
A Multi-objective Evolutionary
Algorithms Approach to Optimize a Task

Scheduling Problem

Nicolás Cobos , Ixtli Barbosa , Germán A. Montoya ,
and Carlos Lozano-Garzon(B)

Systems and Computer Engineering Department,
Universidad de los Andes, Bogotá, Colombia

{n.cobos,iy.barbosa,ga.montoya44,calozanog}@uniandes.edu.co

Abstract. Nowadays, the size of the problems to be solved in the busi-
ness world has increased largely; since companies have more resources
and more demand for products and services from customers. As a result,
different meta-heuristics have been developed in the computing world
with the aim of finding an optimal solution in a shorter runtime. Involv-
ing a real-life case, this paper will present the approach of a multi-
objective task scheduling model, solved with evolutionary algorithms;
specifically, NSGA-II and SPEA2. In addition, a mathematical model
was proposed and its solution was calculated in order to obtain results
that allow us to compare the accuracy of the results obtained by the pro-
posed algorithms. The running time and total cost of the task scheduling
were the metrics for the evaluation of the results. Between the evolution-
ary algorithms, NSGA-II obtained the best results in both metrics.

Keywords: Multi-Objective Evolutionary Algorithms ·
Multi-objective optimization · NSGA-II · SPEA2 · Task scheduling

1 Introduction

The problem of resource allocation is referred to as: “the problem that seeks to
find the optimal allocation of a fixed amount of resources to a certain number of
activities in such a way that it minimizes the cost generated by the allocation” [1].
This problem is often implemented with a minimax in the objective function;
this kind of function has been studied a lot for its simplicity and versatility
since it can be adapted to be used to represent a large number of problems. An
example of its extension and generalization is the relationship with the high-
tech industries; in these companies, this problem has been connected with the
production planning to maximize their efficiency [1].

The most basic formulation of the resource allocation problem according to
Handbook of Combinatorial Optimization [1] is presented in the set of Eqs. 1.

c© Springer Nature Switzerland AG 2020
H. Florez and S. Misra (Eds.): ICAI 2020, CCIS 1277, pp. 299–312, 2020.
https://doi.org/10.1007/978-3-030-61702-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61702-8_21&domain=pdf
http://orcid.org/0000-0001-7102-0621
http://orcid.org/0000-0003-3010-9990
http://orcid.org/0000-0003-0841-2184
http://orcid.org/0000-0003-2920-6320
https://doi.org/10.1007/978-3-030-61702-8_21

300 N. Cobos et al.

minimize(maximize1≤j≤n(fj(xj))
subject to:
n∑

j=1

xj = N,

xj ≥ 0, ∀j

(1)

Regarding the use of evolutionary algorithms to solve the resource allocation
problem, it can be said that it is a topic from the 2010s. One of the most relevant
paper was written by Xia and Shen [2], in this paper the authors addressed the
allocation of resources in a cloud computing system in order to maximize the
utility that a company receives from each user it serves and to satisfy the required
level of service (latency, availability, etc.). To solve this, they used three types
of algorithms: a genetic algorithm (GA), an ant colony algorithm with a genetic
algorithm (ACO-GA), and a quantum genetic algorithm (QGA). Furthermore,
a mapping process was used between the resource allocation matrix and the
chromosomes of each algorithm, searching for pairs of resources based on the
availability matrices of ACO-GA, and coding the differences in values between
the resources used and the minimum resource required by QGA. With extensive
simulation, the authors proved that evolutionary algorithms, in this case the
quantum one, have a better performance than other alternative solutions such
as dynamic programming or other meta-heuristics.

There is a similar work to that carried out in this project, the authors combine
an evolutionary algorithm with a greedy algorithm to make a task allocation for
multi-agent systems [3]. Authors argue that the evolutionary algorithm (in this
case D-NSGA III) is specifically used to optimize different targets simultaneously,
thus ensuring diversity of responses and search capacity; and the combination
of the evolutionary algorithm with the greedy serves to improve the ability to
search for local optimums.

This paper is based on a real problem where there is a number of tasks that
need to be fulfilled by agents on a business day. So, in order to do that, the
scheduling must assign the work orders to the agents so they can complete the
activities. Constraints that were taken into account involve the available hours
that a worker has on a certain day, the abilities that the worker has, and the ones
that a certain work order requires. At the same time, two objective functions
are set to be optimized: minimize the total cost of scheduling and minimize the
maximum amount of orders that a single agent completes in a day.

The first step to solve this problem was to propose a mathematical model.
Then, that mathematical model was translated into an optimization model in
Java and Python; the next step was to implement the different solving methods.
The linear solving method was implemented in Python with the help of Pyomo
[4], which is a collection of Python software packages to formulate optimization
models. Meanwhile, the evolutionary algorithms were implemented in Java using
JMetal [5], which is an object-oriented Java-based framework for multi-objective
optimization with meta-heuristics.

A MOEA Approach to Optimize a Task Scheduling Problem 301

The main goal of this work was to establish which of the solving methods is
optimal. For this, it was proposed that the metrics to compare were the results of
the objective functions (total cost of scheduling, the maximum amount of work
orders completed by an agent in a day), and the time it takes the algorithm to
get to the final solution.

The remainder of this paper is organized as follows. In Sect. 2, the general
problem will be stated. In the third one, the mathematical optimization model
approach will be explained. In Sect. 4, there will be an explanation of the imple-
mentation of the mathematical model in Python and Java. And finally, we will
discuss the results and future work of the project.

2 General Problem Statement

The problem used in this paper exemplifies the actual condition of some Colom-
bian company that needs a making decision app that supports the day by day
agent task scheduling. Each task is required by one company client, and it is
necessary to specify at least three parameters: a specific limited time to attend
the task, the required skills to do the activity, and the location where the activ-
ity is going to take place. In relation to the first parameter, if the time limit is
surpassed and the activity has not been attended this will represent a monetary
cost for the company because they will break the Service Level Agreement (SLA)
previously covenanted with the client.

The agents that solve the activities are company employees, and we need to
have some characteristics defined: they have a skill set, a defined working time,
an hourly wage defined by the company, and a starting location in the city. It
is important to remark that some agents need to go to the central office before
they start with the tasks, but some others can just go directly from their house
to the location of the activity.

The company defined five optimization attributes:

– Cost: this attribute is related to the agent’s salary; the company wants to
use the agents with the highest hourly wage in the activities that really need
them to be solved. This saves the company operation costs because they will
be spending less money on payroll.

– Distances traveled by the agents: this attribute, does not need a deeper expla-
nation; the company expects that an agent does not have to go across the
whole cite to take care of a task if there is another one available and closer.

– Fairness of activities assigned to the agents: the third attribute, is related
to giving an equal amount of work to all the agents. Sometimes, occurs that
some agents have to work all day without rest meanwhile some others just
have one task scheduled. In order to promote equality, the company wants
the difference in allocation between agents to be as small as possible.

– Matching abilities between the task and the agent: This attribute, maximize
the number of matching skills between the task and the agent assigned. This
can be confusing because it will make no sense to assign someone how does

302 N. Cobos et al.

not have the skills to an activity; but in some cases, this is happening. In
an ideal world, the company will hire as many people as needed; but in the
real-world, the resources are limited so they have to do what they can; for
this reason, it is common to see employees unqualified in certain activities.
Although this is planed, it is wanted to happen with the minimum possible
frequency.

– Number of orders solved before the limit time: The last attribute, maximize
the number of orders solved before the limit time of each task, according
to the SLA. The company wants to fulfill their responsibilities as much as
possible.

3 Mathematical Optimization Model Approach

The first step was to determine the sets in the problem. For this, the files that the
company had given us were reviewed; from them, it was deduced that the prob-
lem could be represented taking into account only this four attributes: orders,
employees, hours, and skills. To be more realistic with the number of tasks that
can be done in one day, we decide to add an estimate of the transportation time
between it.

The sets, and parameters required by our mathematical model are described
in the Table 1.

Table 1. Notations of the proposed model.

Sets Description

E Set of employees

O Set of orders

H Set of working time hours available

S Set of skills

Parameters Description

Bes Binary parameter that represents if an employee e ∈ E has the skill s ∈ S

Cos Binary parameter that represents if an order o ∈ O require the skill s ∈ S

Deh Binary parameter that represents if an employee e ∈ E has availability at time h ∈ H

Fe Integer parameter that represents the hourly wage of the employee e ∈ E

For this multi-objective proposal, we defined the decision variable as the
relation between the employees, orders and hours. This relation is represented
through the binary variable Xeoh which takes the value of 1 if the employee
e ∈ E goes to the activity o ∈ O at the hour h ∈ H (see Eq. 2).

Xeoh =
{

1 employee e ∈ E goes to the activity o ∈ O at the hour h ∈ H
0 otherwise (2)

A MOEA Approach to Optimize a Task Scheduling Problem 303

3.1 The Objective Function

Considering the main needs for the decision making app, we select only the cost
and fairness attributes as part of the main function.

For the cost, we minimize the sum of all the employees’ hourly wage mul-
tiplied by the sum of all the hours and all the tasks in Xeoh as you can see in
Eq. 3.

min
∑

e∈E

Fe

∑

h∈H

∑

o∈O

Xeoh (3)

For fairness, we decided to minimize the variable P, this variable represents
the number of agent tasks for the agent with the most assigned activities (see
Eq. 4).

min P

where: P = max(
∑

h∈H

∑

o∈O

Xeoh) ∀e ∈ E (4)

3.2 Model Constraints

In order to fulfill the initial optimization requirements, the attributes that were
not used for the objective function were modeled as constraints.

The first constraint is related to the fact that an order can only be assigned
to one employee at a specific time (see Eq. 5).

∑

h∈H

∑

e∈E

Xeoh = 1 ∀o ∈ O (5)

The next constraint is close related with the previous one, it is desirable that
all the orders are attends at the working day, as you can see in Eq. 6.

∑

o∈O

Xeoh ≤ 1 ∀e ∈ E ∀h ∈ H (6)

Our third constraint ensures that an agent e can only be assigned to an order
o at a specific hour h if he has the available time to fill it (see Eq. 7).

Deh ≥ Xeoh ∀e ∈ E ∀h ∈ H ∀o ∈ O (7)

And the final constraint seeks that an employee e must have at least the
same skills that the order o requires, as you can see in Eq. 8.

BesXeoh ≥ CosXeoh ∀e ∈ E ∀h ∈ H ∀o ∈ O ∀s ∈ S (8)

304 N. Cobos et al.

4 Implementation

As previously mentioned, based on the data files provided by the company, we
established some assumptions as: a regular day involved 10 working hours, and
there were 2 skills that the task needed and/or the workers might have. Also,
from the files, we got that a task lasts approximately 15 min.

After having worked with different optimization frameworks, the ones that
provided what we required were Pyomo and JMetal. Pyomo is a Python-based,
open-source optimization modeling language with a diverse set of optimization
capabilities [6], and JMetal is an optimization framework based on Java [7].

4.1 Meta-heuristics Implementation

Taking into account that the company wants to find a set of optimal solutions,
we select the use of Multi-Objective Evolutionary Algorithms (MOEA) because
they allow us to find the Pareto front in a single run [8]. Specifically, algorithms
Non-dominated Sorting Genetic Algorithm (NSGA-II) and Strength Pareto Evo-
lutionary Algorithm (SPEA-II) were implemented.

NSGA-II and SPEA2. In this section, we show the original pseudocodes for
NSGA-II [9] and SPEA2 [10]. These pseudocodes were the basis to solve our
resource allocation problem, which are presented in the Algorithms 1 and 2.

Algorithm 1. NSGA-II Pseudocode.
1: Initialize P
2: P ′ = Non · dominated · sort(P)
3: StopRunning = false
4: while StopRunning is false do
5: Generate F fronts from P ′

6: Apply Crossover and Mutation to F
7: D = selection(F)
8: N = combine(F, D)
9: P ′ = Non · dominated · sort(N)

10: end while
11: return P ′

The pseudocode for the Non-dominated Sorting Genetic Algorithm (NSGA-
II) (Algorithm 1) is described in more detail in the following items:

– A population P is initialized, which corresponds to a set of possible solutions
of our problem (line 1).

– The previous solutions are ordered (in a non-dominated manner) and classi-
fied in different fronts F (lines 2 and 5).

– Crossover and Mutation are applied to the best fronts F (line 6).

A MOEA Approach to Optimize a Task Scheduling Problem 305

Algorithm 2. SPEA2 Pseudocode.
1: Set G = numberOfGenerations
2: Initialize P
3: S = ∅
4: for 1 to G do
5: Apply F itness to P and S
6: Define S with feasible solutions
7: Add non dominated solutions from P and S to S
8: Apply Truncation to S if its capacity is exceeded
9: Apply Tournament Selection to S

10: Apply Crossover and Mutation to S
11: end for
12: return S

– Once the fronts F are selected, a new population D is created (line 7).
– F and D populations are combined to create a new population N (line 8).
– The previous feasible solutions of N are ordered in a non-dominated manner

(line 9).
– A crowd-sorting process is performed to the best front’s solutions (line 9).
– A new population is created (line 9).
– If a stop-condition was achieved, we show the final population obtained. Oth-

erwise, we use the previous population to recalculate again the algorithm
(lines 4 and 11).

Likewise, the pseudocode for the Strength Pareto Evolutionary Algorithm
(SPEA-II) (Algorithm 2) is detailed in the following items:

– A number of generations is established. Notice that a high value of this num-
ber allows us to find better solutions (line 1).

– A population P is initialized, which corresponds to a set of possible solutions
of our problem (line 2).

– An empty set S is created. This set will be composed of non-dominated
solutions (line 3).

– Fitness of P and S is calculated, and the population S is established according
to the objective functions and constraints of our problem (lines 5 and 6).

– Non-dominated solutions from P and S are added to S (line 7).
– If the size of S exceeds a determined value, the Truncation operator is applied

for deleting repeated solutions (line 8).
– The Tournament Selection process is applied to S in order to select just one

individual from a comparison of two random individuals according to their
fitness (line 9).

– Crossover and Mutation are applied to S to obtain more variations of the
solutions (line 10).

– If the limit of iterations has not been exceeded, we proceed to do another
“for” iteration. Otherwise, we show the final population obtained (lines 4 and
12).

306 N. Cobos et al.

It is important to remark that, given the framework limitations the decision
variable, for the NSGA-II, were handled as integers, with an inferior limit of 0
and a superior limit of 1; and, for the SPEA2 was established to be binary.

Encoding Chromosome Definition. An evolutionary algorithm can generate
many solutions, at which each solution is called Individual, and a collection of
individuals is called Population. Each individual is established using a template
called Chromosome. In essence, a chromosome encodes information related to
decision variables or parameters, and, also, its structure defines the way the
fitness function is calculated. A chromosome can be either numerical, binary,
symbols, or characters depending on the problem [11].

In order to implement individuals based on our chromosome in JMetal, we
need to make a minor adjustment to our decision variable. As we observed in
Eq. 2, our decision variable Xeoh, depends on three sets; which is why it should
be modeled as a three-dimensional array (see Fig. 1). Unfortunately, the selected
framework only allows the implementation of chromosomes as a one-dimensional
arrays. Therefore, we proposed a “translation” in order to comply with the frame-
work requirements (see Fig. 2).

Fig. 1. Original chromosome proposed based on the mathematical model

Taking into account the previous consideration, the chromosome developed
by us will be briefly explained. A solution obtained by our evolutionary algorithm
is equivalent to the values of each decision variable previously mentioned in the
mathematical model formulation. Since the decision variables of this problem
are binary, a solution (individual) will be an array of binary elements. Due
to there are a high amount of decision variables involved in a relatively big
scenario, if the individuals are generated randomly, the computer would take
an excessive amount of time to find a feasible solution. To solve this problem,
some modifications were applied to the function that creates individuals. The
most important aspect of these modifications consists of verifying that each work
order was solved in the day only once.

A MOEA Approach to Optimize a Task Scheduling Problem 307

Fig. 2. Final chromosome proposed

The previous modification is explained as follows. First, imagine a scenario
with 5 work orders, 4 work hours and 3 agents to fulfill that order. The number
of decision variables in this case would be 60 because there is one variable for
each combination of the three elements. Each order would be associated to 12
decision variables, involving the combination of each of the hours and workers.
To ensure the condition previously mentioned, the process of creating an indi-
vidual started with a cycle. For each of the work orders the following procedure
was executed: choose a random number between 0 and the number of decision
variables associated with each order minus one (in this case: 12−1 = 11). Then,
you assign that order in that specific index (in terms of the problem, this means
to place a 1 in the index and leave the rest of the variables with 0). This ensures
that each one of the work orders will be fulfilled just once. After this procedure,
maybe the individual created implicates that the employee attends two different
work orders in the same work hour, which must be avoided. To solve this prob-
lem, each time an order is assigned to the worker, there is a previous checking
process to guarantee that there is no other order assigned in that hour.

Generation of Initial Population. It is important to highlight that we mod-
ified the original creation process implemented in JMetal. In the framework,
the chromosome creation is completely random; when we testing our proposal
with this implementation, a high execution time was presented to find a feasible
solution. Therefore, based on [3], we decided to modify this process in order to
create our chromosomes as a feasible solutions, allowing the algorithm to find
solutions faster. This technique improved dramatically the execution time of the

308 N. Cobos et al.

algorithm. Finally, we define 100 chromosomes as the initial population size; this
size was selected by trial and error.

Genetic Operators. The next step was the selection and configuration of
the genetic operators (selection, crossover, and mutation) to be used in our
implementation.

For the selection operator we used a binary tournament operator in order
to create the mating pool. Specifically, Binary Tournament consists of selecting
randomly two individuals. After, these two individuals are evaluated according
to its fitness values in order to select the one with the best fitness [12].

Related to the crossover operator, it was selected the single cross point oper-
ator with a probability value of 0.9. The single cross point method consists of
splitting in two parts the two individuals selected by the binary tournament
method, and then, combining these parts to generate a new individual [11].

Finally, for the mutation operator was configured the bit flip mutation func-
tion, which is independently applied to each bit in a solution and changes the
value of the bit [13]; the probability assigned to this operator was 1 divided by
the total number of variables (p = 1

|E|·|H|·|O|).

Completion Criteria. Based on the experimentation carried out, it was
defined that the completion criteria is the number of generations; 250 gener-
ations were specifically defined since any increase in this value did not generate
improvements to the solution found. In other words, 250 generations were enough
to obtain the best results of our specific problem.

4.2 Mathematical Model Implementation

On the other hand, with the Pyomo framework, the implementation followed
the three-dimension matrix proposed in the mathematical model so there was
no issue with the index use.

The real issue with Pyomo occurred when we tried to implement the fair-
ness optimization attribute because we were not allowed to do the min-max
optimization. Our solution propose was to make an adaptation to the model
inspired by the ε-constrain technique. Basically, this technique allows us to opti-
mize an objective function as a constraint in cases where is difficult to implement
all objective functions. In other words, an objective function is included as a con-
straint in the model, but at the expense of not being included as an objective
function anymore. More details of this technique are described in [14]. In this
sense, we defined a new constraint that set a maximum limit to the number of
orders that could be assigned to an employee. In order to see the model behav-
ior with different maximum limits, we configured the model to run several times
changing the limit between the values that the other methods suggested.

The other parts of the model were implemented just as shown in the math-
ematical model.

A MOEA Approach to Optimize a Task Scheduling Problem 309

5 Experimental Results

With the aim of verifying the correct performance of the model and the proposed
algorithms, we defined two main scenarios according to the typical situations of
order scheduling on the enterprise. The first one is made up by 150 orders,
30 employees and 10 working hours; whiles for the second scenario have been
configured 75 orders, 15 employees and also 10 working hours. Also was defined
the following assumptions:

– Each employee has a different hourly wage.
– 2 possible activities and employee skills.
– Not all employees possess all the skills and not all orders require all skills.

5.1 Experimental Results for the First Proposed Scenario

The proposed algorithms finds a feasible solution to the task scheduling problem
set up; the Pareto Front obtained is shown in Fig. 3 and the values are presented
in Table 2. As expected, the mathematical model presented the best Pareto front
since mathematical optimization methods guarantee to find optimal solutions,
while meta-heuristic optimization methods cannot guarantee that; for this rea-
son, NSGA-II and SPEA2 Pareto Fronts are not equal to Pyomo’s Pareto Front.
However, NSGA-II Pareto Front is closer to Pyomo’s Pareto Front than SPEA2
Pareto Front, whereby NSGA-II obtained better feasible solutions than SPEA2.

Comparing the execution times of the algorithms deployed, it was found
that NSGA-II executed in around 11 s, SPEA2 did it in 24.1 s and the linear
optimization algorithm that Pyomo executes in 330 s to obtain the solutions.
Finally, in terms of execution time, NSGA-II was the fastest approach.

Table 2. First scenario results

P value NSGA-II cost SPEA2 cost Pyomo cost (ε-constraint)

6 $ 13.590.000,00 – $ 12.000.000,00

7 $ 12.960.000,00 $ 13.365.000,00 $ 10.675.000,00

8 $ 12.525.000,00 $ 13.290.000,00 $ 13.675.000,00

9 – $ 13.210.000,00 $ 13.675.000,00

5.2 Experimental Results for the Second Proposed Scenario

For the second scenario, the Pareto fronts of the three methods are presented in
Fig. 4 and the values are shown in Table 3. As similar to the first scenario, the
mathematical model presented the best Pareto front, and also, NSGA-II Pareto
Front is closer to Pyomo’s Pareto Front than SPEA2 Pareto Front, whereby
NSGA-II obtained again better feasible solutions than SPEA2.

310 N. Cobos et al.

Fig. 3. Fist scenario Pareto fronts.

The execution times of our algorithms are the following, for the NSGA-II was
around 3 s, SPEA2 did it in 7 s and the Pyomo optimization runs took 2500 s.

Fig. 4. Second scenario Pareto fronts.

Table 3. Second scenario results

P value NSGA-II cost SPEA2 cost Pyomo cost (ε-constraint)

6 $ 3.925.000,00 $ 4.020.000,00 $ 3.660.000,00

7 $ 3.735.000,00 $ 3.880.000,00 $ 3.340.000,00

8 $ 3.710.000,00 $ 3.865.000,00 $ 3.340.000,00

9 $ 3.585.000,00 – $ 3.340.000,00

A MOEA Approach to Optimize a Task Scheduling Problem 311

6 Conclusions and Future Works

In this work, we presented a mathematical optimization model and meta-
heuristic approaches for a particular task scheduling problem. Specifically, evolu-
tionary algorithms such as NSGA-II and SPEA2 were implemented and adapted
to our problem in order to obtain feasible solutions. In this sense, several com-
ponents such as chromosome, crossover, and mutation methods were presented.
The NSGA-II and SPEA2 results were compared against the optimal results
offered by the mathematical optimization model.

As expected, the best Pareto front was obtained by the mathematical opti-
mization model (Pyomo implementation), and the second and third places were
for NSGA-II and SPEA2, respectively. In terms of execution time, NSGA-II was
the fastest in the evaluated scenarios, while SPEA2 and the mathematical opti-
mization model obtained the second and last place, respectively. That is, math-
ematical optimization model always obtained the worst execution times. In this
sense, if a company requires optimal solutions without execution time require-
ments, we recommend to use a mathematical optimization approach. However,
if a company needs to obtain solutions as soon as possible, a mathematical opti-
mization approach is not suitable, whereby it is recommended to use a meta-
heuristic. Therefore, for our particular problem, we suggest to use the NSGA-II
evolutionary algorithm.

According to future works, we propose to complement this work by adding
the following capabilities:

– Offer path solutions for each employee in order to accomplish the orders
taking into account time requirements and other limitations.

– Obtain resource allocation solutions for many working days, instead of one
day.

– Test our scenarios by implementing more meta-heuristics such as Particle
Swarm Optimization and Ant Colony.

– For large amounts of data, offer solutions by implementing parallelized meth-
ods.

References

1. Katoh, N., Shioura, A., Ibaraki, T.: Resource allocation problems. In: Pardalos, P.,
Du, D.Z., Graham, R. (eds.) Handbook of Combinatorial Optimization. Springer,
New York (2013). https://doi.org/10.1007/978-1-4613-0303-9 14

2. Xia, W., Shen, L.: Joint resource allocation using evolutionary algorithms in het-
erogeneous mobile cloud computing networks. China Commun. 15(8), 189–204
(2018)

3. Zhou, J., Zhao, X., Zhang, X., Zhao, D., Li, H.: Task allocation for multi-agent
systems based on distributed many-objective evolutionary algorithm and greedy
algorithm. IEEE Access 8, 19306–19318 (2020)

4. Center for Computing Research at Sandia National Laboratories: Pyomo. http://
www.pyomo.org/

https://doi.org/10.1007/978-1-4613-0303-9_14
http://www.pyomo.org/
http://www.pyomo.org/

312 N. Cobos et al.

5. Khaos Investigación. JMetal. https://jmetal.github.io/jMetal/
6. Hart, W.E., et al.: Pyomo-Optimization Modeling in Python, 2nd edn. Springer,

Heidelberg (2017). https://doi.org/10.1007/978-3-319-58821-6
7. Durillo, J., Nebro, A.: JMetal: a Java framework for multi-objective optimization.

Adv. Eng. Softw. 42(10), 760–771 (2011)
8. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-

Interscience Series in Systems and Optimization. Wiley, West Sussex (2001)
9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-

lutionary algorithm. Institut für Technische Informatik und Kommunikationsnetze
(TIK) 103, 5–6 (2001)

11. Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and
Applications. Advanced Information and Knowledge Processing Series. Springer,
Heidelberg (2004). https://doi.org/10.1007/1-84628-132-6

12. Rahman, R., Ramli, R., Jamari, Z., Ku-Mahamud, K.: Evolutionary Algorithm
with Roulette-Tournament Selection for Solving Aquaculture Diet Formulation.
Hindawi Publishing Corporation, London (2016)

13. Chicano, F., Sutton, A., Whitley, L., Alba, E.: Fitness probability distribution of
bit-flip mutation. Evol. Comput. 23(2), 217–248 (2014)

14. Mavrotas, G.: Effective implementation of the e-constraint method in multi-
objective mathematical programming problems. Appl. Math. Comput. 213, 455–
465 (2009)

https://jmetal.github.io/jMetal/
https://doi.org/10.1007/978-3-319-58821-6
https://doi.org/10.1007/1-84628-132-6

	A Multi-objective Evolutionary Algorithms Approach to Optimize a Task Scheduling Problem
	1 Introduction
	2 General Problem Statement
	3 Mathematical Optimization Model Approach
	3.1 The Objective Function
	3.2 Model Constraints

	4 Implementation
	4.1 Meta-heuristics Implementation
	4.2 Mathematical Model Implementation

	5 Experimental Results
	5.1 Experimental Results for the First Proposed Scenario
	5.2 Experimental Results for the Second Proposed Scenario

	6 Conclusions and Future Works
	References

