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�Introduction

Schizophrenia is a severe mental disorder with 
1% worldwide prevalence, which means that it 
affects the life quality and longevity of more than 
21 million people worldwide according to the 
World Health Organization [1]. This pathology is 
characterized by profound disruption of thoughts, 
language, perception, and the sense of self, which 
often includes psychotic experiences, such as 
hallucinations and delusions. Together, they are 
called positive symptoms and were initially con-
sidered as the main psychological signs of this 
pathology. However, schizophrenia presents 
other psychological features such as social 
behavioral deficits, lack of motivation, and anhe-
donia – grouped as the negative symptoms – and 
cognitive dysfunction [1]. Historically, the classi-
cal neuron-centric view that has long-dominated 
neuroscience and the pharmacological research, 
fundamentally by using antipsychotic drugs, con-
stituted the largest part of the characterization of 
schizophrenia etiopathology. In this sense, the 
bibliography is full of reports pointing out to neu-

rotransmission misbalance – essentially dopami-
nergic or glutamatergic – as the main factor in the 
development of this pathology. Over the last 
years, the dopaminergic-centrist theories have 
given place to a more complex interpretation as 
schizophrenia becomes a multifactorial puzzle 
where glial cells are one of the new targets of 
interest. Glial cells (oligodendrocytes, astrocytes, 
and microglial cells) are essential pieces in brain 
microenvironment function as they play crucial 
roles in metabolic and ion homeostasis control, 
synaptic establishment and function, modulation 
of several neurotransmission systems, as well as 
neuroprotection, tissue repair, and inflammation 
[2, 3]. Regarding these glial functions, it is not 
surprising that alterations in their functionality 
and integrity could be related to psychiatric dis-
order development. In this sense, it has been 
reported, in human and animal research, that glial 
cells are involved in several mental diseases 
including Parkinson’s disease, major depressive 
disorder, addiction, and schizophrenia [2]. The 
intricate patterns involved in both etiopathology 
and symptomatology make schizophrenia an 
unreadable enigma for the moment. Indeed, more 
than 100  years after its first description by 
Kraepelin and other psychiatrists, there is not a 
theory that explains all the features observed 
throughout its development and the consequent 
symptoms. Genetic, neurodevelopmental, and 
environmental theories can be mentioned among 
the multiplicity of the hypothesis that attempts to 
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clarify the complex scenario of this pathology. 
Each one of them could represent different com-
ponents, of the underlying cascade, that trigger 
the neurotransmitter imbalance and the subse-
quent schizophrenic symptom expression. These 
series of concatenated pathological events would 
occur throughout life, producing deficits in den-
dritic spine formation, due to an interplay 
between genetic factors and obstetric complica-
tion, along with an excessive apoptosis and syn-
aptic pruning during adolescence, leading to 
brain disconnection and the subsequent psychotic 
symptoms [4]. Moreover, the different stages of 
schizophrenia development are transversally 
crossed by neuroinflammation. Some of the first 
insights of a possible association between the 
schizophrenic syndrome and neuroinflammation 
come from a century ago, when an increase of 
schizophrenia diagnosis rates was reported after 
an influenza epidemic that had happened in 1918 
[5]. Although with some inconsistencies, more 
recent studies are in line with this asseveration, 
where schizophrenia development seems to be 
related with influenza as well as other maternal 
infection like herpes simplex virus type 2, 
Toxoplasma gondii, and nonspecific bacterial 
infections [6]. Taking into account the heteroge-
neity of etiological infections, the increased risk 
to suffer schizophrenia probably involve altera-
tions related to immune system activation and not 
due to specific pathogenic pathways of each 
microorganism. To this respect, increased pro-
inflammatory cytokine levels during pregnancy 
have been related to higher risk to suffer schizo-
phrenia [6]. On the other hand, high genetic con-
tribution to schizophrenia development was 
observed in studies made in twin with a heritabil-
ity up to 80% [7]. Located on the short arm of 
chromosome 6, major histocompatibility com-
plex (MHC) was consistently related to this high 
contribution to schizophrenia susceptibility [8–
11]. In this region, at least 250 genes that encode 
human leukocyte antigens and many other 
immune and nonimmune genes are present. 
Variations on many genes encoded in this 
genome’s region could induce an unsuitable 
immune reaction leading to exacerbate response 
and the consequent neuroinflammation through-

out life. Together with the genetic vulnerability, 
the early neuroinflammatory insults abovemen-
tioned could imprint long-life marks over microg-
lia cells, displaying an increased immune 
reactivity throughout the life of schizophrenic 
patients [12]. Both processes could explain the 
high levels of inflammatory markers, such as pro-
inflammatory cytokines and C-reactive protein, 
that have been described in the blood and cere-
brospinal fluid of schizophrenia patients [13, 14]. 
This immune hyperactivity during brain develop-
ment could lead to less dendritic spine formation 
and to an enhanced mesencephalic progenitor 
differentiation into dopaminergic neurons, pro-
moting some features of schizophrenia, like dis-
ruption of cortical synaptic connectivity and 
hyperdopaminergia [12, 15].

The central brain angiotensin II (Ang II) 
effects are mediated mainly by the two G protein-
coupled receptors, the Ang II type 1 receptor 
(AT1-R) and Ang II type 2 receptor (AT2-R). 
AT1-R is present in astrocytes, microglia, and 
brain endothelial cells pointing out its crucial 
role in neuroinflammatory responses [16, 17]. To 
this last respect, Ang II, via AT1-R, is one of the 
most important inflammation and oxidative 
stress inducers by the nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase com-
plex activation [18]. Nowadays, a large body of 
evidence supports the existence of a local renin-
angiotensin system (RAS) with all of its compo-
nents synthesized in the central nervous system 
(CNS). The presence and synthesis of angioten-
sinogen have been described in neurons and 
astrocytes. Whereas angiotensinogen production 
in neurons is restricted to some brain regions, its 
astrocytes’ synthesis is the most important and 
widespread source [9–12]. Moreover, it has been 
reported an intra- and extracellular location of 
renin, while the Ang II converter enzyme (ACE) 
has been found extracellularly, as soluble and 
membrane-bound forms. Additionally, Karamyan 
[19] described alternative central pathways for 
Ang II synthesis that involved elastase, protein-
ase 3, cathepsin G, and tonin activity. Further evi-
dence supports intraneuronal generation and 
activity of Ang II, as well, in brain microvessels 
[17, 20, 21].
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In the present chapter, we attempt to summa-
rize the role of the glial cells in the schizophrenia 
unmasking the AT1-R involvement in the com-
plex glial scenario.

�Glial Cells in Schizophrenia

�Microglia

Microglia, resident macrophages of the brain, 
participates in the progressive loss of synaptic 
connection during normal neurodevelopment 
after birth. This physiological process called syn-
aptic pruning could lead, beyond a critical thresh-
old, to cortical disconnection and psychotic 
symptoms. Moreover, a similar pathological state 
could be triggered in normal brains after an 
excessive microglia activation with an excessive 
synaptic pruning [15]. Furthermore, it has been 
hypothesized that an inadequate immune activa-
tion to a predominant type 2 response could 
induce an excess of kynurenic acid (KYNA) for-
mation, an endogenous N-methyl-d-aspartate 
(NMDA) antagonist released mainly by astro-
cytes, known to lead to a glutamatergic hypo-
function, an important hallmark of schizophrenia 
[12]. Moreover, it has been observed that about 
10% of patients with an initial schizophrenia 
diagnosis have NMDA receptor antibodies [22]. 
In addition, a meta-analysis performed by Miller 
et  al. shows that some cytokines, like 
interleukin-1β (IL-1β), interleukin-6 (IL-6), and 
tumor growth factor β (TGF-β), could be markers 
for acute exacerbations, since their levels were 
high during psychotic episodes and normal after 
antipsychotic treatment [23].

Anti-inflammatory effects of antipsychotic 
drugs are another important finding that relates 
immune imbalance with schizophrenia etiopa-
thology. In this sense, a meta-analysis performed 
by Tourjman shows that antipsychotic treatment 
reduces the plasma levels of pro-inflammatory 
cytokines IL-1β and interferon-γ and increases 
soluble interleukin-2 receptor [24]. Further evi-
dence, which supports an inflammatory response, 
came from the benefits of nonsteroidal anti-
inflammatory drugs (NSAIDs) in the treatment of 

schizophrenia. In this case, the addition of 
NSAIDs to antipsychotic treatment generated an 
improvement, although modest, in symptom con-
trol [25, 26].

Under physiological conditions, Ang II and 
AT1-R are expressed mainly in neurons and astro-
cytes; meanwhile, in nonactivated microglia, 
they are present at really low levels. However, 
under a pathological state, such as neuroinflam-
mation, stroke, or multiple sclerosis, Ang II and 
AT1-R increase their expression in activated 
microglia promoting an inflammatory feedback. 
Bhat [27] has reported that lipopolysaccharide 
(LPS)-induced gliosis is associated with RAS 
overactivation evidenced by increased Ang II 
level and AT1-R expression in both astroglial and 
microglial cells. Moreover, in the same study, 
they showed that AT1-R blockade blunted the 
neuroinflammation via suppression of glial acti-
vation and imbalance in inflammatory cytokines 
in both cell types. To this last respect, a large 
body of evidence reported that Ang II, via AT1-R, 
plays a key role in oxidative stress and inflamma-
tion, promoting NADPH oxidase activation. 
Moreover, a cross talk between AT1-R and the 
microglial toll-like receptor 4 contributes to Ang 
II pro-inflammatory signal inducing ROS pro-
duction, NF- κB, and pro-inflammatory cytokine 
release, including IL-1β, IL-6, and TNF-α, and 
leads the microglial cell activation [28, 29]. In 
microglial cells, the NADPH oxidase activity is 
the main regulator of the shift between M1/pro-
inflammatory and M2/immunoregulatory 
microglial phenotypes, where high oxidative lev-
els promote the pro-inflammatory and inhibit the 
immunoregulatory phenotype [30]. In this sense, 
it is known that an M1/M2 phenotype balance is 
necessary to prevent brain damage, so it is not a 
surprise that the Ang II overactivation could lead 
to a chronic neuroinflammatory state. In this 
sense, the AT1-R involvement in microglial neu-
roinflammation has been extensively studied in 
models of Parkinson’s disease and hypertension 
[18, 29, 31–33]. To this last respect, both M1 and 
M2 markers have been found upregulated in an 
Ang II-induced mouse model of hypertension, 
whereas the microglial depletion reduced the 
neuroinflammation and the blood pressure, as 
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well as the levels of peripheral hypertensive hor-
mones in a mice model of hypertension [34, 35]. 
In the same way, in an animal model of parkin-
sonism with MPTP, it has been shown that the 
Ang II/AT1-R activation of the microglia is 
involved in the dopaminergic degeneration. This 
neurotoxin induces an increase in the RhoA/Rho-
kinase pathway, which plays a critical role in the 
inflammatory and oxidative effects of Ang II that 
is inhibited by AT1-R blockade or depletion [36]. 
Moreover, Rho-kinase activation upregulated 
AT1-R expression in microglial cells leading to a 
feedforward mechanism. AT1-R regulates the 
microglial response through two main pathways, 
Rho-kinase and NADPH oxidase, thus control-
ling superoxide generation, microglial motility 
and phagocytosis, and the release of inflamma-
tory cytokines [29].

�Astrocytes

Astrocytes are the neurovascular unit’s center of 
integration mediating the vascular response to 
couple the neuronal activity, through the activa-
tion of their metabotropic glutamatergic recep-
tors, Ca+2 oscillations, and release of 
gliotransmitters and vasoactive substances. In 
this way, astrocytes control the blood flow in 
response to the neuronal function (functional 
hyperemia), and the metabolites exchange 
through the blood-brain barrier. Furthermore, 
astrocytes exert a critical contribution to neuro-
transmission systems since they are responsible 
for the metabolism, recycling, and/or degrada-
tion of glutamate and GABA.  Classical exam-
ples of these astrocytes’ functions are 
glutamine-glutamate or KYNA circle. On the 
other hand, astroglia is involved in the immune 
response and tissue repair after damage [3, 37–
39]. Taking all together, since astrocytes have a 
critical role in maintaining neuronal function, it 
is not surprising that alterations in their func-
tions have been associated with several psychiat-
ric disorders. However, regarding schizophrenia, 
the astrocytic contribution is not clear [37, 40]. 
Initial studies have reported signs of gliosis in a 

regional-dependent manner and usually closely 
related to the illness’ history and severity [41, 
42]. In this sense, Arnold [43] reported gliosis 
only in a schizophrenia subgroup of patients 
with a high prevalence of severe cognitive 
impairment and functional disability. However, 
later studies that focused on glial fibrillary acidic 
protein (GFAP) mRNA or protein analyses 
found no changes [44–47] or decreased expres-
sion [48–52]. In another study, augmented astro-
gliosis –described for schizophrenia  – was 
reported to be concomitant with increased neu-
roinflammatory marker expression, and the 
authors suggested that astrocyte reactivity could 
be due to external factors (i.e., differences in 
psychiatric etiopathology, illnesses coexistence, 
or treatments received) [44]. In line with this 
hypothesis, it has been shown an increase in 
GFAP immunoreactivity after chronic antipsy-
chotic treatment [53]. However, in animal mod-
els (rats), the treatment with haloperidol – typical 
antipsychotic – has no effects over GFAP expres-
sion [51]. Focusing the attention over the astro-
glial enzymes, products, or gliotransmitters, the 
reports over astrocytes’ role in schizophrenia 
become more inconsistent. Among the main 
astrocyte’s enzymes, the glutamine synthetase 
(GS) is a critical component of glutamine-
glutamate cycling expressed mainly in astro-
cytes. This enzyme catalyzes the ATP-dependent 
condensation of ammonia and glutamate to form 
glutamine, playing a fundamental role in the glu-
tamate neurotransmission and homeostasis, as 
well as neurotoxicity prevention by clearing of 
ammonia [54]. In the available bibliography, 
there is no agreement about GS involvement in 
this pathology, considering that the expression of 
this enzyme has been reported to be increased, 
decreased, or with no changes in schizophrenic 
patients [51, 53, 55–57]. Similar results were 
found for glutaminase, another glutamine-
glutamate cycling enzyme, responsible for 
glutamine-glutamate transformation [55, 57]. 
However, it has been suggested that these 
changes could be due to antipsychotic treatment. 
In this sense, in astrocyte cultures, risperidone 
increased GS as well as the glutamate uptake and 
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glutathione content; meanwhile, haloperidol 
increased reactive oxygen species (ROS) but did 
not show any effect over these astrocyte func-
tions [58]. Moreover, it has been shown an 
increase in glutamine synthetase-like protein in 
patients with schizophrenia, which becomes 
even higher after the treatment with olanzapine 
[59]. Other critical players in the glutamate-glu-
tamine circle are the excitatory amino acid trans-
porters (EAATs), expressed primarily on 
astrocytes. The evidence suggests that abnormal-
ities in these glutamate transporter localization 
and function could underlie alterations in the 
kinetics of perisynaptic glutamate buffering, 
clearance, and cycling, contributing to the gluta-
matergic dysfunction described in schizophrenia 
[60, 61]. Regarding this last respect, it has been 
reported a decreased expression of these trans-
porters in critical areas implicated in schizophre-
nia physiopathology [61]. Interestingly, 
McCullumsmith [60] showed an increased 
expression of these glutamate transporters in 
neurons and suggested that this could be a way 
to balance out the loss of astroglial reuptake 
capacity. Moreover, KYNA was found to be 
increased in critical regions of the CNS in 
schizophrenic patients, an effect that contributes 
to the reduction of the glutamatergic neurotrans-
mission [62]. Studies performed in rats showed 
that the treatment with antipsychotics, like halo-
peridol, clozapine, and raclopride, caused a 
reduction in KYNA levels in the caudate puta-
men, hippocampus, and frontal cortex [63]. 
Another astroglial marker is the S100B, a neuro-
trophic factor released from several cell types, 
but within the CNS, it is released by astrocytes, 
and it is used as an astrocyte integrity indicator. 
Through its paracrine and autocrine role, in low 
concentration, S100B regulates proliferation and 
differentiation of neurons and glia and modu-
lates dopamine and glutamatergic synaptic func-
tion. On the contrary, the over-release of this 
factor has been related to neuronal dysfunction 
and apoptosis due to increased expression of 
inducible nitric oxide synthase (iNOS) or pro-
inflammatory cytokines [64, 65]. Regarding 
schizophrenia patients, several studies have 

revealed increased S100B levels in the periph-
eral blood and cerebrospinal fluid (CSF) of 
patients [65–70]. This increase in S100B has 
been associated to a more severe negative psy-
chopathology and cognitive deficit, supporting 
the key role of astroglia in the schizophrenia 
etiopathology [65, 68, 69, 71]. Moreover, it has 
been reported higher levels of this factor at the 
cellular level in the early stages or acute para-
noid schizophrenia that could be associated with 
astro- and oligodendroglial activation. These 
evidences suggest that glial activation and struc-
tural damage lead to a neurodegenerative-like 
process in schizophrenia [65, 72, 73]. 
Interestingly, an increased inflammatory mark-
ers’ expression has been linked to higher levels 
of S100B in CSF of schizophrenic patients, sug-
gesting that inflammatory processes could lead 
or exacerbate the glial dysfunction in these 
patients [66]. Furthermore, different reports 
showed a decrease in the S100B levels in CSF of 
patients after antipsychotic treatment. However, 
this effect appears to be selective for patients 
with predominantly positive symptoms, since 
the patients with negative symptomatology 
showed high levels of S100B even after antipsy-
chotic treatment [65, 69, 72, 74]. Indeed, Qi 
et al. [67] reported that S100B was significantly 
higher in patients with refractory schizophrenia 
which were treated with both clozapine and typi-
cal antipsychotics, without significant difference 
between these two treatment groups. In animal 
research (monkeys), it has been reported lower 
S100B expression after chronic haloperidol or 
olanzapine treatment [75].

Succeeding the description of Ang II activity 
within the CNS, the first evidence of brain 
locally produced components was observed as 
the co-localization of angiotensinogen and the 
main astrocytic marker – GFAP – whereas the 
local synthesis of the precursor by astrocytes 
was confirmed short after [76–78]. Furthermore, 
it was simultaneously evidenced that Ang II 
binds to receptors in glial cells with similar 
binding properties and different functionality 
when compared to angiotensin actions over 
neurons [79]. These receptors were later identi-
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fied as the AT1-R subtype, promoting PLC acti-
vation and inositol-phosphate hydrolysis [80, 
81]. Moreover, it was observed that Ang II, 
through AT1-R, increased intracellular Ca+2 lev-
els as an initial peak (via IP3) followed by a 
sustained plateau (for Ca+2 influx from extracel-
lular sources) [82, 83]. Afterward, several cel-
lular effects through different signaling 
pathways have been described for these recep-
tors in cultured astrocytes including CREB 
phosphorylation, JACK2/STAT3 and MAPK/
ERK activation, and inducible early gene tran-
scription [84–87]. Overall, nowadays it is 
widely accepted the constitutive presence and 
expression of AT1-R in astrocytes through 
which Ang II autoregulates its activity by con-
trolling the synthesis of all RAS components 
[88, 89]. However, under certain pathological 
conditions that involve neuroinflammation, 
AT1-R overactivity in astrocytes has been found 
to be detrimental. In this sense, AT1-R activa-
tion stimulates ROS production and IL-6 syn-
thesis and release in cultured glial cells via the 
NF-κB signaling pathway [87, 89], whereas 
Ang II promotes human astrocyte senescence 
by superoxide production, after membrane 
translocation of NADPH oxidase’s subunits. 
Interestingly, these effects were blunted by 
AT1-R blockade and the antioxidant tempol 
[90]. Moreover, in vitro studies showed that the 
inflammatory condition stimulated by LPS 
involves AT1-R activation for the upcome of 
astrogliosis, Ang II synthesis, and AT1-R upreg-
ulation, concomitant with NF-κB nuclear trans-
location, ROS production, and TNF-α release 
[27]. In the same direction, experimental auto-
immune encephalomyelitis in rodents implies 
AT1-R overexpression in glial cells, triggering 
the upregulation and activation of transforming 
growth factor-β (TGF-β) and sustaining the 
inflammatory condition. Specifically, the AT1-R 
blockade decreased thrombospondin-1 (TSP-1) 
secretion from astrocytes, which later promotes 
TGF-β activation, and improved clinical scores 
in rodents [91]. Furthermore, AT1-R antagonists 

effectively blocked TNF-α release by astrocytes 
under hypoxic conditions [92]. Interestingly, 
the immunomodulatory actions of dopamine in 
neurodegenerative conditions involve the mis-
balance of RAS component production by 
astrocytes [93]. This interaction has also been 
observed after amphetamine exposure, where 
the psychostimulant-induced astrocyte reactiv-
ity involves AT1-R activation, concomitant with 
vascular-network rearrangement and apoptosis 
in cortical areas [94]. This way, accumulating 
evidence supports the synergic activity of AT1-
R, pro-inflammatory mediators, and ROS in 
astrocytes contributing to the upcome of neuro-
inflammatory scenario [95, 96].

�Oligodendrocytes

Oligodendrocytes are the glial cells responsible 
for the myelination processes. The appearance 
of myelinating oligodendrocytes facilitated the 
conduction of the nervous impulse, making the 
synaptic transmission faster and more efficient 
and leading to vertebrate CNS increase in com-
plexity. In this sense, it is known that myelina-
tion processes have a critical role in cognitive 
functions, such as attention, learning, and 
memory. In humans, the myelin structure for-
mation begins postnatally, and it is completed 
in young adulthood, around the time of the first 
psychotic episode expression and schizophre-
nia detection [97, 98]. Initial researches 
reported changes in gray and white matters and 
in the size of the ventricles. These findings gave 
a new meaning to oligodendrocytes and the 
myelination process in the schizophrenia etio-
pathology. Furthermore, several studies showed 
an atypical myelination in patients; the associa-
tion observed in healthy controls between age, 
education, and the myelin water fraction in the 
frontal lobe’s white matter is not found in 
schizophrenic subjects [99]. Indeed, a decreased 
myelin fraction was observed in schizophrenic 
patients on their first episode, suggesting that 
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these myelin changes precede the pathology 
occurrence and the possible pharmacological 
treatments [99]. Moreover, it has been reported 
that white matter density alterations are related 
to illness’ severity, where the low density of the 
corpus callosum and anterior commissure sug-
gests an aberrant interhemispheric connectivity 
of anterior cortical and subcortical brain regions 
and reflecting decreased hemispheric special-
ization in schizophrenia [100]. All together, 
these results support the reduced lateralization 
observed in schizophrenic patients [101, 102]. 
On the other hand, these myelin structural alter-
ations are companied by oligodendrocyte 
functional alterations, integrity loss, and/or 
decreased population [103]. To this last respect, 
it has been reported a reduction of oligodendro-
cyte density in the hippocampus, frontal cortex, 
and anterior cingulate cortex [99, 104–108]. In 
the same way, decreased oligodendrocyte- and 
myelin-related genes have been found reduced 
in schizophrenic patients [108–113]. One of the 
main genetic risk factors in schizophrenia are 
the disrupted-in-schizophrenia 1 (DISC1) 
genes, expressed in oligodendrocytes regulat-
ing negatively their differentiation and matura-
tion. Bernstein et  al. [114] have shown 
augmented oligodendrocyte-positive expres-
sion for DISC1 genes in patients with paranoid 
schizophrenia. Furthermore, the use of knock-
out mouse models, missing oligodendrocyte-, 
or the myelin-related genes linked to schizo-
phrenia recreates the demyelination observed in 
the human disease in animal research [113]. 
Interestingly, it has been shown that sub-
chronic olanzapine improved oligodendrocyte- 
and myelin-related gene expression in rats 
[115]. In the same way, in cellular culture and 
in vivo, it has been reported that antipsychotics, 
such as haloperidol, olanzapine, and quetiap-
ine, promote the differentiation of oligodendro-
cytes through transcription factors 1 and 2 

(Olig1 and Olig2), without having any effect 
over their proliferation [97, 116, 117]. Other 
studies described an oligodendrocyte develop-
ment stage-dependent effect for haloperidol. In 
this sense, in a proliferation phase, haloperidol 
promotes the cellular spread but inhibits their 
differentiation in the maturation process [118]. 
It seems that there is a special susceptibility 
period during oligodendrocyte development, 
mainly in gestational and perinatal phases. In 
this sense, it has been reported that inflamma-
tory processes during early gestational stages 
produce a decreased number of oligodendro-
cytes and myelination alterations in the off-
spring’s adult brain [119, 120]. These results 
are supported reciprocally with prenatal or ges-
tational inflammation, since, as mentioned 
above, schizophrenia has been strongly related 
to maternal inflammatory insults.

Only a few studies have been focused on 
Ang II involvement over oligodendroglial 
functions. However, the confirmation of AT1-R 
expression on oligodendrocytes suggests unde-
scribed physiological roles of Ang II over these 
cells [88]. Several lines of evidences suggest 
an indirect Ang II involvement in re-myeliniza-
tion through its action over astrocytes or 
microglial cells. In this sense, angiotensino-
gen, the precursor of Ang II, has been sug-
gested as a potential biomarker of progression 
of multiple sclerosis, an illness that results in 
myelin sheath damage [121]. Moreover, clear-
ance and recycling of lipid debris are necessary 
processes for an adequate myelination and 
depend on a suitable lipid transport. The main 
apolipoprotein (Apo) involved in this lipid 
transport in the brain is Apo E, which is pro-
duced by astrocyte. Since Ang II, through its 
AT1-R, modulates astroglial function, this pep-
tide could alter Apo E synthesis and indirectly 
myelin transport and recycling [122, 123] 
(Fig. 16.1).
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