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Abstract. Simultaneous localization and mapping (SLAM) is process
highly relevant for autonomous systems. Accurate sensing provided by
range sensors such as the M8 Quanergy LiDAR improves the speed and
accuracy of SLAM, which can become an integral part of the control
of innovative autonomous cars. In this paper we propose a hybrid point
cloud registration method that profits from the high accuracy of clas-
sic iterated closest points (ICP) algorithm, and the robustness of the
Normal Distributions Transform (NDT) registration method. We report
positive results in an in-house experiment encouraging further research
and experimentation.

Keywords: Point cloud registration · LiDAR · SLAM · Hybrid
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1 Introduction

The simultaneous localization and mapping (SLAM) [1–3] aims to estimate a
reconstruction of the environment along with the path traversed by the sensor
has become an integral part of the robotic operating system (ROS) [4,5]. One of
the most widely used kinds of sensors used for SLAM are laser based depth mea-
surement sensors, or light detection and ranging (LiDAR) sensors, which have
been used for scanning and reconstruction of indoor and outdoor environments
[6], even in underground mining vehicles [7]. Fusion of LiDAR with GPS allows
for large scale navigation [8] of autonomous systems.

Our aim in this paper is to propose a hybridization of two well known point
cloud registration methods. Hybridization is akin to the composition of subsys-
tems in circuit like systems. It can be done in series, parallel or interleaving the
systems in time. In this paper we propose a serial hybridization where one algo-
rithm serves to provide a robust initial condition to the other. We have carried
out SLAM experiments over different datasets using the Iterative Closest Point
(ICP) [9], and the Normal Distribution Transform (NDT) [10]. We have found
that the ICP method provides less noisy registrations under specific conditions,
though it is much more fragile than the NDT. Figure 1 shows a reconstruction
of the initial point clouds with ICP and NDT methods, respectively, for the
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inhouse data recording that is the demonstrator for the works in this paper.
As we can see, ICP reconstruction generates a better surface with higher point
density than NDT. Nevertheless, the ICP method is not able to properly register
point sets at turning sections of the path traversed by the sensors, as shown in
Figure 2, where the registration becomes unwieldy after this turning point. In
other words, the ICP methods deals poorly with big rotations.

Fig. 1. Results of registration with ICP method, (a) 2D plot of one the range detection
at an specific position, (b) reconstructed ray sampling of the 3D surface. Results of
registration with NDT method, (c) 2D plot of one the range detection at an specific
position, (d) reconstructed ray sampling of the 3D surface.

This paper is structured as follow: A brief presentation of the environment
where experiment was carried out and the LiDAR sensor used in it, Quanergy
M8. Next, we provide a formal description of the 3D registration methods used
in the paper: the Iterative Closest Point (ICP) and the Normal Distribution
Transform (NDT). Then, the proposed hybrid NDT algorithm with ICP ini-
tialization is described. Finally, experimental results are presented for standard
NDT registration and for the hybrid system described in this article, compar-
ing root mean square error of the Euclidean distance, the path obtained and
resulting reconstructed surfaces.

2 Materials

New affordable LiDAR sensors, such as the M8 from Quanergy that we are
testing in this paper, allow for further popularization of LiDAR based SLAM
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Fig. 2. Estimated trajectory (white points) and registered cloud of points using ICP.

applications. Due to its specific innovative characteristics, the M8 sensor still
needs extensive testing by the community in order to assume its integration in
the newly developed systems [11]. The work reported in this paper is intended
partly to provide such empirical confirmation of the M8 sensor quality continuing
experimentation over this sensor data reported elsewhere [12]. Both the time
sequence of M8 captured point clouds and the Matlab code used to carry out
the computational experiments has been published as open data and open source
code1 in the Zenodo repository for reproducibility.

Fig. 3. Nominal path followed during the LiDAR recording.

Location and Experiment Setting. The experiment was carried out in the third
floor of the Computer Science School of the UPV/EHU in San Sebastian. Figure
3 shows the nominal path followed by the M8 LiDAR on a manually driven
mobile platform. The actual path shows small perturbations around the nominal
path. We do not have a precise actual path measurement allowing to quantify
the error in the trajectory.

1 https://doi.org/10.5281/zenodo.3636204.

https://doi.org/10.5281/zenodo.3636204
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LiDAR M8 Quanergy. The Quanergy M8 LiDAR sensor is a multi-laser system
with 8 2D line scanners located on a spinning head. This system is based on Time-
of-Flight (TOF) technology whose spin rate is 5Hz and 20Hz and its maximum
range is 100m. The Table 1 shows the M8 LiDAR main parameters. Besides, M8
LiDAR comes with 2 desktop applications to manage and visualize point clouds,
a SDK to record and show data in real time, and a SDK in framework ROS.

Table 1. Quanergy M8 sensor specifications

Parameter M8 sensor specifications

Detection layers 8

Returns 3

Minimum range 0.5m (80% reflectivity)

Maximum range >100m (80% reflectivity)

Range accuracy (1σ at 50m) < 3 cm

Spin rate 5Hz–20Hz

Intensity 8-bits

Field of view Horizontal 360◦ - Vertical 20◦ (+3◦/−17◦)
Data outputs Angle, Distance, Intensity, Synchronized Time Stamps

3 Point Cloud Registration Methods

Point cloud registration methods are composed of two steps: (a) finding the
correspondence between points in one cloud (the moving) to the points in the
other cloud (the reference), and (b) the estimation of the motion parameters
that achieve optimal match of the moving points to the reference points after
correcting for the motion. If the motion is modeled by a rigid body or an affine
transformation, then a matrix transformation common to all points is estimated.
If the motion is some non linear deformation, then we have to estimate a flow
field. In this paper we are restricted to rigid body transformations, which are
compositions of a translation and a rotation. The transformation estimation
process takes the form of a minimization problem where the energy function is
related to the quality of the correspondence achieved. Next we recall the basics
of the two point cloud registration methods. Figure 4 shows the structure of the
algorithms as flow diagram of their basic iterations.

3.1 Iterated Closest Point

The most popular and earliest point cloud registration method is the Itera-
tive Closest Point (ICP) proposed by Besl in 1992 [9]. This technique has been
exploited in many domains, giving rise to a host of variations whose relative
merits are not so easy to assess [13]. Given a point cloud P = {pi}Np

i=1 and
a shape described by another point cloud X = {xi}Nx

i=1 (The original paper
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Fig. 4. ICP (a) and NDT (b) processes.

includes the possibility to specify other primitives such as lines or triangles
with well defined distances to a point, but we will not consider them in this
paper.) the least squares registration of P is given by (q, d) = Q (P, Y ), where
Y = {yi}Np

i=1 is the set of nearest points from X to the points in P , i.e.
pi ∈ P ;yi = arg min

x∈X
‖x − pi‖2, denoted Y = C (P,X), and operator Q is

the least squares estimation of the rotation and translation mapping P to Y
using quaternion notation, thus q = [qR | qT ]t is the optimal transformation
specified by a rotation quaternion qR and a translation qT , and d is the reg-
istration error. The energy function minimized to obtain the optimal registra-
tion is f (q) = 1

Np

∑Np
i=1 ‖yi − R (qR)pi − qT ‖2, where R (qR) is the rotation

matrix constructed from quaternion qR. The iteration is initialized by setting
P0 = P , q0 = [1, 0, 0, 0, 0, 0, 0]t, and k = 0. The algorithm iteration is as follows:
(1) compute the closest points Yk = C (Pk,X), (2) compute the registration
(qk, dk) = Q (P0, Yk), (3) apply the registration Pk+1 = qk (P0), and (4) termi-
nate the iteration if the results are within a tolerance: dk − dk+1 < τ .

3.2 Normal Distribution Transform

The key difference of the NDT [10] method is the data representation. The space
around the sensor is discretized into regular overlapped cells. The content of each
cell having more than 3 points is modeled by a Gaussian probability distribu-
tion of mean q = 1

n

∑
i xi and covariance matrix Σ = 1

n−1

∑
i (xi − q) (xi − q)t,

so that the probability of a LiDAR sample falling in the cell is of the form:
p (x) ∼ exp

(
− 1

2

)
(x − q) Σ−1 (x − q). Given an initial rigid body transforma-

tion T (x;p0), where p is the vector of translation and rotation parameters, a
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Algorithm 1. The hybrid ICP-NDT registration algorithm.
Input: sequence of point clouds {N (t)}T

t=0 captured by the LiDAR
Output: overall point cloud M (T ), sequence of registered transformations {Tt}T

t=1

Method = “ICP”
For t = 0, . . . , T

1. N (1) (t) ←remove ground plane from N (t)
2. N (2) (t) ← remove ego-vehicle from N (1) (t)
3. N (3) (t) ← downsample N (2) (t)
4. If t = 0 then M (0) = N (3) (t); GOTO step 1
5. (Tt, et) ← register Tt−1

(
N (3) (t)

)
to M (t − 1) using Method

6. If et > θe then Method = “NDT”
7. N (4) (t) ← Tt

(
N (2) (t)

)

8. M (t) ← merge
(
M (t − 1) , N (4) (t)

)

reference point cloud {xi} modeled by the mixture of the cells Gaussian distri-
butions, and the moving point cloud {yi}, the iterative registration process is as
follows: the new laser sample points yi are transformed into the reference frame
of the first cloud y′

i = T (yi;pt−1), where we find the cell where it falls and use
its parameters (q,Σ) to estimate its likelihood p (y′

i). The score of the trans-
formation is given by score (p) =

∑
i p (y′

i). The maximization of the score is
carried out by gradient ascent using Newton’s method, i.e. pt = pt−1 +�p. The
parameter update is computed solving the equation H�p = −g, where H and
g are the Hessian and the gradient of the −score (pt−1) function, respectively.
Closed forms of H and g are derived in [10] for the 2D case. An extension to 3D
is described in [14].

4 Hybrid Point Cloud Registration Algorithm

In this section, hybrid registration algorithm which uses ICP and NDT methods
is presented. As ICP reconstructed surface generates a better surface, i.e. with
greater point density than NDT, but ICP method is not able to properly register
point sets at turning sections. Our hybrid algorithm that initially uses ICP
method changing to the NDT method when the registration error becomes higher
than a threshold.

Algorithm 1 presents an algorithmic description of the proposed hybrid reg-
istration method. The input to the algorithm is the sequence of point clouds
recorded by the LiDAR N (t); t = {1, . . . , T}. The point sets are obtained while
the LiDAR sensor is being displaced manually in the environment according to
the approximate path in Figure 3. The final result of the process is a global
point cloud M (T ) that contains all the recorded 3D points registered rela-
tive to the first acquired point cloud N (0), and the estimation of the LiDAR
recording positions relative to the initial position given by the composition of
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the point cloud registration transformations estimated up to this time instant
{Tt}Tt=1. The process of each point cloud is as follows: For each point cloud
N (t) acquired at time t, firstly we remove the ground plane applying a seg-
mentation denoted N (1) (t). Secondly we remove the ego-vehicle points, denoted
N (2) (t). Thirdly, we down-sample the point cloud to decrease the computation
time and improve accuracy registration, denoted N (3) (t). For the initial point
cloud N (3) (0) becomes the global merged reference cloud M (0). For subsequent
time instants t > 0, the fourth step is to estimate the transformation Tt of the
acquired data N (3) (t) optimally registered to the previous global point cloud
M (t − 1). For this estimation, we may use ICP or NDT methods. We then
apply this transformation to the acquired point cloud previous to downsampling
N (4) (t) = Tt

(
N (2) (t)

)
, which is used to obtain the new global registered point

cloud by merging M (t) ← merge
(
M (t − 1) , N (4) (t)

)
. Our hybrid strategy con-

sists in using the ICP method in the initial steps of the algorithm, up a time
instant when the registration error meets a given threshold, after this time point
the system shifts to use the NDT method to continue registration of all remain-
ing point clouds. The rationale is that the ICP acts as a good initial estimation
for the ensuing NDT steps, as will be demonstrated in the results section below.

5 Results

Figure 5 shows the evolution of the registration error for ICP, NDT and the
hybrid algorithm presented in the previous section, setting θe = 0.25. The plot
scale is logarithmic in order to be able to represent the three error course in
the same plot. The ICP algorithm gives the highest error. At the beginning the
error is low, but it is increasing when we add more point clouds, until it explodes
in iteration t = 1308. Both NDT and the proposed hybrid method registration
errors are bounded over time. The error of the hybrid method error is the same
as the error of the ICP until the point where the algorithm shifts from ICP to
NDT at the 138-th iteration. Afterwards the hybrid method has a slightly lower
error that the NDT due to the quality of the initialization provided by the ICP.
Table 2 gives numerical registration errors. However, the effect of using the ICP
initialization is much more evident when assessing the overall results. Figure 6
shows the trajectory estimation (up) and the projection of the reconstructed
surfaces on the floor plan (bottom) when using only NDT registration method.
Though the error of the method is bounded, it can be appreciated that after
the second turning point a noticeable drift appears, causing misalignment of the
reconstructed surfaces with the actual floor plan walls. (Direction of advance
is from right to left). On the other hand, the hybrid method trajectory and
reconstruction results are provided in Figure 7 showing a much better fit to
the floor plan walls. We conclude that the ICP provides a much more robust
initialization for NDT.
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Fig. 5. Evolution of the registration error (log plot) for NDT (blue dots), ICP (red
dots), and hybrid ICP-NDT method (green dots). (Color figure online)

Table 2. Registration error for ICP method, NDT method and hybrid ICP-NDT
method

ICP method (for 1308 iterations) NDT method Hybrid ICP-NDT method

Maximum error 6.3528× 1017 0.3245 0.3208

Median error 7.2580× 1014 0.0251 0.0256

Total error 9.4935× 1017 119.4010 122.0764
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Fig. 6. Estimated trajectory (white points) and registered cloud of points using NDT
(Above). Projection of the NDT registered point cloud on the plan of stage 3 of the
building.
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Fig. 7. Estimated trajectory (white points) and registered cloud of points using hybrid
method proposed (Above). Projection of the hybrid registered point cloud on the plan
of stage 3 of the building.

6 Conclusion

In this paper we report a hybridization between two registration methods for 3D
point clouds, namely the Iterative Closest Point (ICP) and the Normal Distri-
butions Transform (NDT). The experimental point clouds have been recorded
with the M8 Quanergy LiDAR sensor traversing an indoor path the third floor
of the Computer Science School of the UPV/EHU in San Sebastian. The gen-
eral SLAM algorithm followed in this paper includes preprocessing (detect and
remove ego-vehicle and floor, and down-sample), registration, transformation
and merger of point cloud. We report the registration error, the estimation
of the path traversed by the sensor, and the reconstructed point cloud. The
hybrid method produces a slightly lower error than the NDT. On a qualitative
assessment the hybrid method produces better surface reconstruction and path
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estimation. Future works will consider the analysis and exploitation of out-door
recording methods.
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