measurements are then aggre-
gated at phasor data concentrators (PDC) and eventually transmitted to the
control center to support state estimation and other critical control and analytic
applications. Recent studies reveal that PMU networks are vulnerable to differ-
ent types of cyber-attacks [1,2], which negatively impact the visualization and
situational awareness of power systems.

To address this challenge, we develop a self-healing PMU network scheme
with the objective of preventing the propagation of the attacks and maintaining
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the complete observability of the power system. We take a DDDAS-based app-
roach to design the self-healing scheme. DDDAS stands for dynamic data-driven
applications systems, which is a paradigm that involves dynamically incorpo-
rating real-time data into computations in order to steer the measurement and
control process of an application system [3]. The DDDAS concept has been
successfully applied to many emerging application areas over decades, such as
smart cities, manufacturing, transportation, health care, critical infrastructures,
and many others [4,5].

Fig. 1. DDDAS-aware PMU network self-healing application design

Figure 1 depicts the design of our DDDAS-aware self-healing PMU network.
The communication network is represented as a dynamic data-driven model that
efficiently abstracts the physical PMU network behavior (e.g., packet forward-
ing) under a dynamic system environment (e.g., network updates caused by
cyber-attacks, recovery plans, and other operations). The graph-based model is
capable of accepting real-time data at execution time as system states evolve.
When the model enters into an abnormal state (e.g., dropped or suspicious traf-
fic from compromised devices), the self-healing scheme is triggered to isolate the
traffic from those PMUs and PDCs. The scheme consists of three steps. First,
it identifies the portion of the network affected by the cyber incident, such as
the list of PMUs to reconnect; Second, it solves an optimization problem to
compute the destination PDC for each PMU in the list as well as the immedi-
ate switches by meeting the specified device and network operation constraints.
Third, it generates an optimal recovery plan to restore power system observ-
ability and translate them into network updates for each affected switch. As
a result, the scheme steers the control and measurement process by installing
network updates on the physical network to self-heal the PMU systems. The
updated measurement data and control events are then fed into the graph-based
model for further processing. An effective feedback loop is thus enabled to steer
the entire self-healing process.

One key component to support this DDDAS-based PMU network self-healing
application is the underlying software-defined networking (SDN) based commu-
nication infrastructure. SDN is a programmable open-source approach to design-
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ing, building, and managing communication networks [6]. SDN decouples the
network control from the forwarding functions in network devices and offloads
its decision functions to a logically centralized SDN controller. With the increas-
ing size and complexity of the communication networks for wide-area control
and monitoring systems, SDN has been increasingly investigated to improve their
resilience and security [7–9]. The SDN controller provides the global network vis-
ibility that enables us to develop the optimization-based scheme to self-heal the
PMU network connection against cyber-attacks. The communication network is
composed of a set of SDN switches that enable a quick execution of the recov-
ery plan through SDN’s direct network programmability. Moreover, our scheme
also applies a rule compression mechanism that compresses the SDN network
updates of the recovery plan to further reduce the recovery time. Finally, we
develop a proof-of-concept system in a container-based SDN emulation testbed
and conduct performance evaluation using the IEEE 30-bus system. The PMU
network connection is successfully recovered even when half of the PDCs are
compromised, and the recovery time including the plan generation and network
updates installation is all within 850 µs.

The remainder of the paper is organized as follows. Section 2 introduces an
SDN-based architecture design that enables fast self-healing of PMU networks.
Section 3 describes the DDDAS-aware self-healing application including the sys-
tem model, SDN rule compression method, and optimization model formulation.
Section 4 presents the experimental results for performance evaluation. Section 5
concludes the paper with future works.

2 SDN-Based PMU Network Architecture

We present an SDN-based network architecture to automatically self-heal PMU
connections and preserve power system observability. This is useful to handle the
growing cyber-attacks in wide-area monitoring and control systems that com-
prise PMU/PDC devices to drop and manipulate measurement data and control
messages. Figure 2 depicts the architecture design that consists of five layers.
The PMUs measure the states of the underlying power system and the mea-
surements are aggregated at PDCs through the communication network layer,
which is composed of a set of SDN-enabled switches to enable direct network
programmability. The novelty of the design is mainly at the control layer, in
which we integrate an SDN controller to the existing power grid controller. As a
result, we now have global visibility and centralized control over the underlying
communication network including the end-hosts (i.e., PMU and PDC) and the
networking devices (e.g., switches, routers, gateways, and other middle boxes).
Within the SDN controller, we develop an optimization-based self-healing scheme
to reconfigure the PMU network against compromised or faulty devices. Upon
detection of compromised devices, the scheme quickly generates a recovery plan
that contains optimal communication path updates to reconnected lost PMUs
to PDCs. The scheme also employs a compression module to reduce the number
of SDN rules to be installed to further reduce the recovery time.
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Fig. 2. An SDN-based self-healing PMU network architecture

3 System Modeling and Problem Formulation

3.1 System Model and Power System Observability

The power transmission network is represented by a graph GT = <B ∪ U, TU>,
where B is the set of buses, U is the set of PMUs, and TU is a |B| × |U | connec-
tivity matrix.

tU [i, j] =

{
1, bi uj are connected
0, otherwise

(1)

The communication network is represented by another graph GC = <U ∪
D ∪ S,L>, where each PMU connects to a bus; D is the set of PDCs; and S is
the set of SDN switches. L is a connectivity matrix merged via common columns
from a |U | × |S| matrix, a |S| × |S|, and a |D| × |S| matrix.

l[i, j] =

{
1, (ui and sj) or (si and sj) or (di and sj) are connected
0, otherwise

(2)

We represent the recovery plan as the following binary variable matrix X

xij =

{
1, ui connects to dj

0, otherwise
(3)

A bus is observable if it can be measured by a PMU or estimated by the
PMU located on an adjacent bus. Also, measurement data by the PMU has to
be reported to a PDC. The power system is observable if all buses are observable.
For each bus i, let A(i) denote a set of its adjacent buses and the bus i itself.
We define the power system observability as follows.

O = ∧∀i∈B,∀j∈A(i)((∨∀k∈U tU [j, k]) ∧ (∨∀l∈Dxk,l)) (4)
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3.2 Optimization Model and Formulation

We assume the power system is observable before a cyber attack. The attack
event compromises a set of PDCs, Dc ⊆ D, and triggers the detection system.
We then further identify a set of disconnected PMUs, Ud ⊆ U , which reduces
the power system observability. Observability redundancy exists in the power
system because a bus may be monitored by multiple PMUs or estimated through
measurements from other related PMUs. Therefore, reconnecting a subset of
PMUs in Ud can restore the complete observability. The self-healing scheme
computes a recovery plan in the form of a set of updated communication paths
p = {p1, p2, ..., pn}, where p1 ∈ Ud and pn ∈ D\Dc, and each tuple (pi, pi+1) ∈ L
is a communication link segment. The SDN controller can directly program the
switches and install updated rules to realize these paths. Certain paths in the
recovery plan may involve a common switch, and it is likely that those paths
re-routes different PMUs to the same destination PDC. Hence, we consider using
wildcards in the source field of the corresponding SDN rules to further reduce
the number of network updates.

We expand xi,j to a new binary decision variable ys,i,j,k defined as follows:

ys,i,j,k =

{
1, ui reconnects to dj through port k of switch s

0, otherwise
(5)

where s is the switch, i is the source PMU, j is the destination PDC, and k is
the switch out-port. For simplicity, we assume that every switch has the same
number of out-ports. Based on switch s and port k, we define a function, n(s, k),
to map the next hop of p(i) in communication path p is p(i + 1).

We assume the SDN controller can install rules on switches in parallel. Let
the auxiliary variable Z indicate the maximum number of rules to install on each
switch. The objective is to minimize Z with the following constraints.

min : Z
s.t. ∀s ∈ S : Z ≥ ∑

j∈D\Dc

∑
k

∪iys,i,j,k (6)

Constraint of Power System Observability. Assume that each bus is attached to
one PMU, we revise Eq. 4 and obtain the following constraint.

∀i ∈ Ud :
∑

i∈N(i)

∑
j∈D\Dc

∨s ∨k ys,i,j,k ≥ 1 (7)

where N(i) denotes a set of PMUs including PMU i and all its neighboring
PMUs.

Constraint of Switch Forwarding. For each switch s, it takes at most one port to
forward the measurement data from PMU i. Note that each PMU can connect
up to one PDC.

∀s ∈ S,∀i ∈ Ud, :
∑

j∈D\Dc

∑
k

ys,i,j,k ≤ 1 (8)
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Constraints of Communication Path. Assume that a source PMU i connects to
switch α(i) and its destination PDC j connects to switch α(j). For switch α(i),
the difference in the number of output flows and input flows is

∀i ∈ Ud :
∑

k

∑

j∈D\Dc

yα(i),i,j,k −
∑

u

∑

v

∑

n(s,k)=α(i)

ys,u,v,k =
∑

j∈D\Dc

∨s ∨k ys,i,j,k

(9)

For switch α(j), the difference in the number of output flows and input flows is

∀j ∈ D \ Dc :
∑

u

∑
v

∑
n(s,k)=α(j)

ys,u,v,k −
∑

i

∑
k

yα(j),i,j,k =
∑

i

∨s ∨k ys,i,j,k

(10)
For all other switches in the communication path, the number of output flows is
equal to the number of input flows.

∀p /∈ {α(i)} ∧ p /∈ {α(j)},∀i ∈ Ud,∀j ∈ D \ Dc :∑
i

∑
j

∑
k

yp,i,j,k −
∑

i

∑
j

∑
n(s,k)=p

ys,i,j,k = 0 (11)

4 Evaluation

4.1 Experimental Setup

We develop a prototype system in an SDN emulation testbed, and place our
self-healing scheme as an application in the SDN controller. We use the GNU
Linear Programming Kit (GLPK) solver for the ILP problem formulated in
Sect. 3.2. To conduct evaluation experiments, we generate a PMU network based
on the IEEE 30-bus system. We place one PMU on each bus, and then get
the neighboring PMU list according to the adjacent matrix of each bus in the
transmission system. We now apply the minimum set cover problem to obtain
the least number of PMU sets. We also place one PDC in each set and connect
the PDC to PMUs through a switch. All the switches are connected using a ring
topology. The original power transmission system is shown in Fig. 3(a), and the
constructed PMU network is shown in Fig. 3(b), which is composed of 30 PMUs,
10 PDCs, and 10 switches.

4.2 Performance Evaluation of PMU Network Self-healing Scheme

Model Computational Time is the time spent on the optimization model
execution to produce the recovery plan of reconnecting the necessary PMUs to
restore power system observability. We vary the number of compromised PDCs
from 1 to 5, and run 30 experiments for each case. The means and standard
deviations are plotted in Fig. 4(a). We can observe that the PMU network is
successfully recovered for all the experiments, even when for the cases when half
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Fig. 3. PMU network construction from the original transmission network (a) IEEE
30-bus system, to (b) PMU network

of the PDC (i.e., 5 out of 10) are compromised. The average computational time
is fast, from 265.6 ms to 643.4 ms, with the standard deviation around 20%. With
the growing number of compromised PDCs, the computational time increases at
first because the generated recovery paths become more complex. However, when
the computational time does not keep increasing as more compromised PDCs
do not always result in more PMUs to recover.

Fig. 4. Recovery plan: (a) computational time, and (b) installation time

Rule Installation Time is the time spent on realizing the recovery plan in
the PMU network, including the rule generation at the SDN controller, the rule
transmission from the controller to the switches, and the actual rule installation
on the switches. We again vary the number of compromised PDCs from 1 to
5, and run 30 experiments for each case. The results are plotted in Fig. 4(b).
We observe that it takes 75.1 ms to 113.4 ms on average to install the recovery
plan. The standard deviation is within 10%. The installation time increases as
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the number of compromised PDCs grows. Compared with the computational
time, the installation time is much faster in general. The total time to generate
and install the recovery plan is quick in general as all the experiments complete
within 850 µs.

5 Conclusion and Future Works

We apply the DDDAS paradigm to protect PMU networks and restore the power
system observability. Our DDDAS-aware network self-healing application con-
siders both the power system and communication network characteristics with
the help of an SDN-based cyber-infrastructure. The current version focuses on
PMUs in the power transmission systems and we will extend it to micro PMUs
on the distribution systems and microgrids.
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Abstract. Multivariate time series prediction has important applica-
tions in the domain of energy-efficient building technology. With the
buildings consuming large amounts of electrical energy, it is critical to
reducing energy consumption and economic costs while ensuring a better
quality of urban living standards. As sensor-actuator rich, smart build-
ings are becoming complex dynamic data-driven applications systems
(DDDAS), accurate and interpretable data-driven decision-making tools
can have immense value. In this context, we develop a novel deep learn-
ing model that can explicitly capture the temporal correlations through
LSTM layers. The model can isolate the important timesteps in the input
time series for prediction. Also, it is critical to identify the contributions
of different variables in the multivariate input. Our proposed model based
on attention mechanisms can simultaneously learn important timesteps
and variables. We demonstrate the results using a public multivariate
time series dataset collected from an air handling unit in a building
heating, ventilation, and air-conditioning (HVAC) system. The model
with enhanced interpretability does not compromise with the prediction
accuracy. The interpretations are validated from a domain knowledge
perspective.

Keywords: Attention · LSTM · Interpretability

1 Introduction

Dynamic data-driven applications systems (DDDAS) depend on time-series data
of different sensors to accurately predict the behavior of complex engineering
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systems [1,2]. When the data is large-scale and high-dimensional with complex
underlying interactions, physics-based modeling, or specific data-driven analy-
ses may not be feasible. During such a scenario, deep learning models can be
used for multivariate time series prediction, which finds applications in perfor-
mance monitoring of engineering systems [3] and other domains [4,5]. In addition
to accuracy, the interpretability of the prediction outcomes is essential to gain
domain insights and develop user trust in implementing the models.

The thermal dynamic model has played a critical role in building heating,
ventilation, and air-conditioning (HVAC) systems to capture the underlying
heat transfer relationships and serve advanced control strategies [6]. Hence, it is
always a popular research topic. Generically, such modeling includes two types
of methods - physical dynamics of the integral-differential equations with respect
to energy and mass, and data-driven models based on time series measurements
of environmental sensors [7,8]. Leveraging either of them enables us to predict
the temperature evolution and energy consumption and design effective opti-
mal controllers for the system. With the emergence of deep learning techniques,
numerous research works have paid considerable attention to this area by adopt-
ing different deep neural networks to improve the modeling capability [9–11].
Although the prediction accuracy has been improved compared with the tradi-
tional methods, the interpretability of deep learning models remains unclear to
most domain engineers [12]. Interpretability is important as it can provide a way
to capture the underlying physical relationships among all measured variables
without requiring much physics knowledge [13]. Hence, accurate prediction and
interpretability should be simultaneously taken into account when designing a
new model.

Long Short Term Memory (LSTM) networks can effectively capture the long-
term temporal dependencies in multivariate time series [14]. LSTM has been
utilized in different applications [15,16]. Attention-based model [17] was ini-
tially introduced for neural machine translation to overcome the bottleneck of
the Encoder-Decoder model [18,19], which encodes information from all input
time-steps in a single fixed-length vector. Inspired by this work, attention based
models have been proposed for time series prediction [20–24]. Though these
approaches have temporal attention, they do not have spatial attention to align
directly with the output, limiting the ability of the model to capture spatial
correlations explicitly. Some models [25] have only spatial attention. Also, some
models are non-causal [20,22] or non-scalable [21] with no domain knowledge
verification of the computed interpretations.

In this paper, we propose a novel spatiotemporal attention model that is accu-
rate and provides spatiotemporal interpretations. The causal model can simulta-
neously soft search for the most relevant time-steps and variables with the spatial
and temporal attentions aligned directly to the output [26]. The model is jointly
trained in a unified architecture with attention weights learning the temporal
and spatial contributions. To the best of our knowledge, this is the first work on
attention-based time series models for interpretability in building energy predic-
tion problems. The interpretability results are verified from a domain knowledge



Interpretable Deep Attention Model for Building Energy Systems 95

perspective. In general, the proposed model can be applied in different DDDAS
utilizing multivariate time series data. Notably, it will significantly help advance
the smart building HVAC optimal controller design. Data-driven control tech-
niques, such as learning-based model-predictive control (MPC) or model-based
reinforcement learning (MBRL) have emerged as the state-of-the-art in building
energy management and control systems. The accuracy of the dynamic model
significantly affects the control performance. A diverse set of deep learning mod-
els have been adopted accordingly while lacking interpretability in many existing
works. Hence, the proposed model can be incorporated into the optimal control
framework to minimize the energy consumption or cost and maintain thermal
comfort requirements. Our model’s enhanced interpretability delivers more use-
ful insights regarding the impact of physical and interpretable model parameters
on the modeling and control performance for these frameworks.

2 Model

2.1 Notations and Problem Formulation

We denote by X = [x1,x2, ...,xN ]� ∈ R
N×Tx , the compact form of all time

series, where Tx and N signify the total input sequence length and the number
of input variables respectively, xi = [xi

1, x
i
2, ..., x

i
Tx

]� ∈ R
Tx , i ∈ {1, 2, ..., N}

signifies time series associated with each input variable. To represent all input
variables at time step t ∈ {1, 2, ..., Tx}, with a slight abuse of notation, we denote
by xt = [x1

t , x
2
t , ..., x

N
t ]� ∈ R

N . Therefore, the time series can also be expressed
as X = [x1,x2, ...,xTx

]�. With X as input, we predict the output y ∈ R at
future time-step (Tx + 1).

2.2 Spatiotemporal Attention (ST-Att) Model

The original temporal attention mechanism [17] was proposed to be used after
the encoder. The attention weight of each encoder hidden state can be calculated
by Eq. 1.

αt =
exp(at)

∑Tx

l=1 exp(al)
, s =

Tx∑

t=1

αtht. (1)

The probability αt reflects how much the output y is aligned to the input xt.
In other words, αt shows the importance of ht in deciding the prediction y.
Here, the encoder hidden state is denoted by h ∈ R

m. The associated energy
at is computed using an alignment model (feed-forward neural network). The
temporal context vector s aggregates the information of all the input time-steps.

Recently, some models [20,27] have been proposed to incorporate spatial
attention in the encoding phase. The spatial attention mechanism can determine
the relative contributions of different input variables in multivariate time series
prediction. At time-step t − 1, the encoder hidden and cell states are denoted as
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ht−1 ∈ R
m and ct−1 ∈ R

m respectively. Given the i-th attribute time series xi

of length Tx, the spatial attention βi
t at time-step t is computed as following.

eit = v�
e tanh(We[ht−1; ct−1] + Uexi), βi

t =
exp(eit)

∑N
o=1 exp(eot )

(2)

This spatial attention approach suffers from two major limitations. Firstly, the
causality is broken by using xi, 1 ≤ i ≤ N covering the whole length of Tx to
compute the spatial attention weights (Eq. 2) which are used to calculate the
weighted time series x̂t at time-step t. Secondly, there is no direct alignment
of the spatial context vector with the output time series. Therefore, the spatial
relationships between input and output can only be captured implicitly after
computing the hidden states.

The two limitations stated above can be addressed by introducing a novel
spatiotemporal attention model (Fig. 1) where both the spatial and temporal
attentions are aligned directly with the output variable [26]. Instead of hav-
ing spatial attention in the encoder layer, we have spatial attention in paral-
lel to the temporal attention in the prediction phase. The inputs to the spa-
tial and temporal attention are spatial and temporal embeddings, respectively,
which are generated independently. We compute the spatial embeddings by using
feed forward neural network for each feature xi = [xi

1, x
i
2, ..., x

i
Tx

]� ∈ R
Tx , i ∈

{1, 2, ..., N}. From X = [x1,x2, ...,xN ]�, the embeddings for all variables are
computed as D = [d1,d2, ...,dN ]�, where di ∈ R

m. Given the input time series
X = [x1,x2, ...,xTx

]�, the encoder computes the temporal embeddings (hid-
den states) independently. The encoder consists of two stacked LSTM layers.
At time-step t, the input to the encoder is xt = [x1

t , x
2
t , ..., x

N
t ]� ∈ R

N . In the
encoder, the hidden states computed by the first LSTM layer act as inputs for
the second LSTM layer. The sequence of temporal embeddings is expressed as
as H = [h1,h2, ...,hTx

]�, where ht ∈ R
m.

The i-th spatial attention weight βi is calculated, where di ∈ R
m the spatial

embedding for i-th feature. ReLU activation function is used. Then, the spatial
context vector is computed.

ei = ReLU(W�
e di + be), βi =

exp(ei)
∑N

o=1 exp(eo)
, g =

N∑

i=1

βidi (3)

To get the temporal attention weight αt corresponding to the hidden state ht,
the associated energy at is computed as follows:

at = ReLU(W�
a ht + ba) (4)

where ht ∈ R
m the temporal embedding for t-th input time-step. Thereafter,

the attention weights αt for t ∈ {1, 2, ..., Tx} are calculated followed by the
temporal context vector s according to Eq. 1. The spatial and temporal context
vectors are concatenated before prediction. The proposed approach scales well
with an increase in the number of variables, and the complexity does not increase
significantly after adding the spatial attention to the temporal one.
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Fig. 1. Illustration of the proposed spatiotemporal attention (ST-Att) Model.

3 Experiments

3.1 Dataset

We use a public multivariate time series dataset collected from an air handling
unit in a building heating, ventilation, and air-conditioning (HVAC) system [28].
This dataset consists of 9 variables - average zone temperature (AZT), outside air
temperature (OAT, ◦F ), return air temperature (RAT, ◦F ), outside air damper
command (OADC), cooling valve command (CVC), discharge air temperature
(DAT, ◦F ), supply fan speed command (SuFSC), discharge air static pressure
(DASP), and return fan speed command (ReFSC). The input is the multivari-
ate time series of Tx time-steps, and the output is the average zone temperature
for the upcoming time-step. The training, validation, and test sizes are approx-
imately 20,932, 6,977, and 6,978, respectively.

3.2 Baseline Models and Results

Baseline Models: For comparison, we use several baseline models including
Epsilon-Support Vector Regression with Radial Basis Function kernel (SVR-
RBF), LSTM model and LSTM with temporal attention (LSTM-Att) model.
The hidden state dimensions for the LSTM and LSTM-Att models are kept
same as that of ST-Att model.

Empirical Results: We find the optimal set of hyper-parameters for ST-Att
after doing several experiments. The hidden state dimensions of LSTM layers
in the encoder are kept the same for simplicity, and the dimension of 128 gives
better results in our experiments. A dropout layer (0.2) is used after each LSTM
layer to prevent overfitting. For training the model, we use Adam optimizer
with a constant learning rate of 0.001, batch size of 256, and each model is
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Table 1. Empirical results with Tx = 5. Each model was trained three times, to obtain
the average and standard deviation of each evaluation metric. Tr.Time/epoch: Train
Time/epoch, Num. Params: Number of trainable parameters

Model RMSE MAE R2 Score Num. Params Tr.

Time/epoch

Test time

SVR-RBF 0.1376 ± 0.0000 0.1149 ± 0.0000 0.9868 ± 0.0000 - 0.188 s 0.029 s

LSTM 0.0428 ± 0.0030 0.0330 ± 0.0036 0.9987 ± 0.0002 202,369 2.506 s 0.264 s

LSTM-Att 0.0462 ± 0.0015 0.0346 ± 0.0024 0.9985 ± 0.0001 202,498 2.712 s 0.282 s

ST-Att 0.0423 ± 0.0021 0.0311 ± 0.0018 0.9987 ± 0.0001 203,523 2.795 s 0.252 s

Table 2. Spatial attention weight distribution from ST-Att.

Variables AZT OAT RAT OADC CVC DAT SuFSC DASP ReFSC

Att. weight (%) 11.76 7.02 7.48 20.26 9.13 14.73 8.99 9.28 11.26

trained for 100 epochs. Through experiments, we optimize the input sequence
length to Tx = 5. Three metrics are used for evaluations in our paper, including
root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination or R-squared score (R2). Table 1 presents the empirical results.
Both training time per epoch and testing time are provided for each model,
except for SVR-RBF, where the total training time is presented instead. ST-Att
shows better performance than all the baseline models on all three evaluation
metrics. Table 1 also shows that ST-Att is computationally tractable.

Interpretability: The temporal attention weights are found to be almost
equally distributed across all the input time-steps. It highlights that most likely,
the correlation is weakly depending on time as the dataset has a quite high sam-
pling frequency (one minute). It can be attributed to the slow thermal dynamics
in the zone and the impact of the building mass absorbing heat to resist the
quick change of the zone temperature. From Table 2, with the average zone
temperature (AZT) as the output variable, the most relevant variables found by
ST-Att are outside air damper command (OADC), discharge air temperature
(DAT), return fan speed command (ReFSC), and itself. From domain knowl-
edge, DAT affects AZT as these two variables have a direct physics relationship
based on the heat transfer equation. During summer, in most building systems,
the discharge air is directly pumped to the zone without reheating. Return air
temperature (RAT) indicates the temperature of zone air circulated back to the
central system. During the summer time, RAT is similar to the outside air tem-
perature (OAT). Only part of the return air is mixed with the fresh outside air
to generate the mixed air as the return air has a relatively higher level of CO2.
The mixed air is then cooled down by the cooling valve to become discharge
air. OADC and ReFSC determine the required amount of fresh outside air and
return air to maintain indoor comfort. Thus, AZT is significantly affected by
OADC and ReFSC. In contrast, the cooling valve command (CVC) controlling
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the cooled water flow rate directly affects the mixed air temperature instead of
the zone temperature. Thus, CVC has a smaller attention weight. The supply
fan speed command (SuFSC) is a crucial indicator for the airflow rate and has its
attention weight closer to that of DASP, which has more impact on the airflow
rate than OAT and RAT.

4 Conclusion

In this paper, we propose a novel spatiotemporal attention model to incorporate
interpretability along with generating accurate predictions in building energy
prediction problems. We use LSTM to capture the temporal correlations in a
sequence, and on top of that, the temporal and spatial attention weights are
directly aligned with the output variable to provide spatiotemporal interpre-
tations. Since the proposed technique is data-driven, it can be applied to any
DDDAS utilizing multivariate time series. The interpretations provided by this
model can be a significant benefit to the domain experts in understanding how
different features and timesteps contribute to the predictions for diverse DDDAS.
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Abstract. For power distribution networks with connected smart
meters, current advances in machine learning enable the service provider
to utilize data flows from smart meters for load forecasting using deep
neural networks. However, recent research shows that current machine
learning algorithms for power systems can be vulnerable to adversar-
ial attacks, which are small designed perturbations crafted on normal
inputs that can greatly affect the overall performance of the predictor.
Even with only a partial compromise of the network, an attacker could
intercept and adversarially modify data from some smart meters in a
limited range to make the load predictor deviate from normal prediction
results. In this paper, we leverage the dynamic data-driven applications
systems (DDDAS) paradigm and propose a novel data repair framework
to defend against these kinds of adversarial attacks. This framework
complements the predictor with a self-representative auto-encoder and
works in an iterative manner. The auto-encoder is used to detect and
reconstruct the likely adversarial part in the input data. Different recon-
struction results come up given different sensitivity levels in detection.
As new data flows in each iterative time step, the service provider contin-
uously checks the error of the previous prediction step and dynamically
trades off between different detection sensitivity levels to seek an over-
all stable data reconstruction. Case studies on power network load fore-
cast regression demonstrate the vulnerability of current machine learning
algorithms and correspondingly the effectiveness of our defense frame-
work.
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1 Introduction

In modern smart grids, accurate load forecasting is critical for managing the
infrastructure through targeted pricing and predictive maintenance. Advances
in machine learning enable the service provider to utilize data flows from smart
meters to perform load forecasting [9] using a deep learning model. However,
recent research [6] reveals that current machine learning algorithms proposed for
power system application scenarios can be vulnerable to adversarial attacks [11],
which are inputs with small designed perturbations added to normal ones that
can adversely affect the overall performance of the predictor [7,10]. In partially
compromised hierarchical power networks, an attacker could intercept and mali-
ciously modify data from some smart meters with small perturbations that can
still make the load predictor deviate from normal prediction results.

To address these issues, we adopt the dynamic data-driven applications sys-
tems (DDDAS) paradigm [3] in providing a novel data repair framework to defend
against such kind of adversarial attacks as shown in Fig. 1. This framework extends
our prior work [13] of a cloud-supported platform for sensor networks (e.g., smart
grid networks) to formalize general resilience testing procedures under adversar-
ial settings using the model-driven approach [4]. To the best of our knowledge, this
work is the first to introduce such a kind of dynamic data repair against adversarial
attacks [5], and make the following contributions in this paper.

– We present a framework that can formalize the security and resilience testing
in distributed sensor networks under adversarial settings;

– We design an iterative dynamic data repair scheme of Dropout-Detect-
Reconstruct-Tradeoff to boost the robustness of data using the DDDAS
paradigm for ongoing predictions; and

– We conduct a case study for distributed power network load forecasting to
demonstrate potential risks for machine learning predictors and the efficiency
of our defensive data repair framework.

The rest of the paper is organized as follows. Section 2 illustrates the the-
oretical background of our adversarial attack setting and dynamic data repair
framework in a step-by-step manner. Section 3 presents a case study to demon-
strate the capabilities of our framework on a power distribution network. Finally,
Sect. 4 concludes the paper and presents opportunities for future research.

Fig. 1. Overall workflow for dynamic data repair under adversarial attack
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2 Methodology

In this section we provide details of our approach. The techniques will be intro-
duced following the execution order of attack and defense. Our predictor is based
on deep learning. Specifically, the model absorbs data from distributed sensors
and fetches their values from current and some time steps back to predict the
total system load for the next time step.

2.1 Model of Stealthy Adversarial Attacks

To compromise the prediction system, an attacker intercepts and adds designed
perturbations to the normal data flow. Without loss of generality, we assume
that the attacker’s goal is to maximize the load prediction deviation. For this
scenario, larger ranges of input and output numerical value data space as well as
the adoption of anomaly detectors leads to higher complexity in attack settings.
To illustrate the vulnerabilities of the prediction system, we propose an attack
method adapted from the most popular adversarial attack called FGSM (Fast
Gradient Sign Method) [7], which generates adversarial perturbations using only
one single equation: η = ε · sign(∇xJ(θ, x, y)). Here θ represents the parameters
of the model, x represents inputs to the model, y refers to the targets associated
with x (for tasks with targets) and J(θ, x, y) is the goal loss function for deviating
the neural network. The magnitude constraint added to the original sample is
represented by ε.

With the presence of an anomaly detector, we reformulate an adversarial
attack [13] as an optimization problem which attempts to find the best synthetic
perturbations that maximize the prediction loss while keeping the modification
magnitude at a small enough level so as to go undetected. Compared to the
FGSM attack, we implement an iterative attack that allows each meter (value in
input data array) to have its unique modification value because the input range
may not be fixed. Our approach performs a number of iterations with small
step ratio and updates the gradient sign method from the output of the previ-
ous iteration. Intermediate results are first checked with the detector to remove
exposed parts and then sent into the next iteration for further exploration. This
procedure eventually generates an adversarial but undetected data sample.

2.2 Resilient Detection and Reconstruction

To detect compromised sensors, we use an auto-encoder as the self-representation
to build an anomaly detector. Auto-encoder models learn internal representa-
tions with the objective AE(x) = x mapping to the input distribution itself.
For the sensor network in our case study, we set individual detection thresholds
for each meter reading. After training the auto-encoder using the training data,
we use the training data to compute the fitting error (l2 Norm) for all sensors
and using maximum fitting deviation of each sensor as the error threshold for
anomaly detection. During the prediction phase, the auto-encoder takes inputs
and compares output residuals with the pre-computed thresholds and generates
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a list of sensors with the potential for adversarial attacks. In this way the detector
judges whether specific sensors in the network are likely to be compromised.

Such a static detection is still vulnerable to stealthy attacks and can be made
resilient when the input test sample first goes through a randomized dropout
step [2]. The detection runs with controllable sensitivity levels. With dctIter
dropout iterations, if no less than dctThres times the sensor has been marked
as anomaly if would be returned as a high likely adversarial sensor. Different
reconstruction results come up given different sensitivity levels in such a detec-
tion phase. In each detection iteration, a portion of the input data is randomly
dropped out and a reconstruction is conducted using the remaining data. The
residual between the original and the reconstructed data can be used to detect
the likely adversarial part of data. Based on the detection results, the likely
adversarial data part can be erased and reconstructed using the auto-encoder.

2.3 Iterative Dynamic Repair

The resilient detection and reconstruction procedure is configurable and sensitive
to measurements. One key property for prediction tasks like load forecasting is
that as new data flows in continuously, the system can utilize new data to validate
the quality of previous predictions for which the DDDAS paradigm [3] is best
suited to provide adaptive data repair against adversarial attacks as shown in
Algorithm 1.

For the resilient detection and reconstruction, given a fixed dropout rate, the
sensitivity can be adjusted with the number of detection iteration (dctIter)
and the detection iteration threshold (dctThres). Given the infinite number
of combination settings for the resilient detection, we consider three settings
with the least computation burden (sensitivity from high to low): (1) x1in2t ←
resCor(x, dctIter = 2, dctThres = 1) and (2) x1in1t ← resCor(x, dctIter =
1, dctThres = 1) and (3) x2in2t ← resCor(x, dctIter = 2, dctThres = 2).
We implement adjustments in iterative time steps to seek a balanced trade-off
between sensitivity levels. The overall prediction result with dynamic repair is
computed as a weighted sum of these three resilient reconstructions [12]. For
each time step, the system checks the previous prediction deviations from these
three levels and allocates higher weights for the least deviated reconstruction
level.

3 Empirical Validation of the Claims

3.1 Power System Setting

For data collection, we conduct a detailed simulation of an electric distribution
system using GridLAB-D provided by the Pacific Northwest National Laboratory
(PNNL) [8]. We selected the prototypical feeder of a moderately populated area
R1-12.47-3, and included representative residential loads like heating, ventilation
and air conditioning (HVAC) systems to the distribution network model [1]. In
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Algorithm 1. Dynamic Repair (dynRepair)
Require: x: original observation data flow; f : predictor; NumTime: number of exe-

cution time steps; resCor: resilient correction function; ErrThres: ideal prediction
error threshold; return: return function for each time step; y: ground truth value.

1: α = [1.0, 0.0, 0.0], αbias = 0.05, x ← x[0],t ← 1
2: pred, pred1in1, pred1in2, pred2in2 ← EmptyList
3: x1in1t ← resCor(x, dctIter = 1, dctThres = 1), pred1in1.append(f(x1in1t))
4: x1in2t ← resCor(x, dctIter = 2, dctThres = 1), pred1in2.append(f(x1in2t))
5: x2in2t ← resCor(x, dctIter = 2, dctThres = 2), pred2in2.append(f(x2in2t))
6: pred[0] ← pred1in1t ∗ α[0] + pred1in2t ∗ α[1] + pred2in2t ∗ α[2]
7: while t < NumTime do
8: resPre1 ← abs(pred[t − 1] − y[t − 1], resPre2 ← abs(pred[t − 2] − y[t − 2]
9: if t > 1 and resPre1 > ErrThres and resPre1 > resPre2 then

10: res1in1 ← abs(pred1in1[t − 1] − y[t − 1])
11: res1in2 ← abs(pred1in2[t − 1] − y[t − 1])
12: res2in2 ← abs(pred2in2[t − 1] − y[t − 1])
13: idx = argmin([res1in1, res1in2, res2in2])
14: α ← α − αbias, α[idx] ← α[idx] + 3 ∗ αbias

15: end if
16: x ← x[t]
17: x1in1t ← resCor(x, dctIter = 1, dctThres = 1), pred1in1.append(f(x1in1t))
18: x1in2t ← resCor(x, dctIter = 2, dctThres = 1), pred1in2.append(f(x1in2t))
19: x2in2t ← resCor(x, dctIter = 2, dctThres = 2), pred2in2.append(f(x2in2t))
20: pred[t] ← f(x1in1t) ∗ α[0] + f(x1in2t) ∗ α[1] + f(x2in2t) ∗ α[2],
21: return(pred[t]),t ← t + 1
22: end while

summary, our distribution model has a total of 109 commercial and residential
user loads. Smart meters are connected to end users and their usage data reports
are transmitted to the upper-level control center in a hierarchical manner. For
each hourly time step, the prediction model takes load data from distributed
meter readings in the past 24 h and also takes into account the temperature
data for the same period of time. We build a load forecasting model for this
power distribution network using a relatively large LSTM deep neural network
(with 3 LSTM layers of 150 units and 2 fully-connected layers of 200 units). The
predictor on the clean data generates a mean squared error (MSE) of 0.1255
(Mega Volt Amp) on the test data set for a total of 216 time steps.

The attack scenario is a manipulation of sensor data under reasonable con-
straints with full knowledge of the prediction and detection model. In each time
step, the attacker can manipulate a fixed number of meters in the network (10%–
50% in our experiments). Moreover, for each meter, the attacker is allowed to
deviate the meter reading by a limited level of 20%. Under these constraints, we
generate stealthy adversarial examples using the iterative attack method.
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3.2 Evaluating Reconstruction and Repair

We evaluate our dynamic data repair framework on various settings under strong
attacks with a maximum modification ratio of 20% for compromised sensors.
Figure 2 shows the prediction results when 40% of sensors in the network are
compromised in two ways: (a) shows absolute prediction deviations from normal
prediction results, and (b) shows mean absolute prediction deviations from nor-
mal prediction results of current prediction and all the ones prior to the current
time step. Even with a large portion of 40% sensors compromised, the adversar-
ial impact can still be mitigated to an overall practical level of 0.3 (Mega Volt
Amp).

(a) Absolute Prediction Deviation from Original Prediction

(b) Cumulative Mean Absolute Deviation from Original Prediction

Fig. 2. Predictions under 40% compromise and 5% detection dropout rate

We present experimental results under more flexible settings in Table 1, which
shows results under four levels of detection dropout rate: 5%, 10%, 20%, 30%
with 20, 40, 60, 80 reconstruction cycles. The error metric we chose is the most
commonly used mean squared error (MSE) over the test dataset. For different
attack rates, the best defense settings are marked in dark black. We can see
that low detection dropout rates with more detection cycles usually show more
stable prediction performances. From the figures we can also see that adversarial
impacts in this load forecast case usually occurs at peak points. Further, the data
repair framework successfully decreases prediction deviations at these vulnerable
points without much impact on other locations.
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The experimental results also clearly show the trade-off caused by the iter-
ative data repair. With a large number of detection iterations, the chance of
being totally stealthy for an adversarial sensor is reduced to a negligible level.
Meanwhile, low threshold settings lead to obvious negative impacts caused by
false alarms. From our experiments, the upper bound of this repair is deter-
mined by the performance of this self-representation model (auto-encoder here)
and therefore we can see that dynamic repair does not always show best perfor-
mance when the compromised sensor ratio is relatively low. This sensitive repair
might lead to an unstable prediction performance over detection iterations in
each time step. As shown in our experiments, this potential risk is most obvious
when the detection dropout rate is high. As a result, the combination of a rel-
ative low detection dropout rate along with more iterations would usually lead
to smoother and more stable performance.

Table 1. Prediction Mean Squared Error (MSE) under different settings

Drop/% adv/% natErr advErr resRec/numCycle resRec+dynRepair/numCycle

20 40 60 80 20 40 60 80

5 10 0.126 0.173 0.152 0.144 0.142 0.141 0.146 0.147 0.150 0.149

20 0.126 0.311 0.211 0.163 0.148 0.143 0.170 0.159 0.155 0.149

30 0.126 0.538 0.380 0.300 0.257 0.232 0.281 0.216 0.197 0.188

40 0.126 0.921 0.729 0.626 0.559 0.523 0.566 0.442 0.345 0.301

50 0.126 1.329 1.090 0.979 0.909 0.862 0.876 0.719 0.581 0.500

10 10 0.126 0.171 0.139 0.137 0.138 0.139 0.152 0.148 0.146 0.147

20 0.126 0.311 0.174 0.144 0.139 0.139 0.158 0.150 0.152 0.168

30 0.126 0.538 0.310 0.236 0.211 0.200 0.224 0.183 0.179 0.179

40 0.126 0.921 0.632 0.524 0.481 0.464 0.406 0.293 0.270 0.267

50 0.126 1.329 0.984 0.859 0.808 0.784 0.688 0.526 0.477 0.455

20 10 0.126 0.173 0.139 0.146 0.145 0.145 0.140 0.153 0.150 0.151

20 0.126 0.311 0.142 0.139 0.138 0.171 0.160 0.300 0.308 0.286

30 0.126 0.538 0.229 0.201 0.216 0.218 0.182 0.192 0.229 0.273

40 0.126 0.921 0.541 0.473 0.459 0.457 0.912 0.994 0.803 0.760

50 0.126 1.329 0.850 0.777 0.767 0.759 0.567 0.527 0.559 0.579

30 10 0.126 0.173 0.139 0.140 0.139 0.139 0.147 0.140 0.138 0.142

20 0.126 0.311 0.138 0.138 0.139 0.139 0.150 0.148 0.139 0.139

30 0.126 0.538 0.219 0.201 0.202 0.201 0.197 0.184 0.197 0.213

40 0.126 0.921 0.521 0.491 0.488 0.485 0.378 0.388 0.429 0.462

50 0.126 1.329 0.876 0.842 0.840 0.838 0.598 0.644 0.699 0.786

An important property of our approach is that it takes advantage of exist-
ing pre-trained models in a resilient way, which means it can be combined with
other defense techniques with no constraints. It is a generalized model deploy-
ment strategy to improve robustness that is easily transferable to other learning
settings.
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4 Conclusion

This paper demonstrated how to analyze and improve the robustness of learning-
based prediction models in power distribution networks using the DDDAS
paradigm. Given the existence of threats from stealthy adversarial attacks, we
first designed a resilient detection and reconstruction strategy using random-
ization elements. We then proposed a practical, iterative dynamic data repair
strategy to seek an optimal trade-off between reconstruction results from differ-
ent sensitivity levels. Our work not only shows the importance of introducing
randomization elements to increase robustness in learning-based systems but also
the effectiveness of deviation feedback for predictions on-the-fly. Even though
our defense framework has shown promising results, the computation cost for an
optimal defense efficiency can be very high thereby requiring new approaches to
simplify and accelerate computations for real time applications.
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Abstract. This research integrates deep artificial neural network (ANN) with the
analytical solution for the stresses during the delamination of a thermoset compos-
ite double cantilever beam to carry out uncertainty analysis. Currently, micro-fiber
composite (MFC) piezo patches act as sensors and actuators in the self-healing
system. The same MFCs sense the initiation of the damage (delamination) during
the dynamic loadings (operation) and initiate the healing process in the compos-
ite by high-frequency vibrations. During the healing, the thermoplastic healing
materials (Polycaprolactone and shape memory polymer) close the gap between
fracture surfaces and bond the surfaces together. Composites’ failure is a complex
phenomenon due to material non-homogeneity at micro-scales. Due to uncertain-
ties, the damage parameters like critical stresses, the critical load which initiates
the damage, and damage zone length remain uncertain. Deep ANN coupled with
an analytical model will efficiently, and in real time, be able to quantify the uncer-
tainties in critical load aswell as damage zone length. For uncertainty propagation,
material properties, as well as traction separation law parameters, are assumed to
be uncorrelated Gaussian distributed random variables. The same deep ANN will
be used to carry out parameter identification (i.e., traction separation law) in the
future. Hence, the material law, damage prediction, and healing form a dynamic
feedback loop, which, along with uncertainty quantification, constitutes a robust
dynamic-data-driven system.

Keywords: Composite laminates · Uncertainty analysis · Deep ANN · Cohesive
layer · Delamination

1 Introduction

The use of composite structures has been increased exponentially in many disciplines
such as aerospace, automotive, marine, and sports, due to its high stiffness/strength
to weight ratio, tailorability, and durability [1]. However, these benefits are suscepti-
ble to various types of manufacturing defects, e.g., fiber misalignment, voids, thermal
stresses due to the curing, as well as in-plane laminated construction of the composite
structures results in inherent vulnerability to out-of-plane loadings such as those expe-
rienced under dynamic impact events. Also, there exist various thermal, hygrothermal,
and aging effects, which could eventually lead to the formation of considerable internal
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damage (macro and micro-cracks) [2] and compromise the structural integrity and ser-
vice life [3] of laminated composite structures. The current regular intensive inspection
of the composite components to detect and repair damages is inefficient and costly. To
alleviate this inspection and repair, the researchers have explored biologically inspired
self-healing concepts as an alternative to traditionally expensive repair techniques. In
self-healing composite systems, the activation of self-healing in the damaged laminate
(with the delamination) can be carried out based on the data collected from the sensors.
To carry out decisions of self-healing activation, the analytical model will be utilized
computationally efficient to obtain damage parameters in real-time.

In self-healing composite systems, the activation of self-healing in the damaged
laminate (with the delamination) can be carried out based on the data collected from
the sensors. To carry out decisions of self-healing activation, the predictive numerical
models (finite element model or analytical) of the composite should be computationally
efficient where the damage quantification, as well as the cohesive failure stresses, are
estimated with the confidence in real-time.

The composite structure is significantly affected by the presence of uncertainties
across various length scales, such as the variability of constituents (fiber and matrix)
properties in micro-scale, the variability in thickness, and orientations of the plies in
meso-scale, and the loads and boundary conditions in macro-scale. And, some of the
traditional approaches for UQ using the probabilistic approach in composites are the
Monte Carlo Simulation (MCS), perturbation methods, and spectral methods. Among
these techniques for UQ, the spectral approach known as Polynomial Chaos Expansion
(PCE) is computationally efficient and yields suitable accuracy even for random inputs
with a high coefficient of variation.

Delamination is one of the major failures of the composite structures and generally
caused by the interlaminar shear stresses at themid-plane (Mode-II) or transverse stresses
(Mode-I) or a combination of both. As an initial effort, the research will be focused on
Mode-I delamination failure. Cohesive zone models offer themselves as tools for the
investigation of crack initiation and propagation in quasi-brittle materials. The opening
of the crack is described in terms of a nonlinear stress-displacement relationship, which
has a significant softening phase due to damage zone formation; the fracture process
zone approach of Needleman [4] and Tvergaard et al. [5] involves attributing a traction-
separation law to the interface. Hence, the cohesive zonemodeling is an excellent tool for
the investigation of local fracture processes in fiber-reinforced composite delamination.

Recently, ANNs were utilized to replace computationally exhaustive calculations
like finite element method (FEM), aeroelasticity, and coupled FEM-boundary element
method. The ANN can capture the complicated relationship between inputs and out-
puts, especially if the dimensions of the inputs and outputs are huge, where traditional
mathematics cannot capture the relationship. The ANN helps us to carry out opti-
mization using heuristic algorithms as compared to gradient-based optimization meth-
ods and uncertainty quantification efficiently, especially for computationally intensive
simulations.

The main objective of the current research is to build a stochastic framework to
carry out the damage analysis of Double Cantilever Beam (DCB) composite specimens
within theDynamicData-DrivenApplications Systems (DDDAS) paradigm. To increase
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the computational efficiency multifold, deep ANN is utilized to replace the analytical
model with a surrogate model. This flexible framework will help us to use the analytical
damage analysis model, the FEM model, or experimental results interchangeably. The
bond between two laminas is modeled as a cohesive layer, and cohesive crack models
offer themselves as tools for the investigation of fracture in quasi-brittle materials, such
as thermoset polymer composites.

2 Analytical Solution for Cohesive Layer of DCB Model

The analytical solution of the half double cantilever beam (DCB) model was developed
(see Fig. 1a) with the modification of the model developed by Roy and Wang [6]. The
associated bilinear traction-separation law is shown in Fig. 1(b). Among all the traction
separation laws (linear, exponential, tri-linear, etc.), the bi-linear traction-separation law
makes the calculationmore efficient and tractable forDCBspecimens.Due to this reason,
the bi-linear traction-separation lawwas used for the analyticalmodeling of the halfDCB
specimen. TheDCB specimen is divided into three separate zones (see Fig. 1(a)): debond
zone, damage zone, and elastic zone, and the traction separation relationship (cohesive
stress and crack tip opening relationship) was employed in these three zones according
to the fracture mechanics. The beam is modeled using Euler Bernoulli’s fourth-order
differential beam equation with boundary conditions located at the boundaries of these
zones.

a) Half DCB specimen 
b) Bi-linear traction-separation law 

Fig. 1. DCB model description.

Invoking the symmetry, the deformation of the upper half of the DCB specimen can
be given by the following equation.

d4v

dx4
= bσy

D11
(1)

where v is the deflection of the beam, σy is the cohesive stress, D11 is the effective
bending stiffness of the beam in the longitudinal (fiber) direction, and b is the width of
the beam. Using the cohesive traction separation relationship in three different regions
of the beam, the solution of (1) can be given by the following three Eqs. 2, 3 and 4.

v(x) = P(x + a)3

6D11
+ C1(x + a) + C2,−a ≤ x < 0 (2)
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v(x) =
vmax + C3sinh(λ1x)+

C4cosh(λ1x) + C5sin(λ1x)
+C6cos(λ1x)

⎫
⎬

⎭
, 0 ≤ x ≤ l (3)

v(x) = e−λ2x[C7sin(λ2x) + C8cos(λ2x)], l ≤ x ≤ l + c (4)

where P is force, a is the pre-crack length, C1 to C8 are the integration constants.
The boundary conditions at x = 0 and x = l + c and continuity conditions at the

intersections (x = 0, x = l) were simultaneously imposed, to get the solution of the
equations and find the unknown constants (damage zone length l and the critical force
applied on the beam at crack initiation, Pcrit and eight unknown integration constants
(C1 − C8)).

After the applications of the boundary and continuity conditions, the solution v(x)
resulted in ten equationswith nonlinear terms in it.Due to the nonlinearity of the system, a
numerical predictor-corrector method was implemented to solve the set of ten equations
and evaluate the eight unknown constants of integration and two and cohesive zone
parameters, l and Pcr . A flow chart of the algorithm that was implemented to find the
integration constants is given below in Fig. 2.

Fig. 2. Flowchart to find the critical cohesive parameters in the DCB configuration by using the
bi-linear traction separation law.
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3 DCB Model Description

The proposed framework was applied to a carbon fiber unidirectional
(
0016

)
composite

DCB specimen, where the uncertainties were assumed in material properties apart from
the traction separation law. The probability density functions (PDF) of transverse stress
(σy), damage zone length (l), and critical load (Pcrit) were obtained using simple LHS,
and sampling with ANN surrogates. The random input variables were the effective bend-
ing stiffness D11, maximum cohesive stress σmax, the ratio of the opening displacement
(v) at the maximum stress point to the maximum crack tip opening displacement (vm)
β, half-thickness of the beam (b), the maximum crack tip displacement (vm), and the
pre-crack length (a).

The dimensions of the unidirectional IM-7 carbon fiber reinforced composite DCB
beamwere 215.9mm×38.1mm×4.5m. The full-beamwasmanufactured using sixteen
layers of unidirectional IM-7 carbon fiber fabric, and SC-780 two-phase toughened
epoxy was used for the composite fabrication [7]. Thermoplastic polycaprolactone and
polyurethane shape memory polymer were dispersed in the thermoset epoxy during
the manufacturing to provide self-healing functionality. The length of the initial debond
zone or the pre-crack (a) was 38.1mm.The analysiswas performed using the quasi-static
displacement condition at the left edge of the beam, which aligned with the experimental
conditions.

4 Uncertainty Quantification Using Latin Hypercube Sampling
Technique

The uncertainty quantification was carried out using three approaches: 1) simple LHS
sampling and 2) Deep ANN as a surrogate model. The random input variables are given
in Table 1 and were assumed to be uncorrelated Gaussian distributed variables.

Table 1. Uncorrelated Gaussian input random variables.

Mean Standard deviation

Effective bending stiffness, D11 (N/mm2) 27.5*103 2.75

Maximum cohesive stress, σmax (N/mm2) 40.0 4.0

The ratio of the crack tip displacement at the maximum stress
point (v) to the maximum crack tip displacement (vm), β

0.25 0.07

Half-thickness of the beam, t (mm) 2.25 0.1

Pre-crack length, a (mm) 38.1 0.2

Maximum crack tip displacement, vm (mm) 0.12 0.01

To ascertain the converged results, LHS was carried out using a different number of
samples. The violin plots are provided in Fig. 3, where one can see the convergence of
different responses like transverse stress (σy) at a distance 0.2mm from the crack-tip, and
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critical load (Pcrit). In violin plots, the scaled PDFs are plotted on the y-axis along with
the means and one standard deviation band about the means. The violin plots provide not
only the convergence of means and standard deviations but also the PDFs convergence.
The convergence of transverse stress, damage zone length, and critical load requires
250, 1000, 5000, and 5000 samples, respectively. Hence, the responses obtained with
10,000 LHS samples were taken for the comparison with Deep ANN study. Means and
standard deviations for transverse stress (σy) at a distance 0.2 mm from the crack-tip,
damage zone length (l), and critical load (Pcrit) are provided in Table 2.
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Fig. 3. Violin plots for LHS simulation.

Table 2. Response statistics using LHS 10,000 samples.

Mean Standard deviation

Transverse stress (σy) at a distance 0.2 mm from the crack-tip

(N/mm2)

13.3527 1.7538

Damage zone length (l) (mm) 0.6014 0.0303

Critical load (Pcrit) (N) 162.0734 7.3562

5 Deep Artificial Neural Network

Different types of ANNswere used as surrogate models to replace the analytical solution
of the DCB model. The main steps involved in UQ with ANNs are 1) Training data
generation, 2) Training ANN, and 3) Simulation with ANN. One has to carry out training
data generation and training ANN iteratively until the convergence criteria are met.
Before carrying out the training of the Deep ANN, the data was normalized with data’
(inputs and outputs) means and standard deviations. From earlier studies, it was found
that the critical load and damage zone length required a higher number of samples
to obtain their stochastic responses and had convergence issues. Initially, multi-input-
single-output ANNs were tried, and then afterward, multi-input-multi-output ANNs
were established.
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Initially, multi-input-single-output Deep ANNswere used tomodel the damage zone
length and critical load separately using five hidden layers of Tansig activation function
with the number of neurons= [20 14 8 8 6] in hidden layers. This combination of hidden
layers and the number of neurons was achieved by trial and error while looking at the
convergence of ANN. The means and standard deviations for damage zone length and
critical loads are given in Table 3. The PDFs for damage zone length and critical load
are depicted in Fig. 4. Afterward, multi-input-multi-output Deep ANNs were trained
for damage zone length and critical load simultaneously; the required number of hidden
layers became six, and the number of neurons in the hidden layers changed as [20 14 10
8 8 6] and [20 14 12 8 8 6] for 500 and 1000 training samples, respectively. The PDFs
means, and standard deviations remained the same for multi-input-single-output Deep
ANNs. The means and standard deviations of damage zone length and critical load for
Deep ANN were always bounded by the means and standard deviations of the training
data.

Table 3. Uncorrelated Gaussian input random variables.

Mean Standard deviation

Damage length (mm); number of samples for training = 100 0.6002 0.0232

Damage length (mm); number of samples for training = 500 0.6015 0.0313

Damage length (mm); number of samples for training = 1000 0.6011 0.0278

Critical load (N); number of samples for training = 500 162.3058 7.1801

Critical load (N); number of samples for training = 1000 162.1381 7.1597
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Fig. 4. PDFs of damage length and critical load using Deep ANNs.

6 Conclusions

To our knowledge, this is the first study where polynomial chaos using the least-squares
approach and artificial neural network applied to damage characterization of carbon



120 S. B. Mulani et al.

fiber composite DCBmodel using an analytical solution.With cohesive zone parameters
determined from the experimental data, the analytical solution was then used to compute
responses like transverse stresses along the DCB, transverse displacements (v), damage
zone length, and critical load. The material and geometric properties, including traction
separation lawparameters,were assumed to be uncorrelatedGaussian distributed random
variables.

The surrogate model described in this paper is built using Deep ANN to predict the
stochastic transverse stresses, damage zone length, and critical load required to initiate
fracture. In our future work, during predictive self-healing using the DDDAS paradigm,
the MFC sensors will provide the current delamination length. The delamination length
will be used as input to the ANN surrogate model to predict the critical load that will
initiate the crack for that specific delamination length. If the applied operational load
is greater than this critical load, then self-healing will be activated. In this manner, the
self-healing activation will be dynamic data driven, based on sensors data. Further, the
cohesive zone properties like traction separation law parameters can be obtained using
Bayesian inference or optimization so that the cohesive zone properties can be updated
based on the number of healing cycles employed, which in turn, is based on the dynamic
data stream as mentioned above. Future work will also be directed towards implement-
ing and integrating the damage sensing module and the dynamic data-driven damage
prognosis module within the intelligent self-healing system. Preliminary developments
in the damage prognosis module have shown promising results.
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Abstract. The rainflow counting algorithm for material fatigue is both
simple to implement and extraordinarily successful for predicting mate-
rial failure times. However, it neglects memory effects and time-ordering
dependence, and therefor runs into difficulties dealing with intermittent
loads, especially those with long tailed distributions. In this report, we
use the Serebrinsky-Ortiz model of material fatigue to introduce a par-
tial analytical solution for deterministic intermittent loads, which greatly
improves integration speed while still conservatively identifying early fail-
ures. Additionally, we apply recent advances in optimal experimental
design both to gain insight into how rare events lead to extreme early
material failure, and to estimate the long tail of the distribution of failure
times.

Keywords: Fatigue · Rare events · Extreme events · Intermittent
events · Active search · Optimal experimental design

1 Introduction

The modern energy industry increasingly relies on enormously capital intensive
structures, which are placed in extreme conditions and subject to extreme loads
that vary throughout the structure’s expected lifetime. Failure costs are astro-
nomical, including forgone profits, legal penalties, tort payouts, and reputation
damage [9]. Minimizing lifetime costs require safe-life engineering and a conser-
vative assessment of failure probabilities. Unfortunately, while material fatigue
is a major contributor to failure, non destructively measuring fatigue is both
difficult and expensive [25].

For many classes of structure, fatigue loads have important intermit-
tent stochastic character [1,10,24]. In particular, traditional frequency domain
approaches have difficulty predicting the fatigue lifetime effects of intermittent
loading, which have important dependence on time-ordering.

A major limitation to simulating the effects of intermittent loading is the time
cost of Monte Carlo simulations, which grows quickly in the dimension of the
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search space. Alternative approaches include statistical linearization [6,17,22],
hierarchical modeling [18,26], structured sampling methods [19], and optimal
experimental design [2,11,13,15,23].

In this work, we will develop a computational scheme for the fatigue model
developed by Serebrinksy and Ortiz with important time-ordering effects. To
speed computation, we will develop an analytical method based on both statis-
tical linearization and domain decomposition into quiescent and extreme load
increments. This method will allow for efficiently computing the failure time
for deterministic intermittent loads. Finally, we will show how an appropriately
designed active search scheme can capture the long tail behavior of early fatigue
failure with only a small number of numerical experiments.

2 Analytical Method for Deterministic Load

2.1 Serebrinsky-Ortiz Model

Consider a single finite element with one dimensional linear loading. The applied
load (stress) is a continuous random process given by σ(t;ω) and the correspond-
ing strain δ(t;ω) depends on the element’s constitutive relation. The argument
for this random process are t ∈ [0, Tmax], the time variable and ω ∈ Ω, an
element from the probability space (i.e., the random argument). Further, this
constitutive relation depends on the fatigue state of the material; after some
number of loading/unloading cycles Nfail, the material stiffness will degrade
and eventually the material will fail. Our interest is in the relationship between
the load σ(t;ω) and the failure time Nfail.

The Serebrinsky-Ortiz model, detailed in Serebrinksy, et al. (2005) [12,21],
is a constitutive relationship between applied stress, σ, material strain, δ, and
material stiffness parameters K+ and K−, given by

σ̇ =

{
K−δ̇ δ̇ < 0
K+δ̇ δ̇ > 0

(1)

K̇+ =

{
(K+ + K−) δ̇

δa
δ̇ < 0

−K+ δ̇
δa

δ̇ > 0
(2)

where δa is the fatigue endurance length.
In particular, K− is assumed to be constant during unloading. These equa-

tions model fatigue-crack nucleation and growth via loading-unloading hys-
teresis. Critical material failure occurs when the parametric stress-strain curve
(δ(t), σ(t)) crosses a certain coherent envelope.

An example form for the coherent envelope is described by the uber relation

σ∗ = eσc
δ

δc
exp− δ

δc
, (3)

with constants δc, σc characterizing the material and constant e ≈ 2.718.
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Fig. 1. a) Illustration of the linear approximation Δσ±
n , derived from σ(t). b) Sample

time evolution of K+ for the Serebrinsky-Ortiz model, for an intermittent load signal.
Note the two discontinuous jumps near t = 0.25 × 104 and t = 0.5 × 104, which
correspond to intersections with the ascending leg of the coherent envelope.

This cohesive envelope has an ascending limb (approximately δ < δc) and
a descending limb (approximately δ > δc). If the stress-strain curve crosses the
ascending limb, material fatigue accumulates discontinuously, and δ jumps (if
possible) to say under the cohesive envelope. If the stress-strain curve crosses in
the descending limb, however, there is no greater value of δ, and the material
fails.

Equations 2 may be integrated between two local maxima σ+
n and σ+

n+1 to
give the update rule:

K+
n = K−

n − exp(
Δσ−

n

δaK−
n
)(K−

n − K+
n−1) − Δσ+

n

δa
. (4)

Figure 1(b) exhibits a clear linear regime in which the evolution of K+ sat-
isfies a simple linear relationship:

K+
n − K+

n−1 ≈ ΔK. (5)

The remaining regions, corresponding to the discontinuous jumps in Fig. 1
(b), correspond to intersections of the (σ, δ) curve with the coherent enve-
lope. This breakdown of an intermittent process into a linear region and an
extreme region parallels the probabilistic decomposition framework developed
by Mohamad and Sapsis (2015) [16] and others [14].
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Fig. 2. a) Sample SN plot for the Serebrinksy-Ortiz fatigue model with uber coherent
envelope. b) Comparison of the distribution of error times between the analytic model
and rainflow counting. The full integration pdf overlaps the analytic model completely.
Note that rainflow counting fails to capture the long left tail.

In order to use this approximate analytical algorithm, we will require an
estimate of the stiffness slope ΔK, the mean change in K+ per loading/unloading
cycle. To find ΔK, we merely need to consult the graph in Fig. 1, and estimate
the slope of the linear regions. This approach requires access to the time history
of K+ during an experiment or numerical simulation.

Alternately, an analytical estimate for ΔK may be obtained by combining
the statistics of the load process (via a Rice-type formula) with a linearization
of Eq. 4.

Taken together, Eqs. 4 and 5, along with a rule that identifies local maxima
that may potentially intersect the coherent envelope, represent an algorithm
for identifying the failure time of a material subject to a known load signal.
This algorithm can be run on consumer desktop hardware in seconds–the major
speed bottleneck is running the heuristic which filters out local maxima which
are unlikely lead to intersections with the coherent envelope.

2.2 Comparison to Palmgren-Miner Rule

A simple method to compute the fatigue effects of intermittent signals is the
Palmgren–Miner Rule, given by ∑

i

ni

Nfi
= C, (6)

where ni is the number of cycles with amplitude corresponding to bin i, and
Nfi is the number of cycles until failure corresponding to harmonic loading with
the same amplitude. This method allows for calculation of equivalent fatigue
by breaking the load signal into individual cycles, each of whose contributions is
separately determined by reference to the SN-Curve [7]. The well known rainflow



Serebrinksy-Ortiz Active Search 125

counting algorithm, developed by Endo and Matsuishi [8], implements this rule
by breaking a given signal into the corresponding set of increments.

Figure 2 (b) shows the relative errors introduced by approximating the
Serebrinsky-Ortiz fatigue model by the rainflow counting method and by the
analytical threshold-slope approximation. While both methods predict the mode
of the distribution well, rainflow counting substantially underestimates the
variance–in particular by discounting the early failure times associated with the
long left tail.

3 Output-Weighted Optimal Experimental Design

3.1 Overview

We will address two primary goals for fatigue modeling. First, for a given distri-
bution of load signals, we would like to estimate the distribution of Nfail, fN (n),
especially the long tail of early failures. Second, we would like to identify certain
characteristics of the load signals that lead to early failure–that is, we would like
to identify early failure precursors.

If we had access to an exact expression for the material’s coherent envelope,
we could compute a distribution of failure times analytically, by finding the
joint pdf of ascending and descending leg intersections and marginalizing for
the failure time pdf. While this approach gives the advantage of easy updates
if the coherent envelope or load statistics are changed, it has the disadvantage
of requiring a very accurate estimate of the material’s coherent envelope, an
abstract function that is difficult to measure directly.

Instead, we will attempt to estimate the failure time pdf directly by perform-
ing (numerical) experiments. This will serve two purposes. First, the experimen-
tal design suggested will be (somewhat) agnostic to the underlying theoretical
model; that is to say, the experimental design will be robust to some model mis-
pecification. Second, assuming that the Serebrinsky-Ortiz model is a good fit for
the material fatigue lifetime, the proposed experimental design will also allow
for an estimation of the coherent envelope.

Standard Monte Carlo techniques for estimating probability density functions
(pdfs) will require a large number of simulations, each of which is expensive even
with the analytical approximation. Instead, we will use a active search method-
ology that accurately models the long tail of the distribution fN (n) without a
large number of experiments.
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3.2 J-Spike Model

(a) (b) (c)

Fig. 3. a) Failure time of the 1-spike model, for different values of spike magnitude
and location. b) Graphical representation of surrogate model after 104 black box evalu-
ations. c) Sample pdf of surrogate function derived from active search with Q criterion
goal, compared against Monte Carlo simulation of the 1-spike model.

It will be useful to define a class of intermittent signals called the J-spike model,
which take the form

σJ(t) = B +
p∑
i

ai cos(ωit + φi) +
∑

j

αJ
j G(t − βjTmax) (7)

This signal may be broken into a DC offset term, a narrowbanded back-
ground sum of sinusoids, and J distinct localized spikes with shape G(t). We
will assume that G(t) is unimodal, and has small width relative to the char-
acteristic background wavelength. Further, we will assume that the βj and αj

are random variables drawn, respectively, from a uniform distribution, and a
hand-turned Rayleigh distribution.

Note that for fixed J , the J-spike model does not satisfy the independent
spike hypothesis.

3.3 Problem Setup

Let us consider the J-spike model described above in Sect. 3.2, restricted to the
case J = 1. This is a space of signals with two parameters: the location of the
spike α1, and the magnitude of the spike β1. We will let α1 be drawn uniformly on
the range [0, 7.2e4] (slightly longer than the background failure time), and let β1

be drawn from the Rayleigh distribution with tuned scale parameter. This scale
parameter is tune so that few signals will have a maximum load that exceeds σc,
but many signals will have one peak that reaches an appreciable fraction of σc.

Figure 3 shows the true map from the parametrized 1-spike signal to Nfail.
This map clearly shows how both the magnitude and time-history of an inter-
mittent load spike work together to affect the material failure time Nfail.
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We will use use the Gaussian Process package developed by Blanchard and
Sapis [3,4] to construct a surrogate function Ñ(α1, β1) so that for corresponding
stress signals, Ñ ≈ Nfail.

Briefly, at each step the algorithm will create an intermediate surrogate model
Ñ i with Gaussian Mixture Model (GMM) form. It will then choose a parameter
pair x = (α1, β1) by minimizing the Q-criterion, developed by Themistoklis
Sapsis [20] and given by

Q[σ2
N ] =

∫
px(x)

pN0(N0(x))
σ2

N (x;h)dx. (8)

Finally, the algorithm will simulate the fatigue lifetime of the material using
the chosen parameters, and update the surrogate model.

Unlike the Kullbeck-Liebler divergence, which selects experiments to max-
imum mutual information with the surrogate [5], the Q-criterion attempts to
minimize the variance of the surrogate model along its entire support. In par-
ticular, this causes the Q-criterion to reduce the uncertainty in the tails of the
surrogate model faster than other information theoretic metrics.

Finally, in order to simulate the scenario where we are cost limited by the
difficulty of physical experiments, we will focus on small n < 100 simulations.
Therefore, will should not expect to fit the map in Fig. 3 perfectly. Instead, we
will seek to make a qualitative fit that matches a few of the major features, and
the long tail behavior of the derived failure time pdf.

To this end, we will consider three error metrics. First, we will compare
the recovered pdf to a high quality pdf generated by a Monte Carlo sampling
strategy with N = 138450 samples. Unfortunately, typical error norms such as
l2 or KL divergence will overemphasize errors in the mode of the distribution,
to the exclusion of fitting the long tail. To address with, we will also consider a
‘tail mass’ error metric, which compares the true mass and the recovered mass
of the pdf long tail past some fixed threshold. Finally, we will compare the error
between the recovered GMM map and the true map (constructed via careful
grid sampling). While we shouldn’t except close agreement (due to the issues
mentioned above), a qualitative match for the recovered map is important to our
subgoal of describing the particular load sequences that lead to early material
failures.

3.4 Results

Figure 3 shows the evolution of the surrogate pdf trained on 1-spike model signals
as the number of samples increases, compared to both a high quality Monte Carlo
simulation and an analytically determined pdf.

While the analytical pdf has qualitative agreement with the truth, it fails to
reproduce the magnitude of the long left tail due to very tight tuning require-
ments. In comparison, after just 60 experiments the left tail has been matched
in both shape and magnitude.

In Fig. 4, the l2 error in the recovered pdf and recovered mapping is shown
for three sampling methods: Q-criterion active search, (fixed) Latin hypercube
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(a) (b)

Fig. 4. l2 error of a) the recovered pdf and b) the recovered mapping. Note that l2
error of the pdf is a very poor error metric, because it ignores the long tail.

(a) (b) (c)

Fig. 5. Error in the recovered pdf tail mass, for three different thresholds a) N =
8000, b) N = 24000, c) N = 56000. Note that while both Latin hypercube sampling
(LHS) and Q-criterion active search outperform simple random samples, active search
generally outperforms LHS in the region of interest (20 < N < 100 samples).

(a) (b)

Fig. 6. Comparison of the recovered 1) map and b) tail error for different choices
of the GMM fitting offset. Dependence on the zero value for GMM fitting was nearly
nonexistent.

sampling (LHS), and simple Monte Carlo (MC) sampling. While both Q-criterion
and LHS significantly outperform MC, there is little difference between LHS and
Q-criterion sampling on the l2 error. This is because, as previously noted, l2 error
preferentially weighs the mode of the distribution relative to the tails.
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In Fig. 5, we compare the tail mass of the recovered pdf from each sampling
methods. Immediately, we note that MC sampling completely fails to identify
the long the tails at all. Q-criterion active search slightly outperforms fixed LHS,
though the size of the gap changes depending on the particular long-tail cutoff
and number of samples.

We previously hypothesized that the broad plateau region of the true map
(see Fig. 3) might cause problems for the GMM fitting. Indeed, there are occa-
sional fitting outliers in the 10 < N < 20 region where the Q criterion signifi-
cantly overestimates the tail mass of the recovered pdf (not shown).

To test this, we ran the Q criterion active search with three different fitting
step offsets: n̄ = 0, n̄ = 71, 000, and n̄ = 40, 000. These choices represent no
offset, the approximate distribution mode, and a compromise midpoint. Figure 6
shows the l2 map error and tail error associated with each offset. it is clear that
while the fitting offset changes the exact surrogate GMM fit, the output pdf tails
are relatively insensitive to the details of the surrogate fitting.

Future work should be done to investigate the balance between more powerful
models (GMM with more radial basis functions) and numerical instability during
the fitting step.

4 Conclusion

We showed that rainflow counting disagrees with direct integration when predict-
ing material fatigue failure in the presence of intermittent loads. In particular,
we showed that rainflow counting substantially underestimates both the variance
of Nfail, and the probability of extreme leftward deviations–the long tail.

On the other hand, we showed that an analytic algorithm based on domain
decomposition had similar computational advantages but substantially less accu-
racy loss. In particular, the analytic algorithm captured the long tail caused by
intermittent spikes in the loading signal.

Additionally, we used an active search package to learn a function mapping
parametrized load signals into predicted failure times. This active search app-
roach required only a small number of (numerical) experiments, and did not
require prior knowledge of the material coherent envelope. While the results of
this experimental design do not exactly reproduce the correct pdf, they do cap-
ture the long tail using significantly fewer experiments than traditional Monte
Carlo approaches.

In the future, this approach should be extended to more complicated struc-
tures consisting of multiple finite elements. This extension will require more
complicated input space parametrizations, but it would allow calculating the
fatigue lifetime of real structures, such as oil risers and wind turbines, in the
presence of intermittent loading with known distributions.
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Abstract. We present a data-driven distribution tracking system that
is capable of tracking the process quality in a chemical synthesis process
for nanoparticles. In the process, the process quality is defined as a dis-
tribution of particle sizes and shapes, which influence the functionalities
of nanoparticles. A system of tracking the distribution of nanoparticle
sizes and shapes consists of three components: (a) in situ measurement
system, (b) a mathematical model to represent nanoparticle sizes and
shapes, their distributions and the temporal changes in the distributions,
and (c) a statistical algorithm to estimate the model with in situ mea-
surements. We will review the state-of-the-art approaches to tracking the
time-varying distribution of particle sizes and shapes. The advance of the
distribution tracking by combining complementary in situ instruments
based on the DDDAS paradigm is discussed.

Keywords: Shape model · Distribution tracking · in situ metrology

1 Introduction

Nanoparticles are minuscule particles whose dimensions are less than 100 nm.
The functional properties of nanoparticles are heavily influenced by their sizes
and shapes, so one can fine-tune the functionalities by simply changing the sizes
and shapes. The relation of nanoparticles to sizes and shapes has been studied
for many promising applications. For example, the dependency of the surface
plasmon property of metal nanoparticles on the particle’s sizes was studied for
photo-thermal destruction of cancer cells [2], and semiconductor nanoparticles
of various sizes were tested as catalysts to promote carbon nanotube growth [9].

A promising method of producing nanoparticles in large quantities is a chem-
ical growth process, known as the self-assembly process [1]. In the chemical
growth, atoms and molecules are added to a reaction solution, and those small-
scale objects randomly collide in the solution, following a diffusion or a random
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Brownian motion. Some collisions could lead to merging or aggregations. The
small-scale objects are aggregated to become larger nanoparticles through mul-
tiple stages of mergers. The growth process is influenced by many individual-
ized and localized factors, including the movements of individual objects, local
densities of small-scale objects, and the frequency and effectiveness of individ-
ual collisions. Because of all these, every single nanoparticle exhibits a unique
growth, so that the final sizes and shapes of the nanoparticles resulting from
a growth process are unlikely equal but are rather likely form a distribution of
a wide span. Producing nanoparticles with a concentrated distribution in both
size and shape has been long desired by materials scientists [8].

Producing nanoparticles with controlled sizes and shapes has been attempted
experimentally [3], which is to repeat the cycles of trying different chemical
recipes and then check particle outcomes by the means of imaging. However, a
pure checking of the sizes and shapes of the final nanoparticles does not give any
clue on why the outcomes are bad nor guide process improvement. We believe
that tracking the sizes and shapes of nanoparticles in the transient period of
a growth process provides a crucial clue on how the growth progresses. This
paper introduces the problem of tracking the evolution of nanoparticle sizes
and shapes, as represented in a time-varying dynamic distribution, and review
the state-of-the-art approaches. The tracking problem discussed in this paper
is different from the object tracking problem in computer vision [4,5,14], which
seeks the trajectories of individual objects and their characteristics instead of the
distribution of the characteristics. Our review in Sect. 2 is only focused on the
problem of tracking the distribution. The advance of the distribution tracking
by combining complementary in situ instruments based on the dynamic data
driven application system (DDDAS) paradigm is discussed in Sect. 3.

2 Distribution Tracking of Nanoparticles

A system of tracking the time-varying distribution of nanoparticle sizes and
shapes consists of three components: (a) in situ measurement system, (b) a math-
ematical model to represent nanoparticle sizes and shapes, their distributions
and the temporal changes in the distributions, and (c) a statistical algorithm to
estimate, in near real-time, the distribution models with in situ measurements.
Section 2.1 introduces existing approaches on distribution tracking for both size
and shape, and Sect. 2.2 reviews on distribution tracking for size only.

2.1 Shape Distribution Tracking

Measurement Instrument. For tracking nanoparticle shapes in time, an in
situ imaging of nanoparticles at a nanometer spatial resolution is necessary.
There are many microscopic imaging techniques with nano-meter spatial resolu-
tions such as electron microscopes. Most of them had not equipped with in situ
imaging capability, mainly because wet material samples from chemical processes
running in liquid phases cannot be placed on the high vacuum environment of
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a microscope sample chamber. In order to image those wet samples in the con-
ventional microscopes, special sample holders should be attached for adding in
situ capability. For examples, a liquid cell sample holder have a very thin layer
of liquid samples sandwiched by two silicon or graphene windows [18], and the
windows isolate wet samples from the vacuum environment.

As illustrated in Fig. 1-(a), a micro-tubing can be placed to connect in
between a reaction chamber and the liquid cell, through which a reaction solu-
tion is continuously pumped into the liquid cell. Therefore, the liquid cell will
be replenished continuously with reaction solutions taken at different times of
a chemical nanoparticle growth process, and taking microscope images of the
samples in the liquid cell with an imaging interval would generate a sequence of
images containing nanoparticles taken at different stages of the growth process.

Shape Model. Each of the images generated by an in situ microscope are
analyzed to extract the outlines of nanoparticles in the images, using the state-
of-the-art image segmentation approaches [10,12,16,19]. Each of the outlines
does not only the size and shape information of the corresponding nanoparticle
but also includes the pose of the nanoparticle, where the ‘pose’ implies the
orientation and location of the nanoparticle in the image. The size and shape
information can be achieved by discarding the pose information from the outline.

There are quite a few existing works in the shape modeling for nanoparticles.
Here we introduce one modern approach. Park [11] represented the outline as
a closed curve. A closed curve in R

2 has the circular topology S
1. Therefore, a

closed curve can be represented by a parametric curve φ : S1 �→ R
2, where the

parameter θ ∈ S
1 indicates a point on the closed curve, and φ(θ) ∈ R

2 represents
the coordinate of the point. To discard the location information from the curve,
the closed curve is converted to the centroid distance function, r : S1 �→ R

+,

r(θ) = ||φ(θ) − cφ||,
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Fig. 1. In situ electron microscope for measuring nanoparticle sizes and shapes at
different stages of a nanoparticle growth process. Panel (a) shows a flow-through system
attached on a conventional electron microscope that enables a realtime imaging, and
panel (b) shows exemplary images from the system.
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where || · || is the L2-norm, and cφ = 1
2π

∫
S1

φ(θ)dθ represent the centroid of
the closed curve. Let R represent a collection of all such centroid distance func-
tions. The centroid distance function r ∈ R still contains the orientation of the
corresponding closed curve. Let γ : S1 �→ S

1 denote a diffeomorphism from S
1

to S
1 with a constant first derivative, and let Γ denote the space of all such

diffeomorphisms. An γ ∈ Γ defines a group action on r ∈ R in that r ◦γ belongs
to R. In fact, the group action rotates the centroid distance function r ∈ R.
Therefore, the shape of a centroid distance function of r ∈ R can be represented
as all rotational variants of r,

[r] = {r ◦ γ; γ ∈ Γ}, (1)

and the space of shapes can be defined as the quotient space, R/Γ . The rota-
tionally invariant distance of two shapes [r1] and [r2] in R/Γ is defined as

dR/Γ ([r1], [r2]) = min
γ∈Γ

|(r1 ◦ γ) − r2|,

where | · | is the L2-norm in R. A centroid distance function r can be rotationally
aligned to a reference centroid distance function r∗ ∈ R by the partial Procrustes
alignment with the distance dR/Γ , and the aligned r is achieved as r̃ = r ◦ γ̃,
where γ̃ = arg minγ∈Γ ||(ri ◦ γ) − r∗||, and r̃ is used as the shape representation.

The shape of a nanoparticle is represented as a rotation aligned centroid
distance function r̃(θ), and the shape evolution during a chemical growth process
can be represented as a time series r̃(θ, t), which represents the shape observed
at time t. Park [11] used the spline representation of the time series,

r̃(θ, t) =
M∑

m=1

N∑

n=1

αm,nam(t)bn(θ), t ≥ 0 and θ ∈ [0, 2π),

where am(t)’s and bn(θ)’s are uniform B-spline basis functions with correspond-
ing random coefficients αm,n, and M and N are tuning parameters controlling
the number of the spline basis functions used. The vectorial representation of
the model is

r̃(θ, t) = (bT
θ ⊗ aT

t )α,

where α = (α1,1, . . . , αM,1, . . . , α1,N , . . . , αM,N )T , at = (a1(t), . . . , aM (t))T , and
bθ = (b1(θ), . . . , bN (θ))T . Park [11] pointed out that nanoparticles grow in size,
so r̃(θ, t) should monotonically increase in time t. Let Q represent the set of all
α values to ensure the monotonicity given the fixed basis matrix (bT

θ ⊗aT
t ). The

unknown coefficient vector α ∈ Q defines the temporal evolution of a nanoparti-
cle. The variation in the temporal evolution among multiple nanoparticles from
the same growth process can be modeled by posing a probability distribution on
α. The truncated multivariate normal distribution can be defined,

α ∼ NQ(μ,Σ),
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where Q is a support of α, μ is the mean, and Σ is the covariance. More
generally, one can use a nonparametric distribution such as a mixture,

α ∼
K∑

k=1

βkNQ(μk,Σk),

where βk ≥ 0 is the mixture weight satisfying
∑K

k=1 βk = 1. From the probability
model, the probability distribution of r̃(θ, t) can be induced as

r̃(θ, t) ∼
K∑

k=1

βkNQ((bT
θ ⊗ aT

t )μk, (bT
θ ⊗ aT

t )Σk(bθ ⊗ at)). (2)

For a fixed time t, it represents a probability distribution of nanoparticle sizes
and shapes at time t. With the time t varying, it represents the temporal evolu-
tion of the probability distribution.

Statistical Algorithm. Suppose that there are Nt nanoparticles observed from
the microscope image taken at time t = 1, . . . , T . Let r̃jt(θ) represent the rota-
tionally aligned centroid distance function for the outline of the jth nanoparticle
observed at time t. All the observations are D = {r̃jt(θ); j = 1, . . . , Nt, t =
1, . . . , T}. Given the data, we want to estimate the distribution parameters
{(βk,μk,Σk); k = 1, ..,K} of the mixture model (2). The expectation maxi-
mization algorithm would be a natural choice for the mixture model, if K is
known. If K is unknown, a possible solution would be to use a model selection
criterion such AIC and BIC to choose K, or a fully Bayesian approach can be
taken to consider K as an unknown random variable. Park presented the exact
Gibbs sampler for the posterior estimation of K along with the distribution
parameters. For more details, please refer to the original paper [11].

2.2 Size Distribution Tracking

Measurement Instrument. When it comes to particle size, scattering tech-
niques are more convenient and practical than microscope techniques. The scat-
tering light techniques come with simpler sample preparation and data analysis
steps than microscopic imaging. In addition, scattering machines can be loaded
with a much larger volume of nanoparticle solution per each measurement than
microscope techniques. Accordingly, the size distribution attained using the scat-
tering techniques can base on a larger sample, so as to better represent the size
distribution of the whole reaction solution.

One of the most commonly used scattering techniques for particle sizing is
the dynamic light scattering. A sample solution is loaded into a dynamic light
scattering machine, and a beam of lights is shot on the sample solution. The light
beam is scattered by nanoparticles in the sample solution, and the intensities of
the scattered light change in time due to the Brownian motion of nanoparticles
in the solution. The autocorrelation of the temporal changes in the intensities
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is related to the sizes of the nanoparticles in the solution. The autocorrelation
function can be analyzed to reveal the distribution of particle sizes in the form
of a histogram. For more details, please refer to a relevant work [7].

Size Model. Let x ∈ R
+ represents the size of a nanoparticle, and let pt(x)

denote the probability density of the size at time t of a nanoparticle growth
process. A simple and practical model for pt(x) may be a log-normal distribution,

pt(x) =
1

√
2πσ2

t x
exp

{

− (log x − μt)2

2σ2
t

}

,

where μt ≥ 0 and σ2
t ≥ 0 are the mean and variance of log x. It has been popu-

larly used for representing particle size distributions [6]. The simple parametric
model is not good enough when pt(x) has multi-modalities, i.e., the density func-
tion has multiple local maxima. In that case, a non-parametric distribution such
as a histogram can be used. Qian et al. [15] modeled the penalized B-spline model
to represent the log probability density, log pt(x) =

∑n
j=1 αjtBj(xi), where Bj(x)

is the jth B-spline basis function, and αjt is the corresponding B-spline coeffi-
cient. The corresponding density of the size distribution is

pt(x) = qt exp

⎧
⎨

⎩

n∑

j=1

αjtBj(xi)

⎫
⎬

⎭
, (3)

where qt > 0 is a normalizing constant. The unknown coefficient vector, αt =
(α1t, . . . , αnt)T , parameterizes the particle size distribution at time t, and the
temporal change in αt characterizes the temporal evolution of the particle size
distribution. The coefficient vectors can be spatially and temporally correlated.
The consideration of the spatial and temporal correlation will be considered by
means of incorporating the regularization terms in the statistical algorithms that
will be discussed in the next section.

Statistical Algorithm. Suppose that nanoparticles undergoes a nanoparti-
cle growth process, which makes the particle size change following the model
(3), and dynamic light scattering measurements are achieved for the samples of
nanoparticles taken from the process at time t = 1, . . . , T . The measurement
taken at time t can be analyzed by the existing scattering data analysis algo-
rithm [7], and the outcome of the algorithm is a histogram of particle sizes at
time t,

Y t = (Y1t, Y2t, . . . , Ymt),

where Yit represents the number of nanoparticles whose sizes range in the ith
histogram bin, [xi − δ, xi + δ]. Each of the bin counts is naturally modeled as
a Poisson random variable, Yit ∼ Poisson(λit), where the Poisson intensity
λit = pt(xi) is proportional to the sampling density pt. The log likelihood is

L(αt) =
m∑

i=1

Yitpt(xi) −
m∑

i=1

exp(pt(xi)).
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Qian et al. [15] proposed to estimate all distribution parameters {αt; t = 1, ..., T}
jointly by maximizing the penalized log likelihood,

L({αt; t = 1, ..., T}) =
T∑

t=1

L(αt) + λP({αt; t = 1, ..., T}), (4)

where P({αt; t = 1, ..., T}) =
∑T

t=1

∑n
j=1 η(αjt − αj(t+1))2 + (1 − η)(αjt −

α(j+1)t)2 is the smoothness penalty to ensure that the coefficient values do not
have sudden jumps , and λ is a positive constant to determine the degree of the
smoothness penalty. Qian et al. [15] proposed the alternating directional multi-
plier method (ADMM) algorithm to optimize the penalized likelihood function.

The penalized likelihood maximization is solved when the scattering measure-
ments from time t = 1 to T are available. Therefore, the distribution is estimated
after the whole growth process is completed. Qian et al. [17] proposed an online
estimation algorithm to estimate αt incrementally as soon as the measurements
up to time t are available instead of waiting until all the measurements are col-
lected. Qian et al. [17] used an autoregressive model to model the time-varying
coefficient vector, αt = αt−1 + εt, where εt ∼ N (0, σ2

t I). With the autoregres-
sive model, we would have a hidden Markov model linking {αt; t = 1, . . . , T}
with the Poisson observation model (4). The online estimation algorithm of the
Kalman filter type can be used to estimate the hidden Markov model [17].

3 Conclusion

This paper discusses the problem of tracking the time-varying distribution of
particle sizes and shapes at different stages of a chemical growth process of
nanoparticles. If the distribution can be tracked in realtime, it can be exploited
for monitoring the growth process, a prerequisite leading to potential control of
nanoparticle growth that produces nanoparticles with desirable sizes and shapes.
The major challenges in achieving this goal are whether one can take the size
and shape measurements in realtime during a growth process, how one effec-
tively models the distributions of sizes and shapes, and how the mathematical
model can be estimated as fast as the realtime measurements arrive. We review
the recent developments addressing the three challenges. When only the par-
ticle sizes are concerned, quick scattering measurements followed by an online
density estimation algorithm [17] can carry out a near real-time tracking of
particle size distributions. When both shapes and sizes are concerned, realtime
online distribution tracking is not yet available. Addressing this latter problem
appears much more challenging, due to the high complexities in dealing with
shapes. This challenge can be alleviated by a dynamic data-driven application
systems (DDDAS) approach making use of multiple measurement instruments of
complementary spatio-temporal resolutions. With multi-resolution instruments,
one can primarily track the size distribution in realtime using a temporally fast
instrument (e.g., the scattering light techniques), while triggering the estimate
of shape distribution only when it is necessary [13].
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Abstract. Accurate estimation and prediction of the thermospheric
density is crucial for accurate low Earth orbit prediction. Recently,
Reduced-Order Models (ROMs) were developed to obtain accurate quasi-
physical dynamic models for the thermospheric density. In this paper we
explore the use of deep neural networks and autoencoders to improve
the reduced-order models. Through the development of deep and con-
volutional autoencoders, we obtain improved low-dimension representa-
tions of a high-dimensional density state. In addition, we improve the
prediction accuracy of the ROM using a deep neural network.

1 Introduction

Almost 63% of all functioning satellites reside in Low Earth Orbit between 250–
1500 km above the Earth’s surface. In much of this region, the orbit of the
satellites can be drastically affected by drag from the Earth’s thermosphere.
For models to accurately determine and predict orbits, they must have a way
to accurately estimate and predict thermospheric conditions that relate to the
drag on the satellite. To estimate the thermospheric density, satellite tracking
data can be used. At the same time, improved density forecast results in better
orbit predictions that enables improved satellite tracking. This feedback loop
in which measurements improve the density model and the model helps control
the tracking instruments follows the Dynamic Data Driven Applications Systems
(DDDAS) paradigm [3]. Here, we reinforce the cycle of satellite tracking, density
estimation and orbit prediction, see Fig. 1, to improve space traffic management.

Currently, two types of thermospheric models exist: empirical and physics-
based models. Empirical models use low-order parametrized mathematical for-
mulations to estimate average behavior of the upper atmosphere. These mod-
els are much more computationally efficient, however, they have no forecasting
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capability which limits their effectiveness for real-time data assimilation and
uncertainty quantification. Physics-based models, such as the Global Ionosphere-
Thermosphere Model (GITM) solve the Navier-Stokes equations for discretized
spatial grids. They enable forecasting and have been used with the DDDAS prin-
ciples for data assimilation [2]. However, because of their high dimensionality,
they are computationally expensive and require parallelization for real-time use.

Fig. 1. Density estimation framework

Recently, Reduced-Order
Models (ROMs) have been
developed to obtain accu-
rate quasi-physical dynamic
models for the thermospheric
density [12,13]. These mod-
els make use of Proper
Orthogonal Decomposition
(POD) to reduce the dimen-
sionality and Dynamic Mode
Decomposition (DMD) to
train linear dynamic models
to make significantly faster predictions. This enables efficient and accurate esti-
mation of thermospheric densities using satellite tracking data [4]. However,
POD and DMD are linear techniques while the thermospheric dynamics are
highly nonlinear. Therefore the ROMs have limited accuracy.

In this work, we seek to improve the ROMs using machine learning (ML)
techniques [5,9–11]. We use deep autoencoders to better represent thermospheric
data in a reduced space using non-linear dimensionality reduction. Improvements
are made by using convolutional layers, which significantly reduce the number
of trainable weights in our model. Utilizing the reduced data, we continue the
density predictions using a deep feedforward neural network (NN) that includes
activation functions to provide a nonlinear component. We optimize the hyper-
parameters of the network to obtain best results. The autoencoder and deep
NN architectures developed in this work can be used as basis for recurrent
autoencoders developments. In the following, the linear and machine-learning
techniques are described and results are discussed. In future work, the methods
will be incorporated to improve density forecasting and satellite orbit prediction.
This enhances the feedback loop for real-time density estimation and satellite
tracking.

2 Methodology

Reduced-order modeling of the neutral density consists of two main components:
1) reducing the dimensionality of the state space while retaining maximum infor-
mation and 2) deriving a dynamical model for the reduced-order state. In this
paper, we follow a data-driven reduced-order modeling approach using both lin-
ear and nonlinear techniques. We use 12-years of density data with a 1 h temporal
resolution to derive the reduced-order model.
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2.1 Dimensionality Reduction

Proper Orthogonal Decomposition. The concept of order reduction using
POD is to project the high-dimensional system and its solution onto a set of
low-dimensional basis functions or spatial modes, while capturing the dominant
characteristics of the system. Consider the variation x̃ of the neutral mass density
x with respect to the mean value x̄:

x̃(s, t) = x(s, t) − x̄(s) (1)

where s is the spatial grid. A significant fraction of the variance x̃ can be captured
by the first r principal spatial modes:

x̃(s, t) ≈
r∑

i=1

ci(t)Φi(s) (2)

where Φi are the spatial modes and ci are the corresponding time-dependent
coefficients. The spatial modes Φ are computed using a SVD of the snapshot
matrix X that contains x̃ for different times:

X =
[
x̃1 x̃2 · · · x̃m

]
= UΣV� (3)

where m is the number of snapshots. The spatial modes Φ are given by the left
singular vectors (the columns of U). The state reduction is achieved using a
similarity transform:

z = U−1
r x̃ = U�

r x̃ (4)

where Ur is a matrix with the first r POD modes and z is our reduced-order
state. More details on POD can be found in [12].

Autoencoders. An autoencoder is a NN that takes an input vector, X, encodes
it as vector V and then decodes it to vector X ′, which is an attempted reconstruc-
tion of the original vector [6]. It consists of two parts, an encoder and decoder,
which we can define as transitions F and G such that given a loss function L:

F : X → V (5)
G : V → X ′ (6)
F,G = arg minF,GL(X,X ′) (7)

Throughout this work, we used mean squared error as our loss function, which
is defined such that given a vector X and its reconstruction X of dimension d:

L(X,X ′) =
||X − X ′||2

d
(8)

We specifically looked at undercomplete autoencoders, autoencoders whose
encoded dimension is less than the input dimension. Undercomplete autoen-
coders allow models to learn the most important features of the dataset. The
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advantages of an autoencoder over POD is that while POD finds orthogonal lin-
ear projections, autoencoders, if given nonlinear activation functions, are capable
of learning nonlinear manifolds. As the factor of the dimensionality reduction
is increased, the benefits of learning these nonlinear features becomes more and
more apparent. However, care must be taken to ensure that the NNs are learning
the useful information about the data and not simply memorizing the copying
task. In each of the following networks, we took extra steps to address this
problem.

Deep Autoencoder. We began with a feed-forward deep network architecture
with a multilayer encoder and decoder with linear final activation functions. To
address the issue of overfitting, we introduced batch normalization and dropout
to our networks. Batch normalization fixes the mean and variance of each layer’s
inputs to values determined during training, addressing the issue of internal
covariate shift and has been shown to have a regularizing effect on networks
[7]. Dropout is used during training to prevent overfitting by randomly ignoring
hidden nodes during the forward and backward pass [14]. The probability of
dropping a node pi is a tuned hyperparameter.

Convolutional Autoencoder. We also attempted dimensionality reduction
through convolutional techniques. We added several convolutional layers to our
encoder and decoder [6]. In the single channel version, we use a 3D filter and do
element-wise multiplication and addition. Each convolution step will therefore
result in a single number. In the multi-channel version, our input “layer” may
have multiple “channels.” Therefore, we use a four-dimensional “filter.” The filter
contains several “kernels.” Each kernel is a 3D array of weights. Given output g
and input x, the 3D convolution can be written such that

gi,j,k,c = σ(wT
c xi,j,k,c) (9)

where each pixel in a given channel output, gi,j,k,c, is the matrix multiplication
between the filter, c, and the input space centered around xi,j,k,c. We experi-
mented with various filter sizes including 3 × 3 × 3 and 5 × 5 × 5 and varied
the number of channels. Every other filter used a stride of 2 in its convolu-
tion. This stride results in a dimensionality reduction that ideally filters out
the least important features of the data. We continued to use a fully connected
final encoder layer with linear activation function, and a deep fully connected
decoder.

We also experimented with 1 × 1× d filters, where d matched one of the
dimensions of x. Using 1×1 filters is a form of dimensionality reduction included
in Google’s state of the art inception module [15]. Each convolution will reduce
our data in one dimension to 1 per sample. Our 3D convolution then becomes:

gi,j,c = σ(wT
c xi,j,c) (10)

where each pixel in a given channel output, gi,j,c, is the matrix multiplication
between the filter, c, and the input space centered around xi,j,c.
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Hyperparameter Tuning. While our network weights are easily tuned using
gradient descent, our hyperparameters are not differentiable, and therefore more
difficult to optimize. Due to the size and variety of our networks, simpler grid
searches and hand-tuned models were unlikely to find the optimum values, even
with significant training time. Instead, we trained our networks using hyperopt.
Hyperopt is a Python library for hyperparameter tuning [1]. It implements sev-
eral methods for efficiently searching through a hyperparameter space, including
Tree-structured Parzen Estimator (TPE) algorithm. Using hyperopt on MIT’s
HPC platform, Supercloud, we tuned our optimizer, learning rate, layer number
and sizes, as well as the hyperparameters for batch normalization and dropout.

2.2 Prediction

The atmospheric density depends strongly on the space weather conditions.
Therefore, to predict the future density, we look for a function that takes the
current state zk and space weather inputs uk and returns the future state:

zk+1 = f(zk,uk) (11)

where zk is the reduced-state at epoch k: zk = F(xk).

Dynamic Mode Decomposition with Control. Dynamic Mode Decompo-
sition with control (DMDc) enables us to derive a linear dynamical system that
considers exogenous inputs:

zk+1 = Azk + Buk (12)

The dynamic matrix A and input matrix B can be estimated from output data,
or snapshots, zk, rearranged into time-shifted data matrices. Let Z1 and Z2 be
the time-shifted matrix of snapshots such that:

Z1 =
[
z1 z2 · · · zm−1

]
, Z2 =

[
z2 z3 · · · zm

]
, Υ =

[
u1 u2 · · · um−1

]
(13)

where m is the number of snapshots and Υ contains the corresponding inputs.
Since Z2 is the time evolution of Z1 they are related through Eq. (12) such that:

Z2 = AZ1 + BΥ (14)

Given Z1 and Z2, we can estimate matrices A and B in least-squares sense
and obtain a linear reduced-order model (Eq. 11) that corresponds to the fixed
timestep T used for the snapshots.

Deep Neural Network. As changes in atmospheric density and the effects
of space weather on the density are highly complex and nonlinear, we chose
to utilize a deep feedforward neural network (NN) for our prediction model.
Such a NN is able to capture and learn nonlinear complexities using activation
functions, with the goal of creating more accurate density predictions.
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Architecture. In building a NN, there are several key components to consider:
node layers, activation functions, and the loss function. We will now break down
each component into its relevance in our algorithm. In the final iteration of
hyperparameter tuning, we found a minimized loss while using one input layer
of size 120, two hidden layers of size 40 then 20, and an output layer with 10,
our reduced dimension.

As just having hidden layers with no activation function is equivalent to a
single linear layer, we add a LeakyRelu activation function between each layer.
After testing Sigmoid, Softmax, and Tanh activation functions, we saw errors
several orders of magnitude larger than that of the linear prediction model. Our
problem is a regression, so we do not use such activation functions as Sigmoid,
Softmax, or Tanh and instead opt for a Relu variant. As our data has both pos-
itive and negative values, using Relu can lead to the vanishing gradient problem
and we empirically found higher values of error in validation. Thus, to account
for the negative values in our data, the LeakyRelu activation function has a
positive slope for negative inputs. We found that this activation function with
a slope of 0.3 for negative inputs yielded consistently fast training times and
accurate predictions.

Training. We use a standard mean squared error (MSE) to compute the pre-
diction loss and train the network. In addition, we use the Adaptive moment
estimation (Adam) as our optimizer. Adam is a combination of RMSprop and
Stochastic Gradient Descent with momentum. Past literature has shown Adam
to reach an optimal solution more quickly than other optimizers [8]. Further-
more, we used a learning rate of 0.0005 that was determined through empirical
testing.

Finally, to train our NN, we split the density data in a 70–15–15 ratio of train,
validation, and test data respectively using randomized splitting. We use mini
batch gradient descent with a batch size of 32 for training. With smaller batch
sizes, there are more frequent weight updates at the cost of longer training times.
Weighing these tradeoffs and the subsequent prediction accuracies, we find that
a batch size of 32 is optimal. For our final models, we trained for 500 epochs.

2.3 Density Data

To train and test our NNs, we used two different density datasets generated using
the NRLMSISE-00 (MSISE) and JB2008 density models, see [4]. Each dataset
contains the hourly density over 12 years (one solar cycle) on a fixed 24×20×36
grid in local solar time, latitude and altitude, see Table 1.

3 Results

3.1 Dimensionality Reduction

We first performed a dimensionality reduction from the full sample size of
24 × 20 × 36 to a vector of length 10. We split our data into a training, val-
idation, and test set. We chose POD reduced data, calculated on the training



Machine Learning Algorithms for Improved Thermospheric Density Modeling 149

Table 1. ROM characteristics: spatial grid and time period.

Base model Local solar time [hr] Latitude [deg] Altitude [km] Years

Domain Resolution Domain Res. Domain Res.

NRLMSISE-00 [0, 24] 1.04 [–87.5, 87.5] 9.2 [100, 800] 20 1997–2008

JB2008 [0, 24] 1.04 [–87.5, 87.5] 9.2 [100, 800] 20 1999–2010

data, as our baseline. Our autoencoders were trained on the training data while
hyperparameter optimization was done on the validation set. We found that
the optimal architecture was the convolutional autoencoder using square filters.
Table 2 shows the results for POD and three hyperopt-tuned models on the test-
ing data for both the JB2008 and MSISE datasets. The POD performs better
than most of the autoencoders on the JB2008 data. However, on the MSISE
data, which is more nonlinear than the JB2008 data, the autoencoders all per-
form better. This highlights the ability of autoencoders to deal with nonlineari-
ties. We also analysed the reconstruction accuracy of POD and our best model
for a reduced dimension of 1. Table 2 shows that the autoencoder outperforms
POD for data reduction to a single dimension. This emphasizes the benefit of
non-linear dimensionality reduction for few dimensions.

Table 2. Reconstruction Loss (MSE) for reduced dimensions r = 10 and r = 1

Dimension Model JB2008 MSISE

10 POD 8.82 ∗ 10−5 3.03 ∗ 10−3

Deep Autoencoder 2.81 ∗ 10−4 7.60 ∗ 10−5

Square Convolutional Autoencoder 6.28 ∗ 10−5 1.99 ∗ 10−4

1 × 1 Convolutional Autoencoder 1.09 ∗ 10−4 1.21 ∗ 10−4

1 POD 1.10 ∗ 10−1 1.03

Square Convolutional Autoencoder 1.59 ∗ 10−2 4.98 ∗ 10−2

3.2 Prediction

We found that the MSE across the density data predictions using a NN con-
sistently outperforms the MSE of using the DMDc method for predictions, see
Fig. 2. Using both the POD reduction method and the 1×1 convolutional autoen-
coder, we trained and tested the NNs with JB2008 and MSISE reduced data.
Especially, as we predict further time steps into the future, we find that for
MSISE, the NN outperforms the DMDc by an even greater degree than for ear-
lier time steps, see Table 3. Among JB2008 data, the NN is able to outperform
the DMDc by reducing the error by 99.3% in the first time step while later
prediction ratios decline as errors compound in the network.
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(a) POD-JB2008 (b) POD-MSISE

(c) AE-JB2008 (d) AE-MSISE

Fig. 2. MSE in reduced state prediction using DMDc and DNN for JB2008 and MSISE
data reduced using POD or AE.

Table 3. Percentage reduction of MSE in reduced state prediction using DNN with
respect to DMDc for different density data and encodings.

Density data Encoding Reduction of MSE [%]

1h 2h 4h 8h 16h 24h 48h

JB2008 POD 99.3 99.2 98.8 97.5 94.6 91.8 83.1

AE 99.1 99.0 99.0 99.0 99.1 99.2 99.4

MSISE POD 73.3 84.3 90.9 92.8 89.4 83.1 68.8

AE 92.2 93.7 94.5 94.5 92.7 89.9 83.0

4 Discussion and Conclusions

We designed and trained deep and convolutional autoencoders that outperforms
POD for the reduction of 24 × 20 × 36 density data to an encoded dimension
of 1 and 10. In addition, we found that thermospheric density predictions using
our NN consistently outperformed the DMDc predictions over a 48 h time span
using both JB2008 and MSISE data and both the POD and autoencoder reduced
data. This shows that NNs can be trained efficiently to forecast thermospheric
densities into the future. We plan to replicate training of our models to prove the
convergence with parameters found during our research. This approach improves
the reduced-order modeling of thermospheric densities, which enables improved
density estimation and prediction and therefore more accurate orbit predictions.
However, we also found that even a non-overfitted NN that performs well for one
time step may perform poorly over multiple time steps. As our training error
metric does not take into account previous data in training, the NN cannot opti-
mize in a recurrent fashion. We will continue our work by developing recurrent
networks that consider past predictions to improve the multi-step prediction
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performance. In addition, we will research a combination of our two networks, a
LSTM-based autoencoder, and incorporate them into the thermospheric density
estimation tool. In future work, the density prediction models can be applied in
DDDAS fashion to improve resident space object tracking and vice versa.
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Abstract. In this paper, we present a two-step deep learning technique in sup-
port of DDDAS for achievement of robust ATR via transfer learning using simu-
lated SAR imagery. The first Deep Learning (DL) model performs noise suppres-
sion of input SAR images via a Multi-resolution Stacked Denoising Autoencoder
(MSDAE) architecture. The second DL model includes a Multi-output Convo-
lutional Neural Network (M-CNN) architecture suitable for multi-feature classi-
fication of ATR pertaining to the DDDAS paradigm. In this approach, we train
each DL model independently, then, streamline this process as a standalone deep
learning ATR classifier. Primarily, we employed the IRIS Electromagnetic (IRIS-
EM) modeling and simulation system to systematically generate our own multi-
look large-scale simulated SAR images of multi-platform (i.e., ground, aerial, and
marine) vehicles. To improve situational awareness of a DDDAS with respect to
ATR, we devised dynamic transfer learnings which employ a step-wise retrain-
ing inspired by the observational statistical sampling technique. In this paper,
we demonstrate the efficiency and effectiveness of the proposed approach in per-
formingmulti-featureATRof test target vehicles applicable toDDDAS. Lastly, we
discuss our classification results using a streamlined denoising and classification
system and justify its implication for the DL-based DDDAS.

Keywords: Deep learning · SAR · ATR · DDDAS · Image denoising ·
Convolutional neural networks

1 Introduction

The Synthetic Aperture Radar (SAR) system is typically an integral part of surveillance
aircrafts, operating from a long distance that produces two-dimensional images from
observed landscape targets by illuminating electromagnetic (EM) waves to an area and
record the reflections (also called backscattering). Understanding and interpreting the
SAR imagery using deep learning based computer vision systems for detection and
classification purposes have witnessed great success in the past decade.

We propose a denoising autoencoder (DAE) model that performs the SAR image
denoising and object shadow removal while preserving the object texture as an inter-
mediate step before passing the images through the classifier. This operation provides
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the classifier model with more image pixel information to be trained on - resulting in
achievement of a higher object classification accuracy.

DDDAS are distinctive predictive models taking advantage of a data assimilation
feedback loop when discrete sensor data are available. Using sensor data error, the
system attempts to drive the physical system simulation so that the trajectory of the
simulation more closely follows the trajectory of the physical system [4].

In our work, we attempted to train our CNN model with limited scattered data.
This is similar to situations in which the data is dynamically generated and become
available for the training. This was accomplished by splitting the IRIS-SAR and the
Denoised SARdatasets in various combinations and retrain our network using incremen-
tal transfer learning. This methods showed a promising result in increasing the accuracy
and generalization of the classifier model for the purposes of object recognition and
classification.

The remaining of this paper is organized in the following sections. We initially
describe the aspects of our SAR dataset generation and annotation scheme. Then, we
describe the SAR image denoising process using the MSDAE model and technical
improvements involved in this model. Next, we introduce our multi-output CNN classi-
fiermodel and discuss the results fromdynamic data-driven scenarios for training. Lastly,
the combined MSDAE+MCNNmodel is described for streamlining the denoising and
classification process. Finally, we present the conclusion of this research work.

2 EMModeling and Simulation

In the brevity of the space limitation here, the detailed aspects of the Synthetic SAR
image dataset generation using IRIS physics-based modeling and simulation method is
not covered in this paper. The interested readers are encouraged to review our papers [1,
2] for the details of our proposed approach. This section presents a brief introduction to
the main key points of our synthetic SAR dataset. The IRIS-SAR dataset was produced
using Intelligent Robotics Integrated Systems (IRIS) software developed at Tennessee
State University [3]. The IRIS EM simulation engine implements an efficient Synthetic
Aperture Radar Interfacewhich offers full automation capability for achieving generated
synthetic SAR imagerywith uniformity, consistency, and reliability. Our dataset contains
the simulated SAR imagery of 48 commercial airplanes, 58 small propeller aircrafts, 82
jet fighters, 29 civilian and 54 military helicopters, and 24 commercial and 28 military
ground vehicles, and 32 civilian and military marine vehicles. In generation of this
dataset, we used five elevation angles starting at 15° with increments of 15°, twelve
orientations (azimuth angle) around the Z axis starting at 0° with increments of 30°,
and also three slant ranges. Figure 1 depicts a sample set of simulated SAR images of
different categories of objects from our IRIS CAD model bank.

IRIS-SAR dataset contains 63,900 images with 512 × 512 pixels resolution. The
dataset presents multiple views of the objects (5 elevation * 12 azimuth * 3 slant ranges
= 180 each per vehicle) for 355 CAD objects. Moreover, the three modalities of scan-
ning (Reflectivity Map, Depth Map, and Height Map) are also composed as individual
datasets. The Reflectivity Map (RM) is used as reference in the training of our denois-
ing auto-encoder models. Although this dataset includes 3 slang ranges for each object,



154 A. Ahmadibeni et al.

Fig. 1. Top: samples of our CAD models, bottom: their corresponding simulated SAR images at
45° elevation angle.

we only used images with the shortest range of 100 m (21,300 images) for training of
denoiser and classifier models.

3 Multi-resolution Stacked Denoising Auto-Encoder (MSDAE)

Auto-encoders are a type of neural networks commonly used for feature selection and
extraction by learning to efficiently compress and encode data and also learn to how to
reconstruct the data back from the encoded representation to another representation that
is as close to the original input as possible. In this research, we use a multi-resolution
stacked denoising auto-encoder (MSDAE) to denoise SAR imagery that carry very dense
amounts of noise in their nature.

After designing and testing the singleDAEswe came into the conclusion that increas-
ing the depth of the network or filters count will not always necessarily improve the
network performance. Stacked auto-encoders [5] was proposed to increase the network
performance where the single network can’t be improved on. Stacked denoising auto-
encoders [6] have been proven to be very effective in the task of image denoising, in
which the output of the previous auto-encoder is fed to the current auto-encoder as input.

Multi-Resolution Convolutional Neural Network (MRCNN) [9] is also a type of
Multi-Input Neural Network architecture that processes images of different resolution
as inputs. After experimenting with the promisingMRCNN architectures, we decided to
build a stacked version of this network architecture and called itMulti-resolution Stacked
DenoisingAuto-encoder (MSDAE). Figure 2 illustrates theMSDAEmodel architecture.

3.1 Training and Evaluation

TheMSDAEmodel training was performed on 50 epochs that took 3.6 h on an NVIDIA
GTX 1080 graphics card. Structural Similarity (SSIM) [7] and Peak Signal to-Noise
Ratio (PSNR) index were primarily used as two of the most standard evaluation metrics
in the area of image denoising. Furthermore, Mean Squared Error (MSE) and Pearson
Correlation Coefficient (PCC) were used as pixel wise evaluation of the images. The
final model was then trained by feeding the network with SAR imagery from the encoder
side and the corresponding Reflectivity Map imagery as the output at the decoder side.
After the training of theMSDAEmodel was done, we passed the main IRIS SAR dataset
through this model to create a Denoised dataset for training of CNN classifiers in the
next steps. In order to evaluate our denoising models, we compared the Reflectivity
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Fig. 2. Multi-resolution stacked Denoising auto-encoder (MSDAE) model Architecture

Map image as the reference and its corresponding Denoised SAR image from the model
output. The MSDAE network performance compared to its previous variants is included
in Table 1.

Table 1. Denoising models performance trained on IRIS SAR + RM datasets

Model name SSIM PSNR MSE PCC

Single AE 0.8852 24.27 314.67 0.9221

Double stacked AE 0.9178 23.46 376.45 0.9051

Triple stacked AE 0.9106 23.20 405.95 0.8972

MMRN 0.9463 26.77 174.58 0.9528

MSDAE 0.9578 27.57 129.49 0.9537

U-NET 0.9534 27.22 141.56 0.9486

Fig. 3. Multi-resolution stacked Denoising auto-encoder (MSDAE) model performance. Top:
simulated SAR images from IRIS-SAR dataset. Bottom: MSDAE output (Denoised SAR)
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4 Target Classification

Our CNN model has a sequential architecture inspired by the VGG16 [8] model with
filter sizes up to 512. Drop out layer with 0.2 factor is used as regularization layer after

Fig. 4. The proposed CNN model
architecture

each convolutional block (Fig. 3). Two fully con-
nected layers with size 1024 followed by a Soft-
max layer are at the end of the model. ReLU as
activation function followed by a Batch Normal-
ization layer was used after each convolutional
layer. This model takes input images in size of
128 × 128 × 3. Figure 4 illustrates this network
architecture. Adam optimizer was used in ini-
tial training with a decaying rate of 0.004, and
a categorical cross entropy as its loss function.

4.1 Elevation Angle Dynamic Data
Simulation

To evaluate our technique against such vari-
ability in input imagery space, we tested the
performance of the network on all 5 eleva-
tion angles while training only on one ele-
vation angle. This was done to simulate the
condition in which the training data is only
available from one elevation angle and new
incoming data is captured in different eleva-
tion angles. Figure 5 illustrates the five elevation angles of our IRIS-SAR dataset.
This training was done on IRIS-SAR and Denoised datasets separately. Next,
using the dataset for each elevation angle, we studied the transfer learning method

Fig. 5. Five elevation angles
of IRIS-SAR dataset

for training the model gradually for each elevation angle.
First we trained the model on 15°. Then we froze certain
convolutional layers of themodel and changed the top fully
connected layers with new ones. We proceeded with train-
ing the model using 30° elevation. Then captured the per-
formance results and continued the training for 45, 60, and
75° in the next steps. The plots in Fig. 6 illustrates the
comparison of the results from with and without transfer
learning for IRIS-SAR and Denoised dataset with eleva-
tion angle data separations. We can witness that when the
learnt representations from previous trainings are used and
transferred to the new training, the performance of the net-
work improves gradually and its compatibilitywith the new
dynamic data is increased.
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Fig. 6. Comparisonof the results fromwith andwithout transfer learning applied for training IRIS-
SAR and Denoised dataset witsh regards to elevation angle increments. Training using elevation
angle with degrees a) 15°, b) 30°, c) 45°, d) 60°, e) 75°.

4.2 Azimuth Angle Dynamic Data Simulation

Next, we studied the effect of partial data training with respect to the azimuth

Fig. 7. Five elevation angles
of IRIS-SAR dataset

(rotational) angle of the SAR scanning. Since the IRIS-
SAR dataset contains the 12 azimuth observation angles
with 30° increments, we labelled these angles into 3
groups with 0, 30, and 60° shifts. Figure 7 illustrates this
scheme. Similar to the experiments with regards to the
elevation angle in previous section, we also used trans-
fer learning method for training our model with images
with varying azimuth angles. Figure 8 illustrates the
comparison of results for three separate azimuth angle
bands.

Fig. 8 Comparison of the results from with and without transfer learning applied for training
IRIS-SAR and Denoised dataset with regards to azimuth angle shifts. Training using elevation
angle with degree shifts of a) 0°. b) 30°. c) 60°.
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5 Multi-output Classification

In this section, we present the multi output network architecture based on our proposed
CNN model to perform classification of test objects based on their category, as well as
their observed elevation, and azimuth angles. To achieve this goal, we used the convo-
lutional blocks of the CNN model and added 2 more branches of fully connected layer
with Softmax layer at the end of each branch. This network learns the features from each
image and incorporates features with 3 labels that each input image has. The results from
the IRIS-SAR and Denoised dataset trainings are presented in Tables 2, 3 and 4 for each
of the three branches. Based on this model a higher classification accuracy was achieved
when the network was trained based on the Denoised dataset and then compared to
the model trained based on the IRIS-SAR dataset. Thus, we concluded that putting a
MSDAE model before the classifier model can increase the classifiers accuracy. A 3.9
percent accuracy decrease was also captured in the elevation angle classification when
tested based on the Denoised dataset and compared to the IRIS-SAR dataset that was
logical since the SAR images contained test objects with their shadows that provided
more information for the network to generalize its learning.

Table 2. Performance of the MCNN model on
object category classification

Class IRIS-SAR Denoised

E15 100 98.6

E30 100 91.5

E45 100 94.7

E60 98.9 95.7

E75 100 99.2

Total Average 99.8 95.9

Table 3. Performance of the MCNN
model on object elevation angle
classification

Class IRIS-SAR Denoised

Airplane 96.9 96.2

Ground Vehicle 98.9 100

Helicopter 99.4 99.8

Jet Fighter 97.7 99.8

Small Propeller 98.3 98.7

Total Average 98.2 99.0

Table 4. Performance of the MCNN model on object azimuth angle classification

Class R000 R030 R060 R090 R120 R150 R180 R210 R240 R270 R300 R330 Ave.

IRIS-SAR 98.2 99.2 97.7 97.9 99.6 95.6 98.1 98.0 98.6 99.0 100 99.6 98.5

Denoised 99.6 99.6 98.9 98.3 97.4 98.5 96.3 100 100 98.7 98.9 99.6 98.8

In order to streamline the denoising and classification process, we lastly combined
the MSDAE and MCNN models together. This final model takes SAR image as input
and outputs the Denoised SAR image and classification result based on object category,
elevation, and azimuth observational angles. The MSDAE is trained on synthetic SAR
and RM images. Then, the generated denoised SAR images using this network was used
to train the MCNN model.



Dynamic Transfer Learning from Physics-Based Simulated 159

6 Conclusion

In this paper, we showed that by proper training of the MSDAE and CNNmodel we can
streamline the denoising and classification into one single process.We also experimented
that by placing the denoising model before feeding the images to the classifier model, it
can further improve the classification accuracy. Lastly, we presented our experimental
results based on DDDAS paradigm that showed by using denoised data for training,
higher levels of generalization in classification is acquired when limited data is gradually
available for DL training.
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Abstract. As a step in a Dynamic Data-Driven Applications Systems
(DDDAS) method to characterize the background in a vehicle tracking
problem, we extend the application of deep learning to a hyperspec-
tral dataset (the AeroRIT dataset) to evaluating network uncertainty.
Expressing uncertainty information is crucial for evaluating what addi-
tional information is needed in the DDDAS algorithm and where more
resources are required. Hyperspectral signatures tend to be very noisy,
when captured from an aerial flight and a slight shift in the atmospheric
conditions can alter the signals significantly, which in turn may affect the
trained network’s classifications. In this work, we apply Deep Ensembles,
Monte Carlo Dropout and Batch Ensembles and study their effects with
respect to achieving robust pixel-level identifications by expressing the
uncertainty within the trained networks on the task of semantic segmen-
tation. We modify the U-Net-m architecture from the AeroRIT paper
to account for the frameworks and present our results as a step towards
accounting for sensitive changes in hyperspectral signals.

Keywords: Hyperspectral · Uncertainty · Segmentation

1 Introduction

Instead of solely modeling vehicle movement or focusing on vehicle appearance
for a vehicle tracking problem, we are working on adaptively modeling the back-
ground in a DDDAS [4] framework using hyperspectral data. This allows the pos-
sibility of identifying potential confusers and modifying the detection or tracking
strategy. In this paper we describe efforts to characterize the background and
the uncertainties in a classification problem. A fair amount of effort has been
invested in applying deep learning methodologies to hyperspectral imagery for
the purpose of learning scene representations towards aerial object detection and
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tracking [13,17,18]. In this paper, we use the AeroRIT data set released in with
SegNet and U-Net networks [1,13,16] trained for the task of semantic segmenta-
tion. However, AeroRIT also comes with the limitation of being a single flight line
captured under clear atmospheric conditions. If the same set of trained networks
are used to run inference on a similar dataset but under different atmospheric
conditions, the outputs will, more than likely, vary. We visually verify this claim
by applying one of the networks established in the paper (U-Net-m, discussed
further in Sect. 3.2) to another flight line captured under cloudy atmospheric
conditions in Fig. 1. We would ideally pre-process the images to ensure no atmo-
spheric occlusions are present in the scene - for example, a cloud shadow removal
algorithm, however we use this snapshot as a particular example to illustrate our
goal in this paper. We observe that the network fails to recognize the correct set
of classes in key areas of interest - for example, the region around the circular
roundabout is predicted to be a building instead of a road. This can affect the
flow of down-streaming tasks dependent on decision trees - do we want to look
for vehicles at pixels classified as buildings? While the straight forward answer is
a No, the approach can be altered if we could also be privy to information about
the network’s confidence (viz-a-viz, uncertainty) of the pixel’s classification. This
information may help in creating more robust inferences as other networks in
down-streaming tasks would be aware of the prediction’s uncertainty and can
dynamically adapt to account for variations.

Fig. 1. Roundabout section from AeroRIT under sunny and cloudy atmospheric con-
ditions. We observe the output of a network trained on the clear flight line to its
cloud-occluded counterpart, (c)–(d), (e)–(f) respectively. The labels are roads (blue),
cars (ivory), buildings (red) and vegetation (green). (Color figure online)

We train deep networks by minimizing the difference between the networks’
prediction and the true distribution of labels and during evaluation, use the
learnt set of weights for classification by selecting the class label correspond-
ing to the maximum probability. However, this approach does not provide any
information about the network’s uncertainty of the predictions. Kendall et al.
applied Bayesian deep learning to obtain the network’s uncertainty for depth
regression and semantic segmentation tasks [9,10]. We adopt their approach in
this paper and analyze the effect of uncertainty quantification towards AeroRIT
scene understanding.
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2 Related Works

There are many areas of research that can be used to estimate the network’s uncer-
tainty, themostpopularbeing: 1) formingensembles [1,7,8,19], 2) variational infer-
ence [2], and 3) K-FAC Laplace approximation [15]. We focus on the first type of
approach - forming ensembles as it is relatively simpler to followand easier to imple-
ment compared to the other areas.The core idea is to train a bunch of networkswith
different initializations on the same set of data and at test time, evaluate the final
predictions as an average of the ensemble networks predictions. Gal and Ghahra-
mani showed that using dropout across layers of the convolutional neural network
(CNN) can act as approximate Bayesian interpretation [7]. This facilitates training
a single network and using dropout at test time to create model ensembles. Kendall
et al. further demonstrated that applying dropout at selective layers of the network
instead of all layer further improves the predictions [9]. Lakshminarayanan et al.
trained different networks separately for forming ensembles [11], and Huang et al.
obtained sets of networks by taking snapshots at different intervals using cyclic
learning rate schedule [12]. Recently, Wen et al. proposed to use multiple rank-1
matrices along with the core weight matrix to form ensembles as an alternative
to existing methods [19]. Uncertainty estimation approaches [3,6,14] have already
been applied in other areas of remote sensing. In this paper, we adopt deep ensem-
bles [11], Monte-Carlo dropout based ensembles [1,7] and batch ensembles [19] for
estimating network uncertainty.

Seman�c 
Segmenta�on

Network

Input Image

Classifica�ons Uncertainty

Classifica�ons

Fig. 2. Schematic overview of the uncertainty based pipeline. The standard flow is
shown with blue arrows where the trained network predicts the pixel-wise labels. We
augment the flow with a ensemble learning framework (orange) that eventually accounts
for the uncertainty within the network. Brighter areas correlate to larger uncertainty -
and as image chips corresponding to the racetrack are not present in the training set,
the network is overall highly uncertain of its prediction. (Color figure online)
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3 Estimating Uncertainty

3.1 Types of Uncertainties

Kendall and Gal expressed uncertainty into two subtypes - Aleatoric and Epis-
temic, in accordance with Kiureghian and Ditlevsen [5]. Aleatoric uncertainty
corresponds to noise that is data-independent, for example, sensor noise, envi-
ronmental noise, and cannot be reduced even if more data is collected. Epis-
temic uncertainty can be expressed as more data-dependent and model-based,
and hence is widely modelled using ensembles. In our paper, we focus on epis-
temic uncertainty and use ensembles for estimation. Figure 2 outlays the overall
framework.

3.2 Network Review

We use the U-Net-m architecture developed in AeroRIT [13] for its better perfor-
mance among other networks. It contains 2 downsampling convolutional blocks,
followed by a bottleneck layer and 2 upsampling blocks with skip connections.
Each convolutional block contains two sets of convolutional kernels of 3 × 3, a
Batch-Normalization layer and ReLU activation. We represent this structure in
Fig. 3 (a).

Input

Output

(a) (b) (c) (d)

Fig. 3. All settings used in the paper: (a) U-Net-m, (b) 4 deep ensembles for [11], (c)
MC-Dropout applied on the convolutional maps of (a) with Spatial Dropout, (d) Batch
Ensembles with two sets of rank-1 matrices on weights of (a).
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3.3 Deep Ensembles (DE)

This approach, proposed by Lakshminarayanan et al. [11], averages the predic-
tions across networks trained independently starting from different initializations
(Fig. 3 (b)). Every member of the deep ensembles is trained with the same hyper-
parameters as discussed in Sect. 4.1. At test time, we average the predictions to
obtain the final set of predictions. Following all approaches that estimate uncer-
tainty, we use entropy of the resulting distribution as the measure of uncertainty
and use it in all the figures throughout this paper.

3.4 MC-Dropout (MCD)

Monte-Carlo Dropout is the less training-time alternative to Deep Ensembles.
Instead of training separate copies of networks multiple times, Gal et al. [7,9]
proposed to inject Bernoulli noise in form of Dropout over the activations of the
network weights. In practice, we observed that applying spatial dropout instead
of conventional dropout produced more better uncertainty estimates (Figs. 3 (c),
X). Spatial dropout randomly drops an entire feature map from the list of feature
maps as compared to individual elements in conventional dropout. We use the
same set of hyperparameters as discussed in Sect. 4.1. At test time, we average
the predictions obtained across a fixed set of runs with dropout enabled to obtain
the final set of predictions.

3.5 Batch Ensembles (BE)

This approach was proposed by Wen et al. and works as an alternative to using
Dropout for ensembles (Fig. 3 (d)). The core idea is to have a single slow matrix
(W ), which corresponds to the 2-D convolution kernel weight and two corre-
sponding rank-1 matrices (ri, si) that act as fast matrices:

Wi = W ◦ Fi, where Fi = ris
�
i , (1)

and hence, we obtain Wi as the corresponding weight for ensemble i. The
number of ensembles is equal to the number of sets of rank-1 matrices used and
is very efficient in terms of model storage. During evaluation, similar to above,
we repeat the mini-batch to correspond with total number of ensemble members
and average the predictions.

4 Experiments and Results

4.1 Hyperparameters

We use all 51 bands available in the AeroRIT dataset chips in this paper - 31
visible and 20 infrared bands. All chips are clipped to a maximum of 214, and
normalized between 0 and 1, before forward passing through the networks. All
networks are initialized with Kaiming init, and the rank-1 matrices for BE are
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initialized to have a mean of 1 and standard deviation of 0.5 in accordance with
the original paper. We use an initial learning rate of 1e−2: for DE and MCD,
we train for 60 epochs with drops of 0.1 at 30, 40, 50th and for BS, we train for
120 epochs with drops of 0.1 at 50, 80, and 100th epoch. We train with standard
cross-entropy loss (CE) for DE and MCD and use weighted CE only for the BE
approach.

Fig. 4. Visualization of uncertainty estimates on the sunny and cloudy roundabout
scenes from Fig. 1. (a) and (d) are the RGB rendered images, (b) and (e) are the
corresponding network predictions while, (c) and (f) are the uncertainty maps. We
also visualize an instance from (g) the AeroRIT test set with (h) corresponding ground
truth label, (i) network predictions and (j) uncertainty map.

4.2 Results

We observe visual improvement over the scenes presented in Fig. 1 using 10 runs
with MCD ensembles. The network predictions for the roundabout area show
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Table 1. Results of techniques discussed in Sect. 3 compared to the baseline network
from AeroRIT [13].

Standard network Deep ensembles Monte carlo dropout Batch ensembles

mIOU 70.62 71.41 ± 2.48 72.45 ± 1.56 69.05 ± 3.45

high uncertainty (Fig. 4 (f)) which is desired in this setting. This information can
be used by down-steam tasks which can dynamically adapt to ensure continuity.
Further, we also observe that the network uncertainty estimates are high for row
Fig. 4 (g) as the road crossing has been incorrectly classified as belonging to the
vehicle category. We also observe uncertainty around the boundaries of classes -
this can possibly be due to the presence of mixed pixels. Table 1 shows us that all
ensemble techniques are able to achieve near-par or higher performance than the
conventional counterpart. We use mean IOU (mIOU) as the metric of interest
(following [13]) and do not discuss metrics pertaining to uncertainty estimations
(for example, Expected Calibration Error) for the scope of this paper. mIOU is
the class-wise mean of the area of intersection between the predicted segmenta-
tion and the ground truth divided by the area of union between the predicted
segmentation and the ground truth. To generate the results, we ran all ensembles
10 different times, with varying number of models for DE and MCD. We found
4 to be a sufficient set of models for DE and BE and 10 for MCD in our ablation
studies.

5 Conclusion

We presented the extension of uncertainty estimation to hyperspectral remote
sensing imagery as a first step towards dynamic scene adaptation under varying
atmospheric conditions. Our next set of questions are as follows: 1) can we reduce
uncertainty in mixed pixel areas to obtain a much precise map that can be passed
to down-stream tasks? and 2) can we decrease the inference speed to get as close
to a single forward pass of a network? 3) is it possible to design an end to end
framework to adaptively shift between sensor modalities using uncertainty as an
input?
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Abstract. In this paper, we aim to reconstruct a hyperspectral image of multiple
bands from an RGB image. This process of reconstruction of the hyperspectral
image fromRGB images is called Spectral Super Resolution (SSR).Using spectral
super resolution, we can adapt the Dynamic Data Driven Applications System
paradigm by using RGB cameras in surveillance instead of using hyperspectral
cameras. This process is challenging because hyperspectral images have different
information available in each band. There have been few works recently in SSR,
most of them use a Convolutional Neural Network (CNN) to learn hyperspectral
images from RGB image using a pixel wise loss function. The pixel wise loss
function smooths the image which leads to loss of information in spectral bands.
Toovercome this in ourwork,we initially divide spectral bands into four subgroups
and learn the hyperspectral image by learning the Discrete Coefficient Transform
(DCT) coefficients of the hyperspectral image from RGB image using a residual
dense network. Experiment results show our work using DCT based learning
performs better than the state of the art HSCNN+ work [12].

Keywords: Spectral super resolution · Super resolution · DCT

1 Introduction

Hyperspectral Imaging has a lot of use cases in the area of remote sensing and surveil-
lance. Hyperspectral images have rich information in their spectral bands which are
used for high image tasks like image classification and object detection. These recog-
nition and detection problems have significant use cases in the Department of Defense.
Unmanned Aircraft Vehicle (UAV) is one of the examples of such use cases where we
can automate and monitor surveillance of a location. Dynamic Data Driven Applications
System (DDDAS) is one of the paradigms in which we want to have a dynamic feedback
loop based on collecting the data, using the machine learning models to implement the
high level tasks like classification and object detection and continuously optimize it.
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Fig. 1. Cave Dataset with RGB image and Hyperspectral Images at different frequencies

In hyperspectral imaging, it is hard to obtain an image of high resolution due to the
hardware limitations of cameras. To reconstruct a high resolution of the hyperspectral
images we can do it by either using a high resolution RGB images or low resolution
hyperspectral images. The advantage of using RGB images is that devices that capture
RGB images are cheaper compared to the ones capturing hyperspectral images. The task
of reconstructing hyperspectral images from anRGB image is called Spectral Super Res-
olution. The task of SSR is challenging because each spectral band has different spectral
information shown in Fig. 1. The recent works in SSR are using CNN’s due to the recent
emergence of deep learning. They used a pixel wise loss function to learn hyperspectral
images. The pixel wise loss function smooths the image because of its characteristic
to decrease the mean square error. This characteristic of the loss function leads to los-
ing information during the reconstruction of the hyperspectral image. In our work, we
decompose the spectral bands into four subgroups and learn the hyperspectral image
by learning subgroups individually. The learning of the subgroups is done by learning
the DCT coefficients of the hyperspectral image. The DCT coefficients are learned by
using a deep residual network whose architecture is inspired by Enhanced Deep Resid-
ual Network (EDSR) [10]. DCT is an orthogonal transform which is generally used in
image and video compression. DCT of an image has frequency separation properties
which help us to learn hyperspectral images efficiently. Using our approach, we adopt
the DDDAS paradigm in surveillance by instead of using an expensive hyperspectral
camera we use an RGB camera and learn hyperspectral images in real-time and perform
high-level vision tasks.

The rest of the paper is organized as follows. In Sect. 2 we review the related works
in SSR. In Sect. 3 section we give a brief introduction of our novel DCT decomposition
based SSR. In the results section, we compare our results with state of the art methods.
In the final section, we provide conclusion of our work and future work that could be
explored.

2 Related Works

The initial work on Spectral Super Resolution used interpolation methods [8] to predict
information in spectral bands. The interpolation was done in the number of channels
where 3 input RGB is converted to multiple channels by interpolation. In [2] they used
hyperspectral priors to construct a sparse dictionary learning using K-SVD and then they
used Orthogonal Matching Pursuit (OMP) on RGB images to get hyperspectral images.
There have been few works using CNN’s for SSR [1, 3, 4, 12, 14, 15, 17]. The initial
work using CNN for SSR was done by [4] the architecture they used was inspired by the
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classification network Densenet [9]. They modified the architecture of the classification
network to have a regression type of problem for predicting the spectral information
of the bands. In [3] they used a CNN architecture that has residual networks that were
inspired by ResNet [6]. They found out that previous work using Densenet architecture
for SSR was overfitting the data so they used residual blocks to avoid overfitting of the
data. Inspired by the work of UNet [11] in Image Segmentation [15] implemented a
network structure which captures the spectral information in multiple scales. In Unet
architecture, we initially downsample the features and then upsample them back to their
original spatial size. The downsampling leads to a constant increase in the receptive field
size of the network and by doing that we can find local and non-local information which
could be used for finding the missing information in spectral bands.

Fig. 2. Our Proposed Method where RGB image learns DCT Low Frequency and DCT High
Frequency information

In HSCNN [14] they adapted VDSR architecture for SSR. In HSCNNN we need to
do pre-processing where we need to do a spectral upsampling operation of converting
from 3 channels to 31 channels. In [12] they do spectral upsampling by using a simple
convolutional layer. HSCNN also fails to adapt towhen using deeper sizes of the network
this is also fixed in HSCNN+ . There are 3 different HSCNN+ architectures HSCNN-u,
HSCNN-R, HSCNN-D. HSCNN-u is very similar to the work of HSCNN, the only
difference is the spectral upsampling operator is replaced by a 1× 1 convolutional filter.
HSCNN-R we have a 3× 3 convolutional layer as a spectral upsample operator and we
also havemultiple residual blocks and the architecture is very similar to EDSR.HSCNN-
D adapts a dense network structure for the reconstruction of hyperspectral image. Both
HSCNN-R andHSCNN-D are state of the art results in SSR for the NTIRE 2018 spectral
reconstruction challenge [13].

In our work, we adapted a transform based learning where we transform images into
the DCT domain and learn the SSR in the DCT domain. There have been few works for
CNN based classification networks using DCT in [7] In Super Resolution there are few
works that have used transform based learning. In [5] they constructed a CNN based
Super Resolution where they learn the task via learning the DCT coefficients. In SR low
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resolution image and high resolution image they mostly share the same low frequency.
In our work, we used domain transform learning for SSR.

3 Proposed Method

In this paper, we present ourDCT transformbased learning for Spectral SuperResolution
which is shown in Fig. 2. Our proposed method instead of directly learning the pixel
domain we do a DCT transform and learn the coefficients in the DCT domain DCT is
an orthogonal transform and it converts an image in the pixel domain to the frequency
domain. Most of the energy in DCT in is in low frequency components. Low frequency
components are known to have most of the information most of the useful information in
an image. In [5] they proposed that the low frequency information remains the same for
low resolution and high resolution image and they adapted an SR based CNN to learn
those missing high frequency image. The learning was done in the frequency domain
and then converted back to the image domain using inverse DCT.

FromFig. 1we can see that the imageswhich are in 400nmhave different information
in terms of pixel intensities when compared with 500 nm, 600 nm,700 nm. So in our
work, we decomposed the 31 bands into 4 subgroups with 1–8 bands as 1st group,
9–16 as 2nd group, 17–24 as 3rd group and 25–31 as 4th group. So we try to learn
the subgroups DCT coefficient values from an RGB image. Generally, for images, we
perform a 2D DCT but in our case, we perform a 1D DCT along with the bands of
the hyperspectral image. This can be viewed as a channel-wise DCT operation on the
hyperspectral image. So basically, we are grouping the 31 bands into 4 subgroups and
then do DCT channel-wise on the subgroups. DCT has energy separation properties
where we can separate low frequency information and high frequency information. So,
after decomposing into subgroups we further decompose the DCT coefficients into low
frequency information and high frequency information. In our work, we used the first
DCT coefficient transform as low frequency information and rest coefficient transform
as high frequency information. The first transform will have the most of the information
in the image due to the energy property of the DCT. We indicate the low frequency
transform as DC and other high frequency information as AC transform and we can see
from Fig. 3 that most of the information is in DC transform and high frequency transform
there isn’t much information.

In our work, we have adapted network design which was inspired by the SR net-
work called EDSR [10]. The architecture is very similar to EDSR except for having up
sampling blocks. Our network has 3 convolutional layers with 3 × 3 as kernel size and
a residual block which has 2 convolutional layers of 3× 3 kernel size and one Rectified
Linear unit (ReLU) activation function. We use a different number of residual blocks for
low frequency and higher frequency components. For low frequency, we used 8 residual
blocks in the network and for high frequency, we used 4 residual blocks. As shown in
Fig. 2 our model learns the low frequency and high frequency DCT coefficients from
2 EDSR kinds of network and then we perform Inverse DCT on the frequency infor-
mation and learn the hyperspectral image. Let the input RGB image be denoted as x
and our ground truth is a hyperspectral image of 31 bands and is denoted by y and then
we decompose the hyperspectral image into m subgroups and then we do DCT on each
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subgroup and DCT transform can be denoted as

Yk1,2,...,m =
∑N−1

n=0
yn1,2,...,m cos

[
π

N

(
n+ 1

2

)
k

]
(1)

In the above equation N denotes N-point DCT and it also implies the number of
bands in each subgroup and m denoted the number of subgroups. The CNN tries to
learn a non-linear relationship from input RGB image to DCT coefficient Yk

∧

. The loss
function we used to train the network was L1 Loss and is given by

L1 = 1

N

∑N

i=1
Yki − f (xi, θ) (2)

where Yk and xi denote the ith sample of the image. f denotes themapping function of the
CNN from the pixel RGB domain to the DCT coefficient domain YK. The θ represents
the parameters involved in the training of the network.

4 Experiments and Results

4.1 Experimental Setup

For our experiments, we have used the CAVE dataset [16]. The CAVE dataset has 31
hyperspectral indoor images and has 31 bands ranging from 400 nm to 700 nm with
a 10 nm difference in each band. Each image has a Spatial Resolution of 512 × 512.
In CAVE dataset we divided the dataset into 21 images for training and 10 images
for testing. In order to increase the number of samples for training samples for our
network we randomly extract 500 64× 64 patches from the images for both CAVE. For
data augmentation, we also randomly flipped the patches vertically or horizontally. The
receptive field sizes for our low frequency network and high frequency network were 39
and 23 respectively. The optimizer we used was Adam optimizer with default parameters
and we used batch sizes of 32 for low frequency and high frequency networks. The Loss
function we used was L1 loss and we used a learning rate of 1e-4 and exponentially
decayed the loss by 0.90 every epoch.

Fig. 3. DCT transform images from CAVE dataset showing low frequency and high frequency
information.
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4.2 Performance Evaluation

In ourwork, we have compared our results with state of the art HSCNN-R. For evaluating
parameters, we have used metrics like Peak Signal to Noise Ratio (PSNR) and Structural
SimilarityMetrics (SSIM). From Table 1 we can observe that our network performs well
when compared to the state of the art HSCNN-R. Our networks perform well when the
band’s wavelength range from 400–640 nm and doesn’t work as well in wavelength
of bands from 650–700 nm. We also implemented a transform based learning where
we learn DCT coefficients of all bands instead of doing sub grouping. The PSNR of
the DCT based learning without dividing into subgroups was 29 dB. Our grouping into
bandsworkswell becausewhenwe doDCT the bands have some co-relation information
and DCT exploits it by separating the information into a low and high frequency which
makes the learning easier. In bands with the higher spectrum, it is harder to separate
the low frequency and high frequency information that’s why our network works worse
than HSCNN-R (Fig. 4).

Fig. 4. Visual Comparison of different spectrum information of test images in CAVE dataset.
From top to bottom we have ground truth difference map between ground truth and predicted
image from HSCNN-R and our work

Table 1. Test Results on Cave Dataset

Type PSNR SSIM

1–8 Bands 35.61 dB 0.967

9–16 Bands 37.32 dB 0.980

17–24 Bands 37.89 dB 0.980

25–31 Bands 29.12 dB 0.924

All Bands 32.90 dB 0.968

HSCNN-R 32.27 dB 0.959
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5 Conclusion and Future Work

In this paper, we proposed aDCTdomain based learning for learning theDCT coefficient
information by using a Residual Dense network. This one of the first work which used
a DCT transform based learning for SSR. As we trained different network on each
subgroup we can dynamically adapt our algorithm to learn only certain bands of the
hyperspectral image which could be used in surveillance. The hyperspectral image in
our case was divided into 4 subgroups and then further decomposed using DCT into low
frequency and high frequency information. After learning the DCT coefficients we do
inverse DCT on the learned coefficients so our learning is not end to end architecture.We
performed test on benchmark dataset called CAVE dataset and we compared our work
with state of the art HSCNN-R andwe showed that our work has better performance than
HSCNN-R. From our results we also showed that DCT works well with bands ranging
from 400–640 nm but performance is not as good at higher spectrum. In future work we
have to find better spectral resolution in higher spectral domain regions. In future work,
we can also consider using other types of domain transform like wavelet transform to
learn the textural information lost due to using pixel wise loss function.
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Abstract. Scene classification is an important computer vision problem
with applications to a wide range of domains including remote sensing,
robotics, autonomous driving, defense, and surveillance. However, many
approaches to scene classification make simplifying assumptions about
the data, and many algorithms for scene classification are ill-suited for
real-world use cases. Specifically, scene classification algorithms generally
assume that the input data consists of single views that are extremely
representative of a limited set of known scene categories. In real-world
applications, such perfect data is rarely encountered. In this paper, we
propose an approach for active scene classification where an agent must
assign a label to the scene with high confidence while minimizing the
number of sensor adjustments, and the agent is also embedded with the
capability to dynamically update its underlying machine learning models.
Specifically, we employ the Dynamic Data-Driven Applications Systems
paradigm: our machine learning model drives the sensor manipulation,
and the data captured by the manipulated sensor is used to update the
machine learning model in a feedback control loop. Our approach is based
on learning to identify prototypical views of scenes in a streaming setting.

Keywords: Computer vision · Scene classification · Prototype
learning · Active vision · Active learning · Dynamic data driven
applications systems

1 Introduction

1.1 Motivation

Scene classification is an important computer vision problem with applications to
a wide range of domains including remote sensing, robotics, autonomous driving,
defense, and surveillance. Many approaches to scene classification make simpli-
fying assumptions about the data, and many of the algorithms for scene classi-
fication are ill-suited for real-world use cases. For example, many of the popular
datasets for scene classification only consider single views of a scene sampled
from a finite set of scene categories, and these views are often extremely repre-
sentative of its scene category. In real-world applications, data is much noisier.
Consider a robot designed to explore an indoor environment. If the robot is
c© Springer Nature Switzerland AG 2020
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randomly placed within the environment, it might encounter views belonging to
one of four categories: 1) informative views that are representative of the scene,
2) uninformative views that give little to no useful information about the scene
(e.g., the robot is facing a blank wall), 3) atypical views that might be adversar-
ial or misleading (e.g., the robot is looking through a doorway or window into a
different type of scene), and 4) incomplete views that provide some information
about the scene, but do not fully describe the scene (e.g., the robot sees a view
which includes a sink, which can be indicative of either a kitchen or bathroom).
The agent must be capable of intelligently exploring such complex environments,
and this requires the agent to operate under an active vision paradigm [1–4,13]).

Likewise, closed set assumptions about scene categories are rarely satisfied
in real-world applications. Sometimes, an agent will encounter a scene unlike
any it has previously encountered. When the agent encounters such scenes, it
should have the capability to update its internal knowledge and machine learning
models. Similarly, for many real-world applications, training data might not be
immediately available, and once again, the agent must have the capability to
continuously update its internal models in a streaming manner (i.e., as every
new data point is encountered). Thus, the agent should be capable of performing
active learning [42].

1.2 Overview of Approach and Contributions

In this paper, we introduce and propose an initial solution for the problem of
active scene classification. Active scene classification involves assigning a label
to a scene, but unlike in traditional scene classification, instead of assuming a
single, representative view of the scene as input to the scene classifier, we assume
that an agent can manipulate its sensor to capture multiple views. In this paper,
we consider a simple demonstration application whereby an agent is placed in
the middle of an indoor room and can rotate 360◦ along a set axis. The sensor
attached to the agent is a standard electro-optical RGB camera. We simulate
the agent using a subset of the SUN360 dataset [46] of panoramic scene images.
The goal of the agent is to assign a label to the scene with high confidence while
minimizing the number of sensor adjustments.

We formulate a novel approach to this problem based on the Dynamic Data-
Driven Applications Systems (DDDAS) paradigm [16]. In a feedback control
loop, we employ a machine learning model that drives the sensor manipulation
(by adjusting the orientation of the robot and as a result, its camera), and the
data captured by the manipulated sensor is used to update the machine learning
model. Our approach is built upon prototype learning (see [33] for an overview).
The key technical contribution of this paper is a machine learning model that
learns prototypical views of scenes in some given feature space. When the agent
encounters a new view, it must decide whether:

– The new view is close enough to one of the informative prototypical views
(i.e., views highly associated with a specific class) to confidently assign a label
to the scene.



Active Scene Classification via Dynamically Learning Prototypical Views 181

– The new view matches an uninformative prototypical view (i.e., a view that
is commonly encountered but does not strongly correlate with a specific class,
such as a blank wall) and offers little useful information.

– The new view is atypical of past views and should be treated as a new pro-
totypical view.

– The new view provides some useful but incomplete information, and the
agent’s sensor must be adjusted to gather more information about the scene,
so the model can make a decision with higher confidence.

Every time a scene is assigned a class label, the prototype-based machine learning
model is updated using sensor data collected from all of the views of the given
scene encountered up to and including the decision-making time step.

2 Related Work

2.1 Active Learning, Active Perception, Informative/Information-
Theoretic Planning/Perception/Learning, and Dynamic
Data-Driven Applications Systems for Scene Understanding

Our work is closely related to the active vision/perception paradigm [1–4,13].
Active vision is primarily concerned with modeling the task of visual percep-
tion as a dynamic and purpose-driven process whereby some set of observers
actively control one or more imaging sensors. In the active vision literature,
our problem setting is most similar to Li and Guo’s work on active learn-
ing for scene classification [31] which extends the scene classification task to
include an active learning component that improves a machine learning-based
model when unexpected scenes are encountered. In contrast to our approach,
[31] only operates on data consisting of clean, single views, and as such, there
is no exploration of noisy scenes. Another problem that is similar to ours is
the active scene recognition problem proposed by Yu et al. [48]. This approach
exploits high-level knowledge (e.g., object information) in order to actively guide
a machine learning-driven model’s attention in scene images and videos in order
to improve performance on the scene classification task. As with [31,48] assumes
clean, single view images and video. Furthermore, [48] does not address situ-
ations where unknown scenes might be encountered. Other less-related works
attempt to merge active learning/vision with the scene classification task. These
works include [5,29,30,38,39,49]. Our work is also related to other important
problems in active vision for scene understanding, including active scene explo-
ration [25,43], viewpoint selection [10,15,44,45], and active object localization
and recognition (e.g., [11,14,21,26,37]).

Our work is also related to informative planning (e.g., [6,7,34]), information-
theoretic perception (e.g., [12,43]), and information-theoretic active learning
(e.g., [32,35]). In each of these cases, the next set of actions/waypoints (plan-
ning), next set of sensor adjustments (perception), or next set of data samples
(learning) are selected based on optimizing some information-related criteria.
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Our method is related to these paradigms because it involves selecting the next
view using a greedy entropy-based criterion.

As stated previously, our approach also follows the Dynamic Data-Driven
Applications Systems (DDDAS) paradigm [16], which involves a feedback loop
between sensor manipulation and a data-driven modeling component. Other
works utilize the DDDAS paradigm for various tasks in scene understanding, but
generally not scene classification. Such tasks include automatic target recogni-
tion and tracking (e.g., [8]), situational awareness (e.g., [9]), and environmental
monitoring and weather forecasting (e.g., [18,19]), among many others.

2.2 Prototype Learning

Our work is based on prototype learning, a classic pattern recognition prob-
lem where predictions are made by comparing a query instance to a small set
of prototypes/prototypical instances that are learned automatically from some
training data. Prototype learning is similar to the k-nearest neighbor classifi-
cation algorithm, but tries to reduce memory requires by identifying a small
subset of the most representative training instances or a small set of abstract
“prototype” vectors derived from the training data. Many works have explored
this direction, including but not limited to: [17,22,24,27,28,33,40,41,47].

Fig. 1. An example scene from our dataset.

3 Problem Setup/Data

We utilize a subset of the SUN360 dataset [46] of panoramic scene images, which
allows us to easily simulate manipulating an agent with a camera to obtain
different views. We select 14 common scene categories, and annotate 36 instances
for each scene category. For each instance, we extract eight views at evenly spaced
intervals. Thus, our dataset consists of 504 scenes with a total of 4,032 images.
We show an example scene in Fig. 1.
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4 Methodology

We now outline our technical approach. The agent encounters a scene S consist-
ing of a set of views V . Each view v has a score cv, which quantifies the potential
of that view to contain discriminative information about the scene. Initially, cv
is set to a constant (2 in our experiments). In our experiments, the first view is
selected randomly. Our algorithm operates as follows:

Active Scene Classification with Prototypes Algorithm
� Extract features from the view image using a ResNet-50 convolutional neural
network [23] pre-trained on the Places-365 dataset [50].
� If the set of prototypes is empty:
�� Query a human for the scene category label, and make the view a prototype.
�� Extract features for the remaining views of the scene.
�� Update the prototype vectors using MacQueen’s sequential k-means algo-
rithm [20,36], or if any view is more than distance δ (a hyperparameter; 10 in
our experiments) away from all existing prototypes in Euclidean space, use it to
start a new prototype.
�� For each prototype p, store a “support” histogram hp of how many past
instances have been assigned to the prototype (i.e., the prototype is the nearest
prototype to the instance and the distance between the prototype and instance
is less than δ) during exploration.
� Otherwise:
�� Find the nearest prototype.
�� Compute the discrete probability distribution πp over all classes already
encountered for the nearest prototype pnear. Recover the probability distribution
for potential class assignments for the current view πvt = πpn e a r and the sup-
port histogram for the current view hvt = hpn e a r using the nearest prototype.
�� Find the support histogram for the current scene hSt by summing the sup-
port histograms for all views already encountered. Normalize the histogram to get
the probability distribution over potential class assignments for the scene: πSt .
�� Compute the entropy of the scene-level probability distribution (πSt ): eSt .
If the entropy of the distribution is high, then we are not yet confident enough
to make a prediction about the category of the scene. This is because either the
prototypes associated with each of the seen views provide conflicting information
(e.g., different predictions), or the prototypes are not discriminative for a single
class (e.g., the prototype represents a blank wall).

�� Compute an “evidence” score as nSt = min(1,
∑

i hi
St

m
). The evidence score is

indicative of how much trust can be placed on the prototypes used to form the
decision (i.e., confidence in the probability distribution associated with a set of
specific prototypes). m is a hyperparameter (20 in our experiments) which corre-
sponds to the minimum number of training views that should be associated with
the prototypes to consider πSt “trustworthy”.
�� Perform a test to see if a prediction can be output. If eS < ε (ε is a hyper-
parameter corresponding to the maximum entropy that can be tolerated; 1.6 in
our experiments) and hS = 1, then the model should have high confidence when
outputting a prediction.
�� If the scene-level tests pass:
��� Output the prediction. Exploration ends.
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�� If the scene-level tests fail:
��� Compute the entropy evt and evidence scores nvt just for the current view
and run the same tests as before using evt and nvt instead of eSt and nSt . An
additional test must be run to checks whether the distance to the nearest proto-
type is less than δ.
��� If the view-level tests pass:
���� The single view provides very strong evidence in a favor of a specific class.
Output the prediction for that class. Exploration ends.
��� If both the scene-level and view-level tests fail:
���� Update the neighboring views’ cv score by averaging them with the
entropy of the current view evt . If the current view provides strong evidence
in favor of a specific class, its neighboring scores will be more likely to provide
strong evidence in favor of a specific class, and if the current view is not very
discriminative for any class (e.g., it is a blank wall), then the neighboring views
will be less likely to contain useful information.
���� Set the current view to the remaining view with the lowest c score
���� Repeat the procedure with the next view, and repeat until a prediction
is output or no views remain.
�� When a prediction was output or no views remain unexplored:
��� Use the feature vectors for each of the seen views of the scene to update
the prototype vectors using MacQueen’s sequential k-means algorithm while also
updating the corresponding support histograms for each prototype (verifying the
prediction with a human). If the instance is more than distance δ away from all
existing prototypes in Euclidean space, use it to start a new prototype.
��� Store the feature vectors and true classes of all of the seen views.
��� After every k scenes (in our experiments, k = 30), do a full batch update
of the support histograms for all prototypes using all past data (since prototypes
can drift in feature space).

5 Experimental Results

We run our experiments over our 504 scenes. We randomize the order of the
scenes, and we randomly pick the first view. For each scene, we record if the
model made a correct prediction, the number of views it needed to examine
before making a prediction, and the number of prototypes learned up to that
scene. We report results in Fig. 2. We make a couple of general observations,
most of which are to be expected:

– As the model encounters more scenes, its ability to correctly predict the scene
category improves, and it achieves an accuracy rate of 55–65%.

– As the model encounters more scenes, it more efficiently explores the scene.
By the final scene, on average, it only uses about four to five of the eight
available views before confidently making a decision.

– The number of prototypes learned by the model grows much slower than the
number of views encountered, so the learned prototypes efficiently encode
useful scene information.
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Fig. 2. Left: As the model encounters more scenes, it improves its ability to predict
the scene category. Center: As the model encounters more scenes, it more efficiently
explores the scene; ultimately only using on average about four to five of the eight
available views before confidently making a decision. Right: The number of prototypes
learned by the model grows much slower than the number of views encountered.

6 Conclusions and Future Work

We identified several ways the standard scene classification task is ill-suited for
real world applications, and we proposed the active scene classification prob-
lem. We proposed a prototype-based method within the DDDAS paradigm as
a first attempt to solve the active scene classification problem. In our DDDAS
framework, sensors collect information about a scene, and this sensor data is
used to learn and update a prototype-based model. In a feedback control loop,
the prototype-based model determines how to adjust the sensors to collect more
information about the scene. We showed the utility and feasibility of our method
experimentally and demonstrated some promising results. However, active scene
classification is far from solved, and our method has its limitations. First, we
assume the features live in Euclidean space, which might not be a valid assump-
tion. Instead, we should try to incorporate metric learning into our framework.
Second, there are likely better ways to balance exploration and exploitation when
learning the prototypes, e.g., via reinforcement learning. Third, many hyperpa-
rameters were set by hand; we envision performance could improve if we utilitized
a hyperparameter optimization method.
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Abstract. We characterize the stochastic dynamics of Neural Learn-
ing to develop Informative Ensemble Kalman Learning. Specifically, an
adaptive Ensemble Kalman Filter replaces backpropagation to quantify
uncertainty and maximize information gain during Learning. Demon-
strating competitive performance on standard datasets, we show Struc-
ture Learning using the Informative Ensemble Kalman Learner quickly
recovers the dynamical equations of the Lorenz-63 system ab initio from
data. Results indicate that extending DDDAS key informative paradigm
to optimize Learning Systems is promising.

Keywords: Deep learning · Ensemble Kalman Filter · Informative
learning · Systems dynamics and optimization

1 Introduction

The use of data to dynamically control an executing model and, conversely,
using the model to control the instrumentation process is a central tenet of
Dynamic Data Driven Applications Systems. Applications such as Cooperative
Autonomous Observing Systems (CAOS) embody this paradigm [1] in a stochas-
tic system’s dynamics and optimization (SDO) loop, maximizing information gain
from model predictions to plan observations or select sensors for improved model
estimation or reduction. Variously called informative-planning, -estimation, or -
sensing, this approach improves nonlinear, high-dimensional stochastic process
modeling and prediction, including systems with epistemic uncertainties.

Learning machines are in demand as surrogate or hybrid models for SDO,
but SDO is rarely applied to Machine Learning. In particular, Neural Learning
dynamics are also stochastic, nonlinear, and high-dimensional. Could DDDAS’
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informative approach help machines learn better or faster? In addition to improv-
ing CAOS, we posit doing so would broadly impact Machine Learning.

From a systems perspective, training a neural network is parameter estima-
tion [14], and backpropagation [10] restates the variational solution to multistage
two-point boundary value problems [2] (2BVP). In practice, Learning implies
stochastic dynamics (e.g., due to mini-batches) and the associated Fokker-Planck
equations describe the evolution of parameter uncertainty. Much like in nonlinear
dynamics, an ensemble approximation to the Fokker-Planck, e.g., the Ensemble
Kalman Filter [3], can train a neural network. The benefits include adjoint-free
Learning, parallelism, and quantified uncertainty.

The uncertainty quantification benefit implies that one could optimize Learn-
ing by maximizing information gain between the training error distribution and
key variables. Doing so unifies several paradigms, including parameter selection
(Feature/Model Selection), input selection (Relevance and Active Learning), and
term/variable selection (Structure Learning). Thus, by analogy to informative
approaches in DDDAS, Informative Learning is the coupling of stochastic learn-
ing dynamics with maximization of information gain.

Although this paradigm is not new from a DDDAS perspective, we cannot
ignore the unifying formalism or practical benefits from a Machine Learning
perspective. Due to space limitations, we refer the reader elsewhere [14] for
details of the stochastic methodology and learning paradigms. Here, we focus on
a few critical numerical examples.

First, we show that an adaptive version of the Ensemble Kalman Learner
is competitive with backpropagation [10] on standard datasets. Second, we use
Informative Ensemble Kalman Learning to learn the structure and parameters of
a neural dynamical system [15]. We use numerical simulations of the Lorenz sys-
tem [6] as training data to demonstrate successful generalization, extrapolation,
and interpretation. We can do this because numerical solutions of dynamical sys-
tems with polynomial nonlinearities have exact Neural Networks [15]. Thus, neu-
ral structure learning reveals the dynamical equations (terms and coefficients).
We show that the Informative Learning approach rapidly learns the Lorenz-63
equations to numerical accuracy, ab initio, from simulated data. It is both uncer-
tainty aware and sparsity promoting but without iterative burdens, which is an
exciting result.

The rest of this paper is as follows. Section 2 describes related work. Section 3
describes Ensemble Kalman Learning, and Sect. 4 uses it for Informative Struc-
ture Learning.

2 Related Work

There are connections between Informative Learning and Active Learning [13].
However, the latter does not embody a stochastic dynamical perspective. Infor-
mative Learning is related to applications in planning and estimation [1]; Learn-
ing has scarcely seen such methodology applied. The application of the Ensemble
Kalman Filter [3] to Learning has received scant interest so far. However, adap-
tive Ensemble Kalman Learning proposed here offers competitive performance,
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and Informative Ensemble Kalman Learning is new. Ensemble Kalman Learning
is itself related to Bayesian Deep Learning [16], but it remains distinct from the
extant methodology that typically emphasizes variational Bayesian approaches
or Bayesian Active Learning [13].

The stochastic dynamics of Learning naturally form a Markov chain [11].
Stochastic gradient descent using Kalman-SGD [7] and Langevin dynamics [17]
have both been developed, but these are unrelated to our work. Finally, learning
physics from data [8] is receiving some attention, but our proposed approach is
new. Neural structure optimization has also received some attention [18], but our
approach still appears to be novel. Note that the presented Informative Ensemble
Kalman Learning paradigm is applicable wherever backpropagation is. In fact,
it can be broadly applied to other learning systems as well.

3 Ensemble Kalman Learning

In this section, we describe a framework for Informative Learning briefly, refer-
ring the reader to details elsewhere [14]. Let us define a standard Neural Network
as a N -stage process [2]:

xl+1 = Fl+1(xl, ul;αl) yN = xN + νN 0 ≤ l < N (1)

where xl ∈ R
nl,x are the layer l nodes, Fl is the function, αl ∈ R

nl,α are the
weights and biases, ul ∈ R

nl,u represents feed-forward (e.g. ResNet) or feed-
back terms (e.g. recurrent network). The vector yN ∈ R

ny refers to (imperfect)
training outputs with additive noise νl ∈ R

nl,ν . All subscripted variables n· are
positive integers. We may refer to the network as a single function embedding
all layers:

xN = FNN (x1, u;α) (2)
Here, α is the collection of network weights and biases, and a training sample
s is ([x1, yN ]s). We are also interested in neural dynamical systems which are
dynamical systems described at least in part by neural networks [15]. A special
case is a discrete-time autonomous system:

xi+1 = F (xi, ui;α) yi = h(xi) + νi (3)

Where xi is the network input at time step i, h is the observation operator and
νi is additive observational noise. These equations also have standard systems
interpretations in terms of state, parameter, and control input and measure-
ment/output vectors. Please note that the network types defined here are nec-
essary to apply DDDAS concepts to Learning in this paper, but the definitions
are incomplete (e.g., missing stochastic neural dynamical system).

Training a neural network using backpropagation, although not commonly
described as such1, is equivalent to solving a two-point boundary value prob-
lem adjoined with the dynamics as mentioned above in Eqs. 1–3. However, it is
challenging to be uncertainty aware or informative this way.
1 See course at http://essg.mit.edu/ml.

http://essg.mit.edu/ml
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An alternative to 2BVP is the ensemble approach [3,9] to Learning, which is
akin to its use in parameter estimation for nonlinear dynamics and admits both
stochastic dynamical and Bayesian estimation perspectives. Specifically, consider
the Ensemble Kalman Filter (EnKF) [3,9], which fundamentally leverages a
sample approximation to gradients for inference.

For the purpose of this discussion, we interpret Eq. 3 as a standard discrete
dynamical system with Gaussian observational noise νi ∼ N (0, R = r2I). Defin-
ing Xi = [xi,1 . . . xi,E ] to be a matrix of E state (column) vector samples obtained
by solving F model equations from an initial condition ensemble at the previous
time step, and define an observational projection Zi = [h(xi,1) . . . h(xi,E)] and
Y = [yi,1 . . . yi,E ] as an ensemble of observations2. We adopt the notation that Q̃
is a deviation matrix obtained by removing the mean column vector of Q from
its columns. Then, the filter state estimate X+

i may be written as

X+
i = Xi + X̃iZ̃

T
i [Z̃iZ̃

T
i + R]−1(Yi − Zi) = XiMx,i (4)

The EnKF in Eq. 4 is a weakly nonlinear update, and it also enables building
Lagged filters and smoothers equivalent to 2BVP [9]. For parameter estimation,
let Ai = [α1 . . . αE ]i be the matrix of parameter samples at time-step i. The
parameters are assumed to persist from one time step to the next in the absence
of observation. Thus, the update is:

A+
i = AiMα,i+k k > 0 (Parameter Estimation) (5)

Here, an initial ensemble of parameters at initial condition and fixed control
input sequence (wlog) is used for a k − step ensemble simulation to derive a
parameter update. The matrix R is just the observational covariance.

Fig. 1. The Ensemble Kalman Learner offers competitive performance on Boston Hous-
ing and MNIST datasets relative to backpropagation.

Parameter estimation immediately provides the basis for neural learning. In
particular, consider A1 to be the initial parameter ensemble (generated with a

2 Perturbed observations are used here for simplicity. This is not strictly necessary.
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first-guess Gaussian distribution) and Bi to be the minibatch of size S at iteration
i. Then,

Ai+1 = Ai
1
S

∑

s∈Bi

Mα,i,s i > 0 (Learning) (6)

In this formulation, Mα,i,s is the update produced at iteration i from the ensem-
ble simulation of neural networks for each parameter ensemble member Ai and
each training sample [x1, yN ]s∈Bi

. Thus S×E parallel simulations are performed.
The “noise model” (R) is used to specify a tolerance or performance index in
achieving training outputs. The resulting Ai+1 are then the parameters at itera-
tion i+1. The same approach are applicable to recurrent systems (with rollout)
and neural dynamical systems. In contrast to 2BVP it is applicable to stochastic
neural dynamical systems and learning systems in general.

Ensemble Kalman Learning has several interesting properties. Network lin-
earization and analytical parameter gradients are unnecessary; loss functions
are not limited. The directly-obtained uncertainty estimates further allow us
to quantify information gain. In contrast to 2BVP, all layer weights update in
parallel. Parallel simulations further reduce computational expense. For small
parameter ensembles, the update is compact.

We conducted examples with the Boston Housing [4] and MNIST [5]
datasets3. For Boston Housing, we use a neural network with two 32-neuron
hidden layers, ReLU activations, least-squares loss function, minibatch of size
16, and 100-member parameter ensemble. IID zero-mean Gaussian with a stan-
dard deviation of 0.01 generates the initial parameter ensemble, and the target
tolerance is r = 0.01. SGD with a learning rate of 0.1 in backpropagation. The
results (see Fig. 1) show that the Ensemble Kalman Learner achieves a converged
error similar to tuned backpropagation within five epochs.

The MNIST dataset [5] network architecture consists of two batch-normalized
convolutional layers, max-pooling, and ReLU activations, followed by a single
ReLU-activated linear layer of width 10, finally followed by a softmax-activated
categorical output layer. We use a least-squares loss function, minibatch size 16,
parameter ensemble size 1000, and a target error tolerance of 0.015 to match the
observed performance of a highly-performing backpropagation-trained network.
Furthermore, the target error tolerance adapts as ensemble variance reduces,
up to a lower bound of 0.0015. SGD, with a learning rate of 1.0, is used for
backpropagation. The Ensemble Kalman Learner achieves a final test accuracy
of 97.1%, competing well with backpropagation at 97.9%. It does this while
maintaining better stability at a high learning rate.

4 DDDAS: Informative Structure Learning

In this section, Informative Ensemble Kalman Learning is developed and applied
to Neural Structure Learning, a difficult problem. For example, just learning
y = x2 with a tanh activation node is hard (tanh has no even Taylor expansion

3 Obtain code from https://github.com/sairavela/EnsembleTrain.git.

https://github.com/sairavela/EnsembleTrain.git
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terms). In general, a poor structural basis, poor interpretability, generalization,
and extrapolation are all confounding factors. However, in the restricted set-
ting of learning the structure of neural dynamical systems [15] trained from the
non-trivial and large class of polynomial dynamics, these issues are overcome.
Neural networks with multiplicative gates [15] represent dynamical systems with
polynomial nonlinearities exactly. Therefore, learning neural structure from data
generated by polynomial dynamics is exactly equal to recovering the polynomial
equations (terms and coefficients). Here, consider the problem of learning neu-
ral structure and parameters from data generated by numerical solutions to the
chaotic Lorenz-63 [6] system4, which is defined as:

ẋ1 = σ(x2 − x1), ẋ2 = ρx1 − x2 − x1x3, ẋ3 = −βx3 + x1x2. (7)

Suppose the starting model is a second-degree polynomial with nine terms
per equation X =

(
x1, x2, x3, x1x2, x1x3, x2x3, x2

1, x2
2, x2

3

)
. There are

thus 27 unknown parameters {aij}, where i indexes x1...3 and j indexes X.
The “true” Lorenz equations are simulated from an arbitrary initial condition
x0 = (−1.1, 2.2,−2.7) with parameters σ = 10, ρ = 28, and β = 8/3, and
time step dt = 0.01. The model equations are also simulated using a parame-
ter ensemble of size 100, each initialized i.i.d. from Gaussian with mean 0 and
variance 100. If the parameter matrix for the kth ensemble member is denoted
Ak :=

[
ak

ij

]
, then AkXt are the predictions. The parameters are then updated

using Eq. 4.
When the Ensemble Kalman Learner estimates all 27 possible parameters,

the model system converges in approximately 85 iterations when we use an ini-
tial parameter mean 0, variance 100, and high-precision/small target variance
of 1 × 10−10. Actual parameters are recovered to within 3 × 10−4 with a pos-
terior variance of 3.2 × 10−7 with the “wrong” term coefficients going to zero.
Convergence was repeatable and, remarkably, required no additional sparsity
constraints.

However, there are clear limitations. The initial model is arguably quite close
to the true model because all true terms are given as options; in other words,
the true model lies within the space of candidate models. In general, this is not
the case, and the dimensionality of the starting model may be quite high.

The following Informative Ensemble Kalman Learning approach is a better.
Instead of automatically updating all terms using Ensemble Kalman Learning,
we automatically select a small initial subset of terms as candidates, then alter-
nate between parameter estimation and term selection until achieving sufficient
prediction accuracy. To select terms, we first quantify the pairwise mutual infor-
mation between each of the structure terms and each of the current model’s three
training error variables. Pairwise conditional mutual information assumes Gaus-
sian ensembles, but other approaches are feasible [12]. After that, greedy term
selection maximizes the cumulative sorted pairwise mutual information while
minimizing the number of terms selected. This is sparsity promoting but nonit-
erative and akin to information selection criteria, and thus faster than classical
4 Code may be found at http://github.com/sairavela/LorenzStructureLearn.

http://github.com/sairavela/LorenzStructureLearn
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Fig. 2. Convergence of the true parameters and variance reduction of chosen terms for
learning the structure of the Lorenz-63 system.

Fig. 3. Survival of terms over iterations. Green are the correct terms, red are unse-
lected, and blue are terms selected and later rejected. (Color figure online)

sparse optimization. The chosen terms augment the system equations. Ensem-
ble Kalman Learning proceeds for a specified variance reduction, at the end of
which terms with parameter values approaching zero leave the system equations.
The selection cycle repeats. Variances are then rescaled and balanced in the new
parameter ensemble, and Ensemble Learning proceeds.
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By alternating the maximization of information gain with Ensemble Learn-
ing, we recover the Lorenz system equations from the initial model ẋ1...3 = 0
within approximately 35 iterations requiring three or fewer selection steps. Not
only is this more efficient but the incremental selection-rejection (prediction-
correction) is automatic and overcomes the dimensionality concern. As shown in
Fig. 2, the true equations were recovered with parameter estimates within 1%.
The final system structure learned is structurally exact: ẋ1 = a11x1 + a12x2,
ẋ2 = a21x1 + a22x2 + a25x1x3, and ẋ3 = a33x3 + a34x1x2. The progression of
term presence in the equations throughout the term selection process can be
seen in Fig. 3.

5 Conclusions

DDDAS’s informative optimization paradigm applies to neural Learning. We
develop adaptive Ensemble Kalman Learning, and results on two standard
datasets were comparable to stochastic gradient descent. Informative Learning
promotes sparsity while maximizing information gain. We applied information
gain to learn the Lorenz system equations ab inito quickly and incrementally
without iterative optimization for selecting terms. In future work, discovering
equations of natural hazards and other tractable inference models for Learning
and Information Gain are of interest.
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Abstract. This paper presents a reachability set based method for
tracking maneuvering space objects in the presence of sparse measure-
ments. The proposed approach invokes the Dynamic Data Driven Appli-
cation Systems (DDDAS) paradigm by dynamically integrating model
forecasts due to uncertainties in maneuver capabilities with collected sen-
sor data to search and track for a non-cooperative satellite in a control
theoretic framework. The typically large time interval between measure-
ments from ground stations presents significant problems for tracking
satellites that have maneuvered during this interval. Using reachability
set propagation techniques and a particle filter update scheme, an intelli-
gently guided search algorithm is developed. This algorithm enables the
systematic reduction of likely reachable states until measurements of the
target are acquired and traditional tracking techniques can be resumed.
Numerical simulations of a space-based sensor tasking scenario are given,
however, the method is generic and can be extended to ground-based
sensors or a combination of both ground and space-based sensors.

Keywords: Reachability · Target tracking · Uncertainty quantification

1 Introduction

Dynamic Data Driven Application Systems (DDDAS) provide an important
avenue to detect, track and characterize resident space objects, by enabling
mechanisms to infer their orbit, orientation, shape, and number, and simultane-
ously providing a data driven feedback loop about which future measurements
are to be made to maintain the RSO uncertainties in the catalog below accept-
able threshold values [14]. Such a framework comprises of an interplay between
various algorithms and methods, catering to different SSA products. Refer-
ence [14] introduces a DDDAS paradigm for SSA applications called INFOrma-
tion and Resource Management (INFORM) which includes multi-modal sensing
architecture, advanced data association algorithms [1], track estimation tech-
niques [13], uncertainty quantification [3], RSO attribute estimation [14] and
dynamic resource/catalog management elements [2].
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An important aspect of space object monitoring is detection and tracking
of non-cooperative maneuvering space objects in a data-sparse environment. In
this respect, the scope of this paper is to summarize the INOFRM framework
components to locate and track a maneuvering satellite with the help of space
based sensing satellite.

Although there has been a lot of work in terms of tracking maneuvering
ground targets [4,9,10], relatively a little of this work is applicable to non-
cooperative space object tracking in a data sparse environment. This is pri-
marily due to the fact that most of these methods utilize different kinematic
models for target motion and needs to be updated to include dynamic of space
objects due to Earth’s gravitational field. Methods like multiple models [9]
are not directly applicable to space object tracking as one needs to consider
a prohibitively large number of models to accurately represent possible satellite
motion dynamics. Furthermore, most of the literature for non-cooperative target
tracking assumes that measurements are readily available during the maneuver
interval. This makes sense in data-rich applications where measurements are
available throughout the entire target trajectory such as ground or air target
tracking. Unfortunately, in most satellite tracking applications measurements
from ground stations are available only in sparse intervals due to the limited
number and coverage of sensors. Generally, an assumption of optimality about
the maneuver is made to reconstruct an orbit in data-sparse environment [8,11].

The objective of this paper is to summarize the recently developed frame-
work [6] for locating and tracking a maneuvering satellite in data-sparse environ-
ments without imposing assumptions on the target control policy. The DDDAS
framework proposed in this paper is composed of several interconnected compo-
nents, each with an important role in the success of the resulting location and
estimation capability. There are three main components that will be discussed:
1) Reachability Set Propagation, 2) Particle Filtering Algorithm, 3) Reachability
Set Search Algorithm. The reachability set calculations exploits dynamic model
forecasts due to uncertainties in maneuver capabilities to define a search space
for sensing station. A feedback loop is employed to define a strategy to collect
measurements in a dynamic manner and update this search space based upon
sensor observation data. Although this work considers a scenario of tracking a
single non-cooperative space object, the presented framework is generic in nature
and can be adapted for multiple target tracking.

The structure of the paper is as follows: first, a mathematical description for
non-cooperative target tracking is presented followed by a brief description of the
developed methodology. The paper concludes with numerical results correspond
to tracking a non-cooperative GEO object.

2 Problem Formulation

Assume a mixed continuous-discrete time dynamic system is given by,

ẋ = f(x,u, t), yk = h(xk, k) + νk (1)
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where x ∈ Rn is the state vector, u ∈ Rr is the control vector, and yk ∈ Rm is the
discrete-time observation vector. νk represents zero mean Gaussian measurement
noise vector with covariance Rk. The objective of the classical tracking problem
is to obtain the optimal estimate of x given the discrete set of measurements
up to time tk, Yk = {y1, y2...yk}. The problem considered in this paper is an
extended version of the generic tracking problem in which the target has made
an unknown maneuver um at an unknown time tm during the interval between
discrete measurements. This problem formulation is generic, however, the specific
case considered is the problem of tracking a maneuvering target satellite with
a space-based observer satellite. The system state for this problem consists of
both target state xt and observer state xob

x =
[
xt xob

]T
, xt =

[
rt vt

]T
, xob =

[
rob vob Θ

]T (2)

where ri and vi are satellite position and velocity vectors respectively, and Θ is
the observer attitude vector. The dynamic model f governing the position and
velocity of each satellite is the Hill-Clohessey-Wiltshire (HCW) model of rela-
tive motion [5], where the initial target state is the reference orbit. Maneuvers
in this model are considered to be impulsive Δv velocity changes, and impul-
sive ΔΘ angle changes for observer attitude. It is assumed that the observer
satellite Δv and ΔΘ maneuvers are deterministic. The unknown variables are
target maneuver um and maneuver time tm which are assigned probability den-
sity functions (PDFs) p(um) and p(tm), respectively. Hence, the objective of
the maneuvering target tracking problem is to compute the target state PDF
p(xt,k|Yk) for tk > tm > t0 given the joint input PDF p(um, tm). The contours
of the state PDF provide the search region for the sensor, and enable the design
of an observer search algorithm. This search region can then be updated in a
dynamic manner as observation data becomes available leading to a DDDAS
paradigm.

3 Methodology

This section describes the procedure used to implement the maneuvering target
tracking algorithm. In the context of this problem, the target PDF and target
reachability set are synonymous and used interchangeably. The mathematical
framework used to implement the maneuvering target tracking problem is a
modified version of the classical particle filter[12]. Particle filters are widely used
for general nonlinear filtering applications, however, they suffer from computa-
tional limitations especially in applications with high dimension. To circumvent
one of the primary computational burdens of the classical particle filter, this
method employs the higher order sensitivity matrix (HOSM) method for reach-
ability set propagation [7]. The procedure for searching the maneuvering target
reachability set is summarized in Fig. 1.

The HOSM method is substituted for the state propagation step in the clas-
sical particle filter, which reduces the computational burden normally associated
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Fig. 1. Reachability set search procedure

with particle propagation by several orders of magnitude. The sensitivity coeffi-
cients can be computed as:

xk+1 =
∫

f(x,u, t)dt ≈ Ckφ(ζ), cj,i =
〈xj , φi〉
〈φi, φi〉 (3)

where elements of the matrix C are sensitivity coefficients, and φ is an orthogo-
nal polynomial basis. Computing higher order sensitivity coefficients enables the
efficient propagation of the target reachability set. Once the target reachability
set is computed, the “optimal” observer control action are computed which max-
imizes the posterior detection likelihood of the target satellite computed using
the particle states x(i) and weights w(i):

max
uob

J = p(x+|Yk), p(x+|Yk) =
N∑

i=1

w(i)−pd(yk|x(i)−
k ) (4)

where pd is the likelihood of detecting particle x(i) from measurement yk. The
next step is to update the target PDF via the particle weights. This step is
performed using the classical particle filter weight update formula

w(i)+ ∝ w(i)−p(yk|x(i)
k ) → w(i)+ =

w(i)+

∑
w(i)+

(5)

where p(yk|x(i)
k ) is the likelihood function. There are two possibilities for the

measurement likelihood function: 1) the search likelihood ps(yk|x(i)
k ), which is

used if the target is not detected from measurement yk, and 2) the measurement
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likelihood pm(yk|x(i)
k ), which is used if the target is detected. The search likeli-

hood reduces the weight of observed particles based on how probable it is that
the observer would have detected the target if the particle was the true target
state, i.e., ps(yk|x(i)

k ) = 1 − pd(yk|x(i)−
k ). The measurement likelihood describes

the likelihood of a particle to be described by the measurement yk and is given
by Gaussian sensor noise. The final step corresponds to the resampling of the
particle filter. This step may be done after every measurement, but to speed our
procedure, resampling is only done when the maximum particle weight passes a
particular threshold. This avoids the expensive resampling procedure for mea-
surements that do not significantly alter the target PDF.

4 Numerical Simulations

Fig. 2. Computed reachability set for t = 18 h.

This section will present numeri-
cal simulations for the maneuver-
ing satellite reachability set search
problem. The target is in a Geosyn-
chronous Equatorial Orbit (GEO),
and is able to make a maneu-
ver of up to 1 (m/s) over the first
12 h of the simulation. The ini-
tial target state is assumed to be
known deterministically, thus the
reachability set is a function of
only the unknown maneuver um

and maneuver time tm. The input
PDFs p(um) and p(tm) are defined

as spherically uniform with a maximum radius of 1m/s, and uniform between
[t = 0(h), t = 12(h)] respectively. The initial semimajor axis of the target
spacecraft orbit is 42, 241 (km), and the eccentricity and inclination are both
zero. The observer spacecraft starts 100 (km) ahead of the target in the in-
track direction and makes a set of deterministically planned maneuvers sum-
marized by Table 1. These maneuvers are pre-planned to enable the observer
to search various portions of the reachability set for the target. The true
target maneuver time is tm = 45 (min), and the true maneuver is u∗

m =
[−0.3290 (m/s) −0.7876 (m/s) 0.4890 (m/s)

]T .

Table 1. Observer maneuvers

Maneuver # ΔVx(m/s) ΔVy(m/s) ΔVz(m/s) tm(hr)

1 3.6361 0 0 12

2 −5.4542 0 0 24

3 −7.2722 0 0 36
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The total simulation time is 2 days with measurements taken every 10 (mins).
The reachability set is computed using 8th order uniform spherical Conjugate
Unscented Transform points (CUT) for um [6], and 8th order uniform Gauss-
Legendre quadrature points for tm. Comparison of the CUT approach with
conventional quadrature filters such as unscented Kalman filter and cubature
Kalman filter is presented in Ref. [3]. A 4th order polynomial basis is used to
construct the reachability set. The reachability set after 18 h is illustrated in
Fig. 2 where the axes represent the target position in relative coordinates, and
the colorbar represents tm.
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Fig. 3. GEO test case state estimate error

The observation zone is constrained to a half angle of β = 10◦, and assigned
a scale distance of rs = 45 (km). The observation zone detection PDF is given
by

pd(x, θz) =

(

1 −
(

θ

β

)4
)

e−( |r|
rs

) (6)

where θ is the angle between the target position and the observer attitude vector,
and |r| is the target range. The observer measurements consist of range, range-
rate, and angles, with noise standard deviations of σr = 250m, σṙ = 0.5m/s,
and σθ = 0.5◦ respectively. Figures 3a–c show the error in position estimate in
meters versus simulation time. Notice that at tm, the error in state estimate
starts rapidly growing due to impulsive maneuver um. The observer detects
the target after 1 day, 11 h, and 40 min. Note in Fig. 3 the drop in target state
estimate errors after the first detection. Additionally it is important to take note
of the estimated maneuver time plot shown in Fig. 3d. The error in estimated
maneuver time is refined throughout the simulation as the observer measures
different regions of the reachability set, and finally narrows down on a final
estimate once the target has been observed. Figure 4 shows histograms of the
filter particles at the end of the simulation which represent the full state PDF.
It is apparent that despite only having recorded a handful of measurements
towards the end of the simulation, the true target state is captured by the particle
filter. The final state histograms in Fig. 4 are strongly non-gaussian due to the
nonlinear Bayesian update and resampling step, and it is important to note that
the true target estimate is well within the predicted final state PDF. The least
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accurately captured state is the position in the out of plane (Ŵ ) direction. This
is likely due to the relative geometry of the observer and the target at the time
the target was located. If more measurements were collected, these estimates
would likely improve.
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Fig. 4. GEO test case final state distribution

5 Conclusions

This work presents an approach to enable the automated search and estimation
of a maneuvering satellite. The proposed approach utilizes the relative motion
dynamics between target and sensing satellite to define a reachability set for
the maneuvering target based upon provided maneuver magnitude and maneu-
ver time bounds. The computed reachability sets define the search space for
the sensing satellite to locate the maneuvering target and a feedback loop is
designed to search and update the computed reachability set based upon col-
lected measurement data. This interplay between dynamic models and sensor
observations to define the search space to optimally collect measurements and
update control input for dynamical model corresponds to a Dynamic Data Driven
Application Systems (DDDAS) paradigm and considerably improves the accu-
racy of conventional Bayesian approaches for tracking a maneuvering satellite.
The main contribution of this work stems from the application of novel non-
product quadrature method known as the Conjugate Unscented Transformation
(CUT) to compute the reachability sets in a computationally attractive man-
ner. The proposed approach is validated by considering a scenario of tracking a
maneuvering satellite in an Geosynchronous Equatorial Orbit (GEO). The sim-
ulation results clearly shows the efficacy of the developed approach in tracking
a maneuvering satellite and provides the basis of optimism in its further utility
to track multiple maneuvering satellites.
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Abstract. We study the performance of sparse regression methods and
propose new techniques to distill the governing equations of nonlin-
ear dynamical systems from data. We start from the recently proposed
generic methodology of learning interpretable equation forms from data,
followed by performance of least absolute shrinkage and selection opera-
tor (LASSO) for this purpose. We first develop an algorithm that uses the
dual of LASSO optimization for higher accuracy and stability. We then
derive a second algorithm that learns the candidate function library in
a dynamic data driven applications systems (DDDAS) manner to distill
the governing equations of the dynamical system. This is achieved via
sequentially thresholded ridge regression (STRidge) over a orthogonal
polynomial space. The performance of the methods is illustrated using
the Lorenz 63 system and a marine ecosystem model.

Keywords: Machine learning · DDDAS · Sparse regression ·
Nonlinear dynamical systems · Dual LASSO · System identification

1 Introduction and Overview

Data today are no longer used mostly to verify models derived from first princi-
ples but also to dynamically adapt and learn such models [9]. This is particularly
important for non-autonomous nonlinear dynamical systems that describe a mul-
titude of problems from science and engineering. Recent groundbreaking meth-
ods leverage the fact that most dynamical equations governing physical systems
contain a few terms, making them sparse in high-dimensional nonlinear function
space [2,12]. By constructing an appropriate feature library based on the data
coordinates, one can apply sparse regression to discover the governing equations
of the dynamical system. Few studies however try to improve upon the sparse
regression algorithm at the core of the approach. This is exactly the first focus
area of the present work. We examine the sparse regression method most com-
monly employed in this field: Least Absolute Shrinkage and Selection Operator
(LASSO) [13]. Although LASSO works well with assured fast convergence rates
for uncorrelated features, it converges more slowly for highly correlated features,
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and tends to choose a feature at random from each of the correlated groups [7].
To alleviate these difficulties, we propose to solve the dual of LASSO to learn the
governing equations. Even in the case of correlated features, the dual LASSO has
a unique solution, which allows us to correctly choose the features. The second
part of this work deals with the case when the exact function blocks that describe
the dynamical system are not present in the feature library. We develop a way to
handle such cases by using an appropriate family of orthogonal functional basis
to span the feature library combined with an approach to adaptively increase
and decrease the dimension of the feature space. This allows us to add new com-
ponents to the feature space that are orthogonal to the existing features while
discarding those that do not have any projection of the dynamical system along
them. We employ this algorithm iteratively, while adding or removing appropri-
ate features to dynamically adapt our feature space for the best approximation
of the equations from data. These Dynamic Data Driven Applications Systems
(DDDAS) [3] approaches are demonstrated on the Lorenz 63 system [11] and a
marine ecosystem model [6,8] with a non-polynomial nonlinearity. We show that
our dynamic data driven algorithms robustly and accurately learn the presence
of active features and of the nonlinearities without requiring any explicit feature
information.

1.1 General Methodology

Let us assume that we have n state space parameters (x1, . . . , xn), with measure-
ments for xi and ẋi = dx/dt at times t = 1, . . . , T (denoted by a superscript). If
only state observations are available, the rate parameters can be computed using
finite difference. This is followed by constructing a nonlinear library of features
using the state space parameters. The span of these features now describes the
feature space. Typically we would construct this feature space through a class
of functions that are dense in the space that our dynamical system lives in. In
this work, we assume a polynomial feature library, however the methodology is
agnostic towards the choice of functional basis and would apply to any other
feature library as well. After constructing the feature library (say X), we for-
mulate the regression problem as Ẋ = XW + ε, where Ẋ(t,j) = ẋj

t and W
are the unknown weights, with ε being the noise. Often in dynamical models,
not all the features in the library that we consider are required to explain the
dynamical model. Thus, as in [2], we utilize sparse regression to select the rel-
evant features. However, unlike the aforementioned work, we dynamically build
an suitable feature library which allows us to infer the nonlinear terms in the
governing equations effectively, without knowing the type of functional space
they live in. We also use the dual of LASSO optimization for higher accuracy
and stability. These features, with their corresponding coefficients describe the
functional form of the governing equations.
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2 Regression Over Fixed Feature Space

In this section, we assume that the feature library is fixed, and that we wish
to find either the exact sparse equation form from this library or the closest
approximation to the governing equation only from the terms in the library. The
highest polynomial degree in the feature space (X) is p. Then, the feature space
contains terms of the form (xt

1)
p1 . . . (xt

i)
pi . . . (xt

n)pn , such that p1+ . . .+pn ≤ p.
The number of terms in the feature library is m =

(
n+p

n

)
= (n+p)!

n!p! (i.e. X ∈
IRT×m). Empirically the number of distinct terms in the governing equations is
O(n). Thus even for small enough p, the terms in the feature library are much
more in number than those to be chosen, which justifies sparse regression to
select the features. Let us denote the coefficient matrix obtained from the sparse
regression by W . The optimization problem with some penalty (P) is:

min
W

L(W ) =
[(

Ẋ − XW
)2

+ P(W )
]

. (1)

To further select the features appropriately, we use our knowledge of the
underlying physics of the dynamical system. We select features by looking at
their net characteristic magnitude instead of just the regression coefficients. We
refer to this as ‘scale based thresholding’.

As is well-known, the LASSO penalty is P(W ) = λ||W ||1 (hyperparameter
λ), which serves as a convex counterpart to the non-convex L0 norm. The pitfalls
of LASSO (even after removing the irrelevant features using the SAFE bounds
[15]) are that it requires significant hyperparameter tuning and it is extremely
sensitive to λ for correlated features (observed empirically). These motivate us
to instead formulate a new approach to solve the sparse regression problem.

To overcome the difficulties in the application of LASSO (along with the
SAFE rules), we formulate and solve its dual problem. For the LASSO solution
to be unique, the feature matrix must satisfy the irrepresentability condition
(IC) and beta-min condition [15]. The feature library violates the IC for highly
correlated columns, leading to an unstable feature selection. However, even for
highly correlated features, the corresponding dual LASSO solution is always
unique [13]. The dual problem is given by Eq. (2), which is strictly convex in θ
(implying a unique solution).

max
θ

D(θ) = ||Ẋ||22 − ||θ − Ẋ||22 such that ||XT θ||∞ ≤ λ . (2)

Let Ŵ be a solution of Eq. (1) with LASSO penalty and θ̂ be the unique
solution to the corresponding dual problem Eq. (2). Then a stationarity condition
implies:

θ̂ = Ẋ − XŴ . (3)

Even though LASSO does not have a unique Ŵ , the fitted value XŴ is
unique, as the optimization problem Eq. (1) is strongly convex in XW for
P(W ) = λ||W ||1. We make use of this by first computing a solution to the
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primal LASSO problem and then computing the unique dual solution by using
the primal fitted value and Eq. (3). Once we have the unique dual solution θ̂, we
complete the feature selection by using the dual active set, which is same as the
primal active set with high probability under the IC [7]. The KKT conditions
imply:

θ̂T Xi = sign(Ŵi) if Ŵi �= 0 and θ̂T Xi ∈ (−1, 1) if Ŵi = 0 . (4)

Equation (4) gives us a direct way to compute the active dual set once we
have θ̂. We discard the features for which θ̂T Xi ∈ (−1, 1) and retain the others.
This does not give us a good fit of the solution, so to compute the coefficients
accurately, we perform ridge regression (P(W ) = λ2||W ||22 over the active fea-
tures. We refer to this new algorithm as ‘dual LASSO feature selection’.

3 Regression Over a Dynamic Data Driven Feature Space

In this section, we consider cases where the feature library is not known and
learned using DDDAS. If we have no prior belief over the form of the equations,
we may not be able to construct an efficient feature library. In such situations,
learning this library from data might be the most advantageous choice. The näıve
approach of adding any new functions to the feature library until convergence can
be very expensive and ill conditioned. A more principled and efficient approach
is to make the use of orthogonal functions of some parametric family to construct
this library, ensuring that the problem is always well conditioned. The drawback
in this case is that the regressor may not be sparse over this feature library.

Starting with an empty library, we recursively add a feature to it and compute
the corresponding loss function of the resulting fit by using STRidge (as will be
described). If the loss function decreases by more than a certain fraction, we keep
this feature. Otherwise, we discard it and look at the next orthogonal feature.
Once every few addition timesteps, we perform a removal step to discard the
feature(s) that do not result in a significant increase in the loss function. This
ensures that we do not keep lower order functions that may not be required to
describe the equations as higher order functions are added. Our algorithm is
inspired by previous greedy feature development algorithms such as FoBa [14].
However, these algorithms require pre-determined full possible feature space,
whereas we construct new features on the fly. Once the equations are obtained
in terms of these orthogonal polynomials, we distill their sparse forms by using
symbolic equation simplification [1].

To compute regressors over the orthogonal feature space, we use sequentially
thresholded ridge regression (STRidge), developed by [12]. The idea is simple:
we iteratively compute the ridge regression solution with decreasing penalty pro-
portional to the condition number of X, and discard the components using scale
based thresholding (Sect. 2). We iterate with ridge regression until there is no
change in the feature space. As the feature matrix is orthonormal by construc-
tion, the analytical solution is W = (1 + λ)−1

XT Ẋ. The overall pseudocode for
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learning the governing equations through adaptively growing the feature library
is given by Algorithm 1, and the corresponding results are presented in Sect. 4.

Algorithm 1. Learning Governing Equations through Adaptive Feature Library
Require: state parameters: x = xt

i, ẋ = ẋt
i; orthogonal family Fj(•); feature addition

/ removal thresholds: ra (≤ 1), rr (≥ 1), λ0; removal step frequency kr

Initialize: X = ∅, W = 0, t = 0, L = ∞, k = 0
while True do

Xt = [X, Fk(x)]; solve the STRidge problem: Wt = STRidge(Ẋ, Xt, λ0)

Compute the loss Lt =
(
Ẋ − XtWt

)2

if Lt ≤ raL then X = Xt ; W = Wt

if mod (k, kr) == 0 then
for i = 1, . . . , X.shape[1] do

Xt = [X[:, 1 : i − 1], X[:, i + 1 : end]]; solve: Wt = STRidge(Ẋ, Xt, λ0)

Compute the loss Lt =
(
Ẋ − XtWt

)2

if Lt ≤ rrL then X = Xt ; W = Wt

k = k + 1.
break if no change in feature space over multiple iterations.

Perform symbolic simplification of Ẋ = XW to obtain the final form of the equations

4 Results

4.1 Lorenz 63 System

For the first applications, our testbed will be the Lorenz 63 system (n = 3)
given by Eq. (5), and fixed polynomial feature libraries with p = 3, 10 and 20
(m = 20, 286 and 1771). The idea behind considering larger orders (p) is that it
highlights the poor performance of LASSO for highly correlated features.

ẋ = 10(yz − x) ; ẏ = x(28 − z) ; ż = xy − 2.667z (5)

Figure 1a plots the number of non-zero features in the equations for different
p values. LASSO has a much higher number of non-zero terms, and this number
increases significantly with p (and m), indicating instability of the solution. Dual
LASSO feature selection performs very well, and the number of present features
does not change for the most part with p. Figure 1b plots the absolute weights
for the components for the p = 3 case for the ẏ equation. Dual LASSO feature
selection retrieves the correct features (with accurate weights), while LASSO
detects the correct features but also detects high order features that have low
weights and are highly correlated to each other. This serves as a great validation
of the superiority of dual LASSO feature selection over conventional LASSO
feature selection for model discovery.



Sparse Regression and Adaptive Feature Generation 213

Fig. 1. (a) Number of nonzero terms for ẋ, ẏ, ż, and (b) absolute weights in the ODE
for ẏ (p = 3) for the Lorenz 63 system.

4.2 Marine Ecosystem Model

To demonstrate the capabilities of adaptive feature library growth algorithm
(Sect. 3), we evaluate the learning scheme in a more complicated and realistic
scenario. Hence, we now try to learn marine ecosystem models, which contain
non-polynomial non-linearities. Realistic ecosystem models are very complex,
but in broad-terms they can be seen as flow of food energy from nutrients, to
phytoplanktons, to zooplanktons, to fishes, and finally recycling back to nutri-
ents. Due to the lack of governing laws, and empirical nature of the development
of these models, there are many different options in-terms of complexity and
model parameterizations available, which could be highly nonlinear. But given
the regional and seasonal differences at different locations in the world’s oceans,
one can quickly run out of all the options suggested by different biologists, and
there is a need for DDDAS that adapt and learn new models from data [4,5,9,10].
Such models could be further adapted to run ‘online’, i.e. the inferred models
can be updated as more data comes in, thereby improving and assimilating the
observations on the fly. For the present test case, we consider a 3-component
Nutrients-Phytoplankton-Detritus (NPD) model [6], given by,

Ṅ = − rmaxNP

(kN ) +N
+ lPNP + lDND; Ṗ =

rmaxNP

(kN ) +N
− lPNP − lPDP ; Ḋ = lPDP − lDND (6)

where N , P and D are normalized biological concentrations. The involved param-
eters are the nutrient uptake rate for phytoplanktons, rmax, losses by respiration,
lPN , and mortality lPD. Mineralization is simulated by the rate lDN . The choice of
the parameter values determine the dynamical stability of this system, and it
can vary between stable point, spiral to stable point, and stable limit cycle.

The parameter values chosen for the testcase are: rmax = 1 day−1, KN =
0.3mmol m−3, lPN = 0.50 day−1, lPD = 0.05 day−1, lDN = 0.06 day−1, and T =
1 mmol m−3, which makes the system spiral towards a stable point. Noise free
data of the states and derivatives computed using a forward Euler scheme are
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extracted at a time-step of Δt = 0.01 day for the time period of t = 0 to
t = 50 days, and used for learning the system from scratch.

We start with an empty feature library and W = 0 and iteratively grow the
feature space using Algorithm 1 with Legendre polynomials (denoted by L

(•)
p ),

ra = 0.85, rr = 1.10, λ0 = 1, and removal step working after every addition step
(kr = 1). We adaptively grow the feature space until a maximum polynomial
degree of 6 is reached. Finally, we use symbolic simplification followed by scale
based thresholding to obtain the governing equations in an interpretable form.

This equation discovery problem presents a challenging paradigm as the exact
evolution equations for the N and P states contain a non-polynomial nonlinear-
ity. We expect that our algorithm captures an approximation of this term in the
space spanned by (multivariable) polynomials. Equation (7) describes the final
active terms of the governing equations obtained after the adaptive growth of
the feature space along with their corresponding coefficients.

dN

dt
= 27.92L(P )

1 + 0.053L(D)
1 − 199.18L(N)

1 L
(P )
1 + 77.13L(N)

2 L
(P )
1

− 194.94L(N)
3 L

(P )
1 + 27.90L(N)

4 L
(P )
1 + 1.12L(P )

4 L
(D)
2 − 51.50L(N)

5 L
(P )
1

dP

dt
= − 28.65L(P )

1 + 199.18L(N)
1 L

(P )
1 − 77.13L(N)

2 L
(P )
1 + 196.71L(N)

3 L
(P )
1

− 0.94L(N)
3 L

(D)
3 − 27.22L(N)

4 L
(P )
1 + 52.12L(N)

5 L
(P )
1

dD

dt
= 0.0502L(P )

1 − 0.061L(D)
1 − 0.0003L(N)

3 L
(D)
2

(7)
Amongst the

(
9
3

)
= 84 terms, only a few are determined to be active for each

of the evolution equations. Once Eq. (7) is simplified using symbolic simplifica-
tion and scale based thresholding (cutoff 0.1%), we obtain the functional form
of the governing equations:

dN

dt
=0.51P − 3.40NP + 11.55N2P − 36.30N3P + 124.69N4P − 382.72N5P

dP

dt
= − 0.56P + 3.30NP − 10.78N2P + 37.76N3P − 127.16N4P + 378.60N5P

dD

dt
=0.0505P − 0.062D − 0.0002N2D

(8)

We write Eq. (8) in a more concise form as given by Eq. (9). The terms
within the parentheses in the first two expressions is the truncated Taylor series
for 0.3/(0.3 + N) (expanded around N = 0, with Ñ = N/0.3.) that our algo-
rithm learns. This is the best representation of the non-polynomial nonlinearity
in the available subspace. Thus, without any prior information, our adaptive
algorithm infers the presence and the best approximation of the present nonlin-
earity. Unfortunately, our algorithm does not recognize the presence of the lDND
term in the equation for dN/dt, but it does capture it in the dD/dt equation.
It also incorrectly adds a term ND2 to the evolution equation of D with a very
small coefficient. However, all other active terms are correctly chosen and their
corresponding learned coefficients are very close to the actual values from Eq. (6).



Sparse Regression and Adaptive Feature Generation 215

This example effectively shows the superiority of our algorithm in identifying the
nonlinearities present in the governing equations without any prior information.

dN

dt
= 0.51P − PÑ

(
1.02 − 1.04Ñ + 0.98Ñ2 − 1.01Ñ3 + 0.93Ñ4

)

dP

dt
= −0.56P + PÑ

(
0.99 − 0.97Ñ + 1.02Ñ2 − 1.03Ñ3 + 0.92Ñ4

)

dD

dt
= 0.0505P − 0.062D + 0.00067ND2

Ṅ ≈ 0.5P − PN

0.3 +N
; Ṗ ≈ −0.50P − 0.06P +

PN

0.3 +N
; Ḋ ≈ 0.0505P − 0.062D

(9)

5 Conclusions and Future Work

We investigated the LASSO and developed the dual LASSO feature selection
algorithm and dynamic data driven feature learning approaches to solve the
problem of discovering governing equations only from state parameter data.
After defining the problem and the solution methodology, we addressed the lim-
itations of LASSO in feature selection through a new algorithm, referred to as
‘dual LASSO feature selection’, that relies on the uniqueness of the dual solution
for the active set selection. This was followed by proposing a new methodology to
learn the governing equations from scratch by dynamically building the feature
library using appropriate orthogonal functional basis. We showcased results of
the learning schemes on the classic Lorenz 63 system and also a marine ecosystem
model with a non-polynomial nonlinearity. We found that our adaptive subspace
algorithm effectively learns a Taylor series approximation of such a nonlinear-
ity, even when no prior information about the presence and the nature of this
nonlinearity is provided. Future directions involve extending the ideas of feature
library building to the construction of the functions to be added through a mix
of a larger family of orthogonal functions. It would be interesting to study the
applications of these algorithms in the presence of model and observation noise,
and to higher dimensional systems often encountered in science and engineering.
Further, using the learned system to guide future observations would also close
the loop for the DDDAS paradigm.
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Abstract. Autonomous systems use extensively learning-enabled com-
ponents such as deep neural networks (DNNs) for prediction and
decision making. In this paper, we utilize a feedback loop between
learning-enabled components used for classification and the sensors of
an autonomous system in order to improve the confidence of the predic-
tions. We design a classifier using Inductive Conformal Prediction (ICP)
based on a triplet network architecture in order to learn representations
that can be used to quantify the similarity between test and training
examples. The method allows computing confident set predictions with
an error rate predefined using a selected significance level. A feedback
loop that queries the sensors for a new input is used to further refine
the predictions and increase the classification accuracy. The method is
computationally efficient, scalable to high-dimensional inputs, and can
be executed in a feedback loop with the system in real-time. The app-
roach is evaluated using a traffic sign recognition dataset and the results
show that the error rate is reduced.

Keywords: Learning-enabled components · Prediction confidence ·
Conformal prediction

1 Introduction

Autonomous systems are equipped with sensors to observe the environment and
take control decisions. Such systems can benefit from methods that allow to
improve prediction and decision making through a feedback loop that queries
the sensor inputs when more information is needed [7]. Such a paradigm has
been used in a variety of applications such as multimedia context assessment [2],
aerial vehicle tracking [14], automatic target recognition [4], self-aware aerospace
vehicles [1], and smart cities [8]. In particular, autonomous systems can utilize
perception learning-enabled components (LECs) to observe the environment and
make predictions used for decision making and control. LECs such as deep neural
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networks (DNNs) can generalize well on test data that come from the same
distribution as the training data and their predictions can be trusted. However,
during the system operation the input data may be different than the training
data resulting to large prediction errors. An approach to address this challenge is
to quantify the uncertainty of the prediction and query the sensors for additional
inputs in order to improve the confidence of the prediction. The approach must
be computationally efficient so it can be executed in real-time for closing the
loop with the system.

Computing a confidence measure along with the model’s predictions is essen-
tial in safety critical applications where we need to take into account the cost of
errors and decide about the acceptable error rate. Neural networks for classifica-
tion typically have a softmax layer to produce probability-like outputs. However,
these probabilities cannot be used reliably as they tend to be too high, they are
overconfident, even for inputs coming from the training distribution [9]. The
softmax probabilities can be calibrated to be closer to the actual probabilities
scaling them with factors computed from the training data. Different methods
that have been proposed to compute scaling factors include temperature scal-
ing [9], Platt scaling [13], and isotonic regression [16]. Although such methods
can compute well-calibrated confidence values, it is not clear how they can be
used for querying the sensors for additional inputs. Conformal prediction (CP)
is another framework used to compute set predictions with well-calibrated error
bounds [3]. The set predictions can be computed efficiently leveraging a calibra-
tion data set [11]. However, such approaches do not scale for high-dimensional
inputs such as camera images. In our prior work, we have developed methods han-
dling high-dimensional inputs using inductive conformal prediction (ICP) [5,6].

This paper extends our prior work by designing a feedback loop between
LECs used for classification and the sensors of an autonomous system in order
to improve the confidence of the predictions. We design a classifier using ICP
based on a triplet network architecture in order to learn representations that can
be used to quantify the similarity between test and training examples. Given a
significance level, the method allows computing confident set predictions. A feed-
back loop that queries the sensors for a new input is used to further refine the
predictions and increase the classification accuracy. The method is computa-
tionally efficient, scalable to high-dimensional inputs, and can be executed in
a feedback loop with the system in real-time. The approach is evaluated using
a traffic sign recognition dataset and the results show that the error rate is
reduced.

2 Triplet-Based ICP

We consider an autonomous system that takes actions based on its state in the
environment as shown in Fig. 1. For example, a self-driving vehicle needs to take
control actions based on the traffic signs it encounters. We design a classifier
using ICP based on a triplet network architecture in order to learn represen-
tations that can be used to quantify the similarity between test and training
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Fig. 1. Feedback loop between the decision-making process and sensing

examples. Given a significance level, the method allows computing confident set
predictions. A feedback loop that queries the sensors for a new input is used to
further refine the predictions and increase the classification accuracy.

Triplet networks are DNN architectures trained to learn representations of
the input data for distance learning [10]. The last layer of a triplet network com-
putes a representation Net(x) of the input x. For training, a triplet network is
composed using three copies of the same neural network with shared parameters.
It is trained on batches formed with triplets of data points. Each of these triplets
has an anchor data point x, a positive data point x+ that belong to the same
class as x and a negative data point x− of a different class. The objective is to
maximize the distance between inputs of different classes |Net(x)−Net(x−)| and
minimize the distance of inputs belonging to the same class |Net(x)−Net(x+)|.
To achieve this, training uses the loss function:

Loss(x, x+, x−) = max(|Net(x) − Net(x+)| − |Net(x) − Net(x−)| + α, 0)

where α is the margin between positive and negative pairs.
The simplest way to form triplets is to randomly sample anchor data points

from the training set and augment them by randomly selecting one training
sample with the same label as the anchor and one sample with a different label.
However, for many of these (x, x+, x−) triplets |Net(x)−Net(x−)| >> |Net(x)−
Net(x+)| + α, which provides very little information for distance learning and
leads to slow training and poor performance. The training can be improved by
carefully mining the training data [15]. For each training iteration, first, the
anchor training samples are randomly selected. For each anchor, the hardest
positive sample is chosen, that is a sample from the same class as the anchor that
is located the furthest away from the anchor. Then, the triplets are formed by
mining all the hard negative samples, that is the samples that satisfy |Net(x) −
Net(x−)| < |Net(x) − Net(x+)|. When the training is completed, only one of
the three identical DNN copies is used to map an input x to its embedding
representation Net(x).

Consider a training set {z1, . . . , zl}, where each zi ∈ Z is a pair (xi, yi) with
xi the feature vector and yi the label. We also consider a test input xl+1 which we
wish to classify. The underlying assumption of ICP is that all examples (xi, yi),
i = 1, 2, . . . are independent and identically distributed (IID) generated from the
same but typically unknown probability distribution. For a chosen classification
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significance level ε ∈ [0, 1], ICP generates a set of possible labels Γ ε for the input
xl+1 such that P (yl+1 /∈ Γ ε) < ε.

Central to the framework is the use of nonconformity measures (NCM), a
metric that indicates how different an example zl+1 is from the examples of the
training set z1, . . . , zl. A NCM that can be computed efficiently in real-time is
the k-Nearest Neighbors (k-NN) [12] defined in the embedding space generated
by the triplet network. The k-NN NCM finds the k most similar examples in
the training data and counts how many of those are labeled different than the
candidate label y of a test input x. We denote f : X → V the mapping
from the input space X to the embedding space V defined by the triplet’s last
layer. After the training of the triplet is complete, we compute and store the
encodings vi = f(xi) for the training data xi. Given a test example x with
encoding v = f(x), we compute the k-nearest neighbors in V and store their
labels in a multi-set Ω. The k-NN nonconformity of the test example x with a
candidate label y is defined as:

α(x, y) = |i ∈ Ω : i �= y|
For statistical significance testing, p-values are assigned based on the com-

puted NCM scores using a calibration set of labeled data that are not used for
training. The training set (z1 . . . zl) is split into two parts, the proper training
set (z1 . . . zm) of size m < l that is used for the training of the triplet network
and the calibration set (zm+1 . . . zl) of size l − m that is used only for the com-
putation of the p-values. The empirical p-value assigned to a possible label j of
an input x is defined as the fraction of nonconformity scores of the calibration
data that are equal or larger than the nonconformity score of a test input:

pj(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A| .

The p-values are used to form the sets of candidate labels for a given significance
level ε. The label j is added to Γ ε if pj(x) > ε.

3 Feedback-Loop for Querying the Sensors

Only the prediction sets Γ ε that have exactly one candidate label can directly be
used towards the final decision. When |Γ ε| �= 1 the approach queries the sensors
for a new input. Incorrect classifications are more likely to happen during the first
time steps of the process as every sensor input offers new information that may
lead to a more confident prediction. For example, in the traffic sign recognition
task, it is more likely for an incorrect classification to happen when the sign is
far away from the vehicle and the image has low resolution as shown in Fig. 2. To
avoid such incorrect classifications, in our method the final decision is made only
after k consecutive identical predictions. The parameter k represents a trade-
off between robustness and decision time, as larger k leads to additional delay
but more confident decisions. Further, very low k values may lead to incorrect
decisions while very large values may not allow a timely a decision.
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t = 1 t = 10 t = 20 t = 30

Fig. 2. Traffic sign over time (in frames)

The ICP framework produces well-calibrated prediction sets Γ ε when inputs
are IID. Depending on how small the chosen significance level is, Γ ε may include
a different number of candidate labels. The classification of an input requires
|Γ ε| = 1. In our previous work [5,6], we use a labeled validation set to compute
the minimum significance level ε to reduce the prediction sets with more than
one candidate label. However, in dynamic systems, sensor measurements change
over time. Each new input in a sequence is related to previous inputs and the
inputs are not IID. In this case, even though the calculated significance level ε
will not lead to |Γ ε| > 1, the actual error rate may not be bounded by ε.

The main idea is to utilize a feedback-loop in order to lower the error-rate.
In order to reduce the incorrect predictions that may occur especially for low
quality inputs, we require that |Γ ε| = 1 with identical single candidate label for
k consecutive sensor measurements. When this condition is satisfied for an input
sequence, the prediction can be used for decision making by the autonomous
system.

4 Evaluation

Experimental Setup. We apply the proposed method to the German Traffic
Sign Recognition Benchmark (GTSRB). A vehicle uses an RGB camera to rec-
ognize the traffic signs that are present in its surroundings. The dataset consists
of 43 classes of signs and provides videos with 30 frames as well as individual
images. The data are collected in various light conditions and include different
artifacts like motion blur. The image resolution depends on how far the sign is
from the vehicle as shown in Fig. 2. Since the input size depends on the distance
between the vehicle and the sign, we convert all inputs to size 96×96×3. 10% of
the available sequences is randomly sampled to form the sequence test set. 10%
of the individual frames is randomly sampled to form another test set. All the
remaining frames are shuffled and 80% of them are used for training and 20%
are used for calibration and validation.

The triplet network is formed using three identical convolutional DNNs with
shared parameters. We use a modified version of the VGG-16 architecture using
only the first four blocks because of the reduced input size. A dense layer of 128
units is used to generate the embedding representation of the inputs. All the
experiments run in a desktop computer equipped with and Intel(R) Core(TM)
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i9-9900K CPU and 32 GB RAM and a Geforce RTX 2080 GPU with 8 GB
memory.

Table 1. Triplet-based classifier performance

Training accuracy Validation accuracy IID testing Sequence testing

0.991 0.987 0.986 0.948

Model Performance. The triplet network can be used for classification of
inputs using a k-Nearest Neighbors classifier in the embedding space. We first
investigate how well the triplet network classifier is trained looking at the accu-
racy of the two test sets. One basic hypothesis of machine learning models is
that the training and testing data sets should consist of IID samples. This is
confirmed in Table 1 where the accuracy for the testing set of IID examples
is similar to the training accuracy while the testing accuracy for the set that
includes sequences is lower.

Fig. 3. Average error per frame for all the test sequences

In order to investigate which frames are responsible for the larger error-rate
in the sequences we plot the average error-rate per frame for the 30 frames of all
the test sequences in Fig. 3. The early frames of each sequence tend to have more
incorrect classifications as expected since the sign images have lower resolution.

Table 2. Triplet-based ICP performance for individual frames

IID Test Sequences test

ε Errors Multiples Errors Multiples

0.017 1.7% 0% 5.6% 0%
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Fig. 4. (a) Error-rate and (b) average number of frames until a decision.

ICP Performance. We apply ICP on single inputs to understand how the clas-
sifier performs without the feedback loop. The ICP is evaluated for both test sets
in Table 2. An error corresponds to the case when the ground truth for a sensor
input is not in the computed prediction set. We compute the smallest signifi-
cance level ε that does not produce sets of multiple classes using the validation
set. Similar to the point classifier, the ICP classifier produces well-calibrated
predictions only for the IID test inputs.

Improving Prediction Accuracy. We can improve the LEC classification
performance using the feedback loop as described in Sect. 3. As we can see in
Fig. 3, the first frames of a sign tend to have more incorrect predictions as they
have lower resolution and they lack details. Based on the feedback loop, the LEC
uses a new input from the camera until the prediction remains the same for k
consecutive frames. Experimenting with different values of k, Fig. 4 shows that
as k increases, the error-rate decreases for most of the ε values but the number
of frames required to take a decision increases. When ε < 0.003 the classifier
enhanced with the feedback loop could not reach a decision. We also evaluate
the efficiency of this classifier regarding to the real-time requirements. A decision
for each new sensor query takes on average 1 ms, which can be used with typical
video frame rates. The memory required to apply the method consists of the
memory used to store the representations of the proper training set and the
nonconformity scores of the calibration data (45.9 MB) and the memory used to
store the triplet network (28.5 MB) for a total of 74.4 MB.

5 Conclusions

The ICP framework can be used to produce prediction sets that include the cor-
rect class with a given confidence. When the inputs to the system are sequential
and not IID, applying ICP is not straightforward. Motivated by DDDAS, we
design a feedback loop for handling sequential inputs by querying the sensors
when a confident prediction cannot be made. The evaluation results demonstrate
that when the inputs to the autonomous system are not IID, the error-rate
cannot be bounded. However, the addition of the feedback loop can lower the
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error-rate by classifying a number of consecutive inputs until a confident deci-
sion can be made. The running time and memory requirements indicate that
this approach can be used in real-time applications.
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Abstract. One critical challenge ofAutomatic Target Recognition (ATR) systems
are that of effective modeling and interpretation of sensory data obtained under
constantly changing dynamic environments. In this paper, we address physics-
based modeling and simulation of multi-platform vehicles and propose a method
for systematic generation of synthetic SAR Imagery for training of Deep Learning
(DL) techniques. Starting with computer-aided design (CAD) models of aerial,
ground and maritime vehicles, we present a multi-layer method for describing
physics-based models of these objects. Next, by considering SAR system con-
straints andmodeling far-field incident and backscattering radiationwaves returns,
we construct realistic simulated (i.e., synthetic) SAR imagery of the test vehicles
and annotate them semantically to aid their DL training. To evaluate and ver-
ify the effectiveness of this approach, we compare our synthetically generated
SAR imagery against the real SAR images. Several examples of our test scenar-
ios are demonstrated and explained including our post image modulation tech-
nique that further enhances realisms of the synthetic SAR images. Finally, we dis-
cuss the implication of our technical approach in support of dynamic data-driven
applications systems.

Keywords: Deep learning · SAR · ATR · Target detection · Physics-based
modeling · Dataset generation

1 Introduction

Automatic Target Recognition (ATR) of objects based on Synthetic Aperture Radar
(SAR) is highly in for both military and civilian applications. In particular, SAR offers a
unique capability as it is an all-day, all-weather remote sensing system. Due to inherent
nature of radar, SAR images often suffer from a low signal-to-noise ratio (SNR) making
them difficult visual images to analyze.

For reliable training of SAR image classifiers, there is a need for rich training datasets
of target objects with proper annotations. However, such datasets are nonexistent or at
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least are not publicly available. Furthermore, generating rich SAR imagery datasets
in the real world is also impractical. Providentially, by developing an Electromagnetic
(EM) modeling and simulation software conducive to SAR imaging it would be possible
to introduce a variety of different target objects of interest in the physics-based virtual
environment (VE) and employ a simulated model of a physics-based SAR system to
generate corresponding synthetic SAR images of different test vehicles [1–3]. In this
paper, we demonstrate how to generate synthetic SAR imagery of test objects in the VE
under different operational contexts and produce high-quality simulated SAR imagery
ideal for DL systems training and testing that eventually leads to achievement of transfer
learning. The proposed approach can also support of training of dynamic data-driven
applications systems including data assimilation and adaptive learning.

The organization of this paper is as such. Firstly, we explain our method for prepa-
ration of the physics-based modeling of test vehicles prior to generating their simulated
SAR images. Secondly, we describe our scheme for systematic simulated SAR imaging
of test vehicles from different perspective views. Thirdly, we explain our method for
composition of a simulated speckled SAR image via implication of multiplicative addi-
tive noise to a synthetically generated reflectivity map of a test vehicle to enhance its
SAR signature characteristics close to the actual SAR images. Fourthly, we discuss how
this work impacts the DDDAS data-centric real-time training and learning adaptation
paradigm. Lastly, we present the conclusion of this work.

2 EMModeling and Simulation

In this work, we model EM radiation wave rays of an actual SAR system similar to
projected andbouncing rays in theRayTracing (RT) technique.RT is a popularComputer
Graphics technique for rendering 3D graphical scenes with photo-realistic illumination
and reflectivity realism. In RT, this is accomplished by tracing the path of multiple light
beams originated from a source and propagate them toward a scene systematically. The
system keeps track of rays as they hit surfaces and bounce off of them to hit other
neighboring surfaces. Similar to RT, we model SAR projected radiation waves as far
field incident radiation waves bouncing off of object surfaces in the scene and becoming
incident toward the radar antenna due to multiple residual rebounds. Surfaces may be of
different material, texture, and curvature, hence they possess different physics properties
and interact with the incident radiationwave differently based on principle laws of optics.
Some portion of the produced backscattered radiations incident to the radar antenna are
returned in a different strength and phase. Depending on the hit surface characteristics
(i.e., geometrical formation and physical properties), each radiation wave may result a
specular reflection, a refraction, or diffraction. Different combination of such radiation
reflection, emission, and absorption could also happen. Using the wave propagation
principle, we simulate the aspect of our simulated SAR imaging. In our physics-based
simulation,wemodel environment objects geometrically based on theirComputer-Aided
Design (CAD) model. Primarily, we convert such a CAD model to a physics-based
model in compliance with our EM simulation modeling requirements. Based on wave
propagationmodeling as explained in [1, 2], we treat our simulated SAR system function
similar to amonostatic high-density phased-array radar and form a scaled SAR reflective
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map corresponding to the EM radiation reflectivity of objects in the far field view of the
simulated SAR system.

In our model, the radiation backscattering may take different forms: diffused,
reflected, or diffracted. The acute case of specularity reflections are also exclusive

Fig. 1. Plausible paths of EM radiation wave propagation.

and modeled under unique
conditions. Furthermore, the
bounced-off rays from cer-
tain surfaces may hit other
neighboring surfaces and cre-
ating a double-bounce inci-
dental echo return (e.g., in
case of walls), or turn into a
resonance (e.g., in case of a
hole) under certain frequency
wavelength, or simply van-
ishing into empty space as
illustrated in case of amilitary
tank in Fig. 1. Our model has provisions to deal with such cases as a situation may arises.
Our model limits the number of radiation wave bounces to three.

The portion of radiation energy returned back to the antenna is scaled proportional
to the cosine angle of incident ray with respect to surface norm. This reflection is
further modulated with respect to surface material reflectivity, texture, and, roughness
characteristics.

3 IRIS Electromagnetic Modeling and Simulation

In this project, we employed IRIS software. IRIS stands for Integrated Robotics Interface
System developed at Tennessee State University, by the third author, [12]. IRIS offers
an electromagnetic computation engine, called IRIS-EM. IRIS-EM engine provides an
automatic interface for obtaining synthetic SAR images per user defined operating condi-
tions. While generating systematic SAR datasets in the physical environment is tedious,
time-consuming, and costly – in simulation, this task can be rather seamlessly performed
with confidence and systematically. IRIS offers two integrated interfaces: a virtual envi-
ronment simulation model, called IRIS-VESM and an intelligent CAD interface, called
IRIS-ICAD. The latter interface is used for preparing physics-based object models from
standard CADmodels. IRIS-EM offers essential utilities for generating synthetic multi-
modal sensor imagery (e.g., SAR, ISAR, Pol-SAR, In-SAR, Thermal-IR, LIDAR, RCS,
and Doppler SAR) per user specified requirements. Such requirements fall into five
categories, (1) sensor operating parameters, (2) imaging formation, (3) remote sensing
staging, (4) sensor modality selection, and (5) scanned images annotation and archiving
requirements.

These synthetic images are obtained based on physics-based implication of the gov-
erning laws and principles of EM, thermodynamics, optics, hydrodynamics, and kine-
matics (in case of Doppler SAR imaging) [1, 2]. To further improve the realism of such
imagery dataset, we add additive multiplication speckled noises (modeled statistically
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based on publically accessible SAR imagery) and modulate them to represent differ-
ent operational contexts (e.g., to different atmospheric conditions reasonably meeting a
marine environment context). The nature of noises in a physical SAR system is encum-
bered and come frommany sources: antenna transmitter, atmosphericmediawith varying
density and EM absorption rate, object surface curvature irregularities (e.g., textures and
roughness), object radar cross section equivalency, antenna receiver, electronics noise,
and inherent algorithm processing noise. From a practical standpoint, it is impractical
to assume such noises are known ahead of time.

Other peculiarity of SAR images that we produce, is related to modeling of residual
specularity reflectivities that is very circumstantial – yet they could happen unexpect-
edly when the radiation optical circumstance is right and the returned radiation wave
is perfectly incident to the radar antenna. Therefore, our entire SAR image synthesis is
composed of three main steps: (1) far field EM modeling for test object reflectivity map
generation, (2) Augmentation of additive multiplicative speckled noise modulated per
type of background environment intended conditioned via considered operating radar
parameters, and (3) precise Sparkled effectswith varying degrees of implication. Figure 2
demonstrates this process. For each CAD model, we specify eight layers of meta-data
including: (1) Geometrical Layer, (2) Material Layer, (3) Physical Layer, (4) EM Layer,
(5) Thermal Layer, (6) Optics Layer, (7) Kinematic Layer, and (8) Environment Layer.
Details of these layers is described in elsewhere [1] and in brevity of space limitation,
we do not discuss them here.

TheRT technique is computational extensive.Toavoid this overburden,wedeveloped
an efficient optimized RT technique that significantly lowers its computational time. Our
technique is based on an octree subspace modeling of surface patches representing the
body of physics-based objects within the field of view of SAR system.

Fig. 2. The IRIS scheme for generating simulated SAR imagery.
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For increased efficiency, we initially limit object surfaces falling within the prism
of field of view of the SAR system. This step is fast and limits the scope of the RT
technique to a subspace of surface scatters. Furthermore, we form a three-level octree
structure of observable subspace surfaces for efficient determination of nearby surfaces
to a projected ray. Further, we limit our ray tracing extend to three-bounce onlywithin the
lowest subspace observable scatters. One problem with this approach is that there would
be some surfaces not entirely fitting into their spatially arranged subspace volumes.
We mitigate this problem by placing the oversized surfaces into as many subspace
volumes that they occupy. This optimization method improves computational aspects
of RT technique significantly. With utilization of multi-core GPU-based computers, this
computational time burden can be of a lesser concern.

3.1 Radar Imaging Scheme

IRIS-SAR interface implements an automation system that saves significant manual
labor and provides consistency in datasets generation. Through this process, the physics-
based objects can be allocated to an automation queue and the desired radar configuration
(e.g., range, elevation, and rotation angles), and the type of modality for scanning can be
specified. The permissible modalities are as follows: DepthMap, HeightMap, Reflectiv-
ity Map (RM), Specularity Map, Phase Map, Polarimetric Map, RCSMap, and Doppler
Map. This interface automatically chooses each object individually, performs the scan-
ning and saves the output images. After the completion of imaging an object, IRIS-EM
interface automatically chooses the next object for scanning and saves its generated
images in assorted image modalities in multiple folders automatically.

An automated annotation scheme was also developed for proper labeling of scanned
imagery and archiving them systematically. This annotation information is crucial for
batch processing and training of deep learning image classifiers. Our filename annotation
convention consists of the object class ID, object name, scanningmodality, object number
in queue, scanning range, and azimuth (Rotation) and elevation angles.

3.2 Salient Subspace Reflection Extraction

We initially generate synthetic SAR images based on their reflectivity map representa-
tion. The reflectivity map represents the distribution of backscattering of EM waves as
they bounce off of the surfaces of the object in the environment. Using a salient sub-
space reflectivity extraction (SSRE) technique, we identify high reflectivity points of
the test vehicles. These salient reflectivity points correspond to surface meshes having
geometrical shape factors similar to trihedral, dihedral, plates, cylinders, edges, wedges
and fillets that are generally recognized as returning light illumination with high reflec-
tivity strength. The reflectivity map is divided into nine subspaces to form a hierarchical
subspace structure of the reflectivity responses. The topmost subspace designates max-
imum object reflectivity regions. These regions are registered by their center points.
The center points are a representative of the saddle-point of high reflectivity material
with sharp curvatures, edges wedges and plates whose local norm is perpendicular to an
incident ray. These center points also correspond to direct specular noise, i.e. sparkles.
The information from the topmost subspace is used in the final synthetic SAR image
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formation to produce random-scale illumination sparkles. The pertaining point clouds
of each intermediate sub-space are aggregated using a Gaussian filter and a mean filter.
This process is illustrated in the Fig. 2.

3.3 Noise Augmentation and Shadow Formation

Multiplicative noise is another common characteristic of SAR imagery. For this research,
we introduced different SAR noise generator functions formaking background and over-
lap noise effects in our synthetic SAR imagery.We sampled SARbackground noise char-
acteristics fromMSTAR and Senteniel-1 datasets. Based on this sampling we developed
various noise generator functions that are statistically close to those of the two datasets.
We parametrically control these noise function generators and thus randomly adapting
background noise patterns mimicking those of real SAR images. This approach can be
readily adapted for DDDAS paradigm for real timer training and learning.

Sparkle Effect noise is another common characteristic in SAR imaging. This is a
result of random distribution of backscatters in each resolution cell with different ampli-
tudes and phases. We developed a generative function to produce SAR sparkles with
random size and brightness. These sparkle generated noise patterns are then superim-
posed at the final stage of the simulated SAR image. This step is demonstrated in the
last stage of Fig. 2.

Object shadows are a key characteristic of SAR images, carrying pertaining infor-
mation about object shape and orientation proportional to radar elevation and azimuth
angles. To introduce SAR shadow effect for our test vehicles, we can either compute it
or use its original RM to form a shadow template. The former approach creates back-
ground formation dependency (e.g., land elevation) - not an ideal case for generalizing
deep learning systems training. Consequently, we adopted the second approach. To pro-
duce the needed shadow, we shift its shadow template while minimizing its intensity
strength and adding it to the generated speckled RM image. Next, we concentrate the
final image from the SSRE technique, with SAR shadow image and speckled ocean RM
image. This process is illustrated in Fig. 2.

4 Performance Evaluation

To evaluate the quality and realism of our generated synthetic SAR images, we compared
our resultswith actual SAR images of several physical aerial, ground andmarine vehicles.
Figure 3 presents some samples of theMSTARdataset and their corresponding simulated
SAR image using our technique. Figure 4 presents a sample of four cargo vessels and
their corresponding real SAR images are presented on the left-hand side. On the right-
hand side, we have presented our synthetically generated SAR images for equivalent size
and marine vehicles. Though our marine test objects are not identical to the physical
vessels, the synthetic SAR image quality was achieved realistically.
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5 DDDAS Implication

Dynamic Data Driven Applications Systems (DDDAS) are distinctive predictive mod-
els taking advantage of a data assimilation feedback loop when discrete sensors data
are available. Using sensor data error, the system attempts to drive the physical system
simulation so that the trajectory of the simulation more closely follows the trajectory
of the physical system. In parallel, a sensor guidance control loop can be employed to
guide the physical sensors to enhance the information content of the collected data. The
data assimilation and sensor guidance control feedback loops are computational rather
than physical feedback loops. The simulation can guide the observational aspects of
the sensor and the collected data, and in turn, improves the accuracy of the physical
system simulation. In the control feedback loops, the appropriate machine-learning or
deep-learning based algorithmic as well as statistical methods can be incorporated to
relate the measurement data with that of the high-dimensional modeling and simula-
tion. To improve situational awareness of ATR systems, the features extracted from an
image should be explainable, interpretable, and understandable to the user. As detailed in
the DARPA XAI program, it is highly advantageous to create AI models whose learned
models and decisions can be trusted by its users [5]. An example of this is extracting fea-
tures from a target object of interest (TOI) such as turrets/weaponry from tanks, and the
number of wheels on trucks [6]. In the battlefield environments, target objects of interest
(TOI), may be subject to obscuration, camouflage, and deception. Through a feedback
data assimilation, for example, the active sensors can be guided to perform additional
exploration to maximize entropy of cues detected and such data can be modeled to cre-
ate an improved situational awareness of potential TOI. Though, through this work, this
aspect of research was not addressed. In our future work, we plan to investigate the data
assimilation feedback loops that exploit and explore such sensor control opportunity to
improve detectability of TOI despite of their physical SAR signature inconsistencies.

2S1 BRDM2 BTR70 ZIL131 T62 T72

Fig. 3. Comparison of IRIS SRE method vs real SAR images from MSTAR dataset [7]. Top:
sample military vehicles. middle: the corresponding vehicles’ SAR image from MSTAR dataset.
Bottom: simulated SAR image of the same vehicle models using our proposed IRIS-SREmethod.
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Fig. 4. Comparison of actual physical SAR images of marine vehicles (Right) against, the
simulated SAR images of comparable marine vehicle from IRIS-EM simulator (Left).

6 Conclusion

In this paper,we presented a physics-based approach for synthetic generation of SAR like
imagery of some test vehicles. The objective has been to generate high fidelity simulated
SAR imagery suitable for the training of deep learning algorithms and techniques. The
proposed technique the advanced DDDAS requiring large-scale SAR imagery datasets
for themachine learning and deep learning system training and learning of ATR systems.
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Abstract. Safety envelopes are meant to determine under which con-
ditions and state space regions a probabilistic property of a data-driven
system can be asserted with high confidence. Dynamic data-driven appli-
cations systems (DDDAS) can make use of safety envelopes to be cog-
nizant of the formal warranties derived from their models and assump-
tions. An example of safety envelopes is presented as the intersection
of two simpler concepts: z-predictability and τ -confidence; which corre-
spond to state estimation and classification, respectively. To illustrate
safety envelopes, stall detection from signal energy is shown with data
gathered by piezo-electric sensors in a composite wing inside a wind tun-
nel under varying angles of attack and airspeed configuration. A formal-
ization of these safety envelopes is presented in the Agda proof assistant,
from which formally proven sentinel code can be generated.

1 Introduction

Aerospace systems will be increasingly autonomous in terms of self-diagnosis,
self-healing, and overall self-awareness. They will be capable of sensing, rea-
soning, and reacting in real-time to their actual operating conditions, allow-
ing for optimal control and decision-making abilities [13]. This will be aided by
access to an unprecedented amount of real-time data from onboard sensors which
can be interpreted to sense the aeroelastic state, environmental conditions, and
structural conditions of aerospace systems [14]. Smart aerospace systems will be
capable of detecting aerodynamic conditions – e.g., stall or flutter, using data
from piezo-electric and other sensors placed on the wings of an aircraft [12,13].
Dynamic data-driven applications systems (DDDAS) [8] can use this data to
create accurate aerodynamic models that can be updated to reflect the real-time
aerodynamic performance of such systems [18].

Since the failure of safety-critical aerospace systems can cause harm to human
life, the environment, or property [22], it is necessary to verify the correct-
ness of the software used in these systems. Model checking and formal methods
can be used for verification of such software [1], e.g., by writing mechanically-
verified proofs of correctness. However, formal proofs usually only hold under
some conditions which may not necessarily be true during actual operation
c© Springer Nature Switzerland AG 2020
F. Darema et al. (Eds.): DDDAS 2020, LNCS 12312, pp. 236–244, 2020.
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[19]. Breese et al. [6] have proposed an approach for classifying a system’s state
space into distinct regions with respect to a formal proof. They introduce safety
envelopes to represent the subset of the state space where the formal proof of
a probabilistic statement holds. The extent of a safety envelope depends on a
data-driven model of the system and parameters to quantify the certainty of state
estimation. Safety envelopes can only guarantee behavior for stochastic systems
that follow the underlying statistical assumptions on the data, e.g., Gaussian
distributions. Special runtime programs called sentinels can analyze real-time
data against a safety envelope and determine whether the system conditions fall
within the envelope or not. DDDAS can use safety envelopes formalize data-
driven probabilistic guarantees that hold in real-time.

The contributions of this paper are: a definition of safety envelopes as regions
delimited by a model and user-definable parameters, an example of a safety enve-
lope that warranties z-predictability and τ -confidence for state estimation and
classification respectively (Sect. 2), and the formalization of the safety enve-
lope concepts in Agda [17] and generation of Haskell [16] code from the formal
specification (Sect. 3).

2 Signal Energy Safety Envelopes as Parameterized
Statements

Safety envelopes are a step forward for provably robust dynamic data-driven
applications systems (DDDAS). This section presents a definition for safety
envelopes and exemplifies the construction of safety envelopes for the predic-
tion of stall for a self-sensing composite wing given a single energy signal input.

A flight state can be identified as a quadruple 〈x, α, v, stall〉, where x is the
signal energy received from a sensor in a wing, α the angle of attack, v is the
airspeed and stall is a boolean value that indicates whether the wing is stalled
or not. A model M is a 〈SM , fM 〉, where SM is a subset of R × R (all possible
airspeeds and angles of attack), and fM is a map with the signature SM →
N × B. A map fM receives a valid input (v, α) and returns a

〈N (μ, σ2), stall
〉

where N (μ, σ2) is the normal distribution that the energy signal is assumed to
follow. This means, a model M is a collection of probability distributions each
drawn from a partial flight state denoted by 〈α, v, stall〉.

A model M is computed from data collected in wind tunnel experiments.
The example model considered in this paper has been constructed from the
experiments presented by Kopsaftopoulos and Chang in [13].

Definition 1. Signal Energy Safety Envelope: Given a model M and
parameters Π, a safety envelope for the signal energy is the region ξ ⊆ R under
which a probabilistic statement1 P with arguments M and Π holds, i.e., a safety
envelope is the region defined by ξ = {x ∈ R : P (M,Π, x) = true}, where x is a
signal energy measurement.
1 A probabilistic statement is a statement that includes probabilistic assertions as part

of its definition, e.g., the expected value after flipping a fair coin (0 = heads; 1 = tails)
is 1

2
.
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For a simple and slightly contrived example of safety envelopes, suppose that
all signal energy measurements follow the normal distribution with parameters
N (10, 1) (the model M) and consider the statement “the signal energy mea-
surement falls within the 95.4% prediction interval (PI) around the mean” (the
statement P with model M and at least 95.4% PI as Π), then the safety envelope
defined by the statement is the region contained inside [μ − 2σ, μ + 2σ] = [8, 12].

2.1 Data Consistency with Model Using z-Predictability

Definition 2. An energy signal x is z-predictable iff there exist 〈di, bi〉 ∈ ImfM

such that x ∈ pred i(di, z), where pred i is the prediction interval for the z score,
i.e., pred i(N (μ, σ2), z) = [μ − zσ, μ + zσ].

In statistics z is called the z-score. The main idea of z-predictability is to
determine whether a single measurement of signal energy is consistent with the
model at hand. For a z score of 3, around 99.7% of the measurements are
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Fig. 1. Rows: Top row: Prediction intervals for each angle of attack. The black dot
is the mean, blue indicates no stall, and orange indicates stall. The gray line below is
the region of z-predictability—i.e., the region {x ∈ R : ∃ 〈α, v〉 ∈ SM .fM (〈α, v〉)1 =
di ∧ x ∈ pred i(di, z)}—with z = 2. Middle row: Probability function P [stall | X = x],
which indicates the probability of the wing to be in stall given a single measurement
of the signal energy. The classification regions for stall and no stall are shown below
with confidence of τ = 90%, i.e., the τ -confident region is the union of both colored
regions, blue and red, where blue indicates no-stall and red stall. Bottom row: The green
region indicates the safety envelopes, the region where a signal energy measurement
is both z-predictable and τ -confident. Columns: Left column: The model M includes
all flight states with an airspeed of 6 m/s. Center column: Only flight states with
an airspeed of 20m/s. Right column: All flight states recorded, all airspeeds (v ∈
{6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22}m/s) and angles of attack (α ∈ [1, 18])
are considered in the model M . (Color figure online)
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z-predictable. A value that falls outside the prediction interval is considered
to be not z-predictable and it is treated as a possible error.

From the definition of z-predictability it can be proven that (see Subsect. 3):

Theorem 1. An energy signal x is z-predictable iff there exist 〈α, v〉 ∈ SM such
that fM (〈α, v〉)1 = di and x ∈ pred i(di, z).

On the top row of Figs. 1 and 2, a region generated by the z predictability
can be seen. The z-score in Figs. 1 and 2 is 2 and 4, respectively.

2.2 Stall Detection Using Statistical Inference

This section presents a procedure using statistical inference to classify the stall
condition of a wing, then it is shown how this classification can be parameterized
to delimit a confidence region of classification.

Definition 3. Conditional Probability of Stall: Given a model M and a
measurement x, the probability of stall is defined as:

P [stall | X = x] =
P [stall]f(x |stall)

f(x)

=

∑
〈α,v〉∈SM

(fs(x)P [〈α, v〉]P [stall | 〈α, v〉])
∑

〈α,v〉∈SM
(fs(x)P [〈α, v〉])

(1)

where fs corresponds to the probability density function for the distribution
ds = fM (〈α, v〉)1, the conditional probability P [stall | 〈α, v〉] is either 0 or 1
and determined by fM (〈α, v〉)2, and the distribution P [〈α, v〉] uniform for all
〈α, v〉 ∈ SM (P [〈α, v〉] = 1

|SM |).

The probability of stall can be seen in the middle row of Figs. 1 and 2.
The following is the definition of a classification procedure from the conditional
probability function:

Definition 4. Classification Function: Given a model M , an energy signal
x can be classified in one of three categories as:

c(M, τ, x) =

⎧
⎪⎨

⎪⎩

stall P [stall | X = x] ≥ τ

nostall P [¬stall | X = x] ≥ τ

uncertain in any other case.

where τ , the threshold, is a real number in the range (0.5, 1] and indicates the
level of confidence wanted from the classification (alternatively, 1 − τ indicates
the risk that will be accepted for the classification [3]). The signature of c is
M × R × R → {stall, nostall, uncertain}.

The classification region can be seen at the bottom of the middle row in
Figs. 1 and 2, for τ = 90% and 99.9%, respectively.
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Definition 5. A classification c(M, τ, x) = k is τ -confident iff k �= uncertain.

A τ -confident classification is one in which the risk of misclassification is
below the threshold τ . Alternatively, τ -confidence can be defined as:

Theorem 2. A classification k is τ -confident iff P [k |x] ≥ τ .

2.3 Safety Envelopes as τ -Confident Classifications on z-Predictable
Measurements

Definition 6. A safety envelope se(M, z, τ) for stall detection is the region x ∈
P(R) with parameters Π = 〈z, τ〉, where the following probabilistic statement
holds: x is z-predictable and c(M, τ, x) is τ -confident.

As a corollary from Theorems 1 and 2:

Theorem 3. An energy signal x belongs to a safety envelope se(M, z, τ) iff there
exist 〈α, v〉 ∈ SM such that fM (〈α, v〉)1 = di and x ∈ pred i(di, z), and the
classification k = c(M, τ, x) has a confidence bigger than τ , i.e., P [k |x] ≥ τ .
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Fig. 2. Rows and Columns as in Fig. 1 but with parameters z = 4 and τ = 99.9%.
Notice that compared with the τ -confident region displayed in Fig. 1 with an airspeed
v = 20 m/s (red and blue regions in the middle-center plot), the τ -confident region for
a value of τ = 99.9% is smaller, it has a wider gap, which shows that the higher the τ
the smaller the safety envelope will be. Conversely, the more samples admitted as z-
consistent, the bigger the safety envelope will be, as it can be seen comparing the gray
regions on the top row from Fig. 1. The optimum values for z and τ will depend on the
application, but a meaningful range of values for z would be [2, 6] (which correspond
to 5% or less data thrown away) and for τ around 95% and upwards. (Color figure
online)
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The last row of Figs. 1 and 2 shows the safety envelopes derived from three
different data-driven models with varying z-scores and τ thresholds. For easily
separable stall/no-stall conditions, such as 6m/s, the safety envelope is the same
as the region defined by the z-predictability; in other cases, the region defined by
the τ -confidence reduces the region described by z-predictability, or viceversa.

Notice that when safety envelopes are applied to a model where all airspeeds
and angles of attack have been taken into account, the safety envelopes become
significantly smaller. This means that it is not possible to assert with high con-
fidence whether a signal energy entails a stall condition. In Fig. 2 rightmost
column, safety envelopes do not include any signal with values from around 200
and until 8000.

3 Formalization and Sentinel Generation

Formally proving properties of DDDAS using a proof assistant is a necessary
step to ensure fault-free or near fault-free certified software. Signal energy safety
envelopes have been implemented in Agda2, a formal verification system, in
order to prove their properties mechanically. Three procedures have been imple-
mented: computing whether an energy signal input is z-predictable, τ -confident,
and whether it falls inside the safety envelope defined by a model M with param-
eters Π = 〈z, τ〉. The following is an excerpt of the formalization, where z-
predictability is defined:

The power of formalization comes from the fact that properties can be
mechanically proven, i.e., it can be proven that the definition entails the imple-
mentation. Such is the case presented in the proof below, where Theorem 1 is
formally proven using the proof that the implementation in Agda (above) follows
from the Definition 2. In the same manner, Theorems 2 and 3 have been encoded
in Agda and proven formally, i.e., in a mechanized manner.

2 Full implementation and proofs can be found at http://wcl.cs.rpi.edu/pilots/fvdddas
(repository name: safety-envelopes-sentinels, version 0.1.1.0).

http://wcl.cs.rpi.edu/pilots/fvdddas
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A sentinel is a binary, a program, whose job is to monitor for the consis-
tency and correctness of the data received and generated in flight. Agda has the
capability of generating Haskell code which can be executed and tested. From
the formalization shown above, a sentinel has been built such that it monitors
when a stream of floating-point numbers is z-predictable. The implementation
uses floating-point numbers as an approximation to real numbers.

To write the sentinel, a wrapper was written around the generated Agda code
to pass data from the standard input. The resulting binary can process a con-
tinuous stream of data and outputs to the standard output a stream of booleans
representing the z-predictability. The implementation and proofs occupy a total
of 760 lines in Agda and 130 lines of code in Haskell. From the Agda code, a
total of 1160 lines of Haskell code were generated.

4 Related Work

HOL and Isabelle are interactive proof assistants with a rich history of proofs
from discrete and continuous probability theory [5,9,10,20]. Agda, opposed to
HOL and Isabelle, is a programming language and proof assistant built on top
of a constructive theory [15]. Copilot [19] and PILOTS [7,11] have presented
strategies to find and recover from faulty data-streams due to hardware errors
in airplane systems and dynamic data-driven applications systems (DDDAS),
respectively. Those systems do not yet incorporate formal verification. Veridrone
[21] and other Coq initiatives (e.g., [4]) have incorporated formal verification
into working systems to formally prove aircraft safety properties. In this work,
an approach to build a formally verified monitor/sentinel from a specification
was presented and applied to aircraft safety.

5 Conclusion

An extension and modularization of the concepts put forward by Breese et al.
[6] was presented. The modularization included the separation of what it means
to be consistent, z-predictability, and how to quantify confidence in the stall
classification of an aircraft, τ -confidence. It was shown that knowing only a
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single energy signal measurement from a piezo-electric sensor is not enough to
confidently determine the stall state of a wing. Knowing the airspeed of the
aircraft significantly improves the classification confidence.

A formalization of safety envelopes in Agda was also presented. From it, for-
mally verified Haskell code was generated, wrapped and extended to process a
stream of data. Safety envelopes are an important step forward in the direc-
tion of formally correct and robust dynamic data-driven applications systems
(DDDAS).

Future work includes the definition of safety envelopes for a sequence of signal
energy measurements as opposed to single, isolated values, as in Ahmed et al.
[2]; and the implementation of runnable real number arithmetic as opposed to
floating-point arithmetic operations.
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Foundation (NSF), Grant No. – CNS-1816307, and the Air Force Office of Scientific
Research (AFOSR), DDDAS Grant No. – FA9550-19-1-0054.
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Abstract. This work presents formal progress envelopes applied to
flight systems for distinctly classifying a system’s state space into regions
where a formal proof of progress for a distributed algorithm holds or
does not hold. It also presents an approach for runtime integration of for-
mal methods in the dynamic data-driven applications systems (DDDAS)
architecture using parameterized proofs. Finally, it showcases the devel-
opment of reusable parameterized proof libraries for high-level statistical
and stochastic reasoning in the Athena proof assistant and demonstrates
their use with a progress proof for the Paxos distributed consensus pro-
tocol.

1 Introduction

Intelligent aerospace systems of the future will be “smarter” and more self-
sufficient in terms of self-diagnosis [5,18], self-healing [16], safe navigation [24],
and overall situational awareness. Such enhanced capabilities will stem from
access to an unprecedented amount of real-time data collected from onboard sen-
sors and a network of ground-stations, satellites, and aircraft, which we call the
Internet-of-Planes (IoP). Dynamic data-driven applications systems (DDDAS)
[6] can use this data for creating low-fidelity models in real-time that can reflect
the operating conditions of an aerospace system almost as effectively as a high-
fidelity model [23].

Data from the IoP can be used for various mission-critical and safety-critical
applications such as conflict-aware [24] and weather-aware [7] navigation. Many
distributed consensus algorithms [19,22] allow participating aircraft to eventu-
ally reach agreement on data in a decentralized manner. However, the useful
lifetimes of navigation and weather data are usually limited, rendering them
obsolete after relatively short durations. Guarantees of eventual agreement are,
therefore, ill-suited for most data-driven applications in the IoP. Moreover, the
asynchronous and stochastic nature of real-life networks makes it impossible to
provide deterministic guarantees about the progress of consensus algorithms, as
message delays are indistinguishable from failures [8]. Under such circumstances,
guarantees of probabilistic progress properties can be provided using statistical
techniques. The failure of safety-critical aerospace systems can be catastrophic
to life, property, or the environment [26], making it necessary to verify their
c© Springer Nature Switzerland AG 2020
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correctness guarantees. Formal methods [3] can be used for the mechanical ver-
ification of such systems by writing machine-checked correctness proofs.

In this paper, we present the concept of formal progress envelopes applied
to flight systems for distributed algorithms (Sect. 2) and propose an approach
for integrating formal methods in the runtime architecture of DDDAS by using
parameterized proofs (Sect. 3). We also showcase the development of a proof
library in the Athena proof assistant [1] for reasoning about statistical proper-
ties of dynamic data-driven systems (Sect. 4) and provide a simple example to
demonstrate its application (Sect. 5). We compare related work on runtime and
stochastic verification (Sect. 6) and conclude the paper with a discussion about
possible future directions of work (Sect. 7).

2 Formal Progress Envelopes

A formal progress envelope for a distributed algorithm is a computable subset
of the system state space where the formal proof of a progress property holds.
It is defined by a set of logical constraints parameterized by the system’s oper-
ational conditions. Progress, depending on the algorithm, may refer to either
termination or the successful completion of a given sequence of message rounds.
To illustrate formal progress envelopes, let us consider asynchronous distributed
consensus algorithms for use in safety-critical applications. The asynchronous
and stochastic nature of real-life distributed systems makes it difficult to deter-
ministically predict the message delay between any two nodes. However, we can
statistically analyze the message delays – e.g., if the message delays from a node
A to another node B and vice-versa are represented by the continuous random
variables X and Y respectively, over a period of time, it is possible to statis-
tically observe the behavior of X and Y as their probability density functions
(pdf) fX(t) and fY (t). A distributed consensus algorithm may require multiple
rounds of messages between two or more nodes for making progress. If in the
worst-case scenario, a deterministic number of message rounds are required for
reaching consensus, then the total worst-case message delay can be represented
by a random variable which is the sum of the random variables representing
the delays of each message involved. Since there exist statistical theorems about
the nature of random variables (e.g., Cramér’s Decomposition Theorem [17])
it is possible to provide probabilistic guarantees about the worst-case time of
progress – e.g., “The probability that the worst-case time for consensus will be at
most 0.8 s is 98% ”. A naive progress envelope for this particular property would
be: ∀D ∈ D : D ∼ N (μD, σ2

D), where D is the set of all message delays and
D ∼ N (μD, σ2

D) implies that the random variable D is normally distributed.
Since the parameters that define formal progress envelopes can be quantified

and measured, the envelopes can be analyzed against real-time data. Special
runtime-accessible programs called sentinels [4] can analyze real-time data to
check if the system state satisfies the progress envelope constraints. To ensure
their correctness and effectiveness, sentinels may be generated directly from the
formal specifications of the envelopes and some underlying models of uncertainty.
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3 Augmenting DDDAS with Formal Methods

Unpredictable operating conditions of dynamic data-driven systems restrict the
practicality of pre-developed formal proofs to the pre-deployment stages. It is,
therefore, desirable to develop parameterized proofs that can be augmented in
real-time, making them versatile over dynamic parameters – e.g., instead of
stating a static property such as: “The probability that the round-trip message
delay will be at most 0.9 s is 99%”, a parameterized proof would state: “If the
one-way message delays follow normal distributions N (μX , σ2

X) and N (μY , σ2
Y ),

then the probability that the round-trip message delay will be at most t seconds
is F (μX , σX , μY , σY , t)”, where F is the cumulative distribution function (cdf).

Fig. 1. Integrating formal proofs in the DDDAS architecture.

Formal envelopes, in conjunction with parameterized proofs and runtime sen-
tinels, can be directly incorporated in the DDDAS architecture using a feedback
loop (Fig. 1). This involves four logically separate components:

– The proof refinement component receives a parameterized proof with a set
of initial parameters and real-time inputs from the sentinels. If possible, it
refines the proofs with the real-time parameters and provides new envelopes.

– The model refinement component receives real-time envelopes from the proof
refinement component and an initial system model. It updates the system
model according to the latest envelopes.

– The sentinels analyze the real-time operating conditions of the system against
the latest envelopes. If the conditions do not conform to the envelopes, they
send real-time parameters to the proof refinement component. They also
inform the live system about guarantees that hold in real-time. Hard con-
straints dictate when possible guarantees cease to be useful.

– The live system runs using the updated system model from the model refine-
ment component.
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To illustrate, let us consider an aircraft that is participating in distributed
consensus for collaborative flight-planning by implementing the feedback loop
in Fig. 1. It may propose a conflict-aware flight-plan p [24] that is due to start
after 1 s, as there is an initial proof that traffic aircraft will reach consensus
under 1 s with 99.8% probability. During runtime, the sentinels observe that the
actual message delays do not conform to the envelope of the initial proof, so
they send the actual parameters to the proof refinement component. The proof
refinement component generates new proofs which state that consensus under
1 s has a probability of only 60% and consensus under 2 s has a probability of
99.5%. The model refinement component may then update the proposal with
another flight-plan p′ that is due to start after 2 s.

The above example shows that our approach can be used to dynamically
update formal proofs with parameters that reflect the runtime operating condi-
tions of a system. This will allow the development of highly-adaptive dynamic
data-driven applications systems that can adapt to formally-verified properties
that hold during runtime, thus extending the practicality of formal verification
techniques beyond the pre-deployment stages.

4 Proof Library for High-Level Statistical Inference

The nature of foundational verification makes the process of developing mechani-
cally verified formal proofs an arduous task. This is because when developing the
proofs of high-level properties in mechanically-verifiable languages, a significant
amount of effort needs to be put in for formalizing the lower-level theory. This
calls for the development of proof libraries for formal verification languages,
which can be reused to prove higher-level properties, similar to code libraries
developed for general-purpose programming languages. Mechanically verifying
the higher-level statistical properties of stochastic systems requires reasoning
about the lower-level mathematical theory of random variables, distributions of
random variables, algebra, and probability. We adopt a top-down approach of
proof development which allows us to first formalize the high-level properties
and then develop the lower-level theory required for fully verifying them. We
present two mechanically-verified results that can be used for reasoning about
the statistical properties of stochastic systems.

Lemma 1. Given two normal probability density functions fX(x) = N (μX , σ2
X)

and fY (y) = N (μY , σ2
Y ), the probability that a random variable following their

convolution will take a value of at most r is given by:
∫ z

−∞
1√
2π

e−x2/2dx where

z = r − (μX +μY )√
2(σ2

X +σ2
Y )

.

Theorem 1. If two independent random variables X and Y are normally dis-
tributed with probability density functions fX(x) = N (μX , σ2

X) and fY (y) =
N (μY , σ2

Y ), then the probability that X + Y will take a value of at most r is
given by:

∫ z

−∞
1√
2π

e−x2/2dx where z = r − (μX +μY )√
2(σ2

X +σ2
Y )

.
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The formal proof of Theorem 1 uses Cramèr’s Decomposition Theorem and
the following postulates:

Postulate 1. The standard score of a value v with respect to a normal distribu-
tion N (μX , σ2

X) is given by: z = v − μX

σX

Postulate 2. Given the standard score z of a value v with respect to a normal
distribution fX , the probability that a random variable X following fX will take
values of at most v is given by:

∫ z

−∞
1√
2π

e−x2/2dx

Postulate 3. Given two independent random variables X and Y , the pdf of their
sum X + Y is the convolution of their individual pdfs.

We have used the Athena proof assistant to formalize and mechanically verify
our proofs (shown above). Our work extends the Athena proof library [2] with
theory about statistical inference that can be reused for higher-level proofs1.
1 Available at http://wcl.cs.rpi.edu/pilots/fvdddas.

http://wcl.cs.rpi.edu/pilots/fvdddas
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5 A Sample Application of Our Proof Library

We demonstrate how our extensions to the Athena proof library can be used
to provide a mechanically-verified proof of probabilistic progress for a simple
implementation of Paxos [20], a consensus algorithm which involves a set of
agents called proposers that propose values to be chosen and a set of agents called
acceptors that vote on those values. For our example, we consider a system in
which there is one proposer and two acceptors. Paxos assumes an asynchronous,
non-Byzantine system model where agents operate at arbitrary speed, may fail
and restart, and have stable storage. Messages can be duplicated, lost, and have
arbitrary transmission times, but are not corrupted. For the sake of simplicity, we
make some additional assumptions – all agents are always available; there is no
message loss; it is possible to observe the pdf of the message delay between any
pair of agents as a normal distribution; and it is possible to observe the pdf of the
processing time of every agent as a normal distribution. Our implementation of
Paxos involves two prepare messages from the proposer to the acceptors, followed
by two promise messages from the acceptors to the proposer, and finally, two
accept messages from the proposer to the acceptors. The agents take some time
to process each message. The algorithm makes progress when all messages have
been transmitted, received, and processed.

We can define the worst-case scenario as the sequential operation of the
protocol where no pair of actions (processing or message transmission) have
any overlap in time. The total time for progress will, therefore, be the sum of
the total processing time and the total message delay. If the message delays
and processing times are represented by the sets of random variables X =
{X1,X2,X3,X4,X5,X6} and Y = {Y1, Y2, Y3, Y4, Y5, Y6} respectively, then under
our assumptions, Cramer’s Decomposition Theorem can be recursively used to
prove that Z =

∑6
i=1 Xi +

∑5
i=1 Yi follows a normal distribution N (μZ , σZ).

Theorem 1 can then be used to prove the following stochastic progress property:

Theorem 2. The probability that Z +Y6 will take a value of at most c2 is given
by:

∫ z

−∞
1√
2π

e−x2/2dx where z = c2 − (μY6 +μZ)√
2(σ2

Y6
+σ2

Z)
.

A straightforward progress envelope for Theorem 2 would be the constraint
∀X ∈ X : X ∼ N (μX , σ2

X) ∧ ∀Y ∈ Y : Y ∼ N (μY , σ2
Y ).

6 Related Work

Runtime monitoring of formal properties has been previously investigated in
[21] and [25]. Formal safety envelopes for stochastic state identification have
been proposed in [4]. Formal verification of expectation and variance of discrete
random variables and tail distribution bounds have been studied in [12] and
[13]. Formalizations of the uniform random variable and continuous probability
distributions in the HOL theorem prover[15] have been presented in [11] and [10].
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Probabilistic analysis of wireless systems has been studied in [14]. [9] addresses
probabilistic theorem proving as the problem of computing the probability of a
logical formula given the probabilities of a set of formulas.

The existing work does not focus on augmenting formal proofs with runtime
data or creating a dedicated proof library that can be directly reused for higher-
level statistical properties of stochastic aerospace systems. We improve upon
it by introducing runtime-modifiable formal proof techniques in the DDDAS
architecture to allow the development of safety-critical aerospace systems that
can dynamically adapt to the formal proofs that hold during runtime.

7 Conclusion

We have presented an approach for integrating formal methods directly in the
dynamic data-driven applications systems (DDDAS) architecture that will allow
the development of highly-adaptive formally-verified aerospace systems. We have
also showcased the development of formal proof libraries in the Athena proof
assistant that can be used as reusable building blocks to develop proofs of higher-
level probabilistic properties of stochastic systems.

Real-life data is seldom perfect – e.g., normality of sensor data may only be
tested up to some significant level and may also be affected by pre-processing. It
is also computationally expensive to effectively estimate the tail bounds of distri-
butions in real-time. Future directions of work, therefore, include investigating
the development of formally-verified runtime sentinels that can find accurate and
meaningful estimates from data and further expansion of our stochastic proof
library in Athena by creating parameterized proofs for lower-level theory.

Acknowledgment. This research was partially supported by the National Science
Foundation (NSF), Grant No. – CNS-1816307 and the Air Force Office of Scientific
Research (AFOSR), DDDAS Grant No. – FA9550-19-1-0054.
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Abstract. Unmanned Vehicles (UVs), including aerial, sea, and ground
vehicles, include remotely operated vehicles and autonomous vehicles.
The use of these vehicles is increasing rapidly, from military operations
to the consumer space. UVs assess their environment (or relay it to the
remote operator) with a variety of sensors and actuators that allow them
to perform specific tasks such as navigating a route, hovering, or avoid-
ing collisions. So far, UVs tend to trust the information provided by
their sensors to make navigation decisions without data validation or
verification. Therefore, attackers can exploit these limitations by feed-
ing erroneous sensor data to disrupt or take control of the system. In
this paper, we leverage the Dynamic Data Driven Application Systems
(DDDAS) paradigm to design and implement an architecture for secur-
ing unmanned vehicles. We argue that DDDAS principles are a perfect fit
to secure feedback-control systems with protections that classical secu-
rity mechanisms cannot provide. In particular, by using exact models
of the vehicle dynamics, we can compare and correlate their expected
behavior (given by the models) with the values from data acquisition. If
there is a persistent anomaly, we can replace sensor values with models,
or fuse other sensors to replace the missing ones, enabling the vehicle to
maintain safety in the immediate future.

Keywords: DDDAS · Unmanned vehicles · Security

1 Introduction

Unmanned Vehicles (UVs), including remote and autonomous aerial, ground,
sea, and underwater vehicles, are becoming an integral part of our life [9].

This research was partially supported by the Air Force Office of Scientific Research
under award number FA9550-17-1-0135.
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Unmanned aerial vehicles have applications ranging from agricultural manage-
ment to aerial mapping and freight transportation [6]. To operate correctly, UVs
rely on sensors (transducers that translate a physical signal into an electrical
one), and actuators (transducers that deliver a physical effect to the surround-
ing environment). Currently, most UVs trust sensor data to make navigation
and other control decisions, and believe the control command given to actuators
is executed faithfully; however, there is a growing threat. While trusting sensor
and actuator data without any form of validation has proven to be a valid trade-
off in current market solutions, it is not sustainable as UVs become ubiquitous,
and sensor attacks continue to mature in their sophistication.

Classical security solutions cannot protect UVs from several types of attacks,
including analog attacks : for example, soundwaves can affect accelerometers [12]
and gyroscopes [11], lasers can affect the camera image processing of drones [4],
and lidar sensors in cars [2]. Similarly, attackers can use electromagnetic inter-
ference to manipulate rotors in drones [10]. In addition to transduction attacks,
UVs are vulnerable to GPS spoofing and data injection attacks through classical
security vulnerabilities. GPS spoofing attacks affecting the navigation of more
than 24 vessels in the Black Sea have been reported [13] (experts believe these
GPS attacks are anti-drone measures), and it is believed, Iran spoofed a military-
grade GPS to capture a U.S. Unmanned Aerial Vehicle [8]. Launching a similar
UV takeover attack in commercial GPS systems is quite straightforward [5].

Therefore to protect UVs, we need new data-driven algorithms that can
detect poisoned data and dynamically reconfigure the system to survive attacks.
The Dynamic Data Driven Applications Systems (DDDAS) paradigm [1] is par-
ticularly well suited to help us model the problem of detecting data poisoning in
control systems. While the Cyber-Physical Systems paradigm is used to refer to
the modernization of control systems with embedded controllers, wireless sen-
sors, and computer networks, its definition does not give us any insights on how
to leverage this modernization to design better control systems. The DDDAS
paradigm, in contrast, encourages us by its definition to think in terms of how to
use models of the physical system to guide the data acquisition, how data acqui-
sition can change the operation and simulation of our models, and in ultimately,
on how to dynamically reconfigure the control system based on the outputs of
computation, model simulations, and sensor inputs.

These unique characteristics of DDDAS are precisely the ones we need to
detect and respond to attacks against control systems. In particular, in this
paper, we apply our previously proposed DDDAS Anomaly Detection and
Response (DDDAS-ADR) architecture [3] to UVs. DDDAS-ADR can simulate
the physical system under control (e.g., the dynamics of unmanned vehicles and
their expected response to the control commands), and the output of these com-
putations can then lead us to reclassify sensors, actuators, and controllers as
more trustworthy or less trustworthy. For example, a sensor reporting readings
that do not match the model-predicted computation of the physical system will
be deemed less trustworthy. Our DDDAS-ADR algorithm can then dynamically
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reconfigure the selection of sensors that we trust, use only trustworthy sensors
and accurate computer simulations, and create synthetic data to mitigate the
lack of missing sensor observations to drive the system to a safe place, even under
attack. This paper complements and expands our recent work on SAVIOR [7]
by giving more details on our attacks, and adding new examples of our defenses.

2 Motivating Examples: Data Poisoning in UVs

To motivate our defenses against data poisoning in UVs, we now illustrate
how different UVs can be attacked and the effects of these attacks. In par-
ticular, we consider the Intel Aero Drone, the jMAVSim simulator (which
allows developers to run real-world drone controllers such as PX4 in a sim-
ulated environment), and an autonomous ground vehicle based on a Basher
RZ-4 1/10 scale rally racer remote control vehicle. We modified the original
car in order to make it autonomous (it can sense its environment with a cam-
era and a lidar and it can then follow a lane and avoid obstacles). A low-level
controller translates these commands into signals sent to the actuators. The
hardware in which the state observer and the high-level controller run is an
Odroid XU4, a single board computer in which the Robot Operating System
(ROS) is implemented on top of Linux Ubuntu MATE. Videos for some of these
attacks can be found in the following link: https://www.youtube.com/playlist?
list=PLxjvyevQzqzxPAQcOjzzo9ZrR3UuyfP6h.

2.1 Attacking MAVLink in Drones

We first consider the MAVLink implementation of the Intel Aero drone, and the
jMAVSim. A general connection between a remote controlled drone, where a user
has a Radio Controller (RC) that communicates directly with a radio receiver in
the drone that is connected to a companion computer and sends commands to the
flight controller of the drone. Here, manual commands are received, interpreted,
and executed by the flight controller. These commands require user interaction.
The second type of input comes from the ground control station. These com-
mands include GPS routing and re-routing, as well as calibration and system
information. This communication is on top of the MAVLink protocol that is
sent using a TCP or UDP connection. The third type of connection uses the
Wi-Fi interface to create an SSL connection with the companion computer on
the drone. Here, commands and program execution can be given directly to the
drone. These communication channels are represented in the Intel Aero drone
(See Fig. 1), which we use in our experiments.

MAVLink message signing is optional and only supported in MAVLink 2.0.
Moreover, most communication channels implemented with MAVLink in com-
mercial drones have no encryption or obfuscation, allowing an attacker to sniff
the legitimate traffic. If a communication channel between a ground controller

https://www.youtube.com/playlist?list=PLxjvyevQzqzxPAQcOjzzo9ZrR3UuyfP6h
https://www.youtube.com/playlist?list=PLxjvyevQzqzxPAQcOjzzo9ZrR3UuyfP6h
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Fig. 1. General architecture for
the remote operation of drones.

1 byte :: Packet starter

1 byte :: Payload length

1 byte :: Incompatibility flags

1 byte :: Compatibility flags

1 byte :: Sequence number

1 byte :: System ID

1 byte :: Component ID

1|3 bytes :: Message ID

0-255 bytes :: Payload

2 bytes :: Checksum (X.25 CRC)

0-13 bytes :: Signature (optional)

Fig. 2. MAVLink packet format.

and a drone does not implement message signing, a third party can send arbi-
trary messages to the drone over the same communication channel and the drone
would acknowledge such messages as legitimate messages since there is no real
authentication mechanism. Attacks through MAVLink will also allow us to inject
and overwrite data in the drone, such as IMU or GPS data.

In order to fool the drone to recognize the malicious host as a ground con-
troller, the latter must periodically send a heartbeat message indicating to the
drone that the host is both alive and a ground controller. This is achieved by
implementing a MAVLink communications channel that connects to the drone’s
MAVLink router and sends the message with ID 0 (a heartbeat message). The
structure of the packets in MAVLink can be seen in Fig. 2.

Values needed for the actual communication between the ground controller
and the drone were captured while sniffing the legitimate traffic exchanged
between the drone and the legitimate ground station. In particular, the first
heartbeat message has an uninitialized custom mode field and sets the sys-
tem status field to represent the ‘MAV STATE UINIT’ state. This initial mes-
sage is necessary to allow the drone to register the ground controller as such.
Afterwards, the heartbeat messages are sent with a ‘custom mode’ set to
0xc0080600 and the system status set to ‘MAV STATE ACTIVE’. Once the
heartbeat messages are sent, the drone acknowledges the host as a ground con-
troller and accepts commands incoming from said host.

We start by testing two attacks; a “disarm” command, which causes the drone
to plummet to the ground. This attack was effective in both the Intel Aero and
the jMAVSim simulator. We also tested a different attack to cause the drone to
change its current course or receive the instruction to go to a particular set of
coordinates. For this, a new traffic capture was taken in which the command to
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Fig. 3. GPS attack on drone. The red line
is what the drone and remote operator
believe is happening, while the blue line
shows what happened in reality. (Color
figure online)
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Fig. 4. X-Y position of the quadcopter
subject to the attack in the gyro-
scope. The goal of the controller was to
keep the drone hovering but the attack
caused an erratic displacement because
the controller was trying to compensate
the fake change in the roll angle data.

send the instruction to travel to a specific latitude, longitude, and altitude tuple
was captured. The attack sends a message to the drone in which the malicious
host instructs the drone to go to a specific location. Afterwards, the malicious
host monitors the telemetry information broadcasted by the drone to all reg-
istered ground stations in order to determine whether the drone is reducing
its distance with the desired destination. If a significant increase of distance is
detected, the automated attack script sends again the same instruction, forcing
the drone to resume the trajectory. Once the drone is within a reasonably close
distance from the target location, a ‘land’ command is sent to the drone. This
attack can effectively steal the drone and make it land at the target location by
the attacker.

We also launch attacks on the GPS and gyroscope data of the drone and test
their results. For the GPS attack, we change mid-flight the GPS coordinates of
the drone, making the drone (and the remote operator) believe they are on track
to the destination, while in reality, a bias in the coordinates will shift the drone
in the opposite direction. Figure 3 illustrates this attack, which manages to steer
the drone out of its planned course. Similarly, Fig. 4 shows the effect of attacking
the gyroscopes of the drone. While the drone was programmed to hover over a
fixed point, the attacks on the gyroscope data force the drone to follow an erratic
trajectory, ultimately being displaced from where it was supposed to hover.
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2.2 Attacking ROS in the Ground Vehicle

Fig. 5. Line follower node graph in ROS
for the ground vehicle showing how data is
exchanged between nodes.

In addition to launching attacks on the
drone, we also launched similar attacks
on the ground vehicle. The ground
vehicle is operated with the Robot
Operating System (ROS). The main
objective of ROS is to provide a frame-
work with libraries to aid common
functionality, hardware abstractions,
and communication between processes
with low coupling. The communication
between processes follows a publish-
and-subscribe architecture with a mas-
ter node acting as an intermediary for
initial connection. The master node is
aware of all the current nodes and the
topics being published and receives query requests from nodes to either publish
or subscribe to a given topic. Once a node is launched, it can initiate a request to
the master node, which in turn will provide the appropriate information for the
nodes to establish the communications channel (TCPROS or UDPROS). This
allows the nodes to be independent from each other, and reduces the coupling
between modules since they could start, reboot, or finish execution at any time.

Despite the fact that nodes are communicating with each other to establish
the exchange of information, nodes are not aware of the veracity of the informa-
tion or how many nodes are subscribed to publish any given topic. This implies
that there can be multiple subscribers for any specific topic and the master
node does not enforce any sanity checks on the data. As an example, Fig. 5
depicts the current nodes and topics present when a simple “lane” algorithm
is executed. This algorithm takes an image from the camera, processes it, and
discerns whether the vehicle should steer in a given direction based on a line
drawn on top of a track in which the vehicle is driving.

The line follower algorithm greatly depends on the image published by the
camera on the “/cam/raw” topic since it is the main source of data for the
decision-making process. Given the fact that there can be multiple nodes pub-
lishing the same topic and that there are no sanity checks in place, a malicious
node can publish the same camera topic and replay a chosen image at a higher
rate than that of the camera, overwriting any legitimate image with a malicious
one and compromising the data that would be used by the controller in order to
make the steering decisions.
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3 Detecting Attacks

Our DDDAS-ADR architecture was previously proposed to detect attacks on
industrial control systems [3]. Here we adapt this framework to UVs. In par-
ticular, one advantage that we have over general industrial control systems, is
that the physical models for drones (quadcopters) and ground vehicles are well-
understood. So we just need to learn the specific parameters of the vehicles that
we have (we do this with system identification tools) and then use them to pre-
dict and simulate the behavior of the physical system, and we then compare
these predictions with the information we get from the sensors. In our DDDAS-
ADR architecture, we first have data from the sensors (e.g., IMU, GPS, etc.)
and then preprocess the data to obtain the variables that are needed for the
differential equations of the models of the systems. Because both the models for
quadcopters and for ground vehicles are nonlinear, we need to use the Extended
Kalman Filter (instead of the Kalman Filter) to predict future measurements.
We then compare our predictions with the received information and see if there is
any systematic pattern of historical anomalies. We keep track of these historical
anomalies with the nonparametric CUmulative SUm (non-parametric CUSUM)
algorithm. If the historical anomalies reach a threshold, an alert is raised.

IMUs used in vehicles are composed of a 3-axis accelerometer, 3-axis gyro-
scope, and 3-axis magnetometer that can be combined to calculate the vehicle
attitude (roll φ, pitch θ, yaw ψ angles) and attitude rates (φ̇, θ̇, ψ̇). Also, most
AVs have GPS receivers to collect information about the spacial position of the
drone (x, y, z). Table 1 shows the raw sensor information on the x, y, and z axis
for IMU readings of the accelerometer, gyroscope, and magnetometer with their
respective units. Similarly Table 2 illustrates the type of sensor data we have in
the car.

Table 1. IMU data from Intel
Aero.

IMU variable Value Unit

Accelerometer on x-axis −.27762287 m/s2

Accelerometer on y-axis −.18123956 m/s2

Accelerometer on z-axis −9.80503749 m/s2

Gyroscope on x-axis −.01762431 rad/s

Gyroscope on y-axis .01770246 rad/s

Gyroscope on z-axis .00378060 rad/s

Magnetometer on x-axis .15779675 gauss

Magnetometer on y-axis −.89283788 gauss

Magnetometer on z-axis 1.77371621 gauss

Table 2. Ground vehicle data.

Sensor
measurement

Value Unit

Velocity: 0.027154 m/s

Angle: −0.061717 rad

Y-position: 0.099662 m

Steering: −0.114908 rad
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Fig. 8. Attack and detection in ground
vehicle.

Our algorithms [7] can detect
attacks with high precision and low
overhead. Figure 6 shows how due to
the fake increase in the roll speed of
the drone, the controllers start com-
pensating trying to drive the roll angle
to zero, causing a difference in the pre-
diction and triggering an alarm after
1.5 s. Similarly, Fig. 7 illustrates the
impact of a GPS bias attack and the
detection of the attack in the ground vehicle.

A second attack to the car induces a time-varying change in the roll angular
velocity that increases with a rate of 0.01 rad/s. The attack causes the control to
try to compensate causing the vehicle to follow a circular trajectory and never
reaching its destination (see Fig. 8). This attack is also easily detected with our
proposed detection strategy.

4 Conclusions

The DDDAS paradigm is particularly well-suited to design defenses against data
poisoning in control systems. The ability to dynamically reevaluate sensor data
trustworthiness based on physical models of the system under control allows us
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to detect attacks and reconfigure the system to be resilient to these threats. In
future work, we will expand our work with sensor fusion to validate and replace
sensor data with information from trustworthy sensors.
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Abstract. Classifiers, e.g., those based on Naive Bayes, a support vec-
tor machine, or even a neural network, are highly susceptible to a data-
poisoning attack. The attack objective is to degrade classification accu-
racy by covertly embedding malicious (labeled) samples into the training
set. Such attacks can be mounted by an insider, through an outsourcing
process (for data acquisition or training), or conceivably during active
learning. In some cases, a very small amount of poisoning can result
in dramatic reduction in classification accuracy. Data poisoning attacks
are successful mainly because the malicious injected samples significantly
skew the data distribution of the corrupted class. Such attack samples are
generally data outliers and in principle separable from the clean samples.
We propose a generalized, scalable, and dynamic data driven defense
system that: 1) uses a mixture model both to well-fit the (potentially
multi-modal) data and to give potential to isolate attack samples in a
small subset of the mixture components; 2) performs hypothesis testing
to decide both which components and which samples within those com-
ponents are poisoned, with the identified poisoned ones purged from the
training set. Our approaches addresses the attack scenario where adver-
sarial samples are an unknown subset embedded in the initial training
set, and can be used to perform data sanitization as a precursor to the
training of any type of classifier. The promising results for experiments on
the TREC05 spam corpus and Amazon reviews polarity dataset demon-
strate the effectiveness of our defense strategy.

Keywords: Adversarial learning · Data poisoning attack · Mixture
modeling · Parsimonious mixtures · Spam filter · Sentiment analysis

1 Introduction

Machine-learned classifiers can be used to support the cooperation between sens-
ing and high-dimensional analysis in Dynamic Data Driven Applications Sys-
tems (DDDAS) [2]. Machine learning systems are vulnerable to inputs crafted
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by an adversary. Interest in adversarial learning (AL) has grown dramatically
in recent years, focusing on devising attacks against machine learning models
and defenses against such attacks. Three important types of AL attacks [10]
are: data poisoning (e.g., [3,7,22,23]), test-time evasion (e.g., [1,12,16,19]) and
reverse engineering (e.g., [15,20,21]). In this work, we address data poisoning
attacks on classifiers, e.g., those based on a support vector machine (SVM), a
Bayesian network, or neural network, that seek to degrade classification accu-
racy. The proposed defense can be widely deployed to sanitize the training set
prior to the initial training process and during dynamic reinforcement
learning.

Data poisoning (DP) is an effective attack to mislead a classifier. DP is able
to dramatically degrade accuracy by adding relatively few maliciously crafted
data points to a training set. To expand on this point, first note that a DP
attack may be done before data collection to form the training set. For the
example of a spam filter, emails sent from known malicious Internet Protocol
(IP) addresses are regarded as spam, and an attacker may generate and send
emails that are more representative of ham via blacklisted IP addresses to pol-
lute the spam training set. For a sentiment analysis problem, an attacker could
insert positively labeled samples with words conveying very negative sentiments
[14] to misguide the model of positive sentiment. Second, existing classifiers are
highly vulnerable to data poisoning attacks. The malicious samples injected by
an adversary will skew the data distributions of the corrupted class in a manner
confounding the class discriminating features. Once the training set is poisoned
with sufficient malicious samples, the overall classification accuracy will be sig-
nificantly degraded.

Defenses against DP attacks on various systems include [9,13,18]. [18] con-
structs approximate upper bounds on the loss across a family of DP attacks, for
defenders that first perform outlier removal followed by empirical risk minimiza-
tion. [9] proposes a defender named Curie to protect an SVM from a DP attack.
[9] assumes that the malicious data are crafted by maximizing the loss function
of an SVM by flipping labels of legitimate samples. Therefore such data are sim-
ilar to the normal points from the opposite set. If an additional dimension, the
class label, is added to the feature space, the attack samples will be separated
from the benign ones. [9] is not a generalized defense strategy as its assump-
tion on malicious samples is specific to an SVM. A Reject on Negative Impact
(RONI) strategy was proposed in [13] – although this work specifically focuses
on spam filtering, it generalizes to defenses of classifiers on any domain. The
defender in [13] rejects putative additional training samples if trial-adaptation
of the spam model based on use of these samples causes degradation in classi-
fication accuracy on a held-out validation set. This strategy makes two strong
assumptions: 1) that there is sufficient labeled data to have a held-out validation
set; and 2) that the classifier has already been trained on “clean” data, with the
attack consisting of additional labeled samples for classifier retraining. [13] is not
a practical strategy when the malicious data are embedded within the original
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training set (with the attack samples an unknown subset). This more difficult
scenario is addressed here.

A potential strategy for designing a generalized defender against an
embedded data poisoning attack is to conduct “data sanitization” on the train-
ing set, i.e., identifying and removing the attack samples as training set outliers.
While such ideas are mentioned in [8] and are related to [11], we are not aware
such ideas have been practically, effectively applied. Again, a main reason why
the victim classifiers are susceptible to data poisoning attacks is that, under
the corrupted class, the training/model estimation is degraded in an unimpeded
fashion by the planted malicious “outliers”. Hence, we propose a mixture
based outlier detection method, both to well-fit the (potentially multi-
modal) data and to allow potential concentration and isolation of poi-
soned samples in a small subset of the mixture components. The validity
of our defense strategy is demonstrated by experimental results on the TREC05
spam corpus and Amazon reviews polarity dataset.

This paper is organized as follows. We first define the threat model of data
poisoning attacks in Sect. 2. In Sect. 3, we propose our mixture based defense
against data poisoning attacks on generative classifiers. Experimental results
are presented in Sect. 4. Finally, we conclude our work and discuss future work
in Sect. 5.

2 Threat Model of Data Poisoning Attack

In this section, we build the threat model of data poisoning attacks against statis-
tical classifiers, including the knowledge and objective of attacker and defender,
as well as the plausible attack scenarios.

2.1 Notation

We consider a D-dimensional feature space, with a sample represented as a vec-
tor x = (x1, x2, . . . , xD), where xd (d = 1, . . . , D) can be discrete valued, such
as word counts if x is text data, following a multinomial distribution, or can be
continuous valued, e.g., x is generated via a multivariate Gaussian distribution.
The dataset is then represented by a fixed (high) dimensional (possibly highly
sparse) feature matrix – e.g., many words may have zero occurrences in a given
document, in which case the vector will be sparse. Let Xp = {xp

i , i = 1, . . . , Np}
be a given training set of positive samples used to build a multi-component
positive-class model. Likewise, let Xn = {xn

i , i = 1, . . . , Nn} be the negative
training set for building a multi-component negative-class model. For concrete-
ness, we consider binary classification here. It is possible to extend our work to
a multi-class ( >2classes) classifier.

2.2 Threat Model

Attacker’s Assumption and Goal: We assume that an attacker: 1) has full
knowledge of the learning approach and classification framework, e.g., a standard
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naive Bayes (NB) classifier; 2) does not need access to the clean training set as
poisoning is done before data collection to form the training set; 3) only pollutes
the negative training set, e.g., polluting spam set of a spam filter by sending
ham emails via known blacklisted IP addresses, or poisoning negative set in
sentimental analysis on product reviews by verbally recommending a product
but giving it a low numerical rating; 4) is unaware of any deployed defense.
The goal of an attacker is to decrease classification accuracy with as few attack
samples as possible.

Defender’s Assumption and Goal: The defender presumes that: 1) The
positive set is untouched (clean); 2) it is unknown whether the negative set is
corrupted and if so, which is the attack subset of samples. The defender aims
to: 1) identify and remove attack samples, as many as possible, before classifier
training/retraining; 2) maintain the classification accuracy as high as that of a
classifier trained without data poisoning.

Attack Scenarios: Our approach is applicable to two attack scenarios: 1) clas-
sifier retraining and 2) classifier training, where the latter is more challenging.
In the retraining scenario, one can initially build clean positive and negative
models (those uncorrupted by attack) using Xp and Xn, respectively. Let us
denote a batch of additional samples that are treated as labeled negative by
X̃n = {x̃i, i = 1, . . . , Ñn}. In the retraining case, the learner pools X̃n with Xn,
retraining the negative model using the combined data pool Xnc = {Xn, X̃n}.
Note that X̃n may consist of legitimate negative samples, attack samples, or
some combinations of the two. If one can utilize a separate, uncorrupted, held-
out validation set, the approach in [13] can effectively mitigate an attacking X̃n.
However, consider the other scenario – the training scenario. Unlike retraining,
where the subset X̃n is known to the learner, in the training scenario the attack
samples are embedded amongst the clean negative samples. The learner does
not know whether an attack is present and if so, which is the attack sample
subset. Again the learner uses Xnc, but in this case to perform the inaugural
learning of the negative model, not model retraining. In the sequel, we develop
a mixture based defense strategy, which effectively defeats the attack under the
more challenging classifier training scenario.

3 Mixture Model Based Defense Against Data Poisoning
Attack

3.1 Mixture Modeling

To defend a data poisoning attack, a “data sanitization” strategy will be applied,
i.e., identifying and removing attack samples as training set “outliers”. Such
outliers are conjectured to form disjoint subpopulations from the normal negative
samples in the feature space. Mixture modeling is a sound approach for seeking
to concentrate (and thus isolate) poisoned samples in a few components, which
can assist in accurately identifying and removing them. Accordingly, we build a
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mixture model based defender to distinguish the distribution of attack samples
from benign ones.

The mixture representation of x for an Mk-component mixture model is
given by (1), where k ∈ {p, nc} represents the positive (p) or possibly contam-
inated negative class (nc), Mk is the number of components, and Θ(Mk) =
{{αj|k}, {θj|k}} denotes the parameters at model order Mk.

P [x|Θ(Mk)] =
Mk∑

j=1

αj|kP [x|θj|k] (1)

Here, {αj|k} are component masses which satisfy 0 ≤ αj|k ≤ 1 and
∑Mk

j=1 αj|k =
1, and θj|k is the set of parameters specifying the joint probability mass func-
tion (PMF) for component j under model k. Model order Mk is selected by
minimizing the Bayesian Information Criterion (BIC) cost [17], and the model
parameters Θ(Mk) are estimated by the Expectation-Maximization (EM) algo-
rithm [5].

Detection Inference: To significantly mislead a classifier with fewest attack
samples, the adversary skews the distribution of the negative samples in a
manner confounding the positive and negative discriminating features. Hence,
the attack samples should be more representative of positive samples and
present atypicality with respect to the negative set. Log mixture likelihood,
log(P [x|Θ(Mk)]), measures how typical a sample is to class k and therefore is
used as the statistic for detection inference. (To avoid underflow, we use log-
likelihood rather than likelihood.) Herein, we propose the null hypothesis of our
detection inference, that the negative training set is not poisoned, i.e., all nega-
tive training samples are generated according to the null distribution. Alterna-
tively, if the data poisoning attack exists, the negative training set is generated
by an alternative model, which is a mixture of negative and positive distri-
butions. The test statistic is to check on which side of the positive-negative
boundary, log(P [x|Θ(Mp)]) = log(P [x|Θ(Mnc)]), a negative sample x resides. If
log(P [x|Θ(Mp)]) > log(P [x|Θ(Mnc)]), then x is better explained by the posi-
tive model. Thus, we reject the null hypothesis, and the negative training set is
deemed contaminated (poisoned). Otherwise, we accept the null hypothesis.

Implementation: We first separately apply mixture modeling to both the pos-
itive set Xp and negative set Xnc to compute the model parameters Θ(Mp) and
Θ(Mnc). Then, we do detection inference on negative samples for a given model
component. The component label on a negative sample x,

j∗ = arg maxjP [j|x,Θ(Mnc)],

can be obtained from the E-step of EM-learning, and is fixed during detection.
To weaken the impact brought by the attack components on likelihood eval-

uation, suspect components in the negative model are pruned one by one. The
components are traversed by the component score, which is the average sam-
ple log-likelihood under the positive model. For example, the score of compo-
nent i with samples Xi ⊂ Xnc (those samples MAP-assigned to component
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i) is defined as 1
|Xi| log(P [Xi|Θ(Mp)]). If a negative component is fundamen-

tally formed by attack samples, it gets a higher score as its samples are more
positive-representative. Otherwise, it gets a lower score. Then, from the highest
to the lowest-scored negative component, we perform the following detection and
response:

1. A sample x in the current component i is rejected if it is more likely positive
than negative with margin of m. Here m ∈ [0, 1] is a hyperparameter for
relaxing this decision, because benign samples may be close to the positive-
negative boundary. In other words, the suspicious subset

X̃i = {x ∈ Xi| log(P [x|Θ(Mp)]) > m log(P [x|Θ(Mnc − 1)])}
is removed from Xi (and also from Xnc). To avoid bias if component i is con-
taminated, the model used to evaluate negative likelihood is the re-weighted
mixture excluding component i, i.e.,

Θ(Mnc − 1) = {{ αj|nc∑
j′ �=i αj′|nc

}, {θj|nc}|∀j �= i}.

2. Denoting the surviving samples of component i as X ′
i = Xi\X̃i, the compo-

nent parameters θi|nc = arg maxθ log(P [X ′
i|θ]) are re-estimated, and updated

component weights become αj|nc = |X ′
j |/|Xnc| for j = 1...Mnc. Here, X ′

j = Xj

for the negative components j not yet visited.
3. Evaluate the BIC cost of the current negative mixture,

BIC(Θ(Mnc),Xnc), and that of the re-weighted negative mixture with com-
ponent i pruned, BIC(Θ(Mnc − 1),Xnc).

4. If the BIC cost decreases (BIC(Θ(Mnc),Xnc) > BIC(Θ(Mnc − 1),Xnc)),
we prune component i and re-weight the remaining components, i.e., update
Θ(Mnc) by Θ(Mnc − 1) and the optimal model order Mnc by Mnc − 1.

As mentioned previously, we use log-likelihood rather than likelihood to avoid
underflow. However, underflow still exists if we simply take the log-likelihood of
sample x as log(

∑Mk

j=1 αj|kP [x|θj|k]). Thus, we compute log mixture likelihood
by (2), where it is the sum of the expected complete data log likelihood and
entropy of soft component assignments (P [j|x,Θ(Mk)]) [25]:

log P [x|Θ(Mk)] =
Mk∑

j=1

P [j|x,Θ(Mk)] log
(
αj|kP [x|θj|k]

)

−
Mk∑

j=1

P [j|x,Θ(Mk)] log (P [j|x,Θ(Mk)])

∀x ∈ Xnc, k ∈ {p, nc}

(2)

3.2 Parsimonious Mixture Model (PMM) Framework

The standard mixture model is not a feasible solution for a high dimensional
feature space. It maintains an independent parameter for every feature in each
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component, which causes the dominance of model complexity in the BIC cost.
This leads to gross underestimation of the model order for high D [6], with
a standard mixture model choosing a single component for a high dimensional
dataset. PMMs [6] solve this fundamental problem by introducing shared param-
eters which represent feature distributions common to all components. Model
complexity is then determined by the number of components and the number
of unique parameters in each component. Therefore model complexity does not
dominate the BIC cost any more, and it is possible for a PMM to select a proper
model order for a high dimensional dataset.

Maximum likelihood estimation of the parsimonious multi-component mix-
ture can be performed via a generalized application of the EM algorithm (GEM)
[6]. With the assumption on independence of features conditioned on the com-
ponent of origin, we rewrite the likelihood under the parsimonious mixture as

P [x|Θ(M)] =
M∑

j=1

αj

D∏

d=1

P [xd|θj ]vjdP [xd|θs](1−vjd) (3)

where Θ(M) = {{αj}, {θj}, θs, {vjd}} is the model parameters at order M : M
is the number of components, {αj} are component masses satisfying 0 ≤ αj ≤ 1
and

∑M
j=1 αj = 1, P [xd|θj ] and P [xd|θs] are component-specific and shared

distributions, respectively, and vjd ∈ {0, 1} is the switch between component-
specific and shared distribution for feature d. The model is initialized with M =
Mmax (chosen to overestimate the true number of clusters), and the component
with smallest mass is pruned in each iteration until M = 1. For each model
order we perform GEM learning to optimize model parameters. The one which
yields the least BIC cost is the optimal model order M , and the parameters
associated with M are the optimal parameters. For brevity, we omit the detailed
EM learning process and derivation of model parameters, which can be found
in [6].

Component pruning and component parameter re-estimation in PMMs is
similar to the method of the previous subsection. For example, to prune compo-
nent i, the model order M is decremented to M − 1, and

Θ(M) = {{ αj∑
j′ �=i αj′

}, {θj}, θs, {vjd}|∀j �= i}.

For re-estimating parameters of component i by its surviving samples, we only
update component-specific parameters θi = arg maxθ log(P [X ′

i|θ]), and the
other parameters (θs) are untouched. PMMs are used in all our experiments.

4 Experiments

In this section we provide convincing experiments for our proposed defense. We
first introduce the datasets and target classifier applied, and then demonstrate
the effectiveness of an embedded data poisoning attack – “pure-positive” poi-
soning attack. Finally we present and analyze the performance of our defender
against such adversarial attacks.
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4.1 Experiment Setup and Evaluation Criterion

Datasets: The experiments were conducted on two datasets, TREC 2005
spam corpus (TREC05) [4] and Amazon reviews polarity dataset (Amazon
Reviews) [24]. We choose these datasets since spam filters and sentimental anal-
ysis are common victims of DP attacks. TREC05 includes real ham and spam
emails which are labeled based on the sender/receiver relationship. The Amazon
Reviews dataset contains product reviews spanning 18 years which are labeled
positive/negative sentiment by associated user ratings. For TREC05, the train-
ing set contains 8651 ham and 8835 spam emails, and the (exclusive) test set
consists of 2861 ham and 2968 spam emails. The dictionary, following case nor-
malization, stop word removal, stemming and low-frequency word filtering, has
around 30000 unique words. As for the Amazon Reviews, the training set con-
tains 50000 positive reviews and 50000 negative reviews, and the (exclusive) test
set consists of 10000 positive and negative reviews, respectively. The dictionary,
following the same text preprocessing procedure, has roughly 11000 distinct fea-
tures.

Target Classifier: Since standard Naive Bayes is effective in spam filtering
and sentimental analysis, we choose it as the target classifier of a data poison-
ing attack. It distinguishes positive samples from negative ones. In our experi-
ment, positive samples are ham emails (positive reviews) in TREC05 (Amazon
Reviews) and, accordingly, negative samples are spam emails (negative reviews).

Attack: As a reasonable and potent embedded data poisoning attack, we launch
a “pure-positive” poisoning attack on the target classifier, where real positive
samples are added into the negative training set with various attack strengths,
i.e., the number of injected positive samples.

Evaluation Criterion: Under both datasets, we first train a benign NB classi-
fier, then poison the negative set with various strengths and validate the impact
on test accuracy brought by the “pure-positive” attack. We next deploy our mix-
ture based defender on the corrupted training set and measure its performance
by 1) improvement in classification accuracy after retraining, 2) true positive
rate (TPR)—the fraction of poisoned samples that are detected, and 3) false
positive rate (FPR) – the fraction of non-poisoned samples falsely detected.

4.2 “Pure-Positive” Poisoning Attack

We conduct 6 “pure-positive” poisoning attacks on TREC05 with strength from
1000 to 6000, and on Amazon Reviews with strength from 10000 to 60000, respec-
tively. The resulting test accuracies are plotted in Figs. 1a and 1b as “poisoned
NB classifier”. Initially, when there is no attack, the benign NB classifier has
test accuracy of 0.85 and 0.83 on TREC05 and Amazon Reviews, respectively.
On TREC05, as the attack is strengthened to 3000 ham emails, the test accu-
racy drops rapidly – from 0.85 to 0.67. Similarly, on poisoned Amazon Reviews,
the classification accuracy falls continuously (from 0.83 to 0.727) as the num-
ber of adversarial reviews is increased to 60000. In both cases, roughly half of
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the positive test samples are misclassified as negative. Thus, embedding “pure-
positive” samples into the negative set is indeed a strong attack on a standard
NB classifier.

4.3 Mixture Model Based Defense

Following the detection methodology proposed in the last section, our defender
locates and purges all suspicious data in both datasets, with m set to 0.9 on
TREC05 and 0.95 on Amazon Reviews. Then the NB classifier is retrained on
the purged datasets, and the corresponding performance is shown as the solid line
in Fig. 1a and 1b. As expected, the retrained classifier performs well and stable
under all attack cases, with accuracy of around 0.89 on TREC05 and 0.83 on
Amazon Reviews. The reason why the classifier retrained on purged TREC05
outperforms the one trained on the clean dataset is discussed below. Besides,
the average true positive rates of the defender in both experiments, 0.946 in
TREC05 and 0.898 in Amazon Reviews, are relatively high, which demonstrates
the validity of our detection method in practice.

Although our defense strategy succeeds in defending against a data poisoning
attack, making the retrained NB classifier achieve high classification accuracy
– at least comparable to the benign classifier – the false positive rate is rela-
tively poor – in the range of 0.12–0.37. Moreover, as mentioned before, the
standard NB retrained on purged TREC05 outperforms the one trained on the
clean dataset. Given these observations, for different attack strengths, we train
a standard NB classifier on the “clean” datasets where false detected training
spam (i.e., samples which have ground truth labels of spam but are detected as
ham) are kept, and training ham are untouched. In each case, there are roughly
4000 training spam and 8000 training ham. Not surprisingly, on the same test
set, this “benign” classifier only achieves an average test accuracy of 0.72, with
the averaging over all considered attack strengths. Nearly half of the test ham
are misclassified as spam and 90% of test spam are classified correctly, indicat-
ing that the false detected samples (real spam) have similar distributions as ham
emails. Otherwise more test data will be classified as ham considering the greater
apriori amount of ham than spam. Hence, our method performs effective
defense against “pure-positive” poisoning attacks, as the unsatisfy-
ing false positive rate is actually rooted in the inherent impurity of
TREC05.
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Fig. 1. Performance of mixture-based defender against “pure-positive” attacks on (a)
TREC05 and (b) Amazon Reviews

5 Conclusions and Future Work

In this work, we proposed a mixture model based defense against data poisoning
attacks against classifiers where attack samples are an unknown subset embedded
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in training set. We successfully launched defenses against “pure-positive” attacks
on datasets TREC05 and Amazon Reviews. The experiments on two completely
different datasets demonstrate the effectiveness of our defender under strong
attacks. Consisting with the DDDAS paradigm, our approach is a generalized
scalable defense strategy that is applicable to defend against embedded data
poisoning attacks on any classifier – it can remove malicious data before they
corrupt (discriminative) training of a deep neural network or support vector
machine based classifier.

We have considered attacks which corrupt the negative set. Our approach
could also be applied if the attack targets positive data, rather than negative
data. However, our assumption towards the adversary is strong – we assume the
attacker only pollutes one of the training sets, either positive or negative. In
general, the attacker may simultaneously poison both positive and negative sets
with different strengths. Defending against such attacks is a good subject for
future work.
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(LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3 25

2. Blasch, E., Ravela, S., Aved, A.: Handbook of Dynamic Data Driven Applications
Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9

3. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. Arxiv (2017). http://arxiv.org/abs/1712.
05526

4. Cormack, G.V., Lynam, T.R.: TREC 2005 spam public corpora (2005). https://
plg.uwaterloo.ca/∼gvcormac/trecspamtrack05

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39, 1–22 (1977)

6. Graham, M.W., Miller, D.J.: Unsupervised learning of parsimonious mixtures on
large spaces with integrated feature and component selection. IEEE Trans. Sig.
Process. 54, 1289–1303 (2006)

7. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: evaluating backdooring
attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019)

8. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence (2011)

9. Laishram, R., Phoha, V.V.: Curie: a method for protecting SVM classifier from
poisoning attack. Arxiv (2016). http://arxiv.org/abs/1606.01584

10. Miller, D.J., Xiang, Z., Kesidis, G.: Adversarial learning targeting deep neural
network classification: a comprehensive review of defenses against attacks. Proc.
IEEE 108(3), 402–433 (2020)

11. Miller, D.J., Browning, J.: A mixture model and EM-based algorithm for class
discovery, robust classification, and outlier rejection in mixed labeled/unlabeled
data sets. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1468–1483 (2003)

https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-319-95504-9
http://arxiv.org/abs/1712.05526
http://arxiv.org/abs/1712.05526
https://plg.uwaterloo.ca/~gvcormac/trecspamtrack05
https://plg.uwaterloo.ca/~gvcormac/trecspamtrack05
http://arxiv.org/abs/1606.01584


A Scalable Mixture Model Based Defense Against Data Poisoning Attacks 273

12. Miller, D.J., Wang, Y., Kesidis, G.: When not to classify: anomaly detection of
attacks (ADA) on DNN classifiers at test time. Neural Comput. 31, 1624–1670
(2019)

13. Nelson, B., et al.: Misleading learners: co-opting your spam filter. In: Tsai, J.J.,
Philip, S.Y. (eds.) Machine Learning in Cyber Trust, pp. 17–51. Springer, Boston
(2009). https://doi.org/10.1007/978-0-387-88735-7 2

14. Newell, A., Potharaju, R., Xiang, L., Nita-Rotaru, C.: On the practicality of
integrity attacks on document-level sentiment analysis. In: Proceedings of the 2014
Workshop on Artificial Intelligent and Security Workshop, AISec (2014)

15. Oh, S.J., Augustin, M., Fritz, M., Schiele, B.: Towards reverse-engineering black-
box neural networks. In: 6th International Conference on Learning Representations,
ICLR (2018)

16. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy, EuroS&P (2016)

17. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
18. Steinhardt, J., Koh, P.W., Liang, P.: Certified defenses for data poisoning attacks.

In: Conference on Neural Information Processing Systems (2017)
19. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International

Conference on Learning Representations, ICLR (2014)
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Abstract. Machine Learning (ML) algorithms have been widely used in many
critical applications, including Dynamic Data Driven Applications Systems
(DDDAS) applications, automated financial trading applications, autonomous
vehicles, and intrusion detection systems for the decision-making process of users
or automated systems. However, malicious adversaries have strong interests in
manipulation the operations ofmachine learning algorithms to achieve their objec-
tives in gaining financially, injecting injury or disasters. Adversaries against ML
can be classified based on their capabilities and goals into two types: Adversary
who has full knowledge of the ML models and parameters (white-box scenario)
and one that does not have any knowledge and use guessing techniques to figure
out the ML model and its parameters (black-box scenario). In both scenarios, the
adversaries will attempt to maliciously manipulate model either during training
or testing. Defending against these attacks can be successful by following three
methods: 1) making theMLmodel robust to adversary, 2) validating and verifying
input, or 3) changingML architecture. In this paper, we present a resilient machine
learning (rML) ensemble against adversarial attacks by dynamically changing the
ML architecture and the ML models to be used such that the adversaries have
no knowledge about the current ML model being used and consequently stop
their attempt to manipulate the ML operations at testing phase. We evaluate the
effectiveness of our rML ensemble using the benchmarking, zero-query dataset
“DAmageNet” that contains both clean and adversarial image samples. We use
three main neural networks in our ensemble that includes VGG16, ResNet-50,
and ResNet-101. The experimental results show that our rML can tolerate the
adversarial samples and achieve high classification accuracy with small execution
time degradation.

Keywords: Resiliency · Adversarial machine learning · Dynamic data driven
applications systems ·Moving target defense · Resilient decision support

1 Introduction

The recent advances in big data, andmachine learning (ML) algorithms have led the pro-
liferation of data-driven intelligent applications in many areas including speech recog-
nition, recommender systems, computer gaming, market analysis, medical health-care,
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computer vision, financial trading applications, autonomous vehicles as well as intru-
sion detection and prevention systems and Dynamic Data Driven Applications Systems
(DDDAS). Many ML algorithms, including deep neural networks (DNN) and support
vector machines (SVM) have been integrated in these applications to improve analysis
performance and prediction.

Due to the wide-spread usage of ML in critical decision processes applications (e.g.,
mission critical applications), there is an exponential growth in cyberattacks to mali-
ciously manipulate theML algorithms and consequently influence their decision process
in favoring of the attackers [1–4]. Adversaries against ML can be classified based on
their capabilities and goals into two types: Adversary who has full knowledge of the ML
models and parameters (white-box scenario) and one that does not have any knowledge
and use guessing techniques to figure out the ML model and its parameters (black-box
scenario). In both scenarios, the adversaries will attempt to maliciously manipulate the
ML model either during training or testing phases. Furthermore, adversarial attacks can
be built either to poison systems either during offline training period or during the contin-
uous training periods with or just by exploiting the vulnerabilities of an existing trained
system using black-box method [5]. For example, Microsoft’s Twitter chatbot Tay was
poisoned with by the malicious users, which ended up racist and sexist tweets in less
than 24 h after it was opened to public for learning [6]. Also, the adversarial input can be
maliciously built to misguide the medical health-care systems. Similarly, autonomous
vehicles that heavily rely on the ML algorithms, they can be receiving malicious adver-
sarial inputs by the attackers, which are not detectable by the human eyes, and hence
can lead to severe accidents. Such examples can be even extended to the ML-based
mission-critical applications that if their ML algorithms are compromised, the impact
can be severely impact life and the mission success.

There have been several studies on how to create an adversarial input to misguide
the ML algorithms [3] and on how to harden the ML algorithms by correct feature
extraction and detection of the malicious inputs [16]. Furthermore, adversarial learning
attacks can be built to affect other ML algorithms even though they have different
structures/architectures, which is called adversarial sample transferability [7]. In general,
the current defense mechanisms cannot effectively prevent the malicious adversarial
learning techniques.

In this paper, we present a resilient ML (rML) ensemble architecture that can over-
come the limitations of the current defense mechanisms by tolerating the adversarial
learning attacks. Our rML is based on Moving Target Defense (MTD) and autonomic
computing that aim at dynamically changing the ML algorithms used to drive the deci-
sion processes of mission critical applications (e.g., DDDAS). In this approach, even
if the attacker succeeds in maliciously impacting the ML decision process, it will be
guaranteed to fail in the other types of ML algorithms and hence, the rML will continue
to operate normally in spite of the adversarial learning attacks. To validate and evaluate
the performance of our approach, we use three as a convolutional neural network (CNN)
in our ensemble; i.e., VGG16, ResNet-50 (50 layers deep CNN), and ResNet-101 (101
layers deep CNN).

The rest of the paper is organized as follows: In Sect. 2, we present the related
work in ML usage in DDDAS and adversarial machine learning attacks. Next, Sect. 3
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describes our approach to provide a resilient machine learning ensemble (rML). In
Sect. 4, we demonstrate our implementation, experimental performance and results.
Finally, in Sect. 5, we present our paper summary and concluding remarks.

2 Related Work

Adversarial ML has been demonstrated in many domains; including subverting fraud
detection, bypassing content filters or malware detection, misleading autonomous nav-
igation systems [7]. Therefore, to provide the required background in this section, we
summarize the use of ML in the domain of DDDAS and adversarial ML attacks.

2.1 DDDAS and Machine Learning

The DDDAS paradigm was first introduced by Darema et al. as a dynamic feedback
control loop of the instrumentation data and models in a way that measurement data are
dynamically incorporated into an executing model to improve or accelerate the model
accuracy [8–12]. In this regard, DDDAS uses the controlled measurement data to update
models. Hence, DDDAS has been bringing together both practitioners and theorists in
mathematics, statistics, engineering, and computer sciences, as well as well as designers.
It has been demonstrated that DDDAS has been successfully applied in many problems
of mathematics, statistics, engineering, and sciences [9].

It has been expected that DDDAS-inspired methods would greatly benefit from the
recent advances in ML [9]. Since the sensor measurements from the real world is enor-
mous, there is a need to apply data normalization, sampling alignment, and data mining.
Hence, the researchers in [13] have focused on a joint nonlinear manifold learning app-
roach to incorporate ML and model-based simulation propagators for DDDAS. Having
sensor faults in a real-life is another challenge inDDDAS. It has been proposed to useML
to estimate parameterized models of aircraft sensor data relationships and statistically
determine aircraft operating modes [14].

2.2 Adversarial ML Attacks

For adversarial ML attacks, there are two types of expected attacks: (1) White-box-
attacks assuming that the adversary knows themodel or the learning dataset. In thewhite-
box-attacks, the adversary would have information about all the parameters including
features and the learning algorithm settings. It is assumed that the attacker can get such
an information either during the training time or by learning the ML decision through
obtaining sufficient information. (2) Black-box-attacks where the attacker does not have
any precise information about the model or the algorithm.

It has been shown thatDNNs is susceptible to adversarialmanipulation [15]. Papernot
et al. trained a local DNN using crafted inputs and output labels generated by the target
“victim” DNN even though the adversary has limited information about the architecture
or parameters – they only had information about the inputs and outputs and the ML is
based on DNN [7]. In [16], the authors develop black box attacks that exploit on broad
classes of ML, which is considered as the transferability of the ML attacks and they
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explore DNNs, logistic regression (LR), support vector machine (SVMs), decision trees
(DT), nearest neighbors (kNN), and ensembles. The authors in [17] study SVM security
to well-crafted, adversarial label noise attacks where the attacker aims to maximize the
SVM’s classification error by flipping labels in the training data.

The authors from different studies [3, 18] presented that the cross-model transfer-
ability of adversarial data points between DNNs – in this case, an efficient attack can
be launched through the use of surrogate models even through their training or neural
network architectures are different. As a solution against the adversarial attacks, authors
demonstrate the effectiveness of injecting adversarial examples into the training set (i.e.,
adversarial training) to increase robustness against adversarial attacks [4, 19].

3 Resilient Machine Learning Ensemble (rML)

In order to avoid the adversarial attacks, in this study we present an MTD based resilient
ML approach that dynamically changes the ensemble architecture to make adversarial
learning attacks unsuccessful in affecting the ML-based decision processes. In what
follows, we present the architecture of rML and its implementation.

3.1 Resilient DDDAS Development Environment

Our resilient DDDAS development environment architecture is presented in Fig. 1,
which includes three layers: composition of the environment, DDDAS design, and the
resilient DDDAS that consists of different services namely commands services, informa-
tion repository services, data analytics, etc. and middleware service. During the design
time, using Service Oriented Architecture (SOA) paradigm [12], the requirements and
decisions of different plans are organized by composing the selected services. During
the runtime, these services would operate to provide the required capabilities to provide
a feedback back to the composition and design layers to apply the dynamic feedback
control. As the ML algorithms are commonly used, we create data analytics services in
a resilient way to prevent the success of the adversarial attacks.

An adversarial learning attack changes the input provided to aML algorithm in away
that with small perturbation invisible to the eyes, the input can change the label of the
prediction. Most of the defense solutions focus on input verification, feature extraction
and selection methods to enhance the security of ML algorithms, which are tedious
and require time to adapt and change the existing ML algorithms. In our approach,
we take a significantly different approach that assumes attackers will succeed and our
goal is to tolerate their attacks, as it was done in fault tolerance computing. Therefore,
we develop a resilient machine learning ensemble (rML) that utilizes moving target
defense (MTD) technique. Using MTD, our rML approach changes the diversified ML
algorithms to implement used in the decision mechanism at runtime. By using different
ML algorithms, but they are equally functional, the adversarial input, which can severely
impact the function of on one ML algorithms, but it will not be able to misguide the
other types of ML algorithms. The rML architecture is shown in Fig. 2 where a user
can describe the DDDAS application at the design level using an application workflow
editor. The input uploaded to the system may be a regular input or an adversarial input
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aiming atmisguiding the decision processmechanism; in this architecture as an example,
a fish picture is provided, which is in reality adversarial input because the targeted ML
fails to detect it as a fish due to invisible changes in the picture. The rML controller
pulls the required ML models and algorithms from the rML repository and creates the
environment for the resilient decision mechanism. Each of the ML models evaluate the
input from the user and provides a prediction. Next, a voting mechanism is applied to
determine if there is any different output from the ML models and the majority of the
decisions is accepted as the true output. For the acceptance test, we apply Boyer-Moore
majority vote algorithm [21].

Fig. 1. Resilient DDDAS development environment architecture
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Fig. 2. resilient machine learning ensemble (rML) architecture
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4 Implementation and Experimental Results

To demonstrate the applicability and performance of our approach, as an input we have
chosen ImageNet and DAmageNet – ImageNet is an ongoing research effort to provide
easily accessible image database [19] and DAmageNet is the first universal adversarial
dataset that beats many models trained in ImageNet [20]. For the benchmarking images,
we use class label that demonstrates the type of the focus of the image (for example, for
class 0 the focus is a fish) and sample ID showing the image number. Therefore, for a
clean image, the output of the ML would give the correct class number; however, for the
adversarial ones, the ML output is an incorrect class.

For theML algorithms and models, we have chosen multiple DNNs such as VGG16,
ResNet-50, and ResNet-101, which are pre-trained on ImageNet. For the experimenta-
tion, we have used 253 images. In Table 1, we demonstrate the example behavior of each
algorithm, including rML, in terms of what class ID is given as an input and what class
ID the algorithm predicts – the inputs are randomly chosen in this set of examples and
it does not try to demonstrate the effectiveness of any ML over others. If the input was
not adversarial, the outputs would be the same class ID with the input class ID. Hence,
the bold and italic-font results are used to demonstrate the incorrect output due to the
adversarial input specifically designed for that ML. From the demonstrated results, it is
clear that by leveragingMTD for rML, we can obtain high performance in the prediction
accuracy without the need to change the existing algorithms and methodologies.

Table 1. Example of class identification for adversarial images.

Class
ID

Sample
Id

VGG16 ResNet50 ResNet101 rML

0 59 389 0 0 0

5 114 5 5 3 5

35 1 35 37 35 35

36 1 36 36 938 36

46 46 46 46 39 46

68 90 68 68 66 68

In our implementation, we are running eachML algorithm using one virtual machine
(VM) on a private cloud. For the image transfer and controller commands, we have
chosenApacheKafka (open-source stream-processing software). Since the images (both
clean and adversarial) are not big in size, the operations of Kafka do not introduce any
considerable overhead to the system and also in terms of execution time.

We further evaluated our approach in terms of the execution time overhead. Figure 3
shows the execution time for VGG16, ResNet-50, ResNet-101, and rML for both clean
images and adversarial images. The experiments were run using 253 images from Ima-
geNet and from DAmageNet (adversarial versions of the ImageNet dataset) and the
mean execution time together with the standard deviation are shown in Fig. 3 in y-axis.
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We observe the expected execution time of the individual ML models would be less
than the rML and the classification time for the clean images and adversarial images
are almost the same. This also conveys us the message that we cannot understand if the
input is adversarial malicious input due to the execution time difference. Checking the
MLmodels individually, we can observe that the VGG16 execution time is the smallest,
which follows ResNet-50 and then ResNet-101. This is also expected since ResNet-50
has 50 layers and ResNet-101 has 101 layers that require more computation compared
to the VGG16. The execution of the proposed rML is very similar to ResNet-101 since
the execution time overhead introduced by the acceptance test is almost negligible. We
also introduce the error bar based on the standard deviation, which is around 2% only. In
summary, the overhead of rML compared to the ResNet-101 is 5% in themean execution
time.
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Fig. 3. Execution time comparison for (a) clean images and (b) adversarial images

4.1 Conclusion

Machine Learning (ML) has been widely used in many critical applications, including
Dynamic Data Driven Applications Systems (DDDAS) applications. Therefore, there is
a strong interest in adversaries and their ability impact the ML algorithm used to imple-
ment the decision processes. In this paper, we present a resilient ML (rML) ensemble
to tolerate adversarial learning attacks that utilizes moving target defense (MTD) to
dynamically change the ML models so that the adversaries have no knowledge about
the currently ML models being used and consequently fail the exploitation. We evalu-
ated the effectiveness of our rML ensemble using the benchmarking, zero-query dataset
“DAmageNet” that contains both clean and adversarial image samples. We used three
main neural networks in our ensemble that includes VGG16, ResNet-50, and ResNet-
101. The experimental results show that our rML can tolerate the adversarial samples
and achieve high classification accuracy with small execution time degradation.

Acknowledgements. This work is partly supported by the Air Force Office of Scientific Research
(AFOSR) Dynamic Data-Driven Application Systems (DDDAS) award number FA9550-18-1-
0427, National Science Foundation (NSF) research projects NSF-1624668 and NSF-1849113,



Resilient Machine Learning (rML) 281

(NSF) DUE-1303362 (Scholarship-for-Service), and National Institute of Standards and Technol-
ogy (NIST) 70NANB18H263, and Department of Energy/National Nuclear Security Administra-
tion under Award Number(s) DE-NA0003946.

References

1. Dalvi, N., Domingos, P., Sanghai, S., Verma, D.: Adversarial classification. In: Proceedings
of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 99–108 (2004)

2. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (2013)

3. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information
Processing Systems, pp. 2672–2680 (2014)

5. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning.
Pattern Recogn. 84, 317–331 (2018)

6. Lee, P.: Learning from Tay’s introduction. Official Microsoft Blog (2016). https://blogs.mic
rosoft.com/blog/2016/03/25/learning-tays-introduction/. Accessed 27 July 2020

7. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., et al.: Practical black-box attacks against
deep learning systems using adversarial examples. arXiv:1602.02697 (2016)

8. Darema, F.: Grid computing and beyond: the context of dynamic data driven applications
systems. Proc. IEEE 93(3), 692–697 (2005)

9. Blasch, E.: DDDAS advantages from high-dimensional simulation. In: 2018 IEEE Winter
Simulation Conference (WSC), pp. 1418–1429 (2018)

10. Blasch, E., Al-Nashif, Y., Hariri, S.: Static versus dynamic data information fusion analysis
using DDDAS for cyber security trust. Procedia Comput. Sci. 29 (2014)

11. Ditzler, G., Hariri, S., Akoglu, A.: High performance machine learning (HPML) framework
to support DDDAS decision support systems: design overview. In: IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS*W) pp. 360–362 (2017)

12. Badr, Y., Hariri, S., Youssif, A.N., Blasch, E.: Resilient and trustworthy dynamic data-
driven application systems (DDDAS) services for crisis management environments. Procedia
Comput. Sci. 51, 2623–2637 (2015)

13. Blasch, E., e al.: DDDAS-based Joint Nonlinear Manifold Learning for Target Localization.
Structural Health Monitoring (2017)

14. Chen, S., Imai, S., Zhu, W., Varela, C.A.: Towards learning spatio-temporal data stream rela-
tionships for failure detection in avionics. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook
of Dynamic Data Driven Applications Systems, pp. 97–121. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95504-9_5

15. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence
predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 427–436 (2015)

16. Katzir, Z., Elovici, Y.: Quantifying the resilience of machine learning classifiers used for
cyber security. Expert Syst. Appl. 92, 419–429 (2018)

17. Biggio, B., Nelson, B., Laskov, P.: Support vector machines under adversarial label noise. In:
Asian Conference on Machine Learning, pp. 97–112 (2011)

18. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end attack
against RNNs and other api calls based malware classifiers. arXiv:1707.05970 (2017)

http://arxiv.org/abs/1412.6572
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
http://arxiv.org/abs/1602.02697
https://doi.org/10.1007/978-3-319-95504-9_5
http://arxiv.org/abs/1707.05970


282 L. Yao et al.

19. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput.
Vision 115(3), 211–252 (2015)

20. Chen, S., Huang, X., He, Z., Sun, C.: DAmageNet: A Universal Adversarial Dataset. arXiv:
1912.07160 (2019)

21. Boyer, R.S., Moore, J.S.: MJRTY—a fast majority vote algorithm. In: Boyer, R.S. (ed.)
Automated Reasoning, pp. 105–117. Springer, Dordrecht (1991). https://doi.org/10.1007/
978-94-011-3488-0_5

http://arxiv.org/abs/1912.07160
https://doi.org/10.1007/978-94-011-3488-0_5


Data-Based Defense-in-Depth of Critical
Systems

Styliani Pantopoulou(B), Pola Lydia Lagari(B), Clive H. Townsend(B),
and Lefteri H. Tsoukalas(B)

Purdue University, West Lafayette, IN 47906, USA
{spantopo,plagari,clive,tsoukala}@purdue.edu

Abstract. Cyber Physical Systems (CPS) are attracting intense research interest
due to the explosive availability of data and connectivity. The Dynamic Data
Driven Applications Systems (DDDAS) paradigm provides a suitable framework
for solutions to the risks of connectivity through big data and machine learning.
Computational and measurement data come together to produce integrative yet
discriminating features and patterns amenable to machine learning and Artificial
Intelligence (AI) decision approaches and thus DDDAS and CPSs bridge the
physical with the cyber world in numerous applications principally anchored in
unique physics.

DDDAS is of great value in prioritizing and categorizing data in accordance
with system dynamics. The physical aspect of CPSs is considered as an advantage,
as the inherited inertia of systems like these affords additional time for process-
ing and protective activities. This characteristic proves helpful towards intrusion
detection and projection of failures as well as buttressing the systemwith defense-
in-depth capabilities demonstrated through effectively achieving Byzantine Fault
Tolerance.

Keywords: Cyber Physical Systems · DDDAS · Critical systems · Data
management · Attack detection

1 Introduction

Cyber Physical Systems (CPS) have been placed in the center of research interest
throughout the years. This comes naturally as one contemplates the multifaceted nature
of CPSs, namely the seamless combination of physical and computational components.
It is moreover crucial to consider the immense capabilities of CPSs regarding data abun-
dance and abilities to connect with other systems. The Dynamic Data Driven Applica-
tions Systems (DDDAS) paradigm can prove helpful towards mitigating the risks that
arise from the connectivity aspect. Artificial Intelligence (AI) and Machine Learning
(ML) approaches render the CPSs and DDDAS capable of conjoining the physical and
the cyber world in several applications governed by unique physics.

Digitalization has been of immense importance in industrial systems as it offersmany
advantages compared to the classical, analog systems. The use of digital components
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promises a plethora of advantages including, but not limited to, the reduction of complex-
ity, faster processing of incoming data, more accurate monitoring of system parameters
and improved maintenance practices. These features, combined with the incorporation
of other technologies, such as Bluetooth orWiFi, render the systems capable of operating
under a variety of circumstances with enhanced reliability and reduced cost.

Despite numerous advantages, digitalization produces a broad spectrum of chal-
lenges ranging from data corruption to cyber intrusion and compromised controllers
and effectors. The every growing data volumes produced by a system become even
more multitudinous and multi-faceted, resulting in difficulties with further processing,
resulting in new vulnerabilities to the system’s integrity and safety.

The DDDAS paradigm can prove extremely helpful towards a procedure of data
assortment and classification. This comes in accordance with system dynamics, varying
time-scales anduniquewindows thatmayopen and close inways thatmatch idiosyncratic
system phases corresponding to different transients. The challenge of defense-in-depth
based on observable system dynamics with machine learning to identify origin and esti-
mate ability of tracking every type of incoming data is shown to be effectively addressed
through DDDAS. The inherited property of inertia in CPSs is a valuable advantage, as
this allows time for system protecting activities. Consequently, the system is reinforced
towards potential cyber threats and gets fortified by achievingByzantine Fault Tolerance.

The paper is organized as follows: Sect. 2 presents a review of related work on
the topic of CPS control and cybersecurity. Section 3 is focused on the methodology
followed towards developing a framework for detecting and eliminating attack strategies
using the DDDAS paradigm in a nuclear power plant (NPP) as an example. Finally, the
paper’s conclusions are presented in Sect. 4.

2 Related Work

Plenty of research exists facing the problem of CPS safety and security. A paper by
Ahmad et al. [1] focuses on various threats that CPSs face, regarding both control
security and information security. These involve the physical exploitation of a system,
the injection of false data, the estimation of a system’s model and the connectivity to the
internet. Furthermore, a report of immense importance regarding the cyber-attack on the
Ukrainian power grid in 2015 [2] notes the multi-faceted form of an attack. In that case,
the attackers performed a long-term exploration of the system; consequently, they were
able to get familiar with the environment and execute the attack. Some examples of this
system’s vulnerabilities were the abundance of online information and the absence of
two-factor authentication protocols.

Redundancy and diversity are considered among the recent popular trends towards
mitigating cyber-attacks. More specifically, the concept of Artificial Fault Tolerance
(AFT), namely the modification of identical system components [3] with the purpose of
different response to non-normal inputs [4], is proved to be more effective, as it can even
performwell for detecting a cyber-attack. Some of the methods used for that purpose are
discussed in a paper by Rowe et al. [5]. These include binary transformations, network
diversity transformations or diversity in network protocols. A special case, that of the
Byzantine Fault Tolerance (BFT) algorithm, is examined in a paper by the Office of
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Naval Research (ONR) [6]. In this work, the inherited inertia of a CPS is exploited. BFT
is a combination of AFT as well as delayed input sharing, with the purpose of alleviating
attack schemes.

Classical control methods often accompany the approaches discussed above. In a
study by Ashaari et al. [7], a state space model of a pressurized water reactor (PWR)
was designed to control the core, and further simulation showed the connection between
temperature and power of the plant. In another work [8], a mix of statistics and fuzzy
logic was used to identify NPP transients.

The DDDAS paradigm is furthermore strongly connected with the sector of cyber-
security. In a related paper, Blasch et al. [9] explore a method that offers increased levels
of security during dynamically changing attack detections. Another work [10] focuses
on security in Cloud Computing by implementing a resilient DDDAS architecture. This
includes, among others, replication, software encryption and diversity. Finally, Tucker
et al. [11] investigate whether cybersecurity is capable of tampering with the function-
ality and usefulness of a DDDAS, which in this study is represented by a social media
model.

3 Methodology

3.1 System Modeling

Several studies have dealt with the problemof critical systemsmodelingwith the purpose
of achieving their control. More specifically, when these systems fall into the category
of CPSs, one has to approach this matter by regarding their physical aspect. Systems
like these are governed by laws of physics; consequently, equations that describe their
operation for varying time instances should be used. State space equations, i.e., equations
that describe a system’s state as a function of time, are widely used for that reason. In
this work the system under review is a NPP, which various researchers have studied by
using the basic point kinetic equations [12, 13]:

dn(t)

dt
=ρ(t) - β

�
· n(t)+λ · c(t) (1)

dc(t)

dt
= β

�
· n(t)− λ · c(t) (2)

Here, n refers to the neutron density, c represents the neutron precursor density
and ρ is the reactivity of the plant. The constants β and λ are characteristic of the
specific reactor under review, namely the PurdueUniversity Reactor-1 (PUR-1), whileΛ

results from theMonte-Carlo Neutron Transport (MCNP) code. A related work studying
and modeling the reactor core [13] further proposes the use of a differential equation
connecting reactivity with the control rod speed z. In this equation, G stands for the rod
reactivity worth:

∂ρ(t)

∂t
= G(t, T, B, . . .) · z(t, T, B, . . .) (3)
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The translation of the preceding equations to a state space system representation, as
shown below, reveals the system’s inputs and outputs. Control rod speed z acts as the
input, the neutron density n is the system output, and finally n, c and ρ are variables
pertinent to the reactor’s state. Control of the variable that defines rod speed results in
obtaining the reactor’s neutron density for each time instance.
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ṅ
ċ
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3.2 Mitigation of a Cyber-Attack

Following the representation of this critical system in the control space, a protection
architecture against cyber-attacks has to be implemented. Figure 1 depicts a block dia-
gram describing the relationship between the reactor system (plant) and the protection
architecture. The fundamental key to the realization of the protection system is a specific
version of the BFT algorithm presented in [6]. This approachmakes use of several impor-
tant concepts discussed above, such as redundancy and diversity, which are properties
fully based on the DDDAS paradigm.

Fig. 1. Connection of protection system and plant.

To begin with, this architecture makes use of the plant’s original controllers, namely
the Programmable Logic Controllers (PLCs), which are able to operate as simple Pro-
portional – Integral – Derivative (PID) controllers for the purpose of this work. Three
identical controllers are used in this case. A schematic of the complete system is shown
in Fig. 2. The error term, required as an input for the PID controllers, is derived by a
DDDAS-based component, which produces an estimation of the plant output (measure-
ment), based on previous ones, and then subtracts it from the actual incoming value. The
dynamic perspective in this part of the system is crucial, as it provides the controllers
with a constantly updating setpoint, based on the trends and transients followed by the
CPS.
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Fig. 2. Proposed protection architecture with DDDAS-based features.

As canbe seen inFig. 2, the error term resulting from theupdating setpoint component
of the system is forwarded as an input to two controllers that share the same hardware
structure, C1 and C2, as well as to a delay queue connected to the third controller, C3.
The existence of the delay queue is a characteristic of this specific BFT algorithm, and
ensures continuous operation, as explained later in the text. The existing redundancy
of the controllers is only meaningful when combined with the principal of Artificial
Diversity. The identical nature of the controllers is not able to offer results in attack
detection by itself.

There needs to be a process of distinction for the two controllers first. Usually,
diversity in PLCs can be achieved by performing alterations in the controller software.
These slight changes do not have an impact on the final result in normal operation;
however, since the CPS behaves according to physical laws, any sensor measurement
that has been tempered with will cause at least one of the controllers to stop operating.
The crucial point where a decision system offers an answer regarding the existence
- or not - of an attack is one more major DDDAS feature. Its precision and level of
confidence regarding attack detection renders it a crucial step of the signal processing in
this system. There are two distinct cases for the operation of the overall system from this
point forward. Both cases are depicted in Fig. 3. In the incident when the outputs of the
first two controllers match, the input is considered safe and this output is pushed forward,
so as to be used by the plant. In the case when at least one of the two controllers stops
operating, the system recognizes an attack; these two controller outputs are blocked,
and the delay queue is flushed. Simultaneously, the output of the third controller can be
used from the plant. This output has been stored from a previous operation cycle. The
inherited inertia of the CPS allows for restoration of the controllers after an attack.
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Fig. 3. Demonstration of the system dynamics.

4 Algorithm and Preliminary Results

This section presents the algorithm followed in more detail and provides some prelimi-
nary results regarding the continuous operation of the system. Table 1 explains how one
cycle of operations is performed from the point of acquiring a plant measurement x(n)
until getting the next one, x(n+1). Variables out1, out2 denote the outputs of controllers
C1, C2 respectively.

Table 1. Description of followed procedure

Algorithm
1. Get measurement x(n) from plant
2. x n-k ·h n-k +x n-k+1 ·h n-k+1 +…+x n-1 ·h n-1 = x n-k+1

…
x n-1 ·h n-k +x n-2 ·h n-k+1 +…+x n-k ·h n-1 = x n

3. x n = h 1 ·x n-1 +…+h(k)·x(n-k)
4. Controllers C1 and C2 get error signal x(n) )x(n
5. C1 runs PLC_code1, C2 runs PLC_code2
6. Comparator checks |out1-out2|
7. If |out1-out2| ≤ noise threshold Mux_control_signal = 0

Else Mux_control_signal=1
8. Contents of queue erased and not added to previous_measurements vector
9. C1, C2 get restarted
10. x(n+1) calculated from state space equations

Figure 4 shows the response of the decision system, i.e., of amultiplexer. For this first
stage of implementation, plant measurements are considered as following the normal
distribution [8], with specificmean and standard deviation values. It is evident that, when
the two controller outputs differ more than a threshold imposed by the allowed noise in
the system, the multiplexer control signal changes, allowing C3 to forward its output to
the plant.
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Fig. 4. Change in multiplexer output after discrepancy detection.

5 Conclusions and Future Work

All in all, this work emphasizes the importance and connection of the DDDAS paradigm
with critical systems. CPSs are mostly benefited from this combination, due to their
physical nature and the abundance of data being produced. Especially in this case, a
NPP can be transformed into a trustworthy, digital system. However, implementations
like this should be performed with caution, as no system is completely reliable under
all conditions. A second layer of protection or suitable operators’ training would aid
towards avoiding dangerous situations. Moreover, more complex attack schemes have
to be tested in order to ensure the system’s integrity and security under a greater variety
of circumstances.
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Abstract. Optimal path planning of autonomous marine agents is
important to minimize operational costs of ocean observation systems.
Within the context of DDDAS, we present a Reinforcement Learning
(RL) framework for computing a dynamically adaptable policy that min-
imizes expected travel time of autonomous vehicles between two points
in stochastic dynamic flows. To forecast the stochastic dynamic environ-
ment, we utilize the reduced order data-driven dynamically orthogonal
(DO) equations. For planning, a novel physics-driven online Q-learning is
developed. First, the distribution of exact time optimal paths predicted
by stochastic DO Hamilton-Jacobi level set partial differential equations
are utilized to initialize the action value function (Q-value) in a transfer
learning approach. Next, the flow data collected by onboard sensors are
utilized in a feedback loop to adaptively refine the optimal policy. For the
adaptation, a simple Bayesian estimate of the environment is performed
(the DDDAS data assimilation loop) and the inferred environment is
used to update the Q-values in an ε−greedy exploration approach (the
RL step). To validate our Q-learning solution, we compare it with a fully
offline, dynamic programming solution of the Markov Decision Problem
corresponding to the RL framework. For this, novel numerical schemes
to efficiently utilize the DO forecasts are derived and computationally
efficient GPU-implementation is completed. We showcase the new RL
algorithm and elucidate its computational advantages by planning paths
in a stochastic quasi-geostrophic double gyre circulation.

Keywords: Path planning · Q-learning · Markov Decision Process ·
Dynamically orthogonal equations · Transfer Learning

1 Introduction

Autonomous marine agents that explore and collect data in stochastic dynamic
ocean environments play a crucial role in ocean science and engineering missions.
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Optimal path planning of these missions is essential to minimize operational
costs and maximize utility, within the constraints of their limited capabilities
(e.g., battery, maneuverability). Planning involves predicting and using paths for
these agents such that travel time or energy consumption is minimized, utility
of data collected is maximized and safety is always ensured. The size and speed
of autonomous marine vehicles are such that the ocean flow plays a major role
in their navigation by strong advection which could be intelligently used to plan
optimal paths [13]. Notably, the challenges of predicting optimal paths are com-
pounded when the environmental flow is stochastic and dynamic, necessitating a
DDDAS approach for solution [1,5]. Here, planning requires all the ingredients of
DDDAS, i.e., a combination of rigorous theoretical decision-making frameworks,
environmental modeling with uncertainty quantification, data assimilation and
practical algorithms with computationally efficient implementations [2,4].

In the recent years, several approaches have been proposed for optimal path
planning, however, the stochastic dynamic environment results in several clas-
sical techniques to be infeasible, and Monte Carlo methods [18] and Markov
Decision Process [9] to be computationally expensive. Efficient level-set methods
that solve the exact Hamilton Jacobi (HJ) Partial Differential Equations (PDE)
have been successful for optimal path planning [10]. Nevertheless, choosing one
path from the probabilistic distribution is challenging and an expensive offline
risk-optimal framework was proposed [16]. Very recently, online machine learning
approaches such as Gaussian process regression [6] and Reinforcement Learning
(RL) [7,8,12,19,21] have gained popularity due to their appealing theory and
suitability for on-board routing. However, limited underwater applications are
reported [20], but with prohibitive computational costs for realistic applications.

In the present paper, we develop a computationally efficient online path
planning algorithm that utilizes the framework of RL together with a trans-
fer learning from the HJ-PDEs and data assimilation. In what follows, we first
formally state our problem. Next, we describe our modeling framework (Sect. 2).
Thereafter, we describe our proposed RL algorithm (Sect. 3), and apply it in a
canonical stochastic flow scenario to elucidate the advantages (Sect. 4).

1.1 Problem Statement

Consider a spatio-temporal domain (x, t) : Rn × [0,∞) shown in Fig. 1A. Let
us denote x ∈ R

n for space and t ∈ [0,∞) for time. Here, n = 2, 3 for 2-D and
3-D space respectively. Let the domain have a stochastic, dynamic flow v(x, t;ω)
where ω is a sample of the random velocity field with an associated probability
distribution function. Consider an autonomous agent P with a maximum speed
F (t) that must travel from xs to xf starting at time t = 0 in the minimum
expected travel time. What is the optimum path or policy that P must follow?

We discretize the domain to a spatio-temporal grid world (Fig. 1B), where
each discreet state s, visualized as a cell, is indexed by both space and time.
The random velocity at a discreet state is v(s;ω). At each state s, P can take
an action a. Our problem is to find the optimum deterministic policy π∗(s)
of actions that P must follow so as to minimize the expected travel time. As
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the optimality is in terms of the expectation under uncertainty, we also require
that the optimal policy π∗ can be updated efficiently with new experiences of
the stochastic environment. This final requirement is crucial and informs our
data-driven solution methodology as we see in the coming sections.

Fig. 1. (A) Schematic of the path planning problem in continuous state-space. The
autonomous agent P undertakes a mission from x0 to xf in a domain under the influ-
ence of a stochastic dynamic flow field v(x, t; ω). P experiences an instantaneous veloc-
ity V and takes an action a = π(x, t) according to a deterministic policy. The effective
path taken by P is the vector sum U = V+a. We seek the optimal policy π∗(x, t) that
minimizes the expected travel time of this mission. (B) Schematic of the problem in
discrete state-space. The domain is discretized into a spatio-temporal grid world (left
panel). Middle and right panels show two time-steps of the grid world. s = [xk, tk]
is a state at which P experiences V and takes an action A = π(Sk) and ends up in
s′ = Sk+1[xk+1, tk+1]. We seek the optimal adaptive policy π∗(s).

2 Modelling Framework

Data-Driven Probabilistic Environment Modeling. To forecast the envi-
ronmental flow v(x, t;ω) needed to plan optimal paths, we employ the Dynami-
cally Orthogonal (DO) barotropic Quasi-Geostrophic (QG) stochastic equations
for canonical flows [10,14,15]. Following ref. [15], the stochastic barotropic QG
dynamics, may be written as conservation of mass, momentum and energy in the
Langevin form. Using the DO expansion, we decompose the stochastic dynamic
velocity field and obtain equations for its DO mean, DO modes and DO coeffi-
cients (not shown here, see [15]). Here, the uncertainty of the stochastic dynam-
ical system is carried in a data-driven adaptive dynamic subspace spanned by
the DO modes. Critically, compared to a Monte Carlo approach, computational
advantage of solving the DO equations is usually 2–4 orders of magnitude. With
new data, an assimilation may be performed in the adaptive subspace (or full



296 R. Chowdhury and D. N. Subramani

space as the case may be), to obtain a posterior velocity distribution. Of course,
for realistic applications, an ocean modeling system with deterministic and prob-
abilistic equations must be employed (e.g., [13]).

Reinforcement Learning. To tackle our problem statement (Sect. 1.1), we
propose to employ a MDP framework in the discreet grid world (Fig. 1B). In
this framework, at every time-step k, the agent P can take an action a = Ak

from a state s = Sk to receive a reward r = Rk+1 and reach a state s′ = Sk+1.
The state Sk = [xk, tk] is the rectangular cell with area defined by the diagonally
opposite coordinates (xk −Δx/2, yk −Δy/2) and (xk +Δx/2, yk +Δy/2) at time
tk. The actions available for P is to choose the heading ĥ = cos θêx + sin θêy,
where êx, êy are unit vectors along x− and y− axes, and θ is the direction of
heading. We discretize θ = [0, 360◦] to obtain the action space A = {θi}, and
Ak = θk, one of the θi. In the presence of an uncertain velocity field v(x, t;ω),
the state s′ is reached by the effect of (v + Fĥ)dt on the spatial coordinates
and dt on the temporal coordinate. Discreetly, Sk+1 = Sk + Δt[(v(Sk;ω) +
F (cos θkêx + sin θkêy)), 1] for every realization of the uncertain environment ω.
The immediate reward for this action is Rk = −Δt. The goal of the agent is
to take a sequence of actions so as to maximize the long term return, i.e., the
expected value of total rewards, thereby minimizing the expected travel time.
We define the total rewards Gk at the time-step k by the recursive relation
Gk =

∑K
k′=0 γk′

Rk+k′+1 = Rk+1+γGk+1, where k′ is the index of summation, K
is the index of the last step in the finite planning horizon, and γ is the discounting
factor which quantifies the importance of future rewards. We define an action-
value function qπ(s, a) = E[Gk|Sk = s,Ak = a] that quantifies the value of taking
action a in state s under a policy π. An optimal policy π∗ is one which has a
better action-value function than all other policies for every state-action pair,
i.e., qπ∗(s, a) ≥ qπ(s, a)∀(s, a). Such an optimal policy has the optimal action-
value function q∗(s, a) = maxπ qπ(x, a). Hence, if we have an estimate Q(S,A)
of all the action-value functions, then we can compute the optimal policy as the
argument that maximizes our estimate of Q, i.e., π∗(s) = arg maxπ Q(S,A) .

The above framework is similar to a classic MDP setting, which requires
knowledge of the state transition probabilities p(s, s′) and the reward for every
state-action pair r(s, a). However, in the RL framework that we use in the
present work, an explicit representation of the probabilities and rewards are
not required, and these can be learned with experience, i.e., from data of actual
rewards obtained for any action for a large sample size. Specifically, we employ
an off-policy Temporal Difference (TD) control algorithm called Q-learning to
learn the action-value function and compute the optimal policy [17].

In Q-learning, the Q(s, a) is learned and updated from experience as

Q(Sk, Ak) ← Q(Sk, Ak) + α[Rk+1 + γ max
a

Q(Sk+1, a) − Q(Sk, Ak)] . (1)

During the learning phase, an ε-greedy approach is used to select an action based
on the policy according to the Q(Sk, Ak) that has been learned so far. To initialize
the learning, any random initial Q(S,A) could be utilized, but convergence is
slow and that forms a key challenge in the use of Q-learning algorithms. In
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our experience, even modest spatio-temporal domain sizes take unacceptably
long iterations to converge. In literature, only small domain sizes are considered
for RL (e.g., [19,20]). We want to consider realistic domain sizes with spatio-
temporal states of dimensions O(106) and higher. To speed up computation,
we employ transfer learning [3,11] from solutions of stochastic PDEs for exact
time-optimal path planning .

Stochastic PDEs for Exact Time-Optimal Path Planning. For the prob-
lem setup in Fig. 1A, the stochastic reachability front, i.e., the set of all points
that can be reached by P starting from x0 at t = 0 (i.e., reachability front)
is governed by the DO stochastic scalar Hamilton-Jacobi (HJ) level-set S-PDE
[15]. The first time the reachability front reaches xf is the optimal travel time
T (xf ;ω) and the optimal path XP (x0, t;ω) can be computed for every ω by solv-
ing the particle backtracking equation. This distribution of exact time-optimal
paths for every ω provides the ideal data-set for us to learn Q-values in our RL
framework using a transfer learning approach.

Dynamic Programming. To solve the MDP equivalent to the RL framework,
a completely offline Dynamic Programming algorithm may be used to validate
the Q-learning solution. However, the MDP formulation requires a full transition
probability matrix that is very expensive to evaluate, and we have implemented
a GPU algorithm for computational efficiency.

3 Physics-Driven Model-Based Q-Learning

We combine the different modelling frameworks to develop a novel online algo-
rithm to compute adaptive, near time-optimal policies for an autonomous agent.
Our dynamic data-driven method and has two phases, and (i) Transfer learning
of initial policy, (ii) Dynamic data-driven policy update.

Phase 1: Transfer Learning of Initial Policy. Initialization of the action
value function Q(S,A) is important for the Q-learning algorithm to converge
to an optimal target policy as it learns from experience. In traditional Q-
Learning [17], the update 1 is made using data (s, a, r, s′) generated by following
a behaviour policy (usually ε−greedy exploration-exploitation strategy) in mul-
tiple realizations of the environment in simulation. As can be expected, the
aforementioned algorithm is computationally expensive due to unfruitful explo-
ration. To avoid this, we use the solution of the optimal planning S-PDE to
initialize our Q(S, A). First, from the DO solution of the environment S-PDE
and time-optimal S-PDE, nr,v realizations of the flow and corresponding time-
optimal paths (specified as a sequence of waypoints) are reconstructed. These
paths are used to learn the initial Q(S,A) and near-optimal policy π1. To train
the agent in this transfer learning, we do the following. First, the agent is placed
in a particular realization of the stochastic velocity field. Then, it is made to
perform a sequence of actions so as to follow the HJ-PDE time-optimal trajec-
tory for that realization, and the experience tuples (s, a, r, s′) at each time step
along the way for all realizations is utilized to update Q(S,A). This completes
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the phase 1 of learning and we have a near-optimal policy transferred from the
PDE solution to the RL framework.

Phase 2: Dynamic Data-Driven Policy Update. When the agent is placed
in the mission environment, it goes from s to s′ by taking the optimum action
a based on π1 learnt in phase 1. Information from the agent’s movement data is
used as feedback in the DDDAS paradigm to dynamically update Q(S,A) values.
First, a simple Bayesian estimation of the mission environment is done using the
training realizations used in phase 1 as prior and the data from the mission
environment observed so far. Using the posterior forecasts of the environment,
a future “roll-out simulation” is performed adopting an ε−greedy algorithm to
update the Q(S, A) values and thus the optimal policy. Using only the phase 1,
or simply the solution of the time-optimal SPDE is only an open-loop control,
and the phase 2 that we introduce completes the most important closed loop
feedback of the DDDAS paradigm.

4 Applications

We apply our algorithm to plan paths in one illustrative canonical stochastic
Quasi-Geostrophic double gyre flow scenario that idealizes a wind-driven flow
in a basin. This testcase is a continuation of our previous development enabling

Fig. 2. Stochastic Quasi-Gesotrophic Double Gyre. The goal is to travel from the circu-
lar marker to the star marker in the presence of a stochastic dynamic flow. The data-set
of 5000 time-optimal paths corresponding to the flow realizations, each colored by its
arrival time is shown. Background vectors are a particular flow realization at the initial
time, shown to illustrate the type of flow encountered. Further details of set-up and
flow in [16]. (Color figure online)



Machine Learning for Time-Optimal Path Planning 299

comparisons. Specifically, the set-up and data of the stochastic flow and time-
optimal paths utilized for the Q-learning in the present paper (Fig. 2) are from
ref. [16]. Hereafter, we show only what is required for the RL task and elucidate
the advantages of our new algorithm.

As shown in Fig. 2, the mission is to travel from start (circular marker) to
target (star marker) in a square domain with an extent of 1000 km ×1000 km.
A west to east wind blowing over the basin with uncertain initial conditions
generates a stochastic flow field. For RL, the domain is discretized to a spatio-
temporal grid of size 100 × 100 × 60, with a spatial resolution of Δx = Δy = 10
km and a temporal resolution of Δt = 0.24 days. The speed of P is 40 cm/s
and the action space of the agent P , i.e., the heading angle, is discretized with
a resolution of 22.5◦ and is A = {0, 22.5, 45, · · · , 337.5}. From the DO environ-
mental forecasts, we obtain 5000 realizations and from the DO level-set S-PDE
solution we get the corresponding time-optimal paths. 4000 realizations are used
for transfer learning and 1000 realizations are used for testing the learnt policy.

First, the phase 1 of the Q-learning algorithm (Sect. 3) is applied to compute
the optimal policy from the 4000 training realizations. Next, for each of the 1000
test realizations, an ε−greedy exploration is performed with the posterior realiza-
tions estimated from the 4000 prior realizations and likelihood of data from the
mission environment. Depending on the capability of the autonomous agent, the
estimation and update of the policy can be sparse and we note that our scheme
is versatile to accommodate that requirement (not shown here). To validate the
solution from the Q-learning, we do a completely offline Dynamic Programming
(DP) solution of the MDP corresponding to the time-optimal planning problem.
The paths obtained by following the policy computed from the Q-learning are
shown in Fig. 3A, those from the DP in Fig. 3B. Both policies result in almost
similar paths with comparable expected arrival time and probability of failing
to reach the target (Fig. 3C). The key advantage of our Q-learning is in the
computational time required. For the present test case, building the transition
probability for DP on a modern GPU requires 48 min and DP solution takes
42 min on a 6-core CPU with all threads utilized. On the other hand, for our
Q-learning (done on CPU with only 1 thread), it takes 8.4 min to obtain the
paths from the DO level-set equations, 1.5 min to complete the phase 1 of Q-
learning and 1.5 min for the data-driven update of Q(S, A). Compared to the
DP and risk-optimal framework of [16], QL can dynamically update the optimal
policy with new experiences at a fraction of the computational cost. Moreover,
compared to the risk optimal framework, the failure rate is substantially reduced.
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Fig. 3. (A) 1000 mission paths obtained by using the policy learnt from our Q-learning
(QL) algorithm. (B) Paths obtained by using the policy computed from Dynamic
Programming (DP). (C) E[T] is the expected travel time, p(fail) is the probability
that applying the computed policy results in mission failure and Comp. Time is the
total time required to compute the optimal policy.

5 Conclusions and Future Work

We developed and demonstrated a novel computationally efficient Q-learning
algorithm that learns the time-optimal policy for an autonomous agent in a
stochastic dynamic environment. First, the policy is learnt from the solution of
optimal path planning stochastic partial differential equations using a transfer
learning approach, and then dynamically updated with data in our Reinforce-
ment Learning framework, closing the control feedback loop. The results show
that using the DDDAS paradigm of data-driven policy update in our RL algo-
rithm is a more efficient learning scheme at a fraction of the computational
cost required for dynamic programming. We note that a relatively simple policy
update scheme is presented here to introduce the idea of utilizing physics based
S-PDE solutions to train an RL agent. It is a prelude to more advanced DDDAS
within the science of autonomy. In the future, further improvements could be
made to the algorithm in the present paper by formulating other assimilation
schemes for dynamic update. Moreover, realistic applications and evaluation of
the proposed algorithm may be undertaken.
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18. Wang, T., Le Mâıtre, O.P., Hoteit, I., Knio, O.M.: Path planning in uncertain flow

fields using ensemble method. Ocean Dyn. 66(10), 1231–1251 (2016). https://doi.
org/10.1007/s10236-016-0979-2

19. Yijing, Z., Zheng, Z., Xiaoyi, Z., Yang, L.: Q learning algorithm based UAV path
learning and obstacle avoidence approach. In: 36th CCC, pp. 3397–3402 (2017)

20. Yoo, B., Kim, J.: Path optimization for marine vehicles in ocean currents using
reinforcement learning. J. Mar. Sci. Technol. 21(2), 334–343 (2015). https://doi.
org/10.1007/s00773-015-0355-9

21. Zhang, B., Mao, Z., Liu, W., Liu, J.: Geometric reinforcement learning for path
planning of UAVS. J. Intell. Robot. Syst. 77(2), 391–409 (2015)

https://doi.org/10.1007/978-3-319-95504-9_19
https://doi.org/10.1007/978-3-319-95504-9_19
https://doi.org/10.1007/978-3-540-24688-6_86
https://doi.org/10.1007/s10236-016-0979-2
https://doi.org/10.1007/s10236-016-0979-2
https://doi.org/10.1007/s00773-015-0355-9
https://doi.org/10.1007/s00773-015-0355-9


Discovering Laws from Observations:
A Data-Driven Approach

Chenzhong Yin, Gaurav Gupta, and Paul Bogdan(B)

University of Southern California, Los Angeles, CA 90089, USA
{chenzhoy,ggaurav,pbogdan}@usc.edu

Abstract. A variety of complex patterns displayed by animal physi-
ology, microbial communities, biological systems, or even artificial net-
works such as neural networks can be modeled by mathematical tech-
niques which use non-linear, non-stationary, non-Markovian (i.e., long-
range dependence) properties, to name a few. To identify the non-
stationary changes over time, the models utilizing partial differential
equations (PDEs) work well which track minute changes as well as
the driving force. Further, the fractional PDEs have the flexibility of
modeling long-range dependence across a sample trajectory. The scale-
invariance in the magnitudes, as well as long-range dependence across
time in a diffusion process, is captured by having fractional operators
for both space and time. In this work, we propose to utilize the frac-
tional PDEs to model sample trajectories and provide an estimation of
the associated process with fewer samples. The space-time fractional dif-
fusion process is generalized with the diffusion coefficient as well as drift
(or advection) terms, which are domain-specific and tunable. Instead of
usual methods to model dynamics of the system, the proposed techniques
aim at modeling the minute changes in the dynamical system along with
scale-invariance properties as well as long temporal dependence. With
the essence of Dynamic Data-Driven Applications Systems (DDDAS),
we let the data decide which model to use. We estimate all the parame-
ters of the involved generalized fractional PDE by solving optimization
problems minimizing error between empirical and theoretical fractional
moments. To demonstrate the effectiveness of the proposed algorithm
in retrieving the parameters, we perform an extensive set of simulations
with various parameters’ combinations.

Keywords: Fractional diffusion · Cyber-physical systems · Stochastic
modeling · Optimization · Partial differential equations

1 Introduction

In the big data era, machine learning (ML) and artificial intelligence (AI) play
a prominent role in boosting numerous scientific areas [1,8,9]. Furthermore, ML
and AI have been recently explored into radiological examination to detect the
early sign of diseases [15]. In fact, in most of the scenarios, ML is used to analyze
c© Springer Nature Switzerland AG 2020
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static data by identifying the statistical interdependence between components of
a system of interest. Contrary, there is little to say about analyzing dynamical
processes from big data and uncertainty quantification for large-scale complex
systems. A plethora of complex systems from biology, neuroscience, aerospace
or finance has numerous hidden interactions driving the time evolution, which
cannot be analyzed using regular ML approaches. Specifically, ML has a limiting
ability in deciphering the driving space-time physical laws and governing equa-
tions from multi-modal heterogeneous and noisy time series data associated with
complex system exhibiting multiscale and multi-physics spatiotemporal evolu-
tion.

In this vein, we think that the analysis of spatiotemporal kinetics via a novel
AI architecture will offer new horizons to researchers for better understanding
of complex systems/phenomena. Developing new AI approaches that deal with
complex space-time evolution will provide new opportunities for the data-driven
discovery of potentially new physical phenomena and new physics laws/rules.
Consequently, unraveling new laws will enhance the detection of causal interde-
pendence. Besides, knowing the non-trivial space-time evolution of a given sys-
tem is a key step for boosting its causal predictive capabilities even if the data
is incomplete since the laws governing the evolution are learned. For the afore-
mentioned reasons/problems, understanding complex spatiotemporal dynamics
through classical ML techniques seems to be unfeasible.

Starting from spatiotemporal data, we aim to develop new AI architectures
that enable us to discover new physical phenomena and new physics laws/rules
that govern complex dynamics in different fields (e.g., neuroscience, physics,
biology, aerospace). The multiscale and multi-physics spatiotemporal charac-
teristics that occur in the data from physics, biology, chemistry, neuroscience,
aerospace and even geology, are usually encoded through (fractional or integer
order) partial differential equations (PDEs) with possibly uncertain parameters
[5,13]. These PDEs are usually derived from physical principles conservation
laws on energy, momentum, or electric charge (e.g., diffusion equation, Maxwell’s
equations, Navier-Stokes equations, Schrodinger equations). Next, even with a
fixed structure of the PDE, the derivative orders can have significant effect on
the data. For example, with one set of values we have Brownian motion, while
with another we have a completely different diffusion process. In this work, we
let the data decide which model fits best with minimal parameters. Indeed, this
is the setting of Dynamic Data-Driven Applications Systems (DDDAS) where
the model and data are in cooperation to have better prediction. Finally, the
key challenge is how to retrieve the space-time dynamic that drives a dynami-
cal process hence we identify the PDE that governs its evolution. Consequently,
one may ask the following fundamental questions: Can we learn a PDE model
from given time series measurements and perform accurate, efficient and robust
predictions using this learned model?
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2 Data-Driven Approach for Analyzing Anomalous
Diffusion

2.1 Space-Time Fractional Diffusion Equation

The previous works has proved that the space-time fractional diffusion equation
has been presented as a mathematical model which could efficiently analyze
anomalous diffusion [6,7,11,12,14]. As a whole, in this paper, we defined the
space-time fractional diffusion equation in (1) which comprise fractional Riesz-
Feller derivative of the order 0 < α ≤ 2 and the order 1 which represents
the space variations, or sometimes referred as advection term, and a fractional
Caputo derivative of the order 0 < β ≤ 1 which measures the time variations.
The space-time fractional diffusion equation is defined as

tDβ
∗u(x, t) = D × xDα

θ u(x, t) + D′u(x, t), (1)

where tDβ
∗ , xDα

θ , and D′ are the Caputo time-fractional derivative of the order
β [2], fractional Riesz-Feller derivative of order α with skewness θ [3], and
ordinary derivative of order 1. The θ represents the skewness element in the
space derivative of the fractional diffusion equation which has this constraint:
|θ| ≤ min{α, 2 − α}. The parameter D represents the generalized diffusion coef-
ficient.

In this section, our goal is to use a time-series trajectories dataset that
encodes the fluctuation of particles that exhibits anomalous diffusion which is
based on the Eq. (1) to restore the fractional diffusion equation that generates the
previous time-series dataset. It’s worth noting that the dataset doesn’t include
the prior knowledge or records about the parameters of the fractional diffusion
equation. For this purpose, we constructed a mathematical model which defines
the parameter and mathematical expression as a regression problem that can be
expressed as a least squares problem where the minimization implied the theo-
retical and the empirical statistical moments. Via performing the regression on
statistical moments, we could achieve the closed form mathematical expressions
from the fractional diffusion equation in Eq. (1). The time empirical moments is
shown below used in rest of the paper are stated as

M δ
t =

1
N

∑
|Xn(t)|δ, Sδ

t =
1
N

∑
Xn(t)〈δ〉, (2)

where Xn(t) denotes the time-series data, n has the constraint of 1 ≤ n ≤ N
(N denotes the total number of trajectories), X〈δ〉 denotes the signed absolute δ
power of X, or X〈δ〉 = |X|δsign(X).

2.2 Fractional Derivatives

In this section, first we present the definitions and preliminaries required to
derive the main estimation algorithm utilizing the time-series data.
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Riesz-Feller Space Fractional Derivative. For a well-behaved function f(x),
the Riesz-Feller space-fractional derivative of order α with skewness θ can be
defined as:

{F{xDα
θ } = ψθ

α(k)f(k), ψθ
α(k) = −|k|αeisign(k)θπ/2

0 < α ≤ 2, |θ| ≤ min{α, 2 − α},
(3)

where the ψθ
α(k) is the logarithm of the characteristic function of a general Levy

strictly stable distribution with the stability α and skewness θ, and F denotes
the Fourier transform.

The Caputo Fractional Derivation. For a well-behaved function f(t), the
Caputo time-fractional derivative of order β is defined as:

tDβ
∗ f(t) =

{
1

Γ(1−β)

∫ t

0
f(1)(τ)
(t−τ)β dτ, 0 < β < 1

d
dtf(t), β = 1

. (4)

Fractional Order Absolute Moment. By utilizing the method in [10,16],
the fractional order absolute moment of order δ for the Eq. (1) is obtained using
the following result.

Proposition 1. The time-dependent signed absolute moment of the order δ with
0 < δ < α is written as follows

E[|X(t)|δ] =
1

α

−Γ(1 + δ)

π
sin

(
δπ

2

)

×
∞∑

j=0

Γ(m)Γ(n + 1)

Γ(j + 1)Γ(1 + βn)
2(−1)j cos

(
θπm

2

)
tβ(j + δ − j

α
)D

δ − j
α ,

(5)

where nj = j + δ − j
α and mj = −δ + j

α .

Signed Fractional Order Moment. The signed fractional order moment of
order δ is presented in the following result.

Proposition 2. The time-dependent signed absolute moment of the order δ with
0 < δ < α is written as follows

E[X(t)〈δ〉] = − 1
α

−Γ(1 + δ)
π

cos
(

δπ

2

)

×
∞∑

j=0

Γ(m)Γ(n + 1)
Γ(j + 1)Γ(1 + βn)

2(−1)j sin
(

θπm

2

)
tβ(j + δ − j

α )D
δ − j

α ,

(6)
where nj = j + δ − j

α and mj = −δ + j
α .
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Algorithm 1. Fractional Diffusion with drift: Parameters Estimation
Input: Time-series data {Xn(tl); 1 ≤ n ≤ N, 1 ≤ l ≤ L}, order δ, Δ = {δ1, δ2, · · · , δK}
Output: Parameters: α, β, θ and D

1: for l = 1, 2, · · · , L do
2: Calculate the empirical absolute and signed moments Mδ

tl
and Sδ

tl
� Eq.2

3: end for

4: ̂

(

β
α

) ← m1
δ

, m1 being slope of linear regression log(t) vs log(Mδ
t )

5: Get the estimate ̂

(

θ
α

)

� Eq.11
6: for k = 1, 2, · · · , K do
7: Calculate the empirical absolute moments M

δk
tl

, ∀l � Eq.2

8: m2 ← slope of linear regression tδk
̂

( β
α ) vs M

δk
t with zero intercept

9: Vk ← m2.
Γ

(

1+δk
̂

( β
α )

)

Γ(1−δk) cos
(

πδk
2

)

cos

(

πδk
2

̂( θ
α )

) � Eq.13

10: end for

11: Find α̂, ̂D ← argmin
α,D

K
∑

k=1

∣

∣

∣D
δk
α × π

sin(
δkπ

α
)

− Vk

∣

∣

∣

2

: non-linear regression over space

(sinc inversion)
12: Calculate β̂, θ̂.

2.3 Parameter Estimation

For the time-series dataset which has N independent trajectories with unknown
parameters, we aim to estimate the α, β, θ, and D of the Eq. (1) via exploring
the theoretical and the empirical expressions. Here, we use the method given by
[16]. Since the theoretical moments in Proposition 1 and 2 involve infinite series
making it infeasible to directly implement in the regression problem. Therefore,
we resort to the first term in the expansion. The method is outlined in the
Algorithm 1. The algorithm regresses over time and space to find the parameters.
Thus these two equations can be rewritten as:

E[|X(t)|δ] ≈ Γ(1 − δ
α )Γ( δ

α ) cos( θπδ
2α )

Γ(1 − δ)Γ(1 + β δ
α ) cos( δπ

2 )
tβ

δ
α D

δ
α , (7)

E[X(t)〈δ〉] ≈ Γ(1 − δ
α )Γ( δ

α ) sin( θπδ
2α )

Γ(1 − δ)Γ(1 + β δ
α ) sin( δπ

2 )
tβ

δ
α D

δ
α . (8)

The log of absolute moments in Eq. (7) is defined as:

log(E[|X(t)|δ]) = δ
β

α
log(t) + V, (9)

where V is a constant and independent with t. The theoretical moments in the
left hand side of Eq. (9) can be replaced by the empirical moments in Eq. (2)
and thus, the β

α can be evaluated by the linear regression of log(tl) and log(M δ
tl
)

where l is the index of points. Next, by observing the Eq. (7) and (8), we calculate
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the ratio between the absolute moments and signed fractional order moment as
follow:

M δ
tl

Sδ
tl

=
E[X(t)〈δ〉]
E[|X(t)|δ] = − tan(πδθ

2α )
tan(πδ

2 )
, (10)

where the
Mδ

tl

Sδ
tl

is the average ratio between M δ
tl

and Sδ
tl
. Therefore, the ratio

θ
α can be calculated by inverting the tangent functions. From the Eq. 3, the
parameter θ is constrained with |θ| ≤ min(α, 2 − α), thus, the ratio of | θ

α | must
less than or equal to 1. Thus, the ratio of θ

α is defined as:

θ

α
= − 2

πδ
arctan(tan(

πδ

2
)(

Sδ
tl

M δ
tl

)). (11)

Table 1. The results for fractional diffusion parameter estimation with the first 9
epochs (The mean represents the average values for all 20 epochs)

Epoch Mean

1 2 3 4 5 6 7 8 9

Test set (α) 0.511 0.511 0.511 0.510 0.511 0.511 0.511 0.511 0.512 0.511

Valid set (α) 0.505 0.507 0.506 0.508 0.505 0.507 0.507 0.506 0.505 0.507

Test set (β) 0.011 0.011 0.011 0.011 0.011 0.010 0.012 0.011 0.010 0.011

Valid set (β) 0.009 0.010 0.010 0.011 0.010 0.010 0.010 0.097 0.011 0.010

Test set (θ) 0.488 0.493 0.489 0.489 0.489 0.490 0.489 0.488 0.488 0.489

Valid set (θ) 0.495 0.493 0.494 0.492 0.495 0.493 0.493 0.494 0.495 0.494

Test set (D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Valid set (D) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

To achieve the precision of the prediction, the θ can be replaced by a set
of moment exponents � = {δ1, δ2, ..., δK}. We use the Eq. 10 to obtain a

series of (̂ θ
α )

K
and the optimal estimation result can be expressed by (̂ θ

α ) =
1
K

∑K
k=0 (̂ θ

α )
K

. Afterwards, the absolute moments in Eq. 7 can be rewritten as:

E[|X(t)|δ]
tβ

δ
α

= D
δ
α × π

sin(πδ
α )

× cos( θπδ
2α )

Γ(1 − δ)Γ(1 + β δ
α ) cos( δπ

2 )
. (12)

Thus, the δ can be replaced by δk where δk ∈ � and the Eq. (11) can be rewritten
as:

Vk =
Γ(1 − δk)Γ(1 + β δk

α ) cos( δkπ
2 )

cos( θπδk

2α )
× E[|X(t)|δk ]

tβ
δk
α

= D
δk
α × π

sin(πδk

α )
. (13)
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To estimate the α and θ in Eq. 13, we utilize non-linear least squares method.
Upon estimating the α, the parameters β and θ can be well estimated by the
ratios of β

α and θ
α which are presented in Eqs. (9) and (10).

3 Experiments

Simulations: We simulate the trajectories in this section, and then provide a
proof of concept by running the provided estimation algorithm. The trajectories
are generated using the similar procedure as outlined in [16] with an additional
term of order 1 derivative representing the advection term as shown in Eq. (1). In
Fig. 1, we run several experiments over various choice of the parameters α, β, θ.
We show the estimated value of the parameters by varying the number of trajec-
tories under consideration. The solid line denote mean and shaded area denote
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Fig. 1. Estimating parameters of the space-time fractional diffusion with advection via
the Algorithm 1 while varying the number of trajectories. The dotted line indicate 2%
error tube around the original parameter value in the red: (1a, 1b, 1c) (α = 2, β =
0.7, θ = 0), (1d, 1e, 1f) (α = 1.5, β = 0.5, θ = 0), (1g, 1h, 1i) (α = 1.5, β = 0.5, θ =
0.5). (Color figure online)
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standard deviation across 200 random experiments. We observe that with around
1000 trajectories we reach with 2% error margin, and hence the Taylor approx-
imation with only one term works well. However, a better accuracy could be
achieved by using more terms in (5), (6) which we leave for future.

Real-World Data: In this experiment, we validate our algorithm using the
real-world time-series data from [4]. This dataset is a spike train generated from
Drosophila brain neuron. This spike train is separated into 500 independent
time series with same length, where 400 of them are combined as the test set
and 100 of them are merged as the validation set. We shuffle these time series,
randomly create the test and validation set, and use the Algorithm1 to retrieve
the parameters (α, β, θ, and D) on both sets for 20 times. The Table 1 expresses
estimation results of the first 9 epochs and the mean values denote the results
for all 20 epochs.

4 Conclusion

In this work, along the principles of DDDAS, we have presented an approach
in which we let the data decide to choose from among a wide variety of gov-
erning equations. Such applications can benefit DDDAS, for example, incor-
porating them in the feedback loops to improve performance/speed. We have
used fractional diffusion with advection/drift term along with range of frac-
tional orders. The estimation algorithm involve regression over theoretical and
empirical moments. Using synthetic data, we have first shown the effectiveness
of the proposed approach. Next, we have shown the application of the proposed
model on the real-world data of Drosophila insect.

Future work along this direction can include an advection coefficient for bet-
ter generalization. In this work, to avoid computational complexity, we have only
taken the first term in the resulting Taylor expansion but more could be taken.
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Abstract. Convective weather events pose a challenge to the burgeon-
ing low altitude aviation industry. Small aircraft are sensitive to winds
and precipitation, but the uncertainty associated with forecasting and
the frequency with which impactful weather occurs require an active
detect and response system. In this paper, we propose a dynamic, data-
driven decision support system, with components of forecasting, realtime
sensor observations, and route planning. We demonstrate our technology
in the Dallas/Fort Worth metroplex, a large urban area with frequent
thunderstorms which hosts the CASA Doppler radar network.

The high temporal and spatial resolution data provided by this net-
work allows us to quickly and accurately identify ongoing meteorological
hazards for flight planning purposes. Rapidly updating short term (0–
90 min) forecast data are generated with features extracted as obstacles
to avoid. A flight path generator submits requests for path routing which
include randomized start and end locations and times, weather tolerance
parameters, and buffer zones. A customized obstacle course is created
and used as the basis for routing. Weather processing workflows are
instantiated with Mobius, a multicloud provisioning system. The Pega-
sus Workflow Management System orchestrates processing via scalable
workload distribution to compute resources. Sensor data is transmit-
ted and processed in real time, and routes are periodically calculated for
proposed flights. A Google Maps front-end interface displays the weather
features and flight paths. Herein, we focus on the overall system design,
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with particular emphasis on the dynamic flexibility and interoperability
that our architecture allows.

Keywords: Cloud computing · UAS · UAM · Doppler radar · Flight
planning · DDDAS

1 Introduction

The Urban Air Mobility (UAM) concept is rapidly advancing and could be a
trillion dollar industry by 2040 [1]. Small aircraft are sensitive to weather con-
ditions however, and the detection and avoidance of threatening meteorological
features is a key safety consideration [2]. Weight restrictions may preclude on-
board remote sensing equipment needed for proactive response. If industry oper-
ations are to expand beyond benign weather days, risk information will have to
be provided before and during flights. As tolerances vary not just across aircraft
types, but also rapidly changing aircraft states, the underlying Dynamic Data
Driven Applications Systems (DDDAS) must be customized and adjustable on
the fly. In this paper, we propose and implement such a system using live Doppler
radar observations, deriving meteorological products and forecasts, and extract-
ing areas of relevance on a per flight basis, based on declared risk parameters.
We use a flight path simulator to inject proposed routes and a diverse and ran-
domized set of weather requirements. We have developed a flight path routing
algorithm to navigate obstacle courses, consisting of dynamic weather risk areas
and static areas such as no fly zones. We also present an implementation of this
system, which makes use of compute clouds and private, high-speed networks.

2 Background

Our work makes use of technologies and concepts that the team has developed
over the course of many years.

CASA. Doppler radar is a key technology for the detection and quantification
of precipitation. Since 2013, the graduated NSF Engineering Research Center for
Collaborative and Adaptive Sensing of the Atmosphere (CASA), has installed
and operated a network of seven high resolution, X-band Doppler weather radars
in the Dallas/Fort Worth (DFW) metroplex in North Texas [3]. These rapidly
updating radars focus scans on the lowest portion of the atmosphere, providing
observations near the ground where they are most relevant to people and low fly-
ing aircraft. Our DDDAS system leverages live CASA radar data for situational
awareness.
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DyNamo. is an NSF Campus Cyberinfrastructure (CC*) integration project
for creating a dynamic, network-centric platform for data-driven science. By
coupling existing toolsets, the workflow management software suite Pegasus [4]
and the high throughput computing framework HTCondor [5], and by develop-
ing the multi-cloud provisioning and monitoring tool Mobius [6], DyNamo has
enabled new weather risk extraction workflows for CASA that were not previ-
ously possible [6]. Mobius allows provisioning virtual machine (VM) pools from
multiple national-scale infrastructures like ExoGENI [7], and Chameleon [8],
connecting them to the CASA data repository with private layer2 networks, and
modulating provisioned bandwidths using virtual Software Defined Exchanges
(SDX) [9]. DyNamo allows us to efficiently scale our flight path routing system
as the number of flights increases and the weather deteriorates.

3 Dynamic Data Driven System for Urban Air Mobility
and Weather

In our system (Fig. 1), routes are determined based on atmospheric observations,
which are represented as dynamic weather risk obstacles. Such obstacles are cre-
ated by workflows that operate on sensor data (radars and other weather sensors)
and stored in the Obstacle database (Sect. 3.2). The Flight database (Sect. 3.1)
contains information about planned or current flights. Pathing requests are sub-
mitted into DyNamo’s workflow management system for resource acquisition
and load balancing.

Fig. 1. Overall system architecture.
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3.1 Flight Handling

Flight Database Interface. We implemented a Java based controller with a
secure http based REST interface to a MySQL database. REST architectures
with well defined API endpoints for information exchange are ubiquitous in
the industry and reduce barriers to adoption. Flight descriptions are encoded
as geoJSON [10], which combines the flexible and easily parsed JSON format,
with well defined spatial GIS descriptors for location information. GeoJSON
is natively supported by Google Maps which is our basis for flight and weather
visualization. Flight information includes names, start and end points, waypoints
(optionally), start time, weather parameter sets, and aircraft location if the flight
is in progress. Our path routing function appends optimized path recommenda-
tions and the weather obstacle course on which the optimized path was generated
back to the flight properties.

Flight Request Simulator. To evaluate our system, we have implemented a
flight request simulator that mimics predefined flight requests. For demonstration
purposes, we picked two random hospital locations in the DFW metroplex as
start and end points, along with a randomized subset of discretized weather
parameters for avoidance purposes.

3.2 Obstacle Handling

Fig. 2. Contours from CASA Wind (red)
and CASA Hail (orange) products. Under-
lying raster image of CASA winds shown
for reference. Static DFW airport con-
tour also on display (clear) representing
restricted air space. (Color figure online)

Obstacle Database Interface. Sim-
ilar to the flight database interface, a
Java based secure https REST inter-
face has been created to receive and
query geoJSON features representing
areas of weather risk with certain rep-
resentative characteristics. These can
include magnitude or intensity thresh-
olds, valid times ranging from the
recent past into the future, or simple
binary indicators such as the presence
of hail. Static areas such as restricted
airspaces around airports are also con-
tained in the obstacle database. Areas
of risk can be defined as closed con-
cave polygons extracted from gridded
datasets with contouring algorithms or
simple point measurements.

Meteorological Products. Numer-
ous meteorological feature detection
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algorithms contribute to populating the obstacle database (Table 1) and rep-
resent the primary variability of our DDDAS. Many are derived from the CASA
radar data, but not exclusively. Each feature type has its own associated DyNamo
workflow for product creation and/or extraction.1

Table 1. Weather products used to populate obstacle database.

Product Description

Rainfall
rates

Dual polarized radar data is converted to gridded quantitative
precipitation estimates to determine rainfall rates [11]

Observed
winds

Radar velocity data is blended together to produce gridded estimates
of the maximum observed wind speeds [6]

Reflectivity
nowcast

Multi-radar reflectivity data is merged into an advection model
producing Nowcast data, a predictive grid of Reflectivity valid
0–30min into the future [12]

Reflectivity
forecast

Radar and other sensor data is fed into a full atmospheric data
assimilation model called ARPS [13], producing a forecast from
30–90min into the future, including resolving convective initiation

Hail
detection

Multi-radar data are merged together and binary areas indicating the
presence of hail are derived [14]

Lightning
Detection

The Earth Networks lightning detection network [15] reports the
location of cloud to ground lightning strikes

NDFD
winds

The National Digital Forecast Database [16] produces a forecast of
gridded 10m winds

METARs METeorological Aerodrome Reports are point based observations from
weather stations located at airports across the region [17]. They report
temperature, wind, atmospheric pressure, and cloud cover information

Contouring. Feature extraction from gridded meteorological products relies
heavily on contouring. Contour levels are determined dynamically by the super-
set of weather parameters from all flights in the database. For obstacle avoidance,
we seek closed, ordered, concave polygons that can be treated as discrete objects.
We have developed a C++ contouring class, implementing the Marching Squares
algorithm [18] for generating isolines, and a stitching function to connect these
together [19]. The results are encoded as geoJSON polygon features and posted
into the obstacle database. Figure 2 depicts overlapping weather contours from
the wind and hail workflows.

3.3 Flight Path Planning

Custom Querying. Once a minute our main control process queries the con-
tents of the flight database, and creates a Pegasus job file for each active flight for

1 Further details on workflows for weather product generation can be found in [6].
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route planning. These jobs are submitted to the HTCondor master node, which
distributes them to the pool of available cloud worker nodes. Workers extract
the time and weather parameters from the geoJSON properties of the flight and
generate a set of queries to the obstacle database for the weather feature data of
relevance, gradually constructing a full obstacle course. Queries include weather
feature type, threshold magnitude, and radius for avoidance. Finally, static areas
to avoid are added to the obstacle course.

Obstacle Buffering and Merging. Due to the fast developing nature of con-
vective weather, forecast uncertainty, imperfect sensors and detection algorithms,
processing latencies, and changing physical characteristics of different aircraft,
we apply a convolution filtering algorithm for obstacle buffering on a per haz-
ard basis, based on a flight’s declared radius of avoidance for that hazard type.
Additionally, given the spatial correlations of various weather hazards, a sub-
stantial amount of overlap often exists among the weather feature obstacles. We
therefore apply a concave polygon merging technique. A fine mesh grid is drawn
across a bounding box containing the entire obstacle set. Then for each grid cell,
we check whether it is inside or outside any of the obstacles, creating binary
grid of inside/outside, and reapply the contouring algorithm described above to
create a merged obstacle course.

Graphing and Path Routing. Whereas ground traffic routing algorithms
typically make use of roadway intersections as graph vertices, free air space
provides infinite potential vertices, bound only by minimum incrementation.
Therefore to simplify a search we make two assumptions:

(i) the optimal path from start to end is a straight line if no obstacles exist
along the straight line path, and

(ii) if the straight line path intercepts an obstacle, the optimal path will
include one or more convex hull points of the associated concave polygon obsta-
cle.

With these in mind, the algorithm begins stepping small, fixed distances from
the start point toward the end point, with each step checking for line intersection
with an obstacle. Should one be encountered, we calculate the convex hull of
that concave polygon using the Graham algorithm [20]. Then, from each of
the convex points we recurse the algorithm to splay to the start and end points,
repeating the splaying process with every new obstacle encountered. Splay paths
can traverse along a vertex of the obstacle from which the convex hull point is
associated, but cannot cross a vertex thereof, else it is eliminated from the graph.
Ultimately, our graph is assembled consisting of all the splayed paths and the
vertices of the concave buffered polygons themselves. Once the graph is created,
we have implemented the A* (“A star”) algorithm to evaluate it and return
the shortest path among those defined in the graph [21]. Thereafter, a second
optimization function is applied, necessary to shorten any concave traversals. For
every waypoint in the route, we evaluate if a straight line path can be traveled to
waypoints later in the route without crossing a polyline segment from polygons
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in our obstacle course, starting from the end working backward. If no obstacles
are encountered, we remove all route segments in between. If a valid flight path
is found, the newly proposed route is written back into the flight database along
with the obstacle course used to create it. Figure 3 depicts unique obstacle sets
and two routed paths.

Fig. 3. Two path routed flights are shown as pink lines. Weather obstacles are depicted
as green (10 min CASA reflectivity nowcast) and orange (CASA observed hail) poly-
gons. Two sets of black polygons represent customized buffer zones, based on per
flight parameters. Flights also avoid DFW airport boundary (not shown). (Color figure
online)

3.4 Multi-cloud Resource Management

Our on-demand data-driven system is realized as a series of scientific workflows
associated with weather obstacle generation and flight path routing. A dedicated
server located at the University of North Texas in Denton, TX serves as a weather
data portal/repository and control interface. It uses Mobius [6] to provision the
most resource intensive workflows on Chameleon when extra processing power is
needed, whereas ExoGENI nodes are used for the bulk of the processing and can
be rapidly instantiated. Mobius allows us to connect to ExoGENI and Chameleon
with layer2 networks and modulate bandwidth to individual workflows with
SDX, prioritizing those associated with weather parameters of ongoing flights
and thus extending the DDDAS concept to the networking layer.

Figure 4 depicts data flows for weather processing workflows created by
Mobius.
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4 Conclusions

Fig. 4. Weather workflows are provisioned with
layer2 networks and bandwidth modulated by vir-
tual SDX. CASA based workflows shown in green,
other sensors shown in red. (Color figure online)

In this paper, we have described
the framework of a complete,
functioning DDDAS, operating
with live sensor and model
data that can be instantiated
on demand. Weather geofence
extraction occurs as a func-
tion of the declared tolerances
of individual flight requests.
The underlying compute and
networking adapts to weather
related load and flight moni-
toring needs in an automated
fashion by modulating available
bandwidth to weather work-
flows with SDX and distribut-
ing processing to pools of
worker nodes with Pegasus and
HTCondor. Flight planning is
therefore unique and customiz-
able for a given aircraft or air-
craft class, with feedback into the underlying data generation. We believe this to
be an effective design that accounts for the necessary considerations associated
with a complex, multi-faceted system in a resource constrained environment.
In future work we intend to formally evaluate the performance of the various
subsystems.
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Abstract. Hyperspectral image processing has attracted increasing research inter-
est in recent years, due in part to the high spectral resolution of hyperspectral
images together with the emergence of deep neural networks (DNNs) as a promis-
ing class of methods for analysis of hyperspectral images. An important challenge
in realizing the full potential of hyperspectral imaging technology is the problemof
deploying image analysis capabilities on resource-constrained platforms, such as
unmanned aerial vehicles (UAVs) and mobile computing platforms. In this paper,
we develop a novel approach for designing DNNs for hyperspectral image pro-
cessing that are targeted to resource-constrained platforms. Our approach involves
optimizing the design of a single DNN for operation across a variable number of
spectral bands. DNNs that are developed in this way can then be adapted dynami-
cally based on the availability of resources and real-time performance constraints.
The proposed approach supports the DDDAS paradigm as an integrated part of
the design and training process to enable dynamic-data driven adaptation of the
DNN structure—that is, the set of computational modules and connections that are
active when the DNN operates. We demonstrate the effectiveness of the proposed
class of adaptive and scalable DNNs through experiments using publicly available
remote sensing datasets.

Keywords: Adaptive systems · Deep neural networks · Embedded signal
processing · Hyperspectral image classification

1 Introduction

Hyperspectral image processing (HSIP) applications are becoming increasingly com-
mon in important application areas such as surveillance, medical diagnostics, forensics,
and remote sensing. The utility of HSIP in these fields stems from the high levels of
spectral diversity and spectral resolution that hyperspectral images provide compared to
conventional image acquisition approaches (e.g., see [13]).
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An HSIP application of fundamental importance is the problem of image classi-
fication, which involves mapping each pixel into a set of pre-determined classes. In
recent years, deep neural networks (DNNs) have been shown to be useful for accurate
image classification in HSIP applications [8]. However, the computational complexity
of DNNs together with the large amounts of data involved in HSIP applications makes
the deployment of DNNs in resource-constrained scenarios a challenging problem.

The capability for data-driven, real-time processing of hyperspectral image clas-
sification on resource-constrained platforms opens up the potential for many novel
applications. In this paper, we introduce a novel framework for hyperspectral image
classification that integrates adaptive DNN-based image analysis with real-time,
resource-constrained processing.

Our approach involves optimizing the design of a single DNN for operation across
a variable number of spectral bands. DNNs that are developed in this way can then be
adapted dynamically based on the availability of resources and time-varying constraints
on real-time performance. The proposed approach allows the deployed DNN configura-
tion to be varied at run time to maximize hyperspectral image analysis accuracy subject
to operational requirements that may vary dynamically, and may be unknown at design
time. We demonstrate the effectiveness of the proposed class of adaptive and scalable
DNNs through experiments using publicly available remote sensing datasets.

This work helps to advance the application of Dynamic Data Driven Applications
Systems (DDDAS) by providing new methods for encapsulating a range of HSIP con-
figurations, with alternative trade-offs between complexity and image analysis accu-
racy, within a single DNN model. The single model can be deployed onto a resource
constrained platform and used to adapt system operation based on dynamically chang-
ing operational requirements—e.g., based on changes in urgency due to information
extracted from recently-acquired imaging data.

2 Related Work

Hyperspectral image classification (HIC) is an important application in HSIP. It is
applied, for example, in the area of remote sensing, where different types of land fea-
tures need to be recognized and categorized. Most studies on HIC focus on maximizing
classification accuracy. A common theme in recent works on HIC is the application of
DNNs. Many of these recent works have reported very high accuracy when applying
DNNs to HIC problems in remote sensing (e.g., see [3, 4, 9, 11]). However, these works
often focus on accuracy without taking into account stringent resource constraints or
real-time performance.

On the other hand, a number of studies have investigated real-time HIC. For exam-
ple, Madroñal et al. developed a real-time HIC implementation on a high-performance
computing platform called the Massively Parallel Processor Array (MPPA) [12]. Their
approach utilized support vector machine (SVM) methods for the classification pro-
cess. Wu et al. proposed an approach called logistic regression via variable splitting
and augmented Lagrangian (LORSAL) for GPU-based, real-time HIC [15]. Sharma
et al. proposed a real-time DNN-based approach for face recognition from hyperspectral
images [14].
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Compared to the related work summarized above, the HIC method presented in this
paper is novel in its joint support for resource-constrained deployment, and scalable
execution. Moreover our framework is based on DNN techniques, which have potential
for very high accuracy HIC. Here, by scalable, we mean that trade-offs among accu-
racy, resource requirements, and real-time performance can be adapted flexibly and effi-
ciently at run-time to match the configuration of the system to time-varying operational
requirements.

3 Approach

The proposed system for HIC is designed to adaptively configure system complexity to
maximize classification accuracy subject to constraints on real-time performance. The
system is designed using a convolutional neural network (CNN) structure that accepts
as input a variable number of hyperspectral input channels from among the complete
set of channels S that is available from a given hyperspectral sensing subsystem. The
elements of S are provided as input to the HIC system as an ordered list of channels
S = {C1,C2,…,Cm}, where m is the total number of available channels. The variable
number of channels to use at run-time is selected from a set of predefined options Ω =
{n1,n2,…,nk}, where k ∈ {1,2,…,m}, and 1≤ n1 < n2 <…< nk ≤m. In our experiments,
we use k = 4, n1 = 30, n2 = 60, n3 = 90, and n4 = m.

At run-time (during inference), an integer-valued input nc ∈ Ω is provided to the
HIC system to indicate which band-subset option is selected for image classification.
The value of nc gives the number of input channels that is to be used to classify image
pixels; the value of nc can be varied dynamically by the system in which the CNN is
embedded. More specifically, the set of channels used for classification is κ = {Ci | 1 ≤
i ≤ nc}.

By definition of κ, the ordering C1,C2,…,Cm can be viewed as a priority list with
lower-index channels having higher priority for inclusion in the inference process com-
pared to higher-index channels. The priority list can be constructed using arbitrary meth-
ods for prioritizing hyperspectral imaging channels; in the experiments developed in
this paper, we apply the prioritization methods developed by Li et al. The prioritiza-
tion methods were developed initially for multispectral video [7], and then extended to
hyperspectral video [5].

We refer to our proposed approach as Variable Band Image Classification (VBIC).
Our development of VBIC builds upon LDspectral, which was originally developed
as a software tool for design optimization of dynamic, data-driven multispectral image
processing systems [6], and has been extended more recently with support for hyper-
spectral image processing [5]. LDspectral in turn applies Lightweight Dataflow (LD),
which is a compact set of application programming interfaces and associated libraries
for dataflow-based design and implementation of embedded signal and information
processing systems [10].

The CNN architecture for VBIC is illustrated in Fig. 1. The network is based on an
HIC network proposed in [4]. In this work, we adapt the network of [4] to incorporate
the novel capability of being able to operate on a variable number of spectral bands.
We would like to emphasize that the adaptation approach that we develop in this paper
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is not specific to the network of [4]. Instead, our approach can be viewed as a general
methodology for adapting fixed-band-set CNNs for HIC into variable-band-subset form.

Fig. 1. An illustration of the CNN architecture for VBIC.

In Fig. 1, each block whose label starts with “V” represents a convolutional block.
More precisely, eachV [a][b] represents the bth convolutional unit in convolutional layer
a. Each of the (2k + 2) convolutional blocks in the network performs a 3-D convolution.
Each block labeled ReLu is a rectified linear unit, each Sum block performs the addition
of results from the previous network stage, and the FC block is a fully connected layer.
The dotted edges in Fig. 1 (e.g., the edge from the first ReLu block to V [2][2]) are
connections that may or may not be active at run-time depending on how many bands
the network is configured to execute (i.e., depending on the value of nc) at that time. We
refer to these connections as dynamic connections.

We refer to the subsystem consisting of V [2][1],V [2][2],…,V [2][k] as the
first stacked layer, and similarly, we refer to the subsystem consisting of V [3][1],V
[3][2],…,V [3][k] as the second stacked layer. For integers x ∈ {2,3}, and y ∈ [1,k],
we use a minor abuse of notation to denote the set of convolutional blocks {V [x][1],V
[x][2],…,V [x][y]} by V [x][1 : y].

The input to theVBIC network is a three-dimensional tensorT (p) with sizeM ×M ×
nc. The tensor T (p) is used to classify a single image pixel p from a given hyperspectral
image frameH. The tensor is referred to as the patch associated with p. The parameterM
is an odd integer that is fixed at design time, and is less than (typicallymuch less than) the
numberofrowsandnumberofcolumnsinasinglehyperspectral imageframe.Inourexper-
iments,weuseM=7.Thepatch associatedwithp consists of all of thenc selected spectral
bands forpixelpand its neighborswithin theM×MwindowwithinH that is centeredatp.
Ifp isator sufficientlyclose to theboundaryofH, thepatch iszero-padded toproducea ten-
sor of the required sizeM ×M ×nc. A complete image frameH is classified by iteratively
invoking theVBIC network on T (p) for all pixels p inH. The output of theVBIC network
foragiven tensorT (p) is aclassification label forp togetherwithaprobabilityvalue,which
indicates the level of confidence in the classification result.

Unique features of VBIC include: (1) nc, the size of the third dimension of T (p),
can be varied dynamically, and (2) the network is trained deliberately to handle such a
variable number of spectral bands in the classifier input.

Algorithm 1 provides a pseudocode sketch of the training process for VBIC. The
function initialTraining takes as arguments an untrained VBIC network Γ with the
structure illustrated in Fig. 1, a positive integer n, a labeled training dataset T, and a
number of epochs E for training. The function configures Γ by deactivating all of the
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dynamic connections so that the only blocks V [2][1] and V [3][1] are active in the two
stacked layers. The remaining stacked layer blocks are ignored in the training process
for this function. The resulting configuration of Γ is then trained for E epochs using T.
Only the first n channels (the highest priority n channels) of T are used in the training
process.

The function furtherTraining takes as arguments a partially-trained VBIC network
Γ that has been produced by the previous iteration of the overall VBIC training process.
The function arguments also include an integer i ∈ [2,k], an integer n ∈ [1,m] (recall
that m is the total number of available hyperspectral channels), and as used in function
initialTraining, a training dataset and number of epochs specification.

The function furtherTraining configures Γ by activating the stacked layer blocks V
[2][1 : i] and V [3][1 : i] while deactivating all of the other stacked layer blocks. The
function activates only those dynamic connections that are incident to activated blocks.
In the resulting network, the stacked layer blocksV [2][1 : i− 1] andV [3][1 : i− 1] have
weights that havebeen trained frompreceding iterations of the enclosing trainingprocess.
These existing weights are “frozen” along with the existing (pre-trained) weights of V
[4][1]. Thus, the training process of function furtherTraining is configured to train only
the weights of V [1][1], V [2][i], V [3][i], and the fully connected layer FC. Based on
this configuration of frozen and non-frozen (to-be-trained) weights, the function carries
out a training process with the given number of epochs and given training dataset. Only
the first n channels of T (as specified by the third function argument) are used in the
training process. The network Γ—in particular, its set of trained weights—is updated
as a side effect of this function.

An important aspect of Algorithm 1 is the freezing of weights in stacked layer blocks
V [2][1 : i− 1] and V [3][1 : i− 1] in each iteration i= 2,3,… of the for loop, as enforced
by function furtherTraining. This enables evolution of a single network that is capable of
handling all of the pre-defined band subset options. Encapsulation of all of the options
within a single DNN model is especially important in resource-constrained deployment
scenarios, where there may be insufficient storage space available for multiple DNN
models.

As the band subset option index j increases from 1 to k, the system accuracy can be
expected to increase, while the processing complexity (and hence the execution time and
energy consumption) also increases. The novel approach to designing and training the
VBIC system provides systematic optimization of this trade-off between image classi-
fication accuracy and processing complexity, and encapsulation of the result compactly
within a single DNN model.
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Algorithm 1 A pseudocode sketch of the training process for VBIC. 
Input Γ: A DNN network of the form illustrated in Fig. 1.
Input k: The number of band-subset options.
Input Ω = {n1,n2,...,nk}: the number of bands in each band-subset option. parameter E: the 
number of training epochs in each training iteration.
Input T: the labeled hyperspectral image dataset that is to be used for training.
Input{C1,C2,...,Cm}: the priority list of spectral bands.
Result : the weights of the network Γ are trained as a side effect of this function.
1: procedure VBIC-training
2: channelCount = n1

3: initialTraining(Γ,channelCount,T,E)
4: for i = 2,3,...,k do
5: channelCount = channelCount + ni

6: furtherTraining(Γ,i,channelCount,T,E)

4 Experiments

We demonstrate the proposed VBIC approach through experiments on an Android
mobile phone (OnePlus 7 pro), which we use as a platform for prototyping resource-
constrained image processing applications. In the experiments, we provide hyperspectral
image input to the platform throughflash storage. Theplatform is equippedwith an8-core
Qualcomm Snapdragon 855 CPU, 12 GB of RAM, and 256 GB storage.

We evaluate our VBIC-based Android implementation using two commonly used
datasets in remote sensing: Indian Pines and Pavia University. The Indian Pines dataset
has 145 × 145 pixels and 224 spectral bands with wavelengths ranging from 400–
2500 nm(nm) [1]. The pixels are categorized into 16 classes. The Pavia University
dataset has 610 × 610 pixels classified into 9 classes, and 103 spectral bands with
spectral coverage spanning 430–860 nm.

The training process for VBIC (Algorithm 1) is implemented using PyTorch. Net-
work training is performed using patch size parameter M = 7 (see Sect. 3), batch size
of 40, learning rate of 0.1, weight decay of 0.01 for all layers, and number of epochs
E = 100. The training algorithm employed is AdaGrad [2]. Each of the two datasets
investigated is partitioned into a training set and testing set. Each training and testing set
contains 80% and 20% of the pixels of the associated dataset, respectively. Moreover,
the partitioning is performed so that for each pixel class, 80% of the pixels in that class
are in the training set and the other 20% are in the testing set. As stated in Sect. 3, we
use k = 4, n1 = 30, n2 = 60, n3 = 90, and n4 = m in our experiments.

Table 1 shows the model size and overall accuracy (testing accuracy across all pixel
classes) for the VBIC system under the four different values for nc ∈ Ω. Here, by the
model size, we mean the number of trainable parameters that is required in the network
(excluding any parameters associated with non-activated blocks). Note that only the
model size associated with n4 is relevant in assessing the overall model size since all of
the models are supported in the VBIC system. However, the model sizes for different
values of nc provide insight into the underlying range of trade-offs provided between
model complexity and accuracy.
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Table 1. Model size and accuracy.

nc Pavia University dataset Indian Pines dataset

Model size Overall accuracy (%) Model size Overall accuracy (%)

30 18,042 88.01 27,009 76.98

60 45,210 93.64 72,097 92.83

90 73,402 95.58 118,209 95.66

Maximum 89,306 95.55 284,897 96.88

The row labeled “Maximum” represents nc= m, where m = 224 and m = 103 for
the Indian Pines and Pavia University datasets, respectively.

We also measure the processing throughput and peak memory consumption (peak
mem) of the VBIC system as it performs classification. The results are shown in Table 2.
Each throughput value given in the table is derived by averaging over 20 repetitions of an
experiment with the associated dataset and nc value. The standard deviations computed
for these 20 trials are listed in the column labeled “Std dev”. The units for throughput
are pixel classifications per second (PC/s).

Table 2. Processing throughput and peak memory consumption.

nc Pavia University dataset Indian Pines dataset

Throughput
(PC/s)

Std dev
(PC/s)

Peak mem
(MB)

Throughput
(PC/s)

Std dev
(PC/s)

Peak mem
(MB)

30 722.14 7.36 219 702.22 64.87 181

60 430.48 7.57 238 399.76 6.77 198

90 206.38 2.47 291 197.16 1.58 254

Maximum 140.58 0.96 374 98.04 2.09 338

Together, the results in Tables 1 and 2 demonstrate the effectiveness of the VBIC
approach in practical classification scenarios. The results provide an example of the novel
range of performance/accuracy trade-offs that can be deployed using VBIC. Moreover,
the results demonstrate that large increases in throughput can be achieved with relatively
small reduction in accuracy.

5 Conclusion

In this paper, we have developed a framework for hyperspectral image classification
called Variable Band Image Classification (VBIC). VBIC integrates adaptive DNN-
based image analysis with real-time, resource-constrained processing. The framework
provides novelDDDAScapabilities by enabling dynamic self-adaptation of the deployed



Dynamic, Data-Driven Hyperspectral Image Classification 327

DNN configuration to maximize hyperspectral image analysis accuracy subject to oper-
ational requirements that may vary dynamically. We have demonstrated the utility of
VBIC through an implementation on an Android platform, and experiments using two
relevant datasets. Useful directions for future work include exploration of VBIC imple-
mentations on embedded GPUs and neural network accelerators, and investigation of
systematic methods for selecting the set of options for band subset sizes.
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Abstract. For object tracking in a visual dynamic data-driven appli-
cation systems (DDDAS) framework, visual appearance features can be
extracted by the convolutional neural network, which has been shown
to provide a robust feature representation. In this paper, a new semi-
supervised learning framework, variational Siamese neural network, is
developed for visual tracking by combining a Siamese network with a
variational autoencoder, which supports both supervised and unsuper-
vised training. The learned features are represented as Gaussian distri-
butions in feature space, and the object is represented as a distribution
in image space. The similarity between objects’ features is measured by
an information theoretic distance. The tracking algorithm is based on
the detection network’s detections to update the object state estimate.
Experiment results show that the proposed visual tracking framework
outperforms existing state of the art visual tracking approaches.

Keywords: Object tracking · Siamese network · Semi-supervised
learning.

1 Introduction

Visual tracking involves state estimation of objects based on dynamic video data,
which serves as a critical component of a visual dynamic data-driven applica-
tion systems (DDDAS) framework, and is imperative in various visual DDDAS
applications, such as camera surveillance and environment monitoring. Further,
without assuming a certain model for the video data, deep learning based visual
tracking is naturally a data-driven approach. In visual tracking, learning the
visual appearance features of an object and searching it in the given image fea-
ture space have been investigated recently for detection and tracking of visual
objects [2,10,15]. The features can be manually selected or extracted by learning
algorithms from labeled training dataset. Furthermore, features extracted by the
convolutional neural network (CNN) have been shown to represent the object in
semantic feature space with robust representation [10].
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In this paper, we develop a new semi-supervised learning framework, the
variational Siamese network, by combining the traditional Siamese neural net-
work with a variational autoencoder (VAE). A detector is developed based on
this semi-supervised learning framework using both labeled and unlabeled train-
ing data. Its first step is to learn the robust feature representation by using an
unsupervised deep generative model (VAE). The second step is to use a labeled
video sequence to train a visual object detector. The learned features are repre-
sented by Gaussian distributions in feature space instead of discrete points as in
the traditional methods. The semantic similarity between the object feature and
search image feature is measured by using an information theoretic distance met-
ric. Further, we propose to model objects as distributions instead of bounding
boxes, which allows measuring the distance continuously. We integrate Kalman
filter with our detector, which is used to estimate the object state. To the best of
our knowledge, this is the first work where the VAE is used for semi-supervised
learning for visual tracking.

2 Related Work

This paper involves three aspects of visual tracking: Siamese network based
visual tracking, variational autoencoder, and visual object representation.

Siamese Network Based Visual Tracking. The advantages of Siamese net-
work based tracking include end-to-end training, no need for online training, and
high efficiency, attracting a lot attention recently [1,10]. SiamFC [1] adopts the
Siamese network as a feature extractor and introduces the correlation layer to
combine feature maps. However, these previous methods are based on measuring
the distance between two vector feature points and supervised learning only.

Variational Autoencoder. VAE [7] has been used as a generative model in
machine learning field recently. For example, VAE has been used to generate
more training samples for visual tracking [16] and extract robust features for
object segmentation [12], respectively. Different from [12,16], in our work, we
use the encoder part of the VAE to extract features for object representation in
a visual tracking Siamese network. Rather than representing features with fixed
points in a fixed dimensional space, an alternative is to represent them with
Gaussian distributions. The distribution’s variance can represent the ambiguity,
which is a desirable property for modeling the feature representation of an image.
Also, the variance can help the learning algorithm to smoothly “fill” the seman-
tic space with continuous representation to generalize better. The distribution
features can be learned with deep learning based VAE [7].

Visual Object Representation. One of the basic components in object track-
ing is to represent the object in space and time. In the case of 2D image, the
axis-aligned bounding box representation is widely used to identify an object
with its approximate location and size [1]. Because the limitation of subtraction
of the object from the background, mask representation becomes popular, such
as Siamese-Mask [15]. The mask is a dense representation of the object, which
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needs much more parameters than other representations. Recently, representa-
tion of the object as a Gaussian distribution has been proposed [4], in which the
mean represents the object location and the covariance matrix represents the
object’s shape and orientation in a continuous 2D image space.

3 Methodology

Tracking visual objects based on the initial frame can be accomplished by simi-
larity learning between the objects and the current image frame. Here we propose
a framework to learn the similarity between an exemplar image z and a candi-
date image x′ with the same size, and return a similarity score. Here x′ is a
sub-image from a larger search image x. We can detect the object in x by test-
ing all the possible locations, and find the highest similarity score. We denote
fθ(z, x) as the similarity score between two input images z and x, which can be
constructed by the fully convolutional variational Siamese network.

3.1 Fully Convolutional Variational Siamese Network

We adopt the fully convolutional Siamese network as the base learning structure,
which has been successfully applied in tracking scenarios [1,5,8,15]. Instead of
cutting a sub-image from the search space and translating it to the feature space,
the fully convolutional network can translate the original search space to a more
dense grid in a single evaluation. Also, the fully CNN commutes with translation,
and based on its output, one can identify the object location in the original
image space. The Siamese network has a powerful framework to compare the
difference between two unstructured sources. In this paper, we develop a new
semi-supervised learning framework by combining VAE and Siamese network,
with feature outputs as Gaussian distributions.

As shown in Fig. 1, function qθ(·|x) is a fully convolutional network given
image x, and the similarity between the two images is typically calculated by
the Siamese architecture in feature space. qθ transforms the two images to the
feature space, represented as Gaussian distributions, with parameters μ and Σ.

Fig. 1. Fully convolutional variational Siamese network architecture. z: exemplar
image; x: search space. Images are from [6].
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3.2 Object as Distribution

The object is typically represented by a bounding box in most tracking appli-
cations. However, there are several disadvantages with this representation: it is
difficult to measure the difference between the proposal bounding box and true
label bounding box with different shapes, sizes, and locations; the bounding box
provides a binary decision for each pixel with sharp boundaries. In this paper,
we propose to use a normal distribution to parameterize a visual 2D object:

Zi = N (μi,Σi) (1)

where μi = [xi yi]T , Σi = diag(σ2
xi

, σ2
yi

), and xi, yi, σxi
, σyi

are means and
standard derivations. Since most of the labels are axis-aligned, we do not model
the correlation between xi and yi.

3.3 Wasserstein Distance Between Two Gaussian Distributions

We adopt an information theoretic distance measure in this paper, which is
different from the previous work [1]. The object in the feature space is represented
by a Gaussian distribution, which allows us to smoothly measure the semantic
similarity based on Wasserstein distance [3]. The computation of Wasserstein 2
(W 2

2 ) is efficient for two Gaussian distributions in R
h.

W 2
2 (p1, p2) =

h∑

i=1

(μi
1 − μi

2)
2 + (σi

1 − σi
2)

2 (2)

3.4 Variational Autoencoder for Semi-supervised Training

Our learning framework consists of two steps, generative and discriminative mod-
els. The first step is using the unlabeled data for unsupervised learning. The sec-
ond step is to use the labeled data for learning the similarity between exemplar
image and search image, and detect the object.

As shown in Fig. 2, the generative learning can be carried out by a VAE
based on variational inference. In this case, we can use the output from the
variational fully convolutional network as input to reconstruct the input or the
next few frames of the input images. The intermediate variable s ∼ N (μz,Σz) is
the latent variable, which is also the feature extracted by using the network. The
unsupervised learning can help the network to find a good feature extractor, and
warm up the next task. The deep neural network is usually difficult to train and
it is often stuck in a saddle point. By using both unsupervised and supervised
learning, we can achieve better training result, as shown later in the paper.

The parameters of our encoder-decoder architecture are learned by minimiz-
ing the following regularized loss based on variational inference and stochastic
gradient descent, which is a sigmoid annealing scheme.

− Lθ,φ(z|z′) = −Eqθ(s|z)(log pφ(z′|s′)) + λKL(qθ(s|z)||N (0, I)) (3)
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Fig. 2. Unsupervised learning via VAE. Function qθ: encoder; function pϕ: decoder.
Both of them are fully convolutional neural networks. s’ is a sample drawn from the
distribution.

The first term encourages the sampled latent space to encode the necessary
information to reconstruct the input image, which is called the evidence lower
bound (ELBO). The second term, a regularization term, enforces the latent
variable to match the standard normal N (0, I), and to fill the semantic space
with a positive definite Σz.

The second step of the learning framework is supervised learning based on
the labeled tracking datasets. The score map is the final output of the network,
and the value should between 0 and 1, the higher the more similar. The distance
metric in Sect. 3.3 is from 0 to ∞, the lower the similar. The distance can be
transformed by 1−tanh(x) with output from 0 to 1. We call this map O. Ground
truth score can be calculated similarly. The value also needs to be rescaled by
1 − tanh(x), and this map is T . Our loss can be calculated as follows:

Loss =
width∑

w

hight∑

h

(
Oh,w − Th,w

)2
(4)

4 Experiments

4.1 Implementation Details

Network Architecture: We use AlexNet [9] with slight modifications to output
mean and variance. The detailed parameters are listed in Table 1. There are 5
convolutional layers and the last layer has 2 groups of convolutional filters, which
outputs the means and variances. A max pooling layer is employed after each of
the first two convolutional layers. A ReLU layer follows each convolutional layer
except for conv 5 mean.

Training: For unsupervised training we use the dataset Got-10k [6], which has
a large number of visual objects. During unsupervised training, only the objects
are fed into the architecture presented in Fig. 2. The input image and the output
image could be the same or could be T time steps away. So this step can be
trained for static images, or for the object in the video.

Tracking: We use a Kalman filter as the tracking algorithm. The object state
is defined as x = [x, y, ẋ, ẏ, σx, σy]T , consisting of the position and velocity
along each direction, and standard deviations of the object distributions in image
space.
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Table 1. Architecture of variational convolutional embedding function.

Convolutional Kernel Features map size

Layer Kernel Chan. map Stride Chans Exemplar Search Img

Input ×3 127 × 127 255 × 255

conv 1 11 × 11 96 × 3 2 ×96 59 × 59 123 × 123

pool 1 3 × 3 2 ×96 29 × 29 61 × 61

conv 2 5 × 5 256 × 48 1 ×256 25 × 25 57 × 57

pool 2 3 × 3 2 ×256 12 × 12 28 × 28

conv 3 3 × 3 384 × 256 1 ×192 10 × 10 26 × 26

conv 4 3 × 3 384 × 192 1 ×192 8 × 8 24 × 24

conv 5 mean 3 × 3 256 × 192 1 ×128 6 × 6 22 × 22

conv 5 var 3 × 3 256 × 192 1 ×128 6 × 6 22 × 22

4.2 Evaluation for Visual Object Tracking

Here two tracking challenge datasets are used for evaluations: VOT-2016 [5] and
VOT-2018 [8]. We compare the proposed tracking approach against some state-
of-the-art approaches, using the official VOT toolkit, and the expected average
overlap (EAO), a measure that considers both accuracy and robustness of a
tracker. The EAO measures the expected non-reset overlap of a tracker run on
a short term sequence. The accuracy is the average overlap during successful
tracking periods and the robustness measures how many times the tracker drifts
from the target and has to be reset [8]. From Table 2, it is clear that our tracker
outperforms the state-of-the-art trackers. Also, its speed is fast and allows real
time applications. One tracking example is shown in Fig. 3. As we can see, our
proposed approach can track the moving ball and its size and shape accurately.

Table 2. Comparison with the state-of-the-art tracking approaches. The arrow indi-
cates that the larger/smaller the better.

Ours SiamRPN [10] SCRDCF [13] STRCF [11] LSART [14] ECO [2]

EAO↑ 0.339 0.244 0.263 0.345 0.323 0.280

Accuracy↑ 0.526 0.490 0.466 0.523 0.495 0.484

Robustness↓ 0.213 0.460 0.318 0.215 0.218 0.276

Speed↑ 50 200 48.9 2.9 1.7 3.7

4.3 With or Without Unsupervised Learning

The VAE can help us with the training of the detector. In Fig. 4, the supervised
learning progress is shown for two different frameworks, with and without the
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Fig. 3. Football tracking [8]. Red box: true label; green ellipse: our tracker output with
95% confidence region.

unsupervised learning step respectively. It is clear that on the average, the one
with unsupervised learning has a lower loss function, demonstrating the advan-
tage of the proposed semi-supervised learning framework.

Fig. 4. The training progress with or without unsupervised learning.

In Table 3, the accuracy and robustness of the tracking results with and
without unsupervised learning are compared using dataset VOT2016. It is clear
that the approach with unsupervised learning outperforms the one without.

Table 3. Training results with/without unsupervised learning.

With Unsupervised Without Unsupervised

Accuracy↑ 0.520 0.498

Robustness↓ 0.220 0.221
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5 Conclusion

For object tracking in a visual DDDAS framework, we departed from the tradi-
tional fully convolutional Siamese network, and developed a variational Siamese
network which trains feature embedding through both supervised and unsuper-
vised learning. The embedded features are represented by multivariate Gaussian
distributions in a feature space, and the distance between two objects’ features
is measured by an information theoretic metric (Wasserstein distance). To the
best of our knowledge, this is the first work where variational encoder is used
for semi-supervised learning for visual tracking. Numerical experiments showed
that the proposed visual tracking approach outperforms existing state of the art
tracking approaches.
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Abstract. Occlusion is a common issue for object detection and track-
ing applications using a remote sensor platform, especially in complex
urban environments where occlusions from buildings, bridges, and trees
are frequent events. While occlusions are unavoidable, the events can be
predicted to occur before the object of interest is obscured if there is
prior knowledge of the observed environment. To aid in object detection
and tracking tasks, we create an environment to map terrain and find
obscured regions in the scene which helps with re-detecting objects once
they are no longer obscured. We propose a dynamic data driven applica-
tions systems (DDDAS) framework for detecting occluded regions in an
imaged scene by integrating streams of real data with a physics-based
simulation model that updates based on the most recent images.

Keywords: Occlusion detection · Remote sensing · Dynamic
adaptation

1 Introduction

We utilize prior knowledge from open source resources to detect occlusions within
a given scene, allowing us initialize a simulation of the scene before we collect
real data samples and update the scene. We use OpenStreetMap (OSM) [9] for
scene initialization to obtain geo-rectified terrain of a given real world loca-
tion with dense OSM tags. These tags can be mapped into 3D modeling and
rendering software (for example, Blender). The 3D environment is then used
to synthetically image the scene with the Digital Imaging and Remote Sensing
Image Generation (DIRSIG) model [2,3,13], where common land cover materi-
als such as concrete, grass, and asphalt can be assigned to have hyperspectral
reflectance spectra. DIRSIG is a versatile too. that it can produce simulations of
many image modalities such as RGB, multispectral, and hyperspectral through
the visible and infrared spectrum.

OSM provides a priori information about ground surface regions within the
scene that cannot be imaged directly from a remote imaging platform’s specified

c© Springer Nature Switzerland AG 2020
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Fig. 1. Example of a DIRSIG scene using OSM terrain (left), and addition of trees
(right) to the scene to occlude the ground terrain. Green represents ground vegetation
and grey/white is paved roads. (Color figure online)

position. For example, an airborne camera viewing a road network from a non-
nadir viewing angle may not have direct line of sight on the road if nearby build-
ings and vegetation are obscuring the road. If road material spectra (asphalt,
concrete) are not detected in a region where OSM claims a road exists, we infer
the ground terrain in that region is occluded by an object that interrupts the
airborne cameras line of sight, as shown in Fig. 1.

Our initial estimate of a simulated region using OSM contains information
on a limited set of surface terrain materials such as asphalt and grass, which
can then be confirmed or rejected with real image observations (Fig. 2). In a
DDDAS sense the executing application is DIRSIG and new imagery are used
to modify the DIRSIG inputs to modify the scene. We use the OSM information
for constructing a scene and modify the scene with objects, like trees, to occlude
the ground (Fig. 1). The proposed process will aid in object tracking systems
from remote imagery, where objects moving in and out of occluded regions in a
scene limits tracking performance. This paper considers the occlusion challenge
in the task of detecting and tracking vehicles from a remote imaging perspective
and uses scene simulation to overcome some of the challenge.

Fig. 2. Proposed framework for scene occlusion identification, with focus on roads and
objects that may occlude the road network.
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2 Related Work

Hang et al. used attention-aided CNN’s (spectral and spatial sub-networks) for
hypersepctral image classification of urban environments using the HyRANK
dataset [5]. For moving object detection in aerial imagery, Palaniappan et al.
utilizes background subtraction and depth mapping of tall structures that may
occlude moving objects to reduce false positives due to parallax [10].

Since there are no publicly available video-rate hyperspectral datasets, simu-
lated hyperspectral imagery is a viable method for constructing a hyperspectral
dataset with a high framerate. There are handful of software approaches capa-
ble of creating hyperspectral imagery, such as: DIRSIG [2,3], MCScene [12],
CHIMES [15], and CameoSim [7]. We use DIRSIG to generate our simulated
hyperspcetral imagery because it is a physics based renderer with an estab-
lished history of publications, and it can accurately model radiation propagation
through atmospheric modeling with MODTRAN [1].

Han et al. used DIRSIG to adjust atmospheric and environmental condi-
tions for physics based data augmentation of simulated remote sensing imagery
to train CNN’s in vehicle detection [4]. Uzkent et al. modeled vehicle motion
through a DIRSIG urban scene at various observation altitudes for object detec-
tion and tracking [14]. Kemker et al. used a DIRSIG desert scene to increase
performance for semantic segmentation applications [6]. AeroRIT annotated all
pixels in a hyperspectral aerial flight line over a college campus, initiating a
baseline for use in hyperspectral semantic segmentation[11]. Mulhollan et al. col-
lected the hyperspectral paint signature of over 450 vehicles using a calibrated
drone mounted hyperspectral sensor, to aid in creating simulated hyperspectral
imagery with a wide variety of vehicle reflectances [8].

3 On-the-Fly Adaptations

Detecting and tracking a target vehicle with hyperspectral imaging through con-
gested streets in an urban environment is a complex task. To aid in the task,
we propose to utilize a-priori knowledge of the scene along with raw imagery to
obtain additional geometric information from a 3-D perspective (Solution 1:
Dynamic Metadata Integration). Metadata resources such as OpenStreetMap
provide us with geo-rectified road layouts and land cover materials, which
can assist in detecting occluded regions and provide probable locations for an
occluded vehicle to reappear. The OpenStreetMap geographical land cover infor-
mation initializes our scene, and the simulated model of the scene will update
in regions of the scene where incoming real data are significantly different than
the existing simulated model. Other sources of information such as the posi-
tion and orientation of the imaging platform, position of the sun in the sky,
and updated weather reports, all provide valuable information in predicting the
expected spectral signature of the vehicle of interest.



340 Z. Mulhollan et al.

3.1 Tackling Atmospheric Changes

A persistent bottleneck in object detection and tracking is the public availability
of hypersepctral data. Hyperspectral cameras that can collect data at approx-
imate video frame rates are rare and obtaining hyperspectral images from an
airborne platform is costly and limited to flights in optimal weather conditions.
Using physics based simulated imagery is a pragmatic method of acquiring a
large hyperspectral video dataset of vehicles travelling through an urban envi-
ronment. We use DIRSIG to generate our simulated hyperspectral imagery. This
can alleviate data limitations and 1) provide pixel-wise ground truth data of all
contents in the scene, 2) control for biases that often persist in real image data
(such as weather condition and object orientation), and 3) provide a capability
to create a scene with multiple imaging modalities. A simulated dataset also
provides an automated emthod to tag environment based events such as the
vehicle being occluded, shadowed, or contain glint, which we expect will make
vehicle detection and tracking performance less dependent on atmospheric and
environmental conditions.

Figure 3 demonstrates the need to dynamically adjust the expected spectral
signature of the vehicle as the scene changes over time. We observe a target vehi-
cle in simulated hyperspectral imagery under two different weather conditions
and five different airborne platform observation angles. Sunny afternoon obser-
vations of the light blue vehicle’s spectral radiance are shown in orange, and
same vehicle’s spectral radiance observed in partly cloudy weather is shown in
blue. The large difference in the signal amplitude demonstrates the dependence
of target appearance on the illumination conditions (weather) and the angle at
which the target is observed. Thus, it is important to update the expected target
vehicle spectral radiance based on a-priori knowledge of the scene to improve
performance of hyperspectral vehicle detection (Solution 2: Dynamic Signal
Adaptation).

3.2 Dynamic Scene Reconstruction

Instead of an exhaustive training approach where a large hyperspectral dataset is
collected of hundreds of vehicles from countless illumination conditions, observa-
tion angles, and occlusion events, we propose a DDDAS framework that utilizes
physics based simulated hyperspectral imagery to predict how a target vehicle
would appear to a real airborne imaging platform. We demonstrate that a physics
based approach to hyperspectral vehicle detection can reliably locate a vehicle in
complex urban environments, where illumination changes and occlusion events
can often occur.

For occlusion detection, we first use OSM and the IMU-GPS positioning data
of the aerial hyperspectral imaging platform to create a bare physics based sim-
ulated scene, where only on the ground materials such as grass, roads, walkways,
and building footprints are geo-spatially placed based on OSM tagging. We sim-
ulate our image to look as if there were no vehicles or vertical occluding objects
such as trees or buildings present in the scene. We ignore the land topography
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Fig. 3. Demonstration of a vehicle’s spectral radiance dependence on atmo-
spheric/weather conditions and image observation angle. It is also shown that expected
glint on the vehicle can be modeled with accurate simulations of atmospheric conditions
and observation angle.

and use a planar surface to represent the ground for simplicity, but provisions
are available to account for major changes in the topography.

In the real world, our airborne imaging platform collects a hyperspectral
image of the scene, which may include any number of vehicles and occluding
objects that are currently not populated in our physics based model. We update
the position and orientation of our simulated platform to best match with the
latest position of the real image platform when the last frame was captured. We
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also process the data to geo-rectify the image and convert the pixel values from
digital counts to physical units such as spectral radiance (Solution 3: Dynamic
Scene Renderings).

To convert the data to physical units, we perform a lab calibration of the
sensor to measure its spectral responsivity curve. The spectral responsivity curve
paired with updated capture parameters on the airborne platform such as inte-
gration time, dwell time, and dark current provide enough information to calcu-
late sensor reaching radiance

Lλ = (DCi − DCdark) · Eλ

DC
· 1
π

, (1)

Where Lλ is spectral radiance at the sensor, Eλ

DC is the spectral irradiance per
digital count obtained through a lab measurement of the sensor’s responsivity
curve, and DCi and DCdark are digital counts with incident light and dark
current respectively.Spectral calibration of the sensor and converting image data
to physical units such as spectral radiance allows us to compare our simulated
physics based image with the imagery captured with a real hyperspectral sensor.

4 Results

To detect and track a vehicle using its spectral radiance in a scene containing
occulsions, we use a DDDAS framework to predict occluded regions in the scene
and update where and how we expect the target vehicle to look based on our
knowledge of the scene. Predicting occluded regions in a scene is an iterative pro-
cess as more data are collected. We provide a visualization of how the simulated
model of the scene can update through new observations by using a simulation
as an example. In Fig. 4 we show the ground truth change detection from the
initial OSM landcover simulation alongside a supervised classifier spectral angle
mapping image for change detection. The spectral classes used are asphalt and
vegetation with the spectral data of these classes sourced from real hyperspectral
imagery acquired from the same geometric location of the simulated scene.

Fig. 4. Simulated DIRSIG scene with trees (left) and an occlusion and shadow mask
ground truth image (center) showing all occluded and shadowed pixels in the scene in
white, with spectral angle classification used to detect change between OSM terrain
and the simulated image.

To evaluate object detection and tracking performance in dynamic adapting
environment that is full of occlusions, we construct a simulated dataset that con-
tains labeled ground truth information such as the paint color, vehicle make and
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model, the location of the vehicle using bounding boxes, and also we tag if the
vehicle is occluded or visible for each image frame. This simulated dataset is use-
ful to reinforce the logic of occluded objects such as vehicles because it provides
examples of vehicles that exist but are not currently visible due to occlusion.
We can utilize this simulated dataset along with our existing knowledge of the
scene (road networks and occluded regions) to learn where to look in the image
to redetect an occluded object, and with a DDDAS feedback loop can guide the
airborne platform to a new location in the sky where it has a higher probability
of detecting the object unoccluded.

Fig. 5. Ground truth bounding boxes of a target vehicle moving through a simulated
scene with occlusions caused by trees. This provides ground truth location of vehicles
that are not directly observable due to line of sight obscurations.

5 Conclusion

We use a DDDAS approach to dynamically update a physics based hyperspectral
simulated scene to the presence of occluded regions as new image information and
metadata are provided. Detecting occluded regions in a scene aids object track-
ing and detection applications in complex urban environments, where moving
objects vacillate between being obscured and visible. For hyperspectral detection
of vehicles, we use simulated imagery to predict the expected signature of the
vehicle’s surface with atmospheric modeling and known geometric position of the
imaging platform. We also construct a labeled simulated hyperspectral dataset
with bounding boxes around each vehicle present in the scene, including ground
truth location of vehicles that are occluded and undetectable in the raw imagery.
This dataset will be used to train dynamically adapting detection algorithms to
make vehicle detection and tracking applications more robust to occlusions, and
in DDDAS framework can reposition an airborne sensor to a line of sight where
the target vehicle is no longer occluded.
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Abstract. Chronic Obstructive Pulmonary Disease (COPD) is one of
the major pulmonary diseases and a leading cause of morbidity and mor-
tality worldwide. Although there is no cure for COPD, it can be managed
by medication and rehabilitation. Therefore, it is important to monitor
the progression of the disease. In this paper, we propose a framework
to detect and study the symptoms of COPD using multiple physiolog-
ical sensors. We focus on two main symptoms dyspnea and fatigue. As
there are two types of fatigue physical and cognitive, their detection and
sensor fusion pose a challenge. To address this, we employ the Dynamic
Data-Driven Application System (DDDAS) paradigm that enables us to
collect and analyze data in real-time.

Keywords: COPD · Sensors · Physiological signals · Fatigue · Human
modeling

1 Introduction

Climate changes, increasing pollution, and various biological factors have
adversely impacted human respiratory health and made it even more impor-
tant to find efficient ways of detecting, monitoring, and treating this condition.
Among respiratory diseases, Chronic Obstructive Pulmonary Disease (COPD)
is one of the most prevalent, affecting 16 million people in the USA [3]. The
symptoms of COPD can be as common as a cough or as severe as wheezing.
COPD consists of two diseases, emphysema, and chronic bronchitis [14]. While
the disease is not curable, its symptoms can be controlled with early diagnosis
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and appropriate tracking. Most of the time, the symptoms are misdiagnosed as
“smoker’s cough”.

One important symptom of COPD is dyspnea. Dyspnea can be described
as a subjective experience of breathing discomfort [20]. It has been found that
including dyspnea in the test for mortality for people suffering from COPD
provides better insights into the 5-year survival rate than objective measures of
lung function [16]. Dyspnea is such an ingrained symptom of COPD that the
anxiety of an impending dyspnea episode has been suggested to be a biomarker
for dyspnea events [5].

An important aspect of activities of daily living (ADL) is fatigue. Fatigue is
often a result of excessive physical or mental exertion [13]. Among other factors,
fatigue plays a vital role in the quality of life in patients with COPD [8]. It has
been found that using fatigue as a biomarker in COPD gives a strong indication
of hospitalization risk [17]. Fatigue can be broadly classified into two types,
physical and cognitive. Historically, these two have been studied independently,
but in the real world, these two may co-occur and it is an open problem as
to how they impact human performance, separately or jointly. Therefore, it is
important to study the effect of both types of fatigue on the body and the
interaction between the two under COPD, as the disease severity changes.

Studies have been done into COPD by monitoring patient’s respiratory func-
tion through their inhalation and exhalation. Some studies have analyzed chemi-
cal information of the exhaled breath. Gas arrays [9] and systems with a pattern
recognition algorithm like E-Nose [7] have been studied for this application.
While these methods have their advantages, a prominent limitation is that they
are sensitive to factors such as humidity and temperature. E-Nose requires that
the subjects refrain from eating and drinking for at least 12 h before the experi-
ment. An approach that was well received by elderly subjects was remote inhaler
monitors [21]. Increased albuterol use captured by the sensor was associated with
self-reported episodes of moderate-to-severe exacerbation. The use of computer
vision in the monitoring of the most important physiological parameters allows
the patient to move more freely without concern for external perturbations. The
disadvantages that exist would be a heightened risk of signal noise, loss of subtle
physiological data, and discontinuous data sets from the subject’s movement [6].

Studies into recording breathing activity using wearable sensors have also
been done. Pandian et al. [18] presented a comprehensive wearable smart vest
designed to help with the overall assessment of the wearer’s health. The vest
analyzed multi-sensory data and found a varying degree of success concerning
medical accuracy. Another way of measuring respiratory activity using capacitive
sensors was presented by Naranjo-Hernández et al. [15]. The results from the
study provided preliminary validation for this type of wearable respiratory rate
monitoring system. Perriot et al. [19] presents a network of collaborative wearable
sensors, for monitoring respiratory events through the daily activities and clinical
evaluations of COPD patients.

In this paper, we propose PNEUMON (Greek for lung), a novel computa-
tional system to detect the dyspnea, cognitive, and physical fatigue in patients
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with COPD. This will then be used to study the relationship between cognitive
and physical fatigue under acute dyspnea condition. To this end, the framework
would need to perform the following three functions, (1) detect physical fatigue,
(2) detect cognitive fatigue, and (3) detect dyspnea. PNEUMON relies on the
data being extracted by multiple physiological sensors. Some sensors are com-
mon for all the detection tasks, while other sensors are unique to a particular
detection task. This creates a challenge to model such a dynamic human-centric
system. The system needs to adapt based on human activity/behavioral data
changes over time. It also needs to account for the variation of the types and
the level of fatigue while being able to predict and minimize the occurrence of
dyspnea events.

The Dynamic Data-Driven Applications Systems (DDDAS) paradigm is
employed as it is perfectly suited to handle such challenges [25]. Using the
DDDAS paradigm this framework performs the three detection tasks by ana-
lyzing each grouping of sensors and providing personalized feedback to the user.
The novelty of this system is that it is a unified system that detects dyspnea,
physical, and cognitive fatigue while providing the ability to study the relation-
ship between them.

2 Sensor Suit

The PNEUMON system relies on data collected from multiple sensors. For this,
we designed a sensor suit (Fig. 1) that provides a unified approach to sensor
management. This suit allows the user to wear the sensors without performing
individual sensor placement. The suit is a compression-type shirt within which
the sensors are embedded. This suit is designed such that the sensors can be eas-
ily removed thus making it possible to wash and maintain the shirt and upgrade
if needed. The sensors used in the shirt are a part of the toolkit manufactured by
Plux [2]. From this toolkit Electrocardiogram (ECG), Electromyogram (EMG),
Electrodermal Activity (EDA), breathing band, and oximeter were embedded in
the shirt. This toolkit also comes with a base station to provide a bridge between
the sensors and the data collection unit. In this setup, EMG will be attached
to the quadriceps femoris muscle in the leg. The suit is also integrated with
a microphone array that collects breathing sounds from the lungs. The micro-
phone array consists of four Adafruit 1713 Microphones [12] that are connected
to an Arduino Nano 3.3 microcontroller [1] that has the role of a base station.
Along with the integrated sensors, the setup also contains an Electroencephalo-
gram (EEG) sensor manufactured by MUSE [4] is used during the assessment
of cognitive fatigue.

3 The PNEUMON Framework

The PNEUMON system detects dyspnea, physical, and cognitive fatigue. Using
this information the relationship between dyspnea and the two fatigues will
be studied. As explained before, fatigue is an important symptom of COPD.
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Fig. 1. The prototype of the Sensor Suit (Inside Out View): Sensors are embedded in
the shirt which will be in contact with the user’s torso

Therefore, the study of this relationship is important as this may give us insight
into the progression of the disease and to monitor treatment response. Figure 2
shows the system architecture that uses the DDDAS paradigm [11]. Physiological
signals like ECG, EDA, breathing patterns, peripheral oxygen saturation (SpO2),
breathing sounds, EEG, and EMG signals are collected. Although most sensors
are common for all detection tasks, some may not be applicable for individual
tasks. For example, EMG is not applicable while detecting cognitive fatigue.

The user is also given feedback about their physiological states such as their
current heart rate and breathing rate. These constraints create a problem for
sensor fusion and processing. The DDDAS paradigm is used to solve this problem
as the paradigm allows us to dynamically assess the user’s state in terms of the
three conditions and improve the measurement process.

From the available sensors (Sect. 2) all except EMG are processed to detect
cognitive fatigue, all except EEG are analyzed to detect physical fatigue and all
except EMG and EEG are analyzed to detect dyspnea. EEG, EMG, EDA, and
ECG provide information on the physiological functioning of the brain, muscle,
sympathetic nerve activity, and heart, respectively. SpO2 gives information about
the oxygen level in the blood, therefore, indicating the oxygen saturation in
the body. Breathing signals and sounds indicate the mechanical changes in the
breathing pattern. Processing of EEG signals during a cognitively difficult task
is particularly important as it gives direct information on the changes in brain
activity due to the increase in cognitive load [10].
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The acquired signals will be processed, and signal features will be extracted
from them. Subsequently, the features are passed to a machine learning algo-
rithm that will provide information on dyspnea and both the fatigues using the
appropriate set of sensors. For each detection task, some features may be more
important than others. For example, while all collected signals for the detection
of dyspnea gives information on the presence of dyspnea, features extracted from
breathing patterns, and breathing sounds are more important than other signals
as they provide direct information about mechanical changes in the lung func-
tion. The other signals, however, provide information about the effect of dyspnea
on the other systems of the body. To account for this, features extracted from
the three signals are given more weight in the machine learning algorithm than
the features extracted from the others. This will ensure better detection accu-
racy even if there is some ambiguity in the less important signals. Along with
this, the framework will also gather contextual information like the nature of the
current task to identify if conditions for a particular detection task is met. This
allows us to adapt the model in real-time using the DDDAS paradigm.

The framework contains a front-end user interface to relay information on the
current physiological state of the user as feedback. This interface also provides
the user with the means to control the system. The user interface will display data
from the sensors and allow test data to be saved and loaded for further analysis.
There will be indicators showing which sensors are currently receiving data and
indicators showing when cognitive fatigue, physical fatigue, or a dyspnea event
has occurred.

The normalized extracted features (see Sect. 4) will be stored in the vector xi,
where i = 1, . . . , 7 represent the features extracted from the EDA, ECG, SpO2,
breathing signal, sounds, EEG, and EMG, respectively. Here, wi represents the
weights for the features. Equation (1) presents the detection of Dyspnea D and
fD is a machine learning algorithm that will use as inputs the weighted features.
Similarly, Eq. (2) presents the detection of physical fatigue P with fp as the
algorithm, and Eq. (3) presents the detection of cognitive fatigue C with fc as
the algorithm.

D = fd(wi × xi) where i �= 6, 7, w4, w5 > w1, w2, w3 and Σwi = 1 (1)
P = fp(wi × xi) where i �= 6, w1, w2, w7 > w3, w4, w5 and Σwi = 1 (2)
C = fc(wi × xi) where i �= 7, w6 > w1, w2, w3, w4, w5 and Σwi = 1 (3)

4 Experimental Protocol

To validate the framework, a pilot study will be conducted with healthy partic-
ipants. This study is designed to induce dyspnea events and study the effect of
dyspnea events on fatigue. The study will be conducted on 50 participants which
will have the necessary approval by the Institutional Review Board (IRB). The
participants will be separated into two groups, healthy individuals and individ-
uals suffering from COPD.
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Fig. 2. PNEUMON system: Detects Dyspnea, Physical and Cognitive Fatigue. Pro-
vides personalized feedback on the current physiological state.

The pilot study, which will be conducted to validate the proposed framework,
consists of four phases. In the first phase, the participants will be asked to
perform a cognitively simple task after being fitted with the sensors. This will
be the baseline against which the other cognitive phases are compared. Prior to
this phase, baseline data will be collected by asking the participant to relax for
a minute. This baseline will be used to normalize the signal parameters.

In the second phase, dyspnea and physical fatigue are induced by asking the
participant to walk on a treadmill. The participant will be first asked to walk
for 3 min at a rate of 1.7 mph and 10% incline (inclination level). Next, they will
walk for 3 min at a rate of 2.5 mph and 12% incline. After this, the participant
will be asked to stand and recover while data for the recovery period is recorded.

In the third phase, the participant will be asked to perform a cognitively
challenging task which will induce cognitive fatigue. In this study, cognitive
fatigue will be induced using the N-Back task. In an N-Back task, letters will
be presented to the participant in a sequence. If the current letter matches
the letter shown N steps back, then the participant will have to perform the
instructed task (press a designated button). The N-Back task has been shown to
induce cognitive load and cognitive fatigue [22–24]. In phase one, the participant
is asked to perform a 0-Back task where the participant will press the button as
soon as the target letter is presented. In phase three, they will perform a 2-Back
task where the participant will perform the action if the current letter is the
same as the letter showed 2 steps back.

In the fourth phase, the participant will be asked to repeat the 0-Back task.
This will be used to study the overall effect of physical and cognitive fatigue on
the participant. Between each phase, the participant will be asked to fill out a
survey designed to extract their subjective level of fatigue.
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5 Conclusion

This paper introduced a framework to detect dyspnea, physical, and cognitive
fatigue. This framework employed the DDDAS paradigm to handle data fusion
and modeling complexity. This, therefore, provides an “All-in-one” system to
study the relationship between physical and cognitive fatigue under the dyspnea
condition. We have also presented a unified sensor hardware and an experimental
procedure as a use-case for this framework.

In the future, we will conduct user studies to build a working prototype of
the framework and evaluate it with COPD patients.
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address how advances in modeling and prediction methods, and decision support
for complex systems, as well as the underlying information technology infrastruc-
tures, can advance the capabilities in their respective sectors. Part of the discussion
will include research and technology development within their own organizations
as well as the broader academic and research laboratories communities, and poten-
tial for collaborative and synergistic advances across the industry, academe, and
federal sectors can enhance the opportunities for advances and capabilities sought.
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Abstract. The vast majority of leading executives with aerospace and defense
industries expect artificial intelligence (AI) technologies to influence every part
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human cognitive band-width is emerging as the most severe constraint for data
utilization. For this reason, governments need big data, AI and machine learning
(ML) to give its analysts the edge in real-time response. Similarly, commercial
aerospace is actively seeking AI “killer apps” to revolutionize operations through
reducing fuel consumption, accelerating pilot training, innovative product designs
and better customer service. For ex-ample, as a leading aerospace and defense
corporation, Raytheon Technologies (RTX) is actively exploring the transforma-
tive capabilities of AI and ML. This panel discussion will present examples and
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