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Abstract

For humans, like any sexually reproducing diploid organism, mating may be
random in the sense that individuals are equally likely to mate and produce
offspring. Such a view of a population has been important in population genetics
as a basis for modeling and analysis. Population structure denotes deviation
from this panmixia, regardless of the cause. In this chapter, we will briefly
discuss random mating, populations, population structure, and various methods
and practices to infer population structure among individuals from empirical

genome-wide data.

3.1 What Is Population Structure?

A loose definition of a “panmictic population” is any collection of randomly
mating individuals living at a specific point in time. Strictly speaking, a population
is “randomly mating” if the probability to produce offspring is larger than zero
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and equals for all possible pairs of individuals drawn from the population (often,
depending on the species, given that a pair consists of a female and a male).

Random mating in this sense is, however, rarely an accurate representation of
reality since most populations have a spatial distribution that affects the mating
probability of a random pair of individuals. Hence, if by “structured population,” we
refer to a population that is not randomly mating, then essentially all populations are
structured, and a dual categorization of “structured populations” vs “unstructured
populations” is not very useful. Instead, it may be better to think of any population
as structured and attempt to quantify the degree of structure. The level of population
structure can also (often) be accounted for in downstream analyses. In practice, there
are often groups of individuals for which no structure is detectable (with the data
and methods at hand), and these groups can be regarded as unstructured for most
intents and purposes.

It should be noted that this way of thinking about populations does not reflect
common practice in which the definition of populations is typically subjective,
based on, for example, linguistic, cultural, ethnic, and/or the geographic location
of sampled individuals. Moreover, almost all population structure analyses are
necessarily based on samples, and detection of stratification within the sample does
not necessarily reflect biological populations. For instance (following Pritchard
et al. (2000)), imagine a species that lives on a continuous plane but has a low
dispersal rate, so allele frequencies vary continuously across the plane. A few
clustered sampling points will result in a signal of (a few) clustered genetic groups,
which does not give an accurate description of the biological reality. This example
illustrates that studies of populations are always indirect and limited to information
contained in samples and sensitive to sampling biases.

Accounting for population structure is often crucial in order to reduce both type
I and type II errors in statistical analyses of genetic data. For instance, it has been
shown that not accounting for population structure can result in spurious signals
in association mapping studies and will thus invalidate standard tests (Ewens and
Spielman 1995; Pritchard et al. 2000). It is also important to account for population
structure in forensic applications like DNA fingerprinting to estimate the probability
of random individuals matching a particular profile (Balding and Nichols 1994,
1995; Foreman et al. 1997; Roeder et al. 1998).

Since the first historical opportunity of quantifying molecular genetic variation
until today’s (almost) complete genome sequencing, numerous molecular tech-
niques have been used to genotype individuals, which in turn can be used to
investigate population structure. Early strategies involved typing the human blood
groups (Landsteiner and Weiner 1940), followed by the development of allozymes
(Lewontin and Hubby 1966), and various forms of DNA fragment length assays,
including microsatellites that are abundant in eukaryote genomes (Katti et al. 2001).
The sequencing of the human genome (Venter et al. 2001) led to access to a large
number of human single-nucleotide polymorphisms (SNPs) as well as the human
genome sequence. Various studies have employed novel molecular techniques
to investigate human population structure, including classical markers (Cavalli-
Sforza et al. 1994), mitochondrial genome (Cann et al. 1987), microsatellites
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(Rosenberg et al. 2002), SNPs (Jakobsson et al. 2008; Li et al. 2008), and complete
genomes (1000 Genomes, Mallick et al. 2016). Although these different types of
data have different properties, the general study of population structure follows
straightforward principles of genetic variation, and the difference in datatype can
be accounted for by using different assumptions on the mutation model (see e.g.,
Veeramah and Hammer 2014).

We will review some methods to quantify structure within a population. We will
(primarily) assume biallelic markers, where only two states exist that give rise to
three possible genotypes. These methods are often part of an initial exploratory
step in order to get a better picture of how and to what extent the sample and
the population have been influenced by population structure. First, we will present
methods where all individuals are treated equally and no a priori information is used
for clustering individuals or parts of individual genomes. We will then discuss some
methods to contrast clusters of individuals and how this can be used in more explicit
demographic modeling. To illustrate concepts and methods, we will analyze a subset
of the HGDP data, which has been thoroughly investigated in previous studies (Cann
et al. 2002; Li et al. 2008; Jakobsson et al. 2008). This example dataset consists of
individuals from Africa—the West African Yoruba, the Southern African San, and
the North African Mozabite—and from Europe (France).

3.2 Individual-Based and Unsupervised Methods for Inferring
Population Structure

3.2.1 Tree Construction Methods at the Individual Level

Genetic distance is a traditional measure of differentiation in population genetics.
Distances are calculated between each pair of individuals (can also be calculated
between groups of individuals; see below) and are represented by a pairwise
distance matrix. Distance matrices can be visualized by various approaches such
as the multidimensional statistics discussed in the next section or in the form of
graphs/trees.

A common distance measure between a pair of individuals is the identity by
state (IBS) measure. IBS examines biallelic SNPs between two individuals and puts
them into one of three categories: identical = 1 (e.g., for the genotypes AA and
AA, BB and BB, and AB and AB, where A and B denote the two alleles), one-
allele-shared = 0.5 (i.e., AA and AB; AB and BB), and no-allele-shared = O (i.e.,
AA and BB). The state-values are then averaged over all loci to provide genome-
wide pairwise IBS similarity values between 1 and O for all individual pairwise
comparisons. This is summarized in an individual similarity matrix of which 1-IBS
will give the distance matrix.

Distance measures based on substitution models for DNA and protein sequence
evolution have also been developed. The evolutionary distance between a pair of
sequences is measured by the number of nucleotide (or amino acid) substitutions
occurring between them. The p-distance is the simplest model and is based on
the proportion (p) of nucleotide sites at which two sequences being compared
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are different. The proportion is obtained by dividing the number of nucleotide
differences by the total number of nucleotides compared. It does not make any
correction for multiple substitutions at the same site, substitution rate biases (for
example, differences in the transition and transversion rates), or differences in
evolutionary rates among sites. More specialized measures (e.g., Jukes-Cantor,
Kimura 2-parameter, Tamura 3-parameter, Tamura-Nei) take some/more of these
complexities into account. The pairwise distances between diploid individuals are
then obtained by averaging over the distances obtained for all pairwise comparisons
of sequences between the two individuals.

There are several tree construction methods for distance data, two of the
most common methods are unweighted pair group method with arithmetic mean
(UPGMA) and neighbor joining (NJ) (Saitou and Nei 1987). UPGMA is a simple
hierarchical clustering method that combines the nearest two units (individuals or
grouped individuals) in a distance matrix into a higher-level cluster. The distance
between any two units is the average of all distances between each element of
each unit. UPGMA assumes a constant molecular clock model and produces an
ultrametric tree (a tree where all the path lengths from the root to the tips are of
equal length). Similar to UPGMA, neighbor joining is also a bottom-up clustering
method; however, compared with UPGMA, neighbor joining has the advantage that
it does not assume that all lineages evolve at the same rate. Both NJ and UPGMA
are fast-clustering (tree-building) algorithms, but since only two elements of the
distance matrix are considered at a time, they have no optimization criterion to fit
the best solution (or tree) over all the data. An optimal criterion method that is
commonly applied to distance data is minimum evolution (ME), which accepts the
tree with the shortest sum of branch lengths, and thus minimizes the total amount of
evolution assumed. Tree-building methods applicable to discrete characters such as
nucleotides are also available (e.g., maximum parsimony and maximum likelihood),
but these are more applicable to phylogenetic purposes and fall outside the scope
of this chapter. Note that inferred trees based on non-recombining chromosomes,
such as the mitochondrial genome or the Y chromosome, represent estimates of the
genealogy of a specific chromosome (see Chap. 1 for a review of gene genealogies)
that may poorly capture an individual’s or a population’s evolutionary history or
structure. Inferred trees based on genome-wide data represent averages over the
genealogical process across the genome, and such summary trees capture population
structure in a more accurate way.

After an initial tree is produced from the distance matrix, a confidence measure
can be calculated making use of procedures such as jackknifing or bootstrapping.
The most widely used tool for confidence inference is a version of bootstrapping
introduced by Felsenstein (1983). Each bootstrap sample consists of the same
number of markers resampled (with replacement) from the original data set and is
then subjected to the same distance calculation and tree reconstruction. From these
trees produced by bootstrapping, a consensus tree can be constructed in which the
confidence of the tree is noted on the nodes as a bootstrap value (the percentage of
times the bootstrap procedure supported the specific node). Jackknife is a similar
resampling procedure, but in this case, the estimate is systematically recomputed by
leaving out one or more observations at a time from the sample set. The bootstrap
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and jackknife assume near-independence of the markers used, and so the linkage
between nearby markers can be accounted for by performing the bootstrap or
jackknife procedure over larger blocks of the genome or whole chromosomes.

Various software packages that can handle different types of genetic data are able
to calculate many of the distance measures discussed above and give a pairwise
distance matrix as output. The distance matrix can then be used for clustering
using, e.g., a tree construction algorithm. In certain software, both matrix calculation
and tree construction algorithms are available. Some examples of commonly used
software are Mega (Kumar et al. 2016), Arlequin (Excoffier and Lischer 2010), and
Plink (Purcell et al. 2007).

An example tree of West African Yoruba, European French, North African
Mozabites, and Southern African San is given in Fig. 3.1. To construct the tree,
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Fig. 3.1 An example neighbor-joining tree of individuals from West Africa (Yoruba), Europe
(French), North Africa (Mozabite), and Southern African (San). The NJ tree was built from an
IBS distance matrix (computed in Plink) and the R-package ape. The individuals cluster according
to their sample locations, except for the Mozabites that contain the French sample as a subset
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we created an IBS distance matrix in Plink and used the R-package ape to construct
an NJ tree. We see that the individuals cluster quite well according to their sample
locations, except for the Mozabites that contain the French sample as a subset.

3.2.2 Principal Component Analysis and Related Approaches

A single individual can be represented by a position in a multidimensional space
where each locus characterizes one dimension. The number of dimensions is
therefore very large if we have access to information from many sites; oftentimes,
however, many of these dimensions are correlated. A number of methods based on
linear algebra aim at finding the best way to summarize and visualize the data in
a reduced number of dimensions that capture the greatest axes of variation. These
methods, which are typically agnostic to the underlying model of genetic variation,
can potentially reveal inherent population structure in a set of sampled individuals.
We will describe one of the most widely used method for initial data exploration—
principal component analysis (PCA)—and then give a brief overview of a few other
related approaches.

The principle of PCA is straightforward: finding and ordering orthogonal axes
(or principal components, PCs) that capture the variation of the sample so that the
first PC represents the axis of greatest variation in the data, the second PC represents
the axis of greatest remaining variation when the data is projected orthogonally to
the first PC, and so on, down to the last PC where all variation has been taken into
account. Consider, for example, n SNP-loci. Each individual is represented by a
vector of n values, with 0 if homozygous for the reference allele, 1 if homozygous
for the alternative allele, and 0.5 if heterozygous. PCA performs a rotation of the
original n-dimensional orthogonal base, where each of the n loci represents one
dimension, into a new orthogonal base, formed by linear combinations of the loci,
and defining directions called principal components. The first PC is the direction
that maximally explains the variance among individuals when projected into a 1-
dimensional space. Together with the first PC, the second PC defines the plane
that maximizes the variance of the individuals when projected into a 2-dimensional
orthogonal space, and more generally, together with the first k-1 PCs, PC k defines
an orthogonal space that maximizes the variance of the individuals when projected
into a k-dimensional space. Each PC explains a proportion of the total variance, with
the first PC explaining the most variance and the last PC explaining the least.

Applied to our example data of four populations, PCA reveals differences
between the groups (Fig. 3.2). We see that the first and second PCs explain 10.8%
and 5.5% of the total sample variance, respectively. The first PC separates the sub-
Saharan African populations from the European and the North African population;
the second PC separates the Southern African San and the West African Yoruba,
with the French and the Mozabite in-between. The first two PCs together show
the Mozabite individuals in-between the European population and the West African
population, suggesting historical models for the ancestry of the Mozabite such as
(1) a history of admixture between European and West African groups, (2) shared
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Fig. 3.2 Principal component analysis of our example HGDP data of four populations, with the
first two PCs displayed, computed using EIGENSOFT. The first PC explains 10.8% of the total
sample genetic variance, and the second PC explains 5.5%. The first PC separates the sub-Saharan
African populations from the European and the North African population, and the second PC
separates the Southern African San and the West African Yoruba, with the French and the Mozabite
in-between. The first two PCs together show the Mozabite individuals distributed between the
European population and the West African population, consistent with the Mozabite being an
admixed group with a European and a West African source population

ancestry in a treelike population model (without direct admixture) with both these
groups, or (3) a combination of the aforementioned (1) and (2).

Investigating outliers, which are easily identifiable using, e.g., PCA, is an
important step in many applications. In this particular example, there are no obvious
outlier individuals. Outliers are easily identified as individuals “far away” from
any other cluster of individuals in PC space. Outliers can be due to low genotype
quality (for particular individuals), recent migrants from unsampled populations, or
displaying some, potentially unknown, level of population structure in the sample.

The number of PCs to visualize and investigate is arbitrary, but some rule of
thumb has been utilized in past studies. Sometimes, this number can be decided
by a threshold of variance to be explained (for example, investigate the K PCs that
explain at least a fixed percentage, X, of the variance). However, for genome-wide
data, the variance explained by each PC, including the first few ones, is typically
small due to the high dimensionality (see e.g., Fig. 3.2). Another way to choose the
number of PCs to investigate would be to use a “scree plot.” A property of PCA is
that each PC represents an eigenvector of the variance-covariance matrix of the data
(or the correlation matrix if the data is scaled) and is associated with an eigenvalue.
The first PC is associated with the highest eigenvalue A1, the second PC with the
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Fig. 3.3 The eigenvalues associated with each PC from our example PCA on HGDP data, sorted
decreasingly. In a PCA, the eigenvalues of the variance-covariance matrix (or correlation matrix if
the data is scaled) are directly linked to the variance explained by the PCs: the first PC is associated
with the highest eigenvalue, the second PC to the second-highest eigenvalue, and so on

second-highest eigenvalue A, and so on. The scree plot is the graph that displays
the eigenvalues, sorted decreasingly. In a PCA, the eigenvalues of the variance-
covariance matrix (or correlation matrix if the data is scaled) are directly linked to
the variance explained by the PCs: A; divided by the sum of all eigenvalues gives
the proportion of variance explained by the ith PC. In our HGDP example, there is
a clear flattening of the difference between consecutive PCs from PC4 and onward
suggesting that the most interesting patterns can be seen using the first three PCs (see
Fig. 3.3). An alternative approach is to test each PC if there is significant evidence
for structure (Patterson et al. 2006).

PCA is an important tool for data exploration. For a richer mathematical
description and illustrations in different contexts, see Jolliffe (2005). For population
genetics, McVean (2009) showed that expected pairwise coalescent times is what
determines the primary PCs in a PCA implying that it is impossible to distinguish
models with the same expected coalescent times using a PCA approach. He also
demonstrated how PCA can, under some models, be used to estimate divergence
time between populations, as well as admixture proportions within individuals
(McVean 2009). There are several software packages that compute PCA including
the R prcomp package and Eigensoft (Patterson et al. 2000).

Multidimensional scaling (MDS) is a group of methods that use a matrix of
dissimilarities between individuals and represent the individuals in a smaller number
of dimensions, so that the pairwise distances between individuals in the plotting
space are good approximations of the original dissimilarities (see Quinn and Keough
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2002, for a review on some of these methods). The dissimilarity measure of the
individuals in the original data is the scientist’s choice, and some examples of
useful dissimilarity measures were presented in the previous section. The number of
dimensions in the plotting space is chosen in advance and is usually low, to facilitate
observation and interpretation of the data.

3.2.3 Ancestry Component Estimation with Few Model
Assumptions

The program STRUCTURE (Pritchard et al. 2000) implements a method that
makes very few assumptions about the data, and it was one of the first tools that
utilized the power of multiple markers for inference. This approach and the many
ensuing approaches have become standard in population structure investigations
and population-genetic studies in general. STRUCTURE-like methods infer a
predefined number of ancestry components (K) among individuals, based on
genotype frequencies. Each individual’s genotype is assigned to one of K number
of clusters with a certain probability. In the first implementation, STRUCTURE
searched for the assignment of individuals that minimizes deviation from Hardy-
Weinberg equilibrium (see Box 3.1) and linkage equilibrium in each of the K
clusters and allowed individuals to be admixed and to have membership proportions
to more than one of the K clusters (Pritchard et al. 2000). Population structure is
then visible in the dataset as individuals that are closely related having a greater
proportion of their genome assigned to the same cluster/s than individuals that
are not. This approach analyzed single markers separately and then added up the
information to produce a global estimate for each individual. Information about
the relative positions of markers to each other was not used and was considered
to be segregating independently. This approach works well for low-density marker
sets but is less suitable for the high density and full genome datasets that are
available today. In the 2003 update of the STRUCTURE algorithm (Falush et al.
2003), sites/markers are not required to be independent, and correlations between
subsequent markers due to admixture events are explicitly modeled. This allowed
for individual ancestry estimates, known as local ancestry estimates, where the
ancestry of chromosomal chunks can be traced along the chromosomes. It also
introduced a simplistic model (the F-model, originally described in Nicholson et
al. (2002)) to account for correlations of allele frequencies between populations.
Although a clearly unrealistic model, it improved the performance of the algorithm
considerably (Falush et al. 2003).

Box 3.1 Hardy—Weinberg Equilibrium (HWE)
An assumption of random mating is that the probability to produce viable
offspring is equal for all possible pairs of individuals drawn from the

(continued)
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population (given that a pair consists of a female and a male). A consequence
of this is that the probability of an allele contributed by the mother being of
type A is equal to the population frequency of allele type A. The same is true
for alleles contributed by the father. Given a population frequency p of allele
A and 1—p of alleles of type a, the probability of an offspring being of type
AA, Aa, and aa are p2, 2p(1—p),and (1 —p)2, respectively. When this situation
is true, the population is said to be in Hardy-Weinberg equilibrium (HWE).

STRUCTURE has been very popular for population structure inference. How-
ever, with the ever-increasing density of genome-wide markers, meeting the com-
putational demands of the algorithm has become a challenge. The Markov chain
Monte Carlo method that STRUCTURE employs places a high burden on computer
resources for large datasets. This has led to the recent development of alternative
approaches, using fast maximum-likelihood-based estimations (FRAPPE (Tang et
al. 2005) and ADMIXTURE (Alexander et al. 2009)).

HAPMIX (Price et al. 2009) extends the local ancestry method implemented in
the second version of STRUCTURE. It is based on the Li and Stephens (2003)
model for patterns of linkage disequilibrium (Li and Stephens 2003) between
markers and infers local ancestry estimates of unphased admixed individuals
based on the phased haplotype data of exactly two populations. Modeling the full
demographic process with recombination and mutation is a notoriously difficult and
computationally intractable problem. The Li and Stephens (2003) approach models
the k + 1 haplotype by (imperfectly) copying from the first k “parental” haplotypes
where recombination events correspond to changing parental haplotype from which
to copy from. Correlations of genealogies (due to linkage) across the sequence is
surprisingly well captured by this approach, and importantly, it is sufficiently simple
to permit even full genome analyses.

Recent developments along this line have led to a method (CHROMOPAINTER,
Lawson et al. (2011)) that does not need discretely defined admixed and parental
populations. Instead, each individual in a sample is considered, in turn, both
as a recipient and a donor, and chromosomes are reconstructed using blocks of
DNA donated by the individuals to each other. Each individual’s chromosome is
thus “painted” by markers donated by donor individuals in any number of other
populations or within the same population. These “painted” chromosomes can be
summarized as a co-ancestry matrix, which is proposed to fully capture the infor-
mation provided by PCA and STRUCTURE-like methods (also for nonindependent
sites). In addition, consecutive markers that are in linkage disequilibrium are com-
bined into haplotypes, which increases the ability of the method to observe subtle
population structure. A downstream model-based extension (fineSTRUCTURE,
Lawson et al. (2011)) is then used to identify discrete populations using the inferred
co-ancestry matrix.
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A subclass of population admixture models can utilize the spatial coordinates
of sampled individuals (BAPS (Corander et al. 2003), TESS (Chen et al. 2007),
GENELAND (Guillot et al. 2005)). While in STRUCTURE-like methods, the
assignment to a population is independent and identical among all individuals in
the dataset, this class of methods takes into account (a priori) the spatial distribution
of individuals and aims to detect genetic discontinuities in space. Since geographic
spatial correlation is often present among individuals and populations, it can be
useful to incorporate spatial coordinates into the population structure analysis.
Recent attempts to incorporate geographic information into population structure
estimations involve approaches that use Wishart distributions (a generalization of
multidimensional gamma distributions) to model genetic similarity as a function of
spatial distance. In uniform isolation-by-distance scenarios, genetic distances visu-
alized in two dimensions should mirror the samples/individuals in geographic space.
Migration and admixture and hinders to gene flow would disturb this correlation.
In one approach, implemented in the software SpaceMix, a covariance model of
genetic data is used to build maps of the geographic positions of the populations,
but distances are distorted according to inferred rates of gene flow (Bradburd et
al. 2016). Barriers to gene flow result in larger distances between groups, while
migration and admixture can be identified as abnormal strong covariances over long
distances. The inferred admixture is then estimated and represented as “arrows,” on
a generated map, from the source population to the recipient population. Another
approach based on the Wishart distribution, EEMS (Petkova et al. 2016), uses
pairwise genetic similarities among populations and estimates a surface map of
effective migration rates. The effective migration rates are scaled by effective
population sizes under an equilibrium model. These methods that incorporate spatial
information may highlight important features of population structure that might
have remained undetected using other, spatially “blind,” methods for inferring
population structure. Two other methods that use FsT measures between populations
to identify violations of isolation-by-distance patterns have also been developed
(Duforet-Frebourg and Blum 2014; Jay et al. 2013).

For our example dataset, we ran 10 iterations in the program ADMIXTURE
at K = 2 to K = 5. The iterations at each value of K were then compared to
detect different clustering solutions using the program CLUMPP (Jakobsson and
Rosenberg 2007). For K = 2 to K = 4, all 10 iterations arrived at very similar
solutions, and the combined output is shown in Fig. 3.4 (visualized with the program
DISTRUCT (Rosenberg 2004)). The analysis shows clustering of sub-Saharan
Africans (orange component) and clustering of Europeans and North Africans (blue
component) at K = 2, although Yoruba individuals show a small fraction of ancestry
from the blue component, and the Mozabites show a small ancestry fraction from the
orange component. At K = 3, the Yoruba obtains its own cluster (green), while the
Mozabite still clusters with the French but showing some ancestry fraction from the
green component. The Mozabite forms its own group at K = 4, but some individuals
showed shared ancestry with Yoruba and French. For K = 5, there was no common
solution, and each of the 10 iterations had a different solution (this pattern can be
seen clearly from the similarity matrix output of CLUMPP). The lack of a “common
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Fig. 3.4 Combined output from 10 iterations of running ADMIXTURE with our example HGDP
data analysis for K = 2 to K = 4 visualized by DISTRUCT. For K = 5, there was no common
solution, and each of the 10 iterations had a different solution. The analysis show clustering of
sub-Saharan Africans (orange component) and clustering of Europeans and North Africans (blue
component) at K = 2, although Yoruba individuals show a small fraction of ancestry from the
blue component and the Mozabite show a small ancestry fraction from the orange component.
At K = 3, the Yoruba obtains its own cluster (green), while the Mozabite still clusters with the
French but showing some ancestry fraction from the green component. The Mozabite forms its own
group at K = 4, but some individuals showed shared ancestry with Yoruba and French. Note that
these algorithms, like the ADMIXTURE algorithm, is typically set up to only utilize the genetic
information and to be agnostic to all other information (and other information like self-identified
ancestry/ethnicity, geographic sample location, and/or language can be added onto the results for
visualization purposes)

mode” in the iterations at K = 5 is an indication that there is no additional level of
structure to reveal by dividing the individuals’ genomes into additional ancestry
components. In summary, we note that these three choices of assumed number of
clusters (K = 2, 3, and 4) all reveal interesting patterns of population structure
that are related to a hierarchical ancestry relationship among the four populations
(e.g., Jakobsson et al. 2008; Schlebusch et al. 2012). We further note the interesting
pattern for the Mozabite that display ancestry components related to Europeans and
West Africans at K = 3 but that form their own cluster (to a large extent) at K = 4—
a pattern consistent with a population with mainly Eurasian ancestry, followed by
some level of admixture with West Africans. This admixture likely happened some
time ago since the Mozabites make up their own cluster at K = 4, which is consistent
with subsequent genetic drift in the Mozabites since the admixture.

3.3 Population-Based and Supervised Methods
Once an overview of the signals in the data has been obtained using PCA,

STRUCTURE-like analyses, and tree construction at the individual level, a natural
next step is to assign individuals to predefined populations. We may then want to
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quantify the amount of structure among groups in order to learn something about the
demographic past of the full collection of individuals. Although these populations
are ideally identified with the aid of the previously presented methods, it is not
uncommon to have assessments based on geography-only defined populations. It
may still be of value to contrast these predefined populations in order to affirm that
they do correspond to separate biological populations.

3.3.1 Genetic Differentiation at the Population Level

3.3.1.1 Fst

Introduced by Sewall Wright (Wright 1949), Fgr is one of the first measures
of genetic differentiation (sometimes referred to as “genetic distance”) among or
between populations. There are many variations on the original definition, and the
usefulness of Fst and relatives is still a debated topic (e.g., Holsinger and Weir
2009; Rousset 2013; Jost 2008; Ryman and Leimar 2009). Fst was originally
defined as the correlation between gametes chosen randomly from within the same
subpopulation relative to the entire population or, equivalently, as the departure
of genotype frequencies from Hardy—Weinberg expectations relative to the entire
population (see Holsinger and Weir 2009 for a thorough review of Fst). A common
definition for more practical purposes is

For — Var (pi)
ST Epl-Elp))

(e.g., Holsinger and Weir 2009) where Var(p;) is the variance in allele frequencies
across subpopulations and E[p;] is the expected allele frequency. There are other
formulations, including (Nei 1973) in terms of heterozygosity,

where Hr is the total (pooled) heterozygosity and Hs is the mean heterozygosity
across subpopulations. Note that these definitions are all coined in terms of genetic
variation. If demography is the primary interest, these definitions may not be ideal
since the distribution of genetic variation depends on the mutational process as well
as demography—via the genealogical process. Slatkin (1995) isolated the purely
genealogical aspect of Fst by studying the limit as the mutation rate approached
zero and showed that FsT can be expressed in terms of expected coalescent times

ts — tw
Fst = ,
ts

where #; is the average time for two randomly picked genes—from the whole
population—to find a common ancestor and ¢, is the average time for two genes
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from the same subpopulation to find a common ancestor. The intuition for this
definition is that it measures the relatively longer time it takes for two genes situated
in individuals from different subpopulations to find a common ancestor compared
to when they are situated in individuals from the same subpopulation. From this
definition, it is clear that if the expected coalescent time for two genes does not
depend on which population the genes are drawn from (z; = #,,), then Fst = 0. In
contrast, if genes from different populations take much longer to find a common
ancestor than genes from the same population, Fst tends toward 1.

In order to estimate Fs, we need genetic variation from individuals drawn from
predefined populations. Depending on the type of genetic data, different assump-
tions of the mutational process can be used. For sequence data, the mutational
process is well approximated by the infinite sites model, for which at most one
mutation is allowed for each site. The mutation rate per site is typically very low
and the influence of branch-specific, novel mutations when estimating Fst will
be assumed to be negligible compared to demographic factors that affect sites
polymorphic in the ancestral population to the predefined populations. Alternatively,
an outgroup can be utilized to delimit the data to SNPs that were polymorphic
prior to the time period of interest. In order to account for the sample variance
(due to limited sample sizes), Weir and Cockerham (1984) developed a robust (and
commonly used) estimator for Fst (see also Weir 1996; Bhatia et al. 2013).

Model-specific demographic parameters such as migration rate and/or divergence
time can often be directly related to Fgsr, although caution is warranted for directly
equating an FsT estimate with a specific demographic parameter as there are many
different factors that influence estimates of Fst. For instance, in a two-population
divergence model, the relationship between F's and the divergence time ¢ is (Slatkin
1995):

t

Fst = ,
ST t+ 8N,

while in an infinite island model, the migration rate m is related to Fst as (see Fig.
3.5 and Box3.2)

1

Fsr = .
ST | faN,m

Note that estimates of Fsr, like many other population genetic parameters,
depend on genetic drift and include the term of effective population size. Hence,
estimates of Fsr transformed into estimates of other population genetic parameters,
such as divergence time or migration rate, are typically estimates of the scaled (in
terms of N,) parameter.
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Fig. 3.5 Two simple demographic models and their relation to Fst (in the limit as the mutation
rate approaches O (Slatkin 1995)). The left model is a two-population split model with no
migration, and the scaled divergence time #/2N, under this model can be estimated by 4Fst/(1-
Fgr). The right model illustrates the infinite island model with an infinite number of equally sized
subpopulations with a constant migration rate between neighboring subpopulations. Under this
model, the scaled migration rate 4N,m is estimated by (1-Fst)/Fst

Box 3.2 F ST

Applied to the example data, the pairwise Fst values, estimated using Weir
and Cockerham’s (1984) estimator, are displayed in the table below. The
largest estimate of Fst is found between the San and the French leading to
the largest estimated divergence time (scaled by effective population sizes)
or, alternatively, the smallest estimated migration rate, between these two
populations. Note that because San ancestors may have diverged earlier than
any of the other populations (Schlebusch et al. 2012), we may expect that the
divergence time between San and any of the other population would be equal,
but because time is scaled in N,, this is not necessarily the case. The large
divergence between San and French is, for instance, likely to be a consequence
of a relatively small N, for the French. Interestingly, F'sT is markedly smaller
between the French and the Mozabite than between the Mozabite and the

(continued)
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Yoruba. Under a pure migration model, this would suggest more gene flow
between the Mozabite and the French compared to between the Mozabite and
the Yoruba. An alternative interpretation (under a simple divergence model)
would state that the first population split was between Yoruba and the ancestor
population to the French and the Mozabite. As both these models are highly
unlikely to be a good approximation to human demographic history in this
particular case, caution is warranted about such direct interpretations when
the underlying model is largely unknown. From the PCA and STRUCTURE
analyses, we see indications of more complicated demographic scenarios
that incorporate both gene flow and population divergence, which can be
reconciled with these pairwise Fst values.

Fy
San vs. French 0.105
San vs. Mozabite 0.091
Yoruba vs. French 0.0905
Yoruba vs. Mozabite 0.073
San vs. Yoruba 0.0511

French vs. Mozabite 0.0185

3.3.1.2 Other Measures of Genetic Distance

There are many alternative measures of genetic distance between populations.
The simplest distance measure is the Euclidian distance between two points in
a multidimensional space. Many variations of this distance are available such as
Rogers’s (1972) scaled Euclidian distance, Prevosti et al.’s (1975) distance, Cavalli-
Sforza and Edwards’ (1967) chord distance, and Nei et al.’s (1983) D distance.
These are all geometric distances and do not involve any evolutionary models.

Other, more model-based, distance measures are Cavalli-Sforza’s chord distance
(1969); Reynolds, Weir, and Cockerham’s 6w (1983), and Nei’s (1972) Ds. The
first two measures utilize existing variation (without modeling the possibility of
new mutations), while Nei’s Dy includes the possibility of new mutations occurring
in an infinite allele mutation model.

Distance measures have also been designed to handle the stepwise mutation
model (SMM) that can be useful for microsatellite data. Goldstein et al.’s (1995)
(81)? distance is commonly used, as is the closely related average square distance
(ASD) (Slatkin 1995). Two other commonly employed distances for microsatellites
are Shriver et al.”s (1995) distance and the shared allele distance Dsa (Chakraborty
and Jin 1993).
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3.3.2 Formal Tests for Admixture Under a Population Tree-Model

Once we have some proposed demographic model/s, we can start estimating
demographic parameters in these models. An alternative, but not mutually exclusive,
way to proceed is to construct formal tests of these models. The proposed model is
used as a null model to make predictions, and then these predictions are compared
to the observed data in order to test if the data is consistent with the model. A
recent suite of tests along these lines is the 3-population test, the 4-population test
(Reich et al. 2009), and the D-test (Green et al. 2010). These have been successfully
applied to test for admixture among human populations as well as for identifying a
significant level of admixture from archaic humans (Neandertals and Denisovans)
among human populations (Green et al. 2010; Reich et al. 2010). These methods,
collectively referred to as f-statistics (in contrast to Wright’s F-statistics), relate
the expected covariances in allele frequencies between not only 2 but also 3 and 4
populations in a bifurcating population phylogeny with the possibility of punctual
admixture events.

The f3 statistic, or 3-population test, is computed as the product (px — pa)
(px — pB), where px, pa, and pp are the allele frequencies at each locus in
population A, B, and X. The expected value of this product is positive under a
tree model, but the estimate from data can be negative under certain admixture
scenarios (which violate the tree model), and negative f3-statistics can only occur
due to admixture events.

The f4 statistic, or 4-population test, is computed as the product (po — pB)
(px — py), where pa, pB, px, and py are the allele frequencies at each locus in
population A, B, X, and Y. This product is expected to be O if the 4 populations
are related by an unrooted phylogeny of the form (A, B), (X, Y) without admixture.
Violations of this assumption can create (significantly) positive or negative values
where the sign of the statistic contains information on the direction of the admixture.

The D-test is a version of the fi statistic with a denominator that includes a
term for heterozygosity. Jackknife or bootstrap permutation tests of chromosomes
or blocks of the genome can be used to assess statistical uncertainty and perform
hypothesis tests using these statistics (Reich et al. 2009).

We illustrate these methods by performing the D-test on our data (Table 3.1).
Using San as the outgroup, we see that the single-tree hypothesis with the smallest
deviation from D = 0 has the Mozabite and the French as the closest related
populations. However, the negative D-value for this tree suggests gene flow from
the Yoruba into the Mozabite. This result is consistent with the Mozabite having
ancestry related to both Yoruba and the French with more gene flow from the
French than from the Yoruba. This result closely mirrors the analysis based on
Fst, and it is (supposedly) robust to effects of genetic drift (e.g., from different
effective population sizes in the different populations), which could impact Fst
results. However, we cannot rule out alternative models without a more detailed
model of genetic drift in the population history model.
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Table 3.1 D-test for w X Y VA D-stat
different topologies (W, (X,
Y. 2))

Z-score
San Yoruba  Mozabite French —0.0089 —8.018
San Mozabite Yoruba  French 0.1358 67.627
San French  Yoruba  Mozabite  0.1445 76.227

A large absolute value of the Z-score indicates a poor fit of

the observed data and the proposed topology. If gene flow

involving the outgroup lineage can be ignored, a negative D

value suggests gene flow between X and Y, while a positive D

value indicates gene flow between X and Z

3.3.3 More Advanced Modeling

3.3.3.1 Population Graph Fitting

The f-statistic framework in Reich et al. (2009) where the 3- and 4-population tests
were introduced also in a more complex model fitting framework where a multi-
population model can be fitted so that population topology, admixture events, and
genetic drift along lineages are fitted to the observed f-statistics. This approach has
been implemented in the package qpgraph (Patterson et al. 2012) and in MixMapper
(Lipson et al. 2013). A similar approach of fitting ancestry graphs to genetic
data was attained by Pickrell and Pritchard (2012). Their method, implemented in
the software TREEMIX, finds the tree structure with potential admixture events
between populations that best explains the observed matrix of allele frequency
covariances between populations.

3.3.3.2 Isolation-Migration Models

Several methods that attempt to co-estimate effective population sizes, divergence
time, and migration rates in a 2-population “isolation-migration” (IM) model setting
have been developed. In one line of approaches, the estimates are based on haplotype
information using a Bayesian framework (Nielsen and Wakeley 2001; Hey and
Nielsen 2004, 2007). Here the haplotypes are assumed to be known and that
there is no intra-locus recombination. The latter assumption has been relaxed in
the implementation of MIMAR (Becquet and Przeworski 2007). These methods
are usually too computationally intensive to be applied to full genomic data.
Alternatively, loci are assumed to be independent, and the full joint frequency
spectrum is utilized in a composite likelihood approach to estimate the migration
rates and divergence time (Gutenkunst et al. 2009). ABC methods (see below) have
also been developed specifically for the IM model (Lopes et al. 2009; see also Tellier
et al. (2011)).

3.3.3.3 Approximate Bayesian Computation

Approximate Bayesian computation (ABC) is a powerful and extremely flexible
approach to fit and compare models to real data that does not rely on calculating the
full likelihood of the data given a model (see, for instance, Beaumont et al. 2002;
Csilléry et al. 2010). Instead, some (well-chosen) summary statistics calculated for
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simulated data are compared to the values of these summary statistics observed
from the real data. The simulations are performed by drawing model parameters
from prior distributions and then choosing those simulations that best mimic the
real data. The distribution of the model parameters in this chosen set of best fitting
simulations can then be used to estimate the model parameters. Different models can
then be contrasted using Bayes factors. The ABC approach has proven very flexible
for inferring model parameters, and there is an active community developing novel
and faster algorithms (e.g., Pudlo et al. 2016; Csilléry et al. 2012).

3.4 Summary and Guidelines

Good practice when investigating a population-genetic dataset for population struc-
ture is to start by visualizing the data in a way that reveals the inherent characteristics
of the data. To get an indication of whether or not the data contains different
groups; PCA, simple tree-building methods, and “STRUCTURE-like” approaches
are all good tools for initial data exploration. Once some overview of the data is
obtained, we can start building simple models to investigate additional hierarchical
patterns and characteristics of the underlying demographic history of the sample
and population/s. More detailed hypotheses can subsequently be scrutinized using
more explicit and advanced models. The more accurate models of demography we
can infer, the better we understand the underlying processes shaping the population
genetic patterns of variation. Ultimately, this understanding may allow in-depth
analysis of the genetic architecture of traits and patterns of selection impacting the
genome (Li et al. 2012), after controlling for patterns caused by demographic history
manifesting as population structure.
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