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Abstract

The cannabinoids are a family of chemical
compounds that can be either synthesized or
naturally derived. These compounds have
been shown to modulate a wide variety of
biological processes. In this chapter, the stud-
ies detailing the effects of cannabinoids on
sleep in laboratory animals are reviewed.
Both exogenous and endogenous
cannabinoids generally appear to decrease
wakefulness and alter rapid eye movement
(REM) and non-REM sleep in animal models.
In addition, cannabinoids potentiate the effects
of sedative-hypnotic drugs. However, the indi-
vidual contributions of each cannabinoid on
sleep processes is more nuanced and may
depend on the site of action in the central
nervous system. Many studies investigating
the mechanism of cannabinoid effects on
sleep suggest that the effects of cannabinoids
on sleep are mediated via cannabinoid
receptors; however, some evidence suggests
that some sleep effects may be elicited via

non-cannabinoid receptor-dependent
mechanisms. More research is necessary to
fully elucidate the role of each compound in
modulating sleep processes.
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7.1 Introduction

The term “cannabinoids” refers to endogenously-
produced, plant-derived, or synthetically-
produced oxygen-containing C21 aromatic
hydrocarbon compounds. The stereotypical and
most widely known cannabinoid is Δ9-tetrahy-
drocannabinol (Δ9-THC), which is the major
psychoactive constituent in the plant Cannbis
sativa (also referred as cannabis, marijuana,
etc.). Due to the high lipid solubility and low
water solubility of cannabinoids, it was long
believed that the pharmacological actions of
cannabinoids were due to the disruption of
phospholipids in the cell membrane (Pertwee
2005) Though there were hints that cannabinoids
might bind to a receptor (Edery et al. 1971), it was
not until the early 1990s that that two cannabinoid
receptors were cloned, CB1 (Matsuda et al. 1990)
and CB2 (Munro et al. 1993). Though other puta-
tive cannabinoid receptors have been described
(Laprairie et al. 2017), the pharmacological
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actions of cannabinoids occur primarily at the
CB1 and CB2 receptors, which are inhibitory G
protein-coupled receptors (Howlett 2002).

Cannabinoids can be divided into two groups.
The endogenous cannabinoids, referred to as
endocannabinoids, comprise a class of lipophilic
compounds based on the general structure of
modified arachidonic acid (AA) derivatives
(e.g. anandamide, 2-arachidonoylglycerol, etc.)
that are naturally produced by cells, while exoge-
nous cannabinoids represent the plant-derived or
synthetically-produced compounds that can be
either ingested, injected, or inhaled (Childers
2006; Martin et al. 2018). Both endogenous and
exogenous cannabinoids bind to either CB1, CB2

or both CB1/CB2 receptors located on many
tissues with varying degrees of affinity (Pertwee
2005). Moreover, both endogenous and exoge-
nous cannabinoids can allosterically modulate
other receptors, channels, and enzymes (Pertwee
2005; Hourani and Alexander 2018).

The effects of cannabinoids in health and dis-
ease are widely known (Lu and Anderson 2017).
Here, we review the effects of cannabinoids on
sleep in laboratory animals (Table 7.1).

7.2 Before the Discovery
of Cannabinoid Receptors

7.2.1 Exogenous Cannabinoids

The very first studies of sleep and cannabinoids in
laboratory animals involved the “classical” exog-
enous cannabinoids (e.g. Δ9-THC, Δ8-THC,
cannabidiol, cannabinol, etc). This group consists
of cannabinoids that are either cannabis-derived
compounds (phytocannabinoids) or their syn-
thetic analogues (Pertwee 2005). At a minimum,
it was known that these classic cannabinoids
caused a sedative, depressive, or catapletic state
in various laboratory animals, including nonhu-
man primates, dogs, cats, rats, mice, rabbits, and
gerbils, though specific and detailed changes in
sleep were not studied (Sassenrath and Chapman
1975; Grunfeld and Edery 1969; Edery et al.
1971; Scheckel et al. 1968; Carlini et al. 1970;
Lipparini et al. 1969; Mechoulam and Gaoni

1967). After these preliminary experiments,
researchers further examined the effects of
cannabinoids on sleep.

In cats administered an oral form of a mari-
juana distillate daily for 180 days, a decrease in
slow-wave sleep (SWS) and an increase in
“drowsy-light” sleep occurred at the 20th day of
drug administration. Moreover, these changes in
sleep persisted 40 days after cessation of the drug.
There were also changes in time spent awake and
in rapid eye movement (REM) sleep on isolated
days, but no significant and consistent changes
were observed throughout the drug trial (Barratt
and Adams 1973). Similar findings were found in
squirrel monkeys, where orally administered Δ9-
THC decreased SWS and increased drowsy sleep
and awake time (Adams and Barratt 1975).
Rabbits administered intravenous (IV) Δ9-THC
had a decreased number of REM bouts on the first
day that returned to normal on the third day post-
IV injection (Fujimori and Himwich 1973). In a
similar study, cats administered Δ8-THC IV or
intraperitoneal (IP) had fewer but longer REM
sleep bouts (Wallach and Gershon 1973). These
early studies provided evidence that cannabinoids
modulate sleeping patterns in laboratory animals.

Most of the later studies with cannabinoids
have been completed in rat and mouse models.
Many of these studies investigated the potentia-
tion of barbiturate or sedative-hypnotic drug-
induced sleeping time. The use of “sleeping
time” produced by a subsequent IP injection of a
barbiturate/sedative-hypnotic was a measure of
central nervous system (CNS) activity produced
by either: the stimulant or depressive effects on
the CNS of the co-administered drug, the
co-administered drug increasing or decreasing
penetration of the barbiturate into the CNS, or
the modulation of metabolism of the barbiturate
derived from the co-administered drug
(Stevenson and Turnbull 1974). Since the canna-
binoid receptors were not yet known, it was
thought that cannabinoids modulated sleeping
time though modifying metabolism or penetration
of the barbiturates. Various THC isomers and
their derivatives/metabolites, either inhaled or
injected IP, increased barbiturate-induced sleep-
ing time (Stevenson and Turnbull 1974; Berger
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Table 7.1 Summary of cannabinoids and their effect on sleep

Wakefulness Total sleep
NREM/SW
sleep REM sleep

Drug-induced
sleeping time

Exogenous agonists

Δ9-THC NC Increased/
NC

Decreased/NC Decreased Increased

Δ8-THC – Increased/
NC

Decreased/NC Decreased Increased

Marijuana distillate – – Decreased Decreased Increased
CBN – Increased – Decreased Increased/NC
CBD Increased – Decreased Decreased Increased
Cannabichromene – – NC NC Increased
Cannabigerol – Increased – NC –

CP47,497 – – Decreased/
increased

NC –

WIN55,212 Decreased Increased Increased Decreased –

ACEA – Increased – – –

HU-210 – Increased – – –

HU-310 – Increased – – –

PhAR-DBH-Me NC – NC Decreased –

Endocannabinoids

2-AG
Infused NC – NC Increased –

Synthesis inhibited Increased – Decreased NC –

Anandamide
Infused Decreased – Increased Increased Increased
Infused Precursor: AA Increased – Decreased NC –

Reuptake inhibitor:
VDM-11

Decreased – Increased Increased –

Reuptake inhibitor:
OMDM-2

Decreased – Increased Increased –

Oleamide Decreased Increased Increased Increased/
decreased

Increased

FAAH inhibitors
URB597 Increased – Decreased – –

AM3506 – – Increased Decreased –

AA-5-HT Decreased – Increased Increased –

FAAH knockout Decreased – Increased – –

CB receptor knockout Increased – Decreased Decreased –

Antagonists/inverse agonists

Compound 64 Increased – Decreased Decreased –

SR141716 Increased – Decreased Decreased –

AM251 Increased/
NC

NC/
Decreased

Increased/NC Decreased –

AM281 – – NC – –

ABD459 NC NC NC Decreased –

AM630 NC NC NC NC –

The effects of compounds listed above on wakefulness, total sleep, NREM/slow-wave (SW) sleep, REM sleep, and on
drug-induced sleeping time. These compounds either increased, decreased, or had no change (NC)
Δ8-THC Δ8-tetrahydrocannabinol, Δ9-THC Δ9-tetrahydrocannabinol, 2-AG 2-arachidonoylglycerol, AA arachidonic
acid, AA-5-HT N-arachidonoyl-serotonin, ACEA arachidonyl-2-chloroethylamide, CB cannabinoid, CBD Cannabidiol,
CBN cannabinol, FAAH fatty acid amide hydrolase
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and Krantz 1972; Bhattacharyya et al. 1980; Bose
et al. 1963; Lazaratou et al. 1980; Hatoum et al.
1981; Kaneto and Nagaoka 1981; Katsunori et al.
1993; Martin et al. 1975; Oishi et al. 1988; Sofia
and Knobloch 1973, 1974; Sofia 1977; Rating
et al. 1972; Segelman et al. 1974; Siemens et al.
1974; Stone et al. 1976; Paton and Pertwee 1972;
Watanabe et al. 1980, 1982, 1987, 1990; Kubena
and Barry 1970; Giusti et al. 1980; Chiarotti et al.
1980; Yoshimura et al. 1978; Siemens and Kalant
1974; Sofia and Barry 1983; Fujimoto 1972;
Narimatsu et al. 1983, 1984, 1985). Similarly,
Δ9-THC also increased alcohol-induced sleeping
time (Friedman and Gershon 1974). Dogs trained
to inhale marijuana smoke also showed an
increase in barbiturate-induced sleeping time
(Sullivan and Willard 1978). Cannabidiol
(CBD) and its derivatives and/or metabolites
have been shown in multiple studies to increase
barbiturate sleeping time, in part, by modifying
liver metabolism of the barbiturate (Stone et al.
1976; Bornheim et al. 1981; Borys et al. 1979;
Carlini et al. 1975; Karler et al. 1979; Leite et al.
1982; Yamamoto et al. 1988, 1991). Another
cannabinoid, cannabichromene, also increased
barbiturate sleeping time (Hatoum et al. 1981).
For cannabinol (CBN), there was either no
increase or slight increase in barbiturate sleeping
time (Fernandes et al. 1974a; Chesher et al.
1974). In combination studies, CBD with
Δ9-THC increased barbiturate sleeping time
compared to Δ9-THC alone, while CBN with
Δ9-THC decreased the sleeping time (Fernandes
et al. 1974a, b; Chesher et al. 1974; Krantz et al.
1971; Takahashi and Karniol 1975; Karniol and
Carlini 1973). Though the original hypothesis of
cannabinoids increasing barbiturate-/sedative-
hypnotic-induced sleeping time by decreasing
metabolism of the barbiturates/sedative-
hypnotics was incorrect, it is now known that
the increased sleeping time is due to the increased
depressant effect of barbiturates and cannabinoids
via their respective receptors (Szabo and
Schlicker 2005; Jembrek and Vlainic 2015).

More detailed studies on the effect of
cannabinoids on sleep have been completed.
Δ9-THC, CBN and cannabigerol injected IP
increased total sleep and REM sleep onset in

rats; however, Δ9-THC and CBN only decreased
time spent in REM (Colasanti et al. 1984a, b). In
another study that used single IP injection of Δ9-
THC, Δ8-THC, or marjuana distillate, all three
compounds reduced SWS and REM sleep, and no
REM sleep rebound was observed 5 days post
injection. That same study also investigated
chronic use (i.e. 20 days) of Δ9-THC, Δ8-THC,
or marijuana distillate, and found that REM sleep
returned to normal on the fourth day, thus the
rodents developing tolerance to the cannabinoids
(Moreton and Davis 1973). Δ9-THC injected IP
was also associated with EEG changes during
SWS and REM sleep (Buonamici et al. 1982).
Another cannabinoid, cannabichromene, had no
effect (Colasanti et al. 1984a). CBD, after single
doses, decreased sleep-wave sleep latency at
20 mg/kg, while at 40 mg/kg, increased SWS
time. Following chronic injections of CBD, toler-
ance developed (Monti 1977). These earlier stud-
ies, once again, showed that cannabinoids
modulate sleep.

7.3 After the Discovery
of Cannabinoid Receptors

7.3.1 Exogenous Cannabinoid
Agonists

After the cloning of the cannabinoid receptors in
the early 1990s, investigations of cannabinoid
agonists and antagonists centered around the
role of these receptors in the CNS in the various
stages of sleep. In addition, the specificity of these
receptors in central sleep-wake centers have also
been examined.

In congruence with earlier studies, systemic
administration of CBD modulates sleep, as high
doses of CBD injected IP increases the percentage
of sleep time but increases the latency to REM
(Chagas et al. 2013). CBD and some halogenated
derivatives of this molecule potentiated the
effects of barbiturates on sleep time in mice
when injected IV (Usami et al. 1999). However,
CBD generally appears to increase wakefulness
when injected centrally. In rats, intracerebroven-
tricular (ICV) injection of CBD increased
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wakefulness and decreased REM compared to
sham or vehicle-injected groups (Murillo-
Rodríguez et al. 2006). CBD also increased wake-
fulness and decreased SWS and REM when
injected into the lateral hypothalamus (Murillo-
Rodríguez et al. 2008a, 2011) or dorsal raphe
(Murillo-Rodríguez et al. 2008a) of rats. These
findings are supported by sleep quality studies
that demonstrate that injection of CBD into the
lateral hypothalamus or dorsal raphe nuclei
increased alpha power, yet decreased delta and
theta power (Murillo-Rodríguez et al. 2008a). In
addition, CBD dose-dependently prevented sleep
rebound in sleep-deprived rats (Murillo-
Rodríguez et al. 2011).

CBD may increase wakefulness by increasing
the activation of wake centers in the hypothala-
mus or dorsal raphe, as CBD administered ICV
increased c-Fos expression in these regions
(Murillo-Rodríguez et al. 2006, 2008a). CBD
may also work, at least in part, to enhance mono-
amine transmission, as CBD administration
increased extracellular levels of norepinephrine,
epinephrine, dopamine, and serotonin in the
nucleus accumbens (Murillo-Rodríguez et al.
2006, 2011). CBD injected into the lateral hypo-
thalamus also increased adenosine levels in the
nucleus accumbens a few hours post-injection
(Mijangos-Moreno et al. 2014). Thus, site of
CBD administration must be taken into consider-
ation when interpreting the findings of these
studies.

CBD may also work indirectly to reverse
stress-induced alterations in sleep by modulating
anxiety rather than influencing sleep. Rats repeat-
edly exposed to an open field increases anxiety-
like behavior and decreases REM sleep; injection
of CBD into the central amygdala decreases open
field anxiety-like behavior and decreased stress-
induced REM suppression (Hsiao et al. 2012).

No recent studies have focused on the specific,
direct effects of CBN on sleep architecture,
although CBN and some halogenated derivatives
of CBN potentiated the effects of barbiturates on
sleep time (Yoshida et al. 1995).

Δ9-THC appears to modulate REM sleep, as
IP injection decreased REM (Calik and Carley
2017; Carley et al. 2002). However, this effect
does not appear to be mediated by either CB1 or
CB2 receptors, as the effects of Δ9-THC on REM
sleep was not blocked by either AM251 or
AM630, CB1 and CB2 receptor antagonists,
respectively (Calik and Carley 2017). Δ9-THC
may also play a more general role in sedation, as
Δ9-THC and some halogenated derivatives of
Δ9-THC potentiated the effects of barbiturates
on sleep time (Usami et al. 1998).

CP47,497, a potent cannabinoid CB1 receptor
agonist, had a circadian-dependent effect on sleep
in mice. Activation of CB1 receptors with
CP47,497 induced more non-rapid eye movement
(NREM) sleep and increased NREM bout dura-
tion during the dark phase but reduced NREM
sleep and decreased NREM bout duration during
the light phase. These effects were abolished by
CB1 antagonism with AM281 (Pava et al. 2016).
WIN55,212, another potent cannabinoid CB1

receptor agonist, increased total sleep time,
increased NREM sleep, and reduced wakefulness
and REM sleep in mice. WIN55,212 also
decreased latency to NREM sleep and increased
NREM sleep bout duration, while having the
opposite effects on REM sleep latency and dura-
tion. WIN 55,212 caused a global suppression of
normalized spectral power (Goonawardena et al.
2015). Other cannabinoid agonists,
arachidonyl-2-chloroethylamide (ACEA),
HU-210 (R(�)-7-hydroxy-delta-6-tetra-
hydrocannabinol-dimethylheptyl), and HU-310
(2-O-arachidonoylglycerylether) increased sleep
duration in mice, which was partially mediated
by CB1 receptors (Schuster et al. 2002).

Some newer cannabinoid receptor-targeting
drugs also appear to modulate sleep. IP injection
of PhAR-DBH-Me ((R,Z)-18-((1S,4S)-5-methyl-
2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-
oxooctadec-9-en-7-yl phenylacetate PhAR-DBH-
Me), a putative CB1 receptor agonist, increased
REM sleep in rats. This effect was blocked by
AM251, indicating that CB1 may be mediating
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the effects of PhAR-DBH-Me on REM sleep
(López et al. 2010).

7.3.2 Endogenous Cannabinoid
Agonists

The endogenous cannabinoids, or
endocannabinoids, were discovered shortly after
the cloning of the cannabinoid receptors
(Mechoulam et al. 2014). Since then, numerous
studies have investigated the involvement of
endocannabinoids on sleep.

Injection of 2-arachidonoylglycerol (2-AG)
into the lateral hypothalamus increased REM,
but had no effect on waking or SWS. The effects
of 2-AG appear to be mediated by CB1 receptors,
as increased REM sleep induced by 2-AG is
blocked by AM251 (Pérez-Morales et al. 2013).
Diacylglycerol lipase (DAGL) is an enzyme
involved with the synthesis of 2-AG. Inhibition
of DAGL by a compound injected into the lateral
hypothalamus decreased SWS duration, increased
wakefulness, and increased latency to REM
(Pérez-Morales et al. 2014a). These findings sup-
port the role of 2-AG in serving as a sleep-
enhancing molecule. 2-AG has also been shown
to be present in the laterodorsal tegmentum, a
brainstem area involved with arousal and sleep
(Soni et al. 2017). Direct injection of 2-AG into
the lateral hypothalamus increased c-fos expres-
sion in melanin-concentrating neurons of the
hypothalamus, an area that increases firing during
REM (Pérez-Morales et al. 2013).

Infusions of 2-AG have also been shown to
reverse the effects of early life separation on sleep
states. Early life maternal separation increased
wakefulness, and decreased NREM and REM
sleep in adulthood in male rats. 2-AG injection
into the lateral hypothalamus of rats subjected to
maternal separation decreased wakefulness, and
increased NREM and REM. These effects are
likely mediated by CB1 receptors, as the effects
of 2-AG in maternally separated rats are blocked
by administration of AM251 (Pérez-Morales et al.
2014b). It is unknown, in this early life stress
paradigm, whether 2-AG enhances sleep directly
or indirectly by altering anxiety-inducing

processes, as has been proposed for CBD (Hsiao
et al. 2012).

Anandamide (N-arachidonoylethanolamide) is
an endocannabinoid that enhances the effects of
sleep. Anandamide is present in the laterodorsal
tegmentum, a brainstem area involved with
arousal and sleep (Soni et al. 2017). Anandamide
administered to the cerebral ventricles in male rats
decrease waking, increases SWS, and increases
REM (Murillo-Rodr{  guez et al. 1998, 2001). Sys-
temic injection of anandamide also decreases
waking and increases SWS (Murillo-Rodriguez
et al. 2003) and prolonged pentobarbital-induced
sleep time (Watanabe et al. 1999). Some of the
effects of anandamide on sleep stages appear to
be mediated by CB1 receptors, as the effects on
waking, SWS, and REM are blocked by adminis-
tration of the CB1 receptor antagonist SR141716
(Murillo-Rodríguez et al. 2001, 2003).

Anandamide may be working to modulating
sleep by specifically targeting various regions
involved in sleep. Intra-hippocampal injection of
anandamide in rats increases REM but does not
alter wake time or SWS. This effect was blocked
by AM251. The sleep-inducing effect may be
somewhat specific to the hippocampus, as the
effects of anandamide on sleep was not observed
when anandamide was injected into the cortex
(Rueda-Orozco et al. 2010). Other regions may
also be mediating the effects of anandamide.
Anandamide injected into the entopeduncular
nucleus increases NREM and REM (Méndez-
Díaz et al. 2013). The effects of anandamide
may partially mediated by the pedunculopontine
tegmental nucleus, but not the hypothalamic
medial preoptic area (Murillo-Rodríguez et al.
2001).

Altering the processes of endogenous ananda-
mide regulation supports the role of anandamide
in modulating sleep, although the results are less
straightforward. AA, a precursor for anandamide,
administered ICV, increases waking and
decreases SWS with no change in REM sleep
(Murillo-Rodr{  guez et al. 1998). VDM-11, an
inhibitor of facilitated membrane transport of
anandamide, decreases wake time, and increases
SWS and REM time. However, the effects of
VDM-11 on the length of these parameters were
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not completely blocked by SR141716, indicating
that processes involved with enhancing sleep
quantity may not be entirely mediated by CB1

receptors. On the other hand, CB1 receptors may
be more involved with regulating sleep quality.
VDM-11, presumably by increasing anandamide
content, increased delta and theta power. When
VDM-11 was combined with SR141716, delta
and theta power was partially decreased relative
to VDM-11 alone (Murillo-Rodríguez et al.
2008b). Additionally, VDM-11 enhanced c-Fos
expression in the anterior hypothalamic area,
paraventricular thalamic nucleus, and
pedunculopontine tegmental nucleus, all brain
areas involved in sleep regulation, and reduced
the extracellular levels of dopamine collected
from nucleus accumbens (Murillo-Rodríguez
et al. 2008b, 2012). OMDM-2, another ananda-
mide reuptake inhibitor, also decreased wakeful-
ness and increased NREM and REM sleep, and
was also associated with reduced extracellular
dopamine levels (Murillo-Rodríguez et al. 2012).

There are several proposed mechanisms for the
effects of anandamide on modulating sleep. The
effects of anandamide may involve the activity of
phospholipase C (Murillo-Rodríguez et al. 2001).
Anandamide administration was associated with
an accumulation of adenosine in the lateral
preoptic area, which may inhibit cholinergic
wake-active neurons (Murillo-Rodriguez et al.
2003).

Oleamide (cis-9,10-octadecenamide, also
known as cerebrodiene) was first isolated and
identified in the cerebrospinal fluid (CSF) of
sleep-deprived cats (Lerner et al. 1994). Sleep
deprivation did not increase oleamide in plasma,
suggesting that deprivation-induced increases in
oleamide are specific to the CNS (Basile et al.
1999). Fatty acid amide hydrolase (FAAH), the
enzyme associated with the catabolism of
oleamide and anandamide, was identified in rat
choroid plexus, which may regulate oleamide
content in the CSF (Egertová et al. 2000).

Oleamide appears to have a hypnotic effect
when administered exogenously and can also
dose-dependently potentiate barbiturate-induced
sleeping time and decrease sleep latency induced
by a subthreshold dose of barbiturate (Yang et al.

1999). When oleamide was administered either
centrally or systemically, sleep in rodents
increased (Cravatt et al. 1995). Administration
of oleamide decreased sleep latency, an effect
that was blocked by the antagonism of CB1

receptors with SR141716 (Mendelson and Basile
1999). Oleamide administered IP decreased wake
time and sleep latency, increased NREM and total
sleep, and decreased REM in rodents (Laposky
et al. 2001; Yang et al. 2003; Huitrón-Reséndiz
et al. 2001). However, the effects of oleamide
appear to be dependent on the dose, as low
doses decreased wake and increased REM, and
high doses increased NREM and REM (Carley
et al. 2002). Thus, more work is needed to clarify
this potential biphasic effect of oleamide on sleep
regulation.
Maternal separation (MS) in the early life period
increases waking, decreases NREM and REM
sleep during adulthood in male rats. Oleamide
restored the parameters of MS rats to the same
levels observed in non-separated siblings (NMS),
but did not alter sleep parameters in NMS rats.
The effects of oleamide were not blocked by
AM251 in MS rats (Reyes Prieto et al. 2012),
indicating a CB1-receptor independent
mechanism.

Further support for endogenous cannabinoid
regulation of sleep comes from studies
manipulating the enzymatic regulation of
endocannabinoids. The FAAH inhibitor,
URB597, when injected ICV in male rats, dose-
dependently increased wake time, decreased
SWS, but had no effect on REM. URB597 also
increased c-Fos in the hypothalamus and dorsal
raphe. URB597 increased dopamine content and
decreased L-DOPA in the nucleus accumbens
(Murillo-Rodríguez et al. 2007, 2016). URB597
blocked sleep rebound in sleep-deprived rats
(Murillo-Rodríguez et al. 2016). However, sys-
temic administration of URB597 had no effect on
sleep (Pava et al. 2016). When a longer lasting
FAAH inhibitor, AM3506, was used, NREM
sleep increased and REM sleep decreased (Pava
et al. 2016). N-arachidonoyl-serotonin (AA-5-
HT), another inhibitor of FAAH, dose-
dependently decreased waking, increased SWS,
and increased REM during the dark phase. These
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effects were associated with decreased alpha EEG
power spectra, and increased delta and theta
power spectra. Administration of AA-5-HT
increased adenosine, but decreased dopamine,
norepinephrine, epinephrine, and serotonin in
the nucleus accumbens. AA-5-HT blocked the
effects of CBD and modafinil, a putative dopa-
mine transporter inhibitor, on sleep parameters,
EEG power spectra, and extracellular levels of
other sleep-modulating neurotransmitters during
the lights-on period. CBD and modafinil
prevented sleep rebound induced by sleep depri-
vation, but AA-5-HT blocked these effects
(Murillo-Rodríguez et al. 2017). In studies using
mice knocked out for FAAH enzyme, FAAH(�/
�) mice had decreased brief awakenings,
decreased wake time, and increased duration of
SWS bouts during the light period compared to
wild-type littermates. FAAH(�/�) mice also had
decreased EEG power density during wake and
REM, while EEG power density was increased
during SWS. There was no genotype-specific
effects observed in recovery from sleep depriva-
tion (Huitron-Resendiz et al. 2004).

7.4 Antagonists/Inverse Agonists
of Cannabinoid Receptors

Numerous antagonists have been investigated to
clarify the role of cannabinoid receptors in sleep-
associated processes. Compound 64, a potent and
selective CB1 receptor inverse agonist, decreased
REM and NREM sleep in rats while increasing
wakefulness (Jacobson et al. 2011). SR141716A,
a CB1 receptor antagonist/inverse agonist,
increased wakefulness at the expense of SWS
and REM sleep, delayed the occurrence of REM
sleep, and decreased EEG spectral power during
SWS, in part, by increasing adenosine (Murillo-
Rodriguez et al. 2003; Jacobson et al. 2011;
Santucci et al. 1996). However, other studies
using SR141716A showed no effect on sleep
parameters (Mendelson and Basile 1999; Navarro
et al. 2003). In another study, SR141716 blocked
sleep rebound after sleep deprivation by
increasing dopamine, norepinephrine, epineph-
rine, serotonin, and adenosine levels in the brain

(Murillo-Rodríguez et al. 2016). AM281, another
CB1 antagonist/inverse agonist, caused
fragmented NREM sleep, depending on the time
of day AM281 was administered. AM281 also
produced broadband changes in EEG power spec-
tral features, and did not reduce NREM sleep
rebound caused by sleep deprivation (Pava et al.
2016). A more frequently studied CB1 receptor
antagonist/inverse agonist is AM251, with
conflicting reports on its effects on sleep. In
regards to total sleep time, AM251 has been
shown in two reports to have no change on total
sleep time (Calik and Carley 2017; Schuster et al.
2002), while one report showed a decrease in
sleep time (Goonawardena et al. 2015). Consis-
tently, AM251 has been shown to decrease REM
sleep, while increasing wakefulness (Calik and
Carley 2017; Goonawardena et al. 2015; Pérez-
Morales et al. 2013; Méndez-Díaz et al. 2013;
Reyes Prieto et al. 2012; Herrera-Solís et al.
2010). However, one studied showed no change
in wakefulness with AM251 (Calik and Carley
2017). Another study also showed a decrease in
REM sleep, but it did not reach statistical signifi-
cance (López et al. 2010). AM251 has
inconsistently been shown modulate NREM
sleep, with some studies showing AM251
increasing NREM sleep (Méndez-Díaz et al.
2013; Reyes Prieto et al. 2012; López et al.
2010), while others showing no effect on
NREM sleep (Calik and Carley 2017;
Goonawardena et al. 2015; Pérez-Morales et al.
2013; Herrera-Solís et al. 2010). AM251 also has
been shown to decrease latency to NREM sleep,
while increasing latency to REM sleep, and
modifying EEG spectral power (Goonawardena
et al. 2015). These conflicting results with
AM251 could be due to differences between
rodent models or dosage of AM251, since
AM251 is known to allosterically modulate
non-cannabinoid receptors (Baur et al. 2012).
ABD459, a neutral antagonist of the CB1 recep-
tor, only decreased REM sleep, and had no effect
on total sleep time or NREM sleep
(Goonawardena et al. 2015). AM630, a CB2

receptor antagonist, had no effect on sleep
parameters (Calik and Carley 2017).
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7.5 Allosteric Modulation

Cannabinoids are known to allosterically modu-
late non-cannabinoid receptors (Pertwee 2005).
In mice with a targeted mutation at the GABA-
A receptor, oleamide administration failed to
increase NREM sleep at the expense of wakeful-
ness as seen in the wild-type mice. It is interesting
to note that the mutant and wild type mice had no
difference in baseline physiological sleep
parameters (Laposky et al. 2001). Indeed, work
in vitro on GABA-A receptors shows that
oleamide is a non-selective modulator of inhibi-
tory ionotropic receptors (Coyne et al. 2002; Lees
and Dougalis 2004).

Similarly, oleamide-induced increases in
NREM sleep was prevented by serotonin reup-
take inhibitors and by activation of serotonin 1A
(5-HT1A) receptors. Blockade of the 5-HT1A

receptor by WAY100635, a selective antagonist,
rescued the oleamide-induced sleep changes
(Yang et al. 2003), indicating that serotonergic
modulation is involved with cannabinoid effects
on sleep. Oleamide may enhance the function of
5-HT2 receptors (Cheer et al. 1999) and/or GABA
receptors (Coyne et al. 2002). In GABA-Aβ3
knockout mice, the effects of oleamide on sleep
parameters are not observed at low doses. Only
high doses of oleamide administered to these
knockout animals were associated with decreased
REM and increased sleep latency (Mendelson and
Basile 1999).

7.6 Effect of Cannabinoid
Receptors on Sleep

Endocannabinoid signaling is important for sleep
architecture. A strategy to investigate
endocannbinoids’ effect of sleep was to knockout
the CB1 receptor. Genetic deletion of CB1 recep-
tor in mice exhibited increased wakefulness as a
result of reduced NREM and REM sleep with no
change in NREM delta power (Silvani et al.
2014). These results can be attributed to
endocannabinoids modulating up-/down-state
transitions in pyramidal neurons (Pava et al.

2014). These studies using targeted genetic
manipulations demonstrate the importance of
endocannabinoids in modulating sleep.

7.7 Conclusion

Decades of research has shown that cannabinoids,
both exogenous and endogenous, modulate sleep
in laboratory animals (Table 7.1). Cannabinoids
have been shown to potentiate sleeping time
induced by other drugs. More directly,
introducing exogenous cannabinoid agonists
into laboratory animals generally decreased
wakefulness, increased NREM sleep, and
decreased REM sleep, though in a minority of
studies there were conflicting results. Similar
results were obtained if endogenous cannabinoids
were increased, with the exception that both
NREM and REM sleep were increased. These
effects of exogenous and endogenous were par-
tially mediated by cannabinoid receptors, though
some evidence points to cannabinoids allosteri-
cally modulating other receptor systems to affect
sleep. Moreover, cannabinoid antagonists, or if
cannabinoid receptors were removed, generally
increased wakefulness. Though some work has
teased out mechanisms with which cannabinoids
modulate the sleep systems in the CNS, more
work needs to be conducted to clarify the sleep-
inducing effects of cannabinoids.
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