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Abstract Acoustic emission (AE) hits from uniaxial compression tests of andesite
rock samples were processed with the continuous wavelet transform (CWT). The
quest for frequency bands with minimum entropy values arrived at 150 and 250 kHz
as those related to macro-fracture mechanisms. A preprocessing algorithm was
developed in order to attenuate the influence of reflected signals at the inner
interfaces of the material. It is based on the detection of abrupt phase changes of the
CWT coefficients. Entropy calculations performed with the hits already processed
permitted a reliable study of the AE entropy evolution in the relevant frequency
bands and its relationship with the corresponding cumulative AE energy evolution.

1 Introduction

Compressive failure in brittle materials, like rocks submitted to load, consists of an
alternation of cracking processes: micro-cracks initiation at certain preexistent flaws
followed by micro-cracks coalescence into macro-cracks, macro-cracks growth and
branching into new micro-cracks, fragmentation, and final collapse. Thus, tracking
of macro-crack initiation and growth seems to be an appealing method for studying
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damage evolution in brittle materials [1–4]. The energy applied (load) to the rocky
material is transferred and stored as strain-stress energy in different locations.
In those locations where thresholds are suddenly surpassed, energy is dissipated
in fracture energy or surface energy. As in any dissipative process, the causes
of damage can be described within the frame of the irreversible thermodynamic
framework. In this sense, damage parameters, such as entropy generation, account
for degradation and loss of structural integrity [5–8].

Acoustic emission (AE) consists of elastic waves generated in the interior of
materials. These waves are induced by a rapid change in the stress-strain condition
around a given point. In the case of brittle materials, nucleation, advance, opening,
and closure of fractures are the main sources for these waves. AE propagates under-
going attenuation and multiple reflections, especially in heterogeneous materials.
Eventually, the waves reach the surface, where they can be detected by piezoelectric
sensors that transform them into electrical signals, i.e., the AE signals, which are
then processed for further analysis. AE signals are hits of very low amplitude
(about 10 μV) and high frequency (ranging from 1 kHz to 1 MHz), so they have
to be immediately amplified. AE equipment stores the waveforms and calculates
characteristic parameters such as energy, root mean square (RMS) value, amplitude,
rise time, event duration, etc. [9].

AE is ultimately generated by the rupture of atomic bonds. It involves different
spatial and temporal scales ranging from microscopic events to seismic faults.
Because of this, seismic information and AE in rocks are complementary, both
in their applications and in their theoretical basis. Furthermore, AE has been
established decades ago as a well-suited tool to evaluate the dynamic state of bulk
and surface defects [10]. This can be accomplished by analyzing elastic waves
emitted during micro-fracture processes. It is nowadays used in material science and
engineering research, including work reported by the authors [2, 3, 11, 12]. Because
AE is typically a nonstationary process, wavelet transform (WT) is an appropriate
tool for these studies [13].

In previous work [2] the complex Morlet continuous wavelet transform (CWT)
was applied to AE signals from dynamic tests conducted on a reinforced concrete
slab with a shaking table. The frequency band corresponding to the fracture
of concrete was identified by comparing the scale position of maximum CWT
values with the response acceleration obtained in seismic simulations. The AE
signals were reconstructed in this scale (frequency) band, and cumulative acoustic
emission energy (CAE) was calculated. The resulting CAE was compared with the
cumulative dissipated energy (CDE) of the tested structure, an accepted parameter
for characterizing the mechanical damage in structures: a good agreement was
found between the normalized histories of CAE and CDE. Thus, the particular
scale (frequency) in which AE signals were reconstructed could be attributed to the
fracture of concrete.

In more recent work [14, 15], CWT was applied to AE signals resulting from
uniaxial compression tests of andesite rock samples up to breakage. AE signals
were filtered into different frequency bands with the CWT. Some of these bands
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were identified as characteristic frequencies of the fracture process, in accord with
a physical model of seismic focus that describes the advance and propagation of
waves during the fracture of brittle materials [4]. Precise results were achieved
considering the nonstationary nature of the involved physical processes. The
wavelet energy b-value, a variant of the Gutenberg-Richter law that rules in
geophysics [3, 16], was successfully applied to trace the inception of dangerous
cracks.

In the present paper, which continues [14, 15], we intend to go further into the
detection and evaluation of macro-fracture in rocks. To this end entropy and phase
studies are introduced in our processing of AE signals.

Irreversible thermodynamic processes cause degradation of materials, and dam-
age is a phenomenon with increasing disorder. The energy dissipated in damage
(fracture) results in entropy increase, according to the second law of thermody-
namics. Thus, it is important to investigate the damage-entropy relationship while
loading material [17]. The premise of Gibbs physical entropy as a limit of the
mathematical Shannon entropy is demonstrated in [18] and applied in empirical
work in complex systems in other fields [19]. In recent works, Shannon entropy
is successfully applied to AE signals for detecting damage in different rocky
materials [20, 21]. In the present work, the wavelet Shannon entropy is applied
twofold to the same signals as those analyzed in [15]. Firstly, to detect specific
signals coming from macro-crack nucleation and advance. Secondly, to follow
precisely and concisely the macro-fracturing evolution of andesite rock under
load. Another novelty from previous work is that the signals under study were
preprocessed with a specifically developed technique. This technique focuses on
the phase of complex wavelet coefficients and allowed us to reduce the distortion
caused by wave reflections on the detected signals.

2 Experiment

Four cylindrical andesite rock samples were tested as described in [22]. These
specimens from Cerro Blanco, San Juan, Argentina, were 75 mm in diameter and
150 mm in length. As illustrated in Fig. 1, the rock samples were subjected to
uniaxial compression up to rupture. The equipment consisted of a CGTS machine
with a 100 tons capacity of servo-hydraulic type and a closed loop. The actuator
displacement speed was 0.12 mm/min.

AE was monitored with three piezoelectric sensors. The present work focuses on
the results gathered by the broadband sensor (100–1000 kHz) in one of the samples.
The sampling frequency was 1 MHz, the AE system (also shown in Fig. 1) was a
PCI-2 two-channel PAC plate, and the commercial software AEWIN was used for
the initial determination of classical AE parameters. This experiment resulted in a
collection of about 75,000 AE hits, saved in individual files. The analysis of such
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Fig. 1 The experimental setup and the AE system

a big quantity of information proved to be time-consuming but manageable for a
standard computer.

3 Mathematical Resources

This section contains the description and definition of techniques that we have
been consistently using throughout our previous work [14, 15], as well as entropy
definitions and the algorithm developed in the present work for preprocessing data.

3.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined in [23] by means of a
continuous wavelet function ψ(t). This function must verify an exponential decay
and also that

∫
R

ψ = 0. Given a function f ∈ L2(R), its CWT is defined as

c(j, k) = 1√|j |
∫ ∞

−∞
f (t) ψ

(
t − k

j

)

dt (1)

if j �= 0, while c(0, k) = 0. In each CWT coefficient c(j, k), the value of j

indicates a scale (and therefore a frequency), while k denotes time displacement.
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In the present work, we used the Morlet wavelet defined by

ψ(t) = π
− 1

4 · e6it · e
− t2

2 (2)

Being continuously defined for every j and k, practical implementation arises
numerical issues. Approximation algorithms and details can be found in [24].

In order to illustrate the CWT when applied to AE, the plot of a typical hit is
shown in the upper part of Fig. 2. Its corresponding scalogram in the lower part of
Fig. 2 illustrates the distribution in time and frequency of the wavelet energy density
|c(j, k)|2, with value increasing from darker to lighter tones.
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Fig. 2 A typical hit. Upper: waveform. Lower: scalogram (increasing from darker to lighter tones)

The simplest way to perform bandpass filtering with the CWT consists in
reconstructing the signal only with the CWT coefficients of the desired frequencies.
Figure 3 illustrates this procedure applied to the same previous hit, filtered at
250 kHz. The bandpass frequency is clear in the corresponding scalogram, shown
in Fig. 3.
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Fig. 3 Same hit as in Fig. 2 filtered around 250 kHz. Upper: waveform. Lower: scalogram
(increasing from darker to lighter tones)

The acoustic emission energy (AEE) of a hit is defined in [3] as

AEE =
∑

x2
i �t (3)

where x is the reconstructed signal after filtering and �t is the sample rate.

3.2 Wavelet Entropy

The Shannon entropy can be adapted as in [11] to obtain a measure of the intrinsic
order in a signal by means of its CWT coefficients. When CWT is numerically
implemented, only a finite quantity of the cjk coefficients defined by (1) can be
obtained. Thus, the wavelet power (WP) corresponding to the jth scale is defined by

WPj =
N∑

k=1

∣
∣cjk

∣
∣2 (4)
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The fraction of wavelet power corresponding to time k is expressed by the pjk

coefficients:

pjk =
∣
∣cjk

∣
∣2

WPj

(5)

With these elements, wavelet entropy of the jth band is formally equal to the
Shannon entropy:

Sj = −
N∑

k=1

pjk log pjk (6)

Figure 4 shows for the hit previously considered the values of entropy calculated
for the different scales (frequencies). Coalescence of micro-cracks into macro-
cracks, which implies the transition from less to more organized structures, is
expected to express in frequencies with lower entropy. Therefore, those frequencies
for which relative minima of entropy occur are of special interest.

Fig. 4 The same hit as in Fig. 2 reaches relative minima of entropy for the 150 and 250 kHz bands

3.3 Preprocessing

Each detected AE hit is the complex consequence of a large number of random
events [25]. In particular, reflections at the multiple interfaces present in natural
rocks constitute a special problem. If a second mechanical pulse reaches the detector
while the first one is still operating, the apparent duration, the waveform, and the
entropy of this composite signal are affected. To reduce the effect of reflections,
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a special algorithm was developed. Given that the Morlet wavelet coefficients
are complex numbers, it is expected to find their phase varying cyclically when
analyzing a perfectly periodic signal. When reflections occur, they imply the
sudden overlapping of vibrations, with the consequent phase changes. These phase
variations are detected by studying the deviations from the expected cyclical plot.
Figure 5 shows, for the same hit previously studied, the phase plot of the CWT
coefficients corresponding to the 250 kHz scale. The square denotes the instant when
the amplitude surpasses a threshold for the first time. Diamonds mark the instants
when sudden phase changes occur. Those diamonds closest to the square delimit the
relevant part of the hit, preserved for ulterior entropy calculations.

Fig. 5 Same hit as in Fig. 2 filtered around 250 kHz: phase of wavelet coefficients versus time.
Square: amplitude surpasses a threshold for the first time. Diamonds: sudden phase change

Thus, the most relevant (and least distorted) part of each hit is selected, and this
analysis is performed separately for each scale (see Fig. 6). For our present work, it
was only after the described preprocessing that entropy for every hit and scale was
calculated.

4 Results and Discussion

Despite being continuously defined in (1), the CWT can only be calculated for
a discrete set of values j and k. Moreover, the Heisenberg uncertainty principle
imposes an unavoidable trade-off between time and frequency localization.
Therefore, the choice of the scales for which the CWT is calculated must rely
upon a trustworthy frequency resolution. In the present work, several features
were taken into account: the range of the broadband sensor (100–1000 kHz), the
sampling frequency (1 MHz), and the duration of the shortest hits (estimated to be
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Fig. 6 Preprocessed hit. Ligher plot: original filtered hit. Darker plot: preserved section of the hit

about 10 μs). Under these premises, the width of frequency bands was chosen to be
50 kHz. Figures 2 and 3 illustrate this choice.

In previous work [14, 15] the detection of characteristic frequencies relied upon
energy considerations. Frequency bands near 150 and 250 kHz were chosen to be
those most representative of the fracture mechanism. Figure 7 plots the cumulative
AEE calculated according to (3). The signal with its whole frequency content is
plotted as a dashed line, while the signal reconstructed at 150 kHz is plotted in
black, and the signal reconstructed at 250 kHz is plotted in gray. Both filtered signals
and the original signal show similar energy evolution and jumps. The 150 and the
250 kHz reconstructed signals also show a very similar energy level throughout the
whole experiment.

The entropy concept provides a complementary tool that proved to be consistent
with previous results. For the present purposes, entropy is considered as a measure
of disorder in a signal. Therefore, lower entropy values suggest the occurrence
of more organized phenomena. After the preprocessing already described, every
single hit was analyzed as in Fig. 4. Frequencies with relative minimum entropy
were detected according to a threshold criterion (eventually, a single hit might have
several relative minima).

Figure 8 is a histogram which accounts for the density of hits that present
a minimum entropy at a given frequency band. Table 1 gathers basic statistical
information about entropy and frequency after analyzing the whole set of hits.
It also shows the average time duration of the preprocessed hits, discriminated
by frequency band. This duration showed to be consistently smaller as frequency
increases.

According to Table 1, 150 and 250 kHz frequencies turned out to be those for
which entropy reaches a relative minimum more often. It is also important to notice
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Fig. 7 Cumulative AEE along the test. Dashed: whole frequency content. Black: 150 kHz. Gray:
250 kHz

Table 1 Preprocessed hits statistics

Frequency Number of μ (entropy σ (entropy Average time duration

(kHz) entropy minima mean value) standard deviation) (miliseconds)

100 891 5.7 0.5 0.65

150 26847 4.9 0.7 0.37

200 16612 4.8 0.8 0.37

250 20988 4.6 0.8 0.29

300 9795 4.5 0.8 0.25

350 9291 3.7 1 0.12

that these minima were mostly reached by the end of the experiment, as shown
in Fig. 8. Therefore, these hits are of special interest and most likely to express
a characteristic frequency of the fracturing process. Figure 9 shows the entropy
and its time evolution for those hits which attain a minimum at 150 kHz (black
line) and those which attain a minimum at 250 kHz (gray line). In order to make
it easier to read the plot, a moving mean of 1000 points was applied to the results.
The entropy value for the 250 kHz proved to be consistently smaller throughout
the whole experiment. This would imply that the 250 kHz frequency band is more
strongly related to the advance of macro-cracks, a more organized phenomenon.

The AEE defined in (3) can be calculated for reconstructed hits after bandpass
filtering. It is of particular interest to trace the time evolution of this energy:
therefore the cumulative AEE for each frequency band was calculated. Upper
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Fig. 8 Frequency bands and density of hits with minimum entropy

Fig. 10 shows the cumulative AEE for the 150 kHz band, while lower Fig. 10 shows
the cumulative AEE for the 250 kHz band (both in thin lines). These graphs also
show the time evolution of the corresponding entropy already shown in Fig. 9. It
can be appreciated that entropy evolution changes significantly, even shows relative
minima, before cumulative energy jumps. That is, it anticipates the expression of
dangerous damage.

Fracture in rocks is an interplay of macro-fracture, nucleation, advance and
branching into micro-cracks, followed by further coalescence of micro-cracks into
macro-cracks. The results displayed in Figs. 7, 8, 9, and 10 suggest that the main
features of the whole fracturing process in andesite can be followed by the evolution
of wavelet energy and wavelet entropy in the selected bands. Moreover, the 250 kHz
band, due to its lower entropy values, seems to be connected to nucleation and
advancement of macro-cracks.
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Fig. 9 Entropy of preprocessed hits at 150 kHz (black) and 250 kHz (gray). A moving mean of
1000 points was applied
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Fig. 10 AEE (thin) and entropy (thick). Upper: at 150 kHz. Lower: at 250 kHz
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5 Conclusions

The minimum entropy criterion applied to AE hits resulted in a reliable tool for the
detection of relevant frequency bands. It is sensibly improved by the preprocessing
of the signals, which reduces the distorting effects due to inner reflections in the
studied material.

Comparison with previous work and other criteria [14, 15] reinforces the
conclusion that the 150 and 250 kHz are characteristic frequencies of the andesite
rock, related to macro-fracture mechanisms.

Those hits most related to each of these bands were specifically studied. Their
entropy evolved in accordance with the cumulative AEE. Major changes in AEE
are anticipated and accompanied by abrupt oscillations in entropy. These sudden
changes, both in AEE and entropy, indicate an abrupt reorganization of the material
rheological state.
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