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Preface

Signal analysis is a very wide set of techniques whose purpose is to obtain
information from data, usually in the form of time series. The conjunction of
signal analysis and modeling is the usual way through which it is possible to find
out the underlying processes of a given phenomenon. In this context, preservation
and suitable recovery of the frequency content of a signal are important problems
to be faced. Therefore, it is essential to be able to separate the contributions of
different frequency bands without losing resolution in the time domain. Wavelets
are functions with unique properties that make them appropriate for analysis and
hierarchical decomposition of signals.

The development of the theory of wavelets was led by Yves Meyer. In his
publication Ondelettes et Opérateurs (Hermann, Paris, 1990), based on works by
A.P. Calderón, A. Grossmann, J. Morlet, R.R. Coifman, and G. Weiss, Meyer
founded a new chapter in harmonic analysis. Thenceforth, wavelet analysis has
grown fast and incessantly, producing not only mathematical developments but also
application-oriented research in many disciplines of science and engineering. In
particular, since the publication of the famous article “Cycle octave and related
transforms in seismic signal analysis” by P. Goupillaud, A. Grossmann, and J.
Morlet (Geoexploration, 23, 1984), wavelet theory has been intensely developed,
generating a great interest in diverse disciplines. As S. Mallat said, wavelets are
based not on a “bright new idea,” but on concepts that already existed under various
forms in many different fields. The formalization and emergence of the wavelet the-
ory is the result of a multidisciplinary effort that brought together mathematicians,
physicist, and engineers, who recognized that they were independently developing
similar ideas. During three decades of continuous growth, it has generated valuable
results in both theoretical and applied areas where signal analysis is required.

The books Wavelets: A Mathematical Tool for Signal Analysis by C.K. Chui
(SIAM, Philadelphia, 1997), A Wavelet Tour of Signal Processing by S. Mallat
(Academic Press, San Diego, 1999), and Ten Lectures on Wavelets by I. Daubechies
(SIAM, Philadelphia, 1992) provide a comprehensive presentation of the conceptual
basis of wavelet analysis, including the construction and application of wavelet
bases.

v



vi Preface

Why Wavelets?

Wavelets are oscillating functions, well localized in time and frequency domain,
with zero mean and rapid decay in time. From one “mother wavelet,” a two-
parameter family of wavelets is obtained by translations in both the time variable
and the scale factor (which influences the location of the time-frequency window
and the width of the corresponding time and frequency windows). They constitute
a basis that is usually but not necessarily orthogonal. These wavelet bases allow a
function to be described in terms of a coarse overall shape, plus details, providing
an elegant technique for representing the different scale components.

This localized transform in time and frequency can be successfully used to extract
information from a signal that classical Fourier transform will not display. While
the Fourier transform results in a representation that depends only on frequency,
the windowed Fourier transform (or short-time Fourier transform) has a constant
resolution with rigid time-frequency windows. They are poorly suited for signal
analysis with a frequency spectrum that includes low and high frequencies.

On the other hand, the wavelet transform generates time-frequency windows with
constant area, which are automatically adapted to provide a good time resolution
for high frequencies (narrow time window) and good frequency resolution for low
frequencies (wide time windows). In addition, the reconstruction method of the
original function from its wavelet representation satisfies the valuable requirement
of being stable under small perturbations and capable of giving arbitrarily high
precision.

Why Multiresolution Analysis?

Multiresolution analysis can be seen as a sort of “microscope” capable of observing
a function anywhere in its domain with a given resolution. Wavelets have suitable
properties to carry on this type of analysis defining appropriate subspaces from
dilations and translations of the mother wavelet.

In particular, the discrete wavelet transform in a multiresolution analysis scheme
plays the role of a filter bank and offers the possibility of time-frequency localiza-
tion, making it attractive for signals and image processing and pattern recognition
in different applications: medicine, quantum physics, data compression, radar, and
resolution of differential and integral equations, among others.

Multiresolution analysis (MRA) allows the signal to be decomposed by a bank
of perfect reconstruction filters.

There exists a scale function whose translated versions generate the basis of a
Vo space, where it is accepted that the signal to be analyzed is included. The scaled
versions of this scale function are used as the basis of the nested set of subspaces Vj
(scale subspaces), where the lowest frequency part of the signal spectrum is found
(the lower the farther from 0 is the integer “j”).
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The wavelet subspace Wj is the complement of Vj relative to Vj−1 or Vj+1,
depending on whether the MRA has been implemented using the convention of
“j > 0” or “j < 0,” respectively.

The j-th component of the signal is obtained by projecting it in the wavelet spaces
Wj, whose basis is formed by the translations of a scaled version of the mother
wavelet, and its frequency composition is mainly concentrated in the j-th frequency
band in which the spectrum of the signal is broken up. The consecutive band centers
are separated by an octave and the discretization is called dyadic.

The choice of the wavelet depends on several factors including the desired order
of numerical accuracy and the computational effort.

Multiresolution analysis techniques are excellently developed in An Introduction
to Wavelet Analysis (Applied and Numerical Harmonic Analysis) by D. F. Walnut
(Birkhäuser, Boston, 2002). A clear and comprehensive exposition of the subject
can be found in An Introduction to Wavelets by C.K. Chui (Academic Press, San
Diego, 1992).

Since the mid-1990s and due to their desirable properties, researchers have paid
attention to wavelet analysis in solving differential and integral equations. The
solutions are approximated by wavelet and scaling expansions, with the advantage
that multi-scale and localization properties can be exploited. It provides a robust and
accurate alternative to traditional methods, specially when describing problems that
have localized singular behavior.

In this book, we have gathered some works, presented in the mini symposium
“Applications of Multiresolution Analysis with Wavelets,” presented at the ICIAM
19, the International Congress on Industrial and Applied Mathematics, held at
Valencia, Spain, in July 2019. The presented developments and applications cover
different areas including filtering, signal analysis for damage detection, time series
analysis, solution to boundary value problems, and fractional calculus. This bunch
of examples highlights the importance of multiresolution analysis to face problems
in several and varied disciplines.

Buenos Aires, Argentina María Inés Troparevsky
May 2020
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Approximate Solutions to Fractional
Boundary Value Problems by Wavelet
Decomposition Methods

Marcela A. Fabio, Silvia A. Seminara, and María Inés Troparevsky

Abstract Fractional derivatives, unlike those of natural order, have “memory” and
are useful to model systems where the past history is relevant. They are defined by
means of integral operators, some of them having singular kernels, and calculations
may be difficult. It is for that reason that it is necessary to develop numerical
approximation methods to solve most of real problems. In this work we combine
the wavelet transform with the fractional derivatives of a particular wavelet basis,
by means of a Galerkin scheme, to build an approximate solution to boundary value
problems involving Caputo-Fabrizio fractional derivatives. The numerical scheme is
simple and stable, and its accuracy can be improved as much as desired. We present
some numerical examples to show its performance.

1 Introduction

In the last decades, models described by fractional differential equations have
appeared profusely in different areas of science. Several definitions of derivatives of
non integer order have been proposed to fit different real phenomena requirements.
A great quantity of results concerning solutions to this type of equations involv-
ing Riemann-Liouville, Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional
derivatives were stated [1–5], and different explicit and numerical solutions were
developed [6–12].

Applications are numerous and in areas as varied as continuum mechanics [13],
fluid convection and diffusion [14, 15], thermoelasticity [16], robotics [17], biology
and medicine [18–21], computer viruses [22] or economics [23, 24].

M. A. Fabio
Centro de Matemática Aplicada, Universidad Nacional de San Martín, San Martín, Argentina
e-mail: mfabio@unsam.edu.ar

S. A. Seminara (�) · M. I. Troparevsky
Facultad de Ingeniería, Departamento de Matemática, Universidad de Buenos Aires, Buenos
Aires, Argentina

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. P. Muszkats et al. (eds.), Applications of Wavelet Multiresolution Analysis,
SEMA SIMAI Springer Series 4, https://doi.org/10.1007/978-3-030-61713-4_1
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2 M. A. Fabio et al.

In this work we adapt a methodology developed for fractional ordinary dif-
ferential equations (FODE) to find approximate solutions to linear fractional
partial differential equations (FPDE) involving Caputo or Caputo-Fabrizio frac-
tional derivatives.

Succinctly, the idea of the proposed numerical scheme to solve linear FODE
(see [25, 26]) consists of expressing the equation by means of the Fourier transform
and decomposing the data and the unknown on a wavelet basis with appropriate
properties: well localized in time and frequency domains, smooth, band limited
and infinitely oscillating with fast decay. We project the data onto suitable wavelet
subspaces and truncate it. Afterwards, through a Galerkin scheme, we calculate the
coefficients of the unknown function in the chosen wavelet basis solving a linear
system of algebraic equations that involves the fractional derivatives of the basis.
Properties of the basis enable us to work on each level separately. Finally, we rebuild
the solution from its wavelet coefficient. The proposed method is simple, since only
the wavelet coefficients of the data and a matrix derived from the normal equations
are needed. The error introduced in the approximation can be controlled improving
the computation of the elements of the matrix and considering a more accurate
truncated projection of the data. Properties of the basis and the operator guarantee
that the resulting approximation scheme is efficient and numerically stable and no
additional conditions need to be imposed. Details can be found in [25] and [26].

For the case of linear FPDE, we separate variables to obtain auxiliary FODE
that we solve using the proposed scheme. We apply the methodology to solve
a fractional diffusion equation with fractional time derivative. We compute the
solution to a particular equation for different values of the fractional order of
derivation β ∈ (1, 2). When β → 2, as expected, the behaviour of the solution
is similar to that of the wave equation, which corresponds to the case β = 2.

This work is organized as follows: in the next section we present the fractional
derivate operator; the wavelet basis and the approximation scheme are introduced
in Sect. 3. In Sect. 4 a solution to the FPDE is proposed. Some numerical examples
are presented in Sect. 5. Finally we state some conclusions.

2 Definitions and Properties

2.1 Caputo and Caputo-Fabrizio Fractional Derivatives

For 0 < α < 1 and f a function in H 1((a, b)), the Sobolev space of functions
defined on (a, b) with f ′ ∈ L2((a, b)), the Caputo fractional derivative (CFD)
introduced in 1967 (see [27]) is defined as

C
a Dα

t f (t) := 1

�(1 − α)

∫ t

a

f ′(s)
(t − s)α

ds (1)
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where � is the standard Gamma function and −∞ ≤ a < b.
Caputo-Fabrizio fractional derivative (CFFD) introduced in 2015 (see [28]) is

defined as

CF
a Dα

t f (t) := M(α)

1 − α

∫ t

a

f ′(s)e− α(t−s)
1−α ds (2)

where M(α) is a normalizing factor verifying M(0) = M(1) = 1.
Both derivatives are integral operators that involve an integral from a to t , i.e. the

past “history” of f is taken into account so, contrary to what happens in the natural
order derivative case, they have “memory”. It is worth noting that, in the case of
Caputo-Fabrizio derivative, the integral operator has a regular kernel while in the
Caputo case the kernel is singular.

Some properties of CFD and CFFD resemble those of classical derivatives:
CFD and CFFD of order α of a constant function are zero and, for 0 < α < 1,
limα→1 aDα

t f (t) = f ′(t) and limα→0 aDα
t f (t) = f (t) − f (a).

Note that, when a = −∞, both derivatives can be expressed as convolutions.
For the CFD, if κ is a causal function that coincides with 1

tα
for t > 0, we have

C−∞Dα
t f (t) = 1

2π�(1 − α)

∫
R

f̂ ′(ω)̂κ(ω)eiωt dω, (3)

where κ̂(ω) = �(1−α)(iω)α−1 and the circumflex represents the Fourier transform.
In the case of CFFD,

CF−∞Dα
t f (t) = M(α)

1 − α
(f ′ ∗ k)(t)

with the non-singular kernel k(t) = e− αt
1−α , t > 0, from which

CF−∞Dα
t f (t) = M(α)

2π(1 − α)

∫
R

f̂ ′(ω) k̂(ω) eiωtdω (4)

or

CF−∞Dα
t f (t) = M(α)

1 − α

∫
R

f̂ (ω)m(ω)eiωtdω (5)

with the not singular kernel m(ω) = 1
2π

iω
α

1−α
+iω

. Expression (5) in terms of the

Fourier transform will be considered in Sects. 3 and 4 to solve FPDE.
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2.2 The Wavelet Basis

We briefly introduce the wavelet basis that we will use in the rest of the paper.
Details and properties can be found in [29].

We recall that a wavelet is an oscillating function, well localized in time and
frequency domains (see [30, 31]). For a special selection of the mother wavelet ψ ,
the family

{ψjk(t) = 2j/2 ψ(2j t − k), j, k ∈ Z}

is an orthonormal basis of the space L2(R) associated with a hierarchical structure
of the space – the multiresolution analysis (MRA) – which is a sequence of nested
subspaces Vj , the scale-subspaces, such that:

1. Vj ⊂ Vj+1;
2. s(t) ∈ Vj if and only if s(2t) ∈ Vj+1;
3. if s(t) ∈ V0 then s(t + 1) ∈ V0;
4. ∪j∈ZVj is dense in L2(R) and ∩j∈ZVj = {0};
5. there exists a function φ ∈ V0, called scaling function, such that the family {φ(t−

k), k ∈ Z} is an orthonormal basis of V0.

The wavelet subspace Wj = span{ψjk(t), k ∈ Z} is the orthogonal complement
of Vj in Vj+1 and contains the detailed information needed to go from the
approximation with resolution level j to the one corresponding to level j + 1:

{
Vj ⊥ Wj

Vj+1 = Vj ⊕ Wj, j ∈ Z.

Consequently

L2(R) =
⊕
j∈Z

Wj .

Moreover,

{
Vn = ⊕

j<n Wj

L2(R) = [⊕j≥n Wj ] + Vn, for any n ∈ Z.

The MRA is associated to an efficient method to compute the wavelet coeffi-
cients: the Mallat’s algorithm (see [30]).

Looking for solutions to simple FODE as CF
a Dα

t f (t) = g(t) suggests the
selection of the mother wavelet. Since the operators (3) and (4) act on Fourier
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transforms, it is convenient to implement a partition of the frequency domain in
quasi-disjoint scale bands,

Rω =
∞⋃

j=−∞

j ,

naturally associated with the wavelet subspaces Wj .
In order to achieve these benefits, we choose a Meyer wavelet: a band-limited

function ψ , having a smooth Fourier transform ψ̂ . In [29] we define the scale
function and the wavelet as

φ̂(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 |ω| ≤ π − β

vβ(ω)√
v2
β(ω) + v2

β(2β − ω)
π − β < |ω| < π + β

0 |ω| ≥ π + β

with

vβ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
− (

ω−π+β
2β

)

1 − (
ω−π+β

2β
)2

)
|ω − π + β| < 2β

0 |ω − π + β| ≥ 2β

and

ψ̂(ω) =
√

φ2(ω/2) − φ2(ω) e−iω/2

with parameter 0 < β ≤ π/3.
We recall that ψ ∈ S, the Schwartz class, and the family {ψjk, k ∈ Z} is an

orthonormal basis of L2(R) associated to a MRA, well localized in both, time and
frequency domain. Its spectrum, |ψ̂(2−jω) |, is supported on the two-sided band


j =
{
ω : 2j (π − β) ≤ |ω| ≤ 2j+1(π + β)

}
(6)

for some 0 < β ≤ π/3.
In Fig. 1 we show the graphs of ψ and |ψ̂ |.
It is important to highlight that the sets 
j−1, 
j , 
j+1 have little overlap (see

Fig. 2) and Wj is nearly a basis for the set of functions whose Fourier transform has
support in 
j . When solving FPDE this property will enable as to work on each
level separately.

Details on the basis and its properties can be found in [29]. In [31] approxima-
tions of Sobolev, Besov and other functional spaces, using wavelets in the Schwartz
class, are developed.
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0
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0.4

0.6

0.8

1
|ψ|

∧

0.5

–0.5

–1
–10 –5 0 10 t5

0

1

ψ

Fig. 1 Mother wavelet for β = π/4 (above) and |ψ̂ | for ω ≥ 0 (below)

Ωj–1  ∩ Ωj Ωj  ∩ Ωj+1

Ωj–1 Ωj+1
Ωj

Fig. 2 The supports 
j−1, 
j , 
j+1 and their overlapping

3 Approximate Solutions to a Fractional Initial Value
Problem

In this section we resume the technique introduced in [32] to calculate approximate
solutions to the following initial value problem:

{
CF
a Dα

t h(t) + λ1h
′(t) + λ0h(t) = r(t) ∀t ∈ (0, b)

h(0) = 0
(7)

where a ∈ R, −∞ ≤ a ≤ 0, h is the unknown, r is a known source function
verifying r(0) = 0, and λ0, λ1 ∈ R. Solution to this type of fractional initial
value problem (FIVP) will be used to construct approximate solutions to FPDE by
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separating variables.
We will develop the calculations considering the CFFD. The case of CFD is

similar. Details can be found in [25] for the case of CFFD and in [26] for the CFD.
First we will consider a = −∞ in (7). Afterwards we will adapt the procedure

to the case a �= −∞.

3.1 The Data

Recall that, for any J ∈ Z, the data function r ∈ L2(R) can be decomposed as

r(t) = ∑
j∈Z

(Qj r)(t) = (PJ r)(t) + ∑
j≥J

(Qj r)(t) =

= ∑
n∈Z

〈r, φJn〉 φJn(t) + ∑
j≥J

∑
k∈Z

〈
r, ψjk

〉
ψjk(t)

where Qj r and Pj r are the orthogonal projections of r in Wj and Vj , respectively.
We choose Jmin, Jmax ∈ Z so that the energy of r is concentrated in levels Jmin ≤

j ≤ Jmax , k ∈ Kj :

r(t) ∼=
Jmax∑

j=Jmin

rj ∼=
Jmax∑

j=Jmin

r̃j (t)

where rj = ∑
k∈Z cjkψjk is the projection of r on Wj , cjk = 〈

r, ψjk

〉
are the

wavelet coefficients, and r̃j is the truncated projection on Wj : r̃j = ∑
k∈Kj

cjkψjk

for Kj ⊂ Z, card(Kj ) = ηj < ∞, satisfying

∑
k /∈Kj

| 〈r, ψjk

〉 |2 < ε||rj ||22

for certain ε near 0.

3.2 A Solution to the FDE

Let us decompose the solution of (7) in the basis, h(t) = ∑
j∈Z

∑
k∈Z bjkψjk(t),

and replace it in the equation:

∑
j∈Z

∑
k∈Z

bjk [CF−∞Dα
t ψjk(t) + λ1ψ

′
jk(t) + λ0ψjk(t)] =

∑
j∈Z

rj (t).
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We note that

CF−∞Dα
t h(t) +λ1h

′(t) + λ0h(t) =

= M(α)
1−α

∫
R

ĥ(ω)m(ω)eiωtdω + λ1
2π

∫
R

iωĥ(ω)eiωtdω + λ0
2π

∫
R

ĥ(ω)eiωtdω

= ∫
R

ĥ(ω)H(ω)eiωtdω = r(t),

where

H(ω) = −λ1(1 − α)ω2 + i (M(α) + αλ1 + (1 − α)λ0) ω + αλ0

2π(α + iω(1 − α))
. (8)

Thus, the images of the basis ψjk through the fractional differential operator
L(h) = CF−∞Dα

t h + λ1h
′ + λ0h result in

ujk(t) = CF−∞Dα
t ψjk(t) + λ1ψ

′
jk(t) + λ0ψjk(t)

= ∫
R

ψ̂jk(ω)H(ω)eiωtdω.

(9)

From (9), we note that the Fourier transform of ujk satisfies supp(̂ujk) ⊂ 
j .
Then, based on previous observations, we can consider ujk ∈ Wj and, consequently,
we can work on each level Jmin ≤ j ≤ Jmax separately.

For a fixed j , we restrict ourselves to Kj to obtain

CF−∞Dα
t hj (t) + λ1h

′
j (t) + λ0hj (t) =

∑
k∈Kj

bjkujk(t) ∼= r̃j (t).

The coefficients bjk can be computed from the normal equations

∑
k∈Kj

bjk〈ujk, ψjm〉 =
∑

k′∈Kj

cjk′ 〈ψjk′, ψjm〉

or, in matrix form,

(Mj bj )k = cj
k , k ∈ Kj , (10)

where Mj
km = 〈ujk, ψjm〉.

We approximate hj (t) by h̃j (t) = ∑
k∈Kj

bjkψjk(t), with (bj )k = bjk, k ∈ Kj

from (10), and h(t) ∼= ∑Jmax

j=Jmin
h̃j (t) .

Since r is causal, r(0) = 0, its wavelets coefficients cjk , associated to t ≤ 0, are

almost null and bj
k results nearly null. Thus the proposed solution satisfies h(0) = 0.

We can proceed in a similar way if higher (natural) order derivatives appear in (7).
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Further, we can adapt the scheme to the case where initial conditions are not null
or a �= −∞, particularly, a = 0.

If a = 0, we consider h = h · χ[0,b].
For t < 0 we have h

′
(t) = 0 and h(t) = 0 and, for t > 0, h

′
(t) = h′(t).

In addition,

CF−∞Dα
t h(t) + λ1h′(t) + λ0h(t) = e

− αt
1−α ( CF−∞Dα

t h)(0) + CF
0 Dα

t h(t) + λ1h′(t) + λ0h(t)

= e
− αt

1−α [r(0) − λ1h′(0) − λ0h(0)] + CF
0 Dα

t h(t) + λ1h
′
(t) + λ0h(t)

= CF
0 Dα

t h(t) + λ1h
′
(t) + λ0h(t),

and h(0) = 0.
Thus h satisfies

CF
0 Dα

t h(t) + λ1h
′
(t) + λ0h(t) = CF−∞Dα

t h(t) + λ1h
′(t) + λ0h(t) = r(t), t > 0.

When initial conditions are not null (h(0) = h0 �= 0 or r(0) �= 0), we perform a
“small” perturbation.

In order to solve L(h) = CF
0 Dα

t h + λ1h
′ + λ0h and the IVP

{
L(h)(t) = r(t)

h(0) = h0

with h0 �= 0, we consider r̃(t) = r(t) − λ0h0 and, for small ε > 0, r̃ε(t) a C∞(R)

function on (0, ε), that is null at the origin and coincides with r(t) for t > ε (see
Fig. 3).

r(t) = r(t) – l0h0˜

re(t)˜

r(t)

2.5

1.5

2.0

1.0

0.5

0.1 0.2 0.3 0.4 0.5 t

r

e

Fig. 3 Perturbation for the case h(0) = h0 �= 0
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The solution hε to L(h)(t) = r̃ε(t) will be null at the origin and h = hε + h0
satisfies the initial condition and

L(hε(t) + h0) = CF
0 Dα

t hε(t) + λ1h
′
ε(t) + λ0hε(t) + λ0h0 = r̃ε(t) + λ0h0 ∼= r(t)

Thus h = hε + h0 is an approximate solution to the original IVP.

3.3 The Error

We comment on the error introduced in the different steps of the proposed numerical
scheme.

First, we project and truncate the data r introducing two sources of error:
we consider r ∼= r̃ = ∑Jmax

j=Jmin
rj , rj ∈ Wj , satisfying r − r̃ = er with

||er ||2 < ε‖r‖2 � 0, and, for each j , we perform a truncation by posing rj ∼=
r̃j = ∑

k∈Kj
cjkψjk(t), Kj ⊂ Z, |Kj | = ηj < ∞. The choice of Jmin, Jmax and

Kj guarantees that the error introduced at this stage can be neglected. It can also be
reduced by choosing a wider range for j and a larger Kj .

Another source of error arises when considering ujk ∈ Wj . It can be cut down
posing the system simultaneously in more (all) levels.

Finally, the linear system (10) is posed and solved. The elements of Mj are
the inner products 〈ujk, ψjm〉. These integrals can be performed in the frequency
domain taking advantage of the properties of the wavelets, i.e. on the compact
subsets 
j :

〈ujk, ψjm〉 = 1

2π

∫

j

ûjk(ω)ψ̂jm(ω)dω

and can be computed with good precision.
We observe that, in order to calculate the wavelet coefficients bj

k , it is not
necessary to compute ujk: we only need the values of 〈ujk, ψjm〉.

Regarding the solution to (10), Mj can be arbitrarily approximated by band
matrices:

Lemma Mj is nearly a band matrix.

Proof. From (8), there exist N ∈ N such that

H(ω) = 1

2π

(
N∑

n=0

an cos(
nω

2j
) + i

N∑
n=1

bn sin(
nω

2j
)

)
+ ε(ω)
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where ε(ω) is an error that is small for large N . Then, from (9) ,

ujk(t) ∼= M(α)

2π(1 − α)

∫

j

ψ̂jk(ω)

(
N∑

n=0

an cos(
nω

2j
) + i

N∑
n=1

bn sin(
nω

2j
)

)
eiωtdω.

We note that

an cos(
nω

2j
)ψ̂jk(ω) = an

2
(e

i nω

2j + e
−i nω

2j ) ψ̂jk(ω) = an

2
(ψ̂j (k−n)(ω) + ψ̂j (k+n)(ω))

and

bn sin(
nω

2j
)ψ̂jk(ω) = bn

2i
(e

i nω

2j − e
−i nω

2j ) ψ̂jk(ω) = bn

2i
(ψ̂j (k−n)(ω) − ψ̂j (k+n)(ω)).

Consequently,

ujk(t) ∼= M(α)

1 − α

[
a0ψjk(t) +

N∑
n=1

(
an + bn

2
ψj(k−n)(t) + an − bn

2
ψj(k+n)(t)

)]

and for m ∈ Kj , 0 ≤ m ≤ N, we can approximate the elements of the matrix by

Mj
km = 〈

ujk, ψjm

〉 ∼=
{

M(α)
1−α

ak−m+bk−m

2 , if k − m > 0
M(α)
1−α

ak+m−bk+m

2 , if k − m < 0

Mj
kk = 〈

ujk, ψjk

〉 ∼= M(α)

1 − α
a0.

Since the inner products are zero for m > N , Mj is nearly a band matrix. �
In all the numerical experiments we performed, Mj was a diagonal dominant

matrix, with good condition number, and the linear system was solved efficiently.

4 A Fractional Boundary Value Problem

As we mentioned in the Introduction, we can apply the proposed methodology to
find approximate solutions to linear fractional boundary value problems (FBVP).
We will explain the method on a specific problem: anomalous diffusion.

A fractional diffusion equation involving fractional temporal derivatives (see
[33, 34]) is used to model, for example, dispersion phenomena in heterogeneous
media. There are experimental results – like anomalous diffusion in porous, fractal
or biological media, in turbulent plasma and in polymers, among others – that
show that the mean square displacement of the particles must be considered to be
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proportional not to the time but to a power of time to fit the empirical data. This
power may be less than unity (subdiffusion) or greater than 1 (superdiffusion), and
the diffusion model can be expressed by a differential equation of the type

Dβ
t u(x, t) − k∇2u(x, t) = s(x, t), (11)

where β is a fractional order of derivation with respect to time (0 < β < 1 for
subdiffusion and β > 1 for superdiffusion).

We will consider Caputo-Fabrizio temporal fractional derivatives in the diffusion
equation (11). Computations for the case of CFD are similar.

For the 1D case (i.e. x ∈ R) we will solve the following boundary value problem
of anomalous diffusion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CF
0 Dβ

t u(x, t) − ∂2u
∂x2 (x, t) = s(x, t), 0 < t < T, 0 < x < L

u(x, 0) = f (x) 0 < x < L
∂u
∂t

(x, 0) = g(x) 0 < x < L

u(0, t) = u(L, t) = 0 t > 0

(12)

where β = 1 + α, 0 < α < 1 and CF
0 D1+α

t means CF
0 Dα

t (u′) (see [28]). The initial
data f and g are supposed to be sufficiently smooth, with g(0) = 0. The source
s(x, t) is a smooth and causal function (i.e. s(x, t) = 0 for t ≤ 0).

Note that, for h regular enough, we have (see [28, 35, 36])

CF
0 D1+α

t h(t) = CF
0 Dα

t h′(t) = M(α)

1 − α

∫ t

0
h′′(τ )e− α(t−τ )

1−α dτ.

Integrating by parts we obtain

CF
0 D1+α

t h(t) = M(α)

1 − α

[
h′(t) − h′(0)e− αt

1−α − α

1 − α

∫ t

0
h′(τ )e− α(t−τ )

1−α dτ

]
,

that is

CF
0 D1+α

t h(t) = M(α)

1 − α
[h′(t) − h′(0)e− αt

1−α ] − α

1 − α

CF
0 Dα

t h(t). (13)

Now we replace (13) in (12) and arrive to a time FPDE of order α, 0 < α < 1:

M(α)

1 − α
[ut (x, t) − ut (x, 0)e− αt

1−α ] − α

1 − α

CF
0 Dα

t u(x, t) − uxx(x, t) = s(x, t).

Taking into account the initial conditions we have

M(α)

1 − α
ut (x, t) − M(α)

1 − α
g(x)e− αt

1−α − α

1 − α

CF
0 Dα

t u(x, t) − uxx(x, t) = s(x, t)
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or

CF
0 Dα

t u(x, t) + 1 − α

α
uxx − M(α)

α
ut = −1 − α

α
s(x, t) − M(α)

α
g(x)e− αt

1−α .

Let us define

s̃(x, t) = −1 − α

α
s(x, t) − M(α)

α
g(x)e− αt

1−α .

The resulting FBVP is

⎧⎪⎨
⎪⎩

CF
0Dα

t u(x, t) + 1−α
α

uxx(x, t) − M(α)
α

ut (x, t) = s̃(x, t), 0 < t < T, 0 < x < L

u(x, 0) = f (x) 0 < x < L

u(0, t) = u(L, t) = 0 t > 0

.

(14)

We will construct an approximate solution to (14) as superposition of smooth
functions (in the Schwartz class). As in the standard case (natural order PDE), we
propose a solution to (14) by separating variables, and one of the resulting ODE will
have fractional order.

If u(x, t) = X(x)T (t) we pose the second order ODE

X′′ − νX = 0

with boundary condition X(0) = X(L) = 0, and find ν = −( kπ
L

)2, Xk(x) =
sin( kπx

L
), for k ∈ Z.

Now, for u(x, t) = ∑
k≥1 uk(t) sin( kπx

L
), and supposing that derivation and

summation can be interchanged, we replace this last expression in (14) and obtain

∑
k≥1

[CF
0 Dα

t uk(t) − M(α)

α
u′

k(t) − (
kπ

L
)2 1 − α

α
uk(t)] sin(

kπ

L
x) = s̃(x, t). (15)

Note that, if u ∈ C2(0, 1) × C1(0, T ), the derivatives uxx(x, t), ut (x, t) and
CF

0Dα
t u(x, t) = M(α)

1−α

∫ t

0 ut (x, s)e− α(t−s)
1−α ds are continuous functions in (0, 1) ×

(0, T ).
If u∗∗

k (t) , u#
k(t) and u∗

k(t) are, respectively, the Fourier coefficients of uxx(x, t),

ut (x, t) and CF
0Dα

t u(x, t) for each t ∈ [0, T ], it follows that u∗∗
k (t) = −k2π2

L2 uk(t),

u#
k(t) = u′

k(t) and u∗
k(t) = CF

0Dα
t uk(t). From (15) we have that the Fourier

coefficients of s̃, s̃k(t) = 2
∫ L

0 s̃(r, t) sin( kπ
L

r)dr , must satisfy

CF
0 Dα

t uk(t) − M(α)

α
u′

k(t) − (
kπ

L
)2 1 − α

α
uk(t) = s̃k(t)
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Then, the functions uk are solutions to the following IVP (similar to (7)):

{
CF

0 Dα
t uk(t) − M(α)

α
u′

k(t) − ( kπ
L

)2 1−α
α

uk(t) = s̃k(t)

uk(0) = fk

(16)

where fk = 2
∫ L

0 f (μ) sin( kπ
L

μ)dμ are the Fourier coefficients of f .
Under the assumptions that v(0) = 0 and l causal, there is a unique solution in

C1[0, T ] for

L(v) = CF
0 Dα

t v + λ0v + λ1v
′ = l(t)

(see [32]) and we can approximate it by a smooth function: a linear combination of
wavelets.

Explicit formula for the solution to (16) may also be found in some cases.
Note that, regarding the hypothesis on s, s̃k(0) = 2

∫ L

0 s̃(μ, 0) sin( kπ
L

μ)dμ

might not be null because s̃(μ, 0) = − 1−α
α

s(μ, 0) − M(α)
α

g(μ). In addition, from
the initial conditions, we know that uk(0) = fk . If fk �= 0, we have to adapt the
scheme in order to apply the same methodology, as explained previously.

Finally, u(x, t) = ∑
k≥1 uk(t) sin( kπx

L
).

5 Numerical Examples

In this section we show the performance of the proposed numerical approximation
in some examples. The FPDE is

CF
0 D1+α

t u(x, t) − ∂2u

∂x2 (x, t) = s(x, t), 0 < t < T, 0 < x < L.

In Examples 1, 2 and 3 we build approximate solutions following the proposed
technique for different initial and boundary conditions.

5.1 Example 1

Let us consider the following FBVP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CF
0D3/2

t u(x, t) − uxx(x, t) = v(t) sin(−3πt) sin( π
10x), 0 < x < 0, 0 < t < 16,

u(x, 0) = sin(π
5 x), ∀x ∈ [0, 10]

ut (x, 0) = 0
u(0, t) = u(10, t) = 0, ∀t ∈ [0, 16]
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Table 1 Energy distribution of the data function s̃1 and of the solution u1

Level j Energy of s̃1 (%) Energy of u1 (%) Frequency (ω)

1 0.0108 0.0927 [6.28, 12.5]

0 0.0068 0.0016 [3.14, 6.28]

−1 0.0167 0.0045 [1.57, 3.14]

−2 0.0504 0.0165 [0.78, 1.57]

−3 0.3805 0.1270 [0.39, 0.78]

−4 0.5318 0.6321 [0.19, 0.39]

−5 0.0057 0.1251 [0.09, 0.19]

where v(t) is a smooth window in [0, 16] and (x, t) ∈ (0, 10) × (0, 16). Following
the steps described above, if u(x, t) = ∑

k≥1 uk(t) sin( kπx
L

), we only need to solve
the (16) for k = 1 and arrive to the

{
CF

0D1/2
t u1(t) − 2u′

1(t) − ( π
10 )2 u1(t) = v(t) sin(3πt) + ( π

10 )2, 0 < t < 16
u1(0) = 0

In Table 1 the energy wavelet analysis by levels of the functions s̃1 and of the
solution u1 is shown. The significant levels j = −4,−3 contain the 91% of s̃1. For
the reconstruction we consider levels −1 ≤ j ≤ −5. The resulting mean square
error is 4.3866 ∗ 10−6. We plot the exact u1 vs. its approximation in Fig. 4 and the
solution to the BVP in Fig. 5.

5.2 Example 2

We consider the same FPDE as in Example 1, but changing the initial condition by
u(x, 0) = sin( π

10x), ∀x ∈ [0, 10].
Separating variables we arrive to

{
0D1/2

t u1(t) − 2u′
1(t) − ( π

10 )2u1(t) = v(t) sin(3πt) = s̃1(t), 0 < t < 16
u1(0) = 1

As the initial condition on u1 is not null, we perform the perturbation already
described.

Table 2 contains the energy wavelet analysis by levels of the functions s̃1 and of
the solution u1. The significant levels j = −4,−3 contain the 91% of s̃1.

For the reconstruction we consider levels −1 ≤ j ≤ −5. The resulting mean
square error is 1.8338 ∗ 10−4.

In Figs. 6 and 7 we show the approximation for u1(t) versus the exact solution
and the approximation for u(x, t), respectively.
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Table 2 Energy distribution of the data function s̃1 and of the solution u1

Level j Energy of s̃1 (%) Energy of u1 (%) Frequency (ω)

1 0.0108 0.0210 [6.28, 12.5]

0 0.0068 0.0322 [3.14, 6.28]

−1 0.0167 0.0736 [1.57, 3.14]

−2 0.0504 0.1920 [0.78, 1.57]

−3 0.3805 0.4747 [0.39, 0.78]

−4 0.5318 0.1978 [0.19, 0.39]

−5 0.0057 0.0006 [0.09, 0.19]
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Fig. 6 u1(t) vs. u1(t) Approx.

5.3 Example 3

In order to evaluate the performance of the method, we obtain the solutions to (12)
for different values of β approaching 2 and compare them with that of the wave
equation, which corresponds to β = 2.
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Fig. 7 Approx. u(x, t) sol.

Consider

⎧⎪⎪⎨
⎪⎪⎩

CF
0Dβ

t u(x, t) − uxx(x, t) = v(t) sin(−3πt) sin( π
10x), 0 < x < 10, 0 < t < 32,

u(x, 0) = 0, ∀x ∈ [0, 10]
ut (x, 0) = 0

u(0, t) = u(10, t) = 0, ∀t ∈ [0, 32]

where v(t) is a smooth window in [0, 32] and (x, t) ∈ (0, 10) × (0, 32), with β =
1 + α for different α. When α → 1 the solutions must resemble those of β = 2.

Following the steps described above, if u(x, t) = ∑
k≥1 uk(t) sin( kπx

L
), we only

need to solve (16) for k = 1. We consider β = 1.8, 1.9, 1.95.
See Figs. 8 and 9 where we show, respectively, u1(t) and u(x, t) for the different

values of β.
On the other hand, if β → 1 in (12), the behaviour of the solution u would tend

to that of the classical diffusion equation.
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6 Conclusions and Future Work

In this work we have adapted a numerical scheme to solve FODE, developed in
previous works, to find approximate solutions to a FBVP. Using the proposed
method, we built approximate solutions to an advection diffusion equation of order
β, 1 < β < 2. When β tends to 2, its behaviour looks like that of the solution to the
standard wave equation. We have developed the calculations considering the CFFD
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but the CFD case is analogous. The same scheme can be proposed to solve different
linear FPDE.

We intend to apply this methodology to solve inverse problems involving
fractional models. Extensions to some nonlinear equations are also being studied.

Acknowledgments This work was partially supported by Universidad de Buenos Aires, under
grant UBACyT20020170100350BA.

References

1. Kilbas, A., Srivastana, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential
Equations. North Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

2. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential
Equations. Wiley, New York (1993)

3. Oldham, K., Spanier, J.: The Fractional Calculus. Academic, New York/London (1974)
4. Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)
5. Baleanu, D., Agarwal, R., Mohammadi, H., Rezapour, S: Some existence results for a nonlinear

fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 112
(2013). https://doi.org/10.1186/1687-2770-2013-112

6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.: Fractional Calculus: Models and Numerical
Methods. World Scientific Publishing, Singapore (2012)

7. Lin, S., Lu, C.: Laplace transform for solving some families of fractional differential equations
and its applications. Adv. Differ. Equ. (2013). https://doi.org/10.1186/1687-1847-2013-137

8. Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers
equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345,
476–484 (2008)

9. Javed, I., Ahmadb, A., Hussaind, M., Iqbala, S.: Some Solutions of Fractional
Order Partial Differential Equations Using Adomian Decomposition Method (2017).
arXiv:1712.09207[math.NA]

10. Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional
partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

11. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential
equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

12. Yavuz, M., Ozdemir, N.: Comparing the new fractional derivative operators involving exponen-
tial and Mittag-Leffler kernel. Discret. Contin. Dyn. Syst. S 13(3), 995–1006 (2020). https://
doi.org/10.3934/dcdss.2020058

13. Mainardi, F.: Fractional calculus. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional
Calculus in Continuum Mechanics. International Centre for Mechanical Sciences. Courses and
Lectures, vol. 378. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-2664-6-7

14. Zhang, J., Zhang, X., Yang, B.: An approximation scheme for the time fractional convection
diffusion equation. Appl. Math. Comput. 335, 305–312 (2018). https://doi.org/10.1016/j.amc.
2018.04.019

15. Mainardi, F., Paradisi, P.: Fractional diffusive waves. J. Comput. Acoust. 9(4), 1417–1436
(2001). https://doi.org/10.1016/S0218-396X(01)00082-6

16. Povstenko, Y.: Fractional thermoelasticity problem for an infinite solid with a cylindrical hole
under harmonic heat flux boundary condition. Acta Mech. 230, 2137–2144. https://doi.org/10.
1007/s00707-019-02401-2

17. Tenreiro Machado, J., Silva, M., Barbosa, R., Jesus, I., Reis, C., Marcos, M., Galhano, A.:
Some applications of fractional calculus in engineering. Math. Probl. Eng. Article ID 639801,
34 (2010). https://doi.org/10.1155/2010/639801

https://doi.org/10.1186/1687-2770-2013-112
https://doi.org/10.1186/1687-1847-2013-137
https://doi.org/10.3934/dcdss.2020058
https://doi.org/10.3934/dcdss.2020058
https://doi.org/10.1007/978-3-7091-2664-6-7
https://doi.org/10.1016/j.amc.2018.04.019
https://doi.org/10.1016/j.amc.2018.04.019
https://doi.org/10.1016/S0218-396X(01)00082-6
https://doi.org/10.1007/s00707-019-02401-2
https://doi.org/10.1007/s00707-019-02401-2
https://doi.org/10.1155/2010/639801


Approximate Solutions to Fractional Boundary Value Problems by Wavelet. . . 21

18. Yu, Y., Perdikaris, P., Karniadakis, G.: Fractional modeling of viscoelasticity in 3D cerebral
arteries and aneurysms. J. Comput. Phys. 323, 219–242 (2016). https://doi.org/10.1016/j.jcp.
2016.06.038

19. Gómez-Aguilar, J., López-López, M., Alvarado-Martínez, V., Baleanu, D., Khan, H.: Chaos
in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law.
Entropy 19(681), 19 (2017). https://doi.org/10.3390/e19120681

20. Ucar, S., Ucar, E., Ozdemir, N., Hammouch, Z.: Mathematical analysis and numerical
simulation for a smoking model with Atangana-Baleanu derivative. Chaos Solitons Fractals
118, 300–306 (2018). https://doi.org/10.1016/j.chaos.2018.12.003

21. Ozdemir, N., Ucar, E.: Investigating of an immune system-cancer mathematical model with
Mittag-Leffler kernel. AIMS Math. 5(2), 1519–1531 (2020). https://doi.org/10.3934/math.
2020104

22. Ozdemir, N., Ucar, S., Iskender, B.: Dynamical analysis of fractional order model for computer
virus propagation with kill signals. Int. J. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/
10.1515/ijnsns-2019-0063

23. Yavuz, M., Ozdemir, N.: A different approach to the European option pricing model with new
fractional operator. Math. Model. Nat. Phenom. 13(1) (2018). https://doi.org/10.1051/mmnp/
2018009

24. Yavuz, M., Ozdemir, N.: European vanilla option pricing model of fractional order without
singular kernel. Fractal Fract. 2(1), 3 (2018). https://doi.org/10.3390/fractalfract2010003

25. Fabio, M., Troparevsky, M.I.: Numerical solution to initial value problems for fractional
differential equations. Progr. Fract. Differ. Appl. Int. J. 5(3), 195–206 (2019). https://doi.org/
10.18576/pfda/050302

26. Fabio, M., Troparevsky, M.I.: An inverse problem for the Caputo fractional derivative by means
of the wavelet transform. Progr. Fract. Differ. Appl. Int. J. 4(1), 15–26 (2018)

27. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part II.
Geophys. J. R. Astr. Soc. 13, 529–539 (1967)

28. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel.
Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

29. Fabio, M., Serrano, E.: Infinitely oscillating wavelets and an efficient implementation algorithm
based on the FFT. Revista de Matemática: Teoría y Aplicaciones 22(1), 61–69 (2015). CIMPA
– UCR ISSN: 1409-2433 (PRINT), 2215-3373 (ONLINE)

30. Mallat, S.: A Wavelet Tour of Signal Processing. Academic/Elsevier, Boston/Amsterdam
(2009)

31. Meyer, Y.: Ondelettes et Operateurs II: Operatteurs de Calderon Zygmund. Hermann et Cie,
Paris (1990)

32. Troparevsky, M.I., Fabio, M.: Approximate solutions to initial value problems with combined
derivatives [in Spanish]. Mecánica Computacional XXXVI(11), 449–459 (2018)

33. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional
advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

34. Xu, Y., He, Z., Xu, Q.: Numerical solutions of fractional advection-diffusion equations with a
kind of new generalized fractional derivative. Int. J. Comput. Math. (2013). https://doi.org/10.
1080/00207160.2013.799277

35. Al Salti, N., Karimov, E., Kerbal, S.: Boundary value problems for fractional heat equation
involving Caputo-Fabrizio derivative. NTMSCI 4, 79–89 (2016)

36. Losada, J., Nieto, J.: Properties of a new fractional derivative without singular kernel. Prog.
Fract. Differ. Appl. 1(2), 87–92 (2015)

https://doi.org/10.1016/j.jcp.2016.06.038
https://doi.org/10.1016/j.jcp.2016.06.038
https://doi.org/10.3390/e19120681
https://doi.org/10.1016/j.chaos.2018.12.003
https://doi.org/10.3934/math.2020104
https://doi.org/10.3934/math.2020104
https://doi.org/10.1515/ijnsns-2019-0063
https://doi.org/10.1515/ijnsns-2019-0063
https://doi.org/10.1051/mmnp/2018009
https://doi.org/10.1051/mmnp/2018009
https://doi.org/10.3390/fractalfract2010003
https://doi.org/10.18576/pfda/050302
https://doi.org/10.18576/pfda/050302
https://doi.org/10.1080/00207160.2013.799277
https://doi.org/10.1080/00207160.2013.799277


Wavelet B-Splines Bases on the Interval
for Solving Boundary Value Problems

Lucila Calderón, María T. Martín, and Victoria Vampa

Abstract The use of multiresolution techniques and wavelets has become increa-
singly popular in the development of numerical schemes for the solution of
differential equations. Wavelet’s properties make them useful for developing hierar-
chical solutions to many engineering problems. They are well localized, oscillatory
functions which provide a basis of the space of functions on the real line. We show
the construction of derivative-orthogonal B-spline wavelets on the interval which
have simple structure and provide sparse and well-conditioned matrices when they
are used for solving differential equations with the wavelet-Galerkin method.

1 Introduction

In recent years, wavelet methods have been developed as a new powerful tool for
the numerical solution of some boundary value problems.

Wavelets and multiresolution analysis (MRA) provide a robust and accurate
alternative to traditional methods for solving differential equations. Their advantage
is appreciated when they are applied to problems having localized singular behavior.
The solution is approximated by an expansion of scaling functions and wavelets,
with the convenience that multiscale and localization properties can be exploited.
The choice of the wavelet basis is governed by several factors including the desired
order of numerical accuracy and computational effort.

In some cases multiscale bases are combined with finite element methods, and
adaptive refinement strategies are designed (Chen et al. [1] and Bindal et al. [2]).
Other authors applied adaptive procedures in wavelet collocation methods, as the
method introduced by Cai and Kumar et al. [3, 4]. Wavelet-Galerkin methods using
variational equations is a good alternative, producing an efficient regularization
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action: in weak formulations for a given equation, the approximating functions can
be relatively less regular and easier to construct [5].

To obtain high precision results, it is important that the associated system matrix,
known as the stiffness matrix, be a sparse matrix with a small condition number. So,
the choice of a wavelet basis satisfying some mathematical requirements is of great
importance for the good performance of the method.

Wavelets on the real line are not suitable in applications which are defined on
bounded domains, as the problem of solving differential equations numerically.
Therefore it is necessary to adapt them. Wavelet bases on a bounded interval
are usually constructed from wavelets on the real line. The main idea is to
retain most of the inner functions, i.e., the scaling functions and wavelets whose
support is contained in the interval, and to construct appropriate boundary scaling
functions and wavelets separately. Properties such as smoothness, local support, and
polynomial exactness of basis functions should be preserved.

Many constructions of cubic spline wavelets or multiwavelet bases on the
interval have been proposed in recent years. Jia et al. [6] designed biorthogonal
multiwavelets adapted to the interval [0, 1] based on Hermite cubic splines. They
developed a pair of spline wavelets to solve the Sturm-Liouville equation with
Dirichlet boundary conditions adapted to the interval [0, 1]. The wavelets at
different levels are orthogonal with respect to the inner product

〈
u′, v′〉 rather

than 〈u, v〉. The stiffness matrix is sparse, and its condition number is uniformly
bounded.

On the other hand, Vampa et al. [7] have applied a spline-cubic-wavelet basis
adapted to the interval with good results. In their work a modified wavelet-Galerkin
method using B-spline scaling functions to solve boundary value problems is
presented. This proposal combines variational equations with a collocation scheme
and gives an approximation at an initial scale. Later, in [8] a refinement process
using wavelets is developed, and the approximation is improved recursively with
minimal computational effort. A disadvantage of this construction is the large
condition number of the stiffness matrices.

Later, Cerna et al. [9] proposed several constructions of cubic spline-wavelet
bases. They presented different constructions of stable cubic spline-wavelet bases
on the interval. Quantitative properties of constructed cubic spline-wavelet and
multiwavelet bases are studied.

Due to their desirable properties, such as sparse stiffness matrices and small
condition numbers, constructions of wavelet bases, whose mth-order derivatives
are orthogonal among different levels, are of particular interest and importance
in computational mathematics. In a general context, a theoretical study over this
construction can be found in [10].

In the present work, we propose the construction of a cubic spline-wavelet
basis with compact support and first derivatives functions orthogonal between the
different scales. This inner product leads to a sparse stiffness matrix with a condition
number uniformly bounded. This is a very important advantage of the proposed
method.
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The structure of the paper is as follows: in Sect. 2 we introduced a brief
description of a wavelet-Galerkin method to solve a second-order linear differential
operator. The review of the concept of wavelet bases, multiresolution analysis
(MRA) structure on the interval, basic properties of B-splines functions and cubic
B-splines subspaces are presented in Sect. 3. Section 4 contains the technical details
of a construction of wavelet B-splines bases. In Sect. 5 they are applied as testing
for efficient solution of a differential equation. Finally, some concluding remarks
are made in Sect. 6.

2 Wavelet-Galerkin Method

We consider the following one-dimensional linear boundary value problem on the
interval I = [0, 1]:

Lu(x) = − d

dx

(
p(x)

du

dx

)
+ q(x)u(x) = f (x) (1)

u(0) = u(1) = 0,

where p(x), q(x), and f (x) are continuous functions on I and u is a function in
certain Hilbert space V . If Eq. (1) cannot be solved exactly, one has to rely on
approximation methods. We seek an approximation ũ of u which lies in a certain
finite-dimensional subspace Ṽ ⊂ V .

Let 〈·, ·〉 be the inner product of the space V . Note that a(u, v) = 〈Lu, v〉 defines
a bilinear form on V ×V , so that the variational or weak formulation corresponding
to the problem Eq. (1) is to seek u ∈ V , such that

a(u, v) = 〈f, v〉 ∀v ∈ V. (2)

The analogous finite-dimensional problem is to find ũ ∈ Ṽ such that

a(ũ, ṽ) = 〈f, ṽ〉 ∀ṽ ∈ Ṽ . (3)

It is well known that if a(·, ·) is continuous, V -elliptic and 〈f, v〉 is a continuous
linear form in V , both problems Eqs. (2) and (3) have a unique solution (Lax-
Milgram theorem [11]). From Céa’s lemma [11] the following error bounds are
valid:

‖u − ũ‖2
V ≤ C

γ
inf

v∈Ṽ
‖u − v‖2

V , (4)
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where C and γ are constants corresponding to continuity and coercivity of the
bilinear form a(., .), and if h is a measure of the partition of I considered, then

‖u − ũ‖2
V ≤ Chr |u|2

Hr+1 , (5)

where r depends on the regularity of the solution.
Going back to Eq. (1), integrating by parts 〈Lu, v〉, the associated bilinear form

is

a(u, v) =
∫ 1

0
(p(x)u′(x)v′(x) + q(x)u(x)v(x)) dx, (6)

for u and v ∈ V 0 ⊂ L2(I ), the subspace of functions with homogeneous boundary
conditions. Let {�1,�2, . . . , �N } a basis of Ṽ and the approximate solution of the
given equation be ũ = ∑N

k=1 αk�k . Replacing in Eq. (3) we have to determine αk

in a way that ũ behaves as if it is a true solution in Ṽ , i.e.,

N∑
k=1

αk a(�k,�n) = 〈f,�n〉 , n = 1, 2, . . . , N. (7)

We then arrive at the problem of solving a matrix equation

Aα = b, (8)

where A(n, k) = a(�k,�n) , bn = 〈f,�n〉, and α = (αk).

Condition Number of a Matrix
It is known that a linear system AX = Y has a unique solution X for every Y if the
square matrix A is invertible. It is often observed that for two close values of Y and
Y ′, X and X′ are far apart. Such a linear system is called badly conditioned. Thus
data Y is expected to be fairly accurate. Condition number of A is given by

cond(A) =‖ A ‖‖ A−1 ‖, cond(A) ≥ 1, (9)

(‖ . ‖ is a matrix norm) and when A is symmetric, in norm 2 is

cond(A) = maxi | λi(A) |
mini | λi(A) | , (10)

where λi(A) are matrix A eigenvalues. cond(A) is a measure of the stability of the
linear system under perturbation of the data Y .

For computational aspects, it is convenient to have a sparse matrix A, i.e., with
a high proportion of entries 0, with a low condition number, and basis functions
with a small support, regularity, and orthogonality. It is also desirable that the basis
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functions should be simple to evaluate, differentiate, and integrate. Finally, one
wants the scheme to be refinable to allow that the approximation ũ can be improved,
modifying recursively the subspace Ṽ . If the basis functions �k are generated from
dilations and translations of a mother generating function, calculations become
simpler. This suggests considering a MRA structure. Furthermore, if self-similarity
given by scale relations is satisfied, a hierarchical approximation to the exact
solution is obtained, and it is possible to refine and improve the accuracy of the
approximate solution.

3 Wavelet Analysis on the Interval

MRA schemes [12] provide a powerful mathematical tool for function appro-
ximation and multiscale representation of the solution of differential equations
corresponding to the problem in Eq. (1). It is important to point out that, as these
structures are generally defined on the whole real line, they must be adequately
restricted to the interval I where the differential problem is formulated.

Many constructions of wavelet bases on the interval have been proposed. In [13]
a family of orthonormal wavelets on a bounded interval by restricting Daubechies
scaling functions and wavelets to [0, 1] was constructed by Meyer. Later, Chui and
Quak [14] obtained spline-wavelet bases of L2[0, 1].

When a MRA on an interval is proposed, the usual strategy is to start from a
MRA on L2(R) and then use a finite set of suitable translates ϕj,k of the original
scaling function and a finite set of specially constructed boundary scaling functions.

3.1 Multiresolution Analysis

As described by Chui [12], a MRA on L2(R) consists of a sequence of embedded
closed subspaces Vj ⊂ L2(R), j ∈ Z,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

that satisfies several properties and typically is constructed by first identifying the
subspace V0 and the scaling function φ. Denoting by

φj,k(x) := 2j/2φ(2j x − k) , (11)

for each j ∈ Z, the family {φj,k : k ∈ Z} is a basis of Vj . Associated with the
scaling function φ, there exists a function ψ called the mother wavelet such that the
collection {ψ(x−k), k ∈ Z} is a Riesz basis [12] of W0, the orthogonal complement
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of V0 in V1. If we consider

ψj,k(x) := 2j/2ψ(2j x − k) , (12)

for each j ∈ Z, the family {ψj,k : k ∈ Z} is a basis of Wj , the orthogonal
complement of Vj in Vj+1. It is noteworthy that wavelets allow the refinement of
the representation space taking into account that

Vj+1 = Vj ⊕ Wj . (13)

3.2 MRA on the Interval

As it was mentioned above, multiresolution structures in L2(R) have to be restricted
to L2(I ), to solve boundary value problems on I (see [15] and [16]). If Haar bases
are considered for L2(R), it suffices to take the restrictions of these functions to I .
Things are not so trivial when one starts from smoother wavelets on the line. It is
not clear a priori how to adapt the functions in such a way that an orthogonal basis is
obtained. Several solutions have been proposed for this problem. A first solution is
to extend the functions supported on I to the whole line by making them vanish for
x �∈ I . This approach may introduce a discontinuity at the edges, and consequently,
large wavelet coefficients are obtained near the edges and too many wavelets are
used. Another alternative consists in periodizing, but, unless the function itself is
already periodic, it again introduces a discontinuity.

Consequently, restriction to I entails some changes in the concepts of a MRA.
The aim is to produce Riesz bases for the spaces Vj consisting of a finite family of
translates of the original scaling function φj,k and a finite family of special boundary
scaling functions and to produce the bases of the complementary subspaces Wj

consisting of a finite set of translates of the wavelet function ψj,k and a finite set of
special boundary wavelets.

In this work, a MRA on the interval with B-splines as scaling functions is
described, and it is constructed using orthogonality conditions in a way similar as a
MRA in L2(R).

3.2.1 B-Spline Subspaces

Spline wavelets are extremely regular and usually symmetric or antisymmetric.
They can be designed to have compact support, and they have explicit expressions
which facilitate not only theoretical formulation but also numerical implementations
with a computer, see [15] and [17].

Let us consider B-spline functions of order m + 1, that is, connected piecewise
polynomials of degree m having m − 1 continuous derivatives. The joining points
are called knots, and they are typically equally spaced and positioned at the integers.
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These functions can be defined recursively by convolutions [12]:

ϕ1(x) = χ[0,1](x),

ϕm+1(x) = ϕm ∗ ϕ1(x) (14)

and constitute the scaling functions of the MRA structure.
Among many properties that B-splines have, the most important ones for our

method are the following:

• Two-scale relation

ϕm+1(x) = 2−m
m+1∑
k=0

(
m + 1

k

)
ϕm+1(2x − k). (15)

• Differentiation

dk

dxk
ϕm+1(x) = �kϕm+1−k(x), (16)

where �k is the k-order difference operator and 1 ≤ k ≤ m−1, i.e., corresponds
to a reduction of the spline degree by k.

• Inner products

∫
R

ϕm+1(x − k) ϕn+1(x − l) dx = ϕm+n+2(n + 1 + l − k), (17)

i.e., simple evaluations of higher-order splines at integer points.
This property is obtained from the convolution product and is useful in weak

formulations of differential problems.

In the B-spline MRA, V0 is the subspace generated by the translates of the scaling
function ϕm+1 and for each j ∈ Z, the family {ϕm+1,j,k : k ∈ Z} where

ϕm+1,j,k(x) := 2j/2ϕm+1(2
j x − k) , (18)

is a basis of Vj [15, 16]. These subspaces Vj constitute a MRA on L2(R).

3.2.2 Scaling Cubic B-Spline Subspaces

In this section, we introduce a cubic B-spline basis on the interval satisfying
Dirichlet boundary conditions. This construction is based on the spline-wavelet
bases defined by Chui and Quak in [14]. The adaptation of these bases to boundary
conditions can be found in [19].
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Fig. 1 Scaling function ϕ4

In this work, we use B-splines of order m = 3. As they are C2 functions, a
hierarchical approximation of the solution for the second-order problem Eq. (1) can
be obtained, and accurate results can most likely be expected [18].

In the cubic B-spline MRA framework, the scaling function ϕ4 has support on
[0, 4] (Fig. 1), and {ϕ4,j,k(x) := 2j/2ϕ4(2j x − k) : k ∈ Z} is a basis of Vj .

It can be written explicitly as

ϕ3+1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3

6
, x ∈ [0, 1]

−x3

2
+ 2x2 − 2x + 2

3
, x ∈ [1, 2]

x3

2
− 4x2 − 10x − 22

3
, x ∈ [2, 3]

(4 − x)3

6
, x ∈ [3, 4]

. (19)

To simplify the notation we call ϕ(x) = ϕ4(x).
Consider two boundary functions presented by Cěrná et al. in the article [9]: ϕb1

y ϕb2 . They are piecewise cubic polynomials:

ϕb1(x) =

⎧⎪⎨
⎪⎩

7x3

4
− 9x2

2
+ 3x, x ∈ [0, 1]

(2 − x)3

4
, x ∈ [1, 2]

(20)
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Fig. 2 Basis Functions of Vj , j = 3

and

ϕb2(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−11x3

12
+ 3x2

2
, x ∈ [0, 1]

7x3

12
− 3x2 + 9x

2
− 3

2
, x ∈ [1, 2]

(3 − x)3

4
, x ∈ [2, 3]

. (21)

If ϕj,k(x) := 2j/2ϕ(2j x − k), for j ∈ Z, the families

�inn
j =

{
ϕj,k(x) : k = 0, 1, . . . , 2j − 4

}
, (22)

correspond to inner scaling functions and

�bound
j =

{
ϕb1(2

j x), ϕb2(2
j x), ϕb2(2

j (1 − x)), ϕb1(2
j (1 − x))

}
, (23)

are boundary scaling functions.
In Fig. 2 you can see inner and boundary scaling functions.
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Now, considering the families Eqs. (22) and (23), the scaling space Vj is

Vj = span �j, where �j = �inn
j ∪ �bound

j . (24)

(ϕj,k are normalized so that ‖ ϕ′
j,k ‖L2[0,1]= 1).

The dimension of the spaces Vj is 2j +1, and they constitute a MRA on L2[0, 1]
[19].

In the next section, the construction of Wavelet spaces Wj taking into account
the decomposition Eq. (13) will be described.

4 Wavelet B-Splines: Orthogonal Basis

In the following, we build a basis for the wavelet spaces Wj with an orthogonality
requirement, proposing a mother wavelet ψ ∈ W0.

4.1 Construction of a Mother Wavelet

As W0 ⊂ V1, there exists a
{
dk

}
sequence such that

ψ(x) =
∑
k∈Z

dk ϕ(2x − k), x ∈ R. (25)

The coefficients
{
d(k)

}
must be found such that the orthogonality requirement

〈
ψ ′(x), ϕ′(x − l)

〉 = 0 ∀l ∈ Z, (26)

is satisfied.
Fixed l ∈ Z, this means

〈
ψ ′(x), ϕ′(x − l)

〉 = 2

〈∑
k∈Z

[
dkϕ

′(2x − k)
]
, ϕ′(x − l)

〉

= 2
∑
k∈Z

dk

〈
ϕ′(2x − k), ϕ′(x − l)

〉
. (27)

Considering the intersection of the supports of scaling functions, index k takes
only values 2l − 4 < k < 2l + 8.
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So we obtain

〈
ψ ′(x), ϕ′(x − l)

〉 = 2
2l+7∑

k=2l−3

dk

〈
ϕ′(2x − k), ϕ′(x − l)

〉
. (28)

Rewriting the two-scale relation Eq. (15) as ϕ(x) =
4∑

n=0
hn ϕ(2x − n) and

using properties of B-splines, the terms in the sum of Eq. (28) have the following
expression:

〈
ϕ′(2x − k), ϕ′(x − l)

〉 = −2
4∑

n=0

hn ϕ′′
8 (4 + 2l + n − k). (29)

Hence,

〈
ψ ′(x), ϕ′(x − l)

〉 = −4
2l+7∑

k=2l−3

dk

4∑
n=0

hn ϕ′′
8 (4 + 2l + n − k). (30)

It remains to find dk values. If we call

q1(z) :=
∑
l∈Z

d2l+1 z2l+1, q2(z) :=
∑
l∈Z

d2l z
2l ,

the orthogonality condition Eq. (26) is

B(z) (q1(z) q2(z))
T = 0.

where

(B(z))T =

⎡
⎢⎢⎢⎣

− 1

240
z7 − 39

80
z5 + 59

120
z3 + 59

120
z − 39

80
z−1 − 1

240
z−3

− 7

60
z6 − 8

15
z4 + 13

10
z2 − 8

15
− 7

60
z−2

⎤
⎥⎥⎥⎦ .

One solution is:

[
q1(z)

q2(z)

]
=

[ −28 z5 − 184 z3 − 28 z1

z6 + 119 z4 + 119 z2 + 1

]
,

and therefore, the wavelet ψ is given by

ψ(x) =
6∑

k=0

dkϕ(2x − k), x ∈ R, (31)

with [d0, d1, . . . , d6] = [1,−28, 119,−184, 119,−28, 1].
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ψ(x) is supported on [0, 5], it satisfies the orthogonality above conditions.
Moreover ψ(x) is symmetric (Fig. 3).

4.2 Wavelet Basis

We propose a suitable basis for the Wj spaces, considering two boundary wavelets
ψb1 , ψb2 ∈ W0 that are defined by Cěrná et al. [9]:

ψb1(x) = c
b1
0 ϕb1(2 x) + c

b1
1 ϕb2(2 x) +

4∑
k=2

c
b1
k ϕ(2 x − k + 2), (32)

ψb2(x) = cb2
0 ϕb1(2 x) + c

b2
1 ϕb2(2 x) +

6∑
k=2

c
b2
k ϕ(2 x − k + 2), (33)

where

[
c
b1
0 , c

b1
1 , . . . , c

b1
4

]
=

[
939

70
,
−393

20
,

6233

560
,−4, 1

]
,

[
c
b2
0 , c

b2
1 , . . . , c

b2
6

]
=

[
1444

953
,

1048

1871
,
−1340

209
,

545

48
,
−6839

655
, 7,−3

]
.

Boundary wavelets ψb1 , ψb2 have supports on [0, 3] and [0, 4], respectively.
They have two vanishing moments and satisfy the orthogonality condition Eq. (26)
(Fig. 4).
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Using those functions, the set of boundary wavelets (Fig. 4) is defined:

�bound
j =

{
ψb1(2

j x), ψb2(2
j x), ψb2(2

j (1 − x)), ψb1(2
j (1 − x))

}
. (34)

Note that as Vj+1 = Vj ⊕ Wj , the dimension of Wj is 2j . Thus, a basis for these
spaces is

�j = �inn
j ∪ �bound

j , (35)

where �inn
j is the set of inner wavelets (Fig. 5),

�inn
j =

{
ψj,k : k = 0, 1, . . . , 2j − 5

}
, (36)

and ψj,k(x) := 2j/2ψ(2j x − k), for each j ∈ Z.
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The functions in �j are normalized so that ‖ ψ ′
j,k ‖L2(0,1)= 1.

Remark 1 Due to Vj ∩ Wj = {0} and Eq. (13),

dim(Vj + Wj) = dim Vj + dim Wj = 2j+1 + 1 = dim(Vj+1). (37)

Thus,

Vj+1 = Vj0 ⊕ Wj0 ⊕ Wj0+1 . . . ⊕ Wj, for j0 ≥ 3.

For J > j0, a wavelet basis for VJ+1 is,

GJ = �j0 ∪
J⋃

j=j0

�j = {
g1, g2, . . . , g2J+1+1

}
, (38)

where gi ∈ �j0 for i = 1, 2, . . . , 2j0 +1 and gi ∈ �j for i = 2j0 +2, . . . , 2J+1 +1
and j = j0 . . . , J .

Remark 2 If v ∈ Vj0 , wj ∈ Wj , from the orthogonality condition Eq. (26) it is true
that

〈v′, w′
j1

〉 = 0,

(39)

〈w′
j1

, w′
j2

〉 = 0 for j1 �= j2.

5 Numerical Example

Consider the following problem:

{−u′′ = f on (0, 1)

u(0) = u(1) = 0
, (40)

with f (x) = (70 π)2 sin(70 π x) − π2 cos
(
π x + π

2

)
.

Substitution of the approximation,

uJ+1 =
2J+1+1∑

i=1

αi gi,
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Fig. 6 Structure of matrices KJ , J = 4, 5

using the basis Eq. (38) into the weak formulation, Eq. (3) results in

2J+1+1∑
i=1

αi

(∫ 1

0
g′

i (x)g′
l (x) dx

)
=

∫ 1

0
f (x)gl(x) dx ∀l ∈ {1, 2, . . . , 2J+1 + 1}.

or, in matrix form

KJ α = R, (41)

where KJ is the stiffness matrix,

KJ :=
〈
g′

i , g
′
j

〉
1≤l,i≤2J+1+1

. (42)

This system of linear algebraic equations is solved for α, the vector of 2J+1 + 1 × 1
parameters.

As a consequence of the orthogonality requirement, the matrix KJ is sparse and

each block is diagonal (Fig. 6). The condition number cond(KJ ) = λmax

λmin

with

respect to 2-norm is uniformly bounded. This assertion is confirmed by numerical
computation of the condition number of the matrix KJ for J = 3, . . . , 9 (see
Table 1).

The exact solution of the problem is

u(x) = sin(70 π x) − cos
(
π x + π

2

)
. (43)

For J = 1, 2, . . . , let eJ := ‖uJ+1 − u‖
‖u‖ the approximation relative errors.

Although the exact solution is very oscillatory, good convergence results were
obtained, which are shown in Table 2 and Fig. 7.
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Table 1 Condition number of KJ

J 3 4 5 6 7 8 9

λmax 1.6844 1.6505 1.6505 1.6505 1.6505 1.6505 1.6505

λmin 0.2837 0.3162 0.3181 0.3181 0.3181 0.3181 0.3181

cond(KJ ) 5.9363 5.2190 5.1886 5.1885 5.1885 5.1885 5.1885

Table 2 Error eJ J eJ

5 5.534 ×10−1

6 1.322 ×10−2

8 2.853 ×10−3

9 5.347 ×10−4

Fig. 7 Exact and approximate solutions uJ , J = 3, 4, 5, 8. (a) Exact solution. (b) Approximate
solution for J = 3. (c) Approximate solution for J = 4. (d) Approximate solution for J = 5. (e)
Approximate solution for J = 8
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6 Conclusions

Due to the good properties of the proposed wavelet cubic B-splines basis, such as
multiresolution analysis and the orthogonal characteristic according to inner product〈
u′, v′〉, the numerical resolution of boundary value problems is easy and efficient.

The matrix KJ involved in the linear system is block diagonal (each block is a
banded matrix), and its condition number is bounded independently of the scale.

The work presented can be extended in several ways. The implemented technique
using wavelet cubic B-splines bases could be well suited for solving nonlinear
and higher-dimensional differential equations. We hope to address some of these
problems in a future paper.
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Kalman-Wavelet Combined Filtering

Guillermo La Mura, Ricardo Sirne, and Marcela A. Fabio

Abstract In this chapter we propose to combine two well-known techniques
suitable for the analysis of nonstationary process: Kalman filtering and discrete
wavelet transform. Signal filtering is an inverse problem in the sense that, based
on the noisy observations obtained from measurements, it intends to estimate the
state variables knowing the model of the system and the statistical behavior of
the intervening noises. This technique performs simultaneously estimation and
decomposition of random signals through a filter bank based on the Kalman filtering
approach using wavelets. The algorithm introduced in the following pages takes
advantage of the relative benefits of both methods. We present some numerical
results considering two special cases of wavelets: Haar and Daubechies of four
coefficients.

1 Introduction

In the last decades, many variations on the ensemble Kalman filtering have been
published in the literature considering the problem of signal noise reduction and
filtering techniques [1–3, 5, 13, 14, 16–19, 25]. Recently, schemes combining
Kalman filtering and discrete wavelet transform have appeared [15, 21, 23, 24].

The main purpose of this work is to describe a filtering scheme for a signal with
a certain type of additive noise, by combining the optimal iterative Kalman filtering
process and the well-known technique based on discrete wavelet transform: wavelet
denoising, on a multiresolution analysis (MRA) context. This technique performs

G. La Mura (�) · M. A. Fabio
Centro de Matemática Aplicada, Universidad Nacional de San Martín, Buenos Aires, Argentina
e-mail: glamura@unsam.edu.ar; mfabio@unsam.edu.ar

R. Sirne
Facultad de Ingeniería, Departamento de Matemática, Universidad de Buenos Aires, Buenos
Aires, Argentina
e-mail: rsirne@fi.uba.ar

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. P. Muszkats et al. (eds.), Applications of Wavelet Multiresolution Analysis,
SEMA SIMAI Springer Series 4, https://doi.org/10.1007/978-3-030-61713-4_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61713-4_3&domain=pdf
mailto:glamura@unsam.edu.ar
mailto:mfabio@unsam.edu.ar
mailto:rsirne@fi.uba.ar
https://doi.org/10.1007/978-3-030-61713-4_3


42 G. La Mura et al.

simultaneously estimation and decomposition of random signals through a filter
bank based on the Kalman filtering approach using wavelets.

This chapter is organized as follows: in the next section we briefly review the
classical Kalman filter, how does the filter work, and the optimal state estimation
algorithm. Wavelets on a multiresolution analysis, the approximation scheme,
and denoising by thresholds in the detail coefficients before reconstruction are
introduced in Sect. 3. In Sect. 4 we developed the ensemble Kalman-wavelet filtering
scheme. Some numerical examples are presented in Sect. 4.1. Finally, we conclude
in Sect. 5 with a discussion of other potential applications of this technique as well
as future improvements.

2 Kalman Filters

2.1 What Are Kalman Filters, and How Do They Work?

The Kalman filter is an efficient recursive filter that estimates the state of a linear
dynamic system from a series of noisy measurements. It is an important topic in
control theory that it is used in a wide range of engineering applications: from radar,
biosignals, to estimation of macroeconomic models.

The Kalman filter is an optimal estimator, knowing the dynamic system model
(e.g., physical laws of motion), the control input variables and multiple sequential
measurements (usually observed through sensors), this method allows to predict the
state of the system and updating estimation at each measurement.

First, let us consider the linear dynamical systems without random perturbations
by the mathematical model

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)
(1)

represented in the first block of Fig. 1, where A, B, and C are known constant
matrices.

Generally, the state variable x(t) is not observable; we can only measure the
output y(t). Since the system model is known, the state and its output can be
estimated, and we denote these estimated variables as x̂ and ŷ, respectively. The
observation error εob and the state error εst are obtained as the difference between
the system variables and its estimations. We can observe that in the state function the
correction factor is the gain of Kalman (K) times the measurement or observation
error:

ε̇st = (A − KC) · εst (2)
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Fig. 1 Linear system and
mathematical model.
Real-time Kalman filtering

System

Mathematical Model

u(t)

x(t)

x̂(t)

y(t)

ŷ(t)

ẋ = A · x +B · u
y = C · x

ŷ = C · x̂
ˆ̇x = A · x̂ +B · u

−

K

εob = C · εst (3)

ẋ = Ax + Bu y = Cx

−
ˆ̇x = Ax̂ + Bu + K(y − ŷ) ŷ = Cx̂

ẋ − ˆ̇x︸ ︷︷ ︸
ε̇st

= Ax − Ax̂ − K(y − ŷ) y − ŷ︸ ︷︷ ︸
εob

= C (x − x̂)︸ ︷︷ ︸
εst

Returning to the mathematical model (1), we see how the observation error is
modulated by Kalman’s gain, ensuring an optimal approximation for the iterated
update of the estimated variables. Note that the errors are modelled by a system
of equations that are similar to those of the original system (see (2) and (3)).
If the model and the measurement are contaminated with additive noise, these
perturbations will propagate to both the observed and the state.

According to (2), when the real part of the eigenvalues of (A − KC) is less than
zero, the slope of the state error decreases, that is, the observation error tends to zero
when time tends to infinity. In Sect. 2.3 we will show an example of how the error
decreases as time increases.

The estimation of these errors and their covariances enable us to update the
estimate, but to do it we need three variables: the input control signal u(t), the
measured signal y(t), and the prediction of the estimated state x̂(t).
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2.2 Kalman Filtering and Estimation Algorithm

In this subsection we present in a discrete approach to the system, the model, and
the time, with step k.

We assume that both the system and the measurement are contaminated with
independent random noise of Gaussian distribution with zero mean, w and v,
respectively. Moreover, the measurement noise vk is uncorrelated with the process
noise wk . Then, if w is characterized by covariance Q and v is by covariance R, it
follows that v ∼ N(0, R) and w ∼ N(0,Q).

A summary of the linear Kalman filter algorithm is shown in Table 1.
The Kalman filter implements the following linear discrete-time process with

state, x, at step k:

xk+1 = Axk + Buk + wk (state equation), (4)

and the measurement, y, is given by

yk = Cxk + vk (measurement equation), (5)

Usually, x,w ∈ R
n×1, u ∈ R

p×1, v ∈ R
m×1, A ∈ R

n×n, B ∈ R
n×p, and C ∈ R

m×n.
The first block of Fig. 2 represents the linear system with noise, defined in (4)

and (5).

Table 1 Kalman filter algorithm

Step 1 Filter initialization Initialize x̂0 and P̂0

Step 2 State prediction
{

x̂−
k = Ax̂−

k−1 + Buk

P̂ −
k = APk−1A

T + Q

Step 3 Observation-related prediction

y−
k = Cx̂−

k

Step 4 Kalman filter update
⎧⎪⎨
⎪⎩

Kk = P −
k CT (CP −

k CT + R)−1

x̂k = x̂−
k + Kk(yk − y−

k )

Pk = (I − KkC)P −
k

Step 5 Store results Store x̂k and P̂k

Step 6 Return to Step 2
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System

Estimation Model

uk

x̂−
k

ykxk+1 = A · xk +B · uk + wk

yk = C · xk + vk

ŷk = C · x̂k

x̂k+1 = A · x̂k +B · uk

measurement

prediction state

xk

Kalman Gain Update Model
ŷk

−

Fig. 2 Discrete time Kalman filtering

The Kalman filter “prediction-update” algorithm computes the following two
stages recursively:

1. Prediction: Process parameters x̂k (state) and P̂k (state error covariance) are
estimated using the a priori state x̂−

k and P̂ −
k :

x̂k = Ax̂k−1 + Buk︸ ︷︷ ︸
x̂−
k

+Kk(yk − C (Ax̂k−1 + Buk))︸ ︷︷ ︸
x̂−
k

2. Update: The state and error covariance are corrected using the current measure-
ment.

The first stage uses the previously estimated state, x̂−
k−1, to predict the current

state in the step k, x̂−
k , as shown the following equation:

{
x̂−
k = Ax̂−

k−1 + Buk

P̂ −
k = APk−1A

T + Q
(6)

In the second stage, using the current measurement, yk , and the predicted state, xk ,
it is estimated the current state value at step k, x̂k , and is obtained a more accurate
approximation:

⎧⎨
⎩

Kk = P −
k CT (CP −

k CT + R)−1

x̂k = x̂−
k + Kk(yk − Cx̂−

k )

Pk = (I − KkC)P −
k

(7)
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updating the Kalman gain, the estimated state and the covariance for the same step k.
In order to illustrate these ideas, let us consider a simple linear example of the

movement of a projectile, before we close this section.

2.3 Example

The projectile motion is a common problem in physics, where acceleration, velocity,
and space are the states variables of the model. In this case, the observed dimensions
of the system are two: displacement and height [12].

To simplify the state equations, we assume that we will only analyze two
variables: distance and altitude. The model is known, and we can easily simulate
it.

The measurements of the altitude and distance are both contaminated with
Gaussian noise. We can apply Kalman filtering process and observe how quickly the
estimated values approach the theoretical trajectory. As it arises from the previous
explanation, the estimation error is significant, and the tracking of the trajectory is
not very good; see Fig. 3, (right). However, the error decreases as time grows; see
Fig. 3, (left).
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Fig. 3 Error behavior (left) and Kalman’s estimate (right) of Example 2.3
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3 Wavelets on a Multiresolution Analysis Scheme

In this section we present an introduction to multiresolution signal approximation.
Let L2(R) denote the space of real valued functions with finite energy in the real

time domain, in which the inner product is defined by < f, g >= ∫
R

f (t)g(t)dt

and the norm is defined by ||f ||L2 = √| < f, f > |.
A wavelet well localized in time and frequency is an oscillating function with

zero mean, which decays rapidly in time. From one “mother wavelet” ψ a two-
parameter family of wavelets ψab is obtained by translations in the time variable
and dilations by a scale factor, with influences the location of the time-frequency
window and the width of the corresponding time and frequency windows. This
family is

{
ψab(t) = |a|−1/2 ψ(

t − b

a
), a, b ∈ R, a �= 0

}
.

It is computationally convenient to discretize the latter by restricting the analysis to
the a = 2j scales with b = k2j translations, adopting the following nomenclature:

{
ψjk(t) = 2−j/2 ψ(2−j t − k), j, k ∈ Z

}
.

This family of functions is constructed with the objective of expressing s(t) signal
with the following serial development of wavelets:

s(t) =
∑
j∈Z

∑
k∈Z

dj (k)ψjk(t)

︸ ︷︷ ︸
rj (t)

,

where convergence in 2-norm is assumed. Particularly, rj is called the j -th residual
signal. Each rj (t) shows the behavior of s(t) in the j -th frequency band, centered
on the frequency fj , fulfilling fj/fj+1 = 2. Thus, consecutive band centers are
separated by an octave, and the discretization is called dyadic (Fig. 6).

The implementation of the aforementioned decomposition can be carried out
efficiently in the framework of a multiresolution analysis (MRA) [4, 6, 7, 22].

A MRA is a nested sequence Vj of closed subspaces of L2(R), such that

1. Vj+1 ⊂ Vj , j ∈ Z

2.
⋂

j∈Z Vj = {0}
3.

⋃
j∈Z Vj is dense in L2(R)

4. s(t) ∈ V0 ⇔ s(2−j t) ∈ Vj , j ∈ Z

5. s(t) ∈ V0 ⇔ s(t − k) ∈ V0, k ∈ Z

6. exist a scale function φ such that {φ(t − k), k ∈ Z} is a Riesz basis of V0.
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Following the previous notation, the scale function ψ generates

{
φjk(t) = 2−j/2 φ(2−j t − k), j, k ∈ Z

}
.

Since j > 0, 2j ∈ Z, it results:

s(t) ∈ V0 ⇔︸︷︷︸
(5)

s(t − 2j k) ∈ V0 ⇔︸︷︷︸
(4)

s(2−j t − k) ∈ Vj .

Consequently, given φ ∈ V0, the function φjk ∈ Vj .
It is said that wavelet ψ is orthogonal when the inner products satisfy

< ψjk, ψmn >= δjm, δkn, j, k ∈ Z,

where δij is the Kroneker delta.
In this context, if

Wj = span{ψjk, k ∈ Z}
L2(R) can be expressed as

L2(R) = · · · ⊕ W−1 ⊕ W0 ⊕ W1 ⊕ · · ·
Each s ∈ L2(R) has a unique decomposition

s(t) = · · · + r−1(t) + r0(t) + r1(t) · · · ,

where each rj ∈ Wj is expressed as a linear combination of the base {ψjk, k ∈ Z}.
Since Vj = Wj+1 ⊕ Wj+2 ⊕ · · · and Vj = Wj+1 ⊕ Vj+1, with j ∈ Z, if s0 ∈ V0, it
can be expressed as

s0(t) = sJ (t) +
J∑

j=1

rj (t), (8)

where

rj (t) =
∑
k∈Z

dj (k)ψjk(t) and sJ (t) =
∑
k∈Z

cJ (k)φJk(t). (9)

Being s0 a band-limited signal, J can be chosen such that all the information of
interest is concentrated in the rj j = 1, · · · , J , leaving in sJ an insignificant part
of the energy of the signal with the lower frequency composition. This allows to
approximate s0 as

s0(t) ≈
J∑

j=1

rj (t). (10)



Kalman-Wavelet Combined Filtering 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
Haar scaling function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2
Haar  wavelet

Fig. 4 Haar wavelet and its scale function

In this framework, an efficient analysis methodology to approximate s0(t)

is achieved by selecting J and calculating the coefficients dj (k) accurately to
approximate s0(t), see (8).

Indeed, the MRA structure allows fast and exact calculation of the wavelet
coefficients of a L2(R) signal by providing a recursion relationship between the
scaling coefficients at a given scale and the scaling and wavelet coefficients at the
next coarser scale.

In this work we choose Haar (Fig. 4) and Daubechies (Fig. 5) wavelets and
scaling functions [4, 6, 7].

3.1 The Haar and Daubechies Wavelets

Using the Haar wavelet, the coefficients can be calculated recursively by

cj (k) = 1√
2
(cj−1(2k)+cj−1(2k+1)) and dj (k) = 1√

2
(cj−1(2k)−cj−1(2k+1))

(11)
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Fig. 5 Daub-4 wavelet and its scale function

whereas using the wavelet of Daubechies with four coefficients (Daub-4), the
decomposition coefficients are recursively obtained as

cj (k) =
3∑

i=0

picj−1(2k + i) and dj (k) =
1∑

i=−2

(−1)ip1−icj−1(2k + i) (12)

with p0 = 1 + √
3

4
√

2
, p1 = 3 + √

3

4
√

2
, p2 = 3 − √

3

4
√

2
, and p3 = 1 − √

3

4
√

2
.

Other implementation details are indicated in the following sections (Fig. 6).

3.2 MRA Algorithm

In practice, the MRA of a discrete signal s(n) is performed by successive application
of the two-channel filter bank: low-pass and high-pass filters. In this scheme,
these two filters H0 and H1 decompose the signals into low-pass and high-pass
components subsampled by 2 (analysis process) and perform the decomposition (8);
see Fig. 6. In signal processing, H0 and H1 are called quadrature mirror filters.

In this step, if necessary, the noise elimination process can be performed.
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Fig. 6 Block diagram of low-pass and high-pass filter for Daub-4 and J = 2

The original signal can be recovered from the application of two filters F0 and
F1 and upsampling (synthesis process).

Filters must meet some constraints in order to produce a perfect reconstruction
of the signal.

Next, we list the considerations to implement the AMR algorithm:

• The signal is analyzed in blocks of 2N values, corresponding 2J−j coefficients
of each type at resolution level 1 ≤ j ≤ J .

• If the signal s0 is contaminated with additive noise vk with null mean and
deviation σ , supposing that vk and vk+1 are uncorrelated, the coefficients of the
MRA inherit additive noise with equal mean and deviation. In particular, if the
noise is Gaussian, the coefficients are also Gaussian.

• If the signal has a frequency content in some interval [fmin, fmax], the MRA is
performed for the levels j = 1, · · · , J such that sJ have no significant energy.
Then, it can be considered

s0 ≈ r1 + · · · + rJ .
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Fig. 7 Thresholding example

3.3 Denoising by Thresholds in the Wavelet Detail Coefficients

As it is known, the general noise elimination procedure involves three steps:

1. Decomposition: compute the wavelet decomposition of the signal at a chosen J .
2. Threshold detail coefficients: for each level from 1 to J , select a threshold and

apply soft thresholding to the detail coefficients.
3. Reconstruction: compute wavelet reconstruction using the original approxima-

tion coefficients of level J and the modified detail coefficients of levels from 1
to J .

The second step is very important because the threshold value is applied to remove
noise by thresholding function:

d̃j (k) =
{

sg(dj (k))L(|dj (k)|), if |dj (k)| > αj

0 if |dj (k)| < αj

where L is usually a linear function and αj is a threshold for the resolution level j .
Then, the selections of the threshold value affect the quality of signal.

The main problem with this method is to find the optimal threshold αj , [8–11].
This filtering scheme is efficient when the signal energy is concentrated in some

resolution levels; see Fig. 7.

4 Kalman-Wavelet Combined Filtering

A way to apply these computational schemes jointly is shown in the block diagram
appearing in Fig. 8. Unfortunately it has high computational cost. Additionally, the
Kalman filter does not optimize the signal-to-noise ratio for each resolution level.
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Fig. 8 Signal processing by first applying Kalman and then wavelet

Fig. 9 Signal processing by first applying wavelet and then Kalman

On the other hand, if we apply them in the opposite order, according to the block
diagram exposed in Fig. 9, Kalman’s hypothesis for residuals is not verified, and the
procedure has high computational cost too.

We will introduce an effective technique of Kalman-wavelet filtering by simulta-
neous estimation and decomposition of random signals through a filter bank based
on Kalman filtering approach using wavelets.

Since Kalman and wavelet filtering are radically different, it is possible to
combine both with the objective of enhancing its advantages for certain types of
signals, corresponding to linear systems modelled as indicated in the equations (4)
and (5).

Starting from c0 = s0, i. e., considering the values of the sampled signal as
coefficients at level j = 0, if s0 admits Kalman filtering, then according to (11)
or (12) the successive cj and dj will admit Kalman filtering too (developed in
[20] for Haar case). Under the conditions described above and assuming that s0 is
contaminated with additive Gaussian noise of zero mean and deviation σ , it follows
that cj and dj have the same type of noise.

The proposed filtering scheme consists in applying Kalman process to the
coefficients dj obtaining the dK

j , and then, if necessary, filtering is carried out as

the described Sect. 3.3 obtaining the d̃K
j . The final filtered signal is achieved by (9)

with the d̃K
j , considering decomposition (8). This scheme is represented in Fig. 10.
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Fig. 10 Block diagram of combined Kalman-wavelet filter algorithm for J = 2

Below we consider a toy example of this filtering technique.

4.1 Example: Kalman-Wavelet Combined Filtering

To illustrate the application of the ensemble Kalman-wavelet filtering algorithm, we
consider a simulated linear system that responds to the following continuous time
model:

{
ẋ(t) = A · x(t) + B · u(t)

y(t) = C · x(t) + v(t)
(13)

where

A =
[

0 1
−5 −4

]
, B =

[
1 0
0 1

]
, C = [

1 1
]

x0 =
[

0
0

]
, u(t) =

[
0

f (t)

]

f (t) = 100 sin(4πt) + 800 cos(16πt)

v(t) ∼ N(0, R) Gaussian Noise
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System (13) in its pure state, i.e., without noise, is modeled by the following initial
value problem:

{
z′′ + z′ + 2z = f (t)

z(0) = z′(0) = 0
(14)

We can see in Fig. 11 that the Kalman-wavelet combined filtering sticks to the
pure signal more accurately.

A local view of the first 2.5 s appears in Fig. 11. The first curve is the pure
signal, after contaminated with additive noise, then filtered with Kalman and
finally Kalman wavelet combined in two variants: Kalman-Daub-4 and Kalman-
Haar. Except for the portion marked with red dotted line on the third curve, these
techniques do not show significant difference with the original signal.

Table 2 shows the difference in signal-to-noise (S/N) levels achieved for two
maximum wavelet resolution levels. The S/N values did not show significant
differences in different simulations of the specified noise.

0.5 1.5 2.0 2.5 3.0

K - Haar

K - Dauba

Kalman

Signal +
      Noise

Signal

1.00.0

Fig. 11 Kalman-wavelet combined filtering performance

Table 2 Comparison S/N
ratio

J = 10 J = 12

Signal + Noise 27 dB 26 dB

Kalman filtering 82 dB 86 dB

Kalman - Haar 102 dB 112 dB

Kalman - Dauda 4 114 dB 122 dB
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Given the structure of the AMR scheme, it allow us to decompose the signal
by a bank of perfect reconstruction filters. It is observed that, in this context, the
application of the Kalman filter on the wavelet coefficients of each resolution level
improves the ratio S/N of the filtered signal compared to the direct application of
the Kalman filter to the noisy signal, in particular with Daub-4 versus Haar.

5 Conclusions and Future Work

In this work we have proposed the extension of the Kalman-wavelet technique
for the filtering of certain types of noisy signals. We explained the algorithm that
combines the advantages of the Kalman recursive method with the flexibility of the
hierarchical decomposition of approximations and details of a signal, provided by
wavelet processing in the context of a multiresolution analysis.

We discuss in an example that the proposed method exhibits better performance
in contrast to the direct application of Kalman filtering, for signals with concentrated
frequency composition (in some resolution levels).

In many applications, the linearity requirement of the Kalman filter is not
enough to model the dynamics system or the observation signal. Extensions and
generalizations to the method have also been developed, such as the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF). The combination of
EKF/UKF and discrete wavelet transform is being studied.

Acknowledgments The authors are especially grateful to Eduardo P. Serrano for sharing his ideas
on the combination of these methods that give rise to this work.
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Using the Wavelet Transform for Time
Series Analysis

María B. Arouxet, Verónica E. Pastor, and Victoria Vampa

Abstract The characterization of time series requires knowledge of certain para-
meters. One of those parameters is the Hurst exponent, which is an indicator of
long-range dependence characteristics. Rescaled range (R/S), proposed by E. Hurst,
is the most commonly used method to compute this exponent. On the other hand,
wavelet analysis is known to reflect better the nonlinear dynamics of the biological,
climatic, or economic series than the statistical tools often used for this analysis. The
average wavelet coefficient (AWC) is a wavelet method that has been used for the
last years to compute the Hurst exponent. In this paper, we present a modification
to the AWC method, and we compare its performance with the original version of
AWC and with R/S methods. The results obtained for the synthetic series were so
promising that we decided to apply our proposal in rainfall series. Therefore, these
results were compared with the ones reported from La Pampa. After that, series from
different climatic regions of the Argentine Republic were analyzed.

1 Introduction

The characterization of complex systems is not easy, since they cannot be split into
simpler subsystems without losing dynamic properties. Sometimes, the systems of
equations are not known, and only one observable of the systems is known. This
observable is represented as a time series, which is a collection of observations
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{X(t)} obtained through repeated measurements over time. For example, we can
consider series of mean monthly rainfalls recorded at scattered locations, daily coin
values, or the RR intervals of electrocardiogram signals. They are time series of
different nature measured in equally spaced intervals, different in each case. If the
data is collected irregularly, it is not a time series.

As it is known, an observed time series can be decomposed into three compo-
nents: the trend (T: long term direction), the seasonality (S: systematic, calendar-
related movements), and the irregularity (I: unsystematic, short-term fluctuations),

X(t) = T (t) + S(t) + I (t) (1)

and different techniques have been developed to study these components.
Long-range dependence (LRD) is the dependence between observations far away

in time and has attracted strong interest in recent years [1, 2]. Its utility has been
analyzed in hydrology [3], in economics [4], in finance [2], and in many other
fields. In signals that exhibit long-range dependent features, correlations persist on
very long time scales and also have a certain self-similar structure. A natural way
to analyze LRD is performing a rescaling operation and studying how measured
properties vary as a function of the scale.

One of the techniques used to measure LRD is the Hurst exponent which was
introduced by E. Hurst in 1951 [5] when he studied the fluctuations of the water
level in the Nile River. Hurst found that a high water level in the river flow means a
wonderful harvest. He discovered a trend after many years of this studies: years
of abundant rain were continued of years with high level of water in the river
flow; years of drought were continued with years with the same trend. The Hurst
exponent, H , is a real parameter that varies between 0 and 1 and indicates the
persistence level of a process. Values greater than (less than) 0.5 are associated
to persistent (anti-persistent) processes, and H = 0.5 can be seen as uncorrelated
white noise.

Since processes with LRD are self-affine processes [6], the techniques used to
measure LRD are the same to those to find self-affinity. Most popular examples of
self-affine processes are Brownian motion and Gaussian white noise. Both processes
can be generalized by introducing the concept of fractional differentiation leading
to fractional Brownian motion (fBm) and fractional Gaussian noise (fGn).

Many methods to estimate H are used under the assumption that the series
studied are fBm-type (or fGn-type), so, as is discussed in Serinaldi [2], it is very
important to distinguish between fBm and fGn type series in order to estimate H

exponent correctly.
We focused our research on the study of estimating Hurst exponent within the

wavelet transform framework and proposing a modification of the AWC method [7],
using a more robust variance estimator of detail coefficients [8, 9]. We analyze two
classes of time series: synthetic series provided by computational algorithms with
predefined Hurst exponents and rainfall series from different regions in Argentina,
presenting climatological variability. Rainfall prediction is a very challenging task
due to its dependence on many meteorological parameters. Because of the complex
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nature of rainfall, the uncertainty associated with its predictability continues to be an
issue in rainfall forecasting. In the literature there are few reports of Hurst exponents
in rainfall series from South America [3, 10], only one of them is from Argentina
[11].

The rest of the paper is divided into five sections. In the next section methods
for estimating Hurst exponent are reviewed. The new proposal is also presented.
Section 3 provides a description of time series we analyzed, and in Sect. 4 a
comparison of the results that were obtained in each case is shown. In Sect. 5 we
give some concluding remarks, and directions for future research are mentioned.

2 H Estimators

There are different ways to analyze signals which exhibit long-range-dependent
features. They have been used as a basis for estimation of the Hurst exponent H .
In this work it is shown how an estimator based on the wavelet transform and
in a multiresolution analysis framework can be defined. The proposed estimator
is related to the details rather than the approximation and has good statistical and
computational properties. It is not necessary to detect the type of signal (stationary
or nonstationary) before applying this H estimator. This is a good advantage with
respect to other techniques where a prior knowledge of the type signal is required.
Some analysis about the anti-persistence of some series is shown to be incorrect
because of the inappropriate use of some estimation methods. Research supports
the opinion that methods designed for stationary fGn can fail to provide correct
values of H if they are applied to nonstationary fBm. A theoretical discussion about
this point can be found in Serinaldi, [2], and in Cannon et.al., [12].

2.1 The Rescaled Range (R/S)

This method to compute Hurst exponent [5, 13] has been used for many authors and
is analyzed in many articles [2, 14].

Given a time series xn, n = 1, . . . , N , the method comprises the following steps:

• For n = 1, 2, . . . , N

– The mean, m = 1
n

∑n
i=1 xi , and the summation of time series relative to m,

yn = xn−m, i.e., the cumulative deviate series z: zn = ∑n
i=1 yi are calculated.

– Range series, Rn = max (z1, z2, . . . , zn) − min (z1, z2, . . . , zn)

and a standard deviation of the series, Sn =
√

1
n

∑n
i=1 (xi − m)2,

are created.
– The rescaled range statistics series (R/S)

(R/S)n = Rn

Sn
is calculated.
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The foundation of the method is that, based on the self-affinity, it can be expected
that (R/S)n ≈ knH , i.e., E

[
(R/S)n

] ≈ knH , for n → ∞, where E[x] is the
expected value and k is a positive constant that is not dependent on n.

The Hurst exponent is derived by plotting (R/S)n as a function of log(n) and
fitting a straight line. The slope of the line gives H estimator.

2.2 Wavelet Analysis

In this section we give a brief sketch of the multiresolution analysis aspect of
wavelets and also about the continuous and the discrete wavelet transforms.

As is described with detail in [15–17], a multiresolution analysis (MRA) consists
in a collection of nested subspaces Vj , j ∈ Z satisfying a set of properties.
MRA involves successively projecting a signal f (s) to be studied into each of the
approximations subspaces Vj . Since Vj ⊂ Vj+1, the approximation in Vj is coarser
than the approximation in Vj+1. The information that is removed when going from
one approximation to the next coarser is called the detail, and MRA shows that
the detail signals can be obtained from the projections of f onto a collection of
subspaces, the Wj , called the wavelet subspaces. In other words, the information in
a signal f can be written as a collection of details at different resolutions or scales
and a low-resolution or coarse approximation.

From MRA theory there exists a function ψ , called the mother wavelet, derived
from φ, the scale function, such that its templates constitute a Riesz basis for Wj .
As the approximations in Vj are coarser and coarser approximations of f , φ needs
to be a low-pass filter; on the other hand, ψ is a band-pass function.

The continuous wavelet transform (CWT) is

Wψf (a, b) =
∫ ∞

−∞
f (t)ψa,b(t)dt a, b ∈ R, a > 0 (2)

where ψa,b(t) = 1√
(a)

ψ( t−b
a

) are basis functions obtained by scaling and shifts

of a mother wavelet function ψ(t), which must satisfy
∫ ∞
−∞ ψ(t)dt = 0 and

its Fourier transform ψ̂(ω) is a band-pass filter, with fast decay. More details
about the admissibility condition can be found in [15]. The dilation and translation
parameters, a and b, respectively, vary continuously. The transform Wψf (a, b) can
be interpreted as the energy of f of scale a at t = b and is often represented
graphically and plotted as two-dimensional images.

If the mother wavelet is real and the signal f (t) has finite energy, the discrete
wavelet transform can be written as

DWψf (j, k) = 〈
f,ψj,k

〉
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where j and k ∈ Z are, in general, dyadic values of a and b. In this way the DWT
can be seen as a mapping from L2(R) → l2(Z) given by

f (t) → {{a(J, k), k ∈ Z} , {d(j, k), j = 1, · · · , J, k ∈ Z}} .

These coefficients are defined through inner products of f with shifted and scaled
versions of the scaling function φ and the mother wavelet ψ , whose definition
depends on whether one chooses to use an orthogonal, semi-orthogonal, or bi-
orthogonal DWT [18]. They are computed in practice from a fast recursive algorithm
which has low computational cost.

2.2.1 The Average Wavelet Coefficient Method

A time series X(t) is called self-similar with self-similarity parameter H (or H -self
similar), if for any positive scale factor c satisfies a power law X(ct) ≈ cH X(t).
In this case, a scale parameter will affect assimptotically the variance of wavelet
transform, hereinafter referred to as W(a, b) (Eq. 2):

V ar(a) = E(W(a, b))2 − (E(W(a, b)))2 ≈ aβ (3)

where the exponent β ∈ [−1, 3]. In [19] a relationship between H and β for self-
affine is found. For this reason, the definition of Hurst exponent is:

• H = β+1
2 , for β ∈ [−1, 1), if the signal is fGn,

• H = β−1
2 , for β ∈ [1, 3], if the signal is fBm.

The average wavelet coefficient method (AWC) proposed by Simonsen et al. [7]
can be summarized in the following algorithm:

• Step 1: Wavelet transform is applied. Scaling and detail coefficients are obtained.
• Step 2: The averaged wavelet coefficients for a fixed scale j are calculated.
• Step 3: A log-log plot of detail coefficients versus scale a is done. The slope of

the straight line is 1
2 + H .

2.2.2 The Modified Average Wavelet Coefficient Method

Improvements to AWC wavelet method described above can be obtained using more
robust estimation methods in Step 2 [8].

We propose, given a series x1, . . . , xm, to estimate the variance of detail
coefficients (Eq. 3) with

• the median absolut deviation (MAD):

MAD(W(a, b)) = Med(
∣∣W(a, b) − Med(W(a, b))

∣∣) (4)
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which is another measure of dispersion and corresponds to the median of the
absolute deviations from the detail coefficient’s median [20].

We call the AWC method, using this estimator, the AWC-MAD method.

3 Time Series

The data used in our study is described in this section. First we use synthetic
series (Sect. 3.1) and in Sect. 3.2 rainfall series from different climatic regions of
the Argentine Republic.

3.1 Synthetic Series

We generated 30 synthetic series for different Hurst exponent values (H =
0.2, 0.4, 0.6, 0.8), using MATLAB code wfbm.m. The programming sentence
FBM = wfbm(H,L) returns a fractional Brownian motion signal of parameter H and
length L, following the algorithm proposed by Abry and Sellan [1]. Each series has
32768 datapoints and Daubechies orthogonal wavelet Db10 (Fig. 1) is used [18].

In Figs. 2 and 3 examples of series fBm-type are shown.
Since fGn-type series represent the increments of fBm-type processes and both

the signals are characterized by the same H value by definition, estimators designed
for fGn-type series can be applied to fBm-type sequences after differentiation, and
conversely estimators designed for fBm-type processes can be applied to fGn-type
series after integration. fGn-type series are generated taking the first difference in
fBm-type series, obtained with wfbm.m. Examples are shown in Figs. 4 and 5.

Fig. 1 Daubechies wavelet Db10
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Fig. 2 Fractional Brownian motion fBm-type series with H = 0.4
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Fig. 3 Fractional Brownian motion fBm-type series with H = 0.8

3.2 Rainfall Series

The environment is a very important problem in the world today. Climate change is
the process in which the weather is gradually changing because of pollution, among
other issues.

Global warming means truly global warming: the atmosphere, the oceans, and
the ground are all warming. As a result, ice is melting, seas are rising, storms are
getting more severe, and floodings and droughts are getting worse. Since a few
decades ago, researchers want to know how rainfall has changed during the seasons.
The trend they found was clear – the rainy and drought seasons are increasing. As
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Fig. 5 Fractional Gaussian noise fGn-type series with H = 0.8

consequence, the study of rainfall series and their predictability is a very important
task today. It was mentioned in Sect. 1 that rainfall series are an observable of a
dynamical system that depends on different variables. For this reason, we not only
study the time evolution of the series, but also we focus on their spatial behavior
(latitude and longitude).

In the literature we found a unique report with rainfall series from La Pampa,
Argentina [11]. Therefore, in a first stage we applied the methods described in
Sect. 2 to these series. The second stage consists of analyzing different climato-
logical regions of Argentina.
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3.2.1 La Pampa’s Rainfall Series

The report of Perez et al. [11] mentioned above is limited to some locations in the
province of La Pampa, and the Hurst exponent was calculated using the R/S method
for annual rainfall series. La Pampa is a province of Argentina, located in the center
of the country, and it is dominated by mild climate. Precipitation is highly variable
from year to year and generally decreases from east to west and from north to south.
The area covers a strip of approximately 400 km in a latitudinal direction (35◦S to
38◦30′S) and 100 km in a longitudinal direction (64◦30′W to 63◦30′W ), where the
progress and decline of agriculture depend on rainfall. Mean annual precipitation
ranges from 260 mm in the southwest to 820 mm in the northeast. In this work, we
used time series corresponding to the same geographical locations and the same
period of time (from 1960 to 2010), which can be seen in Fig. 6.

3.2.2 Argentina’s Rainfall

To have an overview of the different climatic regions of Argentina, we have selected
34 cities, whose locations can be seen on the map (Fig. 7).

Argentina geographic regions are very dissimilar. There are plains and mountain
ranges, woods and jungles, and arid, swampy, or clayish lands. Traversing the
country along its latitude (3779 km) is a long way [21].

From the point of view of geography, Argentinian regions contemplated in this
work can be divided into four different types of climate according to its most salient
features:

• Warm Climate: It is found in the northeastern angle of Argentina.
• Mild Climate: The amount and distribution of rainfall determine two varieties of

mild climate, to the east, pampas or humid weather with strong oceanic influence
on the southeast coast of Buenos Aires, and a strip west, temperate transition
occurs, to the arid climate.

• Cold Climate: The nival cold is characterized by permafrost, rainfall exceeding
800 mm, and westerly winds.

• Arid Climate: According to the altitude and latitude, this climate shows four
varieties: high-mountain arid, sierras-and-fields arid, steppe arid, and cold arid.

Although Argentina is considered to have a temperate climate, it has very humid
regions such as Misiones and regions very arid like San Juan. Figure 8 shows the
rainfall series of the two provinces. One located in El Dorado, Misiones, and the
other one in Campamento Filo de Sol, San Juan. When comparing them, there is a
great variety in the range of rainfall and the dynamics.
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Fig. 6 Geographical locations from La Pampa, Argentina

4 Results

4.1 Synthetic Series

In the literature there are methods that are applicable to series of fBm-type and
others that only can be applied to fGn series [2].

Tables 1 and 2 show the mean and standard deviation values computed for 30
synthetic series of type fBm and fGn, respectively. These results were obtained for
each H value and after application of R/S, AWC, and AWC-MAD methods. It can
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Fig. 7 Climatological distribution of República Argentina, and geographical locations

be observed from both tables that the AWC-MAD method reaches closer values to
the true H than R/S and AWC. R/S is appropriate for nonstationary (fGn) series, so
a previous analysis is necessary, while our method does not have this requirement.

Fig. 8 Rainfall series, in millimeters, of Misiones and San Juan (1960 to 2010)
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In addition, it is important to point out that H values for time series of type fGn are
better than the ones obtained for fBm-type series.

It is also observed from Tables 1 and 2 that using AWC-MAD method, the H

values obtained are better for fGn-type series.

4.2 Rainfall Series

An objective in this work is to study hydrological patterns in different climatic
regions of Argentina in order to find long-term correlation in the rainfall series.
Persistence is an indicator that present events not only influence the near future but
will also have a long-term impact.

4.2.1 La Pampa’s Rainfall Series

For compare our study with [11], we use the database of the Administración
Provincial del Agua, Ministerio de Obras y Servicios Públicos, Gobierno de La
Pampa [23], containing data about annual rainfall for the period 1960–2010, i.e., 84
datapoints of each series. The time series corresponding to the locality of Realico
has been discarded, because its length was not as reported in [11].

In the first column of the Table 3 the selected locations are listed. In the second
column the results obtained in [11] using the R/S method are presented. In the third
column, R/S∗ are the results of the R/S method applied to the database in [23].
Finally, the last column corresponds to H values which were obtained using the
AWC-MAD method.

Table 3 shows that the difference between the values presented in [11] and
the ones we obtained is lower than 0.3. In all cases time series are persistent.
Furthermore, the values of H that were obtained applying the wavelet method are
lower than those with R/S methods. However, it is important to point out that

Table 1 Hurst exponent
values for fBm-type series

H R/S AWC AWC-MAD

0.2 0.9847 ± 0.0105 0.1698 ± 0.0635 0.1803 ± 0.0658

0.4 1.0048 ± 0.0153 0.3692 ± 0.0564 0.3826 ± 0.0555

0.6 1.0071 ± 0.0119 0.5505 ± 0.0562 0.5647 ± 0.0566

0.8 1.0074 ± 0.0063 0.7042 ± 0.0529 0.7189 ± 0.0550

Table 2 Hurst exponent
values for fGn-type series

H R/S AWC AWC-MAD

0.2 0.3197 ± 0.0080 0.1963 ± 0.0252 0.2081 ± 0.0226

0.4 0.4706 ± 0.0108 0.3916 ± 0.0257 0.4038 ± 0.0306

0.6 0.6329 ± 0.0156 0.5846 ± 0.0318 0.5939 ± 0.0339

0.8 0.7880 ± 0.0121 0.7774 ± 0.0352 0.7883 ± 0.0424
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Table 3 Values of the Hurst
exponent for rainfall series of
La Pampa

Locality R/S R/S∗ AWC-MAD

Alpachiri 0.86 0.853 0.496

BLarroulde 0.91 0.874 0.775

Bernasconi 0.82 0.819 0.614

Doblas 0.82 0.874 0.738

ECastex 0.96 0.835 0.712

GPico 0.96 0.896 0.715

Guatrache 0.97 0.787 0.780

Lonquimay 0.93 0.917 0.744

SRosa 0.77 0.838 0.310

Table 4 Hurst exponent values for warm climate

Province Locality Lat. ; Long. AWC-MAD

Formosa Com. La Rinconada 23◦5′ ; 61◦5′ 0.2668

Formosa 26◦5′ ; 58◦5′ 0.3023

Santiago del Estero Alberdi 26◦5′ ; 62◦5′ 0.4500

Chaco Santa Sylvina 27◦5′ ; 61◦5′ 0.5365

Tucumán La Cocha 27◦5′ ; 65◦5′ 0.4320

Corrientes Gral. Alvear 28◦5′ ; 56◦5′ 0.5602

Santa Fé Puerto Ocampo 28◦5′ ; 59◦5′ 0.4810

Entre Ríos San Gustavo 30◦5′ ; 59◦5′ 0.4305

Alpachiri and Santa Rosa series would be anti-persistent based on the wavelet
method results.

4.2.2 Argentina Rainfall Series

Data sets were collected from Base de Datos Climáticos de la República Argentina
[22] corresponding to monthly rainfall ranging from 1960 to 2010. We take monthly
data because for the daily data, there are many zeros in the real series not simulated.
As described in Sect. 3.2.2, Argentina has a wide variety of climates, from wet to
dry, of tropical heat or cold snow, through different types of mild climates. For this
reason we choose series from different regions, grouping them according to the type
of climate.

As it was mentioned before, Hurst exponent is a measure of the degree of
dependency of the rainfall time series. In Table 4, we present warm weather series,
indicating the geopolitical location: province to which they belong, locality and
latitude and longitude, and the values of H estimated with AWC-MAD method,
in the last column.

In particular, we observe that they are anti-persistent series, except for Chaco and
Corrientes.
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Table 5 Hurst exponent values for mild climate

Province Locality Lat. ; Long. AWC-MAD

Córdoba Leones 32◦5′ ; 62◦5′ 0.2063

Obispo Trejo 30◦5′ ; 63◦5′ 0.2673

La Pampa Colonia Santa Teresa 37◦5′ ; 63◦5′ 0.5345

Santa Rosa 36◦5′ ; 64◦5′ 0.6277

Entre Ríos San Gustavo 30◦5′ ; 59◦5′ 0.4305

Gdor. Mansilla 32◦5′ ; 59◦5′ 0.2978

CABA CABA 34◦5′ ; 58◦5′ 0.3317

Buenos Aires Blaquier 34◦5′ ; 62◦5′ 0.5494

Junín 35◦5′ ; 60◦5′ 0.5391

Tandil 37◦5′ ; 59◦5′ 0.3784

Bahía Blanca 38◦5′ ; 62◦5′ 0.5654

In the case of the mild climate, we have selected 11 series (see Table 5), whose
locations follow the previous table. Due to its climatic characteristics and flat relief
(or pampas plain), this region is important for agricultural or livestock development,
and it is also where the largest population is concentrated.

The values of this region range from the anti-persistent to the persistent as we
move southwest, except for the mountain town of Tandil.

The arid climate is the one that covers the greatest territory and is subdivided into
four varieties, depending on the geography. Table 6 shows 14 time series distributed
throughout the region.

Table 6 Hurst exponent values for arid climate

Province Locality Lat. ; Long. AWC-MAD

Jujuy Susques 23◦5′ ; 66◦5′ 0.4314

Catamarca Cerro El Cóndor 26◦5′ ; 68◦5′ 0.4419

San Juan Campamento Filo del Sol 28◦5′ ; 69◦5′ 0.7175

La Rioja Tama 30◦5′ ; 66◦5′ 0.4945

Mendoza Puente del Inca 32◦5′ ; 69◦5′ 0.6757

San Rafael 34◦5′ ; 68◦5′ 0.4225

Malargüe 36◦5′ ; 68◦5′ 0.6589

Santiago del Estero Mailín 28◦5′ ; 63◦5′ 0.2721

San Luis La Pampa Grande 32◦5′ ; 66◦5′ 0.4695

Arizona 35◦5′ ; 65◦5′ 0.3455

La Pampa Gdor. Duval 38◦5′ ; 66◦5′ 0.5471

Buenos Aires Viedma 40◦5′ ; 62◦5′ 0.5324

Neuquén Añelo 38◦5′ ; 69◦5′ 0.5935

Río Negro Sierra Colorada 40◦5′ ; 67◦5′ 0.6374
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Table 7 Hurst exponent
values for cold climate

Province Locality Lat. ; Long. AWC-MAD

Neuquén Achico 40◦5′ ; 70◦5′ 0.5018

The values of AWC-MAD greater than 0.5 are observed in the series that
correspond to the arid mountain climate (long. 69.5◦) and Sierra Colorada, near
the cold climate.

Finally, we wanted to consider the four types of weather in this study, but in
the case of cold weather, we had only one series, since the database [22] has no
information below the 40◦S parallel, neither from the island territories in the South
Atlantic. In Table 7 the near random value of H is shown.

5 Conclusions

We present a surpassing proposal to the AWC method, called AWC-MAD method.
Both techniques use the wavelet transform considering several time scales, so they
have a predictive power related to the self-affinity of the series.

Results obtained for synthetic series show that AWC-MAD method has a better
performance than the R/S, the most used method to compute Hurst exponent, still
when the nature of the series is known. This fact encouraged us to use AWC-MAD
to compute Hurst exponent in rainfall series.

The prediction of meteorological variables is a subject of a great deal of research,
given the concern about climate change. However, it is recent the emergence of
studies that consider the dynamics of these systems and fractality to characterize
the self-affinity of the time series.

In this paper we deal with the characterization of rainfall series in Argentina.
First, we compare AWC-MAD with the unique result found in the literature in which
the authors used R/S in annual rainfall series from La Pampa, Argentina. Then, we
compute H of monthly series from different climatological regions in Argentina. As
future work, we want to test the AWC-MAD method with time series of different
nature, such as financial time series. With respect to the rainfall series, it is suggested
that correlation with other meteorological variables should give a more complete
characterization of their dynamics. Further analysis with larger databases is also
planned.
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Application of Wavelet Transform
to Damage Detection in Brittle Materials
via Energy and Entropy Evaluation of
Acoustic Emission Signals

Juan P. Muszkats, Miguel E. Zitto, Miryam Sassano, and Rosa Piotrkowski

Abstract Acoustic emission (AE) hits from uniaxial compression tests of andesite
rock samples were processed with the continuous wavelet transform (CWT). The
quest for frequency bands with minimum entropy values arrived at 150 and 250 kHz
as those related to macro-fracture mechanisms. A preprocessing algorithm was
developed in order to attenuate the influence of reflected signals at the inner
interfaces of the material. It is based on the detection of abrupt phase changes of the
CWT coefficients. Entropy calculations performed with the hits already processed
permitted a reliable study of the AE entropy evolution in the relevant frequency
bands and its relationship with the corresponding cumulative AE energy evolution.

1 Introduction

Compressive failure in brittle materials, like rocks submitted to load, consists of an
alternation of cracking processes: micro-cracks initiation at certain preexistent flaws
followed by micro-cracks coalescence into macro-cracks, macro-cracks growth and
branching into new micro-cracks, fragmentation, and final collapse. Thus, tracking
of macro-crack initiation and growth seems to be an appealing method for studying

J. P. Muszkats (�)
Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina

Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Buenos Aires, Argentina
e-mail: jpmuszkats@comunidad.unnoba.edu.ar

M. E. Zitto
Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina

M. Sassano
Universidad Nacional de Tres de Febrero, Buenos Aires, Argentina

Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina

R. Piotrkowski
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina

Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
J. P. Muszkats et al. (eds.), Applications of Wavelet Multiresolution Analysis,
SEMA SIMAI Springer Series 4, https://doi.org/10.1007/978-3-030-61713-4_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61713-4_5&domain=pdf
mailto:jpmuszkats@comunidad.unnoba.edu.ar
https://doi.org/10.1007/978-3-030-61713-4_5


76 J. P. Muszkats et al.

damage evolution in brittle materials [1–4]. The energy applied (load) to the rocky
material is transferred and stored as strain-stress energy in different locations.
In those locations where thresholds are suddenly surpassed, energy is dissipated
in fracture energy or surface energy. As in any dissipative process, the causes
of damage can be described within the frame of the irreversible thermodynamic
framework. In this sense, damage parameters, such as entropy generation, account
for degradation and loss of structural integrity [5–8].

Acoustic emission (AE) consists of elastic waves generated in the interior of
materials. These waves are induced by a rapid change in the stress-strain condition
around a given point. In the case of brittle materials, nucleation, advance, opening,
and closure of fractures are the main sources for these waves. AE propagates under-
going attenuation and multiple reflections, especially in heterogeneous materials.
Eventually, the waves reach the surface, where they can be detected by piezoelectric
sensors that transform them into electrical signals, i.e., the AE signals, which are
then processed for further analysis. AE signals are hits of very low amplitude
(about 10 μV) and high frequency (ranging from 1 kHz to 1 MHz), so they have
to be immediately amplified. AE equipment stores the waveforms and calculates
characteristic parameters such as energy, root mean square (RMS) value, amplitude,
rise time, event duration, etc. [9].

AE is ultimately generated by the rupture of atomic bonds. It involves different
spatial and temporal scales ranging from microscopic events to seismic faults.
Because of this, seismic information and AE in rocks are complementary, both
in their applications and in their theoretical basis. Furthermore, AE has been
established decades ago as a well-suited tool to evaluate the dynamic state of bulk
and surface defects [10]. This can be accomplished by analyzing elastic waves
emitted during micro-fracture processes. It is nowadays used in material science and
engineering research, including work reported by the authors [2, 3, 11, 12]. Because
AE is typically a nonstationary process, wavelet transform (WT) is an appropriate
tool for these studies [13].

In previous work [2] the complex Morlet continuous wavelet transform (CWT)
was applied to AE signals from dynamic tests conducted on a reinforced concrete
slab with a shaking table. The frequency band corresponding to the fracture
of concrete was identified by comparing the scale position of maximum CWT
values with the response acceleration obtained in seismic simulations. The AE
signals were reconstructed in this scale (frequency) band, and cumulative acoustic
emission energy (CAE) was calculated. The resulting CAE was compared with the
cumulative dissipated energy (CDE) of the tested structure, an accepted parameter
for characterizing the mechanical damage in structures: a good agreement was
found between the normalized histories of CAE and CDE. Thus, the particular
scale (frequency) in which AE signals were reconstructed could be attributed to the
fracture of concrete.

In more recent work [14, 15], CWT was applied to AE signals resulting from
uniaxial compression tests of andesite rock samples up to breakage. AE signals
were filtered into different frequency bands with the CWT. Some of these bands
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were identified as characteristic frequencies of the fracture process, in accord with
a physical model of seismic focus that describes the advance and propagation of
waves during the fracture of brittle materials [4]. Precise results were achieved
considering the nonstationary nature of the involved physical processes. The
wavelet energy b-value, a variant of the Gutenberg-Richter law that rules in
geophysics [3, 16], was successfully applied to trace the inception of dangerous
cracks.

In the present paper, which continues [14, 15], we intend to go further into the
detection and evaluation of macro-fracture in rocks. To this end entropy and phase
studies are introduced in our processing of AE signals.

Irreversible thermodynamic processes cause degradation of materials, and dam-
age is a phenomenon with increasing disorder. The energy dissipated in damage
(fracture) results in entropy increase, according to the second law of thermody-
namics. Thus, it is important to investigate the damage-entropy relationship while
loading material [17]. The premise of Gibbs physical entropy as a limit of the
mathematical Shannon entropy is demonstrated in [18] and applied in empirical
work in complex systems in other fields [19]. In recent works, Shannon entropy
is successfully applied to AE signals for detecting damage in different rocky
materials [20, 21]. In the present work, the wavelet Shannon entropy is applied
twofold to the same signals as those analyzed in [15]. Firstly, to detect specific
signals coming from macro-crack nucleation and advance. Secondly, to follow
precisely and concisely the macro-fracturing evolution of andesite rock under
load. Another novelty from previous work is that the signals under study were
preprocessed with a specifically developed technique. This technique focuses on
the phase of complex wavelet coefficients and allowed us to reduce the distortion
caused by wave reflections on the detected signals.

2 Experiment

Four cylindrical andesite rock samples were tested as described in [22]. These
specimens from Cerro Blanco, San Juan, Argentina, were 75 mm in diameter and
150 mm in length. As illustrated in Fig. 1, the rock samples were subjected to
uniaxial compression up to rupture. The equipment consisted of a CGTS machine
with a 100 tons capacity of servo-hydraulic type and a closed loop. The actuator
displacement speed was 0.12 mm/min.

AE was monitored with three piezoelectric sensors. The present work focuses on
the results gathered by the broadband sensor (100–1000 kHz) in one of the samples.
The sampling frequency was 1 MHz, the AE system (also shown in Fig. 1) was a
PCI-2 two-channel PAC plate, and the commercial software AEWIN was used for
the initial determination of classical AE parameters. This experiment resulted in a
collection of about 75,000 AE hits, saved in individual files. The analysis of such
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Fig. 1 The experimental setup and the AE system

a big quantity of information proved to be time-consuming but manageable for a
standard computer.

3 Mathematical Resources

This section contains the description and definition of techniques that we have
been consistently using throughout our previous work [14, 15], as well as entropy
definitions and the algorithm developed in the present work for preprocessing data.

3.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined in [23] by means of a
continuous wavelet function ψ(t). This function must verify an exponential decay
and also that

∫
R

ψ = 0. Given a function f ∈ L2(R), its CWT is defined as

c(j, k) = 1√|j |
∫ ∞

−∞
f (t) ψ

(
t − k

j

)
dt (1)

if j �= 0, while c(0, k) = 0. In each CWT coefficient c(j, k), the value of j

indicates a scale (and therefore a frequency), while k denotes time displacement.
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In the present work, we used the Morlet wavelet defined by

ψ(t) = π
− 1

4 · e6it · e
− t2

2 (2)

Being continuously defined for every j and k, practical implementation arises
numerical issues. Approximation algorithms and details can be found in [24].

In order to illustrate the CWT when applied to AE, the plot of a typical hit is
shown in the upper part of Fig. 2. Its corresponding scalogram in the lower part of
Fig. 2 illustrates the distribution in time and frequency of the wavelet energy density
|c(j, k)|2, with value increasing from darker to lighter tones.
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Fig. 2 A typical hit. Upper: waveform. Lower: scalogram (increasing from darker to lighter tones)

The simplest way to perform bandpass filtering with the CWT consists in
reconstructing the signal only with the CWT coefficients of the desired frequencies.
Figure 3 illustrates this procedure applied to the same previous hit, filtered at
250 kHz. The bandpass frequency is clear in the corresponding scalogram, shown
in Fig. 3.
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Fig. 3 Same hit as in Fig. 2 filtered around 250 kHz. Upper: waveform. Lower: scalogram
(increasing from darker to lighter tones)

The acoustic emission energy (AEE) of a hit is defined in [3] as

AEE =
∑

x2
i �t (3)

where x is the reconstructed signal after filtering and �t is the sample rate.

3.2 Wavelet Entropy

The Shannon entropy can be adapted as in [11] to obtain a measure of the intrinsic
order in a signal by means of its CWT coefficients. When CWT is numerically
implemented, only a finite quantity of the cjk coefficients defined by (1) can be
obtained. Thus, the wavelet power (WP) corresponding to the jth scale is defined by

WPj =
N∑

k=1

∣∣cjk

∣∣2 (4)
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The fraction of wavelet power corresponding to time k is expressed by the pjk

coefficients:

pjk =
∣∣cjk

∣∣2
WPj

(5)

With these elements, wavelet entropy of the jth band is formally equal to the
Shannon entropy:

Sj = −
N∑

k=1

pjk log pjk (6)

Figure 4 shows for the hit previously considered the values of entropy calculated
for the different scales (frequencies). Coalescence of micro-cracks into macro-
cracks, which implies the transition from less to more organized structures, is
expected to express in frequencies with lower entropy. Therefore, those frequencies
for which relative minima of entropy occur are of special interest.

Fig. 4 The same hit as in Fig. 2 reaches relative minima of entropy for the 150 and 250 kHz bands

3.3 Preprocessing

Each detected AE hit is the complex consequence of a large number of random
events [25]. In particular, reflections at the multiple interfaces present in natural
rocks constitute a special problem. If a second mechanical pulse reaches the detector
while the first one is still operating, the apparent duration, the waveform, and the
entropy of this composite signal are affected. To reduce the effect of reflections,
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a special algorithm was developed. Given that the Morlet wavelet coefficients
are complex numbers, it is expected to find their phase varying cyclically when
analyzing a perfectly periodic signal. When reflections occur, they imply the
sudden overlapping of vibrations, with the consequent phase changes. These phase
variations are detected by studying the deviations from the expected cyclical plot.
Figure 5 shows, for the same hit previously studied, the phase plot of the CWT
coefficients corresponding to the 250 kHz scale. The square denotes the instant when
the amplitude surpasses a threshold for the first time. Diamonds mark the instants
when sudden phase changes occur. Those diamonds closest to the square delimit the
relevant part of the hit, preserved for ulterior entropy calculations.

Fig. 5 Same hit as in Fig. 2 filtered around 250 kHz: phase of wavelet coefficients versus time.
Square: amplitude surpasses a threshold for the first time. Diamonds: sudden phase change

Thus, the most relevant (and least distorted) part of each hit is selected, and this
analysis is performed separately for each scale (see Fig. 6). For our present work, it
was only after the described preprocessing that entropy for every hit and scale was
calculated.

4 Results and Discussion

Despite being continuously defined in (1), the CWT can only be calculated for
a discrete set of values j and k. Moreover, the Heisenberg uncertainty principle
imposes an unavoidable trade-off between time and frequency localization.
Therefore, the choice of the scales for which the CWT is calculated must rely
upon a trustworthy frequency resolution. In the present work, several features
were taken into account: the range of the broadband sensor (100–1000 kHz), the
sampling frequency (1 MHz), and the duration of the shortest hits (estimated to be
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Fig. 6 Preprocessed hit. Ligher plot: original filtered hit. Darker plot: preserved section of the hit

about 10 μs). Under these premises, the width of frequency bands was chosen to be
50 kHz. Figures 2 and 3 illustrate this choice.

In previous work [14, 15] the detection of characteristic frequencies relied upon
energy considerations. Frequency bands near 150 and 250 kHz were chosen to be
those most representative of the fracture mechanism. Figure 7 plots the cumulative
AEE calculated according to (3). The signal with its whole frequency content is
plotted as a dashed line, while the signal reconstructed at 150 kHz is plotted in
black, and the signal reconstructed at 250 kHz is plotted in gray. Both filtered signals
and the original signal show similar energy evolution and jumps. The 150 and the
250 kHz reconstructed signals also show a very similar energy level throughout the
whole experiment.

The entropy concept provides a complementary tool that proved to be consistent
with previous results. For the present purposes, entropy is considered as a measure
of disorder in a signal. Therefore, lower entropy values suggest the occurrence
of more organized phenomena. After the preprocessing already described, every
single hit was analyzed as in Fig. 4. Frequencies with relative minimum entropy
were detected according to a threshold criterion (eventually, a single hit might have
several relative minima).

Figure 8 is a histogram which accounts for the density of hits that present
a minimum entropy at a given frequency band. Table 1 gathers basic statistical
information about entropy and frequency after analyzing the whole set of hits.
It also shows the average time duration of the preprocessed hits, discriminated
by frequency band. This duration showed to be consistently smaller as frequency
increases.

According to Table 1, 150 and 250 kHz frequencies turned out to be those for
which entropy reaches a relative minimum more often. It is also important to notice
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Fig. 7 Cumulative AEE along the test. Dashed: whole frequency content. Black: 150 kHz. Gray:
250 kHz

Table 1 Preprocessed hits statistics

Frequency Number of μ (entropy σ (entropy Average time duration

(kHz) entropy minima mean value) standard deviation) (miliseconds)

100 891 5.7 0.5 0.65

150 26847 4.9 0.7 0.37

200 16612 4.8 0.8 0.37

250 20988 4.6 0.8 0.29

300 9795 4.5 0.8 0.25

350 9291 3.7 1 0.12

that these minima were mostly reached by the end of the experiment, as shown
in Fig. 8. Therefore, these hits are of special interest and most likely to express
a characteristic frequency of the fracturing process. Figure 9 shows the entropy
and its time evolution for those hits which attain a minimum at 150 kHz (black
line) and those which attain a minimum at 250 kHz (gray line). In order to make
it easier to read the plot, a moving mean of 1000 points was applied to the results.
The entropy value for the 250 kHz proved to be consistently smaller throughout
the whole experiment. This would imply that the 250 kHz frequency band is more
strongly related to the advance of macro-cracks, a more organized phenomenon.

The AEE defined in (3) can be calculated for reconstructed hits after bandpass
filtering. It is of particular interest to trace the time evolution of this energy:
therefore the cumulative AEE for each frequency band was calculated. Upper
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Fig. 8 Frequency bands and density of hits with minimum entropy

Fig. 10 shows the cumulative AEE for the 150 kHz band, while lower Fig. 10 shows
the cumulative AEE for the 250 kHz band (both in thin lines). These graphs also
show the time evolution of the corresponding entropy already shown in Fig. 9. It
can be appreciated that entropy evolution changes significantly, even shows relative
minima, before cumulative energy jumps. That is, it anticipates the expression of
dangerous damage.

Fracture in rocks is an interplay of macro-fracture, nucleation, advance and
branching into micro-cracks, followed by further coalescence of micro-cracks into
macro-cracks. The results displayed in Figs. 7, 8, 9, and 10 suggest that the main
features of the whole fracturing process in andesite can be followed by the evolution
of wavelet energy and wavelet entropy in the selected bands. Moreover, the 250 kHz
band, due to its lower entropy values, seems to be connected to nucleation and
advancement of macro-cracks.
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Fig. 9 Entropy of preprocessed hits at 150 kHz (black) and 250 kHz (gray). A moving mean of
1000 points was applied
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Fig. 10 AEE (thin) and entropy (thick). Upper: at 150 kHz. Lower: at 250 kHz
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5 Conclusions

The minimum entropy criterion applied to AE hits resulted in a reliable tool for the
detection of relevant frequency bands. It is sensibly improved by the preprocessing
of the signals, which reduces the distorting effects due to inner reflections in the
studied material.

Comparison with previous work and other criteria [14, 15] reinforces the
conclusion that the 150 and 250 kHz are characteristic frequencies of the andesite
rock, related to macro-fracture mechanisms.

Those hits most related to each of these bands were specifically studied. Their
entropy evolved in accordance with the cumulative AEE. Major changes in AEE
are anticipated and accompanied by abrupt oscillations in entropy. These sudden
changes, both in AEE and entropy, indicate an abrupt reorganization of the material
rheological state.

Acknowledgments The present work received financial support and is part of the Program
UBACyT 20020160100038BA.

References

1. Huq, F., Liu, J., Tonge, A.L., Graham-Brady, L.: A micromechanics based model to predict
micro-crack coalescence in brittle materials under dynamic compression. Eng. Fract. Mech.
(2019). https://doi.org/10.1016/J.ENGFRACMECH.2019.106515

2. Zitto, M.E., Piotrkowski, R., Gallego, A., Sagasta, F., Benavent-Climent, A.: Damage assessed
by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored
with acoustic emission. Mech. Syst. Signal Process. (2015). https://doi.org/10.1016/J.YMSSP.
2015.02.006

3. Sagasta, F., Zitto, M.E., Piotrkowski, R., Benavent-Climent, A., Suarez, E., Gallego, A.:
Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures
subjected to seismic loadings. Mech. Syst. Signal Process. (2018). https://doi.org/10.1016/j.
ymssp.2017.09.022

4. Filipussi, D., Piotrkowski, R., Ruzzante, J.: Characterization of a crack by the acoustic emission
signal generated during propagation. Procedia Mater. Sci. (2012). https://doi.org/10.1016/j.
mspro.2012.06.036

5. Amiri, M., Modarres, M.: An entropy-based damage characterization. Entropy (2014). https://
doi.org/10.3390/e16126434

6. Imanian, A., Modarres, M.: A thermodynamic entropy-based damage assessment with applica-
tions to prognostics and health management. Struct. Health Monit. (2018). https://doi.org/10.
1177/1475921716689561

7. Vaughn, N., Kononov, A., Moore, B., Rougier, E., Viswanathan, H., Hunter, A.: Statistically
informed upscaling of damage evolution in brittle materials. Theor. Appl. Fract. Mech. (2019).
https://doi.org/10.1016/J.TAFMEC.2019.04.012

8. Kang, Y., Liu, H., Aziz M., Kassim, K.A.: A wavelet transform method for studying the energy
distribution characteristics of microseismicities associated rock failure. J. Traffic Transp. Eng.
(Engl. Ed.) (2019). https://doi.org/10.1016/J.JTTE.2018.03.007

https://doi.org/10.1016/J.ENGFRACMECH.2019.106515
https://doi.org/10.1016/J.YMSSP.2015.02.006
https://doi.org/10.1016/J.YMSSP.2015.02.006
https://doi.org/10.1016/j.ymssp.2017.09.022
https://doi.org/10.1016/j.ymssp.2017.09.022
https://doi.org/10.1016/j.mspro.2012.06.036
https://doi.org/10.1016/j.mspro.2012.06.036
https://doi.org/10.3390/e16126434
https://doi.org/10.3390/e16126434
https://doi.org/10.1177/1475921716689561
https://doi.org/10.1177/1475921716689561
https://doi.org/10.1016/J.TAFMEC.2019.04.012
https://doi.org/10.1016/J.JTTE.2018.03.007


88 J. P. Muszkats et al.

9. Grosse, C., Ohtsu, M. (eds.): Acoustic Emission Testing. Springer, Heidelberg (2008)
10. Ono, K. : Acoustic Emission. In: Rossing T.D. (ed.) Springer Handbook of Acoustics. Springer

Handbooks. Springer, New York (2014)
11. Piotrkowski, R., Castro, E., Gallego, A.: Wavelet power, entropy and bispectrum applied to

AE signals for damage identification and evaluation of corroded galvanized steel. Mech. Syst.
Signal Process. (2009). https://doi.org/10.1016/j.ymssp.2008.05.006

12. Piotrkowski, R., Gallego, A., Castro, E., García-Hernandez, M.T., Ruzzante, J.E.: Ti and Cr
nitride coating/steel adherence assessed by acoustic emission wavelet analysis. NDT & E Int.
(2005). https://doi.org/10.1016/J.NDTEINT.2004.09.002

13. Meyer, Y., Ryan, R.: Wavelets: algorithms & applications. Society for Industrial and Applied
Mathematics, Philadelphia (1993)

14. Filipussi, D., Muszkats, J., Sassano, M., Zitto, M., Piotrkowski, R.: Fractura de roca andesita y
análisis espectral de señales de emisión acústica. Tecnura. 23(61), 45–56 (2019)

15. Muszkats, J.P., Filipussi, D., Zitto, M.E., Sassano, M., Piotrkowski, R.: Detection of fracture
regimes in andesite rock via the energy evolution of acoustic emission signals in relevant
frequency bands. In: Ceballos, L., Gariboldi, C., Roccia, B. (eds.) VII Congreso de Matemática
Aplicada, Computacional e Industrial, pp. 489–492. ASAMACI, Río Cuarto, Córdoba (2019)

16. Rao, M.V.M.S., Prasanna Lakshmi, K.J.: Analysis of b-value and improved b-value of acoustic
emissions accompanying rock fracture. Curr. Sci. (2005). https://doi.org/10.2307/24110936

17. Mahmoudi, A., Mohammadi, B.: On the evaluation of damage-entropy model in cross-ply
laminated composites. Eng. Fract. Mech. (2019). https://doi.org/10.1016/J.ENGFRACMECH.
2019.106626

18. Truffet, L.: Shannon entropy reinterpreted. Rep. Math. Phys. (2017). https://doi.org/10.1016/
S0034-4877(18)30050-8
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