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Abstract

The standard neutral coalescent model and its extensions to include changes
in population size over time and population structure are reviewed. Gene
genealogies are shown to provide the hidden structure behind patterns of genetic
variation. Expressions for expected levels of genetic variation are presented and
explained, and tests of the standard neutral model based on the frequencies of
mutations at single-nucleotide sites (aka “site frequencies”) are outlined. Several
examples of deviations from the standard model are discussed, and their effects
on expected site frequencies are illustrated. Some attention is given to the fact
that coalescent theory has not fully grappled with the existence of underlying
population pedigrees.

1.1 Aims and Clarifications

The goal of the coalescent theory is the same as that of population genetics,
namely, to understand the forces which produce and maintain variation. The models
presented in this chapter support this endeavor. They are abstract and idealized tools
applicable to many different kinds of organisms or species. Due to the persistence of
racism, studies of human diversity call for a great deal of sensitivity. It is not enough
just to agree with Hochman (2019) that we have “changed the topic from ‘race’ to
‘population.’” We have to clarify that we are not just switching words. Rather, if
“race” is used to refer to a group of people, that group is not a “population” in the
population-genetic sense.
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Winther et al. (2015) discuss three common uses of “population”: in mathemat-
ical models, in the laboratory, and in the wild. The populations in this chapter are
of the first kind. They are theoretical constructs to be applied for the sake of better
understanding. Their application may lead either to further advances in modeling or
to new hypotheses about populations of actual organisms including ourselves. The
framework is statistical and involves sampling from populations. It should be borne
in mind that “the sample” in what follows means genetic data taken from a number
of individuals.

As a matter of perspective, it is important to recognize the surprising overall
truth about human genetic variation—that there is very little of it compared to what
is found in most species (Leffler et al. 2012). Further, the degree of substructure
among humans is remarkably low (Rosenberg et al. 2005). As a first approximation,
it is not uncommon or unreasonable to compare global patterns of human genetic
variation to the predictions for a single, well-mixed population.

1.2 Introduction: Gene Genealogies Within a Population
or Species

Population-genetic datasets, with their typically complex and interesting patterns
of polymorphism among the DNA sequences, haplotypes or genotypes in the
sample, are the result of an equally complex and interesting set of ancestral genetic
processes. Each single-nucleotide polymorphism (SNP) reflects the specific patterns
of descent from the ancestors of the sample and the mutation(s) at that nucleotide
site during genetic transmission. Patterns of descent from ancestors are influenced
by the random processes of genetic transmission and a host of demographic
processes which may include natural selection, population growth, and population
structure. The data consist only of patterns of polymorphism, and the challenge is
to use these to make whatever inferences we can about the underlying processes.

Forgetting mutations for the moment, the term gene genealogy refers to the
pattern of genetic ancestry among the members of a sample at a single-nucleotide
site or a genetic locus made up of a non-recombining sequence of sites. If there is
intra-locus recombination, then gene genealogies at different sites may be different
(see Chap. 2). In this chapter, gene genealogies are considered without intra-locus
recombination. Under mild restrictions on the sample size, the population size, and
the demography of the species, gene genealogies may be depicted accurately as
rooted, bifurcating trees, with the samples at the tips and the most recent common
ancestor, or MRCA, of the sample at the root. The branches represent the genetic
lineages ancestral to the sample.

Figure 1.1 shows a hypothetical dataset and a corresponding gene genealogy. For
a real dataset, the gene genealogy would be unknown, but it is clear from Fig. 1.1
that the structure of the gene genealogy is a very strong determinant of the patterns
of mutations (e.g., the frequencies) in the sample. Fig. 1.1 depicts the simple case in
which every mutation in the ancestry of the sample occurs at a different nucleotide
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Fig. 1.1 A hypothetical gene genealogy of n = 4 sequences from the standard neutral coalescent
model without recombination and assuming infinite-sites mutation. The coalescent intervals T2,
T3, and T4 are drawn in proportion to their expected values. Hypothetical DNA sequence data (or
haplotypes) are coded such that the ancestral base at each site is denoted 0 and the mutant base is
denoted 1

site. Thus, each dot (mutation) on the tree in Fig. 1.1 corresponds to exactly one
SNP.

It is due to their position as intermediaries between patterns of polymorphism and
population-level demographic processes that gene genealogies became important
objects of study in the early 1980s. Hudson (1983) and Tajima (1983) initiated
the study of gene genealogies in population genetics, on the stage set previously
by Ewens (1972, 1974) and Watterson (1975). Together, these publications antic-
ipated the current abundance of genetic data and laid the foundations for modern
computational approaches to data analysis, which often make explicit use of gene
genealogies and typically treat them as unknown “nuisance” parameters or hidden
variables.

Work on gene genealogies ushered in a new way of thinking in population
genetics, in which the classical models were turned around and viewed backward in
time (Ewens 1990). The subfield of population genetics that treats gene genealogies
is called a coalescent theory. For reviews, see Hein et al. (2005) and Wakeley (2009).
The word coalescent captures the idea that the ancestral genetic lineages of a sample
are imagined to join together in common ancestors (i.e., they coalesce) as they travel
backward in time. Kingman (1982a, b, c) gave the formal mathematical proof of
the existence of the standard neutral coalescent process, which is the same process
Hudson (1983) and Tajima (1983) considered from a biological point of view.

The fruit of the study of gene genealogies may be seen, for example, in the work
of Li and Durbin (2011), who modeled the distribution of SNPs across the genome
in a sample of two (haploid) human genomes, taking into account the fact that
recombination occurs across the genome. In standard neutral coalescent models, the
shape of this distribution depends on the distribution of pairwise times to common
ancestry across the genome, which in turn depends on the size of the population
in each past generation. Li and Durbin (2011) applied a simulation-based method
of inference, specifically a hidden Markov model (HMM) of times to common
ancestry, to make detailed estimates of past human population sizes. Spence et al.
(2018) review the development of such HMMs following Li and Durbin (2011).

The purpose of this chapter is to provide an intuitive introduction to the
mathematics of coalescent theory. All the basic results of the standard neutral
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model for a single locus without recombination are presented and explained. The
presentation begins with the idea that gene genealogies are embedded within
organismal pedigrees. Although this is not a controversial idea, it is not, in fact,
how gene genealogies are modeled in standard coalescent derivations.

1.2.1 Organismal Pedigrees and Gene Genealogies

Within any sexually reproducing species, such as humans, there exists a pattern of
ancestry and descent which we may call the population pedigree. If it were known,
the population pedigree would be a record of all reproduction events, connecting
parents with their offspring and extending from the distant past to the present day.
It would reflect the movement of individuals across the globe, changes in local
population sizes over time, and events such as the selective sweeps of advantageous
alleles through the population. Like the gene genealogy, the population pedigree
is an unknown but important outcome of the population-level processes which
affect genetic variation. Further, the gene genealogy at a locus without intra-locus
recombination is simply the result of Mendelian segregation within the parts of the
population pedigree relating to the sampled individuals.

The derivations of coalescent theory average over the unknown population
pedigree within each generation, with details depending on the reproduction form
assumed. For example, consider the probability that two gene copies or alleles
at an autosomal locus, obtained by randomly sampling two individuals from the
population without replacement, are descended from a common ancestor (i.e., they
“coalesce”) in the immediately previous generation. This quantity, which we may
call cN following Möhle (1998a) is fundamental in coalescent theory because it sets
the timescale of the coalescent process. Under the diploid, dioecious Wright–Fisher
model (Fisher 1930; Wright 1931) with random mating between the two sexes, we
have

cN = 1

8

(
1

Nf
+ 1

Nm

)

in which Nf and Nm are the numbers of females and males in the population.
In other words, coalescence occurs when the sampled individuals share a female
parent (1/Nf ) or a male parent (1/Nm), and both samples come from that shared
parent (1/4), and they descend from the same copy in that parent (1/2). The first
two probabilities, 1/Nf and 1/Nm, follow from the assumption of random mating,
and the second two probabilities, 1/4 and 1/2, follow from the process of Mendelian
segregation.

In the case that Nf = Nm = N/2, then we have cN = 1/(2N), which is identical
to the result for the diploid, monoecious Wright–Fisher model. Although the details
of the coalescence probability cN depend on the details of reproduction, in general,
cN will depend inversely on the size of the population as it does in this example.
Now, if we apply this same probability in every generation in the past, the number of
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generations back to the common ancestor of the sample is geometrically distributed:

P(g) = cN(1 − cN)g−1. (1.1)

Then on average, looking backward in time, it will take 1/cN generations for
the pair of genetic lineages ancestral to the sample to coalesce. Under the diploid,
monoecious Wright–Fisher model, this would be 2N generations. This is what
sets the timescale of the coalescent process. Time is usually measured in units
proportional to N generations, e.g., 2N in this case of the diploid, monoecious
Wright–Fisher model.

The derivation of Eq. (1.1) is incorrect for two reasons. First, it is exact only
in the diploid, monoecious model if “random mating” includes the possibility of
reproduction by selfing. When there are two sexes or if selfing is not possible,
it is wrong to apply the same probability, cN , in every generation because when
the two lineages ancestral to the sample are in the same individual and they are
distinct, they necessarily descend separately from the two parents. Consequently,
the probability of coalescence in the immediately previous generation is equal to
zero. In spite of this, the geometric distribution is still approximately correct as long
as the population size is large (Möhle 1998b, c), because the two ancestral lineages
will only be in the same individual a small number of times, while the number of
generations back to their coalescence would be large, proportional to N generations
on average.

The second reason has to do with how the population pedigree is treated in the
derivation. Here it is important to recognize that coalescent theory is typically used
to describe patterns of genetic variation across the genome, for example, as in Li and
Durbin (2011) mentioned above. Because this chapter does not treat recombination,
we may imagine a genomic dataset made up of sequences at a number of genetic
loci within which there is no recombination but between which there is either
completely independent assortment, as with different chromosomes, or effectively
independent assortment, as with loci that far enough apart on the same chromosome.
It is conceptually wrong to use results such as Eq. (1.1) because, in averaging over
the process of reproduction, they do not capture the actual patterns of relatedness
among the sampled individuals which are encoded in the population pedigree.

Figure 1.2, which is adapted from Fig. 3 in Wakeley et al. (2016), shows part of
a larger pedigree for the Spanish Habsburg royal family reported in Alvarez et al.
(2009). At a single genetic locus, two sequences sampled from Mary of Portugal
and King Philip II would have zero chance of being descended from a common
ancestral sequence in the immediately previous generation. In the grand-parental
generation, however, the probability of coalescence is a substantial 1/8 due to the
special relatedness of Mary and Philip as double first cousins. Since Mary and Philip
also share one pair of great grandparents, there is a 1/32 chance of coalescence in
the third generation in the past.

These probabilities are calculated by tracing each ancestral lineage back to the
mother or the father of each individual with a 50:50 chance and letting two lineages
coalesce with probability 1/2 whenever they trace back to the same individual. If
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Fig. 1.2 Part of the pedigree of the Spanish Habsburg royal family, extracted from Fig. 1 in
Alvarez et al. (2009) and redrawn

two lineages are in the same individual but are distinct, another uniform random
choice decides which is maternal and which is paternal. Calculations like this have
a long history and numerous uses in human genetics (Ott 1999) and can be used to
compute any probability of interest on arbitrarily complicated pedigrees (Cannings
et al. 1978).

Following these rules, which are just Mendel’s laws viewed backward in time,
also allows for the straightforward simulation of gene genealogies within population
pedigrees. In the particular case of Fig. 1.2, if the genetic ancestry of a large number
of loci were simulated beginning with one sample from Mary of Portugal and one
from King Philip II, the results would show that no loci would have their MCRA in
past generation one, 1/8 of loci would have their MCRA in past generation two, and
1/32 of loci would have their MCRA in past generation three.

The chances of common ancestry in each generation for the pedigree in Fig. 1.2
are markedly different from the predictions of the standard neutral coalescent model,
with its constant probability of coalescence, cN , in every generation. Averaging
over the process of reproduction or equivalently over pedigrees is conceptually
wrong because for any given species, there is in fact just one population pedigree.
Sample ancestries might include relationships like those in Fig. 1.2, which standard
coalescent models ignore. Again, the primary application of coalescent theory
is to model the distribution of genetic variation across the genome within a
sample. As this distribution is the outcome of transmission within a single, fixed
population pedigree, coalescent theory should ideally model the distribution of gene
genealogies in this way too.
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Fortunately, it appears that inferences based on the standard coalescent model
may often involve little error because the process of coalescence on a fixed pedi-
gree is practically indistinguishable from the standard neutral coalescent process
(Wakeley et al. 2012). This result comes from simulations of large well-mixed
populations, so it is important to note that it may not hold for all possible extensions
of coalescent modeling. For example, in those finely divided, structured populations,
often referred to as “meta-populations” (Hanski and Gaggiotti 2004), the sizes of
local subpopulations may be small, and averaging over pedigrees could give highly
inaccurate results.

Standard coalescent models become accurate for large well-mixed populations
because the ancestries of all present-day individuals overlap broadly (Chang 1999;
Rohde et al. 2003). If all ancestors are distinct, then every individual will have
2g pedigree ancestors in generation g in the past. Thus, just 40 generations, or
perhaps 1000 years ago, we should each have more than one trillion ancestors.
However, according to Fig. 1 of Keinan and Clark (2012), the number of people
alive 1000 years ago was only about 100 million. For each of us, our >1012 expected
pedigree ancestors must all map onto 108 actual pedigree ancestors. This causes
a huge degree of overlap of our ancestries. For a Wright–Fisher population of
large constant size N, Chang (1999) found that by 1.77log2N generations ago the
population is divided neatly into two groups: a fraction (~0.7698) who are ancestors
of every present-day individual and a fraction (~0.2302) who have no descendants
today. For perspective, 1.77log2N is roughly 35 generations for a population of size
N = 106 and 47 generations for N = 108.

Roughly speaking, it is because of this broad overlap of pedigree ancestries in
the relatively recent past that coalescent models based on the incorrect assumption
of homogeneity of coalescent probabilities over time actually make reasonable
predictions about the distribution of gene genealogies within fixed population pedi-
grees, at least for large well-mixed populations. Of course, the distribution of gene
genealogies within fixed population pedigrees is not identical to the distribution
of gene genealogies under the standard neutral coalescent. But the differences are
primarily restricted to the past log2N generations, at which point there is a rapid
transition to the type of homogeneous, essentially pedigree-independent behavior
found in the standard model (Wakeley et al. 2012).

Random samples from large well-mixed populations are very unlikely to include
closely related individuals, so the typical effect of the population pedigree is to
bar coalescence in the very recent past. But since log2N generations is much less
than the timescale of the coalescent process, i.e., N generations, the effects of
population pedigrees on gene genealogies will often be negligible. This provides
some justification for the common practice of discarding individuals when high
levels of relatedness are detected in population-genetic data (Rosenberg 2006).
However, it may be preferable to account for recent pedigrees explicitly, particularly
in structured populations (Wilton et al. 2017). In cases where the pedigree itself is
of interest, Ko and Nielsen (2019) describe how it can be estimated from genetic
data.
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1.3 The Standard Neutral Model: The Kingman Coalescent

The standard neutral coalescent model, also called the Kingman coalescent, begins
with single-generation probabilities like cN above and then takes advantage of the
fact that a relatively simple model of the ancestral genetic process for a sample of
size n ≥ 2 holds for many different kinds of reproduction as long as the population
size (N) is large and the sample size n is much smaller than N. Mathematically, this
involves rescaling time so that it is measured in units of 1/cN generations (2N for
the diploid, monoecious Wright–Fisher model) and then taking the limit N → ∞.
The standard coalescent is a backward-time dual process (see Möhle 1999) of the
standard forward-time diffusion model of population genetics, as both models use
this procedure of rescaling time and taking the limit N → ∞ (Ewens 2004).

Kingman assumed a general family of haploid models of reproduction introduced
by Cannings (1974) which includes the diploid, monoecious Wright–Fisher model.
By studying all possible events in the immediate ancestry of a sample of size
n, Kingman found—see Eq. 4.3 in Kingman (1982a)—that the most likely event
is a coalescent event between a pair of lineages. Considering all possible pairs
of lineages and averaging over the process of reproduction, the probability of a
coalescent event is

(
n

2

)
σ 2

N
+ O

(
1

N2

)
(1.2)

where n is the sample size, σ 2 is the variance of the number of offspring of a single

(haploid) individual under the model or reproduction, and

(
n

2

)
=n(n − 1)/2 is the

number of possible pairs of lineages. Equation (1.2) is written with large populations
in mind. The exact probability is not captured entirely by the first term; O(1/N2)
represents all remaining terms in a power series expansion of the coalescence
probability, the largest of which is proportional to 1/N2. The other possible events,
which involve more than two ancestral lineages coalescing in a single generation,
have probabilities proportional to1/N2 or smaller. As N → ∞, all events and terms
of order 1/N2 or smaller become negligible compared to the first term in Eq. (1.2).

Like the standard diffusion model, the standard coalescent process is a limiting
model which is meant to capture the essential behavior of large populations. Its
timescale is set by the probability of coalescence for a sample of size two. When
time is rescaled in Eq. (1.1), so that it is measured in units of 1/cN generations
(which is, again, proportional to N generations) and then the limit N → ∞ is taken,
the geometric distribution P(g) converges to an exponential distribution f (t) = e−t.
Thus, on the new timescale, coalescence occurs with a rate equal to 1 between the
two ancestral lineages. Similarly, using the probability in Eq. (1.2) for a sample of
arbitrary size n, the rate of coalescence becomes equal to n(n − 1)/2. That is, each
of the n(n − 1)/2 pairs of lineages coalesces with a rate equal to 1 independently in
the coalescent limit.
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When the Kingman coalescent is the limiting ancestral process, it is useful to
refer to the coalescent effective population size Ne (Sjödin et al. 2005), which is
given by N/σ 2 in Kingman’s derivation from the general Cannings’ model, by the
familiar 2N in the diploid Wright–Fisher model, under both the monoecious model
and the dioecious model with equal numbers of males and females, and by 1/cN in
general.

Note that the statement N → ∞ does not refer to changes in the size of the
population. The population size N is assumed to be constant over time in the
standard neutral coalescent model (later, one may relax this assumption). The limit
simply means that we consider a series of such (constant-size) populations, with the
aim of identifying the dominant behavior of the ancestral process when N is very
large.

The standard neutral coalescent has been shown to be robust to many deviations
from Kingman’s initial assumptions (Möhle 1998a). It applies when generations
are overlapping and to populations of diploid, biparental organisms. The latter case
requires mathematical formalism beyond what Kingman used. This was developed
in a pair of papers by Möhle which treated partial selfing (Möhle 1998b) and
diploid, biparental inheritance (Möhle 1998c). In all these cases, the derivation of
the coalescent begins with the description of an expected, single-generation process,
which is the average over all possible outcomes of reproduction or over the pedigree.

1.3.1 The Sampling Structure of Coalescent Gene Genealogies

The end product of these calculations is a continuous-time model of the ancestral
genetic process which begins with the n genetic lineages of the present-day sample
and proceeds back into the past. Each pair of lineages coalesces independently with
a rate equal to one, so that the total rate is i(i − 1)/2 when there are i ancestral
lineages. Again, i(i − 1)/2 is the total number of pairs of lineages that can coalesce.
Thus, the total rate of coalescence is higher when there are more lineages available
to coalesce with each other. Coalescent events occur between randomly chosen pairs
of lineages at randomly (exponentially) distributed times. The process is stopped
when the last two ancestral lineages coalesce into a single lineage, the MRCA of
the sample.

One run of this process produces a random-joining tree with associated branch
lengths determined by the series of exponentially distributed coalescence times,
which is taken to represent a single gene genealogy sampled from the distribution
of all possible gene genealogies under the model. Multiple independent runs are
used to represent collections of gene genealogies at multiple unlinked or effectively
unlinked loci. Gene genealogies vary quite dramatically, in both branching structure
and coalescence times (reflected in the heights of the genealogies). This is shown
in Fig. 1.3 which displays ten randomly generated gene genealogies for a sample of
size n = 20 under the standard neutral coalescent. A key purpose of coalescent
theory is to model variation in gene genealogies, as in Fig. 1.3, reflecting the
randomness of the evolutionary process.
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Fig. 1.3 Ten independently generated gene genealogies for a sample of size n = 20, produced
using a Mathematica Demonstrations Project “Coalescent Gene Genealogies” written by John
Hawks

The standard neutral coalescent provides a prior distribution of gene genealogies
which can be invoked (logically before a sample is taken) to make predictions about
expected patterns of genetic variation or for purposes of statistical inference from
data. For example, Huff et al. (2010) used a simple result from coalescent theory,
due to Tajima (1983), to identify loci in a pair of human genomes that had twice the
average coalescence time of randomly chosen loci, and employed these older loci to
make inferences about ancient human effective population sizes. General methods
of statistical inference for larger samples, such as those mentioned in Sect. 1.4.3,
treat gene genealogies as missing data and average over them using the coalescent
prior.

1.3.2 Including Mutations in the Coalescent

The lineages of the gene genealogy represent all the opportunity for mutations
in the ancestry of the sample: any polymorphisms in the data must be the result
of mutations that occurred along the branches of the gene-genealogical tree.
Predictions about genetic variation and inferences from genetic data cannot be made
unless mutations are included in the model. Fortunately, this is straightforward in
the standard neutral coalescent. By definition, neutral genetic variation does not
affect the probabilities of reproduction or the distribution of the number of offspring
per individual, so mutation and coalescence can be treated separately. In particular,
conditional on the gene-genealogical tree, mutations occur independently along
each branch.

Because the timescale of coalescence is in units of N generations, each branch
in the tree represents a huge number of opportunities for a mutation to occur. Then,
because the probability of mutation per generation is very small, mutation may be
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modeled quite accurately as a continuous-time Markov process or sometimes simply
as a Poisson counting process. A four-state Markov process is appropriate for a
mutation in DNA, with its four nucleotides. When a Poisson counting process is
used as an approximation, it is also often assumed that at most one mutation can
occur per site. This is known as the infinite-sites (or infinitely-many-sites) mutation
model.

The mutation rate for a genetic locus is typically denoted θ /2, the mutation
parameter θ being proportional to the product of the population size, N, and neutral
mutation rate per generation, u. In general, θ = 2Neu, with θ = 4Nu in the diploid
Wright–Fisher model. Technically, θ is assumed to exist in the limit N → ∞, but
less formally, the model is valid when N is large and u is small. With θ defined
this way, the number of mutations on a branch or branches of total length t follows
a Poisson distribution with expected value tθ /2. The critical feature of the infinite-
sites model is that each mutation creates a unique polymorphic site. Thus, for a
given nucleotide site in the genome, at most, one mutation can have occurred in the
history of the sample. This chapter will focus exclusively on this mutation model,
which is due in this form (i.e., without recombination) to Watterson (1975). The
infinite-sites model is a reasonable starting approximation for human autosomal
genetic diversity, because only about 1/1000 nucleotide sites are polymorphic when
two human genomes are compared (Cargill et al. 1999; Stephens et al. 2001) and
only about 1/500 SNPs show more than two bases segregating (Hodgkinson and
Eyre-Walker 2010).

A large number of four-state models have been put forward to represent DNA
mutations, the HKY85 model being one of the most commonly used (Hasegawa et
al. 1985). Models of “stepwise” mutation have also been added to the coalescent
in order to account for variation in repeat sequences, such as microsatellite loci
(Valdes et al. 1993). In general, mutation is a time-inhomogeneous process and
must be modeled separately along each branch, forward in time starting from the
MRCA or root of the tree. A number of simpler, “parent-independent” mutation
models have been employed as approximations; for example, see Stephens and
Donnelly (2003) and Fearnhead (2006). The infinite-sites model considered here
and the infinite-alleles model used by Ewens (1972) are special cases of parent-
independent mutation.

1.4 Fundamental Predictions for Single Loci inWell-Mixed
Populations

The mathematical convenience of the standard neutral coalescent, the ease with
which it may be applied, and all of the detailed predictions one can make using
it follow from three key properties of standard neutral gene genealogies:

• The branching structure of a coalescent tree is determined by randomly joining
pairs of ancestral lineages until the MRCA is reached
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• The time during which there are i lineages ancestral to the sample, denoted Ti,
follows an exponential distribution with parameter i(i − 1)/2

• Ti and Tj are statistically independent for i �= j

For reference, the gene genealogy in Fig. 1.1 is drawn with the lengths of coa-
lescent intervals T2, T3, and T4 equal to their expected values from the exponential
distribution, E[Ti] = 2/(i(i − 1)). In the case of parent-independent mutation, such
as in the infinite-sites model considered here, we may include a fourth property:

• Mutations occur with rate θ /2 along each branch of the coalescent tree

Then, conditional on the tree, the number of mutations over a length t of the tree
follows a Poisson distribution with parameter tθ /2. For example, the 11 mutations
on the gene genealogy in Fig. 1.1 are exactly the number expected if θ = 6 because
the total length of the gene genealogy in Fig. 1.1 is 11/3 (see E[TTotal] below).

1.4.1 The Size and Shape of a Gene Genealogy

Considering just the gene genealogy, without mutations, a great deal can be gleaned
from the first three properties listed above. Because lineages always coalesce in
pairs in the standard neutral coalescent, every gene genealogy includes exactly n− 1
coalescent events. Let TMRCA represent the time to the most recent common ancestor
of the sample and let TTotal represent the total length of the gene genealogy, or the
sum of the lengths of all the branches in the tree. These two measures have been used
extensively to characterize the sampling properties of gene genealogies. Knowledge
of TMRCA may be of direct biological interest, while knowledge of TTotal is important
because TTotal quantifies the total opportunity for mutations to occur in the ancestry
of the sample.

From their definitions, TMRCA is simply the sum of the individual times Ti, or

TMRCA =
n∑

i=2

Ti

and TTotal is obtained similarly, except that each time is weighted by the number of
lineages that existed during the interval, so that

TTotal =
n∑

i=2

iTi

The n − 1 times, Tn, Tn − 2, . . . , T2, are called coalescence intervals here to avoid
confusion with TMRCA, which is often referred to as the coalescence time.

Using the properties of the exponential distribution, namely, that E[Ti] = 2/
(i(i − 1)) and Var[Ti] = 4/(i(i − 1))2 and the fact that the n − 1 coalescent intervals
are statistically independent, so that Cov[Ti,Tj] = 0 for i �= j, one obtains the
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fundamental predictions about the time to the most recent common ancestor,

E [TMRCA] =
n∑

i=2

2

i (i − 1)
= 2

(
1 − 1

n

)
≈ 2

and

Var [TMRCA] =
n∑

i=2

(
2

i (i − 1)

)2

≈ 4

3

(
π2 − 9

)

in which the approximations are for large n. Recall that time here is measured in
units of Ne generations, so that 2 in the first equation above corresponds to 4N
generation in the diploid Wright–Fisher model. The significance of this equation is
that TMRCA does not grow indefinitely with increasing sample size n, but converges
to a constant value. This is because when i is large, Ti tends to be extremely
short. For example, E[T100] = 0.0002, whereas E[T2] = 1. Again, the coalescence
intervals in Fig. 1.1 are drawn to scale according to their expected values: [T2] = 1,
E[T3] = 1/3, and E[T4] = 1/6.

Even if the sample size is large, the statistical properties of gene genealogies are
strongly affected by a relatively small number of coalescent intervals, those deep
in the past for which the number of ancestral lineages, i, is small. It is in large part
because of this that inferences based on genetic variation at a single locus tend to be
poor. For example, note that Var[TMRCA] does not decrease to zero as n increases
but converges to a constant value (~1.16). Increasing the sample size n in population
genetics does not induce the kinds of “law of large numbers” behaviors one finds in
standard statistical scenarios where samples are independent.

For the total length of the gene genealogy, one finds

E [TTotal] = 2
n−1∑
i=1

1

i
≈ 2 (ln n + γ )

in which γ = 0.577216 is Euler’s constant, and

Var [TTotal] = 4
n−1∑
i=1

1

i2
≈ 2π2

3

Again, the approximations are for large n. In this case, there is a somewhat greater
effect of increasing the sample size n, but the effect is weak. For example, the
coefficient of variation of TTotal—defined as the standard deviation divided by the
mean—does tend to zero as n tends to infinity, but it decreases very slowly, in
proportion to one over the natural logarithm of n.

It is possible to obtain explicit expressions for the full distributions of TMRCA
and TTotal and also for measures of genetic variation such as S in the next section,
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but the expressions are cumbersome. Interested readers should consult the review
by Tavaré (1984) or the textbooks by Hein et al. (2005) and Wakeley (2009).

1.4.2 Levels and Patterns of Genetic Variation

The introduction of the coalescent was revolutionary in population genetics because
it provided a way to compute the probability of a dataset. This probability,
also known as the likelihood, is the foundation of rigorous statistical inference.
Population-genetic data are complicated, with nested patterns of variation among
subsets of the sample as in Fig. 1.1, and no general analytical results are available
for the likelihood. Inference has proceeded by the numerical computation of
likelihoods, using simulations to sample gene genealogies from the coalescent prior
distribution. Even this is quite complicated due to the enormity of the sample space
of gene genealogies.

Two ways of accounting for the unknown gene genealogy were developed in
the 1990s: importance sampling and Markov chain Monte Carlo (MCMC). If we
knew the order of mutation events and coalescent events, as in Fig. 1.1, but not
the times, we could compute the likelihood by multiplying the probabilities of the
ordered events. For example, under the infinite-sites model, all likelihoods include
the familiar probability of identity by descent, 1/(θ + 1), originally due to Malécot
(1946), because for all gene genealogies, the final event is that two ancestral lineages
coalesce at the MRCA before either of them mutates. Importance-sampling methods
average these products of probabilities over possible orderings of events (Griffiths
and Tavaré 1994, 1996; Stephens and Donnelly 2000; Wu 2010). Alternatively, if
we knew the tree structure and the coalescence times, we could model the process
of mutation along the branches of the tree in computing the likelihood. MCMC
methods do this and average over the underlying trees and times (Kuhner et al.
1995; Kuhner 2006; Beerli 2006; Hey and Nielsen 2004, 2007; Drummond et al.
2012).

There has been a growing trend to make inferences based on “summary
statistics” rather than the full data, often within the framework of approximate
Bayesian computation (Beaumont 2010; Alvarado-Serrano and Hickerson 2016).
The summary-statistic approach to inference reduces the dimensionality of the data,
ideally to a small set of simpler measures of genetic variation which are highly
informative with regard to a set of parameters or phenomena of interest. As with
importance sampling and MCMC, summary-statistic approaches use coalescent
models to average over gene genealogies. Coalescent theory is also used to make
predictions about summary statistics, a number of which (e.g., heterozygosity) have
also been important historically in population genetics.

Three kinds of summary statistics have been well studied in a variety of settings.
These are segregating sites, average pairwise differences, and site frequencies,
which are defined as follows for a sample from a single population. The number
of segregating sites, S, is the number of polymorphisms, e.g., SNPs in a dataset
of DNA sequences. The average number of pairwise differences, which is denoted
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π , is found by comparing each sampled sequence with every other, counting the
number of differences between them, and taking the average over all pairs. The site
frequencies, ξ i, are obtained by counting the number of SNPs in the data at which
the mutant base is found in i copies in the sample, for i from 1 to n− 1. The ancestral
state at each SNP is generally ascertained as the state in a sequence from a closely
related species. If this information is not available or is unreliable, site frequencies
just count the less frequent base, so that 1 ≤ i ≤ n/2.

Under the infinite-sites model, the number of segregating sites is equal to the
number of mutations on the coalescent tree. Then, by conditioning on TTotal, one
obtains

E [S] = θ

n−1∑
i=1

1

i

and

Var [S] = θ

n−1∑
i=1

1

i
+ θ2

n−1∑
i=1

1

i2

(Watterson 1975). The properties of S are similar to the properties of TTotal. In
particular, the expected number of segregating sites increases very slowly—like lnn
as more and more sequences are sampled. Further, the quality of estimates of θ

based on S improves rather slowly with increasing sample size, again like 1/ ln n
rather than the usual 1/n that holds in standard statistical applications, because the
samples are not independent due to their shared gene genealogy.

For the average number of pairwise sequence differences, one obtains

E [π] = θ,

which follows directly from E[S] because the marginal expectation for each pair of
sequences in a sample is identical to the expectation for a single pair. Further,

Var [π] = n + 1

3 (n − 1)
θ + 2

(
n2 + n + 3

)
9n (n − 1)

θ2

(Tajima 1983). Estimates of θ based on π are unbiased but inconsistent in the
statistical sense because Var[π] does not decrease to zero as the sample size n tends
to infinity. This is due to the fact that the ancestries of different pairs of sequences in
the sample share many of the same branches of the gene genealogy, causing some
mutations to be counted more than once in the computation of the average number
of pairwise differences π .

Beyond the general statement that population-genetic samples are not indepen-
dent due to the underlying gene genealogy, the relatively poor statistical properties
of estimates of θ are further explained by the probabilistic structure of gene
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genealogies. For example, Rauch and Bar-Yam (2004) studied the distribution of the
genetic “uniqueness” of a sample, defined as the length of the branch connecting that
sample to the rest of the gene genealogy. This distribution has an extremely long tail
because there is a chance the (n + 1)th sample will establish a new MRCA and thus
be markedly unique. Forward in time, the loss of such markedly unique lineages
causes neutral substitutions to accumulate in (non-Poisson) bursts (Watterson 1982;
Pfaffelhuber and Wakolbinger 2005). Greater statistical power to estimate θ may be
achieved by sampling more loci rather than increasing the sample size at a single
locus (Pluzhnikov and Donnelly 1996; Felsenstein 2006).

Predictions about site frequencies are obtained by considering mutations that
occur on branches in the coalescent tree that have i descendants in the sample. Fu
(1995) derived expressions for the expected values, variances, and covariances of
the site-frequency counts. Here, we will focus on the expected values, which are

E [ξi ] = θ

i

for i from 1 to n− 1. This simple relationship, for a sample of size n= 20, is graphed
as a “site-frequency spectrum” in Fig. 1.4a, which means that site frequencies are
plotted as expected proportions of all segregating sites. Figure 1.4b–d displays a
range of site-frequency spectra for three different models discussed in Sect. 1.5.
When depicted in this way, as expected proportions, the site-frequency spectrum
gives the probability of observing each type of polymorphism at a randomly chosen
SNP.

If the ancestral states at the sites of SNPs are not known, it is only possible to
discern the “folded” site-frequency patterns, which have expected values

E [ηi] = θ

(
1

i
+ 1

n − i

)
1

δi,n−i

for 1 ≤ i ≤ n/2. In the last term, δi, n − i, is the Kronecker delta, so this term is a
correction for the case i = n − i, in which only one kind of SNP contributes to
ηi. The full site-frequency spectrum is referred to as the “unfolded” site-frequency
spectrum.

None of these three measures of genetic variation depends on how variation
is arrayed along the sequences in the sample. All of them can be computed
by considering each SNP in isolation from all other SNPs. Patterns of linkage
disequilibrium between sites and the process of recombination that produces them
are the subject of Chap. 2. Although here our focus is on single loci without
recombination, it is important to note that all of the expected values given above hold
regardless of recombination. This is because the marginal coalescent process at each
site is the same as the corresponding single-locus coalescent process. However, the
variances given above hold only for single loci without recombination. Generally
speaking, recombination acts to decrease these variances because it introduces a
level of independence among sites.

http://dx.doi.org/10.1007/978-3-030-61646-5_2
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Fig. 1.4 Four site-frequency spectra illustrating the range of possible predictions of neutral
population-genetic models. For a given SNP, the mutant count is the number of sequences that carry
the mutant base out of a total sample of n= 20 sequences. The heights of bars give the proportion of
all SNPs that have each mutant count. The four panels show results for samples from (a) a standard
neutral population, (b) a population that recently grew 100-fold, (c) two isolated populations, and
(d) a single deme in a subdivided population with migration. Details and parameters for each case
are given in the text. The values in panels (b) and (c) were computed using Eqs. (20) and (22) in
Wakeley and Hey (1997). The values in panel (d) were generated using simulations described in
Wakeley (1999)

1.4.3 Tests of the Standard Neutral Coalescent Based on Site
Frequencies

Section 1.5 introduces deviations from the simple Kingman coalescent, motivated
by the desire to apply coalescent models more broadly. It is also of interest to test
the simple Kingman coalescent, and this can be done using the three measures of
genetic variation considered in the previous section. A large number of test statistics
have been proposed, modeled after Tajima’s (1989) initial suggestion of the statistic

D = π − S/a1√
Var (π − S/a1)

,

in which

a1 =
n−1∑
i=1

1

i



20 J. Wakeley

The numerator of Tajima’s D compares two unbiased estimates of θ , one from
pairwise differences and one from segregating sites. Tajima’s D thus has an expected
value very nearly equal to zero (it is not exactly equal to zero because of the
denominator), and significant deviations either in the positive or the negative
direction warrant rejection of the standard neutral coalescent. The denominator is a
normalization factor which decreases the sensitivity of the sample size and requires
an estimate of the variance of the numerator, typically made from the same data.

Because S and π are linear functions of the site frequencies (Tajima 1997),
Tajima’s D may be viewed as a measure of goodness-of-fit of the prediction
displayed in Fig. 1.4a (for n = 20). Actually, Tajima’s D depends only on the
folded site-frequency spectrum because sites that contribute to ξ i and ξn − i are
weighted equally, proportional to i(n − i), in the calculation of π , and all sites are
weighted equally in the calculation of S. Deviations in the positive direction indicate
an excess of middle-frequency SNPs (i around n/2) and deviations in the negative
direction indicate either an excess of low-frequency SNPs (i close to 1) or an excess
of high-frequency SNPs (i close to n − 1). Tajima’s D is sometimes portrayed
as a test for selection (see Chap. 4), but in fact, it is sensitive to a whole battery
of nonselective deviations from the standard neutral model, including population
structure and changes in population size over time.

The distribution of Tajima’s D takes on a variety of shapes depending on the
sample size, the mutation rate, and other factors. Because it is computed from the
site-frequency counts, ξ i, Tajima’s D is a discrete random variable. Figure 1.5 shows
two distributions of Tajima’s D, illustrating the range of shapes it can assume. Figure
1.5a is for a sample of n = 20 at a hypothetical locus with θ = 10 under the standard
neutral coalescent, and Fig. 1.5b is for the same number of sequences all sampled
from a single subpopulation in the migration model discussed in Sect. 1.5.2.

Fu and Li (1993) and Fu (1997) introduced a large number of related statistics,
including many that test deviations from the folded site-frequency spectrum and
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Fig. 1.5 (a) The distribution of Tajima’s D among 106 data sets simulated under the standard
neutral coalescent model at a hypothetical locus with n = 20 and = 10. (b) The corresponding
distribution for a sample from a single subpopulation under the island migration model with M = 1
and with other parameters set so the expected number of pairwise differences in the sample is equal
to 10, as it is in (a). The data in (a) were generated using the algorithm in Hudson (1990), and the
data in (b) were generated using the algorithm in Wakeley (1999)

http://dx.doi.org/10.1007/978-3-030-61646-5_4
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others that test deviations from the unfolded site-frequency spectrum. Simonsen et
al. (1995) outlined a method of assessing the significance of such statistics which
accounts for the fact that P-values depend on an estimate of θ from the data. Fay
and Wu (2000) adapted one of Fu’s (1997) statistics as a test specifically for positive
selection. Their statistic, H, is sensitive to an excess of high-frequency SNPs, and
positive selection is one of a small number of deviations from the standard neutral
model that can cause such an excess. Achaz (2009) advanced the theory of devising
optimal statistics based on site frequencies, and Ferretti et al. (2010) extended
this approach to design optimal statistics for specific deviations from the standard
neutral model. Recently, Sainudiin and Véber (2018) described a way to compute
the likelihood of the full site-frequency spectrum of a sample at a locus without
recombination.

1.5 Extensions of the StandardModel

The strong simplifying assumptions of the standard neutral model—no selection,
constant population size over time, and no population structure—are appropriate
if the aim is to establish a null model to be tested. If one wishes to make more
detailed inferences about a range of biological phenomena, then coalescent models
must be extended to include those phenomena and their key parameters. Many
such extensions have been made, significantly broadening coalescent theory beyond
the standard neutral case. In this section, we will encounter examples of how two
important deviations from the Kingman coalescent, namely, changes in population
size over time and geographic population structure, can affect the site-frequency
spectrum and thus might be detected, for example, using Tajima’s D or related
statistics.

Figure 1.6 displays hypothetical gene genealogies for four different population
models, showing how the size and shape of gene genealogies depend on the details
of population structure and history. The standard neutral model (Fig. 1.6a), for
which expected site-frequency results are given in Fig. 1.4a, is compared to a
model of population growth (Fig. 1.6b), and two models of population structure:
divergence in isolation (Fig. 1.6c) and subdivision and migration (Fig. 1.6d). These
three types of deviations from the standard model are considered in detail below,
with expected site-frequency results given in the corresponding panels of Fig. 1.4.

A consideration of how natural selection affects site frequencies is taken up in
Chap. 4. Note that in some species, though probably not humans, extreme differ-
ences in offspring numbers among individuals can cause site-frequency patterns
that closely mimic those produced by natural selection. When the variance σ 2 of
the offspring-number distribution is very large, the Kingman coalescent may not
hold. Instead, gene genealogies may include multiple mergers of ancestral genetic
lineages (Möhle and Sagitov 2001). None of the predictions listed in Sect. 1.4 may
hold, and there may be a dramatic excess of high-frequency SNPs; e.g., see Sargsyan
and Wakeley (2008). Strong natural selection induces a very similar phenomena near
the locus at which selection acts (Durrett and Schweinsberg 2004; Etheridge et al.

http://dx.doi.org/10.1007/978-3-030-61646-5_4
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Fig. 1.6 Cartoon depictions of the four types of neutral population-genetic models for which
results for expected site-frequency distributions are given in Fig. 1.4. Shaded blocks represent
populations over time, with the present at the bottom and the past at the top and with widths
in proportion to relative population size. Hypothetical gene genealogies are shown within these
populations, constrained by their structure, and with coalescent times in roughly inverse proportion
to relative population sizes. The four panels show (a) a standard neutral population of constant size,
(b) a population that recently grew tenfold, (c) two isolated populations descended from a common
ancestral population, and (d) a subdivided population in which migration can occur among five
local populations

2006) similarly because a few individuals leave very many descendants in a short
period of time.

1.5.1 Fluctuations in Population Size over Time

Due to the inverse dependence of the probability of coalescence on N, for example,
in Eq. (1.2), changes in population size lead to changes in the rate of coalescence.
Comparing two populations which are otherwise identical, if one population is twice
the size of the other, then its gene genealogies will be twice as long on average. In
a single population, with time rescaled by the current population size, then at a time
in the past when the population size was twice as large, the rate of coalescence will
be half what it is now. To make this precise, under arbitrary changes in population
size, if λ(t) is the size of the population at time t relative to what it is today, then by
defining

Λ(t) =
∫ t

0

1

λ(s)
ds
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the occurrence of a coalescent event in the interval (0, t) may be modeled using the
first two of the key properties listed in Sect. 1.4 but over the corresponding, rescaled
interval (0, �(t)) (Donnelly and Tavaré 1995).

Equivalently, one can imagine taking a standard gene genealogy, such as the one
in Fig. 1.1, then stretching or shrinking its coalescent intervals accordingly, so that
they become proportionately longer (or, respectively, shorter) when the population
size was larger (respectively, shorter). Alternatively, one may model changes in
population size as proportional changes in the mutation parameter θ over time.
Based on these considerations, for simple types of changes in population size, it
is possible to obtain analytical expressions for some quantities of interest (Slatkin
and Hudson 1991; Polanski and Kimmel 2003; Wakeley and Hey 1997).

Figure 1.4b shows the expected site-frequency spectrum for a sample of size
n = 20 from a population which was much smaller in the past than it is now.
Specifically, the population grew 100-fold instantaneously at time t = 0.2 in the
past, measured on the coalescent timescale based on the current population size. In
terms of the scaled mutation rate, between the present and time t = 0.2, the mutation
parameter was θ = 1, while before time t = 0.2 in the past, the mutation parameter
was θ = 0.01.

In this situation, only a small fraction of mutations will occur during the more
ancient coalescent intervals of the gene genealogy. These are the mutations that
would have produced high-frequency SNPs. For example, on average for n = 20,
there will be seven ancestral genetic lineages at time t = 0.2. These more ancient
intervals, with from seven down to two ancestral genetic lineages, are the only ones
in which mutations can create SNPs contributing to site frequencies ξ14 through
ξ19. Figure 1.6b shows a similar scenario for the gene genealogy of a sample of size
n = 6, illustrating the dramatic compression of ancient coalescent intervals under
population growth.

Because more ancient mutations are disproportionately the source of high-
frequency SNPs, population growth causes an excess of low-frequency SNPs (Fig.
1.4b) compared to the standard neutral coalescent (Fig. 1.4a). Population decline
causes an excess of high-frequency SNPs (not shown). However, as long as the
branching structure of the gene genealogy is determined by randomly joining
pairs of ancestral lineages, the site-frequency spectrum will always be a convex
decreasing function of the mutant count (Sargsyan and Wakeley 2008). Thus, the
most extreme excess of high-frequency SNPs that population decline or any series
of changes in population size can produce under the coalescent model is a flat site-
frequency spectrum.

1.5.2 Population Subdivision andMigration

The great simplicity of the standard neutral coalescent follows from the exchange-
ability of the genetic lineages ancestral to the sample (Kingman 1982c) which holds
only under neutrality for well-mixed populations. Whenever lineages carry labels,
such as allelic types when there is selection or locations when there is geographic
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structure, and these labels affect the rates of coalescence, then the lineages are
not exchangeable, and modeling gene genealogies become more complicated. In
the case of population subdivision, either with or without migration, the chance
of coalescence is greater for pairs of lineages in the same subpopulation than for
pairs of lineages in different subpopulations. This can only be modeled by explicitly
keeping track of the locations of ancestral lineages as they are followed backward
in time.

Other complications arise because structured populations may contain many
subpopulations, which may be of different sizes and between which any number
of complex patterns of migration might exist. A general model of D subpopulations,
or “demes” as they are often called, would have D2 parameters: D deme sizes and
D(D − 1) migration rates. In addition, it is not clear what sort of simplified limiting
models should be developed for structured populations. Some populations might
comprise a small number of very large demes, while others might comprise a large
number of small demes. It could be that the very idea of demes/subpopulations is
inapplicable, rather than that the population is continuously distributed across its
habitat.

Accordingly, a number of different coalescent models of geographic structure
have been developed—these are reviewed in Hein et al. (2005) and Wakeley
(2009)—and the choice of model must depend on the species being studied. Wright
(1931) introduced the island model of population subdivision with migration, which
has been the source of a great number of other models and methods of data
analysis. Herbots (1997) and Notohara (1990) described the general mathematical
coalescent approach to these discrete-deme models, following Takahata (1988). In
these models, the deme sizes are assumed to be large, like the population size in the
Kingman coalescent (N → ∞). The migration rates are assumed to be small. They
are treated in the same manner that mutation is treated in the limit leading to the
Kingman coalescent.

The resulting structured coalescent model allows the straightforward derivation
of useful expressions concerning genetic variation. For instance, consider a simple
version of the island model in which all D demes are of the same (haploid) size
N, migration between all pairs of demes occurs with the same per-generation
probabilitym, and reproduction occurs by haploid Wright–Fisher sampling. Then, if
πw and πb are the average number of differences between pairs of sequences from
the same deme (i.e., “within”) and the average number of differences between pairs
of sequences from two different demes (i.e., “between”), it can be shown that

E [πw] = θD

and

E [πb] = θD

(
1 + 1

M

)
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where the parameter M = 2Nm is the scaled migration rate. This simple model can
be extended to include other modes of reproduction or diploidy, as in the Kingman
coalescent, by replacing N with Ne in both θ and M.

The expression for E[πw] says that the expected level of genetic variation within
demes is identical to the expected level in a single population of the same total size,
ND. The same is not true of the variance (not shown), which depends inversely
on M. The expression for E[πb] says that the expected level of genetic variation
between demes is increased by an amount inversely proportional to the migration
parameter M. When M is small, the population is expected to contain high levels
of variation, and the difference between πb and πw is expected to be great. This
is the basis of FST as a measure of the degree of population subdivision (Slatkin
1991). It is important to note that the scaled migration rate M may be large, so that
little evidence of subdivision is apparent, even if the per-generation probability of
migration is small.

These results had been known previously (Li 1976; Slatkin 1987; Strobeck 1987),
but the introduction of the structured coalescent greatly facilitated the development
of sophisticated methods of inference for structured populations, akin to those
mentioned in Sect. 1.4.3, where the model is employed to average over gene
genealogies in the computation of the likelihood (de Iorio et al. 2005; Beerli 2006).
Similar methods have been proposed for cases of nonequilibrium migration, in
which two or more populations descend from a single ancestral population (Hey
and Nielsen 2004, 2007; Wilkinson-Herbots 2008; Hey 2010).

Population subdivision can have a dramatic effect on site frequencies. Figure
1.4C shows the site-frequency spectrum for a sample of size n = 20 for a
hypothetical case of hidden population structure. Specifically, the sample contains
n1 = 6 sequences from one population and n2 = 14 from the other population under
the isolation model of Takahata and Nei (1985) in which two populations split from
a common ancestral population at some time in the past and after that exchanged
no migrants. The same mutation rate θ = 1 was used for all three populations, and
the split time was assumed to be t = 1, measured on the coalescent timescale. In
this case, there is a tendency for the gene genealogy to be composed of two sub-
trees with 6 and 14 tips connected by a long internal branch, with mutations on
this branch contributing to ξ6 and ξ14. Figure 1.6c depicts a similar scenario for a
sample of total size six.

Figure 1.4d shows the site-frequency spectrum for a sample of size n = 20 taken
from a single deme in the island model with many demes and a migration rate of
M = 1. Here, in the recent past, ancestral genetic lineages not only coalesce within
the deme from which they were sampled but also migrate to other demes. When
all remaining ancestral lineages are in separate demes, the process of coalescence
is dependent on migration events that bring ancestral lineages together into the
same deme, where they have a chance to coalesce. Both the branching pattern and
the lengths of coalescent intervals differ from those of standard coalescent gene
genealogies. ForM = 1, this results in the slightly U-shaped site-frequency spectrum
shown in Fig. 1.4d.
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We can understand the pattern in Fig. 1.4d by imagining a mixture of patterns like
the one in Fig. 1.4c, depending on the specific outcome of migration and coalescence
in the recent ancestry of the sample. For example, if one ancestral lineage migrates
out of the sampled deme and the other 19 ancestral lineages coalesce within it, then
the gene genealogy will resemble one for which two demes were sampled with
n1 = 1 and n2 = 19. This would cause mutants counts ξ1 and ξ19 to be inflated. Fig.
1.6d shows an analogous scenario for a sample of size six in a five-deme model, in
which the counts ξ2 and ξ4 would be inflated.

Figure 1.5 illustrates that such deviations can be detected using Tajima’s D.
For example, if we adopt the lower 2.5% critical value of −1.803 and the upper
97.5% critical value of 2.001 for n = 20 from Table 2 in Tajima (1989), the one
million pseudo-datasets from the standard neutral coalescent that yielded Fig. 1.5a
reject the null model 2.0% of the time in the negative direction and 1.1% in the
positive direction. In contrast, the pseudo-datasets that yielded Fig. 1.5b, which were
generated under the same kind of many-demes model that gave the site-frequency
spectrum in Fig. 1.4d (but with E[πw] = 10 to allow comparison with Fig. 1.5a)
reject the null model 11.4% of the time in the negative direction and 18.8% in the
positive direction.

1.6 Conclusion: Current Challenges of Big Data

Now is a particularly exciting time in human population genetics. The field is awash
in data, with major efforts such as the Simons Genome Diversity Project (Mallick
et al. 2016), the 1000 Genomes Project (The 1000 Genomes Project Consortium
2015), and the UK Biobank (Bycro et al. 2018) promising that, soon, many millions
of genomes will be available for study. The continued relevance of the models
presented here may be seen in the recent papers by Kelleher et al. (2019) and Speidel
et al. (2019). These present new methods for the population-genetic analysis of very
large numbers of genomes. With the caveat that at the genomic scale, it is crucial
to include recombination (see Chap. 2), parts of the analyses in both Kelleher et al.
(2019) and Speidel et al. (2019) rely on the standard neutral coalescent model. The
aim in both works is to infer the ordered series of mutation events and coalescent
events at loci across the human genome (recall the importance-sampling methods
described in Sect. 1.4.2). In doing so, both works use the techniques of Li and
Stephens (2003), which extend the importance-sampling method of Stephens and
Donnelly (2000) to account for recombination. The results of Kelleher et al. (2019)
and Speidel et al. (2019) provide first-pass estimates of ancient relationships and
associated mutations among humans across the genome (Harris 2019).

The aim of this chapter has been to describe the foundational models of
coalescent theory. They are simplified models which capture the effects of neutral
mutation, reproduction, and genetic transmission in shaping distributions of genetic
diversity. The simplest model, the standard neutral coalescent, assumes a single
well-mixed population of constant size, but extensions to include changes in
population size over time and idealized kinds of population structure were also

http://dx.doi.org/10.1007/978-3-030-61646-5_2


1 Coalescent Models 27

described. These models aid in the interpretation of genetic data and express our
understanding of how evolutionary forces produce and maintain variation at a single
locus without recombination.
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