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Abstract Fractional derivatives, unlike those of natural order, have “memory” and
are useful to model systems where the past history is relevant. They are defined by
means of integral operators, some of them having singular kernels, and calculations
may be difficult. It is for that reason that it is necessary to develop numerical
approximation methods to solve most of real problems. In this work we combine
the wavelet transform with the fractional derivatives of a particular wavelet basis,
by means of a Galerkin scheme, to build an approximate solution to boundary value
problems involving Caputo-Fabrizio fractional derivatives. The numerical scheme is
simple and stable, and its accuracy can be improved as much as desired. We present
some numerical examples to show its performance.

1 Introduction

In the last decades, models described by fractional differential equations have
appeared profusely in different areas of science. Several definitions of derivatives of
non integer order have been proposed to fit different real phenomena requirements.
A great quantity of results concerning solutions to this type of equations involv-
ing Riemann-Liouville, Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional
derivatives were stated [1–5], and different explicit and numerical solutions were
developed [6–12].

Applications are numerous and in areas as varied as continuum mechanics [13],
fluid convection and diffusion [14, 15], thermoelasticity [16], robotics [17], biology
and medicine [18–21], computer viruses [22] or economics [23, 24].
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In this work we adapt a methodology developed for fractional ordinary dif-
ferential equations (FODE) to find approximate solutions to linear fractional
partial differential equations (FPDE) involving Caputo or Caputo-Fabrizio frac-
tional derivatives.

Succinctly, the idea of the proposed numerical scheme to solve linear FODE
(see [25, 26]) consists of expressing the equation by means of the Fourier transform
and decomposing the data and the unknown on a wavelet basis with appropriate
properties: well localized in time and frequency domains, smooth, band limited
and infinitely oscillating with fast decay. We project the data onto suitable wavelet
subspaces and truncate it. Afterwards, through a Galerkin scheme, we calculate the
coefficients of the unknown function in the chosen wavelet basis solving a linear
system of algebraic equations that involves the fractional derivatives of the basis.
Properties of the basis enable us to work on each level separately. Finally, we rebuild
the solution from its wavelet coefficient. The proposed method is simple, since only
the wavelet coefficients of the data and a matrix derived from the normal equations
are needed. The error introduced in the approximation can be controlled improving
the computation of the elements of the matrix and considering a more accurate
truncated projection of the data. Properties of the basis and the operator guarantee
that the resulting approximation scheme is efficient and numerically stable and no
additional conditions need to be imposed. Details can be found in [25] and [26].

For the case of linear FPDE, we separate variables to obtain auxiliary FODE
that we solve using the proposed scheme. We apply the methodology to solve
a fractional diffusion equation with fractional time derivative. We compute the
solution to a particular equation for different values of the fractional order of
derivation β ∈ (1, 2). When β → 2, as expected, the behaviour of the solution
is similar to that of the wave equation, which corresponds to the case β = 2.

This work is organized as follows: in the next section we present the fractional
derivate operator; the wavelet basis and the approximation scheme are introduced
in Sect. 3. In Sect. 4 a solution to the FPDE is proposed. Some numerical examples
are presented in Sect. 5. Finally we state some conclusions.

2 Definitions and Properties

2.1 Caputo and Caputo-Fabrizio Fractional Derivatives

For 0 < α < 1 and f a function in H 1((a, b)), the Sobolev space of functions
defined on (a, b) with f ′ ∈ L2((a, b)), the Caputo fractional derivative (CFD)
introduced in 1967 (see [27]) is defined as

C
a Dα

t f (t) := 1

�(1 − α)

∫ t

a

f ′(s)
(t − s)α

ds (1)
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where � is the standard Gamma function and −∞ ≤ a < b.
Caputo-Fabrizio fractional derivative (CFFD) introduced in 2015 (see [28]) is

defined as

CF
a Dα

t f (t) := M(α)

1 − α

∫ t

a

f ′(s)e− α(t−s)
1−α ds (2)

where M(α) is a normalizing factor verifying M(0) = M(1) = 1.
Both derivatives are integral operators that involve an integral from a to t , i.e. the

past “history” of f is taken into account so, contrary to what happens in the natural
order derivative case, they have “memory”. It is worth noting that, in the case of
Caputo-Fabrizio derivative, the integral operator has a regular kernel while in the
Caputo case the kernel is singular.

Some properties of CFD and CFFD resemble those of classical derivatives:
CFD and CFFD of order α of a constant function are zero and, for 0 < α < 1,
limα→1 aDα

t f (t) = f ′(t) and limα→0 aDα
t f (t) = f (t) − f (a).

Note that, when a = −∞, both derivatives can be expressed as convolutions.
For the CFD, if κ is a causal function that coincides with 1

tα
for t > 0, we have

C−∞Dα
t f (t) = 1

2π�(1 − α)

∫
R

f̂ ′(ω)̂κ(ω)eiωt dω, (3)

where κ̂(ω) = �(1−α)(iω)α−1 and the circumflex represents the Fourier transform.
In the case of CFFD,

CF−∞Dα
t f (t) = M(α)

1 − α
(f ′ ∗ k)(t)

with the non-singular kernel k(t) = e− αt
1−α , t > 0, from which

CF−∞Dα
t f (t) = M(α)

2π(1 − α)

∫
R

f̂ ′(ω) k̂(ω) eiωtdω (4)

or

CF−∞Dα
t f (t) = M(α)

1 − α

∫
R

f̂ (ω)m(ω)eiωtdω (5)

with the not singular kernel m(ω) = 1
2π

iω
α

1−α
+iω

. Expression (5) in terms of the

Fourier transform will be considered in Sects. 3 and 4 to solve FPDE.
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2.2 The Wavelet Basis

We briefly introduce the wavelet basis that we will use in the rest of the paper.
Details and properties can be found in [29].

We recall that a wavelet is an oscillating function, well localized in time and
frequency domains (see [30, 31]). For a special selection of the mother wavelet ψ ,
the family

{ψjk(t) = 2j/2 ψ(2j t − k), j, k ∈ Z}

is an orthonormal basis of the space L2(R) associated with a hierarchical structure
of the space – the multiresolution analysis (MRA) – which is a sequence of nested
subspaces Vj , the scale-subspaces, such that:

1. Vj ⊂ Vj+1;
2. s(t) ∈ Vj if and only if s(2t) ∈ Vj+1;
3. if s(t) ∈ V0 then s(t + 1) ∈ V0;
4. ∪j∈ZVj is dense in L2(R) and ∩j∈ZVj = {0};
5. there exists a function φ ∈ V0, called scaling function, such that the family {φ(t−

k), k ∈ Z} is an orthonormal basis of V0.

The wavelet subspace Wj = span{ψjk(t), k ∈ Z} is the orthogonal complement
of Vj in Vj+1 and contains the detailed information needed to go from the
approximation with resolution level j to the one corresponding to level j + 1:

{
Vj ⊥ Wj

Vj+1 = Vj ⊕ Wj, j ∈ Z.

Consequently

L2(R) =
⊕
j∈Z

Wj .

Moreover,

{
Vn = ⊕

j<n Wj

L2(R) = [⊕j≥n Wj ] + Vn, for any n ∈ Z.

The MRA is associated to an efficient method to compute the wavelet coeffi-
cients: the Mallat’s algorithm (see [30]).

Looking for solutions to simple FODE as CF
a Dα

t f (t) = g(t) suggests the
selection of the mother wavelet. Since the operators (3) and (4) act on Fourier
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transforms, it is convenient to implement a partition of the frequency domain in
quasi-disjoint scale bands,

Rω =
∞⋃

j=−∞

j ,

naturally associated with the wavelet subspaces Wj .
In order to achieve these benefits, we choose a Meyer wavelet: a band-limited

function ψ , having a smooth Fourier transform ψ̂ . In [29] we define the scale
function and the wavelet as

φ̂(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 |ω| ≤ π − β

vβ(ω)√
v2
β(ω) + v2

β(2β − ω)
π − β < |ω| < π + β

0 |ω| ≥ π + β

with

vβ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
− (

ω−π+β
2β

)

1 − (
ω−π+β

2β
)2

)
|ω − π + β| < 2β

0 |ω − π + β| ≥ 2β

and

ψ̂(ω) =
√

φ2(ω/2) − φ2(ω) e−iω/2

with parameter 0 < β ≤ π/3.
We recall that ψ ∈ S, the Schwartz class, and the family {ψjk, k ∈ Z} is an

orthonormal basis of L2(R) associated to a MRA, well localized in both, time and
frequency domain. Its spectrum, |ψ̂(2−jω) |, is supported on the two-sided band


j =
{
ω : 2j (π − β) ≤ |ω| ≤ 2j+1(π + β)

}
(6)

for some 0 < β ≤ π/3.
In Fig. 1 we show the graphs of ψ and |ψ̂ |.
It is important to highlight that the sets 
j−1, 
j , 
j+1 have little overlap (see

Fig. 2) and Wj is nearly a basis for the set of functions whose Fourier transform has
support in 
j . When solving FPDE this property will enable as to work on each
level separately.

Details on the basis and its properties can be found in [29]. In [31] approxima-
tions of Sobolev, Besov and other functional spaces, using wavelets in the Schwartz
class, are developed.
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Fig. 1 Mother wavelet for β = π/4 (above) and |ψ̂ | for ω ≥ 0 (below)

Ωj–1  ∩ Ωj Ωj  ∩ Ωj+1

Ωj–1 Ωj+1
Ωj

Fig. 2 The supports 
j−1, 
j , 
j+1 and their overlapping

3 Approximate Solutions to a Fractional Initial Value
Problem

In this section we resume the technique introduced in [32] to calculate approximate
solutions to the following initial value problem:

{
CF
a Dα

t h(t) + λ1h
′(t) + λ0h(t) = r(t) ∀t ∈ (0, b)

h(0) = 0
(7)

where a ∈ R, −∞ ≤ a ≤ 0, h is the unknown, r is a known source function
verifying r(0) = 0, and λ0, λ1 ∈ R. Solution to this type of fractional initial
value problem (FIVP) will be used to construct approximate solutions to FPDE by
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separating variables.
We will develop the calculations considering the CFFD. The case of CFD is

similar. Details can be found in [25] for the case of CFFD and in [26] for the CFD.
First we will consider a = −∞ in (7). Afterwards we will adapt the procedure

to the case a �= −∞.

3.1 The Data

Recall that, for any J ∈ Z, the data function r ∈ L2(R) can be decomposed as

r(t) = ∑
j∈Z

(Qj r)(t) = (PJ r)(t) + ∑
j≥J

(Qj r)(t) =

= ∑
n∈Z

〈r, φJn〉 φJn(t) + ∑
j≥J

∑
k∈Z

〈
r, ψjk

〉
ψjk(t)

where Qj r and Pj r are the orthogonal projections of r in Wj and Vj , respectively.
We choose Jmin, Jmax ∈ Z so that the energy of r is concentrated in levels Jmin ≤

j ≤ Jmax , k ∈ Kj :

r(t) ∼=
Jmax∑

j=Jmin

rj ∼=
Jmax∑

j=Jmin

r̃j (t)

where rj = ∑
k∈Z cjkψjk is the projection of r on Wj , cjk = 〈

r, ψjk

〉
are the

wavelet coefficients, and r̃j is the truncated projection on Wj : r̃j = ∑
k∈Kj

cjkψjk

for Kj ⊂ Z, card(Kj ) = ηj < ∞, satisfying

∑
k /∈Kj

| 〈r, ψjk

〉 |2 < ε||rj ||22

for certain ε near 0.

3.2 A Solution to the FDE

Let us decompose the solution of (7) in the basis, h(t) = ∑
j∈Z

∑
k∈Z bjkψjk(t),

and replace it in the equation:

∑
j∈Z

∑
k∈Z

bjk [CF−∞Dα
t ψjk(t) + λ1ψ

′
jk(t) + λ0ψjk(t)] =

∑
j∈Z

rj (t).
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We note that

CF−∞Dα
t h(t) +λ1h

′(t) + λ0h(t) =

= M(α)
1−α

∫
R

ĥ(ω)m(ω)eiωtdω + λ1
2π

∫
R

iωĥ(ω)eiωtdω + λ0
2π

∫
R

ĥ(ω)eiωtdω

= ∫
R

ĥ(ω)H(ω)eiωtdω = r(t),

where

H(ω) = −λ1(1 − α)ω2 + i (M(α) + αλ1 + (1 − α)λ0) ω + αλ0

2π(α + iω(1 − α))
. (8)

Thus, the images of the basis ψjk through the fractional differential operator
L(h) = CF−∞Dα

t h + λ1h
′ + λ0h result in

ujk(t) = CF−∞Dα
t ψjk(t) + λ1ψ

′
jk(t) + λ0ψjk(t)

= ∫
R

ψ̂jk(ω)H(ω)eiωtdω.

(9)

From (9), we note that the Fourier transform of ujk satisfies supp(̂ujk) ⊂ 
j .
Then, based on previous observations, we can consider ujk ∈ Wj and, consequently,
we can work on each level Jmin ≤ j ≤ Jmax separately.

For a fixed j , we restrict ourselves to Kj to obtain

CF−∞Dα
t hj (t) + λ1h

′
j (t) + λ0hj (t) =

∑
k∈Kj

bjkujk(t) ∼= r̃j (t).

The coefficients bjk can be computed from the normal equations

∑
k∈Kj

bjk〈ujk, ψjm〉 =
∑

k′∈Kj

cjk′ 〈ψjk′, ψjm〉

or, in matrix form,

(Mj bj )k = cj
k , k ∈ Kj , (10)

where Mj
km = 〈ujk, ψjm〉.

We approximate hj (t) by h̃j (t) = ∑
k∈Kj

bjkψjk(t), with (bj )k = bjk, k ∈ Kj

from (10), and h(t) ∼= ∑Jmax

j=Jmin
h̃j (t) .

Since r is causal, r(0) = 0, its wavelets coefficients cjk , associated to t ≤ 0, are

almost null and bj
k results nearly null. Thus the proposed solution satisfies h(0) = 0.

We can proceed in a similar way if higher (natural) order derivatives appear in (7).
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Further, we can adapt the scheme to the case where initial conditions are not null
or a �= −∞, particularly, a = 0.

If a = 0, we consider h = h · χ[0,b].
For t < 0 we have h

′
(t) = 0 and h(t) = 0 and, for t > 0, h

′
(t) = h′(t).

In addition,

CF−∞Dα
t h(t) + λ1h′(t) + λ0h(t) = e

− αt
1−α ( CF−∞Dα

t h)(0) + CF
0 Dα

t h(t) + λ1h′(t) + λ0h(t)

= e
− αt

1−α [r(0) − λ1h′(0) − λ0h(0)] + CF
0 Dα

t h(t) + λ1h
′
(t) + λ0h(t)

= CF
0 Dα

t h(t) + λ1h
′
(t) + λ0h(t),

and h(0) = 0.
Thus h satisfies

CF
0 Dα

t h(t) + λ1h
′
(t) + λ0h(t) = CF−∞Dα

t h(t) + λ1h
′(t) + λ0h(t) = r(t), t > 0.

When initial conditions are not null (h(0) = h0 �= 0 or r(0) �= 0), we perform a
“small” perturbation.

In order to solve L(h) = CF
0 Dα

t h + λ1h
′ + λ0h and the IVP

{
L(h)(t) = r(t)

h(0) = h0

with h0 �= 0, we consider r̃(t) = r(t) − λ0h0 and, for small ε > 0, r̃ε(t) a C∞(R)

function on (0, ε), that is null at the origin and coincides with r(t) for t > ε (see
Fig. 3).

r(t) = r(t) – l0h0˜

re(t)˜

r(t)

2.5

1.5

2.0

1.0

0.5

0.1 0.2 0.3 0.4 0.5 t

r

e

Fig. 3 Perturbation for the case h(0) = h0 �= 0
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The solution hε to L(h)(t) = r̃ε(t) will be null at the origin and h = hε + h0
satisfies the initial condition and

L(hε(t) + h0) = CF
0 Dα

t hε(t) + λ1h
′
ε(t) + λ0hε(t) + λ0h0 = r̃ε(t) + λ0h0 ∼= r(t)

Thus h = hε + h0 is an approximate solution to the original IVP.

3.3 The Error

We comment on the error introduced in the different steps of the proposed numerical
scheme.

First, we project and truncate the data r introducing two sources of error:
we consider r ∼= r̃ = ∑Jmax

j=Jmin
rj , rj ∈ Wj , satisfying r − r̃ = er with

||er ||2 < ε‖r‖2 � 0, and, for each j , we perform a truncation by posing rj ∼=
r̃j = ∑

k∈Kj
cjkψjk(t), Kj ⊂ Z, |Kj | = ηj < ∞. The choice of Jmin, Jmax and

Kj guarantees that the error introduced at this stage can be neglected. It can also be
reduced by choosing a wider range for j and a larger Kj .

Another source of error arises when considering ujk ∈ Wj . It can be cut down
posing the system simultaneously in more (all) levels.

Finally, the linear system (10) is posed and solved. The elements of Mj are
the inner products 〈ujk, ψjm〉. These integrals can be performed in the frequency
domain taking advantage of the properties of the wavelets, i.e. on the compact
subsets 
j :

〈ujk, ψjm〉 = 1

2π

∫

j

ûjk(ω)ψ̂jm(ω)dω

and can be computed with good precision.
We observe that, in order to calculate the wavelet coefficients bj

k , it is not
necessary to compute ujk: we only need the values of 〈ujk, ψjm〉.

Regarding the solution to (10), Mj can be arbitrarily approximated by band
matrices:

Lemma Mj is nearly a band matrix.

Proof. From (8), there exist N ∈ N such that

H(ω) = 1

2π

(
N∑

n=0

an cos(
nω

2j
) + i

N∑
n=1

bn sin(
nω

2j
)

)
+ ε(ω)
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where ε(ω) is an error that is small for large N . Then, from (9) ,

ujk(t) ∼= M(α)

2π(1 − α)

∫

j

ψ̂jk(ω)

(
N∑

n=0

an cos(
nω

2j
) + i

N∑
n=1

bn sin(
nω

2j
)

)
eiωtdω.

We note that

an cos(
nω

2j
)ψ̂jk(ω) = an

2
(e

i nω

2j + e
−i nω

2j ) ψ̂jk(ω) = an

2
(ψ̂j (k−n)(ω) + ψ̂j (k+n)(ω))

and

bn sin(
nω

2j
)ψ̂jk(ω) = bn

2i
(e

i nω

2j − e
−i nω

2j ) ψ̂jk(ω) = bn

2i
(ψ̂j (k−n)(ω) − ψ̂j (k+n)(ω)).

Consequently,

ujk(t) ∼= M(α)

1 − α

[
a0ψjk(t) +

N∑
n=1

(
an + bn

2
ψj(k−n)(t) + an − bn

2
ψj(k+n)(t)

)]

and for m ∈ Kj , 0 ≤ m ≤ N, we can approximate the elements of the matrix by

Mj
km = 〈

ujk, ψjm

〉 ∼=
{

M(α)
1−α

ak−m+bk−m

2 , if k − m > 0
M(α)
1−α

ak+m−bk+m

2 , if k − m < 0

Mj
kk = 〈

ujk, ψjk

〉 ∼= M(α)

1 − α
a0.

Since the inner products are zero for m > N , Mj is nearly a band matrix. �
In all the numerical experiments we performed, Mj was a diagonal dominant

matrix, with good condition number, and the linear system was solved efficiently.

4 A Fractional Boundary Value Problem

As we mentioned in the Introduction, we can apply the proposed methodology to
find approximate solutions to linear fractional boundary value problems (FBVP).
We will explain the method on a specific problem: anomalous diffusion.

A fractional diffusion equation involving fractional temporal derivatives (see
[33, 34]) is used to model, for example, dispersion phenomena in heterogeneous
media. There are experimental results – like anomalous diffusion in porous, fractal
or biological media, in turbulent plasma and in polymers, among others – that
show that the mean square displacement of the particles must be considered to be
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proportional not to the time but to a power of time to fit the empirical data. This
power may be less than unity (subdiffusion) or greater than 1 (superdiffusion), and
the diffusion model can be expressed by a differential equation of the type

Dβ
t u(x, t) − k∇2u(x, t) = s(x, t), (11)

where β is a fractional order of derivation with respect to time (0 < β < 1 for
subdiffusion and β > 1 for superdiffusion).

We will consider Caputo-Fabrizio temporal fractional derivatives in the diffusion
equation (11). Computations for the case of CFD are similar.

For the 1D case (i.e. x ∈ R) we will solve the following boundary value problem
of anomalous diffusion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CF
0 Dβ

t u(x, t) − ∂2u
∂x2 (x, t) = s(x, t), 0 < t < T, 0 < x < L

u(x, 0) = f (x) 0 < x < L
∂u
∂t

(x, 0) = g(x) 0 < x < L

u(0, t) = u(L, t) = 0 t > 0

(12)

where β = 1 + α, 0 < α < 1 and CF
0 D1+α

t means CF
0 Dα

t (u′) (see [28]). The initial
data f and g are supposed to be sufficiently smooth, with g(0) = 0. The source
s(x, t) is a smooth and causal function (i.e. s(x, t) = 0 for t ≤ 0).

Note that, for h regular enough, we have (see [28, 35, 36])

CF
0 D1+α

t h(t) = CF
0 Dα

t h′(t) = M(α)

1 − α

∫ t

0
h′′(τ )e− α(t−τ )

1−α dτ.

Integrating by parts we obtain

CF
0 D1+α

t h(t) = M(α)

1 − α

[
h′(t) − h′(0)e− αt

1−α − α

1 − α

∫ t

0
h′(τ )e− α(t−τ )

1−α dτ

]
,

that is

CF
0 D1+α

t h(t) = M(α)

1 − α
[h′(t) − h′(0)e− αt

1−α ] − α

1 − α

CF
0 Dα

t h(t). (13)

Now we replace (13) in (12) and arrive to a time FPDE of order α, 0 < α < 1:

M(α)

1 − α
[ut (x, t) − ut (x, 0)e− αt

1−α ] − α

1 − α

CF
0 Dα

t u(x, t) − uxx(x, t) = s(x, t).

Taking into account the initial conditions we have

M(α)

1 − α
ut (x, t) − M(α)

1 − α
g(x)e− αt

1−α − α

1 − α

CF
0 Dα

t u(x, t) − uxx(x, t) = s(x, t)
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or

CF
0 Dα

t u(x, t) + 1 − α

α
uxx − M(α)

α
ut = −1 − α

α
s(x, t) − M(α)

α
g(x)e− αt

1−α .

Let us define

s̃(x, t) = −1 − α

α
s(x, t) − M(α)

α
g(x)e− αt

1−α .

The resulting FBVP is

⎧⎪⎨
⎪⎩

CF
0Dα

t u(x, t) + 1−α
α

uxx(x, t) − M(α)
α

ut (x, t) = s̃(x, t), 0 < t < T, 0 < x < L

u(x, 0) = f (x) 0 < x < L

u(0, t) = u(L, t) = 0 t > 0

.

(14)

We will construct an approximate solution to (14) as superposition of smooth
functions (in the Schwartz class). As in the standard case (natural order PDE), we
propose a solution to (14) by separating variables, and one of the resulting ODE will
have fractional order.

If u(x, t) = X(x)T (t) we pose the second order ODE

X′′ − νX = 0

with boundary condition X(0) = X(L) = 0, and find ν = −( kπ
L

)2, Xk(x) =
sin( kπx

L
), for k ∈ Z.

Now, for u(x, t) = ∑
k≥1 uk(t) sin( kπx

L
), and supposing that derivation and

summation can be interchanged, we replace this last expression in (14) and obtain

∑
k≥1

[CF
0 Dα

t uk(t) − M(α)

α
u′

k(t) − (
kπ

L
)2 1 − α

α
uk(t)] sin(

kπ

L
x) = s̃(x, t). (15)

Note that, if u ∈ C2(0, 1) × C1(0, T ), the derivatives uxx(x, t), ut (x, t) and
CF

0Dα
t u(x, t) = M(α)

1−α

∫ t

0 ut (x, s)e− α(t−s)
1−α ds are continuous functions in (0, 1) ×

(0, T ).
If u∗∗

k (t) , u#
k(t) and u∗

k(t) are, respectively, the Fourier coefficients of uxx(x, t),

ut (x, t) and CF
0Dα

t u(x, t) for each t ∈ [0, T ], it follows that u∗∗
k (t) = −k2π2

L2 uk(t),

u#
k(t) = u′

k(t) and u∗
k(t) = CF

0Dα
t uk(t). From (15) we have that the Fourier

coefficients of s̃, s̃k(t) = 2
∫ L

0 s̃(r, t) sin( kπ
L

r)dr , must satisfy

CF
0 Dα

t uk(t) − M(α)

α
u′

k(t) − (
kπ

L
)2 1 − α

α
uk(t) = s̃k(t)
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Then, the functions uk are solutions to the following IVP (similar to (7)):

{
CF

0 Dα
t uk(t) − M(α)

α
u′

k(t) − ( kπ
L

)2 1−α
α

uk(t) = s̃k(t)

uk(0) = fk

(16)

where fk = 2
∫ L

0 f (μ) sin( kπ
L

μ)dμ are the Fourier coefficients of f .
Under the assumptions that v(0) = 0 and l causal, there is a unique solution in

C1[0, T ] for

L(v) = CF
0 Dα

t v + λ0v + λ1v
′ = l(t)

(see [32]) and we can approximate it by a smooth function: a linear combination of
wavelets.

Explicit formula for the solution to (16) may also be found in some cases.
Note that, regarding the hypothesis on s, s̃k(0) = 2

∫ L

0 s̃(μ, 0) sin( kπ
L

μ)dμ

might not be null because s̃(μ, 0) = − 1−α
α

s(μ, 0) − M(α)
α

g(μ). In addition, from
the initial conditions, we know that uk(0) = fk . If fk �= 0, we have to adapt the
scheme in order to apply the same methodology, as explained previously.

Finally, u(x, t) = ∑
k≥1 uk(t) sin( kπx

L
).

5 Numerical Examples

In this section we show the performance of the proposed numerical approximation
in some examples. The FPDE is

CF
0 D1+α

t u(x, t) − ∂2u

∂x2 (x, t) = s(x, t), 0 < t < T, 0 < x < L.

In Examples 1, 2 and 3 we build approximate solutions following the proposed
technique for different initial and boundary conditions.

5.1 Example 1

Let us consider the following FBVP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CF
0D3/2

t u(x, t) − uxx(x, t) = v(t) sin(−3πt) sin( π
10x), 0 < x < 0, 0 < t < 16,

u(x, 0) = sin(π
5 x), ∀x ∈ [0, 10]

ut (x, 0) = 0
u(0, t) = u(10, t) = 0, ∀t ∈ [0, 16]
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Table 1 Energy distribution of the data function s̃1 and of the solution u1

Level j Energy of s̃1 (%) Energy of u1 (%) Frequency (ω)

1 0.0108 0.0927 [6.28, 12.5]

0 0.0068 0.0016 [3.14, 6.28]

−1 0.0167 0.0045 [1.57, 3.14]

−2 0.0504 0.0165 [0.78, 1.57]

−3 0.3805 0.1270 [0.39, 0.78]

−4 0.5318 0.6321 [0.19, 0.39]

−5 0.0057 0.1251 [0.09, 0.19]

where v(t) is a smooth window in [0, 16] and (x, t) ∈ (0, 10) × (0, 16). Following
the steps described above, if u(x, t) = ∑

k≥1 uk(t) sin( kπx
L

), we only need to solve
the (16) for k = 1 and arrive to the

{
CF

0D1/2
t u1(t) − 2u′

1(t) − ( π
10 )2 u1(t) = v(t) sin(3πt) + ( π

10 )2, 0 < t < 16
u1(0) = 0

In Table 1 the energy wavelet analysis by levels of the functions s̃1 and of the
solution u1 is shown. The significant levels j = −4,−3 contain the 91% of s̃1. For
the reconstruction we consider levels −1 ≤ j ≤ −5. The resulting mean square
error is 4.3866 ∗ 10−6. We plot the exact u1 vs. its approximation in Fig. 4 and the
solution to the BVP in Fig. 5.

5.2 Example 2

We consider the same FPDE as in Example 1, but changing the initial condition by
u(x, 0) = sin( π

10x), ∀x ∈ [0, 10].
Separating variables we arrive to

{
0D1/2

t u1(t) − 2u′
1(t) − ( π

10 )2u1(t) = v(t) sin(3πt) = s̃1(t), 0 < t < 16
u1(0) = 1

As the initial condition on u1 is not null, we perform the perturbation already
described.

Table 2 contains the energy wavelet analysis by levels of the functions s̃1 and of
the solution u1. The significant levels j = −4,−3 contain the 91% of s̃1.

For the reconstruction we consider levels −1 ≤ j ≤ −5. The resulting mean
square error is 1.8338 ∗ 10−4.

In Figs. 6 and 7 we show the approximation for u1(t) versus the exact solution
and the approximation for u(x, t), respectively.
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Table 2 Energy distribution of the data function s̃1 and of the solution u1

Level j Energy of s̃1 (%) Energy of u1 (%) Frequency (ω)

1 0.0108 0.0210 [6.28, 12.5]

0 0.0068 0.0322 [3.14, 6.28]

−1 0.0167 0.0736 [1.57, 3.14]

−2 0.0504 0.1920 [0.78, 1.57]

−3 0.3805 0.4747 [0.39, 0.78]

−4 0.5318 0.1978 [0.19, 0.39]

−5 0.0057 0.0006 [0.09, 0.19]

–5

–3.5

–2.5

–1.5

–0.5
–1.5

–0.5

0

–1

0.5 10

–0.5

0.5

0

–1

–3

–2

Exact solution
Approximate solution

0 5 10 15
t

25 3020

u1

Fig. 6 u1(t) vs. u1(t) Approx.

5.3 Example 3

In order to evaluate the performance of the method, we obtain the solutions to (12)
for different values of β approaching 2 and compare them with that of the wave
equation, which corresponds to β = 2.



18 M. A. Fabio et al.

3
0 5 10 15 20 25 30

2
1

–2.5

–1.5

–0.5

0

–1

u

x

t

–3

–2

Fig. 7 Approx. u(x, t) sol.

Consider

⎧⎪⎪⎨
⎪⎪⎩

CF
0Dβ

t u(x, t) − uxx(x, t) = v(t) sin(−3πt) sin( π
10x), 0 < x < 10, 0 < t < 32,

u(x, 0) = 0, ∀x ∈ [0, 10]
ut (x, 0) = 0

u(0, t) = u(10, t) = 0, ∀t ∈ [0, 32]

where v(t) is a smooth window in [0, 32] and (x, t) ∈ (0, 10) × (0, 32), with β =
1 + α for different α. When α → 1 the solutions must resemble those of β = 2.

Following the steps described above, if u(x, t) = ∑
k≥1 uk(t) sin( kπx

L
), we only

need to solve (16) for k = 1. We consider β = 1.8, 1.9, 1.95.
See Figs. 8 and 9 where we show, respectively, u1(t) and u(x, t) for the different

values of β.
On the other hand, if β → 1 in (12), the behaviour of the solution u would tend

to that of the classical diffusion equation.
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6 Conclusions and Future Work

In this work we have adapted a numerical scheme to solve FODE, developed in
previous works, to find approximate solutions to a FBVP. Using the proposed
method, we built approximate solutions to an advection diffusion equation of order
β, 1 < β < 2. When β tends to 2, its behaviour looks like that of the solution to the
standard wave equation. We have developed the calculations considering the CFFD
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but the CFD case is analogous. The same scheme can be proposed to solve different
linear FPDE.

We intend to apply this methodology to solve inverse problems involving
fractional models. Extensions to some nonlinear equations are also being studied.
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